
An Exploratory Study on Faults
in Web API Integration

Master’s Thesis

Joop Aué

An Exploratory Study on Faults
in Web API Integration

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Joop Aué
born in Zwolle, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Adyen B.V.
Simon Carmiggeltstraat 6-50, 1011DJ

Amsterdam, the Netherlands
www.adyen.com

www.ewi.tudelft.nl
www.adyen.com

c©2017 Joop Aué. All rights reserved.

An Exploratory Study on Faults
in Web API Integration

Author: Joop Aué
Student id: 4139534
Email: joopaue@gmail.com

Abstract

Nowadays, service-oriented architectures are more popular than ever, and more
and more companies and organizations depend on services offered through Web APIs.
The capabilities and complexity of Web APIs differ from service to service, and there-
fore the impact of API errors varies. API problem cases related to Adyen’s payment
service were found to have direct considerable impact on API consumer applications.
With more than 60 thousand daily API errors the potential impact is enormous. Simi-
larly, API consumers of any API can experience errors, and depending on the applica-
tion the impact can be costly.

In an effort to reduce the impact of API related problems, we analyze 2.43 million
API error responses to identify the underlying faults and derive 11 generic categories
that describe them. We quantify the occurrence of faults in terms of the frequency
and impacted API consumers. We investigate the impact of API faults on API con-
sumer applications and illustrate this with 3 case studies. Furthermore, an overview
is given of the current practices and challenges to avoid and reduce the impact of API
errors by API consumers. Using the results, we introduce 16 recommendations for
API providers and API consumers to reduce the impact of API related faults.

Thesis Committee:

Chair and university supervisor: Prof.dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. M.F. Aniche, Faculty EEMCS, TU Delft
Committee Member: Dr. A.E. Zaidman, Faculty EEMCS, TU Delft
Committee Member: Dr. C. Hauff, Faculty EEMCS, TU Delft
Company supervisor: Ir. L.W.M. Lobbezoo, Adyen B.V.

joopaue@gmail.com

Preface

Someone once told me that great opportunities always seem to come my way. Perhaps
I have repeatedly had the lucky chance to make, what I genuinely think to be, “the best
choice of my life”. I believe, at this moment, I have made three of those choices.

The best choice of my life was to start my education in Computer Science and move to
Delft in 2011. The infinite possibilities to create anything using software fascinates me, and
my study taught me how to be effective in this. I got the chance to develop myself in what
I am passionate about: understanding and solving complex problems, and creating simple
and effective solutions.

Around the same time, I made the best choice of my life to participate in the rich social
and extracurricular activities that the Delft student life has to offer. I met the most amazing
people and made friendships that I am sure will last a lifetime. Together, we shared so many
fantastic experiences, and took part in so many incredible activities, that I look back on with
great joy.

I am very happy that I decided to delay my master’s, apply for an internship at Adyen
and move to the city of Amsterdam, which I regard to be the best choice of my life. Not only
did I learn how my studies in Computer Science can be applied in industry, I also identified
an interesting and challenging research topic for my master’s thesis, the result of which lies
in front of you. The combination of the practical implications and the scientific aspect made
this thesis a joy for me to work on.

I would like to thank Arie van Deursen for providing me with invaluable advice and
feedback over the last two years that we have worked together. Also, thank you for the
introduction to Adyen, which has shaped my past year and a half. This allowed me to
develop myself, both socially and technically, in an amazing environment.

Maurı́cio, it has been a great experience working with you during the Software Archi-
tecture course and my thesis, and I am sure our future collaboration will not be any different.
You are an amazing person, and probably the most Dutch non-Dutch guy I know. I am for-
ever grateful for your invaluable feedback and your 24/7 availability for all my questions.
Thank you for dealing with my occasional stubbornness and tendency to overthink and for
taking the time to explain your point of view to me.

Maikel, many thanks for all of your input and feedback over the course of the past year
and a half. Our opinions sometimes led us to agree to disagree, but I mostly felt that your

iii

PREFACE

thoughts on the project complemented mine, making for fruitful conversations. You take
thinking outside the box, seeing the bigger picture and reasoning on an abstract level to a
whole new level. This made me realize that the impossible is most certainly possible. Thank
you for continuously challenging me to take things to the next level, and providing me with
countless opportunities to develop myself.

Lisanne, Marco, Peter, Tjerk and Willem, thank you for the walks and talks. Not only
did you help me organize and structure my thoughts, you are one of the primary reasons I
enjoy my time at Adyen as much as I do.

I would like to thank all of my colleagues for taking the time to help me understand,
obtain information and bring me in contact with customers. Without your support I could
not have completed my thesis.

Finally, I want to thank my friends and family for their unlimited support and belief in
me. Although my technical jargon probably did not make much sense to you, your outsider
input was extremely useful nonetheless.

If I look back at the incredible time I have had and all that I have learned in the past
6 years, I cannot begin to imagine what amazing experiences and opportunities the next 6
years will bring. My Delft adventure is ending, but a new adventure at Adyen is about to
begin and I am quite certain that I am on the verge of making the best choice of my life once
again.

Enjoy reading!

Joop
Amsterdam, September 2017

iv

Contents

Preface iii

Contents v

1 Introduction 1

2 Background 5
2.1 Web APIs . 5

2.1.1 Web API history . 5
2.1.2 SOAP and REST . 6

2.2 Industry partner: Adyen . 8
2.2.1 Adyen API . 9
2.2.2 Error responses . 9
2.2.3 Logging . 10

3 Understanding the API environment 11
3.1 API stakeholder overview . 11
3.2 The cause-failure chain . 12
3.3 API integration environment . 13

4 Research Questions & Methodology 15
4.1 Research questions . 15
4.2 Research methodology . 17

5 API Fault Data Extraction Approach 19
5.1 Extracting unique error messages from API logs 20

5.1.1 Log data set . 20
5.1.2 Data requirements . 20
5.1.3 Unique error extraction . 21

5.2 Identifying unique faults . 22
5.2.1 Removing ambiguity . 22

v

CONTENTS

5.2.2 Prioritization . 22
5.2.3 Annotation . 23

5.3 Data set time window justification . 23
5.4 Data set for quantitative analysis . 24

6 Faults in API integration 27
6.1 Methodology . 27

6.1.1 Data set . 28
6.1.2 Categorization of unique faults . 28

6.2 Fault types in API integration . 28
6.2.1 Invalid user input . 29
6.2.2 Missing user input . 30
6.2.3 Expired request data . 30
6.2.4 Invalid request data . 30
6.2.5 Missing request data . 30
6.2.6 Insufficient permissions . 31
6.2.7 Double processing . 31
6.2.8 Configuration . 31
6.2.9 Missing server data . 32
6.2.10 Internal . 32
6.2.11 Third party . 32

6.3 API integration fault prevalence . 33
6.3.1 Stakeholder perspective . 33
6.3.2 Category perspective . 34

7 Illustrative API Integration Problem Cases 37
7.1 Methodology . 37

7.1.1 Interviewee selection . 38
7.1.2 Interview design . 39
7.1.3 Conducting the interviews . 40

7.2 Case 1: Unhandled contract update . 40
7.2.1 API consumer description . 41
7.2.2 Problem description . 41
7.2.3 The integration process . 42
7.2.4 Error handling . 42
7.2.5 Verifying integration correctness 42
7.2.6 Monitoring . 43
7.2.7 Suggestions . 43

7.3 Case 2: Insufficient permissions in chained API calls 43
7.3.1 API consumer description . 43
7.3.2 Problem description . 44
7.3.3 The integration process . 44
7.3.4 Error handling . 45
7.3.5 Verifying integration correctness 45

vi

Contents

7.3.6 Monitoring . 45
7.3.7 Suggestions . 45

7.4 Case 3: Invalid encryption key . 45
7.4.1 API consumer description . 46
7.4.2 Problem description . 46
7.4.3 The integration process . 47
7.4.4 Error handling and monitoring . 47
7.4.5 Suggestions . 47

8 API Consumer Perspective 49
8.1 Methodology . 49

8.1.1 Target audience . 50
8.1.2 Overall design . 51
8.1.3 Question design . 51
8.1.4 Evaluation and improvements . 52
8.1.5 Sampling and respondents . 53

8.2 Fault types and their impact . 55
8.2.1 Fault types experienced by API consumers 55
8.2.2 Fault type impact experienced by API consumers 57

8.3 API integration practices and challenges 58
8.3.1 API integration by API consumers 58
8.3.2 API fault prevention . 59
8.3.3 API error handling . 59
8.3.4 API fault detection . 61
8.3.5 Underlying causes . 62

9 Recommendations 65
9.1 Fault type detection . 66

9.1.1 Fault detection action . 66
9.1.2 API error detection dashboard proposal 67

9.2 Fault type prevention . 68
9.2.1 Prevent by validation . 69
9.2.2 Prevent by fix . 70

9.3 Fault type handling . 72
9.3.1 Feedback and retry . 72
9.3.2 Recover . 73
9.3.3 Retry or recover . 73
9.3.4 API error response proposal . 74

9.4 Problem priority . 76

10 Discussion 79
10.1 Related work . 79
10.2 Threats to validity . 81
10.3 Future work . 82

vii

CONTENTS

10.4 Lessons learned . 84
10.4.1 Understanding the data . 84
10.4.2 R testing . 84

11 Conclusion 87

Bibliography 91

A Adyen Fault Cases 95

B Interview Guide 105

C API Integration Survey 107

viii

Chapter 1

Introduction

Nowadays, service-oriented architectures are more popular than ever. More and more com-
panies and organizations offer their services through Web Application Programming Inter-
faces (Web APIs). Web APIs enable client developers to access third party services and
data sources, and use them as building blocks for developing applications, e.g., Airbnb
utilizes Google’s Calendar API to automatically insert bookings into the renter’s calendar,
and Google Maps consumes Uber’s Ride Request API to offer Uber’s services as means of
transportation in their maps application.

The capabilities and complexity of Web APIs differ from service to service. Retrieving
a list of followers for a user on Twitter requires a GET request including a single parameter,
and posting a Twitter status update using the Twitter API takes a single parameter POST
request. As the complexity of the actions increases, so do the possibilities of failure. For
instance, Github’s Repo Merging API supports merging branches in a repository. In addition
to the intended merge, other possible outcomes are a merge conflict, a missing branch error
or a nothing to merge response. Adyen, a multi-tenant Software as a Service (SaaS) platform
that processes payments, offers an authorize request used to initiate a payment which takes
up to 35 parameters. Multiple types of shopper interaction, and optional fields to optimize
fraud detection and improve shopper experience make for numerous failure scenarios. In
addition to the happy flow, the method can return at least 34 unique error messages to inform
the API consumer that something has gone wrong. It seems that the more complex a Web
API is, the more errors it can produce and hence, the larger the potential impact of these
errors. It may be interesting to investigate the errors in API integration and the impact that
they have.

We describe several problems related to Web API integration resulting in API errors for
multiple API consumers to motivate the need to investigate Web API errors and their impact.
The cases were discovered for Adyen merchants that use the payment service provider’s
Web API to process transactions.

We describe a configuration problem that caused 5000 payments to be rejected on a
weekly basis for a merchant. Two payment methods were not configured for the merchant
account that was used to process them, causing these payment API requests to return with
an error. The merchant, processing hundreds of thousands payments on a monthly basis,
was unaware of this problem, which caused it to go unnoticed for 9 months.

1

1. INTRODUCTION

The next problem is caused by an unexpected indirect effect that one API call has on
another call. Due to this issue, 50 subscription payments were found to fail on a weekly
basis and the problem went unnoticed for 8 months. This number has increased to 200
in the course of three months and has not been resolved due to the prioritization of other
projects. The merchant in this case expected one contract to be used, whereas actually a new
contract had been issued. This caused invalid information to be supplied, which generated
an API error response.

Two-and-a-half million euros is the amount of money not processed via Adyen’s plat-
form due to a bug in the system of a merchant. Approximately 1000 payments failed on
a weekly basis for a period of 1 year due to outdated references, resulting in API error
responses that were not acted upon by the merchant.

Similarly, each month 20.000 shoppers were unable to pay, because a merchant was
using an incorrect merchant identifier. This problem, persistent for 9 months, resulted in 35
thousand euros worth of failed payment authorizations.

With over 60 thousand API error responses returned by Adyen’s Web API every day, the
potential number of problems and their impact on API consumer applications is enormous.
For this reason, it will be valuable to understand how the impact of API error responses can
be reduced.

To make error handling for client developers easier, practioners have written a variety of
best practice guides and blogposts on API design [24] [36] [26] [32]. Apigee [1], a platform
offering API tools and services for developers and enterprises, discusses error handling
in multiple ebooks. Apigee’s error handling best practices focus on which HTTP status
codes to use [6] and suggest to return detailed error messages for users and developers [7].
However, to our knowledge no research has been conducted on what type of errors occur in
practice and what causes them to happen. Not only can this knowledge complement existing
API design best practices, it can help improve API documentation and help developers
understand the common integration pitfalls.

The potential impact of API errors on API consumer applications is enormous. At the
same time an understanding of API errors that occur in practice and their impact is missing.
This gap of knowledge motivated us to investigate the domain of Web API errors.

To this aim, we study the API error responses returned by Adyen, a multi-tenant SaaS
platform for thousands of businesses, that handles millions of API requests on a daily ba-
sis. We analyze the error responses, which we extract from the platform’s production logs,
discover the underlying faults, and group them into generic categories. Next we develop an
intuition of the practices and challenges of dealing with API related problems by interview-
ing API consumers. The initial understanding acts as input to a survey for API consumers
that teaches us about API faults, practices and challenges.

The main contributions of this work are as follows:

1. A classification of API faults, resulting in 11 generic categories of API faults, based
on the API error responses of a large industrial multi-tenant SaaS platform.

2. An empirical understanding of the prevalence of API fault types in terms of the num-
ber of errors and impacted API consumers.

2

3. An understanding of the fault type impact as experienced by API consumers.

4. An illustrative and reproducible approach to obtain API fault categories from API
error log data.

5. A description and analysis of 3 illustrative cases of API related problems and their
impact.

6. An overview of the current practices to avoid and reduce the impact of API related
problems.

7. Insights into the challenges to avoid and reduce the impact of API related problems.

8. 16 recommendations for API providers and API consumers to reduce the impact of
API related faults.

This work is structured as follows: We introduce the concept of Web APIs and give a
background of our industry partner in Chapter 2. In Chapter 3, we elaborate on the API
environment, which is at the basis of this work. Chapter 4 motivates the research questions
and outlines the methodology to answer them. Next, we illustrate the approach used to
extract API fault data from production API error logs in Chapter 5. We answer the first two
research questions using the API fault data in Chapter 6. In Chapter 7, we illustrate three
problems cases and develop an intuition of the practices and challenges concerning API
problems, after which we answer the remaining questions in Chapter 8 based on an API
consumer survey, and strengthen the answers to the first two research questions. Based on
the results we propose recommendations for API providers and API consumers in Chapter 9.
Chapter 10 discusses related work, the threats to validity of our results, the possibilities for
future work and some of the lessons learned. Finally, we conclude this work in Chapter 11.

3

Chapter 2

Background

In this chapter we provide background knowledge on Web APIs and our industry partner.
Section 2.1 elaborates on the definition, history and common terms of Web APIs. In Sec-
tion 2.2 we introduce our industry partner and describe the practices of error handling and
logging.

2.1 Web APIs

An Application Programming Interface (API) is a clearly defined protocol that specifies
how two software components can communicate. It allows developers to create software
using existing building blocks by using the API for communication. An API can act as an
interface for software libraries and frameworks, e.g., the Java API [25], or as an interface for
remote resources accessible through the web, such as a database or service. The latter type
of API is referred to as a Web API, signifying the remoteness of the interface. Nowadays,
due to its popularity, Web APIs are commonly referred to as APIs, without the prefix ’web’.
In this work the two terms are used interchangeably.

Section 2.1.1 gives a short overview of the history of Web APIs. In Section 2.1.2 two
terms commonly associated with Web APIs are explained to avoid the misconceptions that
exist.

2.1.1 Web API history

On February 7th, 2000, when Salesforce1 launched its services, the first commercially avail-
able Web API was introduced [21]. Salesforce’s XML based API delivered what today is
called Software as a Service (SaaS). In the same year eBay2 rolled out their first API to a
selected number of partners and developers with the aim of standardizing how applications
integrated with eBay. Other significant API releases include those of Twitter and Google
Maps, which both were created in response to a large number of people exploiting the origi-
nal applications in order to simulate an API. Developers were scraping Twitter’s web pages,

1https://www.salesforce.com/
2https://www.ebay.com/

5

https://www.salesforce.com/
https://www.ebay.com/

2. BACKGROUND

and applications such as HousingMaps3 exploited Google Maps’ JavaScript library to use its
map functionality. Today in 2017, over 17,500 API’s are indexed by ProgrammableWeb’s
API directory [5] with this number growing every day.

2.1.2 SOAP and REST

Simple Object Access Protocol (SOAP) [9] and Representational State Transfer (REST) [15]
are often used to describe Web APIs. The two terms can however not be compared, as the
former is a protocol and the latter is an architectural style. Both are explained to remove
any misconceptions.

SOAP is an XML based protocol designed for the exchange of information in a decen-
tralized, distributed environment [9]. The protocol consists of three parts: an envelope that
defines the message structure and how to process it, encoding rules to express application-
defined data types, and a convention for representing procedure calls and responses. SOAP
tightly couples the client and the server. A change on one side is expected to break the
existing implementation requiring a contract update. An example SOAP payment authorize
request is given below.

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema- instance">
<soap:Body>
<ns1:authorise xmlns:ns1="http://payment.services.adyen.com">

<ns1:paymentRequest>
<amount xmlns="http://payment.services.adyen.com">
<currency xmlns="http://common.services.adyen.com">EUR</currency>
<value xmlns="http://common.services.adyen.com">100</value>

</amount>
<card xmlns="http://payment.services.adyen.com">
<cvc>737</cvc>
<expiryMonth>08</expiryMonth>
<expiryYear>2018</expiryYear>
<holderName>Simon Hopper</holderName>
<number>4111111111111111</number>

</card>
<reference xmlns="http://payment.services.adyen.com">123</reference>

</ns1:paymentRequest>
</ns1:authorise>

</soap:Body>
</soap:Envelope>

REST is an architectural style described by Roy Fielding in 2000 [15]. Unlike SOAP,
REST is not a standard, but a set of desired properties, architectural elements, and con-

3http://housingmaps.com/

6

http://housingmaps.com/

2.1. Web APIs

straints on those elements inducing the required properties. With as goal to meet a number
of desirable properties, such as scalability. RESTful APIs are stateless, meaning that any
request from the client contains all information for the server to process the request, i.e.,
session state is kept in the client. REST services are uniform, which decouples the architec-
ture by enabling the client and server to evolve independently. To this end, representations
of the resources themselves are independent of each other and can be sent in XML, JSON
or any other format. The representation of a resource held by a client is sufficient to modify
or delete the remote resource. Finally, Fielding states that REST APIs must be hypertext-
driven, commonly referred to as Hypermedia As The Engine Of Application State (HA-
TEOAS) [14]. A HATEOAS API allows the client’s application to navigate a REST API
without prior knowledge except the initial URI. From that moment, all application state
transitions are driven by choices returned by the server given the client’s manipulation of
the represented resources. For instance, the JSON response to a GET request to display the
balance of a bank account displays the account number and balance, and in addition the
possible choices the client can make: depositing, withdrawing or transferring money.

{
"account_number": 123456,
"balance": {

"amount": 1000,
"currency": "USD"

},
"links": [
{
"rel": "deposit",
"href": "https://example.com/account/123456/deposit"

},
{
"rel": "withdraw",
"href": "https://example.com/account/123456/withdraw"

},
{
"rel": "transfer",
"href": "https://example.com/account/123456/transfer"

}
]

}

In case the amount is negative, the server does not return the choice of withdraw and transfer,
limiting the possible state transitions for the client.

APIs are often dubbed RESTful, even when they do not comply with all constraints
and properties proposed by Fielding. Instead the term is (mis)used to indicate an HTTP
API, that accepts JSON and uses the HTTP methods to retrieve, create, update and delete
resources on a server.

7

2. BACKGROUND

2.2 Industry partner: Adyen

Research on API integration requires real world API data. We use an industrial data set pro-
vided by our industry partner Adyen. Adyen is a Payment Service Provider (PSP) offering
a global payment solution for thousands of businesses, referred to as merchants. Using a
single connection to the Adyen platform, merchants are able to process transactions glob-
ally online, in-app and in-store, offering over 250 different payment methods in more than
150 currencies. An overview of Adyen’s solution is depicted in Figure 2.1 which shows the
stakeholders involved in the process: the shopper, merchant, Adyen and third parties, such
as schemes and issuers. Schemes are payment networks that set rules and provide infras-
tructure that allows payments to be processed. An issuer is a bank or financial institution
that provides branded payment cards to consumers.

Figure 2.1: The stakeholders in the Adyen value chain

An example interaction with the Adyen system is outlined below. A shopper that wants
to purchase goods from a merchant selects one of the available payment methods offered
through, for example, the merchant’s website. The available payment methods are those
configured on the Adyen platform. The shopper submits their payment details and the
merchant proceeds to send a payment request to the Adyen platform. Adyen in turn assesses
the transaction risk, optimizes the request for higher authorization rates and processes the
payment using the applicable third parties. The merchant receives a response, and in case
of success the shopper can be notified and the goods can be shipped. Using the connection
with Adyen, the merchant is able to perform additional actions, such as refunding payments,
submitting payouts and making recurring payments as part of a subscription model.

In Section 2.2.1 we describe the Adyen API that can be used by merchants to connect to
the Adyen platform. Error response handling in the Adyen API is explained in Section 2.2.2.
Section 2.2.3 describes the logging practices at Adyen.

8

2.2. Industry partner: Adyen

2.2.1 Adyen API

Adyen’s customers have multiple ways of integrating with the Adyen platform. Merchants
can use plug-ins offered by third parties like Magento4, an ecommerce platform. The second
option is to use an Adyen SDK or library that allows quick and basic integration. The third
option, offering most functionality and flexibility is the Adyen API.

Communicating with the Adyen API takes place by submitting requests to a set of end-
points which allow specific actions, such as authorizing and capturing a payment, initializ-
ing recurring contracts and disputing chargebacks. The Adyen API supports XML, JSON,
and URL query strings as input formats. For XML, the API offers Web Service Definition
Language (WSDL) files that describe the endpoints, which can be used to construct SOAP
messages. JSON and URL query strings do not have a strict communication contract, and
can be constructed using the Adyen API reference5. Although the Adyen API exhibits some
of the constraints and properties proposed by Fielding [15] it is not truly RESTful. It meets
the stateless constraint as no client context is being stored and incoming merchant requests
contain all information necessary to process that request. The HATEOAS constraint is how-
ever not met as the API does not support dynamic navigation of the interfaces, but rather
requires merchants to use the documentation to understand the specification.

We consider the Adyen API to be complex due to the platform’s elaborate set of features:
supporting hundreds of payment methods, allowing for payouts and recurring payments,
and offering multiple possibilities to reduce risk, detecting fraud and optimizing shopper
experience. As a consequence, API methods such as authorise take up to 35 parameters of
which 32 are optional. Similarly the submit request to make a payout accepts 15 parameters
of which 11 are required.

2.2.2 Error responses

HTTP responses, e.g., to an API request, contain a status code indicating one of five standard
HTTP response classes: Informational, Successful, Redirection, Client Error and Server
Error [28]. Adyen utilizes the following three to inform the merchant about a processed
request:

• Successful: status code 200 to denote that a request has been successfully processed.

• Client Error: status code 4XX, such as “404 resource not found” and “422 unprocess-
able entity” to indicate that the server could not understand the request.

• Server Error: status code 500 to indicate that the server encountered unexpected con-
ditions that prevented it from processing the request successfully.

In an Adyen API integration, the number of possible error scenarios is high due to the
large number of parameter combinations, as well as the input constraints of the individual
parameters. An Adyen API error response, i.e., a non-200 response, contains an HTTP

4https://magento.com/
5https://docs.adyen.com/developers/api-reference

9

2. BACKGROUND

status code and specific error information to add more detail. This extra information com-
prises an error type, error code and error message. The error type is one of four categories:
validation, security, configuration or internal. The error code is a number that uniquely de-
scribes the corresponding error message, which is Adyen specific. Adyen documents over
150 different error codes and messages [2]. An example JSON error response returned by
the Adyen API is given below.

{
"errorCode" : "137",
"errorType" : "validation",
"message" : "Invalid amount specified",
"status" : "422"

}

2.2.3 Logging

Logging in the field of computer science is the practice of recording events that provide
information about the execution of an application. Adyen logs approximately 700 million
log messages on a daily basis to record detailed information about the platform’s execution.
These log messages are used for a variety of goals:

• Providing high level platform and server stability metrics, such as latency and the
number of errors.

• Enabling technical support to investigate merchant inquiries.

• Facilitate development and operations to do root cause analysis of failures and errors.

• Clustering error logs to prioritize and uncover hidden issues in the massive amount
of log data [13].

• Identifying anomolies in Point of Sale transactions, and identifying test scenarios
based on production log data using passive learning [39].

• Feeding log metadata back to the developer to give insights into the production be-
havior of their code.

The Adyen logs also contain the incoming merchant API requests and outgoing API
responses. We utilize this part of the logs in our work to investigate API errors.

Adyen uses Log4J to log debug, info, warning and error messages of events that occur
in the system [17]. These log messages are made available for use through the Elastic Stack
consisting of Elasticsearch, Logstash and Kibana6. Logstash parses data from different data
sources and transforms it into input for Elasticsearch. Elasticsearch is a distributed full-text
search engine designed to work with large volumes of data. Adyen visualizes Elasticsearch
data using Kibana, a dashboard that provides visualizations.

6https://www.elastic.co/

10

Chapter 3

Understanding the API environment

An API integration can involve four different stakeholders, that all influence the interaction
between the API and its consumer. As a result, each of these stakeholders can cause the
API to return with an error that possibly leads to a failure in the consumer’s application. In
this chapter we give an overview of the API environment, the parties involved and API error
related terminology, to clarify the differences and nuances that could lead to confusion. This
information serves as illustration and basis for the rest of this work.

Section 3.1 describes the different stakeholders that are, and can be, involved in an API
integration. Next, in Section 3.2 we explain API error related terminology and explain how
the different terms are related. Finally, the relation between the API error related terms and
the API stakeholder overview is elaborated on in Section 3.3.

3.1 API stakeholder overview

In a typical integration with an API, two stakeholders, or parties, are involved. On one side
the API provider, offering their services by exposing an API, and one the other side the API
consumer, utilizing the services offered by communicating with the API. The API provider
may optionally itself be connected to third party services behind the scenes in order to
provide the intended functionality. For instance, an API offering stock data may itself be
connected to different stock exchanges to obtain the latest stock prices. We deliberately
refer to API consumer, instead of API user, to leave room for the term end user. The API
consumer may optionally provide an application used by its customers, who indirectly make
use of the API’s services. These end users supply information, while using the application,
that is used as request data for the API. For example, Google Maps users are given the
option to choose Uber as means of transportation when searching for directions. Indirectly
they are supplying input to the Uber API, which locates nearby drivers and estimates the
cost for the trip. Figure 3.1 depicts the four stakeholders in the API integration environment.

In the system under study, the API provider Adyen, providing payment services through
its API. The API consumer is the merchant processing payments using the Adyen solution.
The end users are shoppers, who use the merchant’s services to buy goods or services.
Finally, third parties connected to Adyen typically include schemes and issuers.

11

3. UNDERSTANDING THE API ENVIRONMENT

Figure 3.1: The stakeholders in an API.

3.2 The cause-failure chain

In this section we describe API error related the terminology. Furthermore, the relationship
between the different terms in the context of this work is elaborated upon.

The terms error, problem, failure and fault seem similar in meaning. However, the
nuances of these terms in the scope of this work are important to explain. Furthermore, in
different contexts the terms can have different meanings, potentially causing confusion.

We refer to an API error response, API error or simply error when describing an API
response that falls into the HTTP response classes Client Error and Server Error [28]. These
classes correspond to responses with HTTP status codes 4XX or 5XX.

Figure 3.2: The re-
lationship between a
cause, fault, API error
and failure.

We denote a failure, or problem, by the inability of a system or
component to perform its required function [27], resulting in a di-
rect impact on the user of that system or application. A failure, in
the scope of this work, can be the result of an API response with a
4XX or 5XX HTTP status code and has an impact on the API con-
sumer’s service or application. For instance, a user that attempts to
make a payment, which does not succeed because system cannot
process the payment, experiences a failure.

We define fault as the mistake that is being made or the incor-
rect action being performed. A fault is not a problem or failure by
itself. However, a fault can result in a problem or failure. In con-
text of this work, the fault manifests in an API error, which in turn
can result in a failure. Consider the example of a payment request
that is rejected with an error, because the transaction amount if too
high. In this case, setting the amount too high is the fault. The
potential failure is that the transaction cannot be processed.

The cause is the underlying reason for a fault to happen. Con-
tinuing the previous example, the amount may be set too high be-
cause the documentation does not report a transaction limit, or the
amount is set dynamically and no validation is in place.

Figure 3.2 illustrates the different terms and their relation. Note that the terminology
in this work is different from the IEEE Standard which is commonly used in the field of
software engineering. The IEEE Standard Glossary on Software Engineering Terminology
(IEEE Standard 610.12-1990) [27] defines a fault as an incorrect step, process or data defi-

12

3.3. API integration environment

nition in a program, an error as the difference between the observed and expected outcome
and a failure as the inability of a system or component to perform its required function. The
term failure and fault as we explain them are very similar to the IEEE Standard. However,
the term error is defined as the deviation between the actual and expected value, while we
use it to describe the message that communicates a fault to API consumer.

3.3 API integration environment

Each of the stakeholders in the API stakeholder overview can potentially cause an erroneous
response to be returned by the API, which if unexpected can result in problems for the
application. In case the API is indirectly in use by customers of the API consumer, the
end user can, by supplying invalid information, cause the API to return an error. The API
consumer on the other hand may have implemented the API incorrectly, which can result in
requests with a specific input to be rejected by the API. The API provider may have a bug
in its system, which could, for instance, cause requests to fail on a specific input. Lastly,
when a third party service fails, the API provider may decide to return an error to the API
consumer.

We combine the stakeholder overview and the fault to failure part of the cause-failure
chain in Figure 3.3. The faults that each of the stakeholders can cause result in an API
error that is returned by means of an API error response to the API consumer. This error
can potentially result in a failure for the API consumer. We left the cause, as described
in the cause-failure chain, out of the diagram. This because the cause is not dependent on
the origin of the fault. A fault at the API consumer could for instance be caused by a bug
introduced by an developer or incorrect documentation of the API. What caused the fault
also depends on how far one wants to go with determining the cause. An incorrectly imple-
mented API call may be caused by a developer that did not read the documentation properly.
However, one could also argue that the documentation was not clear enough, which there-
fore caused the fault. Likewise, unclear documentation may be caused by improper API
design, which makes explaining the functionality difficult.

Figure 3.3: The API integration environment containing the involved stakeholders and the
relation between faults, error and failure.

13

Chapter 4

Research Questions & Methodology

This chapter outlines the research questions and methodology used to understand the faults
that occur in API integration that can potentially result in production problems for con-
sumers of an API. We consider API integrations that involve four stakeholders: the API
provider, API consumer, end user and third parties, explained in Section 3.3. Although the
latter two stakeholders are optional for an API integration, this work is applicable to the
two-stakeholder scenario with only the API provider and consumer as well.

Some APIs are more prone to return errors than others, and some API errors have more
impact than others. This work attempts to cover any Web API integration, ranging from
simple APIs to more complex ones. One could describe the complexity of an API in terms
of the number endpoints or resources, the number of methods, the number of parameters
(required and/or optional), parameter formatting constraints, the number of possible error
scenarios or whether API requests depend on other requests. For instance, listing the num-
ber of followers of a Twitter user or using sending direct messages to other users on Twitter
are simple operations that require at most two parameters. The formatting constraints are
limited to numbers and strings, and the number of possible errors is limited. In contrast,
the Salesforce Marketing Cloud SOAP API1 offers more than 20 methods and can return up
to 570 different error messages [3]. Intuitively, more functionality, more parameters, more
constraints and more possible API errors increases the chance of problems and their impact
on API consumer applications.

In Section 4.1 we motivate and pose the research questions answered in this work. Sec-
tion 4.2 elaborates on the high level methodology to answer these questions.

4.1 Research questions

In order to reduce the impact of production problems that are caused by mistakes in API
integration two things can be done: 1) Reduce the number of problem occurrences and 2)
reduce the impact of individual problem occurrences. Before one can effectively do this, an
understanding is needed of the underlying faults that occur in API integration that can result

1https://developer.salesforce.com/docs/atlas.en-us.noversion.mc-apis.meta/mc-apis/
index-api.htm

15

https://developer.salesforce.com/docs/atlas.en-us.noversion.mc-apis.meta/mc-apis/index-api.htm
https://developer.salesforce.com/docs/atlas.en-us.noversion.mc-apis.meta/mc-apis/index-api.htm

4. RESEARCH QUESTIONS & METHODOLOGY

in production problems. To this end we aim to answer the following research questions:

RQ 1: What type of faults, resulting in API errors, are impacting API consumers?

Translating the understanding of faults in one API integration to API integrations in
general is difficult, because every API has its own use cases, specific methods and corre-
sponding errors. To enable generalization of the results we identify general types of faults
that can occur in an API integration.

RQ 2: What is the prevalence of these fault types, and how many API consumers are im-
pacted by them?

The answer to this question provides insights into the frequency of each type of fault
and the impact in terms of number of API consumers. API designers can leverage the infor-
mation of what type of fault impact the user the most when designing an API to lower the
probability that these faults take place and result into problems. In addition, the knowledge
will help identify what aspects of integration are more difficult to get right, which therefore
require more attention in terms of, for instance, documentation.

RQ 3: What type of faults do API consumers consider the most impactful?

The fault types and their frequency of occurring give insights into API related faults in
general, However, this does not say anything about the impact that they have on the API
consumer’s application. By answering this question, fault types can be prioritized based on
what is considered important by the API consumer.

Understanding what type of faults occur in API integrations, how often these faults oc-
cur and their impact is not enough to determine how the impact of production problems can
be reduced. An understanding is needed of the current practices used to avoid and reduce
problems, before recommendations for improvements can be made. Similarly, an under-
standing of the current challenges faced by API consumers is needed to identify areas of
improvement. Hence, we ask the following questions:

RQ 4: What are the current practices to avoid and reduce the impact of production prob-
lems caused by faults in API integration?

The answer to this question helps to understand the current efforts of reducing the im-
pact of faults in API integration. This information can be taken as starting point when
developing recommendations.

RQ 5: What are the current challenges to avoid and reduce the impact of production prob-
lems caused by faults in API integration?

The challenges of reducing the impact of API faults gives us an understanding of what is
experienced as difficult. This allows recommendations to be made that take these challenges

16

4.2. Research methodology

into account.

4.2 Research methodology

To identify API fault types and understand their frequency of occurrence we need a data set
that captures this information. To this end we use API error response logs from Adyen’s
production server. In Chapter 5, we describe the process of obtaining a data set from the
API error logs that contains the unique faults that result in API errors and their explana-
tion, the number of individual occurrences of these faults and the number of impacted API
consumers.

Next, to answer RQ 1, we use the annotated API fault data set to obtain a set of general
categories that describe the faults. Using the frequency of errors and the information about
the impacted API consumers we answer RQ 2 about the quantitative impact of these faults.
Chapter 6 describes the methodology and results of the API error data analysis.

To develop an intuition and better understanding of API integration problems, their
impact and challenges we conduct three interviews with API consumers. The interviews, of
which the methodology and results are given in Chapter 7, are used to illustrate API related
problems experienced by API consumers. Furthermore, the developed intuition acts as basis
for the questions of the API consumer survey described next.

We obtain insights from API consumers to learn what type of faults are experienced
the most impactful to answer RQ 3. Furthermore, we acquire information on the API inte-
gration process, API monitoring, testing and fault detection by API consumers. With this
understanding we formulate an answer to RQ 4 and RQ 5. Finally, using API consumer
insights we verify the results of the data analysis and thereby strengthen the answers to
RQ 1 and RQ 2. Chapter 8 elaborates on the methodology and results of the API consumer
insights.

17

Chapter 5

API Fault Data Extraction Approach

To understand the impact of API errors and identify possibilities to reduce this impact,
data is needed that captures erroneous API interaction. The data set should contain an
explanation of the fault for each API error response under analysis. This chapter acts as
illustration as to how this data can be obtained, and describes how we use API request log
data of the system under study to this end. The resulting data set is used as input for further
analysis, and its properties are explained in Chapter 6 in more detail.

The data extraction approach can be depicted into four steps: (1) We extract API error
responses from production log data to obtain unique API errors, (2) we manually analyze
each unique error message in context of the web service and API method to identify unique
faults, (3) the time span covered by the data set is verified to cover enough data, and (4) we
combine the manual annotations with the API error response data to allow for analysis per
category. Figure 5.1 illustrates the four steps, which are elaborated on in Sections 5.1-5.4

Figure 5.1: The four steps depicting the data extraction approach

19

5. API FAULT DATA EXTRACTION APPROACH

5.1 Extracting unique error messages from API logs

We use the production logs from the system under study to obtain API error responses.
Here, we describe our approach to obtain these responses and preprocess them to obtain the
unique errors.

5.1.1 Log data set

The logs of the system under study contain information about everything that happened in
the production environment. Among the logs are the API requests and corresponding re-
sponses. Querying these logs is difficult as the logs that contain the API responses cannot be
uniquely identified by a specific field or property. Using domain knowledge of the system,
we identified queries to capture the erroneous API response log messages from the entire
set of log messages.

5.1.2 Data requirements

To allow for the next steps we require the data to have the following response information:

Timestamp to denote the moment in time the request was made.

HTTP status code to indicate whether the request was successful or not.

API username that specifies who initiated the request.

Web service that indicates which endpoint was called.

Method to show what method was called.

Error code that identifies the specific error that occurred.

Error message that explains the error in more detail.

The following fields are optional, but helpful in our case in the manual analysis step:

Thread id to find log messages related to an erroneous request.

Reference which identifies a (failed) payment.

Host to identify the server that processed the request.

Company to help identify related problems for the same merchant.

We created a Java tool to execute the queries on Logsearch, a searchable dashboard
which runs on top of Elasticsearch1, parse the result and store the processed log messages
in a database. The queries also captured API logs that are outside the scope of this work,
which we therefore removed. Furthermore, internal API calls made by the system under

1https://www.elastic.co/products/elasticsearch

20

5.1. Extracting unique error messages from API logs

study itself were captured. Such internal errors can provide useful and interesting insights
into internal API problems. However we are only interested in errors that have an effect on
external API consumers, hence we remove this group of errors. The final data set contains
2.66 million API error responses and corresponds to 28 days of data.

5.1.3 Unique error extraction

In the manual analysis step we investigate the unique errors that occur in the system. To
identify these, we use the error code, which is linked to an error message template in the
API’s source code. This template is a blueprint for error messages, e.g., “Currency {0} is
not supported”, which results in populated error messages such as “Currency EUR is not
supported”. Despite this mapping, we identify messages without error code, and messages
with a (meaningless) “0” error code. In these cases, the developer has not specified a unique
error code in the designated exception class that contains a list of error enums, but rather
hard-coded the error at the place the error occurs. These messages cannot be mapped to a
message template from the source code. To approximate the message templates, we cluster
the messages using hierarchical clustering [31]. Next, we consider one message in each
cluster as a representative for that cluster, which we refer to as the message template.

Before we resort to hierarchical clustering, we apply two heuristics to the error mes-
sages, which we empirically found to improve the precision of our results. One heuristic is
to replace all digits by asterisks (*). By manual inspection of the error messages, we found
digits to be rarely used in the constant part of the message. In cases where it is, it does
not influence the later steps in the clustering process. An example of this heuristic is given
below:

validation expired, pspReference=4513836233034604 −→
validation expired, pspReference=****************

By manual inspection we find relatively long messages to have a variable part at the end,
causing similar messages to be clustered separately. Hence, the second heuristic is to limit
the number of characters for each message to 50, which we empirically found to yield the
best results in our situation, to avoid long and similar messages to be identified as separate
clusters.

We do not consider the prevalence of messages, hence after applying the heuristics we
take the unique set of messages, reducing the number of message to consider from 350.000
to 150.

We apply hierarchical clustering [31] with the complete linkage method, and Leven-
shtein distance [22] as the distance metric, on the 150 messages to obtain a hierarchy tree.
We empirically found a Levenshtein distance of 7 to be the right cut-off point to create the
clusters. We verified the correctness of the clustering by manually checking the message
clusters.

Next, we selected the first message of each cluster as the message template. For exam-
ple, instead of the actual template “Currency {0} is not supported” the message template
found using clustering could be “Currency EUR is not supported”. This does not pose a

21

5. API FAULT DATA EXTRACTION APPROACH

problem, as the human aspect of the analysis can abstract away the specifics by using the
context and semantics of the message. In case of doubt the source code can be consulted to
remove discrepancies.

Using the combination of messages templates from the source code and hierarchical
clustering, we obtain 146 unique error messages from 2.66 million API error responses.
Next, we manually analyze the messages to enable categorization.

5.2 Identifying unique faults

The next step is to place each of the error messages, or rather the underlying faults, in a cat-
egory. To enable accurate categorization we first add context to remove ambiguity. Second,
we prioritize on impact to optimize the use of resources. Next, we gather information to
support the analysis. Finally, using this knowledge we annotate the error messages within
the given context.

5.2.1 Removing ambiguity

The error messages alone are not enough to explain the faults. There are messages that
indicate one fault, but in practice have a different meaning. For instance, “Unsupported cur-
rency specified”, appears to be a configuration mistake or an invalid input fault. However,
this specific error is caused by a missing value. Other messages, e.g., “Internal error”, are
too ambiguous to categorize in the first place.

We add context to the unique error messages to reduce the number of unique messages
with multiple explanations. To do so, we use the corresponding API method and web ser-
vice. For instance, the message “Invalid amount specified” has multiple explanations that
depend on the API method used. Adding context allows for more granularity during anal-
ysis. We refer to the combination of an error message, API method and web service as an
error tuple.

Note that the additional context reduces ambiguity, but does eliminate it. A unique
message given the API context can have different interpretations depending on the situation.
In Section 5.2.3 we explain how we try to mitigate the problems that could arise because of
this. Using the approach of adding context to 146 unique error messages, we end up with
363 error tuples to annotate. In other words, the average error message occurs in at least
two distinct relevant contexts.

5.2.2 Prioritization

We prioritize based on impact, as manual analysis is time intensive, by selecting a subset
of the error tuples. We count the number of errors that occur per error tuple as well as the
number of API consumers that is experiencing the error in the given context. The number of
errors is not a reliable metric to base the prioritization on as we found that some consumers
retry failed API requests on a highly frequent basis distorting the view of what is important.
For this reason we use the number of API consumers that is experiencing a specific error as

22

5.3. Data set time window justification

a way to prioritize the error tuples. We consider every error tuple that impacts 10 API con-
sumers or more. Using this approach we select 47 of the 146 unique errors, while covering
approximately 91.3% of the 2.66 million erroneous API responses. This corresponds to 89
of the 363 error tuples. The prioritization is visualized in Figure 5.2.

Due to the filtering, 99 unique errors are not analyzed. As illustration we give four
messages that were therefore ignored.

1. “197 - This bank does not accept SEPA Direct Debits”

2. “198 - Reference may not exceed 79 characters”

3. “0 - java.net.SocketTimeoutException: Read timed out”

4. “171 - Unable to parse Generation Date”

These errors may indicate a problem for the API consumer, however we do not pursue them
further.

5.2.3 Annotation

In the annotation process we consider the unique error messages one by one. For each error
message we select all related error tuples. Because these error tuples are related this speeds
up the analysis process as we consider them together. Per error tuple we prioritize on the
three consumers that are experiencing the most errors. For these consumers we dive into
the request data to identify the underlying fault. We do this using the following information
sources: request data, logs of the API request, API source code, technical support and
platform developers.

For each error tuple we record one or more explanations of the error, given the context,
which describe one or more faults. In addition, we add the stakeholder that caused the
erroneous response to be returned by the API. The possible stakeholders we distinguish are
the end user, API consumer, API provider and third parties, as explained in Section 3.3.
The stakeholder information will give additional context to the faults and the corresponding
categories. We identified 69 unique faults by annotating the 89 error tuples, illustrated by
Figure 5.2. For each of the 69 faults, we wrote one or two sentences capturing the essence
of the fault. These fault case descriptions are listed in Appendix A.

5.3 Data set time window justification

We selected error tuples for analysis based on the number of impacted API consumers
being equal to or higher than 10. To show that the 28 day data set used for analysis covers a
sufficient time window we compute the number of error tuples that satisfies the prioritization
constraint for different time intervals. To this end we take 28 subsets of the entire data set,
each corresponding to a different time window. The first subset contains 1 day of API
errors logs, the second subset contains 2 days of API error logs and the nth subset contains
n days of API error logs. For each subset we extract the unique error messages, remove
the ambiguity, prioritize based on the number of API consumers and count the number of

23

5. API FAULT DATA EXTRACTION APPROACH

Figure 5.2: The stages of identifying unique API faults from the set of API error responses.
That what is analyzed after prioritization is highlighted in grey.

error tuples that meet the constraints. For one day of API error data this resulted in 34
error tuples. Next, for each subset, we calculate the number of new error tuples identified
compared to the previous subset. The resulting differences between the subsets are shown
in Figure 5.3.

We find that after 14 days of data at most 2 new error tuples are identified per day
with the number decreasing as more days pass. For this reason we conclude that the most
common and therefore impacting error tuples in our data set are discovered within 14 days
and therefore consider the 28 day data set to cover a sufficient time span. We used the entire
data set to benefit from all available information.

5.4 Data set for quantitative analysis

In Section 6.1.2, we categorize the 69 faults. To this end, the error tuples are extended
with a category for each fault. Although the error tuples help to avoid ambiguity, it cannot
be completely eliminated. For this reason we apply estimations to obtain a data set for
analysis. There are two situations on an error tuple level that introduce ambiguity by having
two or more explanations for the error tuple. In the first case there are multiple categories
assigned to an error tuple, caused by two or more different faults. In the second situation,
there are multiple stakeholders that belong to two or more different faults. For these error
tuples there is no effective way to say what error messages belong to what fault and hence
to which category and stakeholder they belong. The only way to be sure is to analyze all
errors manually, which is unfeasible considering the millions of API responses. Instead
of a single number we provide a range of the number of API errors for the aggregations.
For the number of errors per category for instance, in case of error tuple ambiguity, the

24

5.4. Data set for quantitative analysis

Figure 5.3: The number of newly identified error tuples for each interval for compared to
the previous interval.

lower bound of this range is based on the assumption that zero of the errors belong to that
category. Similarly, the upper bound assumes that all errors belong to that category and not
to the other categories of that error tuple.

The range for the number of impacted API consumers is created in a similar manner.
For example, an error tuple contains category X and category Y, and we are estimating the
number of impacted consumers for category X. Furthermore, assume that n API consumers
are impacted by category X in other error tuples. The lower bound assumes that no new
API consumers in the error tuple, with category X and Y, are impacted by category X faults.
In other words, after including the error tuple there are still n API consumers impacted by
category X faults. The upper bound assumes that all new API consumers in the error tuple,
with category X and Y, are impacted by category X faults. In other words, after including
the error tuple there are n plus the number of new API consumers impacted by category X
faults.

25

Chapter 6

Faults in API integration

In this chapter we analyze the faults in API integration that occur in the system under study
to understand what types of faults occur, based on the data previously extracted. Further-
more we investigate the frequency of occurrence for these fault types and the impact in
terms of number of API consumers.

In Section 6.1 we describe the data set used for analysis and the categorization ap-
proach. Next, Section 6.2 lists and explains the identified categories. Finally, in Section 6.3
quantitative measures in terms of errors and impacted API consumers are given for each
stakeholder and category.

6.1 Methodology

RQ 1: What type of faults, resulting in API errors, are impacting API consumers?

To answer this research question we select a data set of API fault data from Adyen’s
API. Next we categorize the API faults to obtain a set of general fault types that describe
the specific faults.

Consumers of a relatively simple API will probably not experience the same variety of
problems that consumers of a more complex API experience. Analysis on a more complex
API will therefore more likely result in more complete results. For this reason we decide to
base the analysis on Adyen’s Web API.

The Adyen API provides over 20 different methods, with the number of parameters
going up to 35 for the authorise method. Some parameters are always required, some
are sometimes required, and some are optional. Parameter formatting constraints include
matching ISO standards, regular expressions for email and telephone numbers, predeter-
mined string values or Adyen specific objects with their own parameters. The number of
documented API errors is over 150 [2]. Furthermore the API is used by thousands of API
consumers, collectively responsible for millions of API requests on a daily basis, among
which are over 60 thousand errors. The described properties and usage statistics make the
Adyen API in our opinion a useful subject for API integration problem analysis.

27

6. FAULTS IN API INTEGRATION

In Section 6.1.1 we describe the data set used as basis for the analysis. The process of
fault categorization and category verification is explained in Section 6.1.2.

6.1.1 Data set

To obtain the categories we use a data set containing 69 unique faults, explained in detail
in Appendix A, which we identified in Chapter 5. The data set corresponds to 4 weeks of
API error responses from the system under study. For each fault the number of occurrences
and the number of impacted API consumers is available. In total the data set represents
approximately 2.43 million API errors impacting a total of 1464 unique API consumers.
Chapter 5 describes the process of obtaining this data set from the API errors of the system
under study in detail.

6.1.2 Categorization of unique faults

Identifying categories and assigning them to each fault is an iterative process, based on a
detailed qualitative analysis of the fault cases. Investigating a subset of faults gives the
intuition needed to define initial categories, which can be assigned to most of the annotated
faults. During further analysis, if fault does not fit into one of the existing categories we
define a new category. A category that is too generic may have to be split up into two or
more categories, while a category that is too specific may be joined with another category.
Categorization can therefore not be described by a predefined set of steps, but is guided
by our understanding of the problem domain, and the actual analysis of the cases at hand.
After assigning a category to each fault we iterate once more over all faults to check that all
categories are accurate. Following this procedure we obtain a set of categories that describe
faults in API integration in general.

To verify the accuracy of the categorization an expert is asked to check a subset of the
category assignments. In case the expert does not agree with the category assignment the
difference is discussed until agreement is reached. Using this approach we verify that the
categories are understandable and reduce the possibilities of mistakes.

6.2 Fault types in API integration

By categorizing the API faults, 11 categories were identified. These API fault categories
are shown in Table 6.1, each of which can be contributed to one of the stakeholders in the
API integration environment. Two categories, related to user input, can be contributed to
the end user, who is also responsible for expired request data faults. Most categories are
caused by the API consumer, and the API provider and the third party stakeholder each
match one category. Appendix A describes the fault cases used to determine the categories.
Most categories have 2 to 3 fault cases, one has just 1, and four have between 12 and 17
faults each. Table 6.2 lists the fault cases per category. Next, we describe the relevance
of each category and illustrate each category with faults in integration in the system under
study.

28

6.2. Fault types in API integration

Stakeholder Category Explanation
End user Invalid user input A fault introduced by invalid input by the end user of the application
End user Missing user input A fault introduced by missing input by the end user of the application
End user Expired request data The input data was no longer valid at the moment of processing
API consumer Invalid request data A fault introduced by invalid data caused by the API consumer
API consumer Missing request data A fault introduced by missing data caused by the API consumer
API consumer Insufficient permissions Not enough rights to perform the intended request
API consumer Double processing The request was already processed by the API
API consumer Configuration A fault caused by missing/incorrect API settings
API consumer Missing server data The API does not have the requested resource (e.g., document or object)
API provider Internal A fault caused by the API
Third party Third party A fault caused by a party integrated with the API

Table 6.1: The categories of API faults including the related stakeholder.

Category Fault cases
Invalid user input FC6, FC15, FC16, FC19, FC22, FC23, FC33, FC34, FC35,

FC36, FC37, FC45, FC63, FC64
Missing user input FC3, FC4, FC5, FC7, FC8, FC9, FC17, FC21, FC38, FC61
Expired request data FC67
Invalid request data FC1, FC13, FC14, FC20, FC29, FC30, FC31, FC32, FC41,

FC43, FC44, FC47, FC51, FC54, FC55, FC66, FC68
Missing request data FC10, FC25, FC27, FC28, FC39, FC46, FC48, FC52, FC58,

FC59, FC60, FC65
Insufficient permissions FC40, FC49, FC50
Double processing FC11, FC18, FC69
Configuration FC26, FC53
Missing server data FC56, FC57
Internal FC2, FC12, FC62
Third party FC24, FC42

Table 6.2: The fault cases described in Appendix A that fall in each category.

6.2.1 Invalid user input

Invalid user input regards requests that fail because an end user supplied input that cannot
be used to complete the intended action. The invalid information is forwarded by the API
consumer to the API. There are multiple types of input invalidity. Making a typographical
error can cause the input to be of invalid length. Within the Adyen API we see that shoppers
accidentally type an extra number for their credit card number. Using an incorrect input
format where for instance letters are used instead of numbers can also result in an error.
Invalid user input can also be caused by a user that is not aware that certain input is not
allowed. A user may want to ship something to their house, while there is no delivery
possible in their area, causing an error. Note that this category is not applicable when there

29

6. FAULTS IN API INTEGRATION

is no end user that supplies input via the API consumer.

6.2.2 Missing user input

Missing user input is strongly related to invalid user input. In this case however, the end
user neglects to fill in required information, which causes the subsequent request to fail.
We decided to distinguish between missing and invalid user input, because the nature of the
mistake is different. An end user that does not fill out a field either forgets to or is unaware
that the field is required. This is different from invalid input where the user supplies incor-
rect information. An example of an error caused by missing user input is when the shopper
neglects to fill in their CVC code or part of their billing address. Note that this category is
not applicable when there is no end user that supplies input via the API consumer.

6.2.3 Expired request data

Expired request data faults occur when the request is not handled in time. This occurs
when the request contains a timestamp that defines a timeframe that the server has to handle
the request. In Adyen’s case a timestamp is generated when a shopper starts a transaction.
When the request comes in, the system checks whether the start of the transaction is not too
far into the past. If a shopper takes too much time an expired request data fault translates to
an error being returned. Expired request data faults can be attributed to the end user.

6.2.4 Invalid request data

Invalid request data faults are caused by input that cannot be handled by the API. There
is a multitude of different reasons for such a fault to occur. One reason is an incorrect
input format, such as supplying a floating point number, while an integer is expected. We
discovered authorize requests where the amount was 14297.9999999 instead of the likely
intended 14298. This is similar to the mistake made by the shopper causing an invalid user
input fault, however in this case caused by the API consumer.

Another common mistake made is not using proper encoding before sending the request.
Forgetting to URL encode parameters that contain the &-symbol will cause API parsing
faults.

The previous mistakes can be contributed to mistakes made on the API consumers side
because of a bug or forgetting to implement a detail. However, there are also mistakes
caused by incorrect assumptions, where the API consumer assumes a certain action works
with the given input, while the API does not support the functionality or cannot handle the
input. For instance, we found a merchant attempting to collect recurring payments using
SEPA Direct Debit using Swiss Francs, which is not supported.

6.2.5 Missing request data

Missing request data faults are similar to invalid request data faults. However, in this case
the API consumer neglects to send in information that is required for the intended action.
Also in this case we decided to distinguish between invalid and missing request data. We

30

6.2. Fault types in API integration

reason that the mistake of not supplying required information is of a different nature than
making a mistake by supplying incorrect input. Missing request data be attributed to un-
awareness of the API specifications or a bug. For instance, we identified faults caused by
payment requests that were missing the amount of the transaction or did not specifying the
merchant account to be used. Similarly, a merchant attempted to create recurring contracts
for its shoppers, but forgot the required shopper reference field, causing the request to fail
with an error.

6.2.6 Insufficient permissions

Insufficient permissions faults are caused by API consumers that attempt to use an endpoint
or make use of a resource, while they are not allowed to do so. We find users making
this mistake because they attempt to use the production services, while they are not yet
through the process of obtaining the permissions for this. In other cases, users have part of
their system still interacting with the API, while their contract has ended and therefore their
permissions have been revoked.

In the previous examples the API consumers is not allowed to use any services. At
Adyen, companies can have multiple API user accounts, each with different permissions.
Accounts configured for Point of Sale transactions that are used for Ecommerce will result
in insufficient permissions faults.

6.2.7 Double processing

Double processing faults are caused by API consumers that send in a request more than
once. The API under study is designed to be idempotent; sending in the same call repeat-
edly will produce the same result. Double processing faults should therefore not be possible.
However, in case of attempting to repeatedly delete the same remote object a double pro-
cessing faults occurs, because the reference to this object can no longer be found. In the
Adyen system recurring shopper contracts can be disabled using the disable method. When
a merchant attempts to disable a contract that is already disabled an error is returned related
to this fault type.

6.2.8 Configuration

Configuration faults are caused by incorrect configuration of the API consumer account.
The API consumer assumes certain that functionality is set up for their account, however in
reality it is configured incorrectly or not set up at all. The Adyen API, for instance, returns
an error indicating a configuration fault in case a merchant attempts to make a transaction
for a combination of a payment method and currency for which there is no configuration.
This configuration is needed to determine which acquiring bank will acquire the funds from
a shopper for the given payment method and currency.

31

6. FAULTS IN API INTEGRATION

6.2.9 Missing server data

Missing server data faults are the result of incorrect management of data that exists in two
places. The API consumer in this case is managing identifiers of resources accessible via
the API. Inconsistency is introduced when the API consumer does not update changes to
resources correctly. For instance when a resource is removed or updated.

An example fault that arises in the Adyen API is a recurring contract that cannot be
found. In this case the merchant often manages the references to contracts of shoppers
locally, instead of requesting the latest contract details for a shopper by making an API call.
In certain situations Adyen updates the contract and updates the reference. If the merchant
is unaware of this situation and does not update the reference, the next request will fail. An
example situation occurs when the shopper makes a change to their billing address.

A similar fault occurs when the API consumer sends in an identifier, which never existed
in the first place. This can be contributed to a bug in the consumer’s system.

6.2.10 Internal

Internal faults occur when the API provider is unable to handle an incoming request for
an unanticipated reason. This can be because of a bug, due to the system being unable to
handle a specific input or unexpected API consumer interaction. Data related replication
issues between internal components in the system can result in new data resources to not be
available immediately on all servers in a distributed API server architecture. In addition, we
regard API downtime as an internal fault, which causes API error responses for all incoming
requests.

In the Adyen system an unexpected situation arises when a new recurring contract is
created in one call and within a few minutes a recurring transaction is attempted with that
contract. Due to a delay in database replication, the contract is not found at the moment the
recurring transaction is sent in, which we attributed to an internal fault.

6.2.11 Third party

A third party fault can result in an API error when the API consumer makes a request that
involves the API provider to make use of a third party, which does not respond or returns an
error. In this case the request failed and the consumer is notified by means of an error. The
API requests that result in this type of error may yield a different result in case of a retry,
in contrast to for example errors corresponding to invalid request data faults. The latter
request will fail every time simply because the format is not correct.

As an example, for an Adyen merchant a third party fault situation arises when the
iDEAL service is used and one of the underlying banks does not respond. Another situation
that causes a third party fault is when the system is unable to handle an encrypted response
from a third party, which is not formatted according to the implemented specification.

Note that this category is not applicable when there is no third party involved.

32

6.3. API integration fault prevalence

RQ 1: What type of faults, resulting in API errors, are impacting API consumers?

Based on the API fault data, faults in API integration can be grouped in 11
categories: invalid user input, missing user input, expired request data, invalid request
data, missing request data, insufficient permissions, double processing, configuration,
missing server data, internal and third party. Each category can be contributed to one
of the four API integration stakeholders: end user, API consumer, API provider, and
third parties.

6.3 API integration fault prevalence

We analyzed the frequency of faults from two perspectives: a stakeholder perspective and
a category perspective. The stakeholder perspective explains the origin of the fault in the
integration chain, and the category perspective helps to understand the prevalence of faults
on a category level.

6.3.1 Stakeholder perspective

Table 6.3 shows the number of unique faults resulting in an API error caused by each stake-
holder. In addition the range of the estimated percentage of errors and impacted consumers
is given. It is not possible to compute an exact number due to the ambiguity explained in
Section 5.4. In some cases the range is extreme. For example the percentage of errors that
we contribute to the API provider ranges from 0.1% to 4.9%. Although we are unable to
provide an exact number, we do have an intuition about the true percentage of errors from
annotating the errors by hand. To communicate this we embolded the bound which most
closely matches our intuition of the exact percentage of errors and impacted consumers.

Note that the total percentage for the lower and upper bound for the errors does not add
up to 100% due to estimation. We therefore omit the total from the table. The percentage of
consumers is based on 1464; the total number of impacted consumers. As consumers can
be impacted by errors related to multiple stakeholders they can be counted multiple times,
which explains why the sum of the percentages is well over 100%. A total percentage would
therefore not make sense and is hence omitted.

We considered 2.43 million API errors and identified 69 unique faults. Approximately
86.3% - 87.7% of these errors, resembling more than 2 million occurrences, corresponding
to 39 (56%) of the faults, are caused by the API consumers themselves. In other words,
the majority of the errors is caused by a little more than half of the faults. The number of
API consumers that is experiencing faults caused by themselves is high compared to the
faults that the other stakeholders cause. Out of 1464 consumers experiencing faults 67.5%
to 84.6% are impacted by their own mistakes.

The end user is responsible for between 7.4% - 12.3% of the errors, which relates to 25
(36%) different faults. The large portion of unique faults in this case relates to a relatively
small number of errors, in contrast to the faults caused by the API consumer. After the

33

6. FAULTS IN API INTEGRATION

Stakeholder # of faults Errors (%) Consumers (%)
Lower bound Upper bound Lower bound Upper bound

End user 25 7.3 12.4 39.8 50.7
API consumer 39 86.3 87.7 67.5 84.6
API provider 3 0.1 4.9 0.7 18.9
Third party 2 0.4 0.9 21.8 46.6
Total 69

Table 6.3: The number of faults per stakeholder, the estimated percentage range of errors
and impacted API consumers. The percentages are based on 2.43 million API errors and
1464 impacted API consumers. Note that the percentages do not add up 100%.

API consumer, the end user is causing the most errors and impacting the most consumers:
between 39.8% and 50.7%.

The API provider in the system under study is responsible for 3 (4.3%) of the faults.
The number of errors related to these faults ranges between 0.1% and 4.9%. This large
range can be contributed to an ambiguous error tuple that is explained by two faults; one
caused by the end user and the other by the API provider. The large number of errors
accompanying this error tuple causes the upper bound to be relatively high compared to the
lower bound. Similarly the number of impacted API consumers varies greatly due to the
ambiguity, ranging from 0.7% to 18.9%.

Finally, 2 (2.9%) faults are caused by third parties, which make up 0.4% to 0.9% of
the API errors. Interestingly the two issues and the small number of errors are impacting
between 21.8% and 46.6% of the consumers. Compared to the other stakeholders, the
number of impacted consumers for these faults is relatively high.

6.3.2 Category perspective

In Table 6.4 we show the number of unique faults that occur in each of the 11 categories
found during manual analysis. Similar to Section 6.3.1, due to ambiguity we are not able
to present the exact percentage of errors and impacted consumers. For this reason for each
category we show the estimated percentage of corresponding API error responses and es-
timated percentage of impacted consumers. In four categories of faults no ambiguity was
present, hence the exact percentages are given instead of a range. In addition we embolded
the bound that is closest to the exact number according to our intuition. Note that the total
percentages for the lower and upper bound for the errors do not add up to 100% due to
estimation, and are therefore omitted.

For the end user we see the input to be the largest cause of faults. 24 of the 25 faults are
caused by invalid or missing input, collectively causing 7.2% to 12.5% of the errors. Invalid
user input does not only result in more unique faults than missing user input, it also impacts
more API consumers, 33.3% to 40.4% compared to 11.5% to 24.8%. Expired request data
sent in by the end user causes one fault. The number of errors, 65 (0.003%), is relatively
small compared to the number of impacted API consumers, which is 2.0% of the total.

34

6.3. API integration fault prevalence

Category Stakeholder # of faults Errors (%) Consumers (%)
Lower Upper Lower Upper
bound bound bound bound

Invalid user input End user 14 6.5 7.1 33.3 40.4
Missing user input End user 10 0.7 5.4 11.5 24.8
Expired request data End user 1 0.0 0.0 2.0 2.0
Invalid request data API consumer 17 3.2 10.5 23.9 62.3
Missing request data API consumer 12 23.0 28.7 20.2 24.0
Insufficient permissions API consumer 3 0.1 0.1 9.5 9.5
Double processing API consumer 3 36.0 36.0 12.3 12.3
Configuration API consumer 2 16.7 16.7 19.9 21.4
Missing server data API consumer 2 1.5 1.5 13.9 13.9
Internal API provider 3 0.1 4.9 0.7 18.9
Third party Third party 2 0.4 0.9 21.8 46.6
Total 69

Table 6.4: The number of faults per category grouped by stakeholder, and the estimated
percentage range of errors and impacted API consumers. The percentages are based on
2.43 million API errors and 1464 impacted API consumers. Note that the percentages do
not add up 100%.

The request data causes the most faults for the API consumer, similar to the end user.
Invalid request data results in 17 of the 39 unique faults caused by the API consumer. Faults
in this category impact the most consumers for this stakeholder, namely between 23.9% and
62.3%. This corresponds to between 350 and 912 API consumers. Missing request data,
good for 12 faults, has an impact on fewer consumers (between 20.2% and 24.0%), but
does however yield more erroneous API responses. Interestingly, only 0.1% insufficient
permissions related errors caused by 3 faults impact 9.5% of the API consumers. Double
processing related error in comparison are also caused by 3 faults, but occurred 36.0% of
the time corresponding to 875,000 errors for 12.3% of the consumers. Two configuration
faults cause more than 400,000 errors (16.7%) for 19.9% to 21.4% of the consumers. This
is similar to the missing request data category, with the difference that this category has 12
unique faults. Finally, 1.5% missing server data fault related error responses are given back
to the API consumer, which is a relatively small amount compared to the other categories for
this stakeholder. The number of impacted consumers, however, compares to the categories.

The API provider and third party stakeholder both experience errors in one category
each, internal faults and third party faults respectively. The number of unique faults caused
by these stakeholders is small compared to the end user and API consumer. Third party
faults however impact more API consumers, which is estimated to be between 319 and 682,
or 21.8% and 46.6%.

RQ 2: What is the prevalence of these fault types, and how many API consumers are
impacted by them?

35

6. FAULTS IN API INTEGRATION

Based on the API faults data, from a stakeholder perspective most faults, 39 out of
69, can be contributed to the API consumer. This compares to 86.3% to 87.7% of 2.43
million API errors and between 67.5% and 84.6% of the 1464 impacted API consumers.

From a category perspective, most faults, 17 out of 69, can be contributed to the
invalid request data category. However most errors, 36.0%, are related to double pro-
cessing faults. Most API consumers seem to be impacted by faults in the invalid request
data and third party categories.

36

Chapter 7

Illustrative API Integration Problem
Cases

To develop an intuition and initial understanding of the current practices and challenges
that API consumers experience we conduct three API consumer interviews based on three
identified problem cases. The initial understanding is used as input for the API consumer
survey described in Chapter 8. Furthermore, the three cases act as practical illustrations of
API related problems experienced by API consumers and the accompanying challenges that
are experienced.

To this end, we discuss an identified API related problem for the API consumer and
elaborate on API integration in terms of the integration process, error handling and moni-
toring. Furthermore we detail the API consumers’ suggestions for the API provider to help
avoid API problems from occurring.

In Section 7.1 we describe the interview methodology that provides a structured way
to extract information from API consumers. Sections 7.2, 7.3, and 7.4 elaborate on three
problem cases based on interviews conducted with the respective API consumers.

7.1 Methodology

Analysis of the API error response data gives us a quantitative understanding of the faults
that occur. To illustrate the need to understand API errors and reduce their impact we
interview API consumers to learn about problem cases they experience related to API errors.
Obtaining a qualitative understanding of these faults allows us to dive into the complexity
of the problem, rather than abstract it away, making the results more informative.

The goals of these interviews are as follows:

1. Develop an intuition of why API problems occur. Specifically we are interested in
what causes API problems, what their impact is, why they go undetected if this is the
case, and what could have been done to prevent them.

2. Understand how API consumers work with APIs in terms of the integration process,
testing, monitoring and error handling.

37

7. ILLUSTRATIVE API INTEGRATION PROBLEM CASES

3. Identify the API consumer’s opinion about what the API provider can do to help
prevent problems.

4. Provide an illustration of API problems that API consumers experience.

The interviews are designed based on the work by Seaman [33], and Hove and Anda [18].
Seaman presents several qualitative methods for data collection and analysis for empirical
studies of software engineering. Hove and Anda combine experiences from 12 software
engineering studies, identify four areas of challenges and share advice and suggestions on
how the quality of software engineering interviews can be improved.

In Section 7.1.1 we explain the process of selecting interviewees and describe them.
Section 7.1.2 elaborates on the design of the interview and the questions. Next, in Sec-
tion 7.1.3 the logistics and the process of conducting are explained. The interview questions
are given in Appendix B.

7.1.1 Interviewee selection

Arranging interviews is a difficult process, especially in a business environment where time
and money are important factors. Our interview goals also provide no direct reward for the
API consumer, making it even harder to arrange them. For this reason our approach is to
identify a previously unknown problem for the API consumer and help to solve it, so that
the consumer is more inclined to speak with us after resolving the issue. While this is a
time consuming approach for us, it makes reaching the first goal easier as this is focused
specifically on API problems. After resolving the issue, the merchant will have the details
of the problem fresh in mind and we will have the detailed knowledge about the problem
which helps us ask the right questions.

Using the API error responses we identify API consumers that are experiencing errors.
We select the occurrences that seem the most interesting in terms of possible impact and
frequency. We reason that this will improve the response rate and likelihood of arranging
interviews. Using the request data, request logs, source code of the API and the help of
the technical support team we analyzed the errors to identify faults for API consumers. We
selected 21 faults that had an understandable reason for occurring and likely were of sig-
nificance to the API consumer. This turned out to be time consuming as it was often not
possible to estimate the impact and because we did not want to contact Adyen merchants
without a strong intuition of the problem and its impact. Next, we communicated these
faults and related potential problems, impacting 18 different API consumers, to the respec-
tive Adyen account managers. We received a response from the account managers in 19 out
of 21 fault cases. After discussing the faults and possible problems, 11 of them were further
communicated to the relevant API consumers. Of the remaining faults, 2 were regarded as
not an issue, for 1 the timing to communicate the issue was not right and in the other cases
we are awaiting further response from the account managers. After informing the API con-
sumers of the 11 faults and potential problems 6 were eventually resolved. We proceeded
to explain our research and asked them to take part in an interview focused on the identified
problem and their integration in general. Finally, 3 of the API consumers agreed to talk to
us, resulting in 3 interviews.

38

7.1. Methodology

As the goals of the interview are of technical nature we require the interviewee to have
development knowledge or to be closely involved in the integration process. For the three
interviews we describe the interview and interviewee below.

Interview 1
The interviewee in interview 1 represents a global e-commerce fashion website processing
hundreds of thousands of payments every month. The interviewee is the payment and fraud
manager in a six person team responsible for accepting payments and preventing fraud,
and oversees the overall integration in terms of key performance indicators and anomalies.
Although not a developer himself, the interviewee has in-depth technical knowledge about
the integration and processes around it.

Interview 2
In interview 2 we spoke to two developers representing a transporting business processing
hundreds of thousands of payments on a monthly basis. One of the developers had worked
on most of the integration with the API. The other was relatively new and did not yet have
a lot of experience with the integration.

Interview 3
The interviewee in interview 3 is a third party integrator for a merchant that processes tens
of thousands of payments every month in the transport sector. The third party is responsible
for the entire payment integration of the merchant.

7.1.2 Interview design

There are different types of interviews, each with their own characteristics and costs. In
structured interviews the questions are asked by the interviewer and the response is given
by the interviewee [33]. The interviewer has specific objectives which are translated into
questions. In the extreme, no qualitative information is gathered and all responses can be
quantified directly. Unstructured interviews on the other hand have as objective to obtain
as much information as possible on a topic. The questions asked are open-ended and the
conversation is an unstructured discussion.

We use a combination of the two types and conduct semi-structured interviews. Struc-
tured specific questions to adhere to the goals of the interview and open-ended questions that
open up discussion to capture unexpected information. We start with background questions
to learn about the characteristics of the interviewee and the payments team. Knowledge
questions are asked to learn about the API consumer’s testing process, error handling and
monitoring. Follow-up questions aim to discover why certain processes are in place, or why
they are not. We use reflexive questions to learn about the interviewee’s opinion on how,
for instance, the API provider can help to prevent problems.

The questions are designed not to be leading to allow the interviewee to answer based
on their own thoughts. If the question was phrased such that it suggests an answer, the
interviewee may be inclined to go with that answer and not think about other options. If
we, however, during the interview feel that the answer to the question is insufficient or feel

39

7. ILLUSTRATIVE API INTEGRATION PROBLEM CASES

the interviewee does not clearly understand we rephrase the question to include examples
to get the conversation going. For instance, when we ask about the monitoring processes in
place, we could follow-up by giving examples, e.g., logging and alerts, to get the thought
process of the interviewee going.

The interview was designed in multiple iterations and altered based on discussions with
colleagues to remove unclarities and to structure the interview better.

7.1.3 Conducting the interviews

Before conducting the interviews, the participants were sent an email with a short introduc-
tion to the topic and what the interview would be about.

The duration of the interviews varied from 30 to 45 minutes, depending how much the
interviewee had to share. At the beginning of the interview, held over Skype and taken by
one interviewee, we gave another short explanation about the topic and the usefulness of
the interview. We explained that both the interviewee and the company will remain anony-
mous to make them feel comfortable to speak freely and share information. In addition we
explained that the interview is split into one part focused on the identified issue and one part
designated to the API integration in general.

We used an interview guide during the interviews to structure the conversation. We
included several conditional follow-up questions to be asked based on the answers of the
interviewee. If, for instance, the API consumer has testing in place we asked about the
reasons for this to be integrated, or when this is not in place we asked why this is not the
case. The interview guide is included in Appendix B.

The interviews were recorded to avoid loss of information. In addition it allowed the
interviewer to be more focused on the answers and to identify possible follow-up questions,
instead of spending time taking notes.

As expected, during the interviews we would wander of and end up discussing other
parts of the interview. We would not cut the interviewee off to revert to the original question,
which could result in information to be missed. Instead we would let them finish talking
and kept track of which questions were answered and which were not, and steered back
appropriately to the subject of the original question.

After conducting the interviews we summarized the conversation in writing. Interesting
phrases were transcribed to be used in the results as quotes. We noted the time at which the
interviewee started to answer a question. In case more information was required we could
easily navigate to the appropriate time in the recording.

7.2 Case 1: Unhandled contract update

The first case we discuss is about incorrect management of references on the API consumer
side. The API could in this case not locate the contracts that the references point to, resulting
in a missing server data problem.

We first describe the merchant experiencing this problem, after which we explain the
problem, its impact and the cause. Next we explain how the merchant experienced the
integration process, handles API errors, verifies the correctness of the integration and how

40

7.2. Case 1: Unhandled contract update

they monitor the integration. Finally, we elaborate on the suggestions that this merchant has
for the API provider to reduce the impact of API problems.

7.2.1 API consumer description

The API consumer in this case is an e-commerce fashion website selling clothes and footwear
for men and women. They offer more than 100,000 items through their webshop and pro-
cesses hundreds of thousands of payments every month. Their payment processing is han-
dled in-house by a team of six people, among which are four developers, one quality assur-
ance engineer and one person overseeing the overall integration in terms of key performance
indicators and anomalies.

7.2.2 Problem description

The merchant in this case makes use of Adyen’s one-click payment solution. This allows
shoppers to make transactions with a single click, without having to re-enter credit card
details for every purchase, using a recurring contract set up in advance. Instead of supplying
the credit card details, the merchant can send in the reference to the contract to be used for
that shopper. Such a contract can be set up in two ways. One is to store the credit card details
after the shopper makes an initial payment and the other is to import credit card contracts
in bulk during a migration to Adyen. Recurring contracts are updated when the recurring
payment request contains details which are different from the details stored in the contract.
For instance, when the billing address of the shopper changes, the contract is updated and a
new reference is returned. Subsequent one-click payments should be made using this new
reference.

What happened is that this merchant was not updating the references as they changed.
Hence subsequent one-click payments failed with API error message “PaymentDetail not
found”, corresponding to FC57 in Appendix A. Updates occurred to contracts that were
imported, but did not have a billing address stored. After the first successful one-click
payment, which included a billing address in the request, the contract was updated and the
second one-click payment would fail. Another reason was a change in the existing billing
address, which triggered the contract update as well, resulting in the same problem.

This problem resulted in about 1000 one-click payments failing every week around the
time of detecting the problem. In the 13 months the problem existed over 40,000 payments
failed, causing Adyen to not process 2.5 million euros. Compared to the total number of
payments processed for this merchant, between 1% and 1.5% of them failed due to this
problem. Fortunately, the merchant had a backup mechanism in place that retries every
failed payment with another party providing services similar to Adyen’s. However, the
merchant mentioned that this situation was not ideal as Adyen’s services result in higher
revenue.

The cause of this problem was that the merchant was internally duplicating the credit
card profiles inside the system for some time around transactions. They would then update
one profile, while using the other. The updated profile would later be discarded, keeping
the outdated profile in the system. A system was built that tokenizes credit cards that could

41

7. ILLUSTRATIVE API INTEGRATION PROBLEM CASES

be used by two different gateways. The merchant mentioned this may have opened up the
window for the details to be duplicated.

The merchant is unsure how this issue could have been prevented. The complex scenario
was something that they could not reasonably test or they would have to create thousands
of tests for these types of complex scenarios. The issue was not detected, because it did not
impact the authorization rates, as they were retrying the payment using another gateway.

7.2.3 The integration process

During the integration process the merchant experienced problems with the documentation.
“What the documentation was showing, was not exactly what had to be used.” The support
team was able to help them out quickly, but outdated documentation cost them a lot of time.
The merchant mentions accurate documentation has a lot to do with credibility: “The bad
thing is, at the end of the day, if the developer thinks the documentation is not up to date they
will more often think things are wrong because the documentation is out of date, instead of
something being their own mistake.”

7.2.4 Error handling

Most of the unique error responses that Adyen returns are not directly mapped to specific
error handling logic. Rather, the merchant’s system understands that something went wrong
and they automatically resort to their backup gateway. Only when payments also fail using
the backup gateway they investigate further. “If at the end of the day it is not impacting
customers we tend not to investigate specific errors.” The merchant acknowledges this is
not an optimal scenario: “I think we took the easiest path, maybe not the smartest path.”
However, they mention that trying to map all errors requires development time which will
not be prioritized due to a huge backlog.

The merchant prefers the API to return many specific errors instead of fewer general
errors. The specific errors allow for a better understanding of what is going wrong, while
a generic error would be confusing. One way to improve would be to make sure that the
errors that are returned describe the right problem. The merchant mentioned spending a
great deal of time debugging an error stating that no expiry month was set, while in reality
they were trying a transaction without recurring token. This issue corresponds to FC21 in
Appendix A.

7.2.5 Verifying integration correctness

To verify the correctness of the integration this merchant makes automated transactions
for every payment method they support. This poses some issues, as the cards are blocked
from time to time by the issuer, because of the suspiciousness of small repetitive payments.
Also, the payments team closely collaborates with the customer service in case of payment
problems for customers. The merchant however mentions that this situation is not ideal,
because in essence the customers are doing quality assurance.

42

7.3. Case 2: Insufficient permissions in chained API calls

7.2.6 Monitoring

Monitoring is focused on transactions that are not completed. “That is what worries us the
most.” The merchant compares their authorization rates to the rates of the previous weeks
and investigates if there are major differences. In this case alert texts are sent to the people
on duty. Furthermore, using Adyen’s reporting of transactions filtered by fraud the merchant
detects fraud attacks or risk settings that are not functioning properly.

By periodically extracting error data from their database and using this data to build
dashboards, the merchant looks for strange behavior that was missed in the big picture
reports. They then do root cause analysis on the errors and patterns they found. They
mention that the extraction and analysis is a manual process, influenced by the person that
does the assessment, and therefore is not optimal.

7.2.7 Suggestions

The merchant suggests that the API provider, Adyen in this case, can help prevent inte-
gration problems by alerting the API consumer when detecting strange patterns. When the
updated contract problem was communicated to them it drove them to take action: “We were
postponing this. We knew that this was happening. Let′s try to understand exactly what is
happening here.”

The merchant mentions that people interested in investigating issues often do not have
the knowledge to go into the server log files and discover what is going on. To investigate
an issue the payment expert has to ask a developer to go into the logs and retrieve the
information. If the API provider would make the errors they return accessible, including
the corresponding requests data, this would enable non-technical people to more easily look
into strange patterns and check whether the behavior is expected. “There is a cost involved
in where you have to stop what you are doing and access all of these different servers and
all these different logs.” Insights would make the investigation of issues less costly.

7.3 Case 2: Insufficient permissions in chained API calls

The second case is about a permission problem in API calls that are related, where the
merchant was using different credentials for the separate requests resulting in an insufficient
permissions problem.

We first describe the merchant experiencing this problem, after which we explain the
problem, its impact and the cause. Next we explain how the merchant experienced the
integration process, handles API errors, verifies the correctness of the integration and how
they monitor the integration. Finally, we elaborate on the suggestions that this merchant has
for the API provider to reduce the impact of API problems.

7.3.1 API consumer description

The merchant in this case offers transport services in multiple international markets. On
a daily basis the company facilitates tens of thousands of transport connections and on a

43

7. ILLUSTRATIVE API INTEGRATION PROBLEM CASES

monthly basis the merchant processes hundreds of thousands of payments using the Adyen
platform. The payments team consists of four developer focus on the API integration and
one product manager. There is another team of developers that works on their mobile pay-
ment solution.

7.3.2 Problem description

Certain API calls may be dependent on previous calls. Such a situation arises when mer-
chants want to process payments using an extra layer of security by authenticating the shop-
per’s identity. This fraud prevention scheme, called 3D Secure1, requires an initial payment
authorization request to the Adyen platform. Adyen returns a URL pointing to the issuer’s
website which the shopper should be redirected to for authentication. Additional request
data and a payment session identifier are included in the response. After the shopper has
authenticated themselves, the merchant is to forward the response data from the issuer to
Adyen in the 3D Secure authorization request. Adyen then matches the session identifier
and processes the 3D Secure payment.

Adyen allows for multiple accounts to be set up per company, with separate API con-
sumer credentials. A problem occurred for this merchant because they were sending in the
linked 3D Secure requests using different credentials, resulting in API error message “In-
valid Merchant Account”. This problem did not take place in the time period corresponding
to our API response data set on which our analysis is based. During this time no similar
problem occurred and therefore this problem is not on the list of problems described in
Appendix A. This poses a threat to validity which we discuss in Section 10.2.

Around 300 transactions a week were failing because of this problem. For this merchant
the impact is relatively small, however could impact the customer satisfaction and increase
the load on the merchant’s support team. Due to infrastructure limitations we were unable
to identify how long this problem has been taking place.

The merchant is using different shops, which all use different credentials to do trans-
actions. In some cases however, the shopper would change websites to complete the 3D
Secure payment. Because the different websites use different credentials the subsequent
request failed, causing this problem to occur.

As the number of occurrences of this problem was low it did not influence the mer-
chant’s monitoring dashboards. Therefore the merchant was not aware of this problem until
we notified them about it. The merchant mentioned that they were unaware that this situa-
tion would be a problem as the Adyen documentation did not mention this explicitly.

The issue was resolved by making sure the accounts used in the chained requests are the
same. Adyen has updated the documentation to clarify the need for the credentials to match
in case of the 3D Secure payments.

7.3.3 The integration process

During the integration process the merchant made primarily use of the API documenta-
tion. However, the biggest bottleneck for them was missing documentation. As an example

1http://www.mastercard.com/gateway/implementation_guides/3D-Secure.html

44

http://www.mastercard.com/gateway/implementation_guides/3D-Secure.html

7.4. Case 3: Invalid encryption key

the merchant explained that there was no information about the Ratepay payment method.
Therefore they had to integrate directly into their test system to be able to verify that the
logic was working correctly, while contacting our support to find out how the integration
was supposed to go. The merchant stressed, that if the documentation was more complete,
problems like the one described could be prevented.

7.3.4 Error handling

The merchant is using a combination of handling specific errors and handling using fallback
logic for unmapped responses. The errors that are mapped are translated to responses for
shoppers to notify them of what happened. When the CVC of the credit card is wrong the
shopper gets a message saying the payment information is incorrect.

7.3.5 Verifying integration correctness

Besides manually testing scenarios during development the only API related tests in place
are related to the structure of messages. The merchant has unit tests in place to verify the
structure of the messages that are sent to the API. If there are anomalies in the dashboards,
described next, or they receive feedback from customer support they start a process of iden-
tifying what is going on.

7.3.6 Monitoring

The merchant monitors their integration using dashboards that show the number of success-
ful transactions. In addition there is a system that compares the number of transactions to
previous days to check for anomalies. There are multiple dashboards on a detailed level,
which show the transactions that have been completed, those that are refunded and those
that are rejected. Specific errors are however not monitored. The merchant keeps a log of
the requests and errors, but only use this for root cause analysis. “If we don’t notice the
problem, we don’t know what we are looking for.”

7.3.7 Suggestions

The merchant mentions that the error responses from the API are not enough to help prevent
problems with the integration. They suggest notifications in case anomalies in requests
happen by means of email notifications or a dashboard. What they would like to see is the
reason of the anomaly and a list of payments that are failing because of the errors.

7.4 Case 3: Invalid encryption key

The case described in this section is about an invalid encryption key problem. The merchant
in this case seems to encrypt the credit card credentials of a subset of the transactions using
an incorrect encryption key, causing these payments to fail.

We were unable to record the complete story behind this case, because at the moment
of interviewing the problem was not yet investigated and at present it has not been resolved.

45

7. ILLUSTRATIVE API INTEGRATION PROBLEM CASES

We first describe the merchant that is experiencing the problem. Next, we explain the prob-
lem, the suspected cause and impact. Finally, we describe how integration was experienced,
how errors are detected and monitored and we name the suggestions for improvements on
the API provider’s side.

7.4.1 API consumer description

The merchant in this case is active in the transport sector in a single domestic market. On
a monthly basis the company transports hundreds of thousands of passengers and processes
tens of thousands of payments using the Adyen platform. The integration for this merchant
was outsourced to a third party integrator that is responsible for the implementation and
verification of the API integration.

7.4.2 Problem description

To handle credit card information a merchant has to be PCI DSS2 (Payment Card Industry
Data Security Standard) Level 2 compliant. For merchants that are not compliant on this
level Adyen offers a client-side encryption library that encrypts credit card information
locally on the shopper’s device using a merchant specific public key. The encrypted data is
then sent in encrypted form through the merchant’s server to the Adyen platform. Adyen
decrypts the data and processes the payment using the supplied card data. The public-private
key pair can be regenerated by the merchant if necessary. Adyen will use the latest private
key to decrypt the data.

The merchant in this case is experiencing errors indicated by the “Unable to decrypt
data” message. Adyen is unable to decrypt the supplied credit card information and this
causes the respective payments to fail. Although the actual problem has not been identified
yet it seems that the merchant is using an outdated public key for a subset of the transactions,
which corresponds to FC61 in Appendix A. Namely, only part of the transaction using the
encryption functionality failed with this error. Also the portion of failing transactions is too
large to be contributed to a possible internal problem of the API that also causes this error
(FC62 in Appendix A).

The problem results in several thousands of failed authorization requests each week
which corresponds to about 12.5% of the total number of requests. Because the data related
to this error is not readily available we cannot determine for how long this issue has been
taking place. We do know that this is at least 6 months, which means that tens of thou-
sands of payments have failed over this period for this merchant. Since we were unable to
follow-up on this problem the actual impact of this problem cannot be determined. If the
merchant has a backup payment mechanism in place it could be that the transactions were
eventually processed, but if this is not the case it could be that these failing transactions
have a significant impact on the revenue of this merchant.

The integrator mentioned that the merchant has different checkout channels. This causes
us to suspect that in one of these checkout channels an incorrect public key is being used.
We were however not able to verify this as we received no reply to our followup inquiries.

2https://www.pcisecuritystandards.org/

46

7.4. Case 3: Invalid encryption key

7.4.3 The integration process

The third party integrator mainly used the API documentation provided by Adyen. They
did not resort to GitHub or other sources to learn from code samples, but when in doubt
contacted the technical support team. Integration was experienced as very easy. The inte-
grator liked the documentation and needed only two days to complete all the required work.
Compared to competitors the Adyen integration was experienced as easier to do.

7.4.4 Error handling and monitoring

The integrator did not go into details on the error handling mechanism, but explained that
they are responsible for the handling of any errors that the API returns. Right after explain-
ing this the integrator said that they do not have any statistics on the error rate and do not
monitor the integration.

7.4.5 Suggestions

The integrator was overall pleased. “Adyen is already helping by reaching out and pointing
out the errors.” When we asked whether insights provided by the API provider into these
errors would help them, the integrator mentioned that since they are not monitoring it would
be very helpful if the API provider implements this on their side.

47

Chapter 8

API Consumer Perspective

The API consumer interviews provide useful case studies that illustrate the faults and prob-
lems API consumers face. However, the limited number of interviews is insufficient to say
much about faults and problems in API integration in general. Hence, we conduct a sur-
vey among API consumers to strengthen the fault category results, and to test the findings
outside the scope of the system under study. In addition, we aim to understand the cur-
rent practices and challenges of reducing the impact of problems caused by faults in API
integration.

Section 8.1 explains the methodology used to verify the categories and understand the
practices and challenges by means of a survey. In Section 8.2, the findings related to the
category verification are given as well as the impact of these fault types, and Section 8.3
elaborates on the practices and challenges in reducing API problem impact.

8.1 Methodology

In Chapter 6 we identified 11 fault categories to answer RQ 1. We challenge these categories
by testing them outside the scope of the system under study. To this end we survey API
consumers that have experience with problems related to API integration. We ask them for
each category whether they have experienced a problem. Furthermore, we allow them to
name additional categories to capture the ones we may have missed.

To complement the quantitative findings of the frequency of occurrence found in Chap-
ter 6 to answer RQ 2, the respondents are asked to rate the frequency of occurrence for
problems in each category. This provides an angle of insights that is different from the sys-
tem under study.

RQ 3: What type of faults do API consumers consider the most impactful?

To answer this question, we ask API consumers for each fault category how the impact
of related problems on their API integration is experienced.

49

8. API CONSUMER PERSPECTIVE

RQ 4: What are the current practices to avoid and reduce the impact of production prob-
lems caused by faults in API integration?

RQ 5: What are the current challenges to avoid and reduce the impact of production prob-
lems caused by faults in API integration?

We answer these questions by asking the participants about five topics. 1) the process
of integration to understand how the API consumer obtains the knowledge to implement
the API correctly, 2) API fault prevention to identify areas of improvements for the API
provider, which suggest current challenges face by the API consumer, 3) API error handling
practices employed by API consumers and the challenges they face while doing so, 4) the
fault detection mechanisms in place, and the areas the API consumer sees to improve and
why this is not in place, and 5) the API consumer’s idea of what causes faults and related
problems to occur.

In the remainder of this section we elaborate on the survey design and the sampling
process, which can be used as a structured way to survey API consumers. Surveys are
commonly used to gather information about processes, people or products. Although con-
structing a survey by putting together interesting questions seems straightforward and easy,
the process of setting up a survey requires careful thinking in terms of objectives, design,
participants and result processing [10, 16, 20]. For our survey we use the principles of
survey research as proposed by Kitchenham and Pfleeger [20] in six parts.

Section 8.1.1 describes the target audience. Section 8.1.2 explains the overall design to
conform to best practices, but also to make sure we obtain relevant results. Section 8.1.3
elaborates on the question design to target the intended audience and obtain the relevant
information. The survey evaluation is discussed in Section 8.1.4 and finally, the sampling
process and respondents are described in Section 8.1.5. Finally, Appendix C contains the
complete survey as sent to the participants.

8.1.1 Target audience

The target audience of this survey is developers that have experience in API integration
for an application that is used in production. To understand the participants in terms of
experience we ask them about their years of experience in both software development and
Web API integration. We exclude participants without API integration experience as they
do not fit our target audience.

In order to learn the most about API problems we ask the participant to consider the API
they worked with, which they consider to be the most complex and give them suggestions
as to what kind of metrics they can use to determine this. These include: offered features
and functionality, number of required or optional parameters and the number of possible
error scenarios.

In addition we ask them to answer the questions based on their experience, instead of
what they believe is happening or is the ideal situation. For instance, we would like the
participants to report their experience of what causes API errors to occur, and not what they
think causes these errors in general.

50

8.1. Methodology

8.1.2 Overall design

Next, we aim to understand the API that the participants integrated with. We expect de-
velopers to handle and detect errors in hobby projects differently compared to professional
applications. For this reason ask the participant to categorize the application using the API
as a professional, hobby, research and/or open source application. Furthermore we ask the
participant what the API does and what the number of developers is that worked on the
integration. The participants are asked to rate the API’s complexity based on their opinion
in terms different feature and functionality, required/optional parameters and value con-
straints, the number of possible error scenarios and finally the overall complexity. The
response is captured on a five-point Likert scale [23] with symmetric equidistant categories
and a midpoint. This allows us to treat the information on an ordinal scale. Note that with
these questions we do not exclude any participants based on how complex they consider
the API to be. Developers that only have experience with simple APIs can still answer the
questions. The contextual information however allows us to distinguish between responses
during analysis based on these metrics.

We are interested in the current faults that occur in API integration and the practices
in this area. To this end we ask our participants whether they have experience with API
integration in the last 3 years. If this is not the case they are thanked for their participation
and disqualified from taking the survey.

To motivate people to answer the survey we supply three key pieces of information as
suggested by Kitchenham and Pfleeger [20]: the purpose of the study, the relevance to the
participant and how confidentiality will be preserved. Furthermore, we offer the option to
be notified of the results of the study via email to encourage people to take the survey as
there is a reward for them.

To avoid bias in the survey we tried to use wording that does not influence the way
the respondent thinks about questions and the corresponding answers. For instance asking
“Do you think this idea is good?” introduces bias as it suggests the idea to be good. Also,
we thought about the order of the questions, such that the answer to one question does not
influence subsequent responses to other questions.

To capture any comment on the survey itself or the topic the participant has the option
to include feedback at the end of the survey. This allows us to identify possible problems
with the survey or can point us to thoughts or ideas we have not come up with.

8.1.3 Question design

The questions are designed to directly relate to the survey objectives, while making the
objectives measurable. Kitchenham and Pfleeger [20] recommend questions to be purpose-
ful, meaning the respondent can see the relationship between the survey objectives and the
intention of the question. They argue that if the purpose of the question is unclear, the
participant may ignore the question or provide a less thoughtful response. To this end we
describe the intentions and the goals of the survey at the beginning. Also, the questions are
to be concrete; precise and unambiguous. To conform to these recommendations we include
additional explanation when the terminology we use can be interpreted in multiple ways.

51

8. API CONSUMER PERSPECTIVE

Section 8.1.4 explains how we further limit ambiguity and unclarity by means of evaluation
with test participants.

We formulated two types of questions: open and closed [20]. Closed questions are
easier to analyze as the choice of reply is restricted. The restriction on the other hand may
force the participant to make a choice even though they are unsure about the answer. For
this reason we include an “I don’t know” option when this is a logical choice, e.g., the
participant may not know the impact of a particular problem. However, this option is not
applicable when asking the participant how often they made use of code examples.

One of the objectives is to verify the completeness of the fault categories. We account
for this objective by providing the option “other” to the list of choices in our question
about the categories. The participant is given the chance to complement the list with other
categories that they feel are missing.

For the answer options we use a five-point Likert scale with symmetric equidistant cat-
egories and a midpoint where possible. Not in all cases we found a five-point Likert scale
with a neutral midpoint to be an adequate set of answers. For instance, the question about
the impact of faults in API integration in our opinion is best answered using the four-point
Likert scale with options: none, low, moderate and high. Using for instance very high as
fifth option will introduce uncertainty and undermine the equidistant property. The partici-
pant may have trouble determining whether the impact of the fault was high or very high as
the difference is not clear.

We complement the closed questions with open questions as we are interested in the
API integration practices of the participants and their ideas on how to reduce the number
of problems. To reduce misinterpretation and confusing answers, the open questions are
mostly followup questions to closed questions, such that the participant has more knowledge
and context about the question.

8.1.4 Evaluation and improvements

We pre-tested the survey with five participants to make sure the questions are understandable
and to remove possible ambiguities. The participants were asked to read the questions aloud
as well as what they were thinking when answering the questions. This helped us understand
the participants’ reasoning and identify problematic situations.

Participant 1
1) Additional explanation was added to the survey introduction to clarify the notion of Web
API integration. 2) We emphasized that the questions are to be answered in the context of
an API that is used in production. 3) The order of the questions was changed to reflect a
more natural order in which we start with integration questions.

Participant 2
1) More information was added to some of the answer options to remove ambiguities. E.g.,
the term resource is ambiguous in the context of APIs as it can refer to an endpoint or a
remote object on the server. 2) To explain the relationship between the different stakeholders

52

8.1. Methodology

involved an image was added to illustrate this. 3) We emphasized that the questions are to
be answered based on the participant’s experience with an application they worked on.

Participant 3
1) In all questions related to problems in production we emphasized the production aspect.
2) The exhaustiveness of the answers was improved by adding additional options. 3) The
coherence between the questions was improved and alternative scenarios were covered, such
as the situations in which participants have not experienced any errors in production.

Participant 4
1) An open question was clarified as participants were inclined to answer the question based
on information given in preceding questions. 2) Participant 4 mentioned that the question
asking for the years of experience in API integration may be confusing to answer, because
one does not work on API integrations continuously. However, after considering other
options, e.g., using a Likert scale, we decided to leave the question as is.

Participant 5
1) The key aspects of the explanations are highlighted to indicate the important aspects.

Besides a few minor improvements, such as spelling mistakes, participant 5 did not
experience any unclarities, ambiguities or incomplete answer possibilities.

8.1.5 Sampling and respondents

The target audience for this survey, developers that have integrated with a Web API that
was used in a production environment, is difficult to reach. To our knowledge there are
no dedicated communities for this topic and therefore we resort to communities that target
developers in general or have a subsection that is related. We posted on the following pro-
gramming communities: Code Ranch’s1 Web Services forum, Hackernews2 and Reddit’s3

subreddits programming (815,000 subscribers), Webdev (160,000 subscribers), API (600
subscribers) and WebAPIs (235 subscribers). Although the number of subscriber for the
first two subreddits is high, the topics are very general, so the expected number of responses
from these is relatively low compared to the more specific forums.

To increase the response rate we additionally resorted to non-programming specific me-
dia and personal contacts. The survey was shared with the general public on Twitter by
two colleagues; one with primarily academic followers (2500) and the other with a mix of
academics and practitioners (4600 followers). In total the posts were retweeted 25 times.
On LinkedIn our post was viewed approximately 1000 times and was shared by two con-
nections. Three companies in industry were contacted via personal contacts of which one
was Adyen, the company under study. Lastly, the author reached out to personal contacts
that match the target audience as described in Section 8.1.1.

1https://coderanch.com/
2https://news.ycombinator.com/
3https://www.reddit.com/

53

8. API CONSUMER PERSPECTIVE

The survey has been online for three weeks and a total of 29 participants completed the
survey out of 70 who answered at least 1 question. 7 people were disqualified, because they
did not meet the requirements to participate as explained in Section 8.1.2. We decided to
consider partial responses in the results as well, but only those participants that answered
questions that are not background related, resulting in an 11 partial responses. Table 8.1
shows for the separate ways of sharing the number of complete and partial responses.

Shared via Complete Partial Total
Adyen 10 0 10
Code Ranch 0 1 1
Hackernews 1 0 1
LinkedIn 2 0 2
Reddit 5 4 9
Twitter 9 6 15
Other companies and contacts 2 0 2
Total 29 11 40

Table 8.1: The number of complete and partial survey responses per means of sharing the
survey.

On average the respondents have over 10 years of development experience and 5 years
of API integration experience. 13 of the developers were individually responsible for the
API integration and 27 worked in a team of two or more developers.

95% of the respondents answered the survey based on an application that they worked
on in a professional setting. The remaining 5% used an API in a hobby project, which
however was used in production. 13 APIs used by the participants were data management
related. For instance, providing data about products and orders, and managing financial and
account data. Payment related APIs were considered 6 times. Even tough many respondents
are from Adyen, a payments company, only 3 of the respondents considered an payment
related API. Other APIs that the participants integrated with are used for authentication,
ecommerce, project management, geocoding and notifications, such as SMS services.

The participants were asked to rate the API’s complexity in terms different feature and
functionality, required/optional parameters and value constraints, the number of possible
error scenarios and finally the overall complexity. Figure 8.1 shows the responses on a Lik-
ert scale distribution for the four complexity metrics. The participants consider the number
of possible errors returned by the API to add the most complexity. The number of different
features on the other hand seems to contribute less to the complexity of the API. Overall
half of the participants consider the API as moderately complex. One participant could not
recall the complexity of the API in terms of the number possible errors returned by the API.

54

8.2. Fault types and their impact

Figure 8.1: The complexity of the API considered by the survey participants based on
different properties.

8.2 Fault types and their impact

In this section we describe the results of the survey related to the 11 identified fault cate-
gories. Section 8.2.1 reports on what fault types are encountered and how often they are
experienced by API consumers. Section 8.2.2 elaborates on the experienced impact of these
fault types by API consumers.

8.2.1 Fault types experienced by API consumers

The survey participants were asked to indicate how often they experienced production prob-
lems with the API in each of the 11 categories. Figure 8.2 illustrates the response distribu-
tion on 4-point Likert scale Never, Rarely, Sometimes and Often.

Missing server data and configuration related problems were experienced relatively
more often than other problems for the participants. Problems caused by the API provider
and third parties, internal and third party fault related problems respectively, are relatively
experienced more than other problems caused by the API consumer or end user. It is to
be noted that for third party faults 10 out of 34 respondents did not know whether these
problems occurred or regarded the category as not applicable. Missing request data and
missing user input faults both result into less problems than invalid request data and invalid
user input faults. The latter two are experienced relatively by most participants. Expired

55

8. API CONSUMER PERSPECTIVE

Figure 8.2: How often API related problems are experienced in a production environment
per fault category by the survey participants.

request data and double processing related problems are not experienced by over half of the
participants.

Several participants added additional categories to the 11 we propose. Four participants
mentioned that they experienced errors because the API was not responding. We summarize
these issues as API downtime, which we consider part of the internal category. Further-
more, two participants experienced problems caused by hitting the API requests limits. We
regard these to be related to faults in the insufficient permissions category. Namely, the API
consumer is not allowed to make more requests.

RQ 1: What type of faults, resulting in API errors, are impacting API consumers?

The survey results verify the completeness of the 11 categories identified in Sec-
tion 6.2. Although the participants propose additional categories we regard them as part
of previously identified categories.

56

8.2. Fault types and their impact

RQ 2: What is the prevalence of these fault types, and how many API consumers are
impacted by them?

Based on the survey results, missing server data and configuration faults were ex-
perienced the most by API consumers. Faults caused by the API provider and third
parties, categories internal and third party respectively, were also found to impact rel-
atively many API consumers. Double processing and expired request data faults were
not experienced by over half of the participants.

8.2.2 Fault type impact experienced by API consumers

To understand the impact of problems in API integration we asked the survey participants
what the impact of the problems they experienced in each fault category was. Figure 8.3
shows the distribution of problem impact on 4-point Likert scale None, Low, Moderate and
High.

Figure 8.3: The impact of API related problems per fault category as experienced by the
survey participants.

57

8. API CONSUMER PERSPECTIVE

High impact Internal and third party related problems, caused by the API provider and
third parties, are experienced as most impactful on production applications.

Low impact Problems originating from the end user, such as invalid user input and miss-
ing user input, have a relative small impact on the applications using the API.

Notable Interestingly, double processing related problems seem to have either no im-
pact, or relatively much impact compared to the other categories.

RQ 3: What type of faults do API consumers consider the most impactful?

Faults caused by the API provider and third parties are experienced most impactful
according to API consumers. On the other hand, faults originating from the end user
are regarded as having the least impact.

8.3 API integration practices and challenges

The current practices of API integration were investigated in terms of the process of in-
tegration, error handling and fault detection, and are reported on in Sections 8.3.1, 8.3.3
and 8.3.4 respectively. Similarly, the challenges of these aspects were identified. We re-
port on the fault detection challenges and problem causes experienced API consumers in
Sections 8.3.2 and 8.3.5.

8.3.1 API integration by API consumers

To understand how API consumers obtain the knowledge necessary to integrate with an
API we asked them how often they used different information sources. Figure 8.4 shows
the usage of four information sources by the survey participants on a 5-point Likert scale.

Official API documentation is by far used the most. 74% of the respondents indicated
to be using this source of information often or very often. Only 10% did not use official
API documentation when integrating with the API they selected during the survey. Code
examples are second most used with 44% of the participants using them often or very often.
About one-third of the participants uses them sometimes. Questions and answer websites
are used never or rarely by 42% of the participants, while the number of participants that
uses this information source very often is relatively low with 10%. The API provider support
team is used the least with only 18% of the participants using this source often or very often.

In addition to the four proposed information sources the participants mentioned other
sources of information. Four participants mentioned that they used a trial and error approach
on the API to discover what is possible and what is not. Three respondents had access to
the API’s source code or used the schema definition of the web service to understand the
workings of the API. Finally, two participants used the source code of existing external
libraries that wrap the API to understand how to use the API.

58

8.3. API integration practices and challenges

Figure 8.4: The usage of different API integration information sources.

8.3.2 API fault prevention

The API provider can help prevent failures in API integration. The survey participants were
asked what the API provider can do to prevent problems experienced with the API according
to them.

Of the respondents (n = 18) 13 mentioned the documentation should be improved.
Common implementation scenarios could help prevent problems, instead of only stating
the different options for API calls. The restrictions of calls and parameters should be more
clearly documented. The API provider should identify the most common API mistakes and
describe how to prevent them. In addition, more details on error codes should be given and
the edge cases should be highlighted and better explained. Two participants mentioned the
need of an API status page to inform the API consumer of any outages. On call support
for any issues was a suggested improvement by two more participants. The participants
suggested both more informative error messages as well as a categorization of errors based
on their similarities. Furthermore, the respondents mentioned the importance of an upgrade
policy of the API and the usefulness of more code examples to illustrate the different API
calls. Lastly, one participant suggests the API provider to set up a testing environment that
is capable of returning all possible API errors, which allows the API consumer to properly
test and handle these responses.

8.3.3 API error handling

Not properly handling API error messages can result in application failures. It is therefore
interesting to know how API consumers handle API errors returned by the API. We asked
the participants to indicate how they handle API errors by asking how often they used dif-

59

8. API CONSUMER PERSPECTIVE

ferent types of error handling. The results, given on a 5-point Likert scale, are given in
Figure 8.5. We distinguish between specific logic, general logic and no logic.

Specific logic Custom error handling for unique error codes or messages, such as error
code and message “137 - Invalid amount specified”.

Generic logic Error handling is the same for a group of error messages, such as all error
messages returned with HTTP status code 500.

No logic No error handling in which case errors are not acted upon.

Figure 8.5: The usage of different types of API error handling logic.

Note that this figure is not to be interpreted as a regular Likert distribution in which
the different items are compared by studying the relative response for each answer type.
Namely, for specific logic error handling the always answer is the most positive, while
for no logic error handling never is the most positive. For this reason we discuss them
separately.

Specific logic, used to handle distinct error responses, is used often or very often 48%
of the time. Only 12% of the participants does not use specific logic to handle errors.
Generic logic to handle errors is used most often compared to the other methods of handling.
35% of the participants always has generic logic in place to handle a group of API errors.
All participants use generic logic to some extent as none answered never. 45% of the
participants handle all errors in some way; they do not use no logic in which case errors
would not be acted upon. In total, 79% of the participants rarely or never has no logic to
handle errors and only 17% indicates to often not handle all errors.

A subset of the participants (n = 15) elaborated on the challenges they face in error
handling. One of the main difficulties is understanding the impact of API errors. Three
impact perspectives were mentioned: an implementation perspective, business perspective
and end user perspective. Not knowing the details and impact of an error makes it difficult
from an implementation perspective to know what the request did and did not do. “E.g.,
you send a batch of 20 objects to be saved, but an error gets thrown. However, you don’t

60

8.3. API integration practices and challenges

know if none of them was saved or all of them but one.” From a business perspective it
is experienced as difficult to understand the business impact of the error. The error may
explain that a parameter is invalid, but the consequences of this remain unclear. Finally, it is
experienced a challenge to communicate errors to the end user. “Translating the messages
to something actionable by the end user.”

Another challenge faced in handling errors is the appropriate way to recover. Difficulties
experienced include insufficient clarity and documentation about the right way to recover
from a given error. “Often errors have no clear recovery option or even worse, do not clearly
indicate what’s wrong.” Handling errors is difficult when the different flows the application
should take given the API response are not clear. This is even more difficult when multiple
related API calls are subsequently made and can fail with different errors.

In the development process it is experienced as difficult to know what edge cases will
result in errors and which should be handled and which are not likely to occur. “The large
number of edge cases, which can lead to more errors if not all handled well.” The partic-
ipants experience difficulties because not all error responses are documented or there are
insufficient error details to allow for proper error handling.

8.3.4 API fault detection

The survey participants (n = 29) were asked how problems in their application with the API
were detected. Figure 8.6 displays the number of responses for each detection mechanism.

The end user detects problems in the application related to the API integration for 23
respondents. Log analysis is second most effective in detecting problems with 19 respon-
dents. Monitoring dashboards have detected issues for 13 respondents and both alerts, such
as SMS or email, and API integration tests worked for 9 respondents. 5 respondents had
additional mechanisms in place, among which are “continuous live smoketesting”, “man-
ual tests in production” and “Runscope Radar4”, which is an API monitoring tool that can
detect downtime and schedule API test cases”.

To understand what type of detection mechanisms the participants do not have in place,
but would be useful we asked them how they could improve the detection of problems
(n = 19).

Testing related improvements include testing the API with random input to better cover
client use-cases. Another approach would be to test every API error response, but the re-
spondent noted that this would be an unfeasible amount of work. Daily running API test
cases was another suggestion to detect changes to the API’s behavior. Another code related
improvement is to add more descriptive exceptions, such that they can be used to detect
problems.

Several log related improvements include enriching current log messages with more
details about the error and daily analyzing the logs for anomalies.

In terms of monitoring the respondents mentioned that using monitoring system Sentry5

could improve the problem detection. Other improvements include verifying the API re-

4https://www.runscope.com/
5https://sentry.io/

61

8. API CONSUMER PERSPECTIVE

Figure 8.6: The usage of different means of detecting problems in API integration.

sponses. “Strict specification and validation of responses and trigger alerts if the responses
differ.”

Two participants noted that there was no difficulty in detecting problems in their system.
“Pretty happy with our detection rate at the moment.”

We further asked the participants (n = 16) why this way of problem detection is not
in place. The most prominent reason being the amount of work required to get such a
mechanism into place. It is a large time and cost investment, or the priority is with other
projects. “There is a steep time investment and it would only deliver in edge cases. Also it
has a questionable return on investment.”

8.3.5 Underlying causes

To understand why API related problems are introduced in the first place we asked the
participants (n = 22) about their idea of the underlying causes. The respondents where
asked to answer based on their experience with a production application integrated with an
API in mind.

The biggest cause of API related problems, according to the respondents, is the API
documentation. Problems arose due to missing documentation, incomplete documentation,
incorrect documentation or documentation that is not specific enough to cover the details.
Furthermore, an insufficient number of examples makes it more difficult to understand the
API as well as the lack of an architectural explanation of how to implement the API. These

62

8.3. API integration practices and challenges

documentation specific issues make integration more difficult and force the API consumer
to make assumptions, which in some cases turn out to be incorrect.

The API itself was named as cause of problems as well. The API should be fault tol-
erant in that it captures and handles third party errors. Furthermore, it should do validation
of the input to avoid duplicate requests and should not crash on input that it cannot handle.
Configuration and security policy changes were named as causes of API problems. “Unex-
pected caching or gateway changes.” Improper versioning combined with changes in the
API were found to cause compatibility issues often leading to API errors. Lastly, incon-
sistencies between different APIs from the same provider can cause confusion and lead to
incorrect assumptions followed by potential API errors.

Three respondents denoted themselves as origin of API problems. “I think it’s almost
always the fault of the developer of the software that is using the API. Bad APIs and more
importantly bad documentation make it very hard to interact with them without something
going wrong, but at the end of the day, unless the API unpredictably failed, it is something
I could have caught in testing.” Further causes include hitting the API limit and not hav-
ing error handling in place to deal with this scenario, and miscommunication with the API
support team resulting into misinterpretation that subsequently results in incorrect imple-
mentation.

RQ 4: What are the current practices to avoid and reduce the impact of production
problems caused by faults in API integration?

API consumers most often use official API documentation to implement an API
correctly, followed by code examples. The impact of faults and potential problems is
reduced via specific error handling. However, not as often as via generic error han-
dling. Most often, API related production problems are detected by the end user of the
application, followed by log analysis and monitoring dashboards.

RQ 5: What are the current challenges to avoid and reduce the impact of production
problems caused by faults in API integration?

The challenges of preventing problems from occurring are the lack of implemen-
tation details, insufficient guidance on certain aspects of the integration and insights in
problems and changes. Handling is experienced challenging due to an insufficient un-
derstanding of the impact of problems, missing guidance on how to recover and a lack
of details on the origin of errors. Detection is challenging because of the unfeasibility
of testing all scenarios, a lack of detailed exceptions and the amount of work required
to analyze logs regularly. In addition, missing, incomplete, incorrect and unspecific
documentation makes avoiding errors more difficult as well as APIs that cannot handle
specific input, or do not do versioning properly.

63

Chapter 9

Recommendations

We learned about the type of API faults that occur, their occurrence and impact. Further-
more, we obtained an understanding of the current practices and challenges in reducing the
impact of API fault related problems in terms of integration, error detection, error preven-
tion and error handling. Based on this knowledge, we formulate recommendations for API
consumers and API providers to reduce the impact of API faults.

The ultimate scenario would be a situation where there are no failures. Although de-
batable whether this is practically achievable there are two ways to reduce the impact of
production problems related to API faults: 1) Reduce the number of problem occurrences
and 2) reduce the impact of individual problem occurrences. This starts with detecting
faults related to API integration that manifest in errors. Once a fault has been detected, the
options are to prevent the fault in the future or to handle it appropriately. Figure 9.1 gives
an overview of this. Newly detected faults can already be handled by the application using
generic or specific logic. Handling API faults can help to reduce the impact that these faults
would have without handling. Preventing the API faults from occurring again naturally
eliminates the impact that the faults could have.

Figure 9.1: Reducing the impact of API related problems.

In Section 9.1 we elaborate on the appropriate detection actions to take for faults in each

65

9. RECOMMENDATIONS

category and make a suggestion for the API provider to help the API consumer identify API
related faults. Section 9.2 describes what fault types can be prevented and explains the
different approaches to do so. Next, Section 9.3 discusses the methods of handling faults of
the different types. Table 9.1 gives an overview of the detection action, prevent action and
handle action for each category. Finally, in Section 9.4 we discuss the priority of different
problems based on their impact.

Stakeholder Category Detection action Prevent action Handle action
End user Invalid user input Prevent + Handle Validation Feedback + Retry
End user Missing user input Prevent + Handle Validation Feedback + Retry
End user Expired request data Handle - Feedback + Retry
API consumer Invalid request data Prevent + Handle Fix Recover
API consumer Missing request data Prevent + Handle Fix Recover
API consumer Insufficient permissions Prevent + Handle Fix Recover
API consumer Double processing Prevent + Handle Fix Recover
API consumer Configuration Prevent + Handle Fix Recover
API consumer Missing server data Prevent + Handle Fix Recover
API provider Internal Handle - Retry/Recover
Third party Third party Handle - Retry/Recover

Table 9.1: The different actions to take as an API consumer when detecting, handling or
preventing types of API faults.

9.1 Fault type detection

The goal of detecting faults is to be aware of what happens in the system, and to understand
the potential consequences of detected faults and to act appropriately. In Section 9.1.1 we
describe the actions to be taken for each category once a fault has been detected. Sec-
tion 9.1.2 outlines a proposal for the API provider that can help the API consumer identify
API related faults.

9.1.1 Fault detection action

After identifying a fault, the API consumer can decide to prevent the fault from occurring
again, to handle the fault to reduce the harm it may cause, or to ignore the fault. We argue
that the categories of faults, identified in Chapter 6, cannot be acted upon the same and
elaborate on this per category. Table 9.1 displays for each category the action to be taken.

Expired request data faults are caused by the end user and indicate that the input data
was no longer valid at the moment of processing. When dealing with input data that can ex-
pire, this fault cannot be 100% prevented from occurring. Thus the way to reduce the impact
of these faults is to reduce the impact of individual occurrences by handling appropriately.
Internal and third party faults, caused by the API provider and third parties respectively, are
outside the reach of the API consumer. The API consumer may work together with both of
these stakeholders to resolve the origin of the faults, however can not do this on their own.

66

9.1. Fault type detection

Reducing the impact of individual fault occurrences by handling the faults is therefore the
best option.

Faults in the other categories on the other hand can be prevented by the API consumer.
Section 9.2 elaborates on this. Logic to handle these faults is however still recommended in
case new faults are introduced or previously known faults reoccur.

Recommendation 1: Be aware of the detection action per fault category

API consumers should resort to error handling to reduce the impact of the errors
in categories that are outside the control of the API consumer. Errors in these fault
categories cannot be prevented.

The appropriate action for errors related to other fault categories that can be con-
trolled is to prevent the error from occurring again to eliminate the impact. Handling
logic is still recommended for these faults types to limit the impact once they reoccur.

9.1.2 API error detection dashboard proposal

In Section 8.3.4 we saw that application problems related to API integration were most often
detected via end user inquiries. Survey participants explained that they could improve fault
detection using tests, better logging, daily analysis and monitoring. The amount of work,
time constraints and cost investments were the primary reason for this to be not in place.
Furthermore, the interviewees reported they had no automatic monitoring system in place
to identify errors and that manual analysis was required to attempt to do so.

Instead of having all API consumers monitor their API integration to identify issues and
anomalies, the API provider can do this for them. The API provider receives all incoming
requests, processes them, determines that a request cannot be processed, and returns an API
response. In other words, the API provider has all necessary information to detect potential
problems for the API consumer.

An implementation of this idea would be an API consumer facing dashboard that shows,
for a configurable time period, the number of API errors returned per unique error message.
In addition, the error type and handling action as proposed in Section 9.3.4 can be included.
This overview can be especially useful for API consumers that do not have the technical
capabilities or development resources to identify these errors themselves. Undocumented
explanations of the error message can be added over time. The API consumers can con-
tribute in this respect making the documentation partially a community effort.

The interviewee in Section 7.2 mentioned that a non-technical person interested in the
correctness of the API integration often does not have the skills to go through the server
log files to discover what is going on. By including the API requests and responses in the
dashboard, both technical and non-technical people can quickly look into the request data
and get an intuition of the problem.

To help the API consumer identify the cause of the problem, each of the error messages
displayed in the dashboard should link to detailed documentation about that message. In
addition to an explanation of the error message the underlying fault explanations should be

67

9. RECOMMENDATIONS

given, including the steps necessary to solve the problem. For instance, the documentation
on error message “Invalid amount specified” of the system under study should include the
four fault case descriptions described in FC29-F32 in Appendix A and additional mitigation
actions. The information will allow the API consumer to more quickly identify, understand
and fix API related problems. API support will be proactive, instead of reactive. In other
words the consumer is contacted and notified of a potential issue they may have, instead of
the consumer finding an issue and contacting the API support team to identify the problem.
The workload of the API provider’s support team can therefore be reduced, since consumers
are able to troubleshoot issues on their own. Not only will this be applicable to existing API
integrations, new API consumers can benefit from this information during integration to
help them identify problems more effectively.

The API consumer should be able to configure alerts such as email or SMS to be noti-
fied of new API errors. This way API consumers will become aware of new or recurring
issues immediately. Problems that went undetected for months such as the case described
in Section 7.2 this way would have been identified right after its first occurrence.

In some cases the API consumer may be aware that certain errors occur. They may
regard the errors as non-critical or may deliberately use the API’s validation and handle the
accompanying errors. The API consumer should therefore be able to annotate certain error
messages as acknowledged or non-critical, such that they are not alerted upon. Perhaps a
non-critical error is not a problem when it occurs only a couple of times per month, but needs
further action when the error rate increases to several thousand occurrences. A threshold
per error message should prevent any alert from being triggered as long as the error rate
remains below the threshold.

This solution is applicable to all consumers of an API, which can become a worth-
while investment when the number of consumers is large. In addition it may make the API
provider aware of any internal issues it may have which are experienced by their consumers.

Recommendation 2: Provide API error insights

The API provider can exploit API usage data to provide proactive insights into
potential problems for the API consumer. For instance, an API consumer dashboard
that shows the different experienced errors with pointers to detailed error explanations
and mitigation documentation. Using alerts, API consumers can be notified instantly of
new potential problems.

9.2 Fault type prevention

The impact of API faults can most effectively be reduced by preventing these faults from
occurring. We discuss two types of prevention: validation of the input and fixing the un-
derlying problem. These are discussed in Section 9.2.1 and 9.2.2 respectively. Table 9.1
provides an overview of the types of prevention per category.

68

9.2. Fault type prevention

9.2.1 Prevent by validation

Two types of faults can be prevented by validation. Invalid or missing user input faults
are caused by the end user in an API integration. The API consumer can limit the num-
ber of faults by performing both client-side and server-side validation. Using client-side
validation the end user receives immediate feedback while filling out or submitting a form,
while potentially increasing the user experience. In case of server-side validation, the end
user submits information to the server, that performs the validation and informs the end
user about any mistakes made. Both solutions avoid a call being made to the API. This
removes an opportunity for network connectivity issues and saves the additional request
and response time. Client-side validation has the preference as this reduces client-server
interaction. However, for security reasons, server-side validation is still necessary.

To help the API consumer prevent invalid and missing user input faults the system under
study offers a JavaScript library that does client-side card data validation, which checks
whether the card number is valid according to the Luhn algorithm [19] and offers basic
validation of other fields. The form cannot be submitted when one or more fields are not
valid. Using client-side validation API consumers are able to reduce end user drop-off and
increase the number of payments made.

Recommendation 3: Validate user input

The API consumer should validate the end user’s input to avoid redundant calls to
the API. Client-side validation can improve user experience and server-side validation
is required for security purposes.

Survey participants mentioned that the restrictions of calls and parameters should be
more clearly documented. The API provider can contribute to the quality of the validation
logic of the API consumer by providing elaborate field specification information in the API
documentation, such as:

Requirement States whether the field is required or not.

Field type Denotes the data type of the field, e.g., integer, decimal or string.

Input constraint Explains what format a value should have, e.g., a valid email address
or the minimum and maximum range for digit values.

Recommendation 4: Provide parameter information to enable validation

The API provider should provide the following detailed API request parameter
specifications to enable proper validation by the API consumer: whether the field is
required, the field type and the input constraints.

69

9. RECOMMENDATIONS

9.2.2 Prevent by fix

In this section we discuss the following categories of faults: invalid request data, missing
request data, insufficient permissions, double processing, configuration and missing server
data. The errors caused by these problems are all caused by the API consumer, who is
responsible for sending in the request in the first place. For this reason the only way to
prevent faults of these types from occurring again is to identify the underlying problem and
fix it. Although this sounds like an intuitive way to reduce the number of faults, it is not a
simple process by default.

Invalid or missing request data faults can be caused by misinterpretation of the specifi-
cations, or due to a bug which causes the request data to be malformed or missing. The API
consumer can reduce the number of errors by including integration tests in the development
process. The integration tests should call the API and cover the intended behavior of the
consumer’s application. The API responses should match the expected responses defined
in the tests. This approach’s effect is twofold. First, during development the developer can
verify the correctness of the API integration by rerunning the tests after making changes.
Second, if run regularly, the tests can verify that changes made to the API do not impact the
API integration.

Configuration and insufficient permissions faults are caused by incorrect API settings
and insufficient rights respectively. These mistakes can occur due to incorrect assumptions
about what is possible and what is not. Also, changes to the configuration or permissions
may break existing functionality. For this reason tests to verify the intended functionality
will help during development to avoid faults during integration. Once the tests are in place
they should be run regularly to verify that changes to the application, API, configuration
and permissions do not break any functionality. If new issues are detected tests should be
added to cover the functionality.

Recommendation 5: Use continuous testing and periodic testing

The API consumer should have API integration tests in place to verify the correct-
ness of the integration as part of the software delivery pipeline; continuous testing. In
addition, these tests should be run periodically, apart from the delivery pipeline, to ver-
ify that changes to the API, configuration and permissions do not break functionality.

To aid the testing process of the API consumer, the API provider can supply a set of test
cases that each comprise of request parameters and the expected response. The test cases
should be available per feature, such that the API consumer can quickly select the applicable
tests for their integration. The API provider may be able to supply more effective tests cases
compared to those the API consumer can come up with as the knowledge of the API design
and implementation lies with the API developers.

70

9.2. Fault type prevention

Recommendation 6: Offer a complete set of test cases

The API provider should provide a complete set of test cases for the API consumer
that cover request parameter specifications and expected responses.

Double processing faults are the results of sending the same request multiple times,
while this is not allowed. We found these faults to be introduced by accident in the form
of a bug, and not because of incorrect assumptions. Testing in this case is not a feasible
solution, because it can be hard to identify the cases in which this problem may occur.
Therefore faults in this category should be investigated when detected and fixed if deemed
important.

The same holds for missing server data faults. We found errors related to these faults,
caused by incorrect management of resource identifiers, to be most often introduced by
bugs. Test cases to cover these types of faults can be difficult to identify and therefore
detecting them is essential. API consumers can limit the number of these errors by not
managing these resources locally, but instead requesting them on-demand using an identifier
which is fixed. In case the consumer chooses to manage resources locally for performance
reasons they should be fully aware of what actions may alter a remote resource, such that
they can update it.

Recommendation 7: Fix API consumer faults

Errors related to API consumer categories can only be prevented by the API con-
sumer themselves. The API consumer should therefore implement a fix for all errors
in these categories to eliminate the potential problem impact.

Similar to what is explained in Section 9.2.1, the API provider can help the consumer
prevent API errors by providing an accurate and elaborate API reference manual including
the field requirement information, field types and input constraints. As suggested by survey
participants, high level architectural advise will help to understand how the API is intended
to be implemented. This can help avoid faults related to missing server data for example.
In addition the documentation in terms of manuals, tutorials and FAQs should be update to
date, correct, explain all functionality and leave no room for interpretation. Finally, enough
code samples should be supplied to illustrate the appropriate use of the API.

Recommendation 8: Provide implementation architecture recommendations

The API provider should provide an architectural recommendation for API inte-
gration by the API consumer. For instance, by providing a reference implementation.

71

9. RECOMMENDATIONS

Figure 9.2: The impact of error handling on the cause-failure chain.

Recommendation 9: Provide effective documentation

The API provider should provide complete, correct, up-to-date and unambiguous
documentation. Code examples are a must to illustrate the appropriate use of the API.

9.3 Fault type handling

Faults are bound to occur and detection is essential. Although detection can help identify
problems and prioritize what to improve, it is still necessary to handle known and unknown
errors that occur in production properly to reduce the impact that they would have without
handling. Figure 9.2 shows the result of handling API errors based on the cause-failure
chain explained in Section 3.2. Although the failure scenario is mitigated, the underlying
cause and the accompanying faults and API errors remain.

We distinguish between three different ways of handling requests: feedback and retry,
recover and retry or recover. These are discussed in Sections 9.3.1, 9.3.2 and 9.3.3 respec-
tively. Finally, in Section 9.3.4 we suggest API error response practices for the API provider
to help the API consumer handle faults. Table 9.1 provides an overview of the fault handling
methods per category.

9.3.1 Feedback and retry

The first way of handling API errors is related to all end user fault categories: invalid user
input, missing user input and expired request data. A retry of the same request will result in

72

9.3. Fault type handling

the same error as the request failed because of a problem with the data. Therefore changes
are to be made, before the request can be resubmitted. To this end the API consumer should
give the end user feedback in terms of what has gone wrong and what actions should be
taken to resolve the issue. Subsequently the request should be retried with different input.

The API consumer may deliberately use the API provider for validation. In this case the
consumer accepts the extra request time and should have the described handling in place to
inform the end user. In this case the API consumer is aware of the fault, but avoids failure
by handling appropriately.

Recommendation 10: Handle end user faults by providing feedback and retrying

The API consumer should provide actionable feedback to the end user when the
end user causes an API error. After making changes to the request, the request should
be retried.

9.3.2 Recover

Recovering is the error handling solution for faults that cannot be retried by the end user
as the origin lies at the API consumer. Furthermore, a second attempt for faults of type
invalid request data, missing request data, insufficient permissions, double processing, con-
figuration and missing server data will result in the same error unless the implementation
is changed, or the configuration or permissions are updated. There recovering is the best
option to reduce the impact of the fault. In addition, the API consumer should look into the
problem and fix the issue if deemed important.

Recommendation 11: Recover from API consumer faults

The API consumer should recover from API consumer related faults to reduce the
impact, as these requests cannot be retried. Identifying the problem and implementing
a fix is recommended.

9.3.3 Retry or recover

The third way of handling API errors considers internal and third party faults. In case the
fault is caused by, for instance, a temporary service outage or a connection timeout, the
original request may be handled correctly in a second attempt. The requests resulting in this
sub-type of fault could be retried a predefined number of times on a certain interval, before
resorting to recovering. It is however possible that there is an implementation mistake on
the API provider or third party side. In that case a retry will yield the same error every time.
Faults that cannot be retried should be handled by recovering only.

73

9. RECOMMENDATIONS

If possible, a distinction should be made by the API provider between retriable and non-
retriable errors, such that the API consumer can effectively handle the underlying types of
faults.

Recommendation 12: Distinguish between retriable and non-retriable errors

The API provider should distinguish between retriable and non-retriable errors to
facilitate the error handling process of the API consumer.

Recommendation 13: Retry or recover from API and third party faults

The API consumer should recover from by API and third party related errors by
retrying a predefined number of times if the request is retriable. In case the request
is not retriable, or the defined number of retries has been reached, the API consumer
should resort to a recover mechanism to reduce the impact.

9.3.4 API error response proposal

The API provider can help the consumer make the choice of what handling mechanism
is appropriate. An error code and message allow for specific error handling logic to be
implemented. Interview and survey participants however noted that mapping all errors is
unfeasible because of the required development time and the often incomplete or insufficient
error details that are given. Generic error handling can therefore be used to capture groups
of error messages which are not handled specifically. This approach also allows previously
unknown errors to be captured, which would be missed by specific handling logic. Generic
error handling logic is also found to be used most often.

Recommendation 14: Use generic error handling for unknown errors

The API consumer should implement generic error handling for unknown errors,
such that the impact of these errors is limited. If possible, groups of similar errors
should be targeted with group-specific error handling mechanisms to reduce the impact
even more.

Survey participants mentioned that it is often unclear what the right way to handle errors
is. To this end we propose to make API error responses more informative and actionable to
the API consumer. Besides more accurate documentation, the API developer can leverage
the error responses to help the API consumer handle API errors. In addition to a specific
error code and message we suggest to return an error type based on message similarities
as mentioned by one of the survey participants. The error type, based on the 11 categories,
could have the following values:

74

9.3. Fault type handling

validation Denoting end user input related faults. (invalid user input and missing
user input)

expired Indicating an expired request caused by the end user. (expired request
data)

implementation Implying an implementation related fault caused by the API consumer.
(invalid request data, missing request data, double processing and miss-
ing server data)

configuration Translating to faults related to misconfiguration. (configuration)

permission Expressing a fault caused by insufficient rights to make the request. (in-
sufficient permissions)

internal Specifying a fault caused by the API or third party. (internal and third
party)

These error types describe the specific error on a higher level, which can help the con-
sumer to better understand the impact and appropriate actions to take. The API provider has
to determine these error types manually for each error message. More detailed error types,
e.g., using the 11 categories, can add the unnecessary overhead of having to understand and
deal with 5 additional error types.

Instead of, or in addition to, the error type the API provider may decide to include the
suggested handling action to be taken.

feedbackAndRetry Specifying that the end user should be informed and suggested to retry
the action.

recover Implying that the request cannot be executed and that recovery is the
only option.

retry Indicating that a retry with the same request data may result into a
success.

The retry value could be accompanied by a suggestion in terms of the number of retries
that is recommended before resorting to recovering. Similarly a recommended time interval
between the requests can be included. Furthermore, the API provider could track retries and
decrement the suggested number with each request. When retrying is no longer expected to
result in success the API error should include recover instead of retry as handling action.
In that case generic logic implemented by the API consumer based on the handling action
should proceed to recovery.

Besides the challenges of handling errors, it is experienced difficult to translate error
messages to something actionable by the end user. To help the API consumer the API
provider can include user messages in API error responses. These messages can describe
what has gone wrong and what can be done to fix this.

The request below is an example of what the error response related to FC9 described in
Appendix A would look like using the error response proposal.

75

9. RECOMMENDATIONS

{
"errorCode" : "128",
"errorMessage" : "Card Holder Missing",
"errorType" : "validation",
"handlingAction" : "feedbackAndRetry",
"userMessage" : "The name of the card holder is required.

Please try again."
}

Recommendation 15: Provide enriched API error responses

The API provider should enrich API error responses with actionable information.
An error type allows for generic error handling for groups of errors, a handling action
indicates the right action for the API consumer to take to deal with the error, and a user
message can inform the end user of the system about the error and actions to proceed.

The Adyen API is capable of returning over 150 different error messages, which makes
it difficult for merchants to implement error handling logic. To ease the error handling
process for merchants Adyen uses error types, similar to the suggestion made above. The
following four types are used: validation, security, configuration and internal. We however
found these types to not accurate describe the underlying problem. For instance, the error
“Invalid merchant account” indicates that the account is missing or is not valid in context of
the request. This error is labeled with error type validation, described as “the request does
not pass validation.” This description explains why the request cannot be processed by the
API, instead of suggesting the cause of the error. We believe Adyen can improve their error
messages and help their merchants handle errors by looking into the suggestions made in
this section.

9.4 Problem priority

Based on API data of the system under study we deduced the impact of faults in terms of
number of occurrences and number of impacted API consumers. Furthermore the survey
participants were asked how often they experienced faults in the different categories and
what the impact of those faults was. This information can be useful for the API provider to
prioritize efforts to improve API integration and for API consumers to determine what type
of faults to pay more attention to.

Both according to the data of the system under study and the survey participants faults
related to invalid user input, third party and configuration occur the most. Only third party
and configuration faults are regarded to have a high impact by the survey respondents.
Invalid user input, although experienced often, however is not regarded as very impactful.
The API provider can prioritize by looking into error returned caused by third parties and
provide more clarity on the different configuration options.

76

9.4. Problem priority

According to the survey participants missing server data and internal faults occur rel-
atively often compared to the other categories. Internal problems are even considered the
most impactful. The findings in the system under study however show that internal faults
do not occur for many consumers at all. For missing server data the same holds. Similarly,
the API error data suggests invalid request data and missing request data faults to impact a
relatively large amount of API consumers. The survey respondents however regarded these
categories to not occur very often. For these reasons the impact of certain types of faults
seems to depend very much on the API and its functionality. The findings based on the
survey can be used to give a general idea of what is considered important and impactful,
however there may be large deviations based on the implementation of the API and its use
cases.

Both the survey respondents and the API error data suggest that expired request data,
insufficient permissions and double processing related faults are not experienced very often
by API consumers. The expired request data category is perhaps not generic enough. Dur-
ing the analysis of the system under the study we only found one problem in this category
with a very small number of errors. Although these faults can result into problems for the
API consumer, the API provider would benefit more from improving in other categories
first.

Recommendation 16: Prioritize on problem impact

API consumers should focus their efforts on fault categories that have a large po-
tential problem impact. To this end, the impact of third party, internal, configuration
and missing server data faults should be reduced first with the appropriate prevention
and handling actions.

77

Chapter 10

Discussion

In this chapter we outline research conducted related to this work in Section 10.1. Next,
in Section 10.2, we list the internal and external validity concerns of our research. The
envisioned future direction of research in the area of faults in Web APIs is elaborated on in
Section 10.3. Finally, in Section 10.4, we explain the lessons learned during this research
that we believe are relevant for other researchers.

10.1 Related work

We provide an overview of research conducted in the field of Web APIs as well as current
challenges and research opportunities described in the literature. In addition we describe
work done in the field of traditional offline APIs that may be applicable to Web APIs.

Wittern et al. [41] identified four challenges for developers calling Web APIs and argue
in favor of corresponding research opportunities to support API consumers. We describe
three of them: 1) API consumers have no control over the API and the service behind it, both
of which may change, in contrast to a traditional local library. 2) The validity of the Web
API request, in terms of URL, payload and parameters, is unknown until runtime. When
using a local library the compiler can check whether the call conforms to the library’s API
interface. Efforts to solve this challenge can help to reduce faults in the following categories
we identified: invalid user input and invalid request data. 3) The distributed nature of the
API connection comes with a set of issues concerning availability, latency and asynchrony.
A different architecture or additional logic may be required to handle these issues.

Wittern et al. [41] their vision is that the first line of research focuses on static analysis
and IDE support for API consumers. To this end Wittern etl al. [40] attempt to detect
errors by statically checking API requests in JavaScript to overcome the fact that traditional
compile-time errors are not available for developers consuming APIs. Their static checker
takes Open API [4] specifications as input. The Open API Initiative is created by industry
experts who recognize the value of standardizing how REST APIs are described. Using the
Open API specification of an API as input the static checker aims to check whether the API
requests in the code conform to the specifications. The authors report a 87.9% precision for
payload data and a 99.9% precision on query parameter consistency checking.

79

10. DISCUSSION

Wittern et al. [41] also regards mining web API usage for more advanced API consumer
support. For example, they recommend to identify effective API usage patterns, and rec-
ommend to investigate effective API compositions. Our work coincides with this vision as
we provide insights into erroneous usage of web APIs and make recommendations to help
the API consumer. API composition is said to be limited by the lack of machine-readable
API descriptions. Furthermore, missing API specifications limit the creation of tools for
auto-completion, automatic testing and static request checking.

Wittern et al. [41] mention that the specification issues can be solved by the API provider,
although this practically is not a given. Swagger [34] is a tool that allows for API specifi-
cations to be created using source code annotations. Such a solution depends on the API
provider as API consumers do not have access to the source code of the API. Suter and
Wittern [37] use API usage logs from 10 APIs to infer specifications based on API URLs
and parameters using classification techniques to tag and detect parameters. The conclusion
is that inferring web API descriptions is a difficult problem that is limited mostly by incom-
plete or noisy input data. Sohan et al. [35] apply a similar approach where API requests and
responses are used to generate documentation. Using actual requests and responses the tool
is able to include examples in addition to the documentation. The authors identified undocu-
mented fields in 5 out of 25 API actions for which they generated documentation. However,
in this work the precision of the generated documentation is not validated and compared to
a ground truth making it difficult to see the usefulness of the proposed generator.

Bermbach and Wittern [8] performed a geo-distributed benchmark to assess the quality
of Web APIs, in terms of performance and availability. The authors find a great variety in
quality between different APIs. They make suggestions on how API providers can become
aware of these problems by monitoring, and can mitigate them by suggesting architectural
styles. This work discusses an angle of API related problems which we were not able to
cover, as our work only considers API requests for which API consumers received an API
response. We do however cover third party unavailability as this results into third party
errors for the API consumer.

A vast amount of research has been conducted in the field of traditional offline APIs,
some of which can be relevant to the Web APIs as well. Robillard et al. [30] provide a
survey on automated property inference for APIs. The authors state that using APIs can be
challenging due to hidden assumptions and requirements, which is also found in this work.
The survey provides an overview of the different properties inferred, the mining techniques
used and the corresponding empirical results for five categories. The behavioral specifica-
tions category has commonalities with the validity of Web API requests and work in this
category aims to complement incomplete or incorrect API documentation using automated
techniques. The migration mappings category covers API evolution and its challenges, and
work in this field may be applicable to Web APIs as well. Finally, the work describes a
general information category that covers work that attempts to learn from API usage to aid
the presentation of API documentation, which can translate to Web API documentation.

Robillard [29] investigated the obstacles of learning traditional offline APIs by survey-
ing developers at Microsoft. Similar to our results, Robillard found most respondents use
official documentation to learn APIs with code samples as the second most used source
of information. Inadequate or absent learning resources were considered an obstacle by

80

10.2. Threats to validity

most respondents. To mitigate the obstacles the participants mentioned accurate examples,
completeness, support for complex usage scenarios and relevant design elements. All of
these were mentioned by our survey respondents as well. This suggests that the obstacles
in learning how to use traditional APIs and Web APIs are similar, and may be resolved in a
similar manner.

Espinha et al. [12] explored the state of Web API evolution practices and the impact on
the software of the respective API consumers. The impact of API changes on the clients’
source code was found to depend on the breadth of the API changes and the quality of the
clients’ architectural design. Suggestions for API providers include not changing too often,
keeping usage data of different features and doing blackout tests, which involves disabling
old versions for a short time to remind developers that changes in the API are coming. The
angle of API evolution is interesting as it can potentially be the cause of many of the API
related issues, such as the ones we identify in this work. In other work, Espinha et al. [11]
developed a tool to understand the runtime topology of APIs in terms of usage of different
versions by different users. This understanding can be useful for maintenance purposes
where the impact of changes can be evaluated and predicted.

Venkatesh et al. [38] mention that to help the integration process one should understand
the challenges that are encountered by client developers. Our work uses an API usage-
driven approach to identify categories of faults, and a survey to identify current practices and
challenges. Venkatesh et al. base their analysis on developer forums and Stack Overflow1 by
mining the questions and answers related to 32 Web APIs. They find that the top five topics
per Web API category contribute to over 50% of the questions in that category. The findings
imply that API providers can optimize their learning resources based on the dominant topics.

10.2 Threats to validity

In this section, we discuss the possible limitations of this work and our approach to mitigate
them. We distinguish between the internal and external validity of our results.

Internal validity

Internal validity is concerned with how consistent the result is in itself. Factors that cannot
be attributed to our technique, which can have an influence on the results, are a potential
threat to validity.

1. The fault explanations were derived manually and could therefore have been subject
to bias or misinterpretation. To reduce this threat we worked together closely with
the Adyen development and technical support team to avoid misunderstandings.

2. Similarly, the categorization process was manual and could therefore have been sub-
ject to bias. To limit the effect of bias, we verified the categorization step with an
expert.

1https://stackoverflow.com/

81

10. DISCUSSION

3. To discover possible multiple explanations of error tuples, we analyzed the error mes-
sages for several API consumers. However, it is possible that a fault remained undis-
covered because it occurred less frequently. This has a possible impact on our find-
ings. Similarly, we filtered the data for analysis based on 10 impacted API consumers
or more. The filtered data could be explained by faults that would alter the distribu-
tion of faults over the categories. For instance, internal faults could occur more often
in the data that was filtered out, therefore posing a potential threat to validity.

External validity

External validity is concerned with the representativeness of the results outside the scope of
the research data.

1. We used API error log data from the Adyen platform to determine the fault categories
and provide insights into the frequency and impacted consumers of these faults. Since
these results are applicable to Adyen only, we cannot generalize these results to faults
in other APIs. To reduce this threat we verified the completeness of the categories by
surveying API consumers.

2. An arbitrary window of 28 days of API error logs was selected for fault analysis and
categorization. A different 28 day window could however have resulted in a different
set of faults, and a different number of occurrences and impacted consumers. The
case described in Section 7.3 is an example of this, as this problem does not occur
inside the 28 day window selected for the data analysis. It would be useful to replicate
the analysis based on a different time window to investigate the impact on the results.

3. The analyzed data only covers API error responses, and not the successful responses.
For this reason we were unable to analyze the proportion of requests that resulted in
an error, making it more difficult to generalize the results.

4. It turned out to be difficult to reach the target audience of the survey. This resulted
in 40 responses in total of which 11 were partial. In addition, some of the questions
were only answered by 16 to 22 participants. This sample is insufficient to generalize
results about integration, detection, handling and prevent practices. Using these re-
sults, in combination with the API error data analysis and the illustrative interviews,
we attempted to strengthen the results.

10.3 Future work

In this section we propose future work in the field of faults in API integration. We elaborate
on future research that could strengthen the results of this work, improve the recommenda-
tions, and suggest other angles of research that we see.

For the generalization of the results, in terms of the identified categories and number
of impacted API consumers, we believe it is worthwhile to replicate this part of our work

82

10.3. Future work

using data from various other Web APIs. This will give insights into the applicability of
fault categories in other environments. Furthermore, the results may indicate that, for other
APIs, it makes sense to split or combine certain categories.

The survey results give an initial understanding of the current practices and challenges in
terms of integration, error prevention, handling and detection. It would be worth investigat-
ing each of these aspects in detail by means of qualitative interviews with API consumers.
Furthermore, more insights can be obtained by investigating the source code of projects that
have implemented an API, to learn more about these aspects. This improved understanding
can be used to improve the proposed recommendations and add new suggestions.

In this work we propose 16 recommendations for both API consumers and API providers.
To be able to give a definitive answer to the question, how the impact of API errors can be
reduced, the effect of the recommendations needs to be observed.

To this end we propose to implement the dashboard proposed in Section 9.1.2. The next
step is to understand the dashboard usage, study the users and quantify the effects of the
tool in terms of API error reduction.

It will be interesting to see the effect of the enriched error messages as proposed in
Section 9.3.4. The study can be data focused to see the effect on the number of errors and
impacted consumers, or API consumer focused by studying the perceived impact of errors
by consumers and the practices of dealing with errors used the extra information in the error
messages.

More research is needed in the field of API integration testing. Some APIs, such as
Adyen’s or PayPal’s2, offer a test environment that acts as development sandbox for API
consumers. The API consumer can use this environment to trigger API errors and test
whether error handling is done correctly. However, certain errors, such as those related to
third party or missing server data faults, are often only experienced in production. The API
consumer however may want to test for these cases as well. We therefore feel it is worth
investigating the possibilities for API providers to facilitate the testing needs of the API
consumer. For instance, the API provider may be able to generate a set of test cases, based
on the API specification, for the API consumer to use in their continuous integration.

There are a large number, and wide variety, of different APIs available. We expect there
to be differences in the occurrence of the API faults and their impact on different APIs.
This means that the best way to reduce the impact of API faults will likely also differ per
API. For this reason we believe it will be beneficial for the field of Web API research to
characterize the landscape of Web APIs. Subsequent work in the field can then define a
more fine-grained scope and with greater detail expand on the applicability of the research.

During the manual analysis process we discovered that certain API errors had been
occurring for months. We think it will be interesting to investigate how long errors in each
fault category go undetected for. Another angle would be to research the time it takes for
faults to be resolved after they have started to occur in the form of API errors.

2https://developer.paypal.com/docs/classic/lifecycle/ug_sandbox/

83

https://developer.paypal.com/docs/classic/lifecycle/ug_sandbox/

10. DISCUSSION

Continuing the previous idea, it will be interesting to look into the effects of API evo-
lution on the occurrence and impact of API faults. This work and the current work on API
evolution can be taken as starting point [11, 12].

10.4 Lessons learned

In this section we outline some of the lessons learned during the course of this research
project that we feel are useful for any research project. We elaborate on understanding the
data and verifying the correctness of data analysis in Sections 10.4.1 and 10.4.2.

10.4.1 Understanding the data

We found that fully understanding the data under investigation is of utmost importance. The
data set used in the scope of this works consists of API error responses which contain an
error message and error code. A naive approach would have been to start categorizing the
errors based on the messages, or to apply machine learning techniques based on the differ-
ent features in the data set. However, after looking into the requests that resulted in errors
in more detail, we discovered that the error messages in many cases were not describing the
actual fault that had occurred. Also, some of the messages were the result of different un-
derlying faults. In addition, we found that our data set included API responses from internal
processes, which are outside the scope of this work and therefore were excluded. If we had
not done this we would have based our results on seemingly correct data, which would not
accurately describe the actual situation. It took a significant amount of our research time to
obtain the necessary domain knowledge and identify the underlying faults, but this allowed
us to base our results on the actual faults resulting in errors instead of the misleading error
messages. The lesson learned here is that understanding the data is critical to ensure accu-
rate results. The approach to achieve this is to combine quantitative and qualitative research
methods in order to arrive at rich, well understood data.

10.4.2 R testing

The second important lesson we learned is related to data analysis, mutations and aggre-
gations for which we used R3. In Section 5.1 we described the steps taken to obtain a set
of unique error messages. This involved splitting the data set based on messages that do
and do not have an unique error code. For both sets a different approach was necessary to
obtain the unique error messages after which the results were combined. In addition we
had to preprocess the data set to remove messages that were out of scope. We experienced
that wrong assumptions or bugs were easily missed and that the resulting data set would
be incorrect. Especially when the logic is complex and changes have to be made at a later
stage bugs were introduced. To verify the correctness of our R data processing and analy-
sis we made use of the stopifnot function which translates to an assert in Java. We added
asserts throughout the code to test whether the result of a series of statements was indeed

3https://cran.r-project.org/

84

10.4. Lessons learned

expected. The lesson learned is that testing is important even when working in data analysis
and statistic tools, such as R.

85

Chapter 11

Conclusion

API errors can indicate significant problems for API consumers. In the system under study
over 60 thousand API error responses are returned every day, causing the potential number
of problems and their impact on API consumer applications to be enormous. Practition-
ers have written a variety of best practice guides and blog posts on API design and error
handling, however to our knowledge no research had been conducted on what type of API
errors occur in practice and what their impact is. To fill this gap of knowledge we researched
the domain of Web API errors to investigate how the impact of API errors can be reduced.

To reduce the impact of problems caused by mistakes in API integration two things
can be done: 1) Reduce the number of problem occurrences and 2) reduce the impact of
individual problem occurrences. We reasoned that to be able to do this an understanding is
needed of the errors that occur in an API integration. Furthermore, to make effective recom-
mendations, an understanding is needed of the current practices and challenges of reducing
the impact of API error related problems. To this end we answered five research questions
using a combination of API error data and insights from API consumers.

RQ 1: What type of faults, resulting in API errors, are impacting API consumers?

Based on the API faults data, faults in API integration can be grouped into 11 cate-
gories: invalid user input, missing user input, expired request data, invalid request data,
missing request data, insufficient permissions, double processing, configuration, missing
server data, internal and third party. Each category can be contributed to one of the four
API integration stakeholders: end user, API consumer, API provider, and third parties.

The survey results support the 11 categories. Although the participants propose addi-
tional categories we regard them as part of previously identified categories.

RQ 2: What is the prevalence of these fault types, and how many API consumers are im-
pacted by them?

Based on the API faults data, from a stakeholder perspective most faults, 39 out of 69,
can be contributed to the API consumer. This compares to 86.3% to 87.7% of 2.43 million
API errors and between 67.5% and 84.6% of the 1464 impacted API consumers.

87

11. CONCLUSION

From a category perspective most faults, 17 out of 69, can be contributed to the invalid
request data category. However most errors, 36.0%, are related to double processing faults.
Most API consumers seem to be impacted by faults in the invalid request data and third
party categories.

Based on the survey results, missing server data and configuration faults were expe-
rienced the most by API consumers. Faults caused by the API provider and third parties,
categories internal and third party respectively, were also found to impact relatively many
API consumers. Double processing and expired request data faults were not experienced
by over half of the participants.

RQ 3: What type of faults do API consumers consider the most impactful?

Faults caused by the API provider and third parties are experienced most impactful ac-
cording to API consumers. On the other hand, faults originating from the end user are
regarded as having the least impact.

RQ 4: What are the current practices to avoid and reduce the impact of production prob-
lems caused by faults in API integration?

API consumers most often use official API documentation to implement an API cor-
rectly, followed by code examples. The impact of faults and potential problems is reduced
via specific error handling, or, more frequently, via generic error handling. Most often, API
related production problems are detected by the end user of the application, followed by log
analysis and monitoring dashboards.

RQ 5: What are the current challenges to avoid and reduce the impact of production prob-
lems caused by faults in API integration?

The challenges of preventing problems from occurring are the lack of implementation
details, insufficient guidance on the way to approach certain aspects of the integration, and
lack of insights in problems and changes. Handling errors is experienced challenging due
to an insufficient understanding of the impact of problems, missing guidance on how to
recover and a lack of details on the origin of errors. Detection is challenging because of
the unfeasibility of testing all scenarios, a lack of detailed exceptions, and the amount of
work required to analyze logs regularly. In addition, missing, incomplete, incorrect, and
unspecific documentation makes avoiding errors more difficult as well as APIs that cannot
handle specific input, or do not do versioning properly.

To categorize faults, we obtained a set of fault descriptions from a set of 2.6 million API
error logs. The approach used for this is illustrative and reproducible, and can possibly be
used to replicate this work based on the API error logs from other APIs.

Based on the answers to the research questions we formulated 16 recommendations for
API consumers and providers to reduce the impact of API faults:

88

1. API consumer: Be aware of the detection action per fault category

2. API provider: Provide API error insights

3. API consumer: Validate user input

4. API provider: Provide parameter information to enable validation

5. API consumer: Use continuous testing and periodic testing

6. API provider: Offer a complete set of test cases

7. API consumer: Fix API consumer faults

8. API provider: Provide implementation architecture recommendations

9. API provider: Provide effective documentation

10. API consumer: Handle end user faults by providing feedback and retrying

11. API consumer: Recover from API consumer faults

12. API provider: Distinguish between retriable and non-retriable errors

13. API consumer: Retry or recover from API and third party faults

14. API consumer: Use generic error handling for unknown errors

15. API provider: Provide enriched API error responses

16. API consumer: Prioritize on problem impact

We envision several angles of future work. To strengthen the results of this work the
study should be replicated within the context of other Web APIs. More elaborate work on
the current practices and challenges of reducing the impact of API related problems can be
used to improve the proposed recommendations and add new suggestions. We propose to
evaluate the recommendations by implementing the suggestions for the API provider and
studying the effects in terms of the API error rate and problem impact. Furthermore, a char-
acteristic study of Web APIs can help define the scope and applicability of future research.
Other future work may include investigating the longitudinal effect of the occurrence of API
errors and API evolution.

This study is the first to explore faults in Web API integration in an attempt to understand
the type of faults that occur and their impact. By investigating the current practices and
challenges of reducing the impact of these faults we proposed a set of 16 recommendations.
We hope this work motivates researchers to further explore the domain of faults in Web
API integration. Furthermore, we hope that API providers use our findings to optimize their
APIs to enable better integration, and that API consumers use our ideas to reduce the impact
that API errors may have on their applications.

89

Bibliography

[1] Apigee: The API platform for digital business. https://apigee.com/. [Online;
accessed 28-Jun-2017].

[2] Handle 4xx and 5xx responses. https://docs.adyen.com/developers/
ecommerce-integration/response-handling#errorcodesreturned. [Online;
accessed 07-Aug-2017].

[3] Marketing Cloud API: Error codes. https://developer.salesforce.com/docs/
atlas.en-us.noversion.mc-apis.meta/mc-apis/error_codes.htm. [Online;
accessed 07-Aug-2017].

[4] Open API Initiative. https://www.openapis.org/. [Online; accessed 06-Sep-
2017].

[5] Search the Largest API Directory on the Web. https://www.programmableweb.
com/category/all/apis. [Online; accessed 28-Jun-2017].

[6] Apigee. Web API Design: Crafting Interfaces that Developers Love. https://
pages.apigee.com/web-api-design-website-h-ebook-registration.html.
[Online; accessed 28-Jun-2017].

[7] Apigee. Web API Design: The Missing Link. https://pages.apigee.com/
eBook-Web-API-Design-The-Missing-Link-reg.html. [Online; accessed 28-
Jun-2017].

[8] David Bermbach and Erik Wittern. Benchmarking web api quality. In International
Conference on Web Engineering. Springer, 2016.

[9] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,
Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple object access protocol
(SOAP) 1.1, 2000.

[10] David De Vaus. Research design in social research. Sage, 2001.

91

https://apigee.com/
https://docs.adyen.com/developers/ecommerce-integration/response-handling#errorcodesreturned
https://docs.adyen.com/developers/ecommerce-integration/response-handling#errorcodesreturned
https://developer.salesforce.com/docs/atlas.en-us.noversion.mc-apis.meta/mc-apis/error_codes.htm
https://developer.salesforce.com/docs/atlas.en-us.noversion.mc-apis.meta/mc-apis/error_codes.htm
https://www.openapis.org/
https://www.programmableweb.com/category/all/apis
https://www.programmableweb.com/category/all/apis
https://pages.apigee.com/web-api-design-website-h-ebook-registration.html
https://pages.apigee.com/web-api-design-website-h-ebook-registration.html
https://pages.apigee.com/eBook-Web-API-Design-The-Missing-Link-reg.html
https://pages.apigee.com/eBook-Web-API-Design-The-Missing-Link-reg.html

BIBLIOGRAPHY

[11] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. Understanding the interac-
tions between users and versions in multi-tenant systems. In Proceedings of the 2013
International Workshop on Principles of Software Evolution. ACM, 2013.

[12] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. Web API growing pains:
Stories from client developers and their code. In Software Evolution Week-IEEE Con-
ference on Software Maintenance, Reengineering and Reverse Engineering (CSMR-
WCRE), 2014.

[13] Peter Evers. Finding Errors in Massive Payment Log Data. 2017.

[14] Roy Fielding. REST APIs must be hypertext-driven. http://roy.gbiv.com/
untangled/2008/rest-apis-must-be-hypertext-driven. [Online; accessed
28-Jun-2017].

[15] Roy Fielding and Richard Taylor. Architectural styles and the design of network-based
software architectures. University of California, Irvine Doctoral dissertation, 2000.

[16] Arlene Fink. The survey handbook, volume 1. Sage, 2003.

[17] Ceki Gülcü. The complete log4j manual. QOS. ch, 2003.

[18] Siw Elisabeth Hove and Bente Anda. Experiences from conducting semi-structured
interviews in empirical software engineering research. In IEEE 11th International
Sympsium on Software metrics, 2005.

[19] ISO/IEC 7812-1. Identification cards – Identification of issuers – Part 1: Numbering
system, 2017.

[20] Barbara Kitchenham and Shari Lawrence Pfleeger. Principles of survey research: part
1-6. ACM SIGSOFT Software Engineering Notes, 26-28, 2002.

[21] Kin Lane. History of APIs. http://apievangelist.com/2012/12/20/
history-of-apis/. [Online; accessed 28-Jun-2017].

[22] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, 1966.

[23] Rensis Likert. A technique for the measurement of attitudes. Archives of psychology,
1932.

[24] Brian Mulloy. RESTful API Design: what about errors? https://apigee.com/
about/blog/technology/restful-api-design-what-about-errors. [Online;
accessed 28-Jun-2017].

[25] Oracle. Java Platform, Standard Edition 8 API Specification. http://docs.oracle.
com/javase/8/docs/api/. [Online; accessed 28-Jun-2017].

92

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://apievangelist.com/2012/12/20/history-of-apis/
http://apievangelist.com/2012/12/20/history-of-apis/
https://apigee.com/about/blog/technology/restful-api-design-what-about-errors
https://apigee.com/about/blog/technology/restful-api-design-what-about-errors
http://docs.oracle.com/javase/8/docs/api/
http://docs.oracle.com/javase/8/docs/api/

Bibliography

[26] Aniket Patil. Get developer hugs with rich error han-
dling in your API. https://blog.box.com/blog/
get-developer-hugs-with-rich-error-handling-in-your-api/. [Online;
accessed 28-Jun-2017].

[27] Jane Radatz, Anne Geraci, and Freny Katki. IEEE standard glossary of software en-
gineering terminology. IEEE Std 610.12-1990, 1990.

[28] Julian Reschke and Roy Fielding. RFC 7231-Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content. June 2014. http://tools.ietf.org/html/rfc7231. [On-
line; accessed 03-Aug-2017].

[29] Martin Robillard. What Makes APIs Hard to Learn? Answers from Developers. IEEE
Software, 26(6), 2009.

[30] Martin Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan Ratch-
ford. Automated API property inference techniques. IEEE Transactions on Software
Engineering, 39(5), 2013.

[31] Lior Rokach and Oded Maimon. Clustering methods. In Data mining and knowledge
discovery handbook. Springer, 2005.

[32] Kristopher Sandoval. Best Practices for API Error Handling. http://nordicapis.
com/best-practices-api-error-handling/. [Online; accessed 20-Jul-2017].

[33] Carolyn Seaman. Qualitative methods in empirical studies of software engineering.
IEEE Transactions on software engineering, 25(4), 1999.

[34] SmartBear Software. Swagger - The world’s most populair API tooling. https:
//swagger.io/. [Online; accessed 06-Sep-2017].

[35] SM Sohan, Craig Anslow, and Frank Maurer. Spyrest: Automated restful API docu-
mentation using an HTTP proxy server (N). In 30th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), 2015.

[36] Mike Stowe. API Best Practices: Response Handling. https://blogs.mulesoft.
com/dev/api-dev/api-best-practices-response-handling/. [Online; ac-
cessed 28-Jun-2017].

[37] Philippe Suter and Erik Wittern. Inferring web API descriptions from usage data. In
Third IEEE Workshop on Hot Topics in Web Systems and Technologies, 2015.

[38] Pradeep Venkatesh, Shaohua Wang, Feng Zhang, Ying Zou, and Ahmed Hassan. What
Do Client Developers Concern When Using Web APIs? An Empirical Study on Devel-
oper Forums and Stack Overflow. In IEEE International Conference on Web Services
(ICWS), 2016.

93

https://blog.box.com/blog/get-developer-hugs-with-rich-error-handling-in-your-api/
https://blog.box.com/blog/get-developer-hugs-with-rich-error-handling-in-your-api/
http://tools. ietf. org/html/rfc7231
http://nordicapis.com/best-practices-api-error-handling/
http://nordicapis.com/best-practices-api-error-handling/
https://swagger.io/
https://swagger.io/
https://blogs.mulesoft.com/dev/api-dev/api-best-practices-response-handling/
https://blogs.mulesoft.com/dev/api-dev/api-best-practices-response-handling/

BIBLIOGRAPHY

[39] Rick Wieman. An Experience Report on Applying Passive Learning in a Large-Scale
Payment Company. In Industry track-IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2017.

[40] Erik Wittern, Annie Ying, Yunhui Zheng, Julian Dolby, and Jim Laredo. Statically
checking web API requests in JavaScript. In Proceedings of the 39th International
Conference on Software Engineering. IEEE Press, 2017.

[41] Erik Wittern, Annie Ying, Yunhui Zheng, Jim Laredo, Julian Dolby, Christopher
Young, and Aleksander A Slominski. Opportunities in software engineering research
for web API consumption. In Proceedings of the 1st International Workshop on API
Usage and Evolution. IEEE Press, 2017.

94

Appendix A

Adyen Fault Cases

FC1) “5 001 - ApplePay token amount-mismatch”

A mismatch occurred between the amount in the payment request and the amount in the
ApplePay token due to a rounding problem. A one cent difference is detected where the
payment request amount is, e.g., 72.20, while the amount in the ApplePay token is 72.21.

FC2) “110 - BankDetails missing” (1)

Due to missing response data from a third party payment method, recurring payments for
a specific bank and payment method are failing. In this case Adyen resorts to a backup
mechanism, which is unsuccessful and causes an internal error.

FC3) “110 - BankDetails missing” (2)

Bank details are required when storing details for shopper payouts in case there is no credit
card information supplied. The bank details are missing in the request, hence this error is
returned.

FC4) “131 - Billing address problem (City)”

The city name is a required field of the billing address. This value is not supplied.

FC5) “134 - Billing address problem (Country 0 invalid)” (1)

The country code should be a valid value ISO 2-character country code. This error is re-
turned because the value is missing.

FC6) “134 - Billing address problem (Country 0 invalid)” (2)

The country code should be a valid value ISO 2-character country code. This error is re-
turned because it does not conform to the standard.

95

A. ADYEN FAULT CASES

FC7) “135 - Billing address problem (StateOrProvince)”

A valid 2-character abbreviation for the state or province is required for the United States
and Canada. This value was not supplied causing this error.

FC8) “132 - Billing address problem (Street)”

The street name is a required field of the billing address. This value is not supplied.

FC9) “128 - Card Holder Missing”

The name of the card holder is required field. In case this value is missing this error is
returned.

FC10) “0 - Configuration Problem mpiImplementation”

3D secure authorize calls require a payment authorization response from the issuer and a
payment session identifier. Requests that do not contain these values fail with this error.

FC11) “800 - Contract not found” (1)

This error occurs when one attempts to disable a shopper contract that has been disabled in
the past. The reference associated with the contract thus not found.

FC12) “800 - Contract not found” (2)

This error is caused by an internal database replication delay. When a recurring contract is
created it takes a few minutes to be replicated to the slaves. If the contract is requests before
replication the request fails with this error.

FC13) “800 - Contract not found” (3)

Attempting to use a recurring contract in combination with a payment method that does
not support recurring payments results in this error. At the moment of writing Bancontact
does not support this functionality there causing errors for merchants attempting recurring
Bancontact payments.

FC14) “0 0 - Could not read XML stream..”

The values are not URL-encoded causing a failure in the XML parsing. The ampersand sign
should be URL-encoded as ‘&,

FC15) “0 - Couldn’t parse expiry year”

The expiry year, which is part of the credit card information, cannot be parsed to an integer.
This happens when it contains letter or other non-digit characters. E.g., ‘20/2 cannot be
parsed, in contrast to the likely intended ‘2012.

96

FC16) “103 - CVC is not the right length”

The credit card CVC code is not the expected length. Generally the code consists of three
digits, with American Express cards being the exception with four digits.

FC17) “0 - CVC is required for OneClick card payments”

The credit card CVC code is required for OneClick card payments for which the credit card
details are already stored. This value is however missing in the request.

FC18) “0 - Double processing”

This error occurs when a 3D authorize request is submitted more than once. The request
has already been processed, hence an error is returned.

FC19) “172 - Encrypted data used outside of valid time period” (1)

The timestamp included is outside the valid time range. The timestamp is generated for the
end user, but the end user takes too long to initiate the request.

FC20) “172 - Encrypted data used outside of valid time period” (2)

The timestamp included is outside the valid time range. Either the timestamp is off by a
mistake on the server side, or the request is sent in for processing too late.

FC21) “0 - Expiry month not set”

The expiry month of the credit card is required in an authorization request. The value
is missing in the request. This error most often occurs in case all credit card details are
missing. This is because the expiry month is validated first.

FC22) “0 - Expiry month should be between 1 and 12 inclusive”

The expiry month should be a value between 1 and 12. The value in this case is lower than
1 or higher than 12, causing this error.

FC23) “0 - Expiry year should be a 4 digit number greater than 2000”

This error occurs when the expiry year of the credit card is not higher than 2000. When the
shopper does not fill in this year, some merchants default to 0, causing this error to occur.

FC24) “0 - iDEAL communication error”

The select iDEAL bank is not available. This can be because of planned maintenance or a
temporary connection problem.

97

A. ADYEN FAULT CASES

FC25) “0 0 - internal Configuration Problem mpiImplementation”

3D secure authorize calls require a payment authorization response from the issuer and a
payment session identifier. Requests that do not contain these values fail with this error.

FC26) “903 - Internal error” (1)

This error is caused by a configuration mistake. The configuration key, required for install-
ments, is not found.

FC27) “903 - Internal error” (2)

For airlines additional airline data can be enabled to capture flight information such as the
leg data. This error is thrown when airline leg data is missing.

FC28) “903 - Internal error” (3)

Invoice payment requests require order lines and an invoice number. This error is returned
when either is missing.

FC29) “137 - Invalid amount specified” (1)

Captures are used to transfer money from one credit card account to another. The amount
specified for a capture request has to be higher than zero. A problem with this error occurs
when the amount is zero.

FC30) “137 - Invalid amount specified” (2)

Adyen offers the functionality to initiate a recurring contract by means of a zero amount au-
thorization call. However, the minimum amount of iDEAL transactions is one cent, causing
this error when a zero amount authorization call is made.

FC31) “137 - Invalid amount specified” (3)

An amount is invalid when it is below zero or higher than a specific limit. Transaction
requests containing an out of range amount result in this error.

FC32) “137 - Invalid amount specified” (4)

A refund request requires an amount higher than zero. Zero amount refund requests fail
with this error.

FC33) “101 - Invalid card number”

The supplied credit card number does not validate. It is either not the right length or does
not validate against the Luhn formula.

98

FC34) “153 - Invalid CVC”

The CVC code does not validate. In this case it contains non-digit characters, which are not
allowed.

FC35) “116 - Invalid date of birth”

For Open Invoice transactions the shopper has to be at least 18 years of age. This error is
returned if the shopper is younger.

FC36) “161 - Invalid iban” (1)

The IBAN supplied for the transaction does not have a valid length. The maximum length
is 34, but depends on the country.

FC37) “161 - Invalid iban” (2)

The country code supplied in the payment request has to match the country code of the
IBAN. In case of a mismatch this error is returned.

FC38) “161 - Invalid iban” (3)

The IBAN is required for SEPA Direct Debit transaction. This error is returned when the
IBAN is missing.

FC39) “901 - Invalid Merchant Account” (1)

In order for a merchant to capture an amount from a shoppers account Adyen requires the
merchant account to be included in the request. In case this field is missing the request is
rejected with this error.

FC40) “901 - Invalid Merchant Account” (2)

In order to process on Adyens platform the merchant account needs to be active. In this
case an inactive account is used to process payments, resulting in an error.

FC41) “901 - Invalid Merchant Account” (3)

To process payments the supplied merchant account has to exist. Requests result in an error
when an invalid account is used.

FC42) “105 - Invalid paRes from issuer” (1)

3D secure authorize calls require a payment authorization response from the issuer and a
payment session identifier. This error is returned when Adyen tries to process the payment
with the issuer, which is unable to process their own payment authorization response.

99

A. ADYEN FAULT CASES

FC43) “105 - Invalid paRes from issuer” (2)

3D secure authorize calls require a payment authorization response from the issuer and a
payment session identifier. This error is returned when the merchant fails to forward the
valid payment authorization response and payment session identifier.

FC44) “906 - Invalid Request: Original pspReference is invalid for this environment!”

Adyen provides a test environment for its customers to test their integration with test pay-
ments. Payment references in the production environment are invalid in the test environ-
ment, and vice versa. This error is returned when a merchant attempts to use a payment
reference of a different environment.

FC45) “109 - Invalid variant”

Credit cards come in different variants. Some variants are a subtype of another variant.
For instance, the Mastercard commercial premium credit card is a subvariant of the regular
Mastercard card variant. An error occurs when the payment contains a credit card or one
variant which is not a sub(variant) of the variant supplied in the variant field.

FC46) “100 - No amount specified”

Payment requests such as authorize, capture and refund require an amount. This error is
returned when the amount is not supplied.

FC47) “0 - No InitialPspReference provided”

The status of iDEAL payments can be checked by sending in the payment reference in
combination with issuer information. A signature is required so that the request can be
verified. When the signature is not valid this error is returned.

FC48) “113 - No InvoiceLines provided”

Open Invoice requests require invoice lines with details about the purchased items. When
these lines are omitted this error is returned.

FC49) “10 - Not allowed” (1)

API endpoints have to be configured, before they can be used. When a Point of Sale con-
figured account tries to use the ecommerce endpoints an error is returned indicating that the
request is not allowed.

FC50) “10 - Not allowed” (2)

A merchant has to be PCI Level 2 certified to handle credit card information. Only then
they can use certain request fields for the credit card. Else they have to encrypt the card data

100

on the client side and send the data in an encrypted blob. Merchants that are not certified
and attempt to use the former method receive this error.

FC51) “167 - Original pspReference required for this operation” (1)

For modification action such as capture, cancel and refund a valid reference to the autho-
rization is necessary. In this case the merchant sends in invalid references.

FC52) “167 - Original pspReference required for this operation” (2)

For modification action such as capture, cancel and refund a reference to the authorization
is necessary. The merchant in this case neglects to send in this reference.

FC53) “905 - Payment details are not supported”

An acquirer configuration is needed to do a transaction in a specific currency using a specific
payment method. If this configuration is missing or incorrectly set up, then payments for
these combinations will fail with this error.

FC54) “907 - Payment details are not supported for this country/ MCC combination”
(1)

A Merchant Category Code (MCC) is a classification used to describe the services or type
of products offered by that merchant. Depending on this classification accepting payments
in certain countries is not allowed, and payments are rejected with this error message.

FC55) “907 - Payment details are not supported for this country/ MCC combination”
(2)

Adyen doesnt support payments in certain countries. Payments attempted in these countries
are rejected with this error.

FC56) “803 - PaymentDetail not found” (1)

The merchant in this case attempts to disable a contract that does not exist. This situation
occurs when the references to contracts are not properly managed or the contract has been
disabled in the post.

FC57) “803 - PaymentDetail not found” (2)

The merchants attempts to authorize a payment using a recurring contract that has been
disabled, updated or removed in the past. The contract can no longer be found, hence this
error is returned.

101

A. ADYEN FAULT CASES

FC58) “0 - Please supply paymentDetails”

To authorize a transaction payment details are required. This error is returned when no
payment details are in the request.

FC59) “0 - Recurring requires shopperReference”

Recurring payments require the shopper reference field to be included, although optional
for normal payment requests. This error is returned when merchants neglect to send in the
shopper reference.

FC60) “130 - Reference Missing”

A merchant reference, created by the merchant, is used to uniquely identify payments. This
value is required for all payment authorization and this error is returned if missing.

FC61) “174 - Unable to decrypt data” (1)

For non-PCI certified merchants Adyen offers a client-side encryption library that encrypts
credit card information before submitting it via the API. In case requests are submitted with
an empty encrypted data field the system is unable to decrypt the data, hence returning this
error.

FC62) “174 - Unable to decrypt data” (2)

Credit card information encrypted in the shoppers browser is to be decrypted by Adyen. In
a limited number of cases this encryption fails with an internal exception, causing this error
to be returned.

FC63) “102 - Unable to determine variant”

To determine how to process a transaction Adyen determines the payment method variant
from the supplied card number. When the card number is invalid this process fails, causing
this error to occur.

FC64) “175 - Unable to parse JSON data”

This error occurs when the encrypted data containing credit card details cannot be parsed to
JSON after decryption. This can happen when a shopper maliciously alters the data before
it is encrypted in the browser.

FC65) “138 - Unsupported currency specified” (1)

A payment request requires the currency to be specified. When the value is omitted the
request cannot be processed and this error is returned.

102

FC66) “138 - Unsupported currency specified” (2)

SEPA Direct Debit recurring payments can only be processed in euros. Although initiating
the contract can be done in different currencies, not being aware of the currency restriction
for subsequent payments can cause this problem.

FC67) “0 0 - validation expired, pspReference=****************”

For Direct e-banking payments a session validity of 30 minutes is set. Requests that are
processed outside the valid timeframe are rejected with this error.

FC68) “0 0 - ” (1)

This request fails because the merchant sends in the amount value of a payment request as
a floating point number, instead of an integer. The API fails to respond properly and returns
an empty message.

FC69) “0 0 - ” (2)

The merchant in this case tries to process a 3D secure payment request multiple times,
which results in an error. The API does not handle the error well resulting in an empty
response.

103

Appendix B

Interview Guide

Introduction

• Introduction of the interviewer

• Introduction to the research project

• Asking for permission to record the interview

– Mention anonymity of the company and interviewee

– Explain the recording is only processed by the interviewer

Background questions

1. Could you tell me about what it is you do at <company>?

2. How many people at <company> are working on your integration with Adyen?

a) How many of these are developers?

General questions

• Introduction to the general questions; what they are about and why they are useful

1. What kind of testing do you have in place to verify the correctness of your API inte-
gration?

• Optional examples: unit tests and integration tests

a) Why do you have this in place? (conditional)

b) Why is this not the case? (conditional)

2. How do you handle API error responses?

105

B. INTERVIEW GUIDE

• Background: Adyen has over 150, for example <error experienced by inter-
viewee>

a) What is the default fallback for other response codes?

b) Why are these errors not handled with specific logic? (conditional)

3. What methods do you use to monitor your application?

• Optional examples: logs and alerts

a) Why do you have this in place? (conditional)

b) Why is there no monitoring in place? (conditional)

4. How do you experience the reporting of errors by Adyen?

a) How can the reporting be more clear?

5. How did the integration process with the Adyen API go?

a) Could this have been better, and how?

6. During integration, what did you use to learn how to use the API?

• Optional examples: documentation, code examples, technical support and im-
plementation managers

Problem specific questions

• Introduction to the problem specific questions; what they are about and why they are
useful

1. How would you describe the problem?

2. What was causing the problem?

3. What could have been done to prevent this problem from happening?

a) Why was this not in place/done?

4. What was causing the problem to go undetected? (conditional)

5. What were the consequences of this problem for you as a merchant?

a) Why is this a problem? (conditional)

b) Why is this not a problem? (conditional)

6. What can Adyen, as API provider, do to help you as a merchant prevent situations
like this?

106

Appendix C

API Integration Survey

107

Problems in Web API Integration

API integration survey

Dear participant,

In a perfect world the integration between a web API and a deployed application works

without any issues. In reality, however, API related problems happen and may have a large

impact on the user and business. Although there are numerous API best practices guides out

there, these seem insufficient to prevent API problems.

We are analyzing what type of problems occur in web API integrations and why they happen.

With web API integration we refer to applications using remote services over the web by

means of communicating with an API.

By collecting enough answers, the published results will include advice for API designers on

how they can help the API consumer prevent problems, and advice for API consumers on

how to improve their integration. In the end of the survey you can register your email if you

wish to receive the results of this study.

This survey takes about 12-15 minutes to complete and the answers will solely be used in

anonymized form.

Thank you!

Web API integration experience

1. How many years of experience do you have in software development? *

 Must be numeric Whole numbers only Positive numbers only

2. How many years of experience do you have in integrating with web APIs?

*

3. Have you worked on integration with a web API for an application in the

past 3 years? *

4. Is/was the application using the API integration used in production? *

Web API characteristics

In this survey we would like you to answer the questions based on an integration with a web

API that you worked on for an application that is/was used in production. Please select the

integration project from the past 3 years which you consider to be the most complex. This

can be based on the offered features and functionality, number of required/optional

parameters and/or number of possible error scenarios.

Please answer the questions with your experience in mind, instead of what would be the

ideal situation or conforms to best practices that you are aware of.

 Must be numeric Whole numbers only Positive numbers only

Yes

No

Yes

No

5. How would you categorize your application that is integrated with the API?

6. What does the API you integrated with do? *

7. In your project, how many developers are/were working on integrating with

the API? (Including yourself) *

Professional

Hobby

Research

Open source

Other - Write In

 Min = 1 Must be numeric Whole numbers only Positive numbers only

8. How complex do you consider the API to be on the following properties? *

Do

not

recall

Not

at

all Slightly Moderately Very Extremely

Number of different features

and complexity of the

functionality

Required/optional

parameters and parameter

formatting constraints

The number of possible

different errors returned by

the API

Overall

API integration process

Please answer the following question regarding the integration with the API you selected in

mind.

9. During the integration process of the API with the application, I made use

of the following information sources to learn how to use the API:

Never Rarely Sometimes Often Very often

Official API documentation

Code examples

Question and Answer sites, such

as StackOverflow

Support team (API provider)

Enter another option

10. How can the API provider help improve the integration process?

Production problems in the API integration

We now move away from the integration process and instead consider the in production use

of the API.

The following questions relate to problems identified in production that are related to the API

integration.

Please take the following stakeholders and their interaction in mind.

You may have an optional end user interacting with your application.

The application in turn interacts with the API via the integration.

The API may optionally communicate with third parties to utilize other services.

11. My application experienced problems in production with the API

in the following categories: *

I don't

know/Not

applicable Never Rarely Sometimes Often

Invalid user input (e.g.,

malformed input by the end user

of the application)

Missing user input (missing input

by the end user of the

application)

 Min. answers = 11 (if answered)

application)

Expired request data (the input

data was no longer valid at the

moment of processing)

Invalid request data (e.g.,

malformed input data caused by

the API consumer)

Missing request data (missing

input data caused by the API

consumer)

Insufficient permissions (not

enough rights to perform the

intended action)

Double processing (the request

was already processed by the

API)

Configuration (a problem caused

by missing/incorrect API

settings)

Missing server data (the API

does not have the requested

resource (e.g., document or

object))

Internal error (a problem caused

by the API)

Third party error (a problem

caused by a party integrated

with the API through which

services are offered)

Enter another option

Enter another option

Enter another option

Production problems in the API integration

The following questions relate to problems identified in production.

12. The impact of the following problems in production in my API integration

is/was:

I don't know None Low Moderate High

Invalid user input (e.g.,

malformed input by the end user

of the application)

Missing user input (missing input

by the end user of the

application)

Expired request data (the input

data was no longer valid at the

moment of processing)

Invalid request data (e.g.,

malformed input data caused by

the API consumer)

Missing request data (missing

input data caused by the API

consumer)

Insufficient permissions (not

enough rights to perform the

intended action)

Double processing (the request

was already processed by the

API)

Configuration (a problem caused

by missing/incorrect API

settings)

Missing server data (the API

does not have the requested

resource (e.g., document or

object))

Internal error (a problem caused

by the API)

Third party error (a problem

caused by a party integrated

with the API through which

services are offered)

Other (if applicable)

13. In your experience, what causes these types of API errors happen in

production?

API error response handling and detection

The following question is related to the handling of error responses returned by the API.

Often these errors are uniquely identified by an error code and message.

For example the Twitter API can return message "User not found" with error code "50".

We refer to specific, generic and no logic to handle errors:

Specific logic: custom error handling for unique error codes or messages, such as the

Twitter error described.

Generic logic: error handling is the same for a group of error messages, such as all

error messages returned with HTTP status code 500.

No logic: no error handling in which case errors are not acted upon.

14. In your application API errors are/were handled using:

I

don't

know Never Rarely Sometimes Often Always

Specific logic to handle

unique API errors

Generic logic to handle

multiple API errors

No logic to silently swallow

API errors

15. In your experience, what are the challenges of handling API error

responses?

16. In the project, problems in production with the API integration are/were

detected via:

API problem detection

17. Why is there no detection mechanism in place?

Alerts (sms/email/etc.)

Monitoring dashboards

API integration tests

Log analysis

End user inquiries

Other - Write In

None of the above

18. What could you do to improve the detection of problems with the API?

19. Why is this not in place?

20. How can the API provider help you prevent problems you experience

with the API?

Wrapping up

21. Feel free to add any further comment on this survey, topic, etc.

22. If you would like to receive the results of this study, please leave your

email here.
Results are only used anonymously. Your email will not be shared with anyone and you will not receive any other

emails than the results of this study.

Thank You!

Thank you for taking our survey. Your response is very important to us.

 %s format expected

	Preface
	Contents
	Introduction
	Background
	Web APIs
	Web API history
	SOAP and REST

	Industry partner: Adyen
	Adyen API
	Error responses
	Logging

	Understanding the API environment
	API stakeholder overview
	The cause-failure chain
	API integration environment

	Research Questions & Methodology
	Research questions
	Research methodology

	API Fault Data Extraction Approach
	Extracting unique error messages from API logs
	Log data set
	Data requirements
	Unique error extraction

	Identifying unique faults
	Removing ambiguity
	Prioritization
	Annotation

	Data set time window justification
	Data set for quantitative analysis

	Faults in API integration
	Methodology
	Data set
	Categorization of unique faults

	Fault types in API integration
	Invalid user input
	Missing user input
	Expired request data
	Invalid request data
	Missing request data
	Insufficient permissions
	Double processing
	Configuration
	Missing server data
	Internal
	Third party

	API integration fault prevalence
	Stakeholder perspective
	Category perspective

	Illustrative API Integration Problem Cases
	Methodology
	Interviewee selection
	Interview design
	Conducting the interviews

	Case 1: Unhandled contract update
	API consumer description
	Problem description
	The integration process
	Error handling
	Verifying integration correctness
	Monitoring
	Suggestions

	Case 2: Insufficient permissions in chained API calls
	API consumer description
	Problem description
	The integration process
	Error handling
	Verifying integration correctness
	Monitoring
	Suggestions

	Case 3: Invalid encryption key
	API consumer description
	Problem description
	The integration process
	Error handling and monitoring
	Suggestions

	API Consumer Perspective
	Methodology
	Target audience
	Overall design
	Question design
	Evaluation and improvements
	Sampling and respondents

	Fault types and their impact
	Fault types experienced by API consumers
	Fault type impact experienced by API consumers

	API integration practices and challenges
	API integration by API consumers
	API fault prevention
	API error handling
	API fault detection
	Underlying causes

	Recommendations
	Fault type detection
	Fault detection action
	API error detection dashboard proposal

	Fault type prevention
	Prevent by validation
	Prevent by fix

	Fault type handling
	Feedback and retry
	Recover
	Retry or recover
	API error response proposal

	Problem priority

	Discussion
	Related work
	Threats to validity
	Future work
	Lessons learned
	Understanding the data
	R testing

	Conclusion
	Bibliography
	Adyen Fault Cases
	Interview Guide
	API Integration Survey

