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Abstract

Different nonlinear observers are compared throughout this work where they are part of an
NMPC framework to control a fed-batch crystallization process. We study which observer-
optimizer pair offers the best control performance while maintaining adequate computational
burden so that a posterior real-time implementation is feasible. At the same time, the rela-
tionship between state estimation accuracy and control performance is covered. Along the
way we distinguish between stochastic and deterministic observers and compare which class
is more suitable for our case study. The observers we make use of are: the moving horizon es-
timator (MHE), a nonlinear version of a Luenberger observer (extended Luenberger observer,
ELO) and nonlinear variants of the Kalman filter such as extended Kalman filter (EKF),
unscented Kalman filter (UKF) and ensemble Kalman filter (EnKF). Special variants of UKF
and EKF that make use of a non constant system covariance matrix, which according to some
literature is suitable to describe uncertainty distribution in batch processes, are also included
in the analysis.

The analysis focuses on how four main error sources such as unmeasured disturbances, un-
certain initial conditions, model mismatch, and stochastic disturbances may impact observer
estimation accuracy as well as their repercussion on control effectiveness and consequently on
process performance. Results show that unmeasured disturbances are the most detrimental
to observer and process performance in our case study. In spite of this finding, we present a
methodology to tackle and solve this problem.

All the analysis is first made under an open-loop configuration and then moves onto a closed-
loop setup. All testing is based on computer simulations of the crystallization process. The
evaluation criterion is based on the magnitude of a normalized root-mean squared error
throughout 50 batch runs. The results are then used to identify if a link between estimation
accuracy and control performance exists. The computational burden is also evaluated along
50 batch simulations, and is measured on the basis of CPU time required by every observer
at every estimation stage.
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Chapter 1

Introduction and Problem Statement

1-1 Introduction

Crystallization is the formation of solid crystals precipitating from a solution or a melt. Its
importance relies on the fact that more than 80% of the substances used in pharmaceuticals,
fine chemicals, agrochemicals, food and cosmetics are produced in their solid form. In fact, few
branches of the chemical and process industries do not, at some stage, employ crystallization
for production or separation purposes. Even more, highly demanded crystalline substances
such as: sodium chloride and sucrose, in the food sector; ammonium nitrate, potassium
chloride, ammonium phosphates and urea, among fertilizers, for instance, have very high
production rates worldwide and crystallization is used in their making. Even though compared
to the latter goods, crystalline products for the pharmaceutical, organic fine chemical, and
dye industries are produced in relatively low amounts, they still represent a valuable and
important industrial sector. It is also a widely used production and purification method of
solid materials in the chemical and process industries. Even more, it is a key operation in, for
example, desalination of seawater, concentration of fruit juices, removal of unwanted materials
or recovery of valuable constituents in many industrial processes. It is also increasingly
employed in production of material for the electronics industry, Mullin [26].

Crystallization is governed by complex, interacting variables. It is a simultaneous heat and
mass transfer process with a strong dependence on fluid and particle mechanics. It occurs in a
multiphase, multicomponent system and involves particulate solids whose characteristics vary
with time, Mullin [26]. Despite this complexity, as in any other process, there are specifications
that production must fulfill. Some of these specifications may be required for downstream
operation, like filtration or drying for instance, or for acceptance of the client. In the case of
crystals, specifications may be related to concepts such as crystal size distribution, shape of
the crystals, purity, or some others. In order to assure product quality but simultaneously
maximize productivity, it should be possible to operate systems on the boundaries of the
allowed operating region. Such goal can only be achieved by adequate process control, Nagy
[28].
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2 Introduction and Problem Statement

Control of crystallization processes is a challenging task due to the complexity of the process.
Describing the dynamics of a crystallization process requires nonlinear models. For this
reason, Nonlinear Model Predictive Control (NMPC) has been the sticking point on these
applications, and was the choice for this project.

Our work focuses on the control of an evaporative 75-liter fed-batch crystallizer where am-
monium sulphate dissolved in water is the crystallization system.

The process goal is to produce crystals with some desired crystal size distribution. In order
to achieve this, the controller must keep the crystals’ growth rate as close as possible to a
predetermined value.

Several studies concerning this setup have been done in the past, see Mesbah et al. [23],
Mesbah et al. [24], where the model describing the system dynamics was deterministic. The
dynamics of the crystallizer are described by a population balance equation, consisting of a
set of partial differential equations. However, the characteristics of the problem posed by
the 75-liter crystallizer allow transforming the full population balance equation into a less
complex model, although still nonlinear, known as the moment model which consists of a
set of nonlinear differential and algebraic equations. The moment model is expected to be
complex enough to be used as a benchmark to determine the most suitable observer in case
a more complicated system model had to be used. It is however still possible to improve
previous studies. First, creating a more realistic scenario by perturbing the system with
different error sources. Such error sources can be divided in stochastic error, unmeasured
disturbances, uncertain initial conditions and model mismatch. Introduction of error sources
of random nature force us to introduce stochastic variables in the process model, which in
paper pose a tougher challenge for the controller and intrinsically for the observer-optimizer
pair. This motivates selection and testing of observers other than deterministic. For some
alternatives the reference, Mora Moreno [25] may offer an overview of available choices.

The observers we will make use of are:

• Extended Kalman filter (EKF)- in literature it appears to be the default option when a
nonlinear observer is needed. It is also claimed to be computationally cheap, somehow.
It has shown however, some limitations since its algorithm relies on linearization of the
system model.

• Unscented Kalman filter (UKF)- conceived by Julier S. J. [19], it is claimed to be more
accurate than EKF and does not require differentiation to generate estimates while
maintaining a computational burden in the same order than EKF. No applications in
the area of batch crystallization had been realized, so it should be interesting to include
it in our study.

• Ensemble Kalman filter (EnKF)- its main applications were found in cases involving
complex nonlinear models with large number of variables, and like UKF, does not make
use of derivatives in their calculations either.

• Extended Luenberger observer(ELO)- previous works concerning our case study, Mes-
bah et al. [24], had dealt with an extended Luenberger observer, although the appli-
cation was in a non stochastic scenario, yet we selected this deterministic observer for
comparison with the others.

I. Mora Moreno Master of Science Thesis



1-2 Problem statement 3

• moving horizon estimator (MHE)- As this type of observer is based on an optimization
procedure it seemed appealing to evaluate how well it could deal with the stochastic
factor.

Concerning UKF and EKF, modified variants of both observers are available. These variants
make use of a non-constant system covariance matrix. Computation of such matrices is based
on an algorithm developed by Valappil and Georgakis [43]. The assumptions made to come
up with the algorithm are suitable for batch crystallization, so it is appealing to study their
applicability.
Finally, in the references concerning previous studies of the 75-liter crystallizer it has already
been shown the importance of a closed-loop control strategy, over an open-loop approach, to
adequately achieve quality and production goals. Nevertheless, since we will investigate the
effects of using non-deterministic observers, and we will also perturb the system with different
error sources, we will first take on an open-loop scenario. There, all the observers will be tested
to determine how good an open-loop approach is, and determine if it is necessary to implement
a closed-loop control strategy once again. Both scenarios will be evaluated under the same
criteria introduced in the next section.

1-2 Problem statement

We may formulate our problem statement as “to select the best observer to be used in an
NMPC framework, such that predefined control objectives are met while real-time implemen-
tation of the observer-optimizer pair remains feasible”.
It should be noticed that our optimizer is a fixed element of the NMPC framework, that is,
all observers will be coupled to the same optimizer.
The optimizer requires information from the system. A first impulse would be to measure
any required quantity directly on the system. Unfortunately, due to economical, physical
or technological reasons it is not always possible to perform measurements of any desired
variables. Under these circumstances, it is only possible to estimate their value. Fortunately,
estimating system variables may be done by exploiting the relations binding the state variables
to the inputs, outputs and their time derivatives in terms of measurable quantities. This allows
to know the state of a system without actually measuring it. A mathematical tool which offers
a solution to this problem is known as an observer.
Observation, however, requires the system fulfills a property known as observability. This
property must be, and will be, assessed before any observer implementation.
Part of the assesment to determine the best observer-optimizer pair will be based on analyzing
the influence each error source has on the estimation capabilities of every observer. Thereby,
our system will be perturbed with every single error source we mentioned before, one at a
time. The effects will be described and we will explain the reasons behind such effects. A
final exercise where all error sources will be simultaneously applied will allow us evaluate to
what extent the superposition principle holds when trying to interpret the results and should
ultimately be consider as the worst case scenario that could be faced in a real implementation.
It is of special interest to determine which error source(s) is/are more detrimental to observer
and control performance. In this way we should be able to describe up to which point an
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4 Introduction and Problem Statement

observer may account for different error sources and will let us be aware of the limitations
when a real-time implementation is carried out.

Even more, since fulfilling control goals leads to meet or exceed product specifications, which
is what really matters from a practical point of view, an important part of our assessment
is based on whether our observer-optimizer pair achieves adequate system control. Control
performance will be evaluated by looking at the tracking error of a desired crystal growth
trajectory. Then an interesting question derives from the latter exercise, that is whether
estimation accuracy plays a role in control performance or not. So, is it necessary to spend
time building an observer that delivers accurate estimates, or are rough approximations of
the state variables enough to achieve good control?

We will make use of computer simulations to recreate all the cases previously described. The
estimation accuracy will be evaluated on the basis of a normalized root-mean squared error
(NRMSE) throughout 50 simulations.

Again, in the case of tracking error we will asses its magnitude based on an NRMSE over 50
simulations of this quantity.

This approach should suffice to find a correlation between estimation accuracy and control
performance, if anyone exists.

Concerning real-time feasibility of the controller, we will determine the computational burden
of each observer, as well as that for the observer-optimizer pair (that is, the controller).

Computational times will be recorded every time an observer calculates state estimates. We
will plot the average, taken over 50 simulations, of the required CPU time at each step . This
will allow us verify that there are no large peaks in the simulation time that would endanger
a successful real-time implementation.

All simulations stated above will take place in both, open- and closed-loop scenarios.

The outline of the report is as follows, Chapter 2 gives an overview of NMPC and how
observers integrate in this framework, we highlight their importance as part of the control
strategy. Chapter 3 describes the selected observers, it also discusses the design of the ob-
servers, Chapter 4 thoroughly describes and discusses the case study, there we present the
model describing the system under investigation together with the specifications that must
be met by the controlled system. We also present an observability analysis required before
attempting to design an observer. In Chapter 5 we present, analyze and discuss all the results
generated by a computer simulator of the controlled system. Finally we give our conclusions
and recommendations in Chapter 6. Appendices A to E present complementary figures and
briefly discuss the findings of the simulations for all the remaining error sources not discussed
in Chapter 5. Appendix F gives a complete overview of disturbance rejection by means of
integral action and also by the usage of augmented states, two concrete examples are given
and compared for each methodology, both for linear systems. Finally, Appendix G gives
complementary figures of the CSD for all the filters in the general case.
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Chapter 2

Nonlinear Model Predictive Control

In this chapter we give a short introduction to MPC and link it with NMPC as the latter is
required for our case study. We highlight important features characterizing MPC as well as
the elements that make it a interesting option for systems as that analyzed in this work.

2-1 Systems control

Independently of the field where a control issue arises, three different elements are common to
all cases; a system (with an arbitrary number of elements and degrees of complexity) whose
behavior wants to be molded according to certain parameters, those parameters might be
set by the person facing the challenge, and may be thought as goals that must be achieved
by the system. Some others may be set by the environment surrounding the system, which
may be thought as limitations or constraints as the designer cannot manipulate them, or
a combination of the two. There will also be disturbances perturbing the system which
according to their intensity may have, or not, an impact on the system. Once the goal,
constraints and disturbances have been recognized/set, the designer needs to choose a control
strategy to be applied. To come up with an adequate choice, the selection should be based
on the characteristics of the system the designer is dealing with. For instance, as the system
in front exhibits fast dynamics, so will need the control strategy. If constraints are present,
the control strategy must be capable of dealing with such restrictions. Besides, it is also
important that perturbations present on the system, which the designer might or might not
be aware of, can be overcome.

For our particular application concerning batch crystallization processes we may say that they
are well known for showing complex dynamics requiring nonlinear models to describe them and
acquire reasonable results, the number of variables to describe the system behavior is usually
large compared to other applications, they also exhibit dominant time constants of large
magnitude, meaning they can be considered to have slow dynamics. Other characteristics
include the uncertainty in the knowledge of system parameters, the inherent variability of
those parameters along production and presence of disturbances.

Master of Science Thesis I. Mora Moreno



6 Nonlinear Model Predictive Control

The characteristics just mentioned lead us to select a control strategy known as nonlinear
model predictive control (NMPC), this methodology is further described in the following
sections, however we start off by introducing model predictive control (MPC) differing from
NMPC in the fact that only linear models are used.

2-2 Nonlinear Model Predictive Control (NMPC)

van den Boom and Backx [44] state that MPC originated in the late seventies and has devel-
oped considerably since then. The term MPC does not designate a specific control strategy
but rather an ample range of control methods which make explicit use of a model of the
process (thereby its name) to obtain the control signal by minimizing an objective function.
MPC may also be described as a control scheme where it is possible to identify five items as
part of the design procedure:

1 process model and disturbance model: this allows to describe the system dynamics
as well as disturbance(s) acting on the system. The models may be the output of a
first-principle, an empirical or a combined approach

2 performance index: is related to a cost function which sets a criterion that must be
totally fulfilled, or at least within certain boundaries defined by the designer in order
to achieve certain system behavior

3 constraints: mathematical representation of actual constraints in the system

4 optimization: related to the solution of the cost function imposed by the performance
index

5 receding horizon principle: the optimization part takes place over a certain period ahead
in time, the receding horizon uses only part of the computed solution and establishes
that optimization must be redone after a predetermined period.

Figure 2-1 shows the complete picture of a system controlled under the MPC scheme where
the elements listed before can be identified.

It is possible to mathematically represent all the elements of MPC mentioned before as follows,

min J s.t.

f̃ = 0
h̃ = 0
φ̃ = 0
ψ̃ ≤ Ψ̃

(2-1)

where J represents the cost function to be minimized, f̃ represents a set of equations describing
the dynamics of the system, h̃ represents the output function, φ̃ represents the set of equality
constraints and ψ̃ the set of inequality constraints that must be fulfilled. The variables upon

I. Mora Moreno Master of Science Thesis



2-2 Nonlinear Model Predictive Control (NMPC) 7

Figure 2-1: MPC scheme, as presented in van den Boom and Backx [44].

Figure 2-2: receding horizon principle.

which the functions depend are excluded as they depend on the representation of the models,
that is, an input output model has a different structure that a state space model.

In Figure 2-2 we observe the evolution of a discrete-time system starting at time k, we see the
history of the system output and input (solid lines), and their respective predictions given
by an MPC scheme. In the upper graph we see a set point line which represents a trajectory
that must be followed by the system; however, the output should not exceed a certain value
marked by the constraint therein. In the lower graph we see a control input profile product of
solving an optimization problem from time k+ 1 up to k+N , subject to an input constraint
also depicted, such that, by applying these inputs to the system it will generate a trajectory
given by the broken line. In the receding horizon we obtain a control input sequence over N
time steps, nonetheless, we only implement the result for the first time step and restart the
process all over again.

According to van den Boom and Backx [44], some of the features that make MPC an attractive
tool for control are:

• it can handle multivariable systems,

• it can handle processes that may contain one or more drawbacks like instability, large
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8 Nonlinear Model Predictive Control

time delays, non-minimum phase behavior,

• it is an easy-to-tune method, as there are only a few basic parameters to be tuned,

• processes have limitations, for instance in terms of actuation a valve cannot exceed a
determined capacity. MPC can handle that and other constraints in a systematic way
during the design and implementation of the controller,

• finally, MPC can handle structural changes, such as sensor and actuator failures, changes
in system parameters and system structure by adapting the control strategy on a sample-
by-sample basis.

From all what we have mentioned so far, perhaps the main reason for the popularity of
this control strategy is due to its constraint-handling capabilities and the easy extension to
multivariable systems.

MPC basically refers to the methodologies where only linear equations are used to describe
everything in the problem formulation, beginning by the plant and disturbances and including
the constraints, nevertheless, there are many applications that require usage of nonlinear
models. This variant is known as Nonlinear Model Predictive Control, and its functioning
is similar to that in MPC, even though modifications to cope with the nonlinearities must
be applied. NMPC possesses the same advantages that make MPC so attractive for certain
applications, plus, it incorporates the advantage of working with nonlinear systems. This
justifies the selection of NMPC for the present case study and will be more evident once we
introduce the model in the next chapter.

I. Mora Moreno Master of Science Thesis



Chapter 3

Observers

We begin this chapter by giving an overview of what is known as an observation problem.
We make a distinction between two cases, one involving stochastic behavior and another one
without it. Then we continue by defining an observer, a classification found in literature is
introduced, and based on the needs of the case study concerning us we present the selected
observers that later on will be used in this work. A short summary of the algorithms, main
characteristics and tuning issues are presented for each observer.

3-1 The Observation problem

Before we proceed to mathematically formulate the observation problem, let us make a dis-
tinction of two groups of models, namely, deterministic and stochastic ones. They may be
distinguished by the fact that a stochastic model contains random variables, that is, vari-
ables whose exact value is not exactly known but may be described by a probability density
function. It follows that a deterministic model does not contain any random variable. Deter-
ministic models can be thought as a subcase of a stochastic one when the uncertainty attached
to it is zero. Therefore by taking on the stochastic problem we ensure covering both cases.
Given a (nonlinear) state-space discrete-time system representation,

xk+1 = f(xk, uk, vk) + dk, (3-1)
yk = h(xk, uk, wk) (3-2)

with

xk ∈ Rn×1 (3-3)
uk ∈ Rq×1 (3-4)
yk ∈ Rp×1 (3-5)
vk ∈ Rq×1 (3-6)
wk ∈ Rp×1 (3-7)
dk ∈ Rn×1 (3-8)

Master of Science Thesis I. Mora Moreno



10 Observers

where x, u, y, v, w are the state, input, output, system noise, measurement noise and distur-
bance vectors respectively. System and measurement noise can be interpreted as the uncer-
tainty faced when trying to measure either a state variable or an output variable. Depending
on the characteristics of the modeled system the probability density function of each noise
variable may vary; here we assume that noise vectors vk and wk, are zero-mean and

E[vivTj ] = δijQij (3-9)
E[wiwTj ] = δijRij (3-10)
E[viwTj ] = 0; ∀i, j. (3-11)

with

Qij ∈ Rq×q (3-12)
Rij ∈ Rp×p (3-13)

δij = 1 if i = j and δij = 0 otherwise

where Qij , Rij , δij are the system noise covariance matrix, measurement noise covariance
matrix and Kronecker’s delta, respectively. Disturbances can be deterministic or stochastic,
measured or unmeasured, that is to say, it might or might not be possible to determine the
magnitude of some of the disturbances acting on the system, this information should help
to more faithfully represent reality via our system model. Functions f and h are nonlinear
functions, and k is the discrete-time index.

The observation problem can be mathematically described as follows. The objective is to find
the best estimate (according to a certain criterion) of the variable xk+1 given observations
y up to and including time k. This issue is regarded as a sequential probabilistic inference
problem.

The hidden system state xk+1, with initial distribution p(x0), evolves over time.

The state transition density p(xk|xk−1) is fully specified by f and the process noise distribution
p(vk), whereas h and the observation noise distribution p(wk) fully specify the observation
likelihood p(yk|xk). The exogenous input to the system, uk is assumed known.

According to Kalman Kalman [20], consider the following situation,

• for a specific case that equations (3-1) and (3-2) represent a linear system, we are given
signal xk and noise νk. Only the sum yk = xk + νk can be observed. Suppose we
have observed and know exactly the values of y0, ...,yk. What can we infer from this
knowledge in regard to the unobservable value of the signal xk at ka, where ka may be
less than, equal to, or greater, than k? If ka < k, this is a data smoothing (interpolation)
problem. If ka = k this is called filtering. If ka > k, we have a prediction problem. In
this report the filtering case is the only one that will be analyzed. Therefore it must
be noted that, since we are doing filtering, we only account for improving the current
states and parameters, in fact for our case study we will only estimate state variables.

I. Mora Moreno Master of Science Thesis



3-2 Definition of an observer and its relevance in NMPC 11

In a Bayesian framework, the posterior density p(xk|Yk) of the state given all the observations
Yk = {y1, y2, . . . , yk} constitutes the complete solution to the sequential probabilistic
inference problem, and allows us to calculate any “optimal” estimate of the state, such as the
conditional mean xk+1 = E[xk|Yk] =

∫
xkp(xk|Yk)dxk.

Although this is the optimal recursive solution, it is usually only tractable for linear, Gaussian
systems in which case the closed-form recursive solution of the Bayesian integral equations
is the well known Kalman filter, Kalman [20]. For most general real-world (nonlinear, non-
Gaussian) systems however, the multi-dimensional integrals are intractable and approximate
solutions must be used. These include methods such as Gaussian approximations (extended
Kalman filter and other variants such as the linear regression Kalman filters, ensemble Kalman
filters, etc.), hybrid Gaussian methods (score function extended Kalman filter, Gaussian sum
filters), direct and adaptive numerical integration (grid-based filters), sequential Monte Carlo
methods (particle filters) and variational methods (Bayesian mixture of factor analyzers) to
name but a few.
We should now highlight that for our case study and from a control point of view we are mostly
interested in the input-output behavior of a system, therefore, not all the state variables need
to be estimated. Given the fact that there may exist different models with the same input-
output behavior it turns out that estimating all states might be superfluous. Even more, in
the NMPC framework the cost function that must be minimized might not need knowledge
of all the states.

3-2 Definition of an observer and its relevance in NMPC

Chapter 2 introduced that an essential element to make use of NMPC is a model describing
the system under investigation. As soon as we use a system modeling approach in front of
a problem, the issue of observer design arises whenever one needs some internal information
from external (directly available) measurements. Those signals of interest roughly include
time-varying signals characterizing the system (state variables), constant ones (parameters),
and measured or unmeasured external ones (disturbances). This need for internal information
can be motivated by various purposes: modeling (identification), monitoring (fault detection),
or driving (control) the system, all these being required for keeping a system under control,
Besançon [2]. Sometimes it is not possible to perform measurements for a given variable, thus
their value must be estimated by means of an available model whose variables are updated
with measured data from the actual system. In general indeed, due to sensor limitations (for
cost reasons, technological constraints, etc.), the directly measured signals do not coincide
with all signals characterizing the system behavior. This makes the observation problem the
heart of a general control problem.

Definition of an observer

We may now, more formally and shortly state that an observer relies on a model, with
on-line adaptation based on available measurements, and aiming at information
reconstruction, i.e. it can be characterized as a model-based, measurement-based,
closed-loop information reconstructor. Figure 3-1 illustrates this concept.
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Figure 3-1: System and observer embedded in a control loop. Adapted from Besançon [2]

Basically what an observer does is to use a model to predict values of the system state
variables, and relies on measurements to improve those estimates. This improvement is made
at the same time instant the measurement was made, that is to say, if we have made an
estimation (prediction) of a state variable for time k and we represent it by x̂k, then we
can use an available measurement taken at time k to improve our prediction. Figure 3-2
depicts how the estimation error may be totally/partially compensated for by relying on
measurements.

Figure 3-2: Compensation of the error between the predicted value of a system variable and its
real value, notice it can only be alleviated in the current time step k.

We are able to decrease estimation errors when measurements are available, but this does not
improve a model prediction’s capability.

Discrepancies between model predictions and reality are due to error sources such as:
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• Model mismatch: the model is not able to faithfully represent the dynamics of the real
system.

• Unmeasured disturbances: unwanted inputs that cannot be manipulated, and that may
or may not be measured, are acting on the system, therefore drifting it away a prespec-
ified trajectory.

• Measurement error: corrupted measurements lead to apply incorrect inputs

• Unknown initial conditions: the system may start from different points in state-space
causing it to evolve in time through different trajectories that might not be desirable.

Disturbances

As disturbances may not be foreseen when controlling a process, they can easily bring down
a control strategy. It is important to have an efficient methodology to reject them, that is,
make it robust against perturbations. We will now give a short description of a methodology
suitable to deal with disturbances in NMPC. Appendix F treats the task of disturbance
suppression more deeply.

Disturbances may be modeled at the input, output or some combination; they are, as the the
reader might have expected, uncontrollable and can be incorporated in the state estimator,
Rawlings and Bakshi [36].

If disturbances are acting on the system, two basic ways to cope with them are,

• based upon system knowledge, propose a model describing the disturbance dynamics
and incorporate this model in the observer. Therefore, it is necessary to augment
the state vector with a term aiming to estimate the disturbance. Once a disturbance
estimate is available it will be possible to establish control action to suppress it,

• it is also possible to augment the system model with a term representing the estimation
error, such that in a closed-loop scheme any estimation error can be integrated and
driven to zero. We can add that tracking nonzero targets or desired trajectories that
approach nonzero values may be done by augmenting the plant model dynamics with
integrators and shifting the set point,such that again, the driving error is brought to
zero.1

Detailed analysis concerning augmented states to reject disturbances can be found in the work
of Davison and Smith [7] and Bitmead et al. [4].

3-3 Observers

As we distinguished stochastic and deterministic models, we will also need observers capable
of dealing with one or both types of systems. There may be different criteria to make a
classification of observer, however, according to Findeisen [12] observers may be divided in
three variants,

1Appendix F gives more insight on this topic and includes two examples for linear systems.
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• deterministic, do not assume presence of stochasticity in the system.

• stochastic, they do take stochasticity into account, their results are usually optimal in
the sense that they are more probable under given output information.

• optimization based, they may or may not include stochastic information about the
system and may include information about constraints on the variables constituting the
system.

Figure 3-3 shows an observers’ classification based on the definitions above.

Figure 3-3: Classification of observers. Adapted from Findeisen [12].

The next chapter will introduce and discuss our case study, we can anticipate that our problem
involves a stochastic nonlinear system, and as such, it will require observers that can handle
those two characteristics. Thus we will focus on nonlinear variants of the Kalman filter,
Luenberger observer and MHE.

Selection of the extensions of the Kalman filter are justified as follows:

• extended Kalman filter (EKF), it has been widely used with successful results in the
area of process control, it is arguably computationally cheap and easy to implement,
although tuning can become an issue, the number of variables in our application might
allow for an easy tuning. It is claimed that this filter has poor performance when used on
complex nonlinear systems and the situation is aggravated if discontinuities are present,
however, our case study should not pose a big threat on this regard.

• unscented Kalman filter (UKF), it is a relatively new extension of the Kalman filter for
nonlinear systems which does not include derivatives in its algorithm, it is said to be
more accurate than the EKF while in the same order of computational burden. It also
has the advantage that, when the analyzed system complies with certain structure, there
exist some variants that decrease the computational demand even more. Besides, it has
been implemented in very few cases in the process industries so it would be interesting
to try it out.
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• ensemble Kalman filter (EnKF), it presents an algorithm free from derivatives, it has
proved to be very effective when dealing with highly nonlinear systems and to our
knowledge, no implementation has been done in the area of process control, yet.

• extended Luenberger observer (ELO), it had been previously applied to the present
case study, however, in the previous application no stochastic behavior had been taken
into account so it was an opportunity to compare its efficacy compared to stochastic
observers.

• moving horizon estimator (MHE), since it is based on an optimization algorithm it
should be able to deal with uncertainties and it can also handle constraints.

We now present an overview of the observers used in our work, further information can be
found in references cited in the text.

3-3-1 Extended Kalman Filter (EKF)

If we make the basic assumption that the state, observation and noise terms can be modeled as
Gaussian random variables (GRVs), then the Bayesian recursion can be greatly simplified. In
this case, only the conditional mean xk = E[xk|Yk] and covariance Pxk need to be maintained
in order to recursively calculate the posterior density p(xk|Yk), which, under these Gaussian
assumptions, is itself a Gaussian distribution. It can be shown that the recursive estimation
is given by

xk+1|k+1 = (prediction of xk) +Kk[yk+1 − (prediction of yk)] (3-14)
= xk+1|k +Kk(yk+1 − yk+1|k)

Pxk = P fxk −KkPykK
T
k . (3-15)

While this is a linear recursion, we have not assumed linearity of the model. The optimal
terms in this recursion are given by

xk+1|k = E[f(xk|k, vk+1, uk+1)] (3-16)
yk+1|k = E[h(xk + 1|k, uk+1, wk+1)] (3-17)
Kk = E[(xk − xk+1|k)(yk − yk+1|k)T ]E[(yk − yk + 1|k)(yk − yk+1|k)T ]−1 (3-18)

= PxkykP
−1
yk

(3-19)

where the optimal prediction (i.e. prior mean at time k+ 1) of xk+1 is written as xk+1|k, and
corresponds to the expectation (taken over the posterior distribution of the state at time k)
of a nonlinear function of the random variables xk and vk. A similar interpretation applies
to the optimal prediction yk+1|k , except the expectation is taken over the prior distribution
of the state at time k. The optimal gain term Kk is expressed as a function of the expected
cross correlation matrix (covariance matrix) of the state prediction error and the observation
prediction error, and the expected auto-correlation matrix of the observation prediction error.

The Kalman filter calculates all terms in these equations exactly in the linear case, and can
be viewed as an efficient method for analytically propagating a GRV through linear system
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dynamics. As stated before, a certain criterion should be stated for optimality, it can be
shown that for the case considered, i.e. a linear process with a linear measurement equation
and Gaussian white process and measurement noises, the KF is also optimal in the sense that
it minimizes the conditional covariance of the state, and thus the estimate is the conditional
mean.

For more clarity, let us introduce a linear state space system given by

xk+1 = Axk +Buk+1 + vk+1 (3-20)
yk = Hxk + wk (3-21)

with

A ∈ Rn×n (3-22)
B ∈ Rn×q (3-23)
H ∈ Rq×n (3-24)

(3-25)

and the rest of the variables as defined in (3-1)-(3-2) having the same covariance matrices
(3-10) and (3-9). Although all the matrices may change in time, they are considered constants
here. It is, we refer to a Linear Time Invariant system (LTI).

We can then define a priori (at step k + 1 given knowledge of the process up to step k) and
a posteriori (at step k + 1 given the measurement yk+1) estimate errors as

ek+1|k = xk+1 − xk+1|k (3-26)
ek+1|k+1 = xk+1 − xk+1|k+1 (3-27)

The a priori estimate error covariance is then

Pk+1|k = E[ek+1|ke
T
k+1|k], (3-28)

and the a posteriori estimate error covariance is

Pk+1|k+1 = E[ek+1|k+1e
T
k+1|k+1]. (3-29)

In deriving the equations for the Kalman filter, we begin with the goal of finding an equa-
tion that computes an a posteriori state estimate xk+1|k+1 as a linear combination of an a
priori estimate xk+1|k and a weighted difference between an actual measurement yk+1 and a
measurement prediction Hxk+1|k as shown below in equation (3-30):

xk+1|k+1 = xk+1|k +K(yk+1 −Hxk+1|k). (3-30)

Some justification for equation (3-30) is given in Welch and Bishop [46]. The difference in
(3-30) (yk+1 −Hxk+1|k) is called the measurement innovation, or the residual . The residual
reflects the discrepancy between the predicted measurement and the actual measurement
. A residual of zero means that the two are in complete agreement. The matrix K in
equation (3-30) is chosen to be the gain or blending factor that minimizes the a posteriori
error covariance (3-29). This minimization can be accomplished by first substituting equation
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(3-30) into the above definition for ek+1|k+1, substituting that into equation (3-29), performing
the indicated expectations, taking the derivative of the trace of the result with respect to K,
setting that result equal to zero, and then solving for K. One form of the resulting K that
minimizes equation (3-29) is given by

Kk+1|k = Pk+1|kH
T (HPk+1|kH

T +R)−1. (3-31)

As can be seen, no approximations for the function elements were needed to calculate the
optimal solution.
For nonlinear models, however, the Extended Kalman filter (EKF) must be used; this filter
first linearizes the system equations through a Taylor-series expansion around the mean of
the relevant Gaussian RV van der Merwe and Wan [45], i.e.

y = h(x) = h(x̄+ δx)

= h(x̄) +∇hδx + 1
2∇

2hδ2
x + 1

3∇
3hδ3

x + . . . (3-32)

where the zero mean random variable δx has the same covariance, Px, as x. The mean and
covariance used in the EKF is thus obtained by taking the first-order truncated expected
value of equation (3-32) for the mean, and its outer-product for the covariance, i.e. ȳ ≈ h(x̄)
and PLINy = ∇hPx(∇h)T respectively. Applying this result to equations (3-14) and (3-15),
as in van der Merwe and Wan [45], we obtain

xk+1|k ≈ f(xk|k, vk+1, uk+1) (3-33)
yk+1|k ≈ h(xk|k, uk+1, wk+1) (3-34)
Kk+1|k ≈ PLINxk+1|kyk+1|k

(PLINyk+1|kyk+1|k
)−1. (3-35)

In other words, the EKF approximates the state distribution by a GRV, which is then prop-
agated analytically through the first order linearization of the nonlinear system. Figure 3-4
graphically illustrates this characteristic. The explicit equations can be divided in two stages,
the time update or forecast stage and the measurement or correction stage, these are the
following:

• time update

xk+1|k = f(xk|k, uk, vk) (3-36)
Pk+1|k = FkPk|kFTk +WkQkWT

k (3-37)

• measurement update

Kk = Pk+1|kHTk (HkPK+1|kHTk + VkRkVTk )−1 (3-38)
xk+1|k+1 = xk+1|k +Kk(yk − h(xk+1|k, uk, wk)) (3-39)
Pk+1|k+1 = (I −KkHk)Pk+1|k (3-40)

where

- F is the Jacobian matrix of partial derivatives of f with respect to x, that is

F = ∂fi
∂xj

, (3-41)
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Figure 3-4: The EKF approximates the state distribution by a GRV, which is then propagated
analytically through the first order linearization of the nonlinear system.

- W is the Jacobian matrix of partial derivatives of f with respect to w,

W = ∂fi
∂wj

, (3-42)

- H is the Jacobian matrix of partial derivatives of h with respect to x,

H = ∂hi
∂xj

, (3-43)

- V is the Jacobian matrix of partial derivatives of h with respect to v,

V = ∂hi
∂vj

. (3-44)

As such, the EKF can be viewed as providing first-order approximations to the optimal terms.
Furthermore, the EKF does not take into account the “uncertainty” in the underlying random
variable when the relevant system equations are linearized. This is due to the nature of the
first-order Taylor series linearization that expands the nonlinear equations around a single
point only, disregarding the spread (uncertainty) of the prior RV.

All KF variants for nonlinear systems calculate an estimate xk+1|k+1 and covariance matrix
P for a probability density function (p.d.f.) which is non-Gaussian, since, although the prior
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distribution might be Gaussian, after undergoing a nonlinear transformation the Gaussianity
is lost. The performance of these KFs depends on how representative the Gaussian p.d.f. with
mean xk+1|k+1 and covariance P is for the (unknown) p.d.f. p(xk|Ŷ).

Figure 3-5 shows a non-Gaussian p.d.f. and three possible Gaussian approximations.

Figure 3-5: Approximation of a non-Gaussian probability density function via a Gaussian proba-
bility density function

Intuitive thoughts about which is the most representative Gaussian distribution for any given
p.d.f. are formulated in two criteria: the consistency, and the information content of the
estimate. The information content of the state estimate defines an ordering between all
consistent filters Lefebvre et al. [21].

• A state xk with covariance matrix Pk is called consistent if

Ep(xk|Y)[(xk − xk+1|k)(xk − xk+1|k)T ] ≤ Pk. (3-45)

This means that for consistent results, matrix Pk is equal or larger than the expected
squared deviation with respect to the estimate xk under the (unknown) distribution
p(xk|Ŷ). Inconsistency is the most encountered problem with the KF variants. In the
case presented in Figure 3-6 the covariance matrix is too small and does no longer repre-
sent a reliable measure for the uncertainty on the state. Even more, once an inconsistent
estimate is met, the subsequent state estimates are also inconsistent Lefebvre et al. [21].
This is because the filter believes the inconsistent state estimate to be more accurate

Master of Science Thesis I. Mora Moreno



20 Observers

than it is in reality and hence, it attaches too much weight to this state estimate when
processing new measurements. The consistency of the state estimate is a necessary
condition for a filter to be acceptable. It has been noted that if inconsistent estimations
are calculated, that exacerbates divergence problems.

Figure 3-6: Graphical interpretation of the concept of consistency.

• The information content of the state estimate is based on the calculated covariance
matrix Pk|k since this indicates how uncertain the state is. A large covariance matrix
indicates an inaccurate (and little useful) state estimate; the smaller the covariance
matrix, the larger the information content of the state estimate.

There is a trade-off between consistent and informative state estimates: inconsistency can
be avoided by making Pk artificially larger. Making Pk too large, however (larger than
necessary for consistency) corresponds to losing information about the real accuracy of the
state estimate.

3-3-2 Unscented Kalman Filter (UKF)

The UKF is part of a set of filters known as linear regression Kalman filters (LRKF).LRKF
linearizes the process and measurement functions by statistical linear regression of the func-
tions through a number of regression points.

The LRKF uses the values generated by evaluating the system model in r regression points
χjk−1|k−1, j = 1, . . . , r, in state space to model the behavior of the process function in the
uncertainty region around the updated state estimate xk−1|k−1. The regression points are
chosen such that their mean and covariance matrix equal the state estimate xk−1|k−1 and its
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covariance matrix Pk−1|k−1. Further details of how these points are selected for each variant
are given in the following sections.

The main idea behind the UKF according to Julier and Uhlman [18] is that it is easier to
approximate a probability distribution than a nonlinear function. Therefore this filter first
propagates a number of “points” through the nonlinear system model in order to capture the
statistics of the points that went under such transformation. Oppositely, the EKF propagates
a point in state space through a linearized version of the original system model. Figure 3-7
illustrates this idea. The precursors of the UKF, defined the filtering algorithm based on the

Figure 3-7: Comparison between UKF and EKF of how each filter generates variable approxima-
tions.

same steps that the EKF works on:

• Predict the new state of the system xk+1|k and its associated covariance Pxxk+1|k . This
prediction must take account of the effects of process noise.

• Predict the expected observation yk+1|k and the innovation covariance Pvvk+1|k . This
prediction should include the effects of observation noise.

• Finally, predict the cross-correlation matrix Pxzk+1|k .

A summary of the basic method is as follows Julier and Uhlman [18]:

• Compute the set σ of 2n points (where n is the dimension of the state vector) from the
rows or columns of the matrices ±

√
nPxx . This set is zero mean with covariance P .

Compute a set of points with the same covariance, but with mean x̄ which is the mean
of the original distribution , by translating each of the points as χ = σ + x̄.
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• Transform each point as Yi = h(χi).

• Compute ȳ and Pyy by computing the mean and covariance of the 2n points in the set
Yi. In order to account for the process noise, an augmented state vector with dimension
n+ q must be employed. It is defined as xk|kA = (xkvk ), where q is the dimension of the
process noise vector. Also an augmented covariance matrix PA is defined. Both the
augmented vector and the augmented covariance matrix are denoted by the subscript
A.

Taken this into account, the method can be implemented via the following steps Julier and
Uhlman [18]:

• The set of sigma points is computed from the (n+ q)× (n+ q) matrix PAk|k as

σAk|k ← 2(n+ q) rows or columns from
√

(n+ q + κ)Pk|kA (3-46)

χ0
k|k = x̄k|kA (3-47)

χik|k = σik|kA
+ x̄k|kA (3-48)

which assures that PAk|k = 1
2(n+q+κ)

∑2(n+q)
i=1 [χik|k − x̄k|k][χ

i
k|k − x̄k|k]

T .

• The transformed set of sigma points are evaluated for each of the 0 to 2(n + q) points
by

χik+1|k = f [χik|k, uk+1, k]. (3-49)

• The predicted mean is computed as

x̄k+1|k = 1
n+ q + κ

{
κχ0

k+1|k + 1
2

2(n+q)∑
i=0

χik+1|k

}
. (3-50)

• And the predicted covariance is computed as

Pk+1|k = 1
(n+q+κ)

{
κ[χ0

k+1|k − x̄k+1|k][χ0
k+1|k − x̄k+1|k]T

+1
2
∑2(n+q)
i=1 [χik+1|k − x̄k+1|k][χik+1|k − x̄k+1|k]

}
. (3-51)

Where κ provides an extra degree of freedom to fine tune the higher order moments of the
approximation, and can be used to reduce the overall prediction errors. When xk is assumed
Gaussian, a useful heuristic is to select n + κ = 3. If a different distribution is assumed for
xk then a different choice of κ might be more appropriate.

Using these equations assures that the prediction with uncertainty in the state and process
noise yields estimation errors in third order and above.

To complete the description of the UKF filter, the equivalent statistics for the innovation
sequence and the cross correlation must be determined. By evaluating each sigma point
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through the observation model to yield Y ik+1|k = h[χk+1|k, uk+1, k+ 1], the mean observation
is found from

ȳk+1|k = 1
n+ q + κ

{
κY0

k+1|k + 1
2

2(n+q)∑
i=0

Y ik+1|k

}
(3-52)

and the covariance is determined from

Pyyk+1|k = 1
(n+q+κ)

{
κ[Y0

k+1|k − ȳk+1|k][Y0
k+1|k − ȳk+1|k]T

+1
2
∑2(n+q)
i=1 [Y ik + 1|k − ȳk+1|k][Y ik+1|k − ȳk+1|k]

}
(3-53)

The innovation covariance is equal to the sum of Pyyk+1|k and the observation noise covariance
matrix:

Pvvk+1|k = Pyyk+1|k +Rk+1. (3-54)

Finally, the cross correlation matrix is

Pxyk+1|k = 1
(n+q+κ)

{
κ[χ0

k+1|k − x̄k+1|k][Y0
k+1|k − ȳk+1|k]T

+1
2
∑2(n+q)
i=1 [χik+1|k − x̄k+1|k][Y ik+1|k − ȳk+1|k]

}
. (3-55)

If the system model presents certain characteristics such as a linear output equation or
additive-type noise, that is

xk+1 = f(xk) + vk, (3-56)
yk+1 = g(xk+1) + wk+1, (3-57)

or

xk+1 = f(xk, vk), (3-58)
yk+1 = Gk+1xk+1 + wk+1, (3-59)

or

xk+1 = f(xk) + vk, (3-60)
yk+1 = Gk+1xk+1 + wk+1, (3-61)

where G is a matrix of adequate dimensions, it is possible to implement a more computation-
ally efficient unscented type of filter as demonstrated by Hao et al. [15]. The variants of UKF
presented there are summarized in Table 3-1.

The interpretation of the columns from Table 3-1 is as follows:

• Dimension - is the size of the augmented state vector of the system, it is, the dimension
of the state vector solely plus the dimension of the process noise vector.

• Number - is the number of sigma points used to carry out the algorithm.

• Update - is the number of times the sigma points need to be updated at every iteration.
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Table 3-1: Variants of the UKF, Additive UKF, Rao-Blackwellised UKF and Additive Rao-
Blackwellised UKF

Filter Sigma points
Dimension Number Update

UKF 2n+ q 4n+ 2q + 1 1
AUKF n 2n+ 1 2
RBUKF 2n 4n+ 1 1
RBAUKF n 2n+ 1 1

EKF and UKF with Q-varying matrix

For both filters EKF and UKF a variant was also analyzed during the development of this
thesis. The idea behind using a time-varying Q matrix rests on the work by Valappil and
Georgakis [43]. “Most of the methods just mentioned assume constant noise characteristics
and the availability of data required to obtain a true representation of noise statistics. The
assumption of time-invariant process noise is more appropriate for a continuous process that
operates at a steady state. But for continuous or batch processes with time-varying process
dynamics and operating at a range of process conditions, these noise statistics are time-
varying. Using a fixed value of noise statistics can lead to poor filter performance and even
result in filter divergence, ... Even in cases where the fixed noise statistics are acceptable,
finding the appropriate values can be a tedious task. One is left with the task of selecting a
number of parameters, at least equal to the number of states for the case where the matrix is
assumed to be diagonal. These realities prompt one to consider alternate schemes to improve
the estimate of the process-noise statistics”
The variation of this Q matrix represents the uncertainty of the process model; the method-
ology presented involves linear approximation of the dependence of the model predictions on
the model parameters. In the end, the equation relating the Q matrix with the variation in
the parameter is given by:

Q = JpΓpJTp (3-62)

where Jp is the partial derivative of the process equation with respect to the parameters,
evaluated at the instant the Q matrix is used, and Γp is the covariance matrix of the process
parameters.
Success in achieving a good model for a batch process requires the knowledge of the model
parameters and their variability along the batch, this can be attributed to the transient
behavior inherent to batch processes. Uncertainty in the system could then be attributed
to the system’s parameters variability along the batch. This approach is followed here, and
justifies the use of the method described in the previous paragraphs to calculate the value of
the Q matrix.

3-3-3 Ensemble Kalman Filter (EnKF)

The EnKF was proposed by Evensen [9] and describes how a Monte Carlo method is imple-
mented in data assimilation problems; a few years later Burgers et al. [5] published an article
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(a) Ensemble of state space points. (b) Representation of the ensemble evolution
over time.

Figure 3-8: A number of points in state space called the ensemble are shown here, this ensemble
aims to capture all the statistical properties of the system variables. Integrating and updating
each ensemble member allows to propagate the model variables’ statistics.

clarifying the mechanism of the filter. Data assimilation is a technique that combines two
sources of information: the model and the available measurements. It assumes that both
the model and the measurements are subject to errors. So in fact, data assimilation can be
regarded as a term used in areas such as hydrology, meteorology, etc. for the filtering problem
already discussed in chapter 1.

Evensen [9] states: “In the Monte Carlo method, one first calculates a best guess initial condi-
tion based on information available from data and statistics. The model solution based on this
initial state is denoted the central forecast. The uncertainty in this best guess initial condition
is represented by the initial variance. An ensemble of initial states is then generated in which
the mean equals the best guess initial condition and the variance is specified on the basis of
knowledge of the uncertainty in the first-guess initial state”. A graphical representation of
this is shown in Figure 3-8(a).

Evensen [10] also mentions that “ A large cloud of model states (points in state space) can
be used to represent a specific probability density function. By integrating such an ensemble
of states forward in time, it is easy to calculate approximate estimates for moments of the
probability density function at different time levels. In this context the Monte Carlo method
might be considered a particle method in the state space”. This can be visualized in Figure
3-8(b).

The following subsection is completely taken from Evensen [10]. There the error statistics is
represented using an ensemble of model states. Then an alternative to the traditional error
covariance equation is proposed for the prediction of the error statistics and finally an overall
analysis is presented.
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Representation of error statistics

The error covariance matrices for the forecast and the analyzed estimate, Pk+1|k and Pk+1|k+1
are defined in the Kalman filter in terms of the true state as

Pk+1|k = (xk+1|k − xtk)(xk+1|k − xtk)T , (3-63)

Pk+1|k+1 = (xk+1|k+1 − xtk)(xk+1|k+1 − xtk)T , (3-64)

where the overline denotes an expectation value, x is the model state vector at a particular
time and the subscripts k+1|k, k+1|k+1, represent forecast, and analyzed state, respectively.
However the true state is not known, so the ensemble covariance matrices are defined around
the ensemble mean x̄,

Pk+1|k ≈ Pek+1|k = (xk+1|k − x̄k+1|k)(xk+1|k − x̄k+1|k)T , (3-65)

Pk+1|k+1 ≈ Pek+1|k+1 = (xk+1|k+1 − x̄k+1|k+1)(xk+1|k+1 − x̄k+1|k+1)T , (3-66)

x̄k+1|k and x̄k+1|k+1 are averaged over the ensemble members. Thus it is possible to use
an interpretation where the ensemble mean is the best estimate and the spreading of the
ensemble around the mean is a natural definition of the error of the ensemble mean.

Since the error covariances as defined in equations (3-65) and (3-66) are expressed in terms of
ensemble averages, there will clearly exist infinitely many ensembles with an error covariance
equal to Pek+1|k and Pek+1|k+1 . Thus instead of storing a full covariance matrix, we can
present the same error statistics using an appropriate ensemble of model states. However,
when the size in the ensemble N increases, the errors in the Monte Carlo Sampling will
decrease proportionally to 1√

N
.

An overall analysis scheme

As pinpointed by Burgers et al. [5]; it is essential that the observations are treated as random
variables having a distribution with mean equal to the first-guess observations and covariance
equal to R as defined in equation (3-10).

It can be shown, see Evensen [9], that the relation between the analyzed and forecast ensemble
mean is identical to the relation between the analyzed and forecast state in the standard
Kalman filter. Furthermore, by updating each of the ensemble members using the perturbed
observations, one also create an ensemble having the correct error statistics for the analysis.
The updated ensemble can then be integrated forward in time till the next observation time.
Moreover, the error covariance, P of the analyzed ensemble is reduced in the same way as in
the standard Kalman filter.

The resulting algorithm can be found in the article from Gillijns et al. [14], and is as follows:

I. Mora Moreno Master of Science Thesis



3-3 Observers 27

Forecast step

xik+1|k = f(xik|k, uk) + wik, (3-67)

x̄k+1|k = 1
N

N∑
i=1

xik+1|k, (3-68)

Ek+1|k = [x1
k+1|k − x̄k+1|k . . . x

N
k+1|k − x̄k+1k ], (3-69)

Eyk+1|k = [y1
k+1|k − ȳk+1|k . . . y

N
k+1|k − ȳk+1|k], (3-70)

P̂xyk+1|k = 1
N − 1Ek+1|k(Eyk+1|k)

T , (3-71)

P̂yyk+1|k = 1
N − 1Eyk+1|k(Eyk+1|k)

T . (3-72)

Analysis step

K̂k = P̂xyk+1|k(P̂yyk+1|k)
−1, (3-73)

xik+1|k+1 = xik+1|k + K̂k(yk+1 + vik+1 − h(xik+1|k)), (3-74)

x̄k+1|k+1 = 1
N

N∑
i=1

xik+1|k+1. (3-75)

3-3-4 Moving Horizon Estimator (MHE)

An optimization based estimator estimates the states of a nonlinear system, described by:

xk+1 = f(xk, uk) + wk (3-76)
yk = g(xk) + vk, (3-77)
x0 = x01 (3-78)

the vectors wk and vk are, like in the EKF, noise which acts on the system. The objective
of the estimator is to find the largest probability that the state of the system (3-76)-(3-77)
has estimates {x0, x1, . . ., xT }, given the measurements {y0, y1, . . ., yT−1} at time instant
T − 1. Instead if estimating the states only at time instants T or T − 1, like recursive
methods, this method estimates all the states from x0 until xT . The other estimates {x0,
x1, . . ., xT−1} are at every instant corrected by new measurements. This corrections of past
estimates by new measurements is called smoothing. Only the last estimate, xT will be sent
to the controller. Because the process measurements yk are correlated with the state xk, their
conditional density function can be written as:

p(x0, x1, . . . , xT |y0, y1, . . . , yT−1) (3-79)

The conditional density function describes the probability that the state has estimates (x0, x1,
. . ., xT ), if the measurements (y0, y1, . . ., yT−1) are known. The goal is to find the estimate
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that maximizes this density function; that is, the optimal state. This optimal estimate is
written as x̂0|T−1, x̂1|T−1, . . . , x̂T |T−1 and is the solution of:

{x̂0|T−1, x̂1|T−1, . . . , x̂T |T−1} ∈ argmax
{x0, x1, ..., xT }

p(x0, x1, . . . , xT |y0, y1, . . . , yT−1) (3-80)

the optimal estimate is the peak of the conditional density function (CDF). The maximization
of the CDF can be written as an optimization problem. In order to do this one assumes that
wk and vk are independent, normally distributed variables with zero mean and covariances Q
and R; x0 is normal with mean x̂0 and covariance Π0. In fact this are the same assumptions
made for the EKF. The transformation of the CDF to an optimization problem can be found
in Rao and Rawlings [34]. The state estimation problem (3-80) can be formulated as:

min
x0, {wk}T−1

k=0

∥∥x0 − x̂0
∥∥2

Π−1
0

+
T−1∑
k=0

∥∥vk∥∥2
R−1 +

T−1∑
k=0

∥∥wk∥∥2
Q−1 (3-81)

subject to:

xk+1 = f(xk, uk) + wk (3-82)
yk = g(xk) + vk, (3-83)

(3-84)

xk ∈ X wk ∈ W (3-85)

the problem computes the sequence {x0, {wk}T−1
k=0 } such that the cost function is minimized

in (3-81). When the variables {wk}T−1
k=0 and x0 are known, the optimal estimates, denoted by

x̂0|T−1, x̂1|T−1, . . . , x̂T |T−1 can be computed via the model equation (3-82) and the measured
inputs. The estimation problem described above is often referred to as the batch least squares
estimation problem.

If one interprets vk and wk as normally distributed noise sequences then Q and R represent
the covariances of the process and measurement noise.

Solving the latter problem on-line is impossible because the size of the problem grows without
bound when more measurements come available, therefore, the estimation problem will be
formulated over a finite horizon and is called the moving horizon approach, or moving horizon
estimation (MHE).

To bound the size of the optimization, the number of measurements on which the estimation
is based must be limited. Suppose that the number of measurements on which the estimation
is based is equal to N . The estimation can then be divided into two parts, t1 = {0 ≤ k ≤
T −N −1} and t2 = {T −N ≤ k ≤ T −N −1}. the first part t1, summarizes the effect of the
data until T − N − 1. The second part is estimated via the optimization from T − N until
T − 1. The data window (or horizon size) in which the optimization takes place moves with
every new measurement. We illustrate this in figure 3-9.

I. Mora Moreno Master of Science Thesis



3-3 Observers 29

Figure 3-9: moving horizon

For MHE the horizon size is N (the width between both broken lines). The BLS estimation
problem encompasses from time instant 0 till the second broken line, as mentioned before,
the BLS problem is a larger one.
The MHE problem can be written as:

min
xT−N , {wk}T−1

k=T−N

∥∥xT−N − ˆxT−N
∥∥2

Π−1
T−N

+
T−1∑

k=T−N

∥∥vk∥∥2
R−1 +

T−1∑
k=T−N

∥∥wk∥∥2
Q−1 (3-86)

subject to (3-82)-(3-85).
The initial value x̂T−N with covariance ΠT−N summarizes the prior information at time T−N ,
and is called the arrival cost. Note that when T ≤ N the MHE problem is the same as the
BLS problem, and the initial values x̂0, Π0 are used. The calculation of the arrival cost can
be done in different ways. If the underlying system is linear, one could use the Kalman filter.
All the necessary variables, like covariances Q and R, measurements uT−N−1and yT−N−1,
etc. are available. The computation of the new initial values( ˆxT−N and ΠT−N ) is equal to
the KF scheme. If one uses the KF to update the arrival cost, it is shown by Robsertson
et al. [39], that the MHE reduces to a Kalman filter, regardless of horizon size N . As said
before the process must be linear and no constraints must be added. The similarity can be
understood by looking at the objectives of both. In the KF a estimate with minimum error
variance is reconstructed. The objective of MHE is to estimate the mode of the conditional
density function. Because in linear systems the conditional density is symmetric and has only
one mode, the optimal estimates in the KF and MHE are equivalent. For linear systems, the
only advantages of MHE over KF is the ability to incorporate constraints.
For nonlinear systems do not exist algebraic expressions for the arrival cost. The EKF can
than be used to approximate the arrival cost. MHE is equivalent to the EKF if a horizon
length N of 1 is used Robsertson et al. [39]. If N > 1 then the EKF is used only for the
calculation of the arrival cost, while the rest of the estimates are computed via the nonlinear
optimization.
The online operation of the MHE can be divided in two steps:
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• calculate the initial estimate and the estimated disturbances via the optimization prob-
lem 3-86, after which the estimated states can be calculated,

• estimate the new arrival costs. The arrival costs are used as initial conditions for the
optimization problem at the next time instant.

A problem of using an EKF to compute the arrival costs is that it may weight the past
too heavily. This can be critical if the initial guess x̂0 is poor and the horizon is too short.
In literature there exist two ways to manipulate the arrival costs if the EKF updates limit
performance, this can be the use of a forgetting factor or make use of smoothed estimates.

Addition of a forgetting factor

A simple strategy is to premultiply the arrival costs, estimated via the EKF, by a scalar
α ∈ (0, 1). This α is called a forgetting factor. The corresponding expression for the
arrival costs is:

α
∥∥xT−N − ˆxT−N

∥∥2
Π−1
T−N

(3-87)

by doing this, the part of the estimation problem based on the real measurements is considered
more important than the part of the “guessed” arrival costs, by assigning an appropriate value
for α.

Making use of smoothed estimates

In the EKF update one uses x̂T−N |T−N−1 and ΠT−N |T−N−1 to calculate the arrival costs at
time instant T−1. However, at time instant T−1, one has already knowledge of measurement
at time T −1. A more accurate estimate of the initial value is given by the smoothed estimate
x̂T−N |T−1, calculated during the optimization at the previous time instant. An advantage of
this smoothed update is that no information gained by the last smoothed estimations is lost.
There does not exist a probabilistic motivation for using the smoothed estimates, because it
uses future estimates to estimate the arrival costs (which summarizes effects that happened
in the past). However, the smoothed update scheme provides the most reliable estimation. It
considers the smoothed estimates based on measurements and better estimates for the arrival
cost than the possibly guessed initial values, which are used in the EKF update.

3-3-5 Extended Luenberger Observer (ELO)

The Luenberger observer is a deterministic estimator, and thus assumes that no noise is acting
on the system. In 1964 David Luenberger Luenberger [22] described described a system that
estimates which are not available for direct measurement. The Luenberger observer estimates
the states of an linear time invariant (LTI) system instate-space.
Suppose one has an LTI state-space representation of any system,

xk+1 = Axk +Buk, (3-88)
yk = Cxk, (3-89)
x0 = x01 (3-90)

I. Mora Moreno Master of Science Thesis



3-3 Observers 31

where xk is the state vector, uk the input vector and yk the output vector.

The goal of the Luenberger observer (LO) is to produce an estimate, x̂k, of the state vector
xk, such that the estimation error

ek = xk − x̂k (3-91)

is minimized.

In the LO the dynamics of the estimator are described by:

x̂k+1 = Ax̂k +Buk +K(yk − Cx̂k), x̂0 = x̂01 (3-92)

The observer calculates estimates for the next time instant, by correcting the estimate x̂k by
the difference between the measured and estimated output multiplied by a gain. This gain,
K, is called the observer gain. It is easily verified that x̂0 = x0, implies x̂k+1 = xk+1. This
approach, correction of an estimated state by the difference of the measured and estimated
output, is used in most linear techniques.

The goal of the LO is to minimize the estimation error. The dynamics of the estimation error
are given by

ek+1 = xk+1 − x̂k+1 = (A−KC)ek. (3-93)

If all eigenvalues of the matrix A − KC lie inside the unit circle, the estimation error will
converge to zero. The eigenvalues of A − KC can be placed arbitrarily by choosing K ac-
cordingly if the system under consideration is observable. The observer gain is often selected
such that the eigenvalues of A−KC are somewhat faster than those of the observed system.
In this way, the convergence of the estimates is faster than other effects.

The version of this type of observer for nonlinear systems receives the name, extended Lu-
enberger observer (ELO). The derivation of the ELO that follows is based on the work of
Dochain [8].

A general nonlinear model may be described by:

xk+1 = f(xk, uk) (3-94)
yk = h(xk) (3-95)
x0 = x01 (3-96)

In a similar way as in the linear case, the dynamics of the observer can be written as,

x̂k+1 = f(x̂k, uk) +Kk(yk − h(x̂k)), (3-97)

if the estimation error is given by

ek+1 = xk+1 − x̂k+1 = f(x̂k + ek, uk)− f(x̂k, uk)−Kk(h(x̂k + ek)− h(x̂k)). (3-98)
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The error dynamics do not immediately allow a condition on which the error converges to
zero. If one assumes that the initial error, e0, is small, a linearization around e = 0 can be
made. Then (3-98) becomes,

ek+1 = (Ak −KkCk)ek (3-99)

where
Ak = [∂f(xk, uk)

∂x
]xk=x̂k,uk=uk and Ck = [∂h(xk)

∂x
]xk=x̂k . (3-100)

Ak and Ck are the linearization of the system and output equation (3-94), (3-95) respectively,
around the estimate x̂k and are time varying matrices, which means that the observer gain
Kk is time varying.

Once again, the design of the state observer consists of choosing an appropriate gain. The
objective is to choose Kk such that the linearized error dynamics is asymptotically stable,
which implies that the eigenvalues of the matrix Ak −KkCk should lie inside the unit circle.
Nevertheless, the eigenvalues of the linearized system are dependent on the working point,
and it is not possible to give a general approach to calculate the desired gain.

3-4 Observer Design

Design of nonlinear versions of KF (EKF, UKF and EnKF)

An observer uses both a copy of the model of the system of interest, and measurements taken
from the real system. These two information sources together with some extra knowledge
such as the statistics of the variables involved in the system, and about the system itself, are
exploited by the observer in order to deliver accurate state estimates. Making appropriate
use of all that knowledge is achieved by proper tuning.

The state estimates given by the observer are generated by ponderating the estimates given
by the internal model as well as the measurements obtained from the system, a successful
estimation is achieved if an adequate trade-off is found between the model predictions and
the measurements available. Why?, the reasoning is as follows:

• the observer is, in the best scenario, fed by the same input that the system (there are
no disturbances whatsoever), this allows the internal model of the observer to generate
state estimates whose accuracy depends on how well the model reproduces reality. On
the other hand the observer also receives information in the form of measurements from
the system, this information may be corrupted due to any of the error source already
mentioned. Therefore, in general, there will be a discrepancy between estimates given
by the observer’s internal model and the measurements. Both information sources bear
erroneous information and thus are not 100 % reliable. Therefore, both sources must
be combined such that the output is as close to an uncorrupted value as possible.

In the case of the nonlinear versions of the KF the tuning knobs are constituted by the
covariance matrices belonging to the system and measurement noise Q and R, respectively,
and the initial error covariance matrix, P ; all as defined as in section 3-1.
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The meaning of the components in the Q and R matrices can be translated in practical terms
as how much we rely on the information given by the model of the plant embedded in the
observer, and the information given by the measurements performed on the system. For
instance, large values in the elements of Q indicate a large uncertainty in the veracity of the
variable values delivered by the observer, the opposite applies, small values indicate certainty.
This explanation is applicable to the elements of R, nevertheless, the elements of this matrix
indicate the veracity of the measurements.
The P matrix assesses how certain we are about the value of the errors, and the smaller it is,
the better the results.
It must be noted that “the ratio between the elements of the matrices indicates how truthful the
information given by the observer’s model is with respect to the measurements”. Appendices
B and D show two analyzed cases where larger weigths are assigned to either the internal
model estimates or the system measurements in order to achieve reasonable state estimates
estimates.
For simplicity, we may use equations (3-14) and (3-31) in the case x is a scalar to clarify the
latter paragraph. If we make Q >> P we see that influence of the model-predicted state
estimates on the observer estimates is negligible. Contrary, if P >> Q then the influence of
the measurements is negligible and the observer estimates highly rely on the estimates given
by its internal model.
To tune an observer it is necessary to make an initial guess of the actual values of these
matrices. So how to choose the initial values? this question does not have a straight and
convincing answer as it is not possible to know the values of the covariance of the state
variables beforehand, in case we could, the stochasticity would be null and therefore this
study would be totally unnecessary.
Some guidelines can be followed to achieve a satisfactory tuning,

• Infer variable statistics from available data: In case that history of several previous
experiments were at hand, it would be helpful to try to determine the probability
distribution of the state variables as well as the output variables and thereby define the
required covariance matrices. This may lead to difficulties as most of the times not all
state variables are measured. In the case of EKF and UKF, an attempt to describe the
statistics of the state variables in terms of the parameters of the system was employed.
This lead to the application of a Q-varying matrix filter, the reasoning behind this
variant is explained in Chapter 5

• Automated optimization of the components of the Q and R matrices: Despite the
importance of having a better tool or approach to tune a KF, very few information
has been found in literature. Nevertheless some examples can be found. For instance,
as the final goal of designing an observer is perhaps that of minimizing the estimation
error of the state variables, it is possible to set an optimization problem in order to
find optimal values for the covariance matrices. Rapp [35] presents an application using
genetic algorithms. Powell [31] instead uses a downhill simplex algorithm to solve the
optimization problem. No more details about these examples are given here as they
were not employed in the present work, however, it is recommended to read the latter
articles as it may be helpful in the case a system with a large number of variables is
treated.
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• Trial and error: another option is to randomly pick an initial value for the matrices.
Once the initial guess has led the observer to converge, the rest of the tuning can be
done by trial and error varying the components of the covariance matrices in order to
increase or decrease the role each variable plays in the system final result. All in order to
improve the estimation results according to a prestablished criterion. In our case study,
the goal was to minimize the RMSE of the estimation error over a batch production.
In the case of KF variants this methodology is usually quite tedious, and the difficulty
increases with the number of variables. Part of the complexity relies on the fact that it
is hard to interpret what every component of the covariance matrices mean in terms of
what happens in the system.

In the present work tuning was made by trial and error as the process model did not present
a large number of variables, and fair results were quickly found.

The possibilities to tune all the KF extensions are basically the same that for EKF. Indeed
UKF and EnKF also require finding appropriate matrices Q,R and P for the filters to work
properly, however, these filters offer new possibilities to determine those matrices as will be
shown next.

Highlights on tuning UKF

As presented in the description of this filter, in order to generate the sigma points it is
necessary to specify the value of 3 parameters, namely n, q and κ. Values for n and q are set
by the shape of the problem, as they are the state dimension, and the size of the process noise
vector. However, the designer may still choose κ according to the insight or the information
available concerning the system statistics. This parameter offers an extra knob to tune the
filter. In our case, we followed the recommendation of choosing κ = n− 3 as we counted on
the fact that measurement noise was Gaussian. However, the initial matrices still have to be
chosen and again, as with EKF, they have the largest impact on the evolution of the filter,
being this part still the most difficult task when tuning UKF.

Highlights on tuning EnKF

In the same way the other two KF variants, EnKF also needs an initial guess for the Q and R
matrices, however, EnKF calculates these matrices based on the ensemble members as defined
in a previous section. An important characteristic of EnKF is that the ensemble members can
be chosen from an arbitrary distribution. Therefore, knowledge of the probability distribution
of the state variables would be more accurately represented. In the present case study, the
selection of the ensemble was chosen such that their covariance matrices were equivalent to
those used to tune EKF and UKF, in fact the ensemble members were withdrawn from a
Gaussian distribution, such that they could be comparable to the sigma-points from UKF.
The obvious reason is because UKF and EKF were tuned first, and we bet on EnKF having a
similar behavior like any of the other two filters if its matrices looked alike. Despite the fact
that EnKF still had to be retuned, we had at least a reference point on UKF and EKF.

EnKF also offers the possibility to enlarge the ensemble to any dimension. Enlarging it gives
dividends of improved estimation accuracy, nevertheless, there seems to be a threshold that
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once it is reached, improvement in the estimation accuracy is very small when compared to
the extra computational burden generated by evaluating the system in a large number of
points.

In the present case, an ensemble of 20 members sufficed.

Tuning ELO

As seen from the description of the algorithm for this observer, it is possible to make use
of pole placement, however, this procedure needs to be repeated every time the observer is
iterated. There is also the possibility of determining a single useful observer gain, such tuning
procedure was used in Mesbah et al. [23]. The approach was to find a gain that minimized
the tracking error. Details can be found in the last reference.

Even though in Mesbah et al. [23] a deterministic system model was used, this tuning approach
still worked for our application where an stochastic model was used instead. However the
performance was heavily degraded due to the uncertainty introduced.

Tuning MHE

From the algorithm description we may say there are two components that may be used to
tune this observer.

First an adequate calculation of the arrival costs. We skipped this part since due to the
inherent variability of a batch process there is no need to evaluate the arrival costs described
in the section of MHE.

Secondly, we have the horizon length N. As a general rule, the larger the horizon length,
the more accurate the estimation results will be, however, this comes at the expense of an
increase of the computational burden. A practical rule of thumb is that the length of the
horizon should not be less than the number of the system states, Qu and Hahn [32].

Tuning for this observer was very straight forward as it gave good results without presenting
any issues.

3-5 Summary

We described the observation problem at the beginning of this chapter and it was addressed
under a Bayesian framework when the system under consideration is stochastic. Concepts
such as smoothing, filtering and prediction which are commonly encountered in literature
related to observers were defined and clearly differentiated. On this basis, we introduced the
concept of observer and highlighted its importance within an NMPC framework.

A description of the error sources that will perturb the system under investigation was also
given in this chapter. We presented the observers that will be used in our case study, we gave
a general overview of each of them and presented their algorithms. The concept and ideas
behind a varying system covariance matrix for UKF and EKF was also introduced.
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From a control point of view we clearly established that we are mainly concerned with input-
output behavior, therefore estimation of all state variables might not be necessary.

Finally we listed some considerations made when tuning the observers as they were imple-
mented for computer simulation.

3-6 Remarks

The EKF, UKF and EnKF fall in the category of Gaussian Bayesian filters because they
approximate the estimated variables probability distribution through a Gaussian probability
distribution. Nevertheless, EnKF may distribute its ensemble members based on an arbitrary
probability distribution. All these filters fall under the category of maximum likelihood.

Since the EKF algorithm requires differentiation it may face difficulties when dealing with
non-differentiable and/or severely nonlinear systems. So, in this regard UKF and EnKF offer
an advantage of not requiring differentiation.

Selection of the σ-points, as well as the number of points, for UKF is made under an estab-
lished and deterministic procedure defined in its algorithm. This contrasts with the fact that
ensemble members for the EnKF are randomly selected and their number is arbitrary. This
characteristic places EnKF as a Monte Carlo method.

Since the MHE is an optimization based estimator it can handle constraints.

Estimation of all state variables may not be required since input-output behavior is what
matters under a control point of view, and it is possible to use different models to describe a
problem.

Determining adequate values for the elements of the covariance matrices when tuning ob-
servers such as EKF UKF and EnKF is complicated because it is usually hard to give an
interpretation of every element. As such, tuning of observer involving a large number of vari-
ables may become tedious and very complicated. This gives an advantage to MHE because
only a few parameters such as the estimation horizon need to be adjusted.

The algorithm to calculate the system time-varying matrices for EKF and UKF allowed for
an easier tuning of those observers.
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Chapter 4

Case study

In this chapter we present some concepts in crystallization. Afterwards, we present the
case study introducing the model describing the system under investigation and present in a
following section an observability analysis which is needed prior to the design of an observer.

4-1 Crystallization

Crystallization is the (natural or artificial) process of formation of solid crystals precipitating
from a solution, melt or more rarely deposited directly from a gas. Crystallization is also a
chemical solid-liquid separation technique, in which mass transfer of a solute from the liquid
solution to a pure solid crystalline phase occurs.

Crystallization from the melt

A melt generally refers to a multicomponent liquid mixture that solidifies upon cooling. Melt
crystallization is the common term applied to the crystallization of such systems to achieve
ultra purification of an often organic compound to purities of 99.9% to 99.999%. Melt crys-
tallization is merely used as a purification technique, [1].

Crystallization from solution

Crystallization is mostly applied as a single step solid-liquid separation technique and in those
cases the compound to be crystallized is already dissolved in some solvent. This type is also
applied to obtain a product in a particular dispersed solid form (e.g. very fine or coarse
particles), [1].
Before explaining crystallization as a process, we introduce the concept of supersaturation.

• supersaturation can be understood as a solution that contains more solute material that
could be dissolved by the solvent under normal circumstances.
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The concept normal circumstances means that given a system under certain temperature,
pressure and volume, all must remain unchanged in order to evaluate a property of the
system. For instance, solubility of salt in water has a determined value given specific pressure
and temperature values.

In other words, supersaturation refers to a state in which the liquid (solvent) contains more
dissolved solids (solute) than can ordinarily be accommodated at that temperature.

Crystallization as a process

Once supersaturation has been reached, two main processes by which crystals form may take
place: nucleation and crystal growth.

According to [1], nucleation can be split in two mechanisms, that is to say,

• primary nucleation, which is a step where solute molecules start to gather into clusters,
roughly speaking this means there is an elevation of solute concentration in a small
region that becomes stable under the current operating conditions. These stable clusters
constitute the nuclei. However when the clusters are not stable, they dissolve. Therefore,
the clusters need to reach a critical size in order to become stable nuclei. Such critical
size is dictated by the operating conditions (temperature, supersaturation, etc.). It is
at the stage of nucleation that the atoms arrange in a defined and periodic manner that
defines the crystal structure.

• secondary nucleation, on the other hand, refers to the birth of nuclei at the interface
of the parent crystals. Contrary to the relatively high supersaturations required for
primary nucleation, secondary nucleation already occurs at low to moderate values of
the supersaturation. For medium to well soluble salts it is considered to be the main
source of nuclei. The different types of secondary nucleation are named after their
origin; however, we will not present all of them as they are not of interest for our case
study.

The crystal growth is the subsequent growth of the nuclei that succeed in achieving the critical
cluster size. Nucleation and growth continue to occur simultaneously while the supersatu-
ration exists. Supersaturation is the driving force of the crystallization, hence the rate of
nucleation and growth is driven by the existing supersaturation in the solution. Depending
upon the conditions, either nucleation or growth may be predominant over the other, and as a
result, crystals with different sizes and shapes are obtained (control of crystal size and shape
constitutes one of the main challenges in industrial manufacturing, such as for pharmaceuti-
cals). Once the supersaturation is exhausted, the solid-liquid system reaches equilibrium and
the crystallization is complete, unless the operating conditions are modified from equilibrium
so as to supersaturate the solution again.

Crystallization methods

In this work we will focus on crystallization from solution, there we can distinguish four
crystallization methods, [1]:
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• cooling crystallization, which is carried out based on the fact that most chemical com-
pounds, dissolved in most solvents, show the so-called direct solubility, that is, the
solubility threshold increases with temperature. So, whenever the conditions are favor-
able, crystal formation results from simply cooling the solution.

• evaporative crystallization, the solid phase is formed by evaporation of the solvent. As
crystallization proceeds from a boiling solution, at a chosen temperature, the pressure
and the mother-liquor concentration are fixed.

• precipitation, two soluble reactants are mixed to form a sparingly soluble product.
Since the reactant streams are generally concentrated, high supersaturations are created.
Therefore, conversion of the solutes into solid particles is a fast process.

• addition of an anti-solvent, crystallization occurs because the solute has a low solubility
in the mixed solvent. Since the addition of the anti-solvent also dilutes the mixture, the
decrease in solubility should largely exceed this dilution effect.

Besides can take place in two so-called operation modes, either batchwise or in continuous
fashion.

According to [1], in the continuous mode, an undersaturated solution or melt containing the
solute to be crystallized is continuously fed to the crystallizer. Here the solid is formed as
a dispersed phase, which is kept in suspension by some mixing device. The suspension con-
taining the dispersed solids and a supersaturated solution leaves the reactor continuously, for
both cooling and evaporative crystallization. The slurry produced in the crystallizer is gen-
erally transported to a centrifuge or filter, where the crystals are separated from the mother
liquor and washed. In batch crystallization, the crystallizer is initially filled with an under-
saturated solution. After a prestablished batch time the crystallizer contents are discharged.
Batch crystallization is in a few cases applied without agitation. In batch crystallization, the
crystallizer is initially filled with an undersaturated solution. After a pre-established batch
time the crystallizer contents are discharged. Batch crystallization is in a few cases applied
without agitation. Both modes are depicted in Figure 4-1.

Characterization

Crystals’ specifications define crystals’ quality on the basis of characteristics like crystal size
distribution of the product, shape, polymorphism, mother liquor inclusions, impurities in the
crystal lattice or degree of agglomeration, but to name a few. As we will be interested in
obtaining a crystal size distribution with certain characteristics, we define it next.

Crystal size distribution (CSD)

One of the main characteristics of a product is its CSD or in case of agglomerated or noncrys-
talline particles its particle size distribution. The CSD is important for the product quality,
but also influences the performance of the process, the separation of the crystals from the
mother liquor, and the subsequent drying of the crystals.
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Figure 4-1: Modes of operation in crystallization. The tone of grey indicates the solution
concentration, and the dots the presence of crystals. Adapted from [1]

The dominant properties of the product will usually be the average crystal size and the width
of the distribution, but the zeroth to third moments of the CSD are also linked to important
physical parameters of the product, since they are related to the total number, total length,
total surface area and total mass of the crystals.

Crystal size

How to measure crystals size can be achieved in different ways, it also receives different names
accordingly. We now give a list with their names followed by the methodology to determine
the crystals’ size

• length, maximal visible length

• sieve diameter, width of the minimum square aperture through which the particle will
pass

• volume diameter, diameter of a sphere having the same volume as the crystal

• surface diameter, diameter of a sphere having the same surface area as the crystal

• projected area diameter, diameter of a sphere having the same projected area as the
crystal viewed from a fixed direction

Directly correlated with the definition of the crystal size are the surface and volumetric shape
factors ka and kv. These factors appear to compensate for inaccuracies due to considering
crystals to have a perfect geometrical shape. Their values depend on the criterion used to
define the crystal size.
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Figure 4-2: hypothetical length of a crystal, L

Representations of the CSD

According to [1], two types of CSD representations are normally considered,

• the cumulative oversize number distribution N(L) {#/m3} and the mass distribution
M(L) {kg/m3}

N(L) =
∫ L

0
n(L)dL (4-1)

where N represents the number of crystals and L their length.

M(L) =
∫ L

0
m(L)dL = ρkv

∫ L

0
L3n(L)dL, (4-2)

• the number (or population) density distribution n(L) and the mass density distribution
m(L)

n(L) = dN(L)
dL

(4-3)

and
m(L) = dM(L)

dL
(4-4)

• the moments of the CSD
mj =

∫ ∞
0

Lin(L)dL (4-5)

Table 4-1: Statistical moments and their physical interpretation

Physical interpretation nomenclature
total number of crystals m0

total length m1
total surface area kam2

total volume kvm3
total mass ρkvm3

The shape of cumulative and density distributions of a crystal population can be observed in
Figure 4-3, note the resemblance with a probability density function. As such, the CSD curve
gives information of how the crystals are dispersed around certain lengths, it is desirable to
have a narrow curve and the value determining the location of the peak (on the size axis)
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Figure 4-3: Cumulative and density distributions of a crystal population. Taken from [1]

close to the desired crystal size. A curve like that would indicate a majority of the crystals
being very close to a desired crystal size with a small, defined somehow, length variability
around it.

Knowing the CSD is desirable, nevertheless, valuable information can be inferred from the
leading statistical moments of a CSD, in fact, once we know them we should be able to draw
some conclusions about the characteristics of the product.

4-2 Description of the case study

We introduce in Figure 4-4 a sketch of the setup that gave rise to our case study.

There we distinguish the following elements,

• crystallizer, is the vessel where the crystallization process takes place, it contains an
impeller used for stirring, and on the outside, it is surrounded by a cooling/heating
jacket.

• cooling/heating jacket, it surrounds the crystallizer. Water running inside the jacket
allows the operator to supply or withdraw heat from the system. This is the system
input.

• seeding vessel, it contains the crystal seeds used to initialize the crystallization process.

• liquid sonic probe, it is used to acquire measurements while the system is running.

The process can be described as follows: crystals known as seeds lie on the seeding vessel.
In the meantime, the crystallizer is filled up with a solution containing the solvent, and the
solute which is the material to be crystallized. The cooling/heating jacket allows to control
the temperature in the system and brings it to a boiling point such that solvent evaporates
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Figure 4-4: 75-liter evaporative fed-batch crystallizer setup. From Mesbah et al. [24]

leaving the crystallizer through an exhaust pipe. This brings the saturation level up to a
desired supersaturation value. When the supersaturation has reached a specific value the
seeds are fed into the crystallizer, and the crystallization process begins. Due to the system
running at boiling temperature it is an isothermal process. The solvent lost by evaporation
is replaced by liquid fed into the crystallizer via a feeding line to maintain constant volume.
Measurements are taken via the probe inside the crystallizer, and once the batch time is
reached the process is shut down.
It is important to notice that,

• this is a batch process.

• heat is the control input to the system and is acquired via the cooling/heating jacket.

• controlling the supersaturation value is vital as it is the driving force for crystal growth.

• measurements can be carried on online, but not all variables of interest can be measured.

After describing the process, and based on the theory about crystallization presented in
previous sections, we can state that our case study is an evaporative fed-batch crystallization
process, it takes place in a 75-liter vessel, and the working substance is ammonium-sulphate
dissolved in water.
For our case study, secondary nucleation gives a complete picture of the crystallization process
since it is the dominant nucleation mechanism occurring in seeded batch crystallizers, Mesbah
et al. [24]. As we already described, seeds are placed in the crystallizer at the beginning of
the batch-time in order to start up the nucleation process, and larger crystals start building
up when solute particles bond onto the surface of the seeds.
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Process model

As we presented in Chapter 2, our analysis will take place in an NMPC framework, hence we
should count with a model describing our case study.
The mathematical models of solution crystallization processes are typically obtained through
the application of a population balance equation, mass balance equations for solvent and
solute, energy balance equation, and expressions describing the variation of the equilibrium
concentration. The population balance equation accounts for the evolution of crystal parti-
cles along temporal and size domains. Under the assumptions of mixed suspension, constant
crystallizer volume, nucleation of crystals of infinitesimal size, and negligible breakage and
agglomeration, the dynamic population balance equation for a semi-batch crystallization pro-
cess, according to Randolph and Larson [33], simplifies to:

V
∂n(L, t)
∂t

+ V
∂(n(L, t)G)

∂L
= V B(L, t)−Qpn(L, t) (4-6)

where n is the number density (#·m−3·m−1), G is the growth rate (m·s−1), B is the nucleation
rate (# ·m−3 ·m−1 · s−1), L is the characteristic crystal size (m), V is the crystallizer volume
(m3), and Qp is the sample stream flow rate (m3 · s−1). Numerical solution of the population
balance equation often requires considerable computational effort that might render the real-
time implementation of model based control strategies infeasible. The method of moments is,
therefore, applied to equation (4-6) in order to convert the population balance equation into
a set of computationally affordable Ordinary Differential Equations (ODEs). Defining the ith
moment of n(L, t) as:

mi =
∫ ∞

0
Lin(L, t)dL i = 0, . . . , 4 (4-7)

multiplying equation (4-6) by LidL and, subsequently, integrating over the entire crystal
size domain result in the following set of ODEs that describes the evolution of the leading
statistical moments of the (CSD) in time:

dm0
dt

= B0 −
m0Qp
V

(4-8)

dmi

dt
= iGmi−1 −

miQp
V

i = 0, . . . , 4 (4-9)

Here B0 represents the total rate of nucleation (# ·m−3 ·m−1 ·s−1). The choice of the moment
model in this study is justified by the relatively low supersaturation levels in batch runs due
to a large seed loading, so that the effect of secondary nucleation is minimized and, therefore,
the CSD dynamics is mainly governed by the crystal growth, Mesbah et al. [24]. The empirical
expressions realized for the total nucleation rate, and the size independent crystal growth rate
are as follows:

B0 = kbm3G (4-10)
G = kg(C − C∗)g (4-11)
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The nucleation rate constant kb, the growth rate constant kg, and the growth rate expo-
nent g are the kinetic parameters corresponding to the ammonium sulphate-water system.
Furthermore C and C∗ are the solute concentration and the equilibrium concentration, re-
spectively; their difference determines the driving force of the crystallization process, known
as the supersaturation. In the face of isothermal operation of the evaporative crystallizer, a
single expression is derived for the solute concentration using the mass and energy balance
equations:

dC

dt
=

Qp(C∗−C)
V + 3kvGm2(k1 + C)

1− kvm3
+ k2Hin

1− kvm3
(4-12)

with constant coefficients given by:

k1 = HvC
∗

Hv −HL

( ρc
ρL
− 1 + ρLHL − ρcHc

ρLHv

)
− ρc
ρL

(4-13)

k2 = C∗

V ρL(Hv −HL) (4-14)

where kv is the crystal volumetric shape factor, Hin is the heat input to the crystallizer (kW ),
ρL is the saturated solution density (kg ·m−3), and ρc is the density of crystals (kg ·m−3). HL,
Hc and Hv are the solution, crystals and vapor specific enthalpies (kJ · kg−1), respectively.

It follows that the dynamic behavior of the system under investigation is governed by a set
of differential algebraic equations (DAEs), equations (4-8) to (4-14). Hence, the five leading
moments of the CSD, and the solute concentration are the state variables determining the
dynamics of the system. We mentioned before that measurements are only available for the
moments of the CSD. As the concentration is not available, it must be estimated, we will do
this by means of an observer.

4-3 Observability analysis

As we will employ an observer, part of its design requires what is known as observability
analysis.

The observability problem consists of investigating whether there exists relations binding the
state variables to the inputs, outputs and their time derivatives and thus locally defining them
uniquely in terms of measurable quantities. If no such relations exist, the initial state of the
system cannot be deduced from observing its input-output behavior.

Short mathematical background

In practical terms observability can be interpreted as the possibility of reconstructing the
state vector from the information contained in measurements taken from the system.
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The concept of observability is useful in solving the problem of reconstructing unmeasurable
variables from measurable ones in the minimum length of time.
The concept of observability is very important because, in practice, the difficulty encountered
with state feedback control, and some other control variants, is that some of the state variables
are not accessible for direct measurement, with the result that it becomes necessary to estimate
the unmeasurable state variables in order to construct control signals. Such estimates are
possible only if the system is observable.
Determining observability of a nonlinear system requires some basic knowledge in systems
analysis, all the required theory and definitions can be found in Nijmeijer and van der Schaft
[29], Jeltsema and Scherpen [17], and Hermann and Krener [16]. We mainly follow Nijmeijer
and van der Schaft [29].
According to the terminology used in differential geometry, we shall denote a vector function
f : D → Rn as a vector field on the domain D ⊂ Rn. The intuitive reason for this term is
that every vector function f corresponds with a field of vectors in an n-dimensional space.
A vector field is an n-dimensional column. Furthermore, the transpose of a vector field is
said to be a covector field. Hence, a covector field is an n-dimensional row. An example of a
covector is: let h : D→ R, then the differential of h is a covector field, defined by

dh = ∂h

∂x
=
(
∂h

∂x1
, . . . ,

∂h

∂xn

)
. (4-15)

We will limit ourselves to smooth vector fields, by smooth we mean that the function f(x)
has continuous partial derivatives of any required order.

Lie derivatives

Given a scalar function h(x) and a vector field f(x), we define a new scalar function Lfh(x),
called the Lie derivative of h(x) with respect to f(x).
Definition 1. Let h : D → R be a smooth function, and f : D → Rn be a smooth vector
field on the domain D ⊂ Rn. Then the Lie derivative of h(x) with respect to f(x) is a scalar
function defined by

Lfh(x) = ∂h

∂x
f(x). (4-16)

Repeated Lie derivatives can be defined recursively as

L0
fh(x) = h(x)

L1
fh(x) = Lfh(x)

...
Lifh(x) = Lf (Li−1

f h(x)), i = 1, 2, 3, . . .
(4-17)
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Similarly, if g(x) is another vector field, then the scalar function LgLfh(x) is defined as

LgLfh(x) = ∂Lfh

∂x
g(x). (4-18)

Let us consider a smooth control-affine system together with an output map

ẋ = f(x) +
m∑
j=1

gjuj , u = (u1, . . . , um) ∈ U ⊂ Rm,

yi = hi(x), i = 1, 2, . . . , p, (4-19)

where h = (h1, h2, . . . , hp)T : Rn → Rp is the smooth output map of the system. It is
defined that y(t, 0, x0, u) = h (x(t, 0, x0, u)) denotes the output of (4-19) for u and initial
state x(0) = x0.

Some definitions are required to state observability,

Definition 2. Two states x1, x2 ∈ Rn are said to be indistinguishable, denoted x1Ix2, if for
every admissible input unction u, the output function t → y(t, 0, x1, u), t > 0, of the system
for initial state x(0) = x2, are identical on their common domain of definition. The system
is called observable if x1Ix2 implies x1 = x2.

Notice that this definition of observability does not imply that every input function distin-
guishes points of Rn. However, if the output is the sum of a function of the initial state and
a function of the input (as it is for linear systems) then it is easily seen that if some input
distinguishes between two initial states then every input will do.

Definition 3. An input u is universal on [0, t] if for every pair of distinct states x1 6= x2,
there exists τ ∈ [0, t] such that h (x(t, 0, x1, τ)) 6= h (x(t, 0, x2, τ)).

Definition 4. A non universal input is called singular

Definition 5. Consider the nonlinear system (4-19). The observation space O of (4-19)
is the linear space (over R) of functions on Rn containing h1, . . . , hp, and all repeated Lie
derivatives

Lz1Lz2 . . . Lzkhj , j ∈ p, k = 1, 2, . . . (4-20)

with zi, i ∈ k, in the set {f, g1, . . . , gm}.

The observation space O defines the observability codistribution, denoted as Oc, by setting
Oc = dO, (d(·) denotes the differential operator as defined in (4-15)) i.e.,

Oc = span{dh1(x0), . . . , dhp(x0), dLz1Lz2 . . . Lzkhj(x0)}, j ∈ p, k = 1, 2, . . . (4-21)
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where zi, i ∈ k, is a vector field in the set {f, g1, . . . , gm}. The distribution Oc is invariant
with respect to f, g1, . . . , gm and it is contained in the kernel of span{dh1, . . . , dhp}. If Oc is
nonsingular, it is also involutive. The main theorem concerning local observability, Nijmeijer
and van der Schaft [29], can be stated now.

Theorem 1. Consider the system (4-19) on Rn. If Oc(x0) is of constant dimension, with

dim(Oc(x0)) = n, (4-22)

then the system (4-19) is locally observable at x0.

Observability analysis for the moment model of the 75-liter fed-batch evaporative
crystallizer

The state space representation of the analyzed system is given by



ṁ0
ṁ1
ṁ2
ṁ3
ṁ4
Ċ


=



B0 − m0Qp
V

Gm0 − m1Qp
V

2Gm1 − m2Qp
V

3Gm2 − m3Qp
V

4Gm3 − m4Qp
V

Qp(C∗−C)
V

+3kvGm2(k1+C)
1−kvm3

+ k2Hin
1−kvm3


, (4-23)



y1
y2
y3
y4
y5
y6


=



m0
m1
m2
m3
m4
C


, (4-24)

B0 = kbm3G (4-25)
G = kg(C − C∗)g, (4-26)

with the variables defined as in previous sections. It can be recasted in the form of equation
(4-19) and is as follows

f =



k1m3kg(C − C∗)g − m0Qp
V

kg(C − C∗)gm0 − m1Qp
V

2kg(C − C∗)gm1 − m2Qp
V

3kg(C − C∗)gm2 − m3Qp
V

4kg(C − C∗)gm3 − m4Qp
V

Qp(C−C∗)
V

+3kvkg(C−C∗)gm2(k1+C)
1−kvm3


(4-27)
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g =



0
0
0
0
0
k2

1−kvm3


(4-28)

h =



m0
m1
m2
m3
m4
C


(4-29)

where m0, m1, m2, m3, m4, and C conform the state variables, therefore the dimension n of
the system is 6.

The observability of the system will be evaluated in two cases; first when the full state variables
are available to be measured, and second when the sixth state (the concentration C) is not
available.

Case 1: full state available

In this case f, g and h remain as defined by (4-27), (4-28) and (4-29) respectively. Therefore
hi = mi−1 for i = {1, 2, 3, 4, 5}, and h6 = C.
Based on the theory of the previous section, the observability codistribution can be obtained
by only calculating dhi for i = {1, 2, 3, 4, 5, 6}, since this gives us the following codistribution:

Oc =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (4-30)

which as can be seen has rank=6. Thus the system is locally observable at any point x0 since
there is no dependence of the rank condition on any of the sate variables.

Case 2: sixth state (concentration C) not available

In this case the state space representation of the system suffers a slight change, f and g remain
the same, but h is now defined by only five components hi = mi−1 for i = {1, 2, 3, 4, 5}, this
is, we can only measure five state variables while the one missing is the concentration.

On this basis, we proceed as before, the observability codistribution can be obtained by first
calculating dhi for i = {1, 2, 3, 4, 5}, and also dLf (h1). This gives,
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Oc =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
−Qp

V 0 0 k1kg(C − C∗)g 0 k1kgm3g(C − C∗)g−1


, (4-31)

the rank of the codistribution above has rank=6 and the system will be locally observable as
long as the product flow rate, and the difference between the actual concentration and the
saturation concentration do not become zero simultaneously.

Given a dynamical system, the observer aims at obtaining an estimate of the current state
by only using available measurements. For linear systems, the property of observability,
characterized by the Kalman rank condition, guarantees the possibility to indeed design an
observer. In the case of nonlinear systems, observability is not enough, basically because this
property in general depends on the input of the system. In other words, observability of a
nonlinear system does not exclude the existence of inputs for which two distinct initial states
cannot be distinguished by using the knowledge of the measured output. The moment model
for the 75-liter crystallizer is observable in the two cases analyzed here, therefore constructing
an observer for the system is possible, as long as also properties like the absence of singular
inputs are fulfilled.

4-4 Summary

We began this chapter introducing elemental concepts in crystallization, then presented some
crystallization methods and finally gave an overview of how the product may be typically
characterized. There we introduced the concept of crystal size distribution, useful in this case
study.

A rather detailed overview of the process under investigation was given, and wrote the equa-
tions describing the system model.

Based on the latter model, we put into effect an observability analysis.

4-5 Remarks

The system model used in the present work is known as a moment model. It is derived from
the more complex population balance equation, which is a partial differential equation, and
some energy and mass balance equations. The more complex model can be transformed into
a set of nonlinear differential and algebraic equations (DAEs) thanks to the fulfillment of
certain characteristics already explained in the corresponding section. This set of DAEs can
be recasted as a nonlinear control-affine system consisting of 6 state variables. This means
the system can be put in the form of,
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ẋ = f(x) +
m∑
j=1

gjuj , u = (u1, . . . , um) ∈ U ⊂ Rm,

yi = hi(x), i = 1, 2, . . . , p, (4-32)

that is, the control input or the control input times a another relation is additive with respect
to the time derivatives of the state variables.

One of the states is the solute concentration and given the fact it cannot be measured in
real-time, it needs to be estimated.

Once the model was in the latter form, we put into effect an observability analysis.

Indeed the system is observable and then we can proceed with the implementation of the
observers.
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Chapter 5

Simulation Results

Here we analyze and interpret, on the basis of the theory presented in previous chapters,
data generated by computer simulations. We make use of the observers introduced before
in a plant simulator of our case study. We first describe the scenarios from which data was
acquired, establish the evaluation criteria and finally we show and explain the results of such
simulations.

5-1 Analyzed Scenarios

The mathematical model, used by the plant simulator and the observer, is that given by
equations (4-8) to (4-14), the state variables x1 to x5 represent the first five leading statistical
moments of the crystal size distribution of the system (m0 to m4), and x6 represents the
solute concentration (C). It should be noted that measurements are available only for the
first 5 variables, not for the concentration, so the latter can only be estimated, here strives
the importance of an observer in our case study. Nevertheless as all the results come from
computer simulations, we are able to determine the actual value of the solute concentration
for the process and then compare it to the estimated value given by the observers.

The nonlinear observers employed were:

• moving horizon estimator (MHE)

• extended Luenberger observer (ELO)

• extended Kalman filter (EKF) with two variants, the classical implementation and that
where a time-varying Q matrix is used. Please bear in mind that this is the covariance
matrix of the noise acting on the plant and the notation is standard for all the observers
used here. Support to apply this variant is explained in Chapter 2

• unscented Kalman filter (UKF), also with two variants, the classical one and that with
a time-varying Q matrix
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(a) Open-loop configuration. (b) Closed-loop configuration.

Figure 5-1: open- and closed-loop configurations

• and the ensemble Kalman filter (EnKF)

We can now distinguish two main branches for the simulations, namely open- and closed-loop
scenarios.

A simple open-loop implementation may be used to compare computational time and esti-
mation accuracy between observers, once this is done, it is of interest to determine if there is
a correlation between estimation accuracy and control performance. However, an open-loop
implementation with an optimal actuator profile computed off-line can lead to unexpected
results due to a mismatch between the process and the model, irreproducible start-up or/and
process disturbances. These limitations underline the need for an optimal model-based control
strategy implemented on-line in a closed-loop mode. The closed-loop implementation will also
be tested under the influence of the different error sources already described in Chapter 4. It
is important to determine which error source is more detrimental to the control performance
and whether it is possible to counteract the effects of such error source.

Open-loop

The nonlinear observers are first analyzed in an open-loop framework where no controller is
present in the setup, and the input profile is determined beforehand. Figure 5-1(a) shows
the arrangement of the plant and observer in open-loop. The plant and the observer are fed
by the same inputs, the plant outputs correspond to vector y. Every 100 s it is possible
to measure the system outputs, however, our measurements are corrupted by noise and we
obtain vector ym, these values are then fed into the observer, which must filter out the noise
and deliver the output-estimate vector ŷ.

For the open-loop case, two scenarios are analyzed, namely the nominal case, where only mea-
surement noise is present on the plant as an error source, and the uncertain initial conditions
case.
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Closed-loop

Under this scenario the observer uses measurements from the plant to update the values of
the states, the controller also makes use of the updated states, which closes the loop, and
based on this, the built-in optimizer determines the input to the system as can be understood
from Figure 5-1(b).

For the analysis we performed, yet we can divide each branch in subcases where different
sources of error are introduced,

• nominal case- the only error source is due to stochastic measurement error. This error
randomly pushes the values of measurements up or down and in general it is expected
not to shift the mean value of a measurement.

• uncertain initial conditions- plant, and the pair observer-controller are initialized at
different points in state-space. In our case study, uncertain initial conditions are due to
improper seeding.

• model mismatch- the mathematical models used to simulate the plant, and by both,
observer and controller, are not exactly equal. We may think of this error source as
erroneous values of certain parameters used to model the dynamics of a system because
they cannot be precisely determined.

• systematic measurement error- systematic errors tend to be consistently either posi-
tive or negative therefore biasing the average value of a measurement. In practice an
uncalibrated device may give rise to this error.

• general case- in this case all the error sources mentioned before are introduced simulta-
neously in the simulation. This scenario is closer to a real situation.

As a complementary note, stochastic measurement error is always present in every scenario.

For the closed-loop case all the scenarios mentioned before were simulated.

Under the closed-loop setup the observers are coupled to a nonlinear controller described by
Mesbah et al. [24]. The closed-loop setup is shown in Figure 5-1(b). Important differences
with respect to the open-loop case are the presence of the reference trajectory, that must be
followed by the plant, and the feedback introduced by feeding the controller with information
from the observer. This reference is used by the controller which aims to follow it as close
as possible. Another outstanding point is the interaction of the observer, as it determines
the values of the state variables, it determines the position of the system in state-space, and
therefore, provides the controller with valuable information so as to where the system should
be driven to.

Coupling a dynamic optimizer to an stochastic observer is accomplished by following the
structure and implementation found in Mesbah et al. [24]. Simulation of the different scenarios
require the solution of algebraic differential equations that describe the dynamics of the
elements in the setup, that is to say plant, observer and controller. Different solvers were
used for integrating each set of differential equations, they are listed below
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• Plant: MATLABTM ode23s solver

• MHE: DASPK solver

• ELO: MATLABTM ode15s solver

• For the remaining filters a discretized version of the continuous-time state-space model
is used using an explicit Euler scheme.

The MATLABTM solvers we chose allow for numerically stable simulation results. In the case
of explicit Euler, a previous analysis of the step size was done to avoid numerical stability
issues.

As we are evaluating the usefulness of different observers, they must be evaluated under equal
circumstances, therefore, the type and magnitude of errors introduced to the system are kept
equal for every observer. Even more, as stochastic measurement error plays an important
role in the simulations, the set of values used for every simulation were identical for every
observer as well. All this precautions should allow for a fair comparison.

Finally, every simulation exemplifies a real-life batch run, which is equivalent to 10800 s.

5-2 Evaluation Criteria

Results evaluation is divided in two parts, the first one is to evaluate the performance of the
observers from a systems and control point of view, where the estimation accuracy of every
observer, its computational demand, and finally the fulfillment of a control criterion is revised.
It must be noted that evaluating the control performance is relevant only in the closed-loop
simulations.

The second evaluation part takes on a process oriented approach, which on the one hand is
interested in the fulfillment of quality specifications of the product, of vital importance in this
application, and on the other hand, maximization of the production yield.

The evaluation of each scenario, described previously, is based on data generated by 50
computer simulations of the system under investigation, that is, the plant simulator, observer
and controller under the NMPC framework.

Systems and control evaluation

First, evaluating the observer is based on two main features, namely

• estimation accuracy- it is determined based on the normalized root mean squared error
(NRMSE) between each component of the uncorrupted plant states x and the corre-
sponding component of the estimate given by the observer x̂, the formula to calculate
this quantity is

NRMSE =

√√√√ n∑
i=0

(
xi − x̂i
xi

)2
(5-1)
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where the index i the ith data point, and n represents the number of data points used for
the calculation. In this case, n = 50, the number of simulations we set in the previous
section.

• CPU time- it is taken as a measure of an observer computational demand and it is
determined as the average CPU time required to run the algorithm of an observer from
the moment that a measurement is available until the observer delivers the variables’
estimates.

The criterion to evaluate the control performance is given by

• the tracking error- defined as the difference between the value of a desired trajectory
and the actual value of the system. It is evaluated on the basis of a NRMSE as well,

NRMSE =

√√√√ n∑
i=0

(
ri −Gri

ri

)2
(5-2)

where r represents the value of the reference trajectory and Gri1 is the actual value of
the system.

For our case study r = 2.5 · 10−8 m/s which represents the desired crystal growth rate.
Two data subsets can be identified, see Figure 5-2.

• case 1- the NRMSE is calculated at the same time instant, k, that a measurement is
available and along the 50 simulations. This is equivalent to calculate the NRMSE over
the projections of the estimation error curves over the plane (VV-t) at every time k as
depicted in Figure 5-2. These results will be referred as the NRMSE per time step, or
vs. time.

• case 2- the NRMSE is calculated over the estimation errors generated along each of the
108 times a measurement is performed in one batch run. This gives us a picture of how
the model-based control strategy behaves to changes in the noise applied to the system
in each simulation. This is equivalent to calculate the NRMSE over the projections of
every simulation on the plane (VV-S#). These results will be referred to as NRMSE
vs. simulation.

To summarize, in the open-loop case we only evaluate the performance of the observer while in
the closed-loop case, both the controller and observer are evaluated. The performance of the
observers is evaluated based on their estimation accuracy and their computational demand
(the latter measured by their required CPU time). Furthermore, in the closed-loop case the
control performance is also analyzed, the output of the system is ought to follow a reference
trajectory corresponding to a predetermined optimal crystal growth rate and the evaluation
criteria is based on how closely the system follows the growth rate trajectory (tracking error)
as well as how much variation there will be in the tracking error when several batches are
run. Large variability in the process behavior due to its stochastic nature is ought to be
counteracted by the application of our model-based control strategy.

1Gri is the crystals growth rate
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Figure 5-2: data sets used for performance evaluation

Process evaluation

It is assumed that by maintaining the crystal growth rate constrained to a maximum value
of 2.5 · 10−8m/s (reference trajectory), the quality specifications of the product are met. We
will also achieve a mean crystal size of around 500 µm, and a crystal content of roughly 30%.

Maintaining the crystal growth rate close to the reference trajectory value is important when
it comes to fulfilling quality specifications of the product. If the crystal growth rate upper
limit is exceeded, then unwanted phenomena will occur in the process, for instance undesired
agglomeration and nucleation will take place. This will lead to non-acceptable quality defects
such as mother liquor inclusion, impurity inclusion and impurity uptake. Low quality product
means lower process efficiency and therefore lower profits.

Therefore the evaluation of the control strategy from a process point of view is mainly deter-
mined by the ability to maintain the plant’s crystal growth rate as close as its upper limit as
possible, and keep it preferably smaller than the upper value.

The production yield is obviously determined by the crystal content. But it is second in
importance.

5-3 Open-loop analysis

The main task of the observer in the open-loop scenario is to deliver accurate estimates of the
system state variables. Plant variables estimates can be used for process monitoring, as each
have a physical interpretation in terms of the crystals, thereby their importance. Coming
up we will present some plots showing the evolution of the estimation error along a batch
run, the simulation starts at time t0 = 0 and finishes at tf = 10800 s. For instance, Figure
5-3 shows the NRMSE of the estimates of the plant variables given by each observer. Even
though the estimation error is zero at the beginning of the plot as both the observer and plant
have the same initial conditions, the next time the observer gives an estimate there is already
an estimation error. We also comment that fact the error becomes smaller as time goes by,
meaning the estimates are converging to actual values of the variables. Figures 5-3 to 5-7
present the NRMSE for every single state variable. Therefore, the only difference between
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Figure 5-3: NRMSE y1 along time, open-loop case.

each plot is the fact that they belong to different variables, but they all describe the same
feature, the evolution of the estimation error along a batch run.
In general, all the stochastic observers performed better than the ELO and even better than
MHE, this was expected due to the presence of stochastic measurement noise corrupting
the information we acquire from the system. In Appendix A we include the graphs when no
stochastic measurement error is used, the performance of all the stochastic observers is hardly
degraded, but an improvement is noticeable in the ELO and MHE.
Finally, the implementations of the EKF and UKF with time-varying Q matrix perform better
overall. Values of the covariance time-varying Q matrix according to the proposed algorithm
indicate that uncertainty is low due to parameters variations, therefore when this algorithm
is used we highly rely on the prediction capabilities of plant model, consequently we observe
low variation in the trajectories of the estimated variables. On the other hand, ELO and
MHE show a worse estimation error since the noise present in the system is not filtered out.
MHE, however performed better that ELO.
The results concerning the CPU time required by every observer are shown in Figures 5-8
and 5-9.

Computational Demand

Figure 5-8 shows the time required by each observer every time a measurement is available.
The values are consistent through the whole simulation, and no large peaks, meaning the
algorithm took too long to provide an estimate at a certain instant, are present. The interval
between measurements is 100s, then from the values given in the graphs, we realize the
observer leaves enough margin for other tasks, such as calculating input signals, which is
important in the case of a real-time implementation where time is a hard constraint.
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Figure 5-4: NRMSE y2 along time, open-loop case.

Figure 5-5: NRMSE y3 along time, open-loop case.
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Figure 5-6: NRMSE y4 along time, open-loop case.

Figure 5-7: NRMSE y5 along time, open-loop case.
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Figure 5-8: CPU time required by each observer at each iteration, open-loop case

Figure 5-9: CPU time required by each observer during the simulation of one batch, open-loop
case
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Figure 5-9 shows the total time consumed by the observer during the simulation of one batch.
EKF, UKF and ELO rank as the least time consuming observers, while MHE and EnKF
are the slowest ones. In the case of UKF and EKF when a time-varying Q matrix is used, it
slightly increases computational time, however, the overall performance of the control strategy
is largely improved, at least in terms of estimation accuracy.

5-4 Closed-loop analysis

This section is divided in two parts, first we analyze the nominal case and then we move onto
the case where all the error sources were applied simultaneously.

The tuning of the observers is kept constant with respect to the open-loop case, otherwise
it will be explicitly said. For instance, ELO was the only observer that was retuned for the
closed-loop nominal case.

Closed-loop nominal case

All the graphs showing the estimation errors for the nominal case in closed-loop configuration
can be found in Appendix B. They are not reproduced here because they do not present
more relevant features than those highlighted in the open-loop scenario. That is, we observe
convergence to zero in the estimation errors; the performance of the observers remains un-
changed, being the deterministic observers those with poorest behavior, while EKF and UKF
seem to be the best suited for the task.

In the next section we will concentrate on the control performance analysis, there we will
discuss the control performance for the closed-loop configuration.

Before going further, we take on how the ensemble size, in the case of EnKF, and the estima-
tion horizon, concerning the MHE, influence their performance.

Effects of the ensemble size

We have four cases,

• ensemble size of 10 members,

• ensemble size of 20 members,

• ensemble size of 40 members,

• ensemble size of 80 members.

Generating the ensemble members was made by sampling numbers from a normal distribution.
Selecting this distribution was rather arbitrary as we did not have access to prior information
which would give us a clue on how the probability distribution of each state variable looked
like, but we knew the noise perturbing the measurements was from a Gaussian distribution.
In fact determining the covariance matrices of the system and measurement noise is what
complicates tuning of any filter, otherwise smarter options could be made from the beginning.
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Figure 5-10: EnKF NRMSE y3, at every instant for different ensemble sizes

To generate the numbers from a normal distribution it is necessary to specify the mean and
the variance of the distribution, in our case, the mean must had been equaled to the desired
initial value of the state variables. The variance is up to the person tuning the observer. In
the present work the variance was chosen close to that given by the Q matrix of the EKF. As
already explained in previous sections, this matrix represents how much the estimates given
by the observer model are trusted, as the values chosen worked for the EKF, it was expected
the required values for another filter to work were similar. Eventually, the values had to be
adjusted for the EnKF to deliver accurate results in the order of the other filters. This is a
straight consequence as the EKF and EnKF algorithms are not equivalent.

In case there were no access to this information, that is the Q matrix of the EKF, the values
might be estimated by analyzing available experimental data, if any, otherwise, tuning would
need to be done by trial and error.

We can see in Figure 5-10 that an ensemble size N = 20 members leads to a worse estimation
accuracy than for N = 20. In Figure 5-11 we see that augmenting the ensemble size propor-
tionally increases the computational time. Furthermore, increasing N does not improve the
accuracy of the filter in the same proportion it increases the computational time, so in our
case, it is not worth to further increase the ensemble size to more than 20 members.

The position in state-space of the ensemble members is related to the probability distribution
the members are sampled from. This can be explained in the context of our example. As the
members are sampled from a normal distribution, it is very likely to sample values which are
close to the mean of the distribution, especially if the variance is small, somehow. Increasing
the number of members will definitely increase the chances to sample values away from the
mean, but the major ensemble members will be not far from one another.

At the end of the day, the location of the ensemble members determines how well the statistics
from the state variables are captured. Because of this, increasing the ensemble size from a dis-
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Figure 5-11: CPU time for different ensemble sizes

tribution with the same parameters will not lead to large improvements in the latter task once
a threshold has been reached. Different sampling techniques exist and could used to further
improve the filter performance as the ensemble size grows. In our case, the aforementioned
threshold seems to be an ensemble size of 20.

Effects of the estimation horizon

The MHE estimation horizon values were set to 300, 500 and 700 s.

The estimation horizon as described in Chapter 2 allows to increase/decrease (if the estimation
horizon is increased/decreased) the amount of information this observer uses back in time to
generate the variables’ estimates. Therefore, if more information about the system is available,
in terms of measurements, it is expected the observer to generate better estimates, because
the observer should “better understand” the behavior of the system. This principle is applied
in the smoothers. Predictions are better when the estimation horizon is increased since the
NRMSE values decrease. This is shown in Figure 5-12.

Nevertheless, this performance improvement comes to the price of an increased computational
time, which in general is not desirable. We present computation times for the MHE in Figure
5-13.

Control performance

Crystal growth rate is what we aim to control in this case study. This quantity must be
kept as close as possible to a prestablished value of 2.5 · 10−8m/s as long as possible during
the batch. Fluctuations may exist but those above the target value are not desirable due to
quality issues introduced in Chapter 4.

After comparing the growth rate data with the estimation error of all the state variables we
realized that control of the growth rate is closely related to variables y3 and y4, representing
second and third moment respectively, but mainly to y3. This may not be a surprise as the
second moment is related to the total surface of crystals in the system, which in turn favors
crystal growth. Besides, concentration, which is the driving force for crystal growth, is mainly
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Figure 5-12: NRMSE y3 different estimation horizons

Figure 5-13: CPU time for different estimation horizons
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Figure 5-14: NRMSE crystal growth rate, at every instant, nominal case

Table 5-1: Observers listed in ascendant order by the magnitude of their tracking error

UKF Q-varying
EKF Q-varying

UKF
EKF
EnKF
MHE
ELO

related to the second moment. Therefore, good estimation of system’s second moment is of
high importance in order to achieve good control performance.

Crystal’s growth rate tracking error through a batch run is presented in Figure 5-14. There
we have plot the tracking NRMSE for every observer versus time. We also show in Figure 5-15
a close-up of the growth rate curves in the interval from roughly 4000 to 8000 s. We show this
interval since it is there where we can exert control action over the crystal growth, this due to
actuation limitations. We see in these figures that ELO and MHE present the largest offset
with respect to the reference trajectory. Indication that noise disturbs the control scheme
performance when a deterministic observer is used.

If the tracking error is quantified over the time interval where we aim to control the growth
rate, and the observers are listed such that the first in the list presents the smallest tracking
error, we obtain Table 5-1

The same can be done with respect to the estimation error of all variables; however, it turns
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Figure 5-15: zoomed-in NRMSE crystal growth rate, at every instant

out that the ranks for y3 and y4, which as already discussed represent the total crystals
surface and volume respectively, list the observers in exactly the same order that when listed
to respect to the tracking error. This brings to light a relationship between the control
performance and the observer performance. We may now say that better estimation accuracy
will lead to better tracking.

The link between the estimation accuracy and the tracking error can be traced back to the
model of the plant. The equation to calculate the growth rate is given by,

Gr = kg(C − C∗) (5-3)

furthermore, according to (5-4) the solute concentration C is a function of y3 and y4,

dC

dt
=

Qp(C−C∗)
V + 3kvkg(C − C∗)gy3(k1 + C) + k2Hin

1− kvy4
(5-4)

from (5-3) and (5-4) we see the Growth rate directly depends on y3 and y4, so as long as we
estimate these variables adequately we will be able to correctly drive the system to obtain
the desired crystal growth rate. Somebody may argue that even if the growth rate depends
on y3 and y4 they still depend on y1, y2, etc., and might state that all the variables should be
accurately estimated. Even if that is intuitively appealing, it is not necessarily true, as the
relations linking one variable to the others may combine to generate an estimate of a variable
with a smaller estimation error than that found in the variables building the relationship. In
fact this is the case in our system and it will be shown in the next section.
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Figure 5-16: expected distribution of the crystal growth rate when the UKF is used

Process evaluation

Process evaluation takes on how close the plant can follow the growth rate reference trajectory.
Therefore, we calculate the mean value and variance, over 50 simulations, of the crystal growth
rate achieved when different observers are used in the process. These quantities will tell us
what growth rate we can expect and how much it will vary around this value. Furthermore, we
plot this quantities as a normal probability density function together with the desired crystal
growth rate, Figure 5-16 shows the growth rate reference value, the mean value achieved by
the plant and how growth rate values spread over the simulations. The observer used in
Figure 5-16 is UKF. We showed only this observer as it performed better than the rest. The
mean value of the growth rate is very close to the one desired, and the process will closely
stick around as the shape of the curve is very narrow. Then we can expect good quality
properties of the product from those batches.
We also show in Figures 5-17, 5-18 that production’s mean crystal size and production’s
crystal content also stayed close to both, the desired mean crystal size and the crystal content
of the batch. Finally, for the nominal case we can say that, both quality and production
specifications were met.

Closed-loop, general case

We start off by making clear that observers were tuned for the open-loop scenario. For the
closed-loop nominal case no changes were made, only the ELO had to be retuned in order to
achieve reasonable estimation accuracy. For the closed-loop general case, the latest tuning for
the ELO was not changed, neither was changed for the rest of the observers, except for the
EnKF and the Q-varying matrix versions of the EKF and UKF. This had to be done because
introduction of model mismatch caused the latter filters to diverge.
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Figure 5-17: mean crystal size, nominal case.

Figure 5-18: crystal content, nominal case.

I. Mora Moreno Master of Science Thesis



5-4 Closed-loop analysis 71

Table 5-2: Initial conditions for the plant, observer and controller, general case

Variable Plant Observer & controller
m0 1.08 · 1010 1.13 · 1010

m1 3.42 · 1005 3.59 · 1005

m2 3.69 · 1002 3.87 · 1002

m3 8.30 · 10−02 8.72 · 10−02

m4 2.49 · 10−05 2.61 · 10−05

C 4.57 · 10−01 4.66 · 10−01

If we look back on Figures 5-3 to 5-7 we see that EnKF, and the Q-varying matrix versions of
EKF and UKF achieve a smaller estimation error than the rest of the observers. As mentioned
before, in order to filter out the stochastic measurement noise, which was the only error source
in the nominal case, the observers must make a trade-off between the importance given to
the predictions delivered by their process model, and the measurements. If the noise in the
measurements is too high, then it is preferable to attach more weight to the model. If the
model can faithfully reproduce the dynamics of the system to control, then we are on the safe
side and we will move in the right direction, that is, we will be able to make good estimates
of the variables. We say the latter observers were heavily weighting the predictions done by
the model, that is why their predictions look so smooth, besides, their estimation error is
very small because the predictions of their model fit quite well the values from the reality.
However, if the model and the real counterpart exhibit different output behavior, we will not
be able to compensate for those differences since we are barely weighting the information
obtained from the real system, and therefore losing information. As this loss of information
builds up the observer will diverge. Model mismatch will, in general, cause different output
behavior between the real plant and the observer model, and therefore the observers that
heavily weight the predictions from their model might show divergence. That was the case
for EnKF and the Q-varying matrix versions of EKF and UKF.

Now we can proceed to analyze Figures 5-19 to 5-23 which correspond to the general case
where all the error sources are introduced into the model based control system. All figures
start at a point different from zero, this is due to the presence of uncertain initial conditions.
The initial conditions in the observer-controller pair were perturbed, with +5% for the first
five variables, namely the statistical moments of the crystal size distribution, and +2% for
the sixth variable, corresponding to the concentration, with respect to the values used in the
process.

Table 5-2 shows the values of the initial conditions for both the observer-controller pair and
the plant.

The fact that the plant and the observer start at different points enlarges the initial estimation
errors with respect to the nominal case. However, since the plant is observable, the observer is
able to compensate for the initial estimation errors. It is not possible to determine the speed
of convergence of the observer, as it would be the case for a linear system, but the observability
of the system allows for the initial larger errors to vanish and converge to comparable values
like in the nominal case as the system evolves in time. Our statement can be verified by the
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Figure 5-19: closed-loop general case,NRMSE y1, at every instant

plots in Appendix C, where the effects of solely uncertain initial conditions as error source
are shown.

Yet we argue the observer is capable of compensating by the error of uncertain initial con-
ditions, we see in the plots for the general case that the estimation error seems to stabilize
around a value larger than in the nominal case. We explain this difference by the presence of
systematic measurement error. We again refer to the fact that model predictions and mea-
surements have to be weighted in order to deliver a variable estimate. If we do not count with
extra information, such that in no way we can realize that our measurements are biased from
the actual values, then we will consider the measured values as our reality, and we will try
to get as close to them as possible. As we cannot tell the difference between reality and that
obscured by our measurements we will not be able to compensate for that error. In fact, if
somehow we retrieve the true information from the system and compare it to our predictions
we will find an offset between them. This explains the offset in our results. We do have access
to the real data once we conclude a simulation and we see that without extra information
about the systematic measurement error the observers are not able to compensate for it. Fur-
thermore, we would need to augment the state of the system if we wanted to compensate for
systematic measurement error, or implement integrating action in the controller to eliminate
any offset. Results in Appendix D support the former argument, and the latter finds support
in Appendix F.

Control performance

The dependence between estimation accuracy and control performance found in the open-loop
case also holds in our most general case. As the estimation error for y3 and y4 is larger than
for the nominal case so is the tracking error. This claim is presented in Figure 5-24. We are
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Figure 5-20: closed-loop general case,NRMSE y2, at every instant

Figure 5-21: closed-loop general case,NRMSE y3, at every instant
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Figure 5-22: closed-loop general case,NRMSE y4, at every instant

Figure 5-23: closed-loop general case,NRMSE y5, at every instant
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Figure 5-24: NRMSE crystal growth rate, at every instant, closed-loop general case.

only interested in the interval from about 4000 to 8000 s since actuation limitations are not
an issue therein. When Figures 5-15 and 5-24 are compared we see the latter is shifted with
respect to zero in the vertical axis (indicating the NRMSE), this is the result of introducing
errors in the system, while in Figure 5-15, growth rate in the nominal case, the bias is smaller.

Process evaluation

For the general case we plotted how the tracking error mean value is distributed along 50
simulations per observer. All the plots corresponding to each observer can be found in Ap-
pendix G. Here we only show the plot for three cases, UKF in Figure 5-25 which presented
the smallest tracking error, ELO in Figure 5-26 and EnKF in Figure 5-27, with the worst
performance. Results for ELO were expected as it is a deterministic observer, but not for
EnKF. The bad performance achieved by EnKF can be improved by retuning the observer,
though. Coming back to the graphs, for EnKF and ELO we see the average value of the mean
growth rate is above the upper limit, then we can expect product not meeting the quality
specifications. However, there is no way to determine how low the quality will be, unless the
production is inspected. Even more, as the mean value for the crystal growth rate is larger
than 2.5 · 10−8m/s, we expect a larger mean crystal size, and also a larger product yield at
the end of the batch than in the nominal case. Figures 5-28 and 5-29 show the prediction
is true. However, even if the productivity has been increased, we must highlight that it has
been achieved by reducing the quality of the product, so this is not an acceptable trade-off.
Quality must be at the top of the requirements to be fulfilled by the process. More clearly, we
show the case of EnKF, we compare the crystal content in Figure 5-30 and the mean crystal
growth in Figure 5-31. Finally, we compare in Figure 5-32 how the presence of all the error
sources shift the expected value of the growth rate with respect to the nominal case. The
mean value is shifted to a higher value, this is not desirable since it will degrade product
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Figure 5-25: expected distribution of the crystal growth rate when the UKF is used.

quality. All the errors also increase variability in the process, that is, values of state variables
and properties of the product will vary over a larger range giving rise to more irreproducible
batches. Both consequences are undesirable.

5-5 Disturbance suppression

The presence of a disturbance will drive the system away from the desired growth rate set
point. Once transient effects vanish, input or output disturbances will create a similar effect
on the process, as they will drift the system away from its desired path. Therefore, from a
practical point of view in terms of effects, the presence of disturbances on either side of the
system does not really make a difference. We will however, perturb the system on the output
to perform a disturbance rejection analysis. The immediate consequence is that it will lead
to erroneous measurements and therefore erroneous information feeding our control strategy.
We can include an output disturbance in the mathematical model of the system as follows,

y = h(x, u) + d (5-5)

where y is the output vector of the system, x and u are the states and inputs to the system,
respectively, and d is the disturbance.
For our case study the perturbation appears 3000 s after the batch was initialized and its
value is proportional to that of the corresponding output where it is acting, so we have,

d = ky. (5-6)

We now take on the task of suppressing the effects of such disturbance. To do so, we will
make use of a technique where we try to estimate the value of the disturbance.
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Figure 5-26: expected distribution of the crystal growth rate when the ELO is used

Figure 5-27: expected distribution of the crystal growth rate when the EnKF is used
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Figure 5-28: mean crystal size, general case

Figure 5-29: crystal content, general case
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Figure 5-30: crystal content, general case vs. nominal case when EnKF is employed.

Figure 5-31: mean crystal size, general case vs. nominal case when EnKF is employed.
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Figure 5-32: expected distribution of the crystal growth rate when the UKF is used

Figure 5-33: disturbances perturbing the system at input and output.
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In order to estimate the disturbance we need to propose a model for it, that is, we try
to describe the dynamics of the disturbance acting on the system, then we incorporate the
disturbance model in the observer such that the observer will estimate the system states and
the disturbance, simultaneously. The observer is then augmented with as many states as
perturbations we want to estimate. We can write this as,

(ˆ̇x
ˆ̇d

)
=
(
f(x̂, u)
fd(d̂)

)
(5-7)

where f represents the system dynamics and fd represents the disturbance dynamics. Adding
fd to the original system function is what causes the number of states to increase as we need to
assign a state variable per disturbance. Both functions together give rise to a new composed
function which is in turn used in the observer. Also, x̂ and d̂ are the estimates of the states
and disturbance vectors respectively, and u the input vector. It must be clear that when a
system is augmented, the augmented system must be observable as well, otherwise we would
not be able to withdraw any information from the measurements in order to reconstruct the
states.

Since in previous analyses we saw that improving the estimation accuracy of the second and
third moments, that is x3 and x4, leads to a better control performance we will mainly focus
on suppressing the effect of the disturbance on x3. Therefore only one extra state will be
added to the observer in order to account for the disturbance in x3.

We proceed by stating that when we measure x3 in the system we obtain the value x3c
(subscript c stands for corrupted), thus we should be able to isolate x3 out of the latter
measurement. To do so, we see that x3c is composed by,

• x3 which corresponds to the state variable free from errors,

• d, the value of a non stochastic disturbance,

• n, a stochastic disturbance.

Therefore, we can express x3c = x3 + d+ n.

The observer should allow us to,

• filter out noise,

• estimate d, and

• estimate x3.

Augmented system

In this case we propose a model that indicates that the disturbance has a constant value. We
assign variable x7 to the estimate of the disturbance. In discrete-time we have the disturbance
dynamics given by
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x7k+1 = x7k . (5-8)

Using the latter disturbance model we incorporate it to our system model consisting of equa-
tions (4-8) to (4-14) and apply our control strategy to the system.

The augmented system is given by the set of equations,



ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7


=



B0 − x1Qp
V

Gx1 − x2Qp
V

2Gx2 − x3Qp
V

3Gx3 − x4Qp
V

4Gx4 − x5Qp
V

Qp(C∗−x6)
V

+3KvGx3(k1+C)
1−Kvx4

+ k2Hin
1−Kvx4

0


, (5-9)


y1
y2
y3
y4
y5

 =


x1 + ν1 + d1
x2 + ν2 + d2
x3 + ν3 + d3
x4 + ν4 + d4
x5 + ν5 + d5

 , (5-10)

B0 = kbx4G (5-11)
G = kg(x6 − C∗)g. (5-12)

All the variables are defined as in chapter 4, plus x7 used to estimate the disturbance.

We again emphasize that we are able to estimate both the states and the disturbances because
we have included a larger model in the observer which describes the dynamics of both types
of variables.

We can now make use of the state and disturbance estimates in the controller in order to
suppress the effects due to the perturbations.

Disturbance rejection results

To generate the results that follow we used EKF and UKF as observers. They were chosen
as they presented good features throughout all our analysis presented in previous sections.

Figures 5-34 and 5-35 explicitly show the components perturbing the system. The erratic
signal drawn with a thin solid line is the stochastic disturbance acting on the system, the
dash-dotted line is the non-stochastic disturbance, while the broken line is the sum of the
former and the latter signals. Finally, the thick solid line is the estimate given by the observer,
when using the disturbance model given by (5-8), of the non stochastic disturbance. EKF
and UKF were used in the control strategy in each figure, respectively.

We also plotted the second moment m2 (x3). For the perturbed system we plotted two cases,
first when no action was taken to suppress the disturbance, and second, when a model of the
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Figure 5-34: composition of the perturbation and its estimate using EKF.

Figure 5-35: composition of the perturbation and its estimate using UKF.
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Figure 5-36: second moment and its estimate. EKF was employed here.

disturbance was included in the observer. Figures 5-36, 5-37 show the second moment when
EKF and UKF are used in the control strategy, respectively. We see how the second moment
of the system without a disturbance model drifts away to a larger extent from the true state
than that of the system including a disturbance model.
The estimation error of the second moment is shown in Figures 5-38 and 5-39 for each filter.
We see how the estimation error decreases by using an augmented observer which includes a
disturbance model.
As a consequence of a smaller estimation error we expect improvement when tracking the
reference trajectory for the crystals’ growth rate. The tracking error is shown in Figures 5-40,
where EKF was employed, and 5-41 where we used UKF. Indeed, we see how the tracking
error is diminished when we are able to estimate the value of the disturbance perturbing
the system, we are able to drive the system to the setpoint in the interval from t ≈ 4000 to
t ≈ 8000s where control is feasible. We see that with the strategy of estimating the value of
a disturbance we may improve the performance of the system.
Summarizing our findings from this chapter we have,

• Concerning observers,

– EKF and UKF showed a more balanced performance than the rest of the observers.
These two filters presented a low computational demand only above ELO. Their
estimation accuracy was on top places under all the scenarios where different error
sources were introduced.

– The inclusion of a Q-varying matrix in the algorithm of EKF and UKF highly
improved their estimation capabilities, while barely impacted their CPU demand,
meaning that the description of the Qmatrix in terms of the uncertainty attributed
to the system parameters is a powerful approach.
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Figure 5-37: second moment and its estimate. UKF was employed here.

Figure 5-38: normalized estimation error of the second moment, EKF was used here.
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Figure 5-39: normalized estimation error of the second moment, UKF was used here.

Figure 5-40: comparison of tracking error when a disturbance perturbs the system and EKF is
the observer.
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Figure 5-41: comparison of tracking error when a disturbance perturbs the system and UKF is
the observer.

– MHE and ELO presented the largest estimation errors for any error source. How-
ever; MHE due to its optimization-based estimation scheme showed good robust-
ness in the sense that no matter what error source was introduced in the system,
the estimation error did not show large variations, nevertheless, its estimation ac-
curacy was not as good as for EKF and UKF. Another shortcoming for MHE was
its computational demand, it was several times higher than that for EKF and
UKF.

– EnKF presented larger estimation errors when compared to EKF and UKF. The
accuracy of the filter can be improved by reselecting the ensemble members. How-
ever, the trial and error approach used in this work did not lead to a good ensemble
selection. Another drawback was the computational demand, as the ensemble size
was augmented, the increment in CPU time required to run the observer could not
be justified by the improvement in its estimation accuracy.

– The control strategy failed to deal with the most general scenario where all error
sources were introduced in the system. Basically because the estimation accuracy
of the observers was worsened with respect to the nominal case. As all error sources
contributed to deteriorating the estimation and control performance, it was shown
that the presence of disturbances had the largest impact. None of the observers
was able to cope with this error source unless the observer was augmented with
another state variable to estimate the disturbance.

• Concerning the process control evaluation,

– Good estimation accuracy of the second statistical moment leads to good tracking
performance of the controlled system.
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– Estimating the value of a deterministic disturbance by including a model of its
dynamics in the observer certainly improved tracking performance and helped us
eliminate tracking offset.

– Implementing an integrator to suppress disturbances in a system has the advan-
tage, when compared to disturbance estimation, that no a priori knowledge of the
disturbance is required. Nevertheless, its implementation may face some difficul-
ties when the magnitude of control inputs is constrained. Instead, for the option of
disturbance estimation used in combination with an optimization-based controller,
the state variable assigned to estimate the disturbance, can be included in the op-
timizer, which due to its ability to handle constraints in the system inputs, should
automatically lead to feasible control inputs.

5-6 Summary

We described the setup for open-loop and closed-loop scenarios and stated the relevance of
both cases.
We also established evaluation criteria for observers and control performance being the es-
timation error and computational burden for the former ones, and tracking error for the
latter.
In the remaining sections of this chapter we showed results from computer simulations corre-
sponding to the nominal case of the open-loop scenario, where only stochastic noise perturbed
the system. We continued by presenting results of the general case for the closed-loop scenario,
where all error sources perturbed our system. The results for the remaining cases, where error
sources were introduced into the system one at a time, can be found in appendices B, C, D,
E.
One section was completely devoted to disturbance rejection as it represents an important
fetaure in terms of control. There we presented how disturbances degraded control perfor-
mance and did not allow our system to reach its process goals. We demonstrate this issue
by plotting the expected and actual CSD, crystal content and mean crystal size for selected
observers while unmeasured disturbances affected the process.
We closed the chapter after offering a solution on how to eliminate disturbances. The method-
ology is based on estimating actual disturbances. To accomplish that, the same observer used
for state estimation is then augmented with a number of variables assigned to disturbance
estimation. We described this methodology and also compared results when no action is taken
to suppress disturbances. A more complete discussion of the topic can be found in appendix
F.

5-7 Remarks

An open-loop analysis allows us to get a grip on the estimation accuracy of every observer.
It also serves as a reference to evaluate computational burden.
Under the closed-loop setup all error sources were studied, being unmeasured disturbance
the error source which more drastically affected, in a negative way, estimation accuracy and
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also control performance. Therefore estimation NRMSE and tracking NRMSE were larger
when an unmeasured disturbance perturbed our system than when any other error source
was investigated.

In the present case it was possible to show a relationship where better state estimation lead to
better control performance. In fact accurate estimation of second and third leading moments
is credited to improve control performance. When these variables were more accurately
estimated the tracking error with respect to the preset control trajectory was reduced.

From observers NRMSE plots, it is shown that ELO and MHE present larger estimation errors
than, for instance EKF an UKF. This is attributed to the fact that the former observers are
deterministic, while the latter ones are conceived as stochastic observers and seem to perform
better under a stochastic scenario. Furthermore, usage of the algorithm to calculate a time-
varying system covariance matrix certainly improved the capabilities of EKF and UKF. This
allows us to state that describing system uncertainty under the hypothesis made by Valappil
and Georgakis [43] is adequate for our case study.

EnKF with 20 ensemble members ranked barely above deterministic observers and certainly
below the other stochastic ones in terms of estimation accuracy. Although increasing the
ensemble size helped improve estimation, it definitely had a negative impact in computational
burden.

ELO, EKF and UKF were on top in terms of low computational burden. Addition of a time-
varying matrix in the case of EKF and UKF increased the computational burden, but it still
remained far below MHE and EnKF.

Finally, it was not possible to suppress the effects of an unmeasured disturbance unless the
oberver in turn was modified to account for this error source. There was certainly a large
improvement between the cases where no action was taken and that with an augmented
observer. This indicates that estimation of disturbances is a useful technique to tackle this
problem.
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Chapter 6

Conclusions and Recommendations

Conclusions

Evaluation of every observer was made by analyzing the results of computer simulations of the
system under investigation. Every observer was coupled to the same optimizer, this observer-
optimizer pair gave rise to an NMPC framework which had proved to be useful in similar
applications according to previous studies.

The system was perturbed with different error sources, namely unmeasured disturbances,
uncertain initial conditions, model mismatch and systematic error. The following aspects
were evaluated:

• in terms of the observer

– Estimation accuracy, quantified as NRMSE.
Concerning estimation accuracy stochastic observers worked better than deter-
ministic ones. This was expected as the case study involved stochastic variables.
EKF and UKF came on top as best options since their NRMSEs were the smallest
throughout all the tests. Specially the variants including a time-varying system
covariance matrix. This indicates that quantifying uncertainty of a batch process
as described by the algorithm to calculate the time-varying matrix was adequate.

– Computational burden, quantified as CPU time
In terms of computational burden the observers ranked, from best to worst: ELO,
EKF, UKF, EKF with time-varying matrix, UKF with time-varying matrix, EnKF
and MHE. Best in this case indicates a shorter CPU time.

We should mention here that EnKF was worse than the rest of stochastic observers, but
roughly better than MHE. This remains valid for estimation accuracy and CPU time
when an ensemble of 20 members was used. Increasing the ensemble size did help im-
prove estimation accuracy but severely increased its required CPU time. Another path
to improve EnKF estimation accuracy is to play with the probability distribution from
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which the ensemble members are withdrawn. If the states distributions can be properly
represented by the ensemble, the estimation accuracy should improve accordingly.

• in terms of control performance

– Control performance, quantified as the tracking NRMSE
Minimizing the error when tracking a preset growth rate is the main control goal.
This allows production of crystals with a narrow CSD and centered at a desir-
able mean crystal size. It also allows to achieve a required quantity of product.
Therefore in terms of control performance, smaller tracking NRMSE equals better
crystals quality and enough product per batch.
In this regard UKF and EKF both with time-varying matrix gave the best results
as they presented the smallest tracking NRMSE throughout all tests.

Unmeasured disturbances demonstrated to be the most detrimental error source affecting the
system. This error severely increased the estimation errors and also caused a large deviation
with respect to the reference to be tracked by the controller. When measurements are affected
by this type of error an observer interprets erroneous measurements as correct ones. This
shifts the standing point of an observer and forces it to converge to values biased from the
correct ones needed.

None observer, as initially implemented, was able to compensate for the latter error source,
however, the procedure of augmenting the observers in order to estimate the disturbance and
include this information in the optimizer to suppress its effect was successful. Even in the
presence of an unmeasured disturbance we were able to improve estimation accuracy and also
tracking error. We must warn the user that this methodology requires a priori knowledge of
the disturbances.

A relation between estimation accuracy and control performance was certainly spotted. It
was shown that good estimation of the second and third leading moments translates into a
smaller tracking error. This relies on the fact that second and third moments are related to
total area and total volume of the crystals. Both variables are explicitly used to determine
the concentration, that in turn is necessary to determine crystal growth rate, which is our
controlled quantity.

Based on our findings we state that UKF with time-varying matrix allowed to achieve the
best control performance. It edged EKF with time-varying matrix in this regard, but its CPU
time was slightly higher, nevertheless the difference was so small that should not matter in a
practical implementation.

We conclude that since UKF with time-varying matrix performed better than all remaining
observers in terms of estimation accuracy and control performance, while its computational
demand was higher but still very close to the one required by EKF and ELO, then UKF
should be the choice for a future real-time implementation.

Recommendations

• EnKF has built a reputation as an effective estimator in engineering applications where
highly nonlinear models containing hundreds or thousands of state variables are used.

I. Mora Moreno Master of Science Thesis



93

Therefore, it should not be discarded as an option when a more detailed model describing
the crystallization process is required. Generating the ensemble under a different criteria
from that used inhere should be implemented to reevaluate the filter. Information on
sampling techniques may be found in literature cited in the work of Prof. Geir Evensen,
Evensen [10], Evensen [11] and also in his website, http://enkf.nersc.no/.

• Optional to the observers presented here, there exist some other variants that do not
require linearization of the system as EKF and ELO do. They should be borne in mind
for further applications where more complex or non-differentiable models are employed,
see for instance, Nørgaard [38], Shi and Han [40], Chen [6], Rawlings and Bakshi [37].
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Appendix A

Open-loop case: complementary
figures

Figures below show how eliminating any error source from the analyzed system certainly
improves the performance of deterministic observers.

Please note that estimation accuracy was not degraded to a large extent for the stochastic
observers which underlines their robustness in this sense.
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Figure A-1: NRMSE y1, open-loop case without any error source

Figure A-2: NRMSE y2, open-loop case without any error source
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Figure A-3: NRMSE y3, open-loop case without any error source

Figure A-4: NRMSE y4, open-loop case without any error source
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Figure A-5: NRMSE y5, open-loop case without any error source
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Appendix B

Closed-loop nominal case:
complementary figures

Before we proceed to show the results achieved in the closed-loop nominal case we give relevant
parameters used for each observer:

• ELO, observer gain K = (0.054, 0.649, 2.711, 19.822, 6.184),

• MHE, estimation depth, 500 s,

• EKF, system’s noise initial covariance matrix

Q = 9



5 · 1020 0 0 0 0 0
0 3 · 108 0 0 0 0
0 0 1 · 10−2 0 0 0
0 0 0 10 0 0
0 0 0 0 1 · 10−9 0
0 0 0 0 0 5 · 10−4


, (B-1)

measurement’s noise initial covariance matrix

R = 9


5 · 1012 0 0 0 0

0 3 · 102 0 0 0
0 0 1 0 0
0 0 0 8 · 10−13 0
0 0 0 0 7 · 10−16

 , (B-2)

item UKF, system’s noise initial covariance matrix

Q = 9



5 · 1018 0 0 0 0 0
0 3 · 108 0 0 0 0
0 0 1 · 10−2 0 0 0
0 0 0 0.1 0 0
0 0 0 0 1 · 10−5 0
0 0 0 0 0 5 · 10−7


, (B-3)
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104 Closed-loop nominal case: complementary figures

Figure B-1: NRMSE y1, closed-loop, nominal case

measurement’s noise initial covariance matrix

R = 9


1 · 109 0 0 0 0

0 9 · 104 0 0 0
0 0 1 · 10−5 0 0
0 0 0 1 · 10−1 0
0 0 0 0 1 · 10−5

 , (B-4)

• EnKF, 20 ensemble members were used and the noise added to the observation was
drawn from a zero-mean normal distribution with variances given by

R = 3 · 105


1 · 1012 0 0 0 0

0 9 · 104 0 0 0
0 0 1 0 0
0 0 0 1 · 10−1 0
0 0 0 0 1 · 10−4

 . (B-5)

For the variants of the EKF and UKF where a time-varyingQmatrix was used, the parameters
remained the same as for the classical implementations.

Now we show the behavior of the NRMSE for the present case,
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Figure B-2: NRMSE y2, closed-loop, nominal case

Figure B-3: NRMSE y3, closed-loop, nominal case
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Figure B-4: NRMSE y4, closed-loop, nominal case

Figure B-5: NRMSE y5, closed-loop, nominal case
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Appendix C

Closed-loop unknown initial conditions
case: complementary figures

Unknown initial conditions cause that the plant and the observer-controller pair are both
initialized at different points, this gives rise to larger estimation errors at the beginning of
the simulation for all variables but y1 when compared to the nominal case. Since the initial
errors are larger than for the nominal case, and given the restriction on the inputs of the
system, some of the filters are not capable of achieving the same final estimation error than
in the nominal case. That is due to convergence speed rate. This statement should remain
true as long as the system is fully observable, from control theory; if a system is observable,
then reconstructing the values of state variables should be feasible in finite time.

The growth rate tracking error is shown below,

Table C-1: Initial conditions for the plant, observer and controller, unknown initial conditions
case

Variable Plant Observer & controller
m0 1.08 · 1010 1.13 · 1010

m1 3.42 · 1005 3.59 · 1005

m2 3.69 · 1002 3.87 · 1002

m3 8.30 · 10−02 8.72 · 10−02

m4 2.49 · 10−05 2.61 · 10−05

C 4.57 · 10−01 4.66 · 10−01
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Figure C-1: NRMSE y1, closed-loop, uncertain initial conditions

Figure C-2: NRMSE y2, closed-loop, uncertain initial conditions
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Figure C-3: NRMSE y3, closed-loop, uncertain initial conditions

Figure C-4: NRMSE y4, closed-loop, uncertain initial conditions
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Figure C-5: NRMSE y5, closed-loop, uncertain initial conditions

Figure C-6: Growth rate tracking error, closed-loop, uncertain initial conditions
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Appendix D

Closed-loop systematic measurement
error case: complementary figures

In this case an offset of +5% of the plant’s output value is introduced in the measurement
feeding the observer.

The offset increases the estimation error, but the observers still converge, although they seem
to be converging to a biased value.

Systematic measurement error generates an offset in the control performance for some filters.
This can be attributed to the fact that those filters rely more in the measurement from the
plant than in the predictions made by their internal model of the system.

In general, if a model is not able to accurately reproduce reality, which is always the case,
systematic measurement error will lead to an offset in tracking trajectories, this is because if we
are not able to accurately make predictions with a model then we must rely on measurements
from the plant, however; if measurements are erroneous, it is not possible to know where
the plant is standing, and even if the plant is already at a desired location in state-space,
the inputs of the controller will drift it away because the controller, based on erroneous
measurements, thinks that the plant is not at the aimed location.

The growth rate tracking error is shown below,

Master of Science Thesis I. Mora Moreno



112 Closed-loop systematic measurement error case: complementary figures

Figure D-1: NRMSE y1, closed-loop, systematic measurement error

Figure D-2: NRMSE y2, closed-loop, systematic measurement error

I. Mora Moreno Master of Science Thesis



113

Figure D-3: NRMSE y3, closed-loop, systematic measurement error

Figure D-4: NRMSE y4, closed-loop, systematic measurement error
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Figure D-5: NRMSE y5, closed-loop, systematic measurement error

Figure D-6: Growth rate tracking error, closed-loop, uncertain initial conditions
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Appendix E

Closed-loop model mismatch case:
complementary figures

In this case the parameters kg and kb were varied in a +35% with respect to their nomi-
nal value. The perturbation was made only on the observers and the optimizer, the plant
preserved its nominal value.

UKF and EKF with a varying Q matrix as well as the EnKF showed divergence and had
to be retuned. ELO also diverged, although this is not a surprise as it had shown troubles
when only stochastic noise was introduced into the system. Re-tuning the observers suffices
to solve this issue. In fact, retuned observers are used later on when all the sources of error
are introduced into the system at the same time. In the case of the MHE, the use of an
optimization algorithm allows it to compensate for the discrepancy between the model used
by the observer-controller pair and that in the plant.

The growth rate tracking error is shown below.

Model mismatch affect the estimation accuracy of the system to a little extent since the graphs
for the estimation error remain almost unchanged, with respect to those for the nominal case,
for various filters. The explanation is that, variation in the parameters of a system affects
its dynamics and therefore the values of the system variables, but they can be affected in
different degrees if the relationship is not linear.

Table E-1: Parameters model mismatch

Variable Plant Observer & controller
kg 7.50 · 10−5 1.01 · 10−4

kb 1.02 · 1014 1.38 · 1014
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Figure E-1: NRMSE y1, closed-loop, model mismatch

Figure E-2: NRMSE y2, closed-loop, model mismatch
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Figure E-3: NRMSE y3, closed-loop, model mismatch

Figure E-4: NRMSE y4, closed-loop, model mismatch
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Figure E-5: NRMSE y5, closed-loop, model mismatch

Figure E-6: Growth rate tracking error, closed-loop, uncertain initial conditions
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As an example consider a system with two variables and described by,

ṡ1 = kas1 + s2 (E-1)
ṡ2 = kas2. (E-2)

And suppose now that we are interested in the quantity,

l = s1
s2

(E-3)

after solving the set of differential equations it turns out that model mismatch is alleviated
when estimating l due to the division involved in the output equation.

If the effects of model mismatch do not vanish due to the relations between variables of the
system, then that will lead to make the controller believe it is at a certain point in state-space
that in reality has not been reached.

Failing to describe the behavior of a system and based on the internal model principle should
lead to offset in the variables estimation, and this offset would lead to an offset when a
trajectory needs to be followed.

In our case study model mismatch did not generate offset, but in general it should not be the
case.
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Appendix F

Disturbance rejection

F-1 Disturbance rejection for linear systems

Synthesizing controllers which regulate systems despite uncertainty in plant and controller
parameters is a classical problem in control theory. The purpose of the compensator is double,
one is to provide closed-loop stability, and the second is to regulate the output. The case of
disturbance rejection shows that closed-loop controller performance is directly related to how
accurately the disturbance model represents the actual disturbances entering a process. This
concept is known as the “internal model principle” and is proposed and discussed by Francis
and Wonham [13] for linear multivariable systems. Roughly speaking this principle says that
in order to counteract the effects of disturbances acting on a system, it is needed that the
model used to build a controller contains a copy of the dynamic structure of the disturbance.
For the analysis, we consider the linear, time-invariant, discrete-time system

xk+1 = Axk +Buk, k = 0, 1, 2, . . .

yk = Cxk

(F-1)

in which y ∈ Rl is the output or measured variable, u ∈ Rm, is the system input, and x ∈
Rn is the state of the system. We assume throughout that (A,B) is stabilizable and (C,A)
is detectable.
There might be different control strategies, nevertheless in the MPC framework the control
input is obtained by solving a quadratic programming problem:

{ ∗
vj
}N−1

0
,

 ∞∑
j=0

(zTj CTQCzj + vjRvj + ∆vTj S∆vj)

 (F-2)
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122 Disturbance rejection

subject to:

zj+1 = Azj +Bvj ∀j = 0,∞
∆vj , vj − vj−1
z0 = x̂k − xs
v−1 = uk−1 − us
vj = 0 ∀j = N,∞
ymin ≤ C(zj + xs) ≤ ymax ∀j = j1,∞
umin ≤ vj + us ≤ umax ∀j = 0, N − 1
∆min ≤ vj − vj−1 ≤ ∆max ∀j = 0, N − 1

with xs, us the steady-state targets for the state and the input respectively. The current input
uk is obtained as uk = ∗

v0 + us, where
∗
v0 is obtained by solving the optimization problem

stated above. The results obtained under this framework are valid for a variety of control
algorithms that include LQG controllers as well.

Unmeasured disturbance models

Generally speaking there is no possibility to directly measure the magnitude of a disturbance,
but in order to counteract its effect, its influence on the system must be inferred. There-
fore, it is possible to create a model representing the sought-after disturbance. Once this is
accomplished, estimation techniques may be applied in order to determine the value of the
disturbance at a certain time. The estimated value will be used by the controller to counteract
the effect of the disturbance on the system.

How the disturbance is modeled is up to the practitioner, the disturbance may perturb any
component of the system, that is, it may disturb the states, the input, or the output. Recon-
ciling these facts, what matters in the end, is that the effect produced by any virtual signal
on the system equals that of the real disturbance.

System identification methods may be employed to obtain a model of the disturbance, nev-
ertheless, linear state-space models give us enough flexibility to account for many types of
disturbances and in many applications this method is sufficient. Examples of disturbance
models are given below. In all cases d ∈ Rnd , where nd is the number of augmented distur-
bance states, Ad, and Cd, determine the effects of these states on the system.

Constant output disturbance:

(
xk+1
dk+1

)
=
[
A 0
0 I

](
xk
dk

)
+
[
B
0

]
uk

yk =
[
C Cd

]( xk
dk

)
.

(F-3)

Constant state disturbance:
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(
xk+1
dk+1

)
=
[
A Ad
0 I

](
xk
dk

)
+
[
B
0

]
uk

yk =
[
C 0

]( xk
dk

) (F-4)

As can be seen from the models above, the practitioner can adjust the way the disturbance
affects the system by playing with the system and output matrices such that the desired dis-
turbance dynamics is achieved. Combining the system states, and those from the disturbance,
it is possible to build a composite model with a “super state”, once this model is obtained, the
“super states” can be estimated using typical observation techniques. The set of equations of
a composite system is,

˜xk+1 = Ãx̃k + B̃ũk, k = 0, 1, 2, . . .
ỹk = C̃x̃k

(F-5)

where
x̃k = (xk, dk)T

Ã =
[
A Ad1

0 Ad2

]

B̃ =
[
B
0

]

C̃ =
[
C Cd

]
(F-6)

with adequate dimensions.
In the case of deterministic systems a Luenberger observer can be used, and for stochastic
systems a Kalman filter is adequate.
As shown by Bitmead et al. [3], the composite model can include the reference to be tracked
by the system output, thus the augmented system may be used to solve an offset-free tracking
problem, too.
As the main goal is to estimate the value of the disturbance, the composed system must be ob-
servable, or at least detectable. Guidelines to achieve a disturbance design which is detectable
can be found in the bibliography and depend on the design method chosen. Muske and Badg-
well [27], and Pannocchia and Rawlings [30] offer clear and complete details. Detectability of
the augmented system is a necessary and sufficient condition for a stable estimator to exist
according to Pannocchia and Rawlings [30]. They also show that the maximum dimension
of the disturbance such that the augmented system is detectable is equal to the number of
measurements, which might result quite counterintuitive.
Since the state vector has been augmented, the computational time for estimation and also
for the optimization part will increase. This might become an issue when dealing with high
order systems. Therefore the practitioner must be aware of this problem.
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It is also important to notice that disturbances are not controllable by the system inputs u.
However, since they are observable, we use their estimates to remove their influence from the
controlled variables, as it was stated before.

Controller design

Bitmead et al. [3] states that the GPC problem may be thought as a special case of an LQG
control strategy. LQG controllers are generated through the interconnection of a linear state-
variable feedback control law and a linear state estimator. Indeed in the case where the plant
is linear and the noise affecting the plant and the measurements are zero mean Gaussian
processes as is the initial condition x0, this interconnection provides the optimal dynamic
output feedback control law, where optimality is measured according to the LQ criterion.
This is the so-called “separation principle” of linear optimal control. In his book, Gevers
gives the solution of the LQG problem, this solution was used to obtain the controller gains
of example 2 in this appendix. The stability properties of the controllers are also studied in
chapter 4 of that book. The majority of the methodologies to achieve offset-free control when
constant disturbances are affecting the system take the work done in Davison and Smith [7]
as a basis. Synthesizing their work we have that:

• For there to be a solution to the problem of placing the poles of the closed-loop system
anywhere in the complex plane, it is necessary that there should be at least as many
manipulated inputs to the system as there are outputs for a solution to exist.

• If there is a solution, the minimum order of the feedback control system which can be
used is equal to the number of outputs of the system.

• The controlled system so obtained has the additional property that it will remain asymp-
totic regulation for any finite changes, large or small, which may occur in the plant
parameters A or B, or feedback gains, provided the augmented system still remains
stable.

• Dealing with ramp-like or parabolic disturbances should present no problem when fol-
lowing the same approach.

Pannocchia and Rawlings [30] show that:

• If the number of measurements is greater than the number of manipulated variables, one
cannot attempt to control without offset all the measured variables. However, one can
choose, as controlled variables m linear combinations of the measured outputs, where
m is smaller than the number of manipulated outputs.

The addition of constant, unmeasured disturbance states to the augmented model introduces
unstable modes into the system that are not controllable. Therefore, the augmented system
is not stabilizable and cannot be used directly in the model predictive control algorithm. This
problem is overcome by using the original process model in (F-2) and shifting the steady-state
target to remove the effects of the estimated constant disturbance states.
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Figure F-1: System with an observer and a controller with integral action

Integral action

The second approach to suppress disturbances is that one using integral action. Shinskey
[41] pinpoints that a PID controller can outperform the typical MPC implementation when
a disturbance enters the input of a process upstream, of a dominant lag.

Integral action is obtained by augmenting the state that integrates the error yref − y, i.e.

xik+1 = xik + yrefk − Cxk. (F-7)

System (F-1) augmented with the new state becomes(
xk+1
dk+1

)
=
[
A 0
−C I

](
xk
xik

)
+
[
B
0

]
uk +

[
0
I

]
yref . (F-8)

When state feedback is used the control law has the structure

uk = −Lxk − Lixik + Lrefyref (F-9)

Under these circumstances, the steady-state error will be zero as long as the closed-loop
system is stable, even if there are minor errors in the process model. A block diagram for
this case is shown in Figure F-1. When the states of the system are estimated, equation (F-9)
changes the actual state variables to those given by an estimator, in essence it remains the
same. The corresponding equations can be found for instance in Åström and Wittenmark
[42].

Remarks

Elimination of steady-state offset is accomplished in two basic ways. The first method involves
modifying the controller objective to include integration of the tracking error. This method,
employed by the PID control algorithm, can also be used in the LQG or MPC framework. In
the MPC framework, the integral term is incorporated by augmenting the process model with
tracking error states. For large-scale systems, this augmentation can significantly increase
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the computational cost of the dynamic optimization. Another disadvantage of this approach
is the requirement of an anti-windup algorithm for the integral term to prevent an unneces-
sary, and sometimes costly, performance penalty. Furthermore, if the perturbations pertain
to those disrupting a set point then the integral term can be thought as of as constantly
calculating the value of the control required at the set point to cause the error go to zero,
this disables the necessity to rest the controller. For these reasons, some form of integral
control is typically included in most control systems. More generally, the external signals
frequently include persistent deterministic components and the control engineer is required
to design a controller which will force the steady-state error to be zero in the presence of such
signals. A second general approach to eliminating steady-state offset involves augmenting
the process model to include a disturbance. This disturbance, which is estimated from the
measured process variables, may in specific cases be assumed to remain constant in the future
and its effect on the controlled variables is removed by shifting the steady-state target for
the controller. Although this method avoids the requirement of an anti-windup algorithm,
it has the disadvantage of requiring that a separate disturbance model be designed and the
disturbance states estimated. What this actually means is that a state-space representation
can be made, such that, it represents the dynamics exhibited by the disturbance. It must be
kept in mind that this “dynamics” must be inferred from the process behavior since we are
stating that the disturbances are unmeasured; therefore we will try to guess what model suits
better to mimic the influence of the disturbances on the system.

Examples

Control of roll angle of small airplane

The transfer function between the roll angle and the position of the ailerons is given by:

G(s) = 1
s2(s+ 1) (F-10)

This problem was solved by switching the analysis to discrete-time. Since this is a problem
involving a deterministic model, the states of the system were estimated with a Luenberger
observer. To control the system an LQ controller was used, once it was stabilized a step-like
input disturbance was induced into the system. The response of the system to this disturbance
can be seen in Figure F-2. From there, it can be seen that the controller itself is not able to
completely vanish the effect of the disturbance. Integral action was used to remove the offset
due to the disturbance, and can be seen in Figure F-3.

Control of the level in a tank

The level of a tank is controlled by a valve at the bottom. The flow at the valve is proportional
to the level of the tank. Both the plant and the measurements are corrupted by uncorrelated
zero mean noise. The state-space model of the system is given by:

xk+1 = 0.905xk + 0.095uk + 0.095wk
yk = xk + vk

(F-11)
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Figure F-2: Disturbance rejection, no integral action

Figure F-3: Disturbance rejection, integral action
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Figure F-4: system with LQG regulator

Figure F-5: non-augmented system’s disturbance rejection

To solve this problem the states of the system must be estimated, as it is a stochastic model
we use a Kalman filter to perform the task. The system is then controlled by an LQ regulator,
which coupled with the Kalman filter gives rise to an LQG controller. The structure is as in
Figure F-4.

As it can be seen in Figure F-5, the controller by itself is not capable to eliminate the effects
of a step-like disturbance at the output.

To counteract the disturbance, the estimator is modified to estimate an augmented system
where a model of the disturbance has been included. To proceed in accordance with the theory
presented in the previous section it can be verified that the augmented system is detectable.
Also, since there is only one measurable variable, only one disturbance can be added to the
system. Calculating the controller gain was based on the results of Bitmead et al. [3]. The
final result can be seen in Figure F-6.

A few comments on this example: the disturbance is applied 5 seconds after the simulation
is initialized. The initial conditions are set to 0 for any state variable. despite the fact the
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Figure F-6: augmented system’s disturbance rejection

model of the disturbance is a constant in time, some uncertainty had to be assumed when the
filter was used otherwise the filter would believe that it is not necessary to use information
from measurements to update the estimated value of the disturbance. The filter will “think”
that the prediction made by the model is perfect, since the model indicates the disturbance
is a constant, and will never vary from the value assigned by the initial conditions.
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Appendix G

CSD, nominal case vs. general case:
complementary figures

In the figures below we compare the CSD of the nominal case versus that in the general
case. All filters are shifted away from the desired growth rate as different error sources are
introduced into the system.
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Figure G-1: CSD, nominal vs. general case

Figure G-2: CSD, nominal vs. general case

I. Mora Moreno Master of Science Thesis



133

Figure G-3: CSD, nominal vs. general case

Figure G-4: CSD, nominal vs. general case
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Figure G-5: CSD, nominal vs. general case

Figure G-6: CSD, nominal vs. general case
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Figure G-7: CSD, nominal vs. general case
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