
 
 

Delft University of Technology

Practical guidelines for implementing adaptive optics in fluorescence microscopy

Wilding, Dean; Pozzi, Paolo; Soloviev, Oleg; Vdovin, Gleb; Verhaegen, Michel

DOI
10.1117/12.2287647
Publication date
2018
Document Version
Final published version
Published in
Proceedings of SPIE

Citation (APA)
Wilding, D., Pozzi, P., Soloviev, O., Vdovin, G., & Verhaegen, M. (2018). Practical guidelines for
implementing adaptive optics in fluorescence microscopy. In T. G. Bifano, J. Kubby, & S. Gigan (Eds.),
Proceedings of SPIE: Adaptive Optics and Wavefront Control for Biological Systems IV (Vol. 10502). Article
105021F (Proceedings of SPIE; Vol. 10502). SPIE. https://doi.org/10.1117/12.2287647
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1117/12.2287647
https://doi.org/10.1117/12.2287647


PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Practical guidelines for implementing
adaptive optics in fluorescence
microscopy

Dean  Wilding, Paolo  Pozzi, Oleg  Soloviev, Gleb  Vdovin,
Michel  Verhaegen

Dean  Wilding, Paolo  Pozzi, Oleg  Soloviev, Gleb  Vdovin, Michel
Verhaegen, "Practical guidelines for implementing adaptive optics in
fluorescence microscopy," Proc. SPIE 10502, Adaptive Optics and Wavefront
Control for Biological Systems IV, 105021F (23 February 2018); doi:
10.1117/12.2287647

Event: SPIE BiOS, 2018, San Francisco, California, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 4/26/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Practical guidelines for implementing adaptive optics in
fluorescence microscopy

Dean Wildinga,
†
, Paolo Pozzia,

†
, Oleg Solovieva,b,c, Gleb Vdovina,b,c, and Michel Verhaegena

aDelft Center for Systems and Control, TU Delft, Mekelweg 2, 2628 CD Delft, The Netherlands
bFlexible Optical B.V., Polakweg 10-11, 2288 GG Rijswijk, The Netherlands

cITMO University, Kronverksky 49, 197101 St Petersburg, Russian Federation

ABSTRACT

In life sciences, interest in the microscopic imaging of increasingly complex three dimensional samples, such as cell
spheroids, zebrafish embryos, and in vivo applications in small animals, is growing quickly. Due to the increasing
complexity of samples, more and more life scientists are considering the implementation of adaptive optics in
their experimental setups. While several approaches to adaptive optics in microscopy have been reported, it is
often difficult and confusing for the microscopist to choose from the array of techniques and equipment. In this
poster presentation we offer a small guide to adaptive optics providing general guidelines for successful adaptive
optics implementation.

Keywords: Adaptive optics, fluorescence microscopy, wavefront sensing

1. INTRODUCTION — THE BASICS

The goal of this paper is to inform how to practically apply adaptive optics (AO) in fluorescence microscopy
setups. As a practical guide, it shall be assumed that the physical understanding of microscopy systems is a given
and instead will focus on directing how to implement a functional AO system that will improve the quality of
images acquired by the system. Given the scope of ‘fluorescence microscopy’ it is obvious that it is not possible
to go into all the details of how this may be achieved in every modality, but a helpful outline of the principles
for the major groups of scanning and wide-field microscopes will be attempted.

To begin, it is useful to understand that the source of aberrations in fluorescence microscopy is the inho-
mogeneous distribution of refractive index in biological tissues — if system aberrations are neglected. It was
understood from the beginning of microscopy that one could not look inside biological tissues very easily. The
approach to this is in the past was to use a microtome to cut the sample into thin quasi two-dimensional slices
and build up a three-dimensional picture. Optical sectioning with confocal scanning systems or light-sheet1,2

approaches has the same underlying principle except it uses light to achieve the same sectioning effect. The
problem then is two-fold, the light used for sectioning is affected by the very same inhomogeneity that plagues
the signal one is trying to acquire. Both need to be considered in an AO system.

In many microscopes the excitation and the illumination pass through the same aberration and therefore,
a single adaptive optical element (AOE) can be used for isoplanatic correction, i.e. in a single point of the
field-of-view (FOV). In other microscopy systems, a correction is required for the illumination and fluorescence
independently meaning two AOEs are necessary. Furthermore, most aberrations introduced in microscope are
anisoplanatic, meaning that a different correction for different areas of the FOV is also needed. With that said,
there is often an average or global isoplanatic correction that will improve the image quality regardless of the
anisoplanatic nature of the aberrations.

In Fig. 1 a schematic of this situation is shown. The light from two points in the sample is shown travelling
from the source to the microscope objective. The light from the two sources travel through two distinct optical
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Figure 1. The source of aberrations in fluorescence microscopy comes from the inhomogeneous refractive index of biological
tissues. Light from two different sources in the sample will travel through two different optical path lengths and thereby
acquiring different phase delays.

paths and acquires two different phase aberrations. These would need two different corrections to be applied to
the AOE in order to correct them perfectly.

The light from both these sources has maximum overlap in the pupil of the optical system. At this point,
light from every point in the field of view is present over the whole surface of the corrector. This means that,
if one applies a single correction in the pupil-plane it will affect all points in the field-of-view, this will result
in some areas of the image improving and some areas degrading (depending on the particular aberration). For
the reasons of universal effect most adaptive optics systems work by having their corrector and sensor in this
pupil-plane.

The crucial point of understanding is that the correction required in biological samples is three-dimensional
because the aberration is three-dimensional. It is impossible with a single plane corrector to achieve correction
throughout the sample in one shot. For the purpose of extending the correction, multi-conjugate systems are
being developed to provide a correction that more closely approximates the phase aberration present.3

Nevertheless, with a two-dimensional corrector in the pupil-plane of an optical system many things can still
be done. AO as already touched upon has essentially three parts that must be considered. The first is the sensing
of the wavefront aberration,4,5 the second is the corrector6,7 and the final piece of the puzzle is the controller .8

2. WAVEFRONT SENSING

There are broadly two types of wavefront sensing that can be chosen: one in the pupil and one in the focal-plane
of the system. In the majority of cases the choice will be determined by both one’s available hardware budget
and the modality of the microscope. Focal-plane sensing is more common in fluorescence microscopy since they
can work at lower signal-levels, however, it is possible to apply pupil-plane sensors to fluorescence microscopy if
one has the right budget, application and will-power.

The big difference between the two is that a focal-plane sensor uses the data directly from the imaging sensor,
i.e. a scientific camera, photo-diode, etc. and only requires the addition of the corrector in the setup. Whereas,
the pupil-plane sensor such as the Shack-Hartmann sensor9 works by using a lenslet array in a secondary optical
path and measures the displacement of an array of focal spots. The Shack-Hartmann is the only pupil-plane
sensor that shall be treated in detail in this article, however, others exists such as the Partitioned Aperture
Wavefront (PAW) sensor10 and the pyramid sensor.11

2.1 The Focal-Plane Wavefront Sensor

Aberration correction based on a focal-plane wavefront sensor (FP-WFS) is generally performed by using the
information from the microscope images themselves to estimate the optimal correction to apply on the AOE. All
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that is necessary for realizing a FP-WFS system is the inclusion of the corrector normally in the pupil-plane of the
system (possibly in other places too), which is usually done through a 4-f telescope. This is schematically shown
in Fig.2. From an imaging point-of-view, the great advantage of this sensor is that no light is subtracted from the

Figure 2. Focal-plane wavefront sensing setup.

imaging system in order to perform aberration correction. However, since the relationship between aberrations
and image quality is non-linear, indirectly sensing the wavefront requires the acquisition of a substantial amount
of images. While the wavefront can be elucidated by a pupil-plane wavefront sensor in 1-10 frames, it will take
at least an order of magnitude more to acquire the same information with a FP-WFS.

The relationship between the phase in the pupil φ, where the corrector is, and the intensity in the image
plane i, where the sensor is, in the case of an isoplanatic aberration for incoherent imaging is modelled by:

i = |F{A exp(jφ)}|2 ∗ o, (1)

where o represents the fluorophore distribution, which for the analysis here can be a point-source δ-function.
The shape of the aperture is given by the function A. A corrector can introduce a change to the phase in the
pupil such that it becomes (φ+ϕ) and a metric function σ(i(ϕ)) defining the quality or “goodness” of an image
can be maximised:

max
ϕ

σ(i(ϕ)) or max
ϕ

σ(|F{A exp(j(φ+ ϕ))}|2 ∗ o). (2)

In order to maximise the metric, an optimisation algorithm must be employed (see Section 4), however, some
information about the metrics is required at this point. If one is dealing with a point-source, this is “quite simple”.
Maximisation of the brightest point, the second central moment of the spot, the image standard deviation or the
spatial frequency content will all yield a optimisation that converges to the diffraction-limited spot. Depending
on the order of the corrector, the length of time taken is dependent on the sensitivity of the metric and how
many local maxima it has and how deep they are. The great benefit that one has with a point-source is that the
optimal image is known, from basic optics theory, to be the Airy pattern for a circular aperture.

On the other hand, if one has an extended source the problem is much more difficult. It is not known a priori
what the best image is. A good approach in this case is to include some a priori information, for example, if it
is possible to encode a particular spatial frequency into the image by modulating the illumination. In this case,
maximising this particular spatial frequency is akin to reducing the aberration. If modulation of the illumination
is not possible then maximisation of the power spectrum of the image within a given radius in the Fourier domain
is an alternative and a somewhat robust methodology.12 The success or failure of these optimisation procedures
is very dependent on the amount of out-of-focus fluorescence and the photo-bleaching rate.

A drawback is that most metrics are indirectly dependent on the amount of signal. As the procedure can take
many frames > 100, it is not uncommon that the amount of light collected from the fluorophores decreases over
time. This can lead to frames later in the acquisition being scored lower or higher than those at the start, leading
to a misleading quantification — especially if the approach is model-based (see Section 4). The summation of
out-of-focus fluorescence can also lead to false-positive optimisation.

Furthermore, it is often necessary to exclude displacement modes (i.e. tip, tilt and defocus) from one’s
optimisation space since instead of changing the image quality, they move the FOV through the sample, and the
correction procedure would therefore just find the FOV where the metric is maximized, not the maximum of
the desired FOV. These considerations makes wavefront sensing with extended objects in wide-field microscopy
problematic.
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2.2 The Pupil-Plane Wavefront Sensor

The pupil-plane wavefront sensor (PP-WFS), specifically here the Shack-Hartmann, requires loss of photons or
the use of a second fluorophore at a different wavelength. It also requires the use of point-sources, in microscopy
this implies the introduction of non-biological guides in the form of beads to act as localised sources of aberration
information.5 The downside of this is obviously the introduction of a foreign agent is going to activate an immune
response in vivo and may effect the biology of what is being studied.

The PP-WFS configuration is shown in Fig. 3 and as can be observed it is practically more difficult to
implement than the FP-WFS c.f. Fig. 2. For standard operation, the PP-WFS must be conjugated to the
corrector and the pupil-plane of the objective giving a linear relationship between the corrector inputs and the
measured phase. (The procedure for this will be described in the subsequent Section 3.) The ratio of the beam
splitter must be chosen to ensure the correct amount of light for imaging and for wavefront sensing if using one
wavelength. The lenslet array (LA) pitch p (the distance between lenses) and its focal length (fA) affect the
resolution and the amplitude of the phase aberration that the sensor can detect. It is necessary to have a rough
estimate of what is required before purchasing one of these. As a guide, the maximum phase gradient that can
be measured by a particular Shack-Hartmann is given by:

〈∇φ〉max ≈
πp2

2λfA
. (3)

from which it can be deduced that the larger the value of fA the smaller the displacement for the same phase
gradient. It must also be considered that the pitch defines the sampling resolution of the pupil. In this case, a
large pitch with a short focal length allows the measurement of large low order aberrations. From a pure adaptive
optics perspective, unless the entire system is designed ad hoc, the rule-of-thumb in the selection of a sensor
is using a number of sub-apertures equal to around three times the number of corrector actuators. Additional
factors, however, must be considered based on the nature of aberrations. A small pitch with large focal length
allows the measurement of smaller high order aberrations. Moreover, the signal from the point source is split
between sub-apertures, so the more lenslets the less light per sub-aperture, therefore, the signal-to-noise ratio is
lower and the computational complexity increases — not a optimal trade-off.

Another important metric is the dynamic range of the total lenslet array and this can be computed for a
given aberration. For example, the total defocus stroke of the system with M×M lenslets and normalised radius
0 ≤ ρ ≤ 1 may be approximated in the following way:

φ1 = 2π∆λdefρ
2,

M 〈∇φ〉max = 4π∆λdef ,

∆λdef =
Mp2

8λfA
.

(4)

A typical lenslet array could have p = 300µm, fA = 17.526 mm, and around M = 20× 20 lenslets — this gives
a ∆λdef ≈ 26 or 165 radians peak-to-valley. Other aberrations have a more complex spatial distribution and
therefore, cannot necessarily be computed so easily.

The signal level, however, will be the biggest hindrance to successful operation. Each sub-aperture of the
sensor consumes signal-to-noise ratio. The noise in the centroid measurements affects the ability to correctly
identify the wavefront. This means it may be necessary to reduce the number of sub-apertures, in turn reducing
the spatial resolution and dynamic range of the sensor, in order to have a working system. Not everything that
is wished for may be possible.

For example, it is theoretically possible to have an AO system that could continually correct for every position
of the scanner in a confocal scanning or two-photon system. The problem here is that sensor would have to be
able to detect light at low signal-to-noise ratios and high-speeds that are out of reach for even the best current
EMCCD cameras. As a compromise with the sensor the signal may be integrated over the whole period of a single
frame, the de-scanned light will be averaged over the sensor giving the average aberration over the field-of-view
instead — not as good correction but better than nothing.
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Figure 3. pupil-plane wavefront sensing setup with a Shack-Hartmann sensor. ∗The beam-splitter (BS) here can be a
dichroic beam splitter.

As an aside, the PP-WFS can also be used on wide-field images, only if a field stop or “guide stars” are used.
In this case, the fluorphore needs to be very bright and the noise reduced as much as possible. Another approach
is to use the multiple images of the sample and use cross-correlation to detect local shifts in the images. This once
again requires a very good signal-to-noise ratio for successful application. To conclude, for wide-field imaging
especially and fluorescence microscopy in general it is not usually possible to employ a pupil-plane sensor.

3. WAVEFRONT CORRECTION

In order to perform correction of aberrations, a multi-actuator, bi-dimensional phase modulator is generally
placed in a pupil-plane of the system. With the exception of deformable lenses,13 and transmissive liquid crystal
spatial light modulators, most phase modulators are reflective. Since the pupil-plane of most microscope objective
is physically inside the objective itself, a secondary pupil-plane must be created through a 4-f telescope. This is
illustrated in Fig. 4, where the AOE is placed in plane P ′.

Figure 4. Where to place the corrector in a pupil-plane configuration, in P ′ that is conjugated via a 4-f system to the
objective pupil-plane P .

The size of the back aperture plane of the objective should be calculated from its magnification and numerical
aperture, and the focal lengths of the telescope must be correctly estimated so that the image of the objective’s
pupil-plane at the AOE location is equal to the size of the AOE. In general, it is good practice to design the
optical system with a specific microscope objective and AOE in mind, as the use of a different objective, or an
AOE of different size, would require a re-design of the telescope conjugating the two planes.

In the case of deformable mirrors (DM), the main actuator technologies commercially available are piezo-
electric, electrostatic membrane, voice coil and micro-machined silicon. A notable alternative is constituted by
liquid crystal spatial light modulators, which only work on coherent monochromatic light, and are therefore only
suitable for multi-photon laser scanning microscopy.

Each technology represents a trade-off in the main technical specifications, namely: response time, actuator
number, correction stroke, repeatability of the correction, and cost. A summary of performance comparison is
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Table 1. Information on different types of deformable mirrors.

Type Response time Stroke Order Hysteresis Cost Ideal Application

Piezo ? ? ? ?? ? ? $ Closed-loop systems,
model-free correction

Membrane ? ? ? ?? ?? ? ? ? $ Model-based cor-
rection, dynamic
refocusing

Voice Coil ? ? ? ? ? ?? ?? ?? $$ Deep tissue isoplanatic
correction

Micromachined ? ? ? ? ? ? ?? ? ? ?? $$$$ Anisoplanatic & scat-
tering compensation

LCD SLM ? ? ? ?? ? ? ?? ? ? ?? $$$ Anisoplanatic & scat-
tering compensation,
beam-shaping

Adaptive Lens ?? ? ? ? $$ Low-order correction,
modification of com-
mercial setups

reported in Table 1. The reader should notice that no numbers are reported, as constant evolution of technology
means the better products are often reported on the market. Even the comparison reported in the table could be
very easily outdated on a short notice, so the authors still suggest, when choosing a modulator, to request quotes
and data-sheets for a wide array of technologies before committing to one. What may work for one configuration
and application does not make it a good fit for another application. The main features to look out for are:

Response time It is generally not considered as a critical parameter for microscopy, as the response time of
most DMs (usually on the sub-millisecond scale) is much faster than the frame rate of any microscope, or any
wavefront sensor operating in low light conditions. Spatial light modulators are a notable exception, as their
refresh time can be as low as a few Hz, and may constitute a limit to the correction speed of the entire AO
system.

Number of actuators It is a very sample specific parameter, as the amplitude and order of aberrations can
vary wildly with the index of refraction distribution in a biological sample. It must be considered, however, that
while a high order corrector with a high number of actuators can achieve correction in highly scattering materials,3

the size of the field-of-view where the correction is valid decreases with the order of the aberration, so that
special and more complex hardware and software configurations are needed to take full advantage of a high-order
corrector. Moreover, higher numbers of actuators require longer optimisation procedures, or higher numbers
of sub-apertures in wave-front sensors, therefore, reducing the usability of the microscope. It is, therefore, a
generally good suggestion for a simple isoplanatic AO system to choose lower order correctors.

Stroke Another sample dependent parameter, however, an high stroke can be extremely helpful is some specific
situations. Using dry objectives or oil immersion objectives, a severe spherical aberration will inevitably appear
and increase linearly with sample depth, and can only be compensated with with very high stroke mirrors.
Moreover, high stroke allows for additional refocusing or scanning capabilities.

Repeatability Piezoelectric actuators, and less noticeably voice coil actuators, are affected by hysteresis and
creep, which may hinder the repeatability and stability of input response. While this is a generally negligible
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problem if case of pupil-plane wavefront sensing and model-free optimisation methods, model-based optimisation
applications can be greatly affected, so hysteresis-free modulators such as membrane mirrors are to be preferred.

4. CONTROLLERS

4.1 Introduction to Control

The purpose of a controller is to take the sensor measurements whether from the focal-plane or the pupil-plane
and convert this into control inputs for the corrector. It is possible to do this in a number of ways and best
method depends on the type of sensor and the application. This is summed up in Table 2.

There are two broad categories that one can chose for controlling an adaptive optics system. The first type
is called model-free and the second category is model-based. From the names it is possible to imagine that the
difference in these two is the explicit making of a model of the optical system. Model-free control can only really
apply to the case of indirect sensing, it would be possible to apply this to a pupil-plane sensing but it is not
immediate clear why one would want to do this. Since the purpose of using a wavefront sensor is so that there is
a simple linear relationship between the correction phase and the measurement. This linear relationship allows
the correction to be done very quickly and with closed-loop feedback.

4.2 Pupil-Plane Sensors

Whilst there are much more complex methods of control but the simplest approximates the relationship between
the sensor and the corrector as being purely linear. This behaviour is contained in H, the influence matrix, and
it is responsible for turning centroid displacements s from a flat reference into actuators inputs u for the AOE:

s = Hu (5)

The Shack-Hartmann sensor output is a vector of centroid displacements for a 2D array of focal points. It is
possible to relate the average phase gradient 〈∇φ〉i in the ith sub-aperture to the centroid displacement (x̄i, ȳi)
of the focal spot in the sub-aperture by:

si = (x̄i, ȳi) ≈ fA 〈∇φ〉i = fA

(〈
∂φ

∂x

〉
(xi,yi)

,

〈
∂φ

∂y

〉
(xi,yi)

)
. (6)

To control the system, one needs to find first a flat reference input array, u0, through optimisation (see
Section 4.3) and then one can calculate the matrix H relative to this flat wavefront position. The simplest way
to do this is by measuring the response of the sensor to a perturbation of a single actuator, for example, actuator
1:

s1 = H


1
0
...
0

 =


H11 0 . . . 0
H21 0 . . . 0

...
...

. . .
...

HN1 0 . . . 0

 , (7)

when repeated for all actuators this builds up a complete H matrix. To use for control, it needs to be inverted
either using the Penrose-Morse pseudo-inverse or single value decomposition (SVD). In pseudo-inverse form it
appears as the following:

u = (H†H)−1H†s (8)

For closed-loop operation, it is necessary to feedback a fraction of this (0 ≤ γ ≤ 1) to the existing input signals
in the following manner:

u(k+1) = u(k) − γ(H†H)−1H†s(k). (9)
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(a) Parabolic Axes (b)
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Algorithm Measurements
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Table 2. Information on different types of AO control. The values in the Table are approximations based on current
technological possibilities and will change over time.

Type Speed Aberration Size Order SNR

Model-free optimisation O(102) s < 60λ < 20 > 10 dB

Model-based optimisation O(101) s < 20λ < 60 > 15 dB

Wavefront Sensor O(10−2) s < 40λ∗ < 60 > 10 dB

∗ The limit is on the phase gradient within a lenslet as discussed in Section 2.

4.3 Indirect Optimisation

Both optimisation techniques depend on the computation of a metric to quantify the quality of the image, as
in Eq. (2). An optimisation algorithm is then used to find the maximum of this metric. This metric may be
considered to form a multi-dimensional surface, where one is trying to find the highest peak. In Fig. 5 a landscape
is shown in schematic form for two-dimensions. The type of algorithm, Fig. 5(a) showing a model-based approach
and Fig. 5(b) showing the model-free approach determines the set of measurements at specific inputs that need
to be measured to find the peak.

The figure has been intentionally drawn to show that there can be two types of metric shapes in general,
those that are convex with respect to the degrees of freedom as in Fig. 5(a) or non-convex as in Fig. 5(b).
Non-convexity implies that function does not have one unique maximum and it is possible to converge to a local
maxima, that do not offer the globally best solution. Whereas, in convex optimisation if one converges to a
maximum one can be certain that it is global.

Figure 5. A sketch of difference between (a) model-based optimisation approach and (b) model-free optimisation ap-
proaches. In reality, this optimisation landscape is in many more dimensions and depending on the metric may have more
or less local maxima.

4.3.1 Model-free optimisation

Model-free control is usually performed with non-convex metrics, systems that are not well-defined, or have a
low signal-to-noise ratio. It is an approach that is almost guaranteed to work to control an optical system. The
method is slow, but it is robust and is able to operate with a low signal-to-noise ratio on a system that you
do not know very much a priori about. As such, it is recommended to use this approach to test whether the
combination of AOE and your application are compatible and then to progress to a more complex methodology.
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Metrics The first and most crucial step is designing a metric to evaluate. As previously remarked upon, in wide-
field microscopy the definition of such a metric is challenging and can be very sample dependent. Nevertheless,
a examples of the broad spectrum of approaches is listed here:

• Brightness —
∑

xy i(x, y).

• Sharpness —
∑

xy i(x, y)2.

• Frequency content in an annulus R —
∑
R |F{i(x, y)}|2.

• Intensity gradient —
∑

xy |∇i(x, y)|2.

• Second central moment —
∑

xy(x− x̄)2(y − ȳ)2i(x, y)

Algorithms The choice of algorithm is not as important as the metric, however, for a given application one
may desire the measurements to progress in a particular manner — such as small incremental steps rather than
large scans. An incomplete list is given here:

• Coordinate Search (CS) — sequentially scan through a range of aberration values along the degrees of
freedom and find the maxima. Simple to implement and fairly robust, but can give a result that is not a
true maximum.

• Stochastic Gradient Descent/Ascent — randomly perturb the aberration values by a small amount, if it
gives a better value keep the perturbation, if not revert. Will converge to local maxima.

• Gradient Descent/Ascent — measure the multi-dimensional gradient of the metric then take a positive
step in the steepest direction. This will quickly converge to a local maximum but can easily diverge in the
presence of noise.

• Second-order gradient methods, BFGS,14 etc. — these compute the Hessian to find extra information about
the metric function. Faster than first-order methods but even more sensitive to noise. These work better
with analytically evaluable functions and again these can diverge if the noise is too high.

• Simplex — measure the metric for a set of aberration values then compute the metric weighted centre-
of-mass in the aberration coeffiecients space, next measure the metric at this new aberration values and
replace the lowest metric value with the new measurement then repeat. Will converge to the closest local
maximum, it is slower but less sensitive to noise than the gradient-based approaches.

• Genetic algorithms, simulated annealing, etc. — work by searching the space of possible aberration values
for the most “fit” solution. These algorithms are for when one has a poor understanding or knowledge of
the metric or system. They are almost certain to converge to the global maximum, but can take a very
long time to get there.

• DONE algorithm15 — an algorithm developed by one of the authors of this article, generating a dynamic
model of the metric function as a series of cosine functions whose coefficients are determined by the
available measurements of the metric. Each successive new measurement is performed close to the estimated
minimum of the function, and added to the model. Slower in convergence than the gradient-based methods,
but it is extremely robust to noise and can avoid local maxima. Careful hyper-parameters determination
is required making it quasi-model-based.
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4.3.2 Model-based optimisation

Model-based control requires the use of a priori information about the setup and the nature of light propagation
through aberrations. This type of control imposes much more stringent conditions on the optical setup and is
sensitive to anything that can change the model, such as misalignment or different sample types, etc.

In most model-based AO implementations in microscopy, the metric is assumed to be quadratic function of
the correction inputs a:

M(ϕ) ≈ M0 − aTBa, (10)

which is a system with N degress of freedom (usually the number of actuators of the AOE), is determined
by O(N2) parameters. It is possible to determine, usually through a lengthy calibration procedure, a specific
aberration base for which the matrix B is diagonal, so that the function can be more easily expressed as:

M(ϕ) = M0 +

N∑
n=1

bna
2
n. (11)

In this case, the absolute minimum can be easily found, in low noise scenarios, with only 2N+1 measurements,
by measuring the value of the metric with no correction applied, and sequently for two additional values of each
element of the aberration base. With this data the values of bn can be easiliy identified, and the minimum
location can be extrapolated.

This provides much faster convergence than any model-free method, reaching performances similar to those of
a wavefront sensor based system. However, calibration of a base respecting the condition in Eq. (11) is non-trivial,
and small misalignments of the system, or use of different samples can easily render the calibration ineffective,
and severely affect the performances of the optimisation. A few examples may be found in the following articles:

1. Second central moment metric with Lukosz-Zernike (LZ) functions.16

2. Mean image intensity in two-photon microscopy with an orthogonalised base.17

3. Second central moment metric with gradient orthogonal functions.18

In summary, the advantage yielded by these techniques is that the speed at which correction may be done
is increased over model-free approaches. The disadvantage of this approach is that the technique requires the
metric function to have a known form, which can generally only be guaranteed over a small aberration range.
If one wishes to apply this approach, one must find a good metric for one’s imaging modality and quantify it
analytically. From this model of the image formation process calculate a set of basis functions that are orthogonal
with respect to this metric. In this way, within the scope of the model the metric function will be convex around
the maximum of the function for small enough perturbations and correction can be done quickly.

5. CONCLUSIONS

It should be clear from the discussion in this paper that the choice of sensing, corrector and controller are
dependent on one’s application and the type of corrections one wishes to make. Before getting out the cheque
book one needs to carefully determine what parameters are suitable to one’s application.

If one is in the fortunate situation of having a scanning system with a high signal-to-noise ratio, a pupil-plane
wavefront sensor will provide a fast and robust AO system that can be run in closed-loop. This type of system has
been thoroughly researched and there are many different controllers than can be adapted for use in microscopy.
In a wide-field system with a good signal to noise ratio, it could be possible to find an extended source wavefront
sensor, however, this approach is much less refined and is more a research topic than a tool for improving your
images.

In the vast majority of cases in fluorescence microscopy, therefore, indirect sensing will be used and the
design of a suitable metric for one’s application is an essential first step. From here one needs to decide if the
signal-to-noise ratio of your images are good enough for the determination of a model. If so, a model-based
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approach will provide a faster but less robust solution — the quality of the metric is a large factor in determining
the success of the approach or not and is dependent on the modality. In the case of poor signal-to-noise and
no a priori information a model-free focal-plane sensing system is the best choice, however, it can take a long
time to converge to a solution and is not particularly suitable for light-sensitive samples that photo-bleach or
die quickly.

To conclude, applying AO in microscopy is about understanding your needs, your resources, and finding
the compromise that allows for some of the correction you want to see at an acceptable cost of those resources
(money, photons, time, etc.).
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[17] Débarre, D., Botcherby, E. J., Watanabe, T., Srinivas, S., Booth, M. J., and Wilson, T., “Image-based
adaptive optics for two-photon microscopy,” Optics letters 34(16), 2495–2497 (2009).

[18] Pozzi, P., Wilding, D., Soloviev, O., Verstraete, H., Bliek, L., Vdovin, G., and Verhaegen, M., “High
speed wavefront sensorless aberration correction in digital micromirror based confocal microscopy,” Optics
Express 25(2), 949–959 (2017).

Proc. of SPIE Vol. 10502  105021F-12

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 4/26/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


