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Abstract

The acceleration of an option pricing technique based on Fourier cosine expansions
on the Graphics Processing Unit (GPU) is reported. European options, in particular
with multiple strikes, and Bermudan options will be discussed. The influence of the
number of terms in the Fourier cosine series expansion, the number of strikes, as well as
the number of exercise dates for Bermudan options, are explored. We also give details
about the different ways of implementing on a GPU. Numerical examples include
asset price processes based on a Lévy process of infinite activity and the stochastic
volatility Heston model. Furthermore, we discuss the issue of precision on the present
GPU systems.

1 Introduction

In this paper we deal with a topic from Computational Finance, i.e., the efficient pricing
of options on stocks or other assets. Several methods for pricing these contracts exist. The
Feynman-Kac theorem relates the conditional expectation of the value of an option con-
tract payoff function under the risk-neutral measure to the solution of a partial differential
equation. Various pricing techniques can therefore be developed, like partial-(integro) dif-
ferential equation (PIDE) finite-difference solvers, monte Carlo simulations or numerical
integration methods. Option pricing techniques need to be accurate, robust and fast. The
latter feature is particularly necessary when the mathematical asset price models are cal-
ibrated to real market data. Option values, with many different parameter values for the
underlying asset price process, are then computed thousands of times in order to fit the
mathematical model. In this paper, we focus on this setting and show that it may make
sense to perform this task on a Graphics Processing Unit-based computer.

A highly efficient pricing method is the COS method [1, 2], based on Fourier cosine
series expansions. In this method, based on the conditional expectation formula, the con-
ditional density function of the underlying is approximated by a series expansion which
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is connected to the characteristic function. The COS method is applicable if the char-
acteristic function of the stochastic asset price process (i.e. the Fourier transform of the
conditional density function) is available. This is certainly the case for state-of-the-art
asset price models, like the Lévy jump processes and the Heston stochastic volatility pro-
cess, which we discuss in the present paper. However, also more involved hybrid stochastic
processes, for example for interest rates and equity can be considered, as long as we can get
to a characteristic function. For such asset models with stochastic volatility and stochastic
interest rate, like the Heston-Hull-White or the Heston–Gaussian two-factor model, the
analytic characteristic function is typically not available. However, after some appropriate
reformulations of the SDE system (see, for example [7]) the coefficients of the characteristic
function can be found as the solution of a Riccati system of ordinary differential equations
(ODEs), as described in [8]. These ODE systems can be solved numerically by means of
an explicit Runge–Kutta method or by other ODE solvers. We will show that this task
can also be performed efficiently on a GPU.

In practice, the option values obtained from a mathematical model should be con-
sistent with market option prices. Usually, options with many different strike prices are
needed for calibration. In the COS method, European option prices for a vector of strikes
can be computed in one computation, which accelerates the calibration procedure signifi-
cantly.

To further accelerate the calibration procedure, two approaches directly come into
mind. The easiest is to purchase a faster CPU! As an example, Table 1 compares error
convergence and cpu times between the CPU used in [1] (CPU 1: Intel(R) Pentium(R) 4
CPU, 2.80GHz with cache size 1MB) and a faster CPU (CPU 2: Intel(R) Core(TM)2 Duo
CPU, E6550 @ 2.33GHz Cache size 4MB) for European calls under a Geometric Brownian
Motion asset process. Time is in milli-seconds1.

N 16 32 64
msec(cpu1) 0.337 0.388 0.506

msec(cpu2) 0.1032 0.1503 0.2270
max.abs.error 0.0059 9.1396e-08 1.4211e-14

Table 1: Comparison of cpu times between different CPUs.

The faster CPU gives a satisfactory acceleration, but one needs to wait (sometimes
up to two years) for an acceleration by a factor two.

Another possibility to accelerate the pricing engine is to run the program, or parts
of it, on the popular Graphics Processing Unit, which supports parallel computation.
Executing a code on a GPU is worthwhile if:

1. A program can be divided into several independent parts;

2. A program does not contain many sequential parts;

3. A program does not require much memory transfer from host to device or vice versa.

11 milli-second=10−3 second

2



Previous work in the direction of option pricing, with an integration-based method [6],
concluded that the GPU option pricing code outperformed a corresponding CPU code for
pricing American and so-called path-dependent options, but not for European options. A
large number of space and time points was needed to show the advantages of the GPU. In
our paper, we will demonstrate a significant performance improvement on the GPU, due
to parallelization, when pricing European options with multiple strikes but with not-more-
than-necessary terms in the Fourier cosine expansion. The GPU may therefore be used
for the important task of calibration, which is traditionally done with European options.
For certain modern option products it also makes sense to calibrate to barrier options, or
other, liquid financial products. The pricing of barrier options with the COS method is
closely connected to the example of pricing Bermudan options in the present paper.

The outline of this paper is as follows. Section 2 gives an introduction in the COS
option pricing method. For European options different ways of implementation of the
method are described in Section 3. Section 4 presents the speed-up for multi-strike Eu-
ropean options on the GPU. The acceleration of an explicit Runge–Kutta method for
numerically solving systems of Riccati ODEs to approximate a characteristic function (if
it is not available in closed form) is presented in Section 5. Section 6 gives pricing results
for Bermudan options, that may be exercised early (before the maturity date). Here the
influence of the number of terms in the Fourier cosine expansion as well as the number of
early exercise dates on the speed-up factor on the GPU are discussed.

The GPU we work on is an NVIDIA GeForce 9800 GX2, which has two graphics
processing units (GPUs) and 1 GB of memory (512 MB for each GPU); the CPU on the
same computer, needed for data transfer etc., is an AMD Athlon(tm)64 X2 Dual Core
Processor 4600+ (cache size 512 KB, 2412.364MHz).

The results obtained are compared with timings on a CPU from an Intel(R) Core(TM)2
Duo CPU E6550 (@ 2.33GHz Cache size 4MB).

2 COS Pricing Method

Starting from the risk-neutral valuation formula

v(x, t0) = e−r∆t

∫ ∞

−∞
v(y, T )f(y|x)dy,

where v(x, t) is the option value, and x, y can be any increasing functions of the underlying
at t0 and T , respectively, we truncate the integration range, so that

v(x, t0) ≈ e−r∆t

∫ b

a
v(y, T )f(y|x)dy. (1)

with |
∫

R f(y|x)dy −
∫ b
a f(y|x)dy| < TOL. Error analysis of the various approximations is

given in [1, 2].
The conditional density function of the underlying is then approximated by means of

the characteristic function via a truncated Fourier cosine expansion, as follows:

f(y|x) ≈ 2
b− a

∑′N−1

k=0
Re(φ(

kπ

b− a
;x) exp (−i akπ

b− a
)) cos (kπ

y − a

b− a
), (2)
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where Re means taking the real part of the expression in brackets, and φ(ω;x) is the
characteristic function of f(y|x) defined as:

φ(ω;x) = E(eiωy|x). (3)

The prime at the sum symbol in (2) indicates that the first term in the expansion is
multiplied by one-half. Replacing f(y|x) by its approximation (2) in (1) and interchanging
integration and summation, gives us the COS algorithm to approximate the value of a
European option:

v(x, t0) = e−r∆t
∑′N−1

k=0
Re(φ(

kπ

b− a
;x)e−ikπ a

b−a )Vk, (4)

where

Vk =
2

b− a

∫ b

a
v(y, T ) cos (kπ

y − a

b− a
)dy (5)

is the Fourier cosine coefficient of v(y, T ), which is available in closed form for several
European option payoff functions.

Formula (4) can be directly applied to calculate the value of a European option, and
it also forms the basis for pricing Bermudan options.

The COS algorithm exhibits an exponential convergence rate for all processes whose
conditional density f(y|x) ∈ C∞((a, b) ⊂ R). The size of the integration interval [a, b] can
be determined with help of the cumulants [1].

2.1 Pricing of European Options with Multi–Strike Features

With Xt = log(St/K), the solution for Equation (5) can be written as

Vk = UkK, (6)

where

Uk = {
2

b− a
(χk(0, b)− ψk(0, b)), for a call,

2
b− a

(ψ(a, 0)− χ(a, 0)), for a put,
(7)

with

χk(x1, x2) :=
∫ x2

x1

ex cos
(
kπ
x− a

b− a

)
dx, (8)

ψk(x1, x2) :=
∫ x2

x1

cos
(
kπ
x− a

b− a

)
dx. (9)

Now, the pricing formula (4) reads:

v(x, t0) = Ke−r∆tRe(
∑′N−1

k=0
φ(

kπ

b− a
;x) · e−ikπ a

b−aUk) (10)

Let’s assume that we deal with a vector of strikes, K = [K(1), · · · ,K(P )]T , where P is
the number of strikes. Recall from (1) that [a, b] is the truncation range for the log–asset
price x. As x is a function of K, i.e. x(j) = log(S/K(j)), j = 1, · · · , P , the parameters a
and b also depend on K; therefore, they are also vectors with length P . For a vectorised
version of the COS method, enabling an efficient computation of multi-strike options, we
define the following matrices:
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� Φ is a (P ×N)-matrix with elements

Φ(j, k + 1) = φ(
kπ

b(j)− a(j)
;x(j))e−ikπ

a(j)
b(j)−a(j) ,

j = 1, · · · , P, k = 0, · · · , N − 1.

� Ū is an (N × 1)-vector with elements Ū(k + 1, 1) = Uk, k = 0, · · · , N − 1.

� Λ is a (P × P ) diagonal matrix with Λ(j, j) = K(j), j = 1, · · · , P .

With these matrices, the formula for pricing options with multi–strike features reads:

v(x, t0) = e−r∆t Λ Re(Φ U), (11)

so that option values for many strikes can be computed simultaneously.

2.2 COS Method for Bermudan Options

The pricing formula for a Bermudan option with M exercise dates, with m = M,M −
1, . . . , 2, is divided into a stage in which a continuation value is computed, and a stage
where this value is compared to the payoff g(x, tm−1) ≡ v(x, T ). These stages are given
by: {

c(x, tm−1) = e−r∆t
∫

R v(y, tm)f(y|x)dy,
v(x, tm−1) = max (g(x, tm−1), c(x, tm−1)),

(12)

followed by the final computation,

v(x, t0) = e−r∆t

∫
R
v(y, t1)f(y|x)dy. (13)

In this description, we have x := ln (S(tm−1)/K) y := ln (S(tm)/K), and v(x, t), c(x, t)
are the option value, and the continuation value at time t, respectively. For vanilla options
g(x, t) ≡ (αK(exp(x)− 1))+ with α = 1 for a call and α = −1 for a put.

Practically, for each time step we first determine an early-exercise point, x∗m, for which
c(x∗m, tm) = g(x∗m, tm) by means of the Newton method. If x∗m lies outside interval [a, b]
we set x∗m equal to the nearest boundary point. At each time step, tm, we then can split
the Fourier cosine coefficients Vk(tm) into two parts:

Vk(tm) = Ck(a, x∗m, tm) +Gk(x∗m, b), for a call, (14)

Vk(tm) = Gk(a, x∗m) + Ck(x∗m, b, tm), for a put. (15)

for m = M − 1,M − 2, . . . , 1, and

Vk(tM ) = Gk(0, b) for a call,

Vk(tM ) = Gk(a, 0) for a put.

Here,

Gk(x1, x2) =
2

b− a

∫ x2

x1

g(x, tm)cos(kπ
x− a

b− a
)dx, (16)
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Ck(x1, x2, tm) =
2

b− a

∫ x2

x1

ĉ(x, tm)cos(kπ
x− a

b− a
)dx, (17)

with
c(x, tm) = e−r∆t

∑′N−1

k=0
Re(φ(

kπ

b− a
;x)e−ikπ a

b−a )Vk(tm+1),

from the Fourier cosine expansion.

Gk(x1, x2) is known analytically, like for European options, and for Lévy processes,

C(x1, x2, tm) ≡ Ck(x1, x2, tm))N−1
j=0

can be written as
C(x1, x2, tm) = e−r∆tIm(Msu+Mcu)/π

where Im means taking the imaginary part of the expression in brackets. Msu represents
the first N elements of D−1(D(ms) · D(us)) 2, and Mcu denotes the computation of the
first N elements of D−1(D(mc) · sgn ·D(us)), in reversed order, see [2].

In this description, we have

sgn = [1,−1, 1,−1, . . . ]T , ms = [m0,m−1, · · · ,m1−N , 0,mN−1, · · · ,m1]T ,

mc = [m2N−1,m2N−2, · · · ,m1,m0]T , us = [u0, u1, · · · , uN−1, 0, · · · , 0]T ,

with elements

mj =
(x2 − x1)
b− a

πi, if j = 0,

mj =
exp(ij (x2−a)π

b−a )− exp(ij (x1−a)π
b−a )

j
, if j 6= 0.

Finally, uj = φ(jπ/(b− a))Vj(tm+1) and u0 = 1
2φ(0)V0(tm+1).

For all time steps, m = M − 1, · · · , 1, approximation of Vk(tm) is recovered from (14)
or (15). Option value v(x, t0) is obtained by inserting Vk(t1) into (13), and then, apply-
ing (4) with T replaced by t1.

2.3 Underlying Asset Processes

In this paper we discuss two different underlying asset processes, the CGMY process, a
Lévy jump process and the Heston stochastic volatility process. For our purposes, the
characteristic functions related to these processes are needed.

The CGMY process, as defined in [9], is a generalisation of the Variance Gamma
process with the following characteristic function:

φCGMY (ω, t) = exp(tCΓ(−Y )[(M − iω)Y −MY + (G+ iω)Y −GY ]). (18)

Four parameters need to be calibrated to market data: Parameter Y : Y < 2 controls
whether the CGMY process has finite or infinite activity. Parameter C : C > 0 controls

2Here, D(vector) denotes the discrete Fourier transform, whereas D−1 stands for the inverse discrete
Fourier transform.
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the kurtosis of the distribution and non-negative parameters G,M give control over the
rate of exponential decay on the right and left tails of the density, respectively.

In the Heston stochastic volatility model, the underlying and the volatility are modeled
by the following stochastic differential equations,

dxt = (r − 1
2
µt)dt+

√
µtdW1,t,

dµt = λ(µ̄− µt)dt+ η
√
µtdW2,t, (19)

where xt and µt denote the log–asset price process and the variance of the asset price
process, respectively. Parameters λ, µ̄, η represent the speed of mean–recursion, the mean
value of variance and the volatility of volatility. Moreover, W1,t and W2,t are Brownian
motions, correlated with correlation coefficient ρ.

For the log-asset price in the Heston model an analytic characteristic function can be
found, which reads:

φ(ω,∆t, µ0) = exp (iωr∆t+
µ0

η2
(

1− e−D∆t

1−Ge−D∆t
)(λ− iρηω −D)) ·

exp (
λµ̄

η2
(∆t(λ− iρηω −D)− 2 log(

1−Ge−D∆t

1−G
)))

with D =
√

(λ− iηρω)2 + (ω2 + iω)η2 and G = λ− iηρω −D/λ− iηρω +D.
As for the value of D, we take the square root whose real part is non-negative.

Remark 2.1. [Advantage of COS method on GPU] From [10] we know that, compared to
the execution on a CPU, the GPU is favorable for many of the time-consuming operations
in the COS method. Moreover, the elements of the sum in (4) are independent of each
other and can be computed simultaneously. Therefore, the GPU is expected to outperform
the CPU when executing the COS algorithm, in particular when many computations are
necessary, as for European options with multi-strike features and for Bermudan options.

3 European Options

A European option can be viewed as a special case of a Bermudan option with only one
possible exercise date (the expiry time). For European options, the Fourier and inverse
Fourier transform operations are not needed.

3.1 Different Ways of GPU Implementation

In this section, we discuss different ways of implementation on the GPU. Consider a simple
case where we need to price one vanilla option.

From (4) the COS algorithm can be decomposed into two steps, i.e., computations on
each element of a vector, Re(exp (−ikπ a

b−a)φ( kπ
b−a ;x)Vk), which can be parallelized; and

the summation of vector elements.
We consider three ways of GPU implementation:

1. Directly run the whole code on the GPU, referred to as GPU1;
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2. All operations related to each vector element are parallelized on the GPU, whereas
the summation is performed on the CPU. This hybrid GPU/CPU way of implemen-
tation is referred to as GPU2;

3. When summing up the elements of a vector, we can split the vector in two vectors,
each of size N/2, and sum up these two on the GPU. The procedure is repeated
until N = 1. The summation of pairs of elements can be parallelized on the GPU
this way. The number of operations for the summation can be reduced from N to
log2(N), referred to as GPU3.

Figure 1: Comparison of different GPU implementations.

Figure 1 presents a comparison of the time consumed by the above mentioned three
ways of GPU implementation and also the CPU time. Clearly, GPU1 is faster than
the CPU only when N , the number of terms in the Fourier cosine expansion, is large,
whereas the implementations GPU2 and GPU3 are significantly faster than either the
CPU implementation or GPU1. Moreover, as N increases, the speed-up of GPU2 and
GPU3 also increases. GPU3 is slightly slower than GPU2 for small N , but when N is
very large, GPU3 beats GPU2.

Moreover, unlike the CPU or GPU1, the time for GPU2 and GPU3 does not increase
much as N increases, until N ≈ 216.

For Bermudan options, implementation GPU3 is preferred, since the complete code
then runs on the GPU and data transfer can be reduced. With GPU2, we would need to
transfer data at each time step, which consumes time.

In this paper we will use implementation GPU3 for all numerical examples to follow.

3.2 Numerical Example

We take as an example the CGMY model with Y = 1.5. The other parameters are chosen
as S0 = 100; K = 80; C = 1; M = 5; G = 5. Table 2 compares time and accuracy
of the CPU and the GPU results, with time measured in milli-seconds. Table 2 shows
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N CPU(time) GPU(time) CPU(value) GPU(value)
256 0.193. . . 0.182 27.974744 27.974733
1024 0.691. . . 0.433 27.974744 27.974733

Table 2: Comparison of time and precision for CPU and GPU implementation of the COS
method for a single European option.

that with N = 1024 the GPU implementation is 1.5 times faster than running the code
on the CPU. However, it is not necessary to take such a large value of N in the COS
method in practice, as with N = 256 the option values already differ less than one basis
point. Therefore, in the present setting (COS method, small values of N) the GPU is not
advantageous. However, with multiple strikes, presented in Sections 4 and 5, many more
computations are needed so that the GPU performance is expected to be more profound.

4 Multiple Strike Option Pricing

In this section we focus on pricing European options, but now with multiple strikes, on the
GPU. The parameters used, next to S0 = 100, in the CGMY process and for the Heston
process are:

CGMY : r = 0.1;C = 1;G = 5;M = 5;Y = 1.5;T = 1;
Heston : λ = 1.577; η = 0.575; r = 0.040, µ0 = 0.018; ρ = −0.57;T = 10.

We price European call options with different vectors of strikes, as shown in Table 3.

Number op strikes value of K
3 strikes K = 80, 100, 120
5 strikes K = 80, 90, 100, 110, 120
9 strikes K = 80, 85, · · · , 115, 120
13 strikes K = 70, 75, · · · , 125, 130
17 strikes K = 60, 65, · · · , 135, 140
21 strikes K = 50, 55, · · · , 145, 150

Table 3: Vectors of strikes used in the numerical examples.

To efficiently implement (11) on a GPU, we first divide the P–axis and the N–axis in
different blocks and threads, as shown in Figure 2.

Then each element of a (P ×N)-matrix can be calculated simultaneously as illustrated
in Figure 3.

When performing the summation on each row of matrix v, as the final step in (11),
we divide the (P × N)-matrix into smaller sub-matrices. For instance, with N = 128,
and 21 strikes, the corresponding 21× 128-matrix can be subdivided into fifty–six 3× 16-
matrices. The values of these smaller sub-matrices are copied to shared memory as shown
in Figure 4:
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Figure 2: Blocks and threads.

Figure 3: Parallelization of cos method for options with multi–strike.

Figure 4: Data transfer from global memory to shared memory.

Here aBegin is the first location of As, i.e. the blocks with shared memory, and tx, ty
are the thread indices of As. Then as we run the program, data transfer only happens
within the shared memory, and not in the global memory, which saves us a lot of GPU
time.

4.1 Convergence and Precision

Tables 4 and 5 present the convergence behaviour and the precision of option values with
5 strikes and 21 strikes, respectively, for the two underlying processes. Time is again
measured in milli-seconds. Option values obtained with N = 216, and in double precision,
are taken as the reference values. We calculate the maximum absolute error, for varying
values of N , over the strike vectors.

Both the GPU and CPU results are extremely fast, as we need only N = 64 for the
CGMY process and N = 128 for Heston’s model, to obtain converged option values on the
GPU and the CPU. However, the execution time on the GPU is significantly smaller than
on the CPU. As we are in the milli-seconds range, one might question the relevance of this
gain in speed. However, within a calibration setting option prices have to be computed
several thousands of times, which immediately turns a small gain into a significant profit.
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The advantage of the use of the GPU becomes more pronounced when the values of N
and K increase, since then more arithmetic operations are required. As shown in Tables 4
and 5, the acceleration on the GPU for Heston’s model increases for 5 strikes from 12 to
21, as N increases from 128 to 256. For 21 strikes, the speed-up on the GPU is a factor
37 for N = 128 and 47 for N = 256. Since the evaluation of the characteristic function
of the Heston model is more involved than the one of the CGMY model, the speed-up on
the GPU for the Heston model is higher than for the CGMY model. However, due to the
fact that the present GPUs give computed values in single precision only, round-off errors
can build up easily during the computation of the characteristic function on the GPU. A
larger maximum absolute error for the Heston model is therefore observed in the tables.

In the next section, we will deal with an explicit Runge-Kutta ODE solver to determine
the characteristic function for Heston’s model. In this numerical procedure operations like
taking the square root of a complex number are not needed, in contrast to the evaluation
of the analytic solution. For the numerical ODE solver the influence of single precision
arithmetic is therefore less pronounced, and we obtain a higher accuracy than with the
analytic characteristic function.

CGMY model
N 32 64 128

MATLAB
msec 0.413230 0.745590 1.388770

max.abs.err 1.3409e-05 < 10−14 < 10−14

GPU
msec 0.141144 0.143051 0.152826

max.abs.err 0.000027 0.000034 0.000034
Heston model

N 64 128 256

MATLAB
msec 1.206600 1.958680 3.873950

max.abs.err 4.2839e-04 2.2218e-08 < 10−14

GPU
msec 0.154972 0.159979 0.182867

max.abs.err 0.000534 0.000104 0.000104

Table 4: Convergence and maximum absolute error when pricing a vector of 5 strikes.

Figure 5 presents the speed-up obtained on the GPU for different numbers of strikes,
with N = 128, 512, 2048. When N is relatively small (N = 128), we get an improved
speed-up when the number of strikes increases. With N large (N = 512, 2048), however,
more strikes may lead to a lower speed-up factor on the GPU due to the increased data
transfer time between the CPU and the GPU, and due to the fact that a larger memory
is needed. Figure 5 displays a speed-up of 30-40 for 21 strikes on the GPU with only
N = 128, and a speed-up of 60-70 for 13 and 17 strikes with N = 512.

Figure 6 shows that, due to the parallelization, the GPU time hardly changes for
N ≈ 29 − 210. With N > 210, however, the GPU time increases as the influence of data
transfer time comes into play.
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CGMY model
N 32 64 128

MATLAB
msec 1.335130 2.690250 5.340340

max.abs.err 1.3409e-05 < 10−14 < 10−14

GPU
msec 0.154018 0.169992 0.200987

max.abs.err 0.000053 0.000053 0.000053
Heston model

N 64 128 256

MATLAB
msec 3.850890 7.703350 15.556240

max.abs.err 6.0991e-04 2.7601e-08 < 10−14

GPU
msec 0.177860 0.209093 0.333786

max.abs.err 0.000534 0.000144 0.000144

Table 5: Convergence and maximum absolute error when pricing a vector of 21 strikes.

Figure 5: GPU speed-up for Heston model with different number of strikes, N =
128, 512, 2048.

5 Riccati ODEs and Characteristic Function

The Riccati ODEs arise in the determination of a characteristic function. Often, as in the
case of the Heston model, the characteristic function is known analytically. In the cases
for which we cannot find an analytic expression, we may resort to a numerical solution of
the Riccati ODEs. This is typically for systems of stochastic differential equations that are
involved (meaning, including stochastic interest rate, by means of a two-factor model, and
stochastic volatility, for example) we need the numerical approximation. Here, we focus
again on the Heston model, and pretend that the characteristic function is not available.
We aim at determining it by means of an explicit Runge-Kutta ODE solver. From [8] we
know that the characteristic function for the Heston model (19) is of the following form:

φx,µ(ω, t) = eA(ω,t)+Bµ(ω,t)µ0+Bx(ω,t)x0 , (20)
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Figure 6: GPU time versus N for different stochastic models.

with the coefficients A(ω, t), Bx(ω, t) and Bµ(ω, t) given by the following Riccati ODEs:
∂
∂tBx(ω, t) = 0, Bx(ω, 0) = iω

∂
∂tBµ(ω, t) = 0.5η2µ2

t − (λ− iρηω)µt − 0.5iω − 0.5ω2, Bµ(ω, 0) = 0

∂
∂tA(ω, t) = λµ̄µt + i(r − q)ω, A(ω, 0) = 0.

(21)

It is easy to see from (21) that Bx(ω, t) = iω. A(ω, t) and Bµ(ω, t) are solved numerically
by the explicit fourth order Runge–Kutta method (RK4), and inserted in the general
characteristic function (20), to employ the COS method.

Tables 6 and 7 show the timing results on the GPU and the CPU for 5 and 21 strikes,
respectively, with the characteristic function determined by the RK4 method. Compared
to the Tables 4 and 5, a higher speed-up can now be achieved on the GPU compared to
the case in which the analytic characteristic function is used. For 5 strikes, with N = 128
and N = 256, the GPU timings are 45 and 65 times faster than the CPU results. For 21
strikes the acceleration on the GPU is a factor of 103 and 100. Note that for 21 strikes,
due to increased data transfer, the speed-up factor reduces as N increases, but since the
COS method exhibits an exponential convergence rate, the choice N = 128 is sufficient
for converged option prices.

Heston model
N 64 128 256

MATLAB
msec 37.9491 50.5196 81.1083

max.abs.err 4.2848e-04 8.4949e-08 1.0650e-07

GPU
msec 1.091957 1.121998 1.253843

max.abs.err 0.000443 0.000013 0.000013

Table 6: Convergence and maximum absolute error for 5 strikes, characteristic function
obtained by RK4.
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Heston model
N 64 128 256

MATLAB
msec 84.9870 145.0005 268.2299

max.abs.err 6.0979e-04 1.5607e-07 1.2847e-07

GPU
msec 1.228094 1.402855 2.689838

max.abs.err 0.000611 0.000037 0.000037

Table 7: Convergence and maximum absolute error for 21 strikes, characteristic function
obtained by RK4.

Figure 7 shows the speed-up factor for the GPU with N = 128, 256, 512 and a different
number of strikes. The advantage of using the GPU for these computations is obvious.
Of course, option pricing with an analytic characteristic function is still fastest, but the
numerical solution of Riccati ODEs can be performed highly efficiently on these units.

Figure 7: GPU acceleration for Heston model with different strike vectors and N , charac-
teristic function obtained by RK4.

6 Bermudan Options

In this section we consider the pricing of Bermudan options with a discrete number of early
exercise points. Also here we do not focus on large numbers of N or on many time points,
M . In particular, by using the COS pricing method, with N = 160, we obtain the price of
a Bermudan option already with an error of less than 10−9. Moreover, Bermudan options
with up to 64 time points (M = 64) are typically sufficient to get a very satisfactory
approximation of the value of an American options (that can be exercised at any time
before expiry) by a repeated Richardson extrapolation, see [3].

We will show in this section that by exploiting the parallelism on a GPU the COS
algorithm executes faster than on the CPU, even with a “not-more-than-necessary” terms,
N , in the Fourier cosine expansion and “not-more-than-necessary” time points, which is
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attractive from a practical point-of-view. However, the reduction of the total execution
time is not as impressive as in the previous sections.

We use as a numerical example a Bermudan put option under CGMY. The model
parameters are S0 = 100;K = 80;M = 10;C = 1;M = 5;G = 5;Y = 1.5. Tables 8 and 9
compare time and accuracy between the GPU and CPU.

N CPU(time) GPU(time)
256 13.15. . . 11.02
512 24.69. . . 13.69
1024 46.65. . . 27.34

Table 8: Comparison between CPU and GPU time for the CGMY model, for a Bermudan
option; different numbers of terms in the Fourier cosine expansion.

N CPU(value) GPU(value)
256 28.829781987399432 28.829739
512 28.829781987399425 28.829721
1024 28.829781987399404 28.829756

Table 9: Precision on the GPU, Bermudan put option, for different numbers of terms in
the Fourier cosine expansion.

It is shown that, with N relatively small, the Bermudan option price converged well
and that the error is small. However, as mentioned before, as N gets larger, probably for
other types of options, the advantage of using the GPU will become more obvious.

6.1 Increasing Number of Exercise Dates

We increase the number of exercise dates, M , to 20, 40 and 80 and compare the GPU
with the CPU time. The model parameters are S0 = 100;K = 80;N = 512;C = 1;M =
5;G = 5;Y = 1.5. Results are listed in Tables 10 and 11.

With N = 512 the GPU is twice as fast as the CPU for different numbers of exercise
dates. The number of exercise dates does not influence the speed-up factor of the GPU.
This is because the algorithm can not be parallelized in time, as we use values at tm+1 to
calculate values at tm in the backward recursion procedure. This results in a recursion of
m = M − 1, · · · , 1 in the CUDA implementation.

Furthermore, as the number of early exercise dates increases, the GPU option values
converge slower than the CPU, double precision, values. For instance, when N = 1024,
the GPU option price for M = 80 is 28.932182, which resembles the reference value of
28.932234 closer than the value reported in Table 11.

15



M CPU(time) GPU(time)
20 51.04. . . 26.09
40 104.00. . . 50.88
80 210.20. . . 100.54

Table 10: Comparison of CPU and GPU times for the CGMY model, Bermudan option
with a different numbers of exercise dates.

M CPU(value) GPU(value)
20 28.888713582335640 28.888538
40 28.917953599279208 28.917654
80 28.932234254713762 28.931826

Table 11: Precision on the GPU, Bermudan put with different numbers of exercise dates.

7 Conclusions

The COS method is a highly efficient pricing method for both European and early–exercise
options. It is a challenge to implement such an efficient method, which requires a small
number of terms in the Fourier cosine expansion and a small number of exercise dates to
approximate the value of an American option, efficiently on a GPU.

In this paper, we implemented COS algorithm on the GPU, and the GPU time and
option values were compared to those obtained on the CPU. We optimized the GPU
implementation, by splitting a vector and performing the summation in parallel to exploit
the advantages of a GPU.

A highly satisfactory performance on the GPU is observed especially in the case of
multiple strike European option computations. Then, we find speed-up factors ranging
from 10 to 100, depending on the form of the characteristic function and on the number
of strikes that is computed simultaneously.

Although computation on a GPU to date still exhibits several disadvantages, such as
single precision arithmetic, a time-consuming memory transfer, and additional computa-
tions due to an unscaled inverse Fourier transform, it is a promising architecture for option
pricing.

Whereas for the Heston model an analytic characteristic function is well-known, this
is not the case for more complex hybrid stochastic models. Their characteristic functions
need to be determined numerically by a Riccati ODE solver. Based on our results this is
also a favorable exercise on a GPU. A GPU-based architecture may therefore serve very
well as a calibration engine in option pricing.
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