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ABSTRACT

The aim of this research is to evaluate two different current correction methods: the "It-
erative" Method, that has (partly) replaced the traditional "Mean of means" Method and
is currently in use, and the "Direct" Method, a more fundamental and mathematical ap-
proach to the problem. These methods were both developed to determine the speed of
a ship relative to the water, during so-called speed trials. This information is of great
importance, since a delivered ship has to satisfy the contract speeds, recorded in the
purchase agreement. If the ship does not satisfy these requirements, it could be rejected
by the buyer in the worst case. Needless to say, it is very important that the speed trial
analysis is as accurate as possible.

Both methods make use of two assumptions: an exponential relationship between ship
power and the ship’s water speed and a sinusoid relationship between the current speed
and time. It is known that these assumption do not describe reality in an exact way, but
they are simply the best approximations available at this moment.

The methods have been evaluated by simulations of different data input. This data is
taken from model tests performed at MARIN. This means that these are cases where the
water speed is known (makes it possible to analyse the true error) and no corrections
need to be made for waves or wind. Additionally an academic example of a current is
used. Furthermore realistic measurement noise was added to the input data. In order
to evaluate if the methods correctly approximate this current function, 1000 simulations
were carried out for every data set.

An interesting finding was that the "Direct" Method always converged to a good fit,
where the "Iterative" Method failed in some situations. In the case that both meth-
ods converged rightfully, not much can be said about which method is the most accu-
rate. Sometimes the "Iterative" Method provided a better result, sometimes the "Direct"
Method did. Important to note is that in the case of good convergence of both methods,
the differences were reasonably small between the two. This could be caused by errors
on measurement noise level, the existence of multiple local minima or a premature stop
of the method, because of computer limitations.
These computer limitations are involved with the following. For the non-linear fitting
and the stopping criterion, values need to be put in by the user. Too large values can re-
sult in a premature stop of the algorithm or wrong convergence of the "Iterative" Method.
Too small values on the other hand can lead to extensively long calculations time and
thus computer limitations. Furthermore the chosen values should not be smaller than
the computer precision, since the stopping criterion is then based on measurement
noise level, which is a bad thing. The "Direct" Method only needs one (non-linear) fit-
ting and consequently has a way smaller calculation time: a huge plus.
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iv 0. ABSTRACT

The performance of different non-linear fitting methods, that are being used in the cur-
rent correction methods, was also analysed. In most cases both the Trust Region Reflective-
and the Levenberg-Marquardt algorithm gave similar results. In an initial value analysis,
performed in this research, it was shown that the Trust Region Reflective is more reliable
if the initial value is chosen far off the true value. It is thus recommended to use the Trust
Region Reflective algorithm.

Altogether, the "Direct" Method seems to be a more robust, stable and theoretically sub-
stantiated algorithm. It is recommended to use this algorithm as the main method for
speed trial analysis or to use it as an initial value estimator.
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INTRODUCTION

For centuries humans have been engaged in ship design and -building. Naturally ships
always serve a certain purpose and one of the key purposes has always been the trans-
portation of cargo. Nowadays huge bulk carriers and oil tankers are built by shipyards.
The performance of these ships is of great importance for the buyer of this ship, both
from a commercial- and an economical perspective. International laws have been es-
tablished with regard to the emission a ship is allowed to emit. Furthermore the buyer
obviously wants the ship to sail as fast as possible, with the least possible use of fuel.
That is why the shipyard and the buyer settle on contract speeds: certain water speeds
(speed relative to the water) the ship needs to reach for certain power settings.

To assess whether these requirements are met with, speed trials are conducted. These
speed trials are necessary, since the water speed of a ship is an unknown variable that
is hard to measure. The ground speed (speed that the ship travels on the map) can be
measured accurately using GPS, but unfortunately this speed is usually not equal to the
water speed, because of current effects. The speed of the current is an unknown param-
eter and complicates the problem.

Traditionally the "Mean of means" Method was used as a correction method for the cur-
rent. This method is explained in section 2.3. However, once the ships were getting
bigger, the speed trials were taking longer. This is because bigger ships are less viable
and have a bigger mass inertia. The assumptions where the ’Mean of means’ Method
was based on do not hold for this longer time span. A recent new method that has been
introduced is the "Iterative" Method, explained in section 2.4. At present this method is
already being used in sea trial analysis. Unfortunately this method experiences issues,
while being used for real speed trial data. These problems mainly come down on diver-
gence of the method or convergence to an incorrect result.
The "Direct" Method is another method to determine the water speed. This method is
based on a fundamental mathematical way of looking at the problem. The method is
explained in section 2.5.
In this report both the "Iterative" Method and the "Direct" Method will be analysed. The
central research question is as follows:

What is the best possible current correction method for speed trial analysis?

xv



xvi 0. INTRODUCTION

To answer this question, the question is parsed into multiple sub questions:

• What is the cause of wrong convergence/divergence of the "Iterative" Method?

• What can be said about the reproducibility of both methods?

• Which algorithm can best be used for non-linear fitting?

• Which of the two methods has the best performance?

In order to answer these questions, both methods needed to be implemented in MAT-
LAB, using various non-linear fitting techniques. Supplementary literature study was
necessary in order to understand these algorithms and to rightfully apply them. These
numerical methods are described in section 4. The MATLAB code can be found in ap-
pendix B.
Subsequently both methods were tested, using partly real data of model tests performed
at MARIN (appendix C). For the function of the current, an academic example is taken.
The MATLAB code was used in various ways in order to observe various aspects of both
methods.
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1.1. THEORETICAL SHIP BEHAVIOUR

1.1.1. INTRODUCTION
The aim of this research is to make an continued evaluation of the Iterative Method,
since there are still some unanswered questions left. For understanding the motivation
behind this method, a theoretical background is necessary. Only having insight in this,
the chosen model of the Iterative Method can be justified.
For the completeness of this report, a brief overview of ship resistance is given in this
chapter.

1.1.2. TYPES OF RESISTANCE
Newton’s first law states that if a body experiences a netto force equal to zero, the body
will move with a constant speed. Thus if approximations can be made for the resistance
force that a ship experiences, the engine must produce a force that is exactly equal to
this resistance force for the ship to move at a constant velocity. From this engine force,
the delivered power of the engine can be calculated. This is the desired quantity for the
Iterative Method. Needless to say, it is necessary to have insight in the nature of this
resistance force.

When a body moves through water it experiences resistance forces opposing the mo-
tion. Since a ship moves through both water and air, it experiences both water and air
forces that oppose the motion. Initially, the resistance in ’still water’ without wind will
be considered. For additional wind forces and water movements, adjustments can be
made to correct the extra resistance due to these forces. For wind, the resistance will be
extended with an extra wind force. Regarding water movement, the travelled distance
can be corrected for the distance travelled due to water movement. However, unless the
winds are very strong, the water resistance will be the most dominant component of the
total resistance. Especially for big ships that will be considered in this study, the wind
force is neglectable.

Van Manen and Oossanen [1] state that the total ’still water’ resistance can be divided
into three fundamental components:

• The frictional resistance due to the motion of a body through a viscous fluid or gas

• The wave-making resistance, caused by a varying pressure field that a body cre-
ates while moving through a ’still water’ surface , which manifests itself in a wave
pattern

• The eddy making resistance, which is due to the loss of energy by eddies shed from
the appendages or the hull. An eddy is a contrary- or circular current, produced
when a fluid flows past an obstacle that is not properly streamlined and in align-
ment with the flow.

FRICTIONAL RESISTANCE

With up to 80 percent of total resistance for slow-speed ships like supertankers and
around 50 percent of total resistance in high-speed ships ([2]) , the frictional force is
by far the most important resistance component that a ship endures.
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This frictional resistance occurs due to the viscosity of the water the ship propagates
through. The fluid moves past the body, such that the spacing of the streamlines gets
more dense close to the body. Since the mass flow within a streamline is constant, the ve-
locity of the flow changes. Evidently, this results in pressure changes as well. Bernouilli’s
principle of conservation of energy states the relation between these two quantities. In
differential form, this equation is given by:

1

2
∆V 2 + g∆z + ∆p

p
= 0 (1.1)

where

∆V : velocity difference of the fluid between two points in a streamline in
[m

s

]
∆p : pressure difference between those two points in a streamline in

[
N

m2

]
∆z : height difference between those two points in a streamline in [m]

ρ : fluid density in

[
N · s2

m4

]
g : gravitational acceleration in

[m

s2

]
This form of Bernouilli’s principle only holds for steady, incompressible fluids with neg-
ligible viscous forces and non-intersecting streamlines.
It can be shown that the netto force a ship experiences equals the following integral:

Rdr ag =
∫

Ahull

∆p ·nd A (1.2)

where

∆p = p −p0 : pressure field on the hull, resulting from the ship’s velocity in

[
N

m2

]
Ahull : area of the hull in

[
m2]

n : normal vector of the hull surface

p0 : hydrostatic water pressure in

[
N

m2

]
As a result of the viscosity of the water, the particles directly adjacent to the hull surface
will be drawn to the surface and tend to move with the same speed of the ship. These
particles altogether are called the boundary layer. At a distance from the hull, the water
will be at rest. Keeping this in mind and assuming that the pressure is constant along the
surface of the hull, the expression can be simplified to:

Rdr ag = 1

2
SρV 2 (1.3)
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where

S : wet frontal area of the ship in
[
m2]

ρ : water density in

[
N · s2

m4

]
V : ship’s velocity relative to the flow in

[m

s

]
In the simplified model that was introduced here, this derivation of the drag force using
Bernouilli’s principle is valid. However, in reality the pressure along the hull surface is
not constant, the boundary layer does not have the exact same velocity as the ship and
the viscous forces can not be neglected. To correct the drag force for these deviations, a
drag coefficient is used. This will be explained later in greater detail.

Furthermore there will also be a frictional force experienced by the above water part
of the ship. However this resistance is caused by air instead of water. Since the density of
air is about a thousand times less than that of water, the air resistance is likely to be small
in comparison with the frictional force caused by water. As a result the air resistance is
often neglected in ship resistance studies.

WAVE-MAKING RESISTANCE

When a ship moves through a fluid, the normal pressure acting on the hull varies along
the hull. This variation in pressure causes a wave pattern, since the pressure at the sur-
face needs to be constant and equal to atmospheric pressure. The waves in the wave
system have both mass and velocity and as a result contain energy. This energy can only
originate from the movement of the ship. Because of this reason, the resulting force of
the wave pattern must always have the character of a drag force. Locally however, the
pressure field can apply either a resistance force or a thrust force on the ship’s hull. This
drag force is called the wave-making resistance. The magnitude of the wave-making re-
sistance is considered to be a function of both the ship’s velocity and its length ([1]).

Kelvin showed that the wave system created by a ship is comparable to that of a mov-
ing pressure point in a fluid [3]. The wave pattern consists of two main features, namely
diverging- and transverse waves. The crests of the diverging waves are inclined at an an-
gle of almost 20◦ to the direction of motion. The crests of the transverse waves intersect
the center line of the ship at a right angle.

The wave system of a ship can be approximated by the wave patterns of two pres-
sure points: one located on the bow- and one located on the stern of the ship. Local
discontinuities along the ship’s wetted surface can also produce additional waves, but
are negligible compared to the waves produced by bow and stern.

Since the wavelength is dependent on the ship’s velocity and both wave patterns are
moving with the ship, interference between the transverse waves of both systems can oc-
cur. This can result in a constructive interference, where crests of the two wave patterns
coincide and produce waves of greater magnitude. Simply said: in this case wave en-
ergy of two systems are combined into one wave system. It can also work in an opposite
fashion: where transverse waves of both wave patterns (partly) cancel each other out.

A characterisation of this behaviour is represented by the Froude number F r , defined
by:



1.1. THEORETICAL SHIP BEHAVIOUR

1

5

F r = V√
g L

(1.4)

where

V : relative velocity of the ship in
[m

s

]
L : waterline length of the ship in

[m

s

]
g : gravitational acceleration of 9.81

m

s2

Clearly, the interference of the wave patterns is manifested in the several hump and hol-
lows that occur in the resistance curve. Without this effect the resistance curve would be
smoothly increasing.

According to van Manen and van Oossanen [1], the magnitude of the wave-making
resistance rises strongly from a Froude number of 0.35 and maximizes at a Froude num-
ber around 0.5.

1.1.3. THE EDDY MAKING RESISTANCE
As said before, eddies are defined as being a swirling in a fluid or a reverse current that
occurs when a fluid moves past an object. These appear when flow lines do not close in a
body from behind properly, to balance out the pressure forces acting on the frontal part
of the body. This is because of the viscosity of the fluid. Eddies can also be generated
when the flow breaks away from the hull, because of rapid changes of section in the hull
surface.

Ships have a lot of features that generate eddies. These features can include ap-
pendages, for example stabilizers rudders and shaft brackets. Eddies only appear in tur-
bulent flows, so there is clearly a strong relationship between the Reynolds number and
the eddy resistance. Appendages all have a characteristic length and the influence on the
resistance of these features can be analysed by observing these appendages individually
and scaling this to the ship. Luckily the additional resistance experienced due to the ed-
dies is relatively little, about 10 to 15 per cent of the hull resistance according to Tupper
[2]. Ignoring the influence of these appendages does therefore not appear to be critical.

1.1.4. DIMENSIONAL ANALYSIS
Sometimes a dimensional analysis can provide a lot of insight in what the actual func-
tion would approximately look like. In order to investigate if a dimensional analysis is of
any use, the physical properties of interest will have to be analysed. In ship resistance
studies, these properties are the gravitational constant g , the waterdensity ρ, the water-
viscosity µ and the static waterpressure p. Consequently, if R is taken as the resistance,
V as the velocity and L as a so-called typical length, a dimensional analysis will result in
the following expression for resistance, according to Tupper [2]:

R = f [LaV bρcµd g e p f ] (1.5)

If the quantities are expressed in the fundamental terms time T , mass M and length L,
the expression for resistance is equivalent to:
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ML

T 2 = f

[
La

(
L

T

)b (
M

L3

)c (
M

LT

)d (
L

T 2

)e (
M

LT 2

) f
]

(1.6)

The six unknown parameters can be reduced to three by equating the indices of the fun-
damental dimensions on both sides of the equation and substituting those expressions.
Writing the expression in terms of the physical properties, the following relation holds:

R = ρV 2L2 f

[(
µ

ρV L

)d

,

(
g L

V 2

)e (
p

ρV 2

) f
]

(1.7)

Furthermore the expression can also be written as:

R = ρV 2L2
[

f1

(
µ

ρV L

)
, f2

(
g L

V 2

)
, f3

(
p

ρV 2

)]
(1.8)

It is evident that the non-dimensional ratios R
ρV 2L2 , V L ρ

µ , Vp
g L

, p
ρV 2 are of great signifi-

cance. These ratios are termed as follows:

• Resistance coefficient: Rc = R
ρV 2L2

• Reynold’s number: Re = V Lρ
µ

Reynold’s number represents the ratio between the inertial- and the viscous forces
within a fluid.

• Froude number: F r = Vp
g L

The Froude number represents the ratio between the inertial force and the gravi-
tational force and is used to write speed as a dimensionless quantity.

• Euler number: Eu = p
ρV 2

This ratio represents a characterization of the energy loss in a flow due to pressure
differences.

As is shown the dimensional analysis results in a relationship between dimensionless
quantities. Consequently there can not be said anything about the function form of the
ship resistance. Nevertheless the dimensionless ratios contain some important informa-
tion. One can expect that the frictional resistance is a function of Re, the wave-making
resistance of F r and the eddy- and appendage resistance of Eu and Rc.

1.1.5. EMPIRICAL EXPRESSIONS FOR RESISTANCE
Since ships have plenty of complex components and are thus often inconvenient shaped
bodies, it is quite hard to calculate the flow around it. Especially analytically since there
has not been found an analytic expression for the solution of the general Navier-Stokes
equation. Obviously approximations of total ship resistance were necessary for the field
of Naval Architecture, thus engineers were looking for empirical relations between ship
characteristics and the ship resistance. In the course of the years, hundreds of papers



1.1. THEORETICAL SHIP BEHAVIOUR

1

7

and books are written about this subject. In this report, only the empirical Power-Velocity
relation will be discussed, since this assumption is made for the "Iterative" method. The
Power-Velocity is of the next form:

P (Vs ) = a +bV q
S (1.9)

where

P : Delivered power by the ship in [kW ]

VS : Water speed of the ship in [kt s]

a,b and q : real constants
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2.1. INTRODUCTION
In the course of the years there were a lot of methods invented to determine the current
effect during speed trials. The most commonly used method for a long period of time
was the so-called "Mean of means" Method. This method models the current speed as
a polynomial. However this approximation is only valid for short periods of time. Once
ships were getting bigger, the time duration of speed trials extended too. The polynomial
approximation did not hold anymore and consequently the "Means of means" Method
did not produce a reliable approximation. It became essential to find new accurate ap-
proximation methods.

2.2. SPEED TRIALS
Current correction methods are all based on data obtained through speed trials. There
are certain requirements for a speed trial. In this section the procedure of speed trials
will be explained. According to [4], the environmental conditions of the location need
to be constant or at least expected to be constant. In that way the environment has only
the smallest possible impact on the ship, in order to avoid unexpected environmental
effects in the measurements. With constant environmental conditions it is meant that
the location is a sheltered area (i.e. limited wind, waves and current), ideally free from
hindrance by small boats and commercial traffic.

The speed trials are always performed in such a way that the ship sails exactly with the
wind or in the exact opposite direction. If this was not the case, the shape of the topside
of the ship (above the water) would provide a wind drift angle, since the biggest above-
water part of the ship is usually located on the back of the ship. A wind drift results in an
extra resistance force, since the rudder of the ship has to provide a counter force. If the
current or waves make an angle with the ship, the ship will make a current drift. The ef-
fect of this drift is cancelled out, because the headway distance is taken for calculations.
As stated in [4]: "the ship’s speed during a speed run is derived from the headway dis-
tance between start and end position and the elapsed time of the speed run". Moreover
the start point of each run will be taken exactly the end point of the run before. Each
speed trial is performed with a specific power setting. When the ship is sailing with the
right power and the measurement commences, the power handle will be released, i.e.
during the speed trial no attempts will be made to let the ship remain sailing in the right
power setting. This is because the fluctuations in delivered power will only worsen the
accuracy of the measurement. As a result, the difference between the two Runs of a Dou-
ble Run can differ widely.

During the speed trial, environment- and ship characteristics are measured, like the shift
draft, wind speed and direction, and so forth. This report will not go into detail about
those measurements and the analysis of those. Only the measurement of the time, the
ground speed and the delivered power will be important for the current correction meth-
ods. The following assumptions are made:

• The time a Run takes place is taken to be the exact time on which the Run is
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halfway through

• The delivered power of a Run is taken to be the average power that the ship delivers
during the Run

• The ground speed of a Run is taken to be the average ground speed of the ship
during the Run

2.3. "MEAN OF MEANS" METHOD
As said before, the "Mean of means" Method was traditionally used to determine the
relative ship’s speed. The method originates from the idea that if the current speed is
constant, the effect of the current cancels out once you take the average of the measured
ground speeds of the Double Run ([5]). However, evidently the current speed is not con-
stant in general. If the speed trials are executed within a certain time frame for the same
power setting, the current speed can be approximated by a polynomial (you could see
this as the Taylor polynomial of an either unknown or difficult function). In this case, the
idea behind the "Mean of means" Method can be extended in a way that it also works
for these types of functions. For an approximation with a nth order polynomial, a mini-
mum of n +2 runs are needed. Note that a approximation with a polynomial of a higher
order does not necessarily lead to higher accuracy, because if the trials take too much
time, the polynomial approximation of the current speed is not valid anymore. Often
the polynomial is chosen of order 2, 3 or 4.

This extension can be described as follows. If n +2 runs are carried out, the means
will be the average of the 1st and 2nd measured speeds, the average of the 2nd and 3rd
measured speeds and so forth. This will result in n +1 means. If the same procedure is
applied for these means, there will be n mean of means left in the next step. This process
can be repeated until there is only one value left. This value will be the approximation of
the relative ship’s speed.

By induction, it can be easily proven that the ’final’ mean is calculated by:

VMoM = 1

2n+1

n+2∑
i=1

(
n +1

i −1

)
Vi (2.1)

where

VMoM : "Mean of means" approximation of relative ship’s speed in
[m

s

]
Vi : measured (average) speed for run i in

[m

s

]
n : number of runs

The proof can be found in section 1 of appendix A.

2.3.1. PASCAL’S TRIANGLE
From formula 2.1 follows that the different measurements are not represented equally
in the final solution, because of the varying value of the binomial coefficient. Since this
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weight for a specific measurement is only influenced by this coefficient, this represen-
tation follows Pascal’s Triangle. This will not make a difference in the final value of the
algorithm, as will be proved in the following section 2.3.2.

2.3.2. CONVERGENCE OF "MEAN OF MEANS" METHOD

In this section, the convergence of the "Mean of means" Method will be proven for the
case that the current speed is approximated by a polynomial of order n, i.e.:

VC (t ) =
n∑

j=0
a j t j (2.2)

where {a j }n
j=0 is a series of unknown constants. Since the polynomial is of order n and

thus has n+1 unknown constants, there are at least n+2 runs needed for the method to
converge. The following assumptions are made:

• During the ten minutes of measurement in a run, the current speed is considered
to be constant

• The time interval∆t between every measurement will be kept exactly the same. In
that way the i th measurement is measured on time i∆t .

Thus the measured speed Vi for the i th run can be expressed as a polynomial, using
the polynomial approximation for the current 2.2 at the time of the i th measurement, i.e.
at time i∆t :

Vi =VS + (−1)i+1
n∑

j=0
a j (i∆t ) j (2.3)

The contribution of the current to the measured speed is taken to be positive, if i is an
odd integer. If i is an even integer, the contribution is negative. Obviously this is because
in a Double Run one run is upstream and the other run is downstream.

Substituting 2.3 into 2.1, using the fact that n +2 runs are carried out, results in the next
formula for the "Mean of means" approximation:

VMoM = 1

2n+1

n+2∑
i=1

[(
n +1

i −1

)
VS + (−1)i+1

n∑
j=0

a j (i∆t ) j

]
(2.4)

This formula can be rewritten in such a way that the "Mean of means" approximation
equals the sum of VS , the velocity that needs to be determined, and a remainder term,
which appears to be zero. It is proven as follows:
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1

2n+1

n+2∑
i=1

(
n +1

i −1

)[
VS + (−1)i+1

n∑
j=0

a j (i∆t ) j

]
= 1

2n+1

n+2∑
i=1

(
n +1

i −1

)
VS + 1

2n+1

n+2∑
i=1

(
n +1

i −1

)
(−1)i+1

n∑
j=0

a j (i∆t ) j

= VS

2n+1

n+1∑
i=0

(
n +1

i

)
+ 1

2n+1

n+2∑
i=1

(
n +1

i −1

)
(−1)i+1

n∑
j=0

a j (i∆t ) j

= VS

2n+1 2n+1 + 1

2n+1

n+2∑
i=1

(
n +1

i −1

)
(−1)i+1

n∑
j=0

a j (i∆t ) j

=VS + 1

2n+1

n+2∑
i=1

(
n +1

i −1

)
(−1)i+1

n∑
j=0

a j (i∆t ) j

=VS + 1

2n+1

n∑
j=0

a j∆t j
n+2∑
i=1

(
n +1

i −1

)
(−1)i+1i j

The third equality follows from the Binomial identity:

(x + y)n =
n∑

k=0

(
n

k

)
xn−k yk (2.5)

with x, y = 1.
If the remainder term

1

2n+1

n∑
j=0

a j∆t j
n+2∑
i=1

(
n +1

i −1

)
(−1)i+1i j = 0 ∀n ∈N

, the "Mean of means" Method converges to the right value. More specifically, it even
holds that:

n+2∑
i=1

(
n +1

i −1

)
(−1)i+1i j = 0 ∀n ∈N, j = 0, ...,n (2.6)

Consequently VMoM =VS . The proof for statement 2.6 can be found in appendix 2.

2.3.3. APPLICATION "MEAN OF MEANS" METHOD
The "Mean of means" Method is still used nowadays, because it is very simple to apply
and gives reasonable results. The Method particularly works well if the time between
Runs is little, since a linear approximation of the current speed is very accurate. The
"Mean of means" Method is applied as follows:

1. For every Double Run the averages of the powers and ground speeds are calculated

2. These averages form new approximation of (P,VS ) points

3. The curve from the model test is fitted to these (P,VS ) points

With the help of this fitted curve there can be decided whether or not the ship satis-
fies the contract conditions.
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2.4. "ITERATIVE" METHOD
The "Iterative" Method has an advantage over the traditional "Mean of means" method,
namely that it takes information about the tidal current into account. This improves the
quality of the results for longer sea trials. In [4], it is stated that for official sea trials the
tidal current will be of the form:

VC (t ) = A cos

(
2π

TC
t

)
+B sin

(
2π

TC
t

)
+C t +D, (2.7)

where

VC (t ) : current speed on time t in [kt s] ,

t : time in units of time [T ],

TC : period of the dominant tidal constituent in units of time, i.e. [T ],

where the period of the dominant tidal constituent, called "the principal lunar semid-
iurnal period", is given by TC = 12 hours, 25 minutes and 12 seconds. A, B , C and D are
unknown constants.

ISO [4] states that a minimum of four Double Runs is needed, of which two carried
out at contract speed. The "Iterative" Method can be schematically presented as in figure
2.1. In the next section the "Iterative" Method will be carefully explained step by step ([5],
[6]).

Figure 2.1: Flow chart of the "Iterative" Method [4]

2.4.1. STAGE 1: INITIAL APPROXIMATION OF POWER/SPEED FUNCTION
It is assumed that delivered power by the engine and the ship’s speed are related as fol-
lows:
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P (Vs ) = a +b ·V q
s (2.8)

or equivalently:

Vs =
(

P (Vs )−a

b

) 1
q

(2.9)

where

P (Vs ) : Engine power of the ship in [kW ]

Vs : Speed of the ship relative to the water in [kt s]

and a, b and q unknown constants. In reality the relation between these variables is a
bit more complex, but this formula provides an accurate approximation.
As said before, a minimum of eight Runs (four Double Runs) are carried out. The values
for both the measured powers and measured ground speeds will be corrected for the
weather conditions (as described in [4]). Corrections that are made can be found in [4] as
well. For each Double Run, the averages of both Runs will result in a (P,VS ) pair. Of course
this start value for the iteration is not perfect, since the P-VS relation is exponential and
not linear. However this approximation should be reasonably close to the true value of
the (P,VS ) pair. This process is represented in figure 2.1 as the arrow from the green box
to the blue box directly below.

Consequently a first approximation of the power/speed regression curve is made by
determining the unknown constants a, b, and q by fitting the (P,VS ) pairs to formula 2.8
through a non-linear least squares method. Often used non-linear least squares algo-
rithms are the Levenberg-Marquardt algorithm and Trust Region Reflective algorithm.
Both methods are described in chapter 4. This process is represented in figure 2.1 as
the two arrows that lead from the blue box directly underneath the green box to the or-
ange box. Often this approximation is not good enough yet, i.e. the error term is not
converged. That is where the loop starts.

2.4.2. STAGE 2: INITIAL APPROXIMATION OF CURRENT SPEED FUNCTION
Applying the found constants on formula 2.9, new approximations of the ship’s water
speed run can be calculated. Now that the ship’s speed is approximated, the current
speed can be approximated too, since the ground speed VG is measured and known. The
current speed is thus simply approximated by:

V ′
C =VG ±VS (2.10)

Since the time for each run is also known, this will result in (τ,V ′
C ) pairs. The un-

known constants in the current speed function 2.7 can now be approximated by fitting
the formula to the pairs, using simple linear least squares fitting. Once the constants are
found, the updated current speed VC can be calculated using formula 2.10. This stage is
represented by the three arrows in figure 2.1 leading from the orange box to the biggest
blue box.
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2.4.3. STAGE 3: CALCULATION OF RELATIVE SHIP’S SPEED
The last stage in the iteration is to update the relative ship’s speed, using:

V ′
S =VG ±VC (2.11)

With this updated V ′
S and thus new (P,V ′

S ) pairs, an updated regression curve can be
fitted, using the same methods as stated before. This is represented by the two arrows
leading from the biggest blue box back to the blue box, where formula 2.8 is written.
Stages 2 and 3 will be repeated until the error-function 2.12 is converged.
The error function is given by: ∑

i
(P (V ′

S )i −Pi d ,i )2 (2.12)

where

P (V ′
S )i : approximated power for Run i in [kW ] ,

Pi d ,i : measured power for Run i in [kW ]

2.4.4. AMBIGUITY "ITERATIVE" METHOD
In Toki’s explanation of the "Iterative" Method [7], there still remains a lot of ambiguity
in the "Iterative" Method. The three main points that are open for interpretation are:

• Stopping criterion

• Initial conditions

• Method of non-linear fitting

STOPPING CRITERION

In order for the "Iterative" Method to stop, the error term 2.12 has to be converged. Note
that this is not necessarily the same as minimized, because in the case of minimization
the function can be minimized for the wrong (P,VS ) points. Since the existence of a limit
is yet to be proven, the assumption of this existence has to be made. If the sequence
of error terms {En(β)}n∈N converges, then this sequence is also Cauchy (well known fact
from the Theory of Real Analysis). Therefore the following stopping criterion is taken in
this report:
If two consequent are sufficiently close enough, say 10−4, then the loop stops and con-
vergence is reached. Or mathematically stated in pseudo code:

Stop when:

|En(β)−En−1(β)| < 10−4

The value 10−4 is chosen, to be reasonably small, but also large enough to be above com-
puter precision. Note that an approximation of the real error is used for the fitting, but
not the real error. Obviously this is not possible, once the method is applied on non-
academic data sets. However it is important to keep in mind that there are other error
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terms possible to find convergence. Different choices of error terms will not be dealt
with in this analysis, but this is an idea for further research. Obviously the Error term
depends on the input data and is not always of the same order of magnitude. It is how-
ever important to realise that this stopping criterion is based on the difference between
subsequent iteration results. Thus the order of magnitude does not play a role in this
matter.

INITIAL CONDITIONS

For every non-linear least squares fitting an initial parameter estimation is needed, re-
gardless of the method used. Therefore this is not only an aspect of the "Iterative" Method,
but also of the "Direct" Method (section 2.5). However, if the "Iterative" Method is used,
initial (P,VS ) points have to be used. As explained in subsection 2.4.1, the "Mean of
means" approximation is taken as these initial points. Note that this is certainly not
the only possibility. In this report other initial points are not analysed, but it could be an
interesting follow-up research to find even more judicious guesses for the initial (P,VS )
points.

METHODS OF NON-LINEAR FITTING

The non-linear fitting of the functions can be performed with various non-linear least
squares fitting methods. In this report only the Trust Region Reflective and the Levenberg-
Marquardt Method are analyzed, since these are the most frequently used. An important
difference between the two methods is that the Trust Region Reflective allows the setting
of bounds for the parameters. The performance of both is described in chapter 5.

2.5. "DIRECT" METHOD
The "Direct" Method is a more mathematically intuitive method to assess the water
speed of ships. Analogously to the "Iterative" Method it assumes the validity of formulas
2.7 and 2.8. However it is chosen to use dimensionless time in formula 2.7, i.e. the next
formula is used:

VC (τ) = A cos(2πτ)+B sin(2πτ)+Cτ+D (2.13)

where

VC (τ) : current speed on time τ in [kt s] ,

τ : dimensionless time, i.e. τ= t

TC

where the period of the dominant tidal constituent, called "the principal lunar semi-
diurnal period", is given by TC = 12 hours, 25 minutes and 12 seconds. A, B , C and D are
unknown constants. The reason for this is explained in chapter 3.

In contrast to the "Iterative" Method, the "Direct" Method combines both formulas to
find an expression for the power, dependent on both dimensionless time, ground speed
and the unknown constants. To accomplish this, expressions 2.11 and 2.13 are substi-
tuted in formula 2.8. This results in the following expression for the delivered power, in
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terms of the ground speed, dimensionless time and the unknown constants:

P (VG ,τ) = a +b [VG ± (A cos(2πτ)+B sin(2πτ)+Cτ+D)]q (2.14)

where:

VG : ground speed of the ship in
[m

s

]
,

τ : dimensionless time, i.e. τ= t

TC

and a,b, q, A,B ,C ,D ∈R unknown constants. Of course the ±-sign depends on if the Run
is carried up- or downstream. For n Double Runs, the following system is obtained:

P (VG ,τ) =



P1

P2

P3

P4
...
...
...

P2n


=



a +b
[
VG ,1 + (A cos(2πτ1)+B sin(2πτ1)+Cτ1 +D)

]q

a +b
[
VG ,2 + (A cos(2πτ2)+B sin(2πτ2)+Cτ2 +D)

]q

a +b
[
VG ,3 + (A cos(2πτ3)+B sin(2πτ3)+Cτ3 +D)

]q

a +b
[
VG ,4 + (A cos(2πτ4)+B sin(2πτ4)+Cτ4 +D)

]q

...

...

...
a +b

[
VG ,2n + (A cos(2πτ2n)+B sin(2πτ2n)+Cτ2n +D)

]q


(2.15)

Subsequently this vector function will be fitted to the data points, using non-linear least
squares method. Note that for this method, Double Runs need not necessarily to be
performed with the same power setting. Furthermore this method can also be applied
in the case that there detached single Runs have been carried out. In other words, the
method also works in case an odd number of Runs is carried out.
In contrast with the "Iterative" Method, the solution is already found after one process
of non-linear least squares fitting. Therefore the "Direct" Method is expected to be more
flexible and faster than the "Iterative" Method. It is however of great importance that
the initial guess is chosen reasonably close to the true value, since the parameter vector
that needs to be fitted contains seven elements, instead of the three elements in the
"Iterative" Method. Fortunately the extra four constants that need to be fitted are linear
in the current function, so the problem is not as hard as it seems. The performance
between the "Iterative" Method and the "Direct" Method is analysed in section 5.4.
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3.1. IMPROVEMENTS OF THE "ITERATIVE" METHOD
Despite the frequent use of the "Iterative" Method to determine the ship’s speed at sea
trials, there still exist some flaws in the algorithm. Analysis by various authors has al-
ready yielded some improvements. The first important improvement, found by my col-
league Floris Buwalda [8], is the normalization of the current function. As we have seen
before, the current function is given by

VC (t ) = A cos

(
2π

Tc
t

)
+B sin

(
2π

Tc
t

)
+C t +D (3.1)

according to equation 3.1 constants A, B and D have dimensions
[ L

T

]
, where constant C

is of dimension
[

L
T 2

]
(in fundamental terms). Evidently, to have a dimensionless num-

ber in the sine and cosine function, time t has to be chosen in the same time unit as the
semidiuarnal period Tc is expressed. Thus constants A, B do not depend on the time
unit used. On the other hand, constant C does depend on the time unit chosen. For
example, if Tc is chosen in minutes instead of hours, t would have to be 60 times as big
as well. In order for the current function to remain the same, constant C would have to
be 60 times as small.
This dependency of constant C on the time unit chosen can result in problems, since
the same linear least squares method is used to fit the four constants. C can be of
a completely different order of magnitude than the other constants. Using the non-
dimensional variable τ= t

TC
can prevent this from happening. Moreover, with this adap-

tion, the Jacobian will also become independent of the time unit. This will improve the
accuracy of the least squares fitting. In the remaining of this report, the new current
function will be used:

VC (τ) = A cos(2πτ)+B sin(2πτ)+Cτ+D (3.2)

where

VC (τ) : current speed on time τ in [kt s] ,

τ : dimensionless time, i.e. τ= t

TC
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4.1. INTRODUCTION
The "Iterative" Method, as described in [4], and the "Direct" Method (2.5) are mostly
based on the fitting of data points to the assumed functions, to retrieve the unknown
constants. Therefore (non-linear) least squares fitting is an important aspect, if not the
most important aspect of both methods. In this chapter, the most commonly used nu-
merical methods will be explained, regarding non-linear least squares fitting. Later on
some of these non-linear least squares fitting methods are implemented in order to make
simulations.

4.2. NON-LINEAR LEAST SQUARES FITTING
Two variables, say x and y , are subject to the relation y = f (x,β) where β ∈ Rm is a pa-
rameter vector and f (x,β) is the nonlinear function that needs to be fitted. Given a set
of data pairs {xi , yi }, the goal is to find a β that minimizes the sum of squares of the
residuals. The same definition for the error term will be used as in [9]:

E(β) = 1

2

n∑
i=1

[
yi − f (xi ,β)

]2 (4.1)

Note that the scalar in front of the error function does not influence the solution of the
problem, as long as the scalar is positive. The scalar is chosen to be 1

2 , since this will
cancel out if we look at the gradient of the error function. If a residual function is intro-
duced, the error term can also be expressed as:

E(β) = 1

2

n∑
i=1

(ei (β))2

= 1

2
e(β)T e(β) (4.2)

where:

(e(β))i = ei (β)

= yi − f (xi ,β)

The non-linear minimization problem that needs to be solved is:

min
β∈Rm

E(β) (4.3)

or equivalently:

min
β∈Rm

e(β)T e(β) (4.4)

For the minimum of this unconstrained minimization problem, the gradient at the min-
imum of this error function needs to be equal to zero. Thus this results in an system of
equations (as many equations as the dimension of β) of the form:
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∂E(β)

∂β j
=

n∑
i=1

ei (β)
ei (β)

∂β j

= 0 ∀ j = 1, . . . ,m (4.5)

or equivalently:

∇E(β) = J (β)T e(β) = 0 (4.6)

where J ∈ Rn×m is the Jacobian of e(β). Non-linear least squares fitting methods try to
solve this system of non-linear equations. First the default non-linear fitting method of
MATLAB will be explained, the Trust Region Reflective. This method will later be used
for simulations. Subsequently two other common numerical methods will be clarified,
namely the Gradient Descent Method and the Gauss-Newton Method ([10]). However
both these methods have their up- and downsides. Luckily they can be combined in a
smart way, which results in a new numerical method: the Levenberg-Marquardt method.
This method will also be used for implementation.

4.3. TRUST REGION REFLECTIVE
According to [11] a lot of methods are based on the concept of trust regions. This is
the idea that the function f (x) that needs to be minimized, can be approximated with
a much simpler function q(x) in a certain neighborhood N around the current approxi-
mation x of the minimizer. This neighborhood is the so-called trust region. The updated
value of the approximation is found by the following trust-region subproblem ([12]):

min
s∈N

q(s) (4.7)

In the case that:

f (x + s) < f (x)

the current point x is updated to be x+s. If this is not the case, the current point remains
the same and the trust region will be reduced. Subsequently the step will be repeated un-
til a minimizing step is found or s ≈ 0. Of course this approach raises some questions,
like how to pick and compute the approximation q , defined in x , how to choose and
modify the trust region and how to solve the subproblem in an accurate way. Matlab
uses Trust Region Reflective as the default algorithm to solve non-linear least squares
method. In this standard trust-region method, the approximation q is defined by the
quadratic version of the Taylor serie of f at x , i.e. the subproblem is stated as:

min

{
1

2
sT H(xk )s + sT ∇ f (xk ) such that ‖Ds‖2 ≤∆

}
(4.8)

with H(xk ) and ∇ f (xk ) respectively the Hessian and gradient of function f (x), at current
point xk , ∆ ∈ R>0 and D a diagonal scaling matrix. Luckily there are very reliable algo-
rithms to solve this minimization problem ([11]).
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In pseudo code the Trust Region Reflective can be stated as:

1. Formulate the subproblem: min
{ 1

2 sT H(xk )s + sT ∇ f (xk ) such that ‖Ds‖2 ≤∆
}

2. Solve the subproblem to determine the trial step s

3. If f (xk + s) < f (xk ), let xk+1 = xk + s

4. Adjust ∆ if needed

These steps will be repeated until convergence has been reached.

A more fundamental numerical method is the Gradient Descent Method. This method
will now be described.

4.4. GRADIENT DESCENT METHOD
The Levenberg-Marquardt Method makes use of both the Gradient Descent Method and
the Gauss-Newton Method. First these algorithms will be explained and considered what
their up- and downsides are. Subsequently the idea behind the Levenberg-Marquardt
Method will be substantiated.
Line search strategies are frequently used in non-linear minimization problems ([13]).
The main idea is to produce a descending sequence {xk }k∈N, given by:

xk+1 = xk +αk pk (4.9)

where

xk (∈Rn) : approximation of value after k iterations

αk (∈R≥0) : step size at iteration k

pk (∈Rn) : search direction at iteration k

Note thatαk = 0 if and only if xk is optimal. Descent methods are used for minimization,
which means that the sequence is produced such that:

F (xk+1) < F (xk ) (4.10)

and an equality if and only if xk is optimal. In this case, F is the function that is to be
minimized.

The gradient descent method is a line search method, which uses the most intuitive
search direction, namely −∇ fk . It is a logical choice to choose the search direction along
which f decreases most rapidly. The claim is that −∇ fk is indeed the steepest descent.
By the use of Taylor’s theorem, we can write the value of the objective function at itera-
tion k as:

F (xk +αk pk ) = F (xk )+αk pT
k ∇Fk +

1

2
α2

k pT
k ∇2F (xk + t pk )pk , t ∈ (0,αk ) (4.11)
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Hence, the unit search direction pk with the most rapid decrease has to satisfy the fol-
lowing problem:

min
pk

pT
k ∇Fk , subject to

∥∥pk
∥∥= 1 (4.12)

Clearly:

pT
k Fk = ∥∥pT

k

∥∥‖∇Fk‖cos(θ)

= ‖∇Fk‖cos(θ)

where θ is the angle between pk and ∇ fk . This value is obviously minimized for:

cos(θ) =−1 ⇐⇒ θ =π ⇐⇒ pk =− ∇Fk

‖∇Fk‖

Thus the claim was valid. In the case of the Error function, the steepest direction method
would result in the following recursive formula:

βk+1 =βk +αk
∇E(βk )∥∥∇E(βk )

∥∥ (4.13)

There are various methods to determine the step size αk for every iteration, for example
with the Wolfe conditions. However this will not be covered in this section.
The Gradient Descent method is recognized as a reliable algorithm for finding a local
minimum of simple objective functions. However the method can turn out to be very
slow. A method that is quite fast in general, is the Gauss-Newton method.

4.5. THE GAUSS-NEWTON METHOD

According to [14], the simplest method for non-linear least squares fitting is the Gauss-
Newton method. This method can be seen as a modified Newton’s method with line
search. Provided that e(β) : Rm −→ Rn has continuous second partial derivatives, the
Taylor expansion around a fixed β is:

e(β+h) = e(β)+ J (β)h +O(‖h‖2)

≈ e(β)+ J (β)h

≡ l (h) (4.14)

where J (β) ∈Rn×m is the Jacobian of e(β). Plugging this in definition 4.1 gives:
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E(β+h) = 1

2
e(β+h)T e(β+h)

≈ 1

2
l (h)T l (h)

= 1

2
(e(β)+ J (β)h)T (e(β)+ J (β)h)

= 1

2
e(β)T e(β)+e(β)T J (β)h + 1

2
hT J (β)T J (β)h

= E(β)+e(β)T J (β)h + 1

2
hT J (β)T J (β)h

≡ L(h) (4.15)

The so-called Gauss-Newton step tries to find a h∗ that minimizes L(h):

h∗ = min
h

L(h) (4.16)

From the definition in it is easily seen that:

L′(h) = J (β)T e(β)+ J (β)T J (β)h (4.17)

L′′(h) = J (β)T J (β) (4.18)

Note that L′′(h) is independent of h. Furthermore it is a symmetric matrix. If J has full
rank, matrix L′′(h) is positive definite. This means that there exists an unique minimizer
for L(h). For this minimizer, it holds that:

L′(h∗) = 0 (4.19)

and thus this minimizer can be obtained by solving:

J (β)T J (β)h∗ =−J (β)T e (4.20)

This solution is a descent direction for E(β), since:

hT
∗∇E(β) = hT

∗ J (β)T e(β)

=−hT
∗ J (β)T J (β)h∗

=−(J (β)h∗)T J (β)h∗
< 0 (4.21)

The iterative step in the Newton-Gauss algorithm can be described in pseudo code as:

Solve: J (βk )T J (βk )hk =−J (βk )T e(βk )

Update: βk+1 =βk +αk hk

According to [9] the method converges, provided that:
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•
{
β|E(β) ≤ E(β0)

}
is bounded.

• Jacobian J (β) has full rank in all steps.

As stated before, both the Gradient Descent Method and the Gauss-Newton Method
have their pros and cons. To maximize the efficiency the best parts of the methods are
used for a new method, the Levenberg-Marquardt method.

4.6. THE LEVENBERG-MARQUARDT METHOD
The method of gradient descent is considered to be a very reliable algorithm, since its
convergence can be guaranteed under a lot of circumstances ([15]). For example if every
step size is chosen through a line search that satisfies the Wolfe conditions and convexity
of F . However the algorithm can turn out to be very slow. On the contrary, the Newton-
Gauss method converges much faster in general, because of the convenient approxi-
mations for the Hessians and objective function. However the Newton-Gauss method
has a smaller trust region and only converges under strict assumptions. In the Leven-
berg method a dampening factor λ ≥ 0 is introduced ([16]), which varies the parameter
updates between the gradient descent and the Gauss-Newton update ([17], [18]). Math-
ematically stated, the update follows from the system :

(J T J +λI )hLM =−J T e (4.22)

Small values of λ coincide in a Gauss-Newton update, since:

− J T e = (J T J +λI )hLM ≈ J T JhLM (4.23)

This is usually used if current iterate value is close to the solution, because of the conver-
gence rate of the Gauss-Newton method. For large values of λ, the update corresponds
with a small step in the steepest descent direction, since:

−J T e = (J T J +λI )h)LM ≈λI hLM (4.24)

⇒ hLM ≈− 1

λ
J T e =− 1

λ
∇E(β) (4.25)

Large values of λ are usually chosen at the start of the iteration process, if the current
iterate is still far from the actual solution. With every update of the Levenberg algorithm,
λwill be updated too. If the value of the error function decreases, the update is cancelled
and λ is decreased for a higher convergence rate. On the other hand, if the approxima-
tion of the solution increases, the update is cancelled and λ is increased such that the
iteration will again decrease. Often least squares problems are poorly scaled [14]. Some
parameters can be of order 104, while orders can be of order 10−6. Marquardt notices
this problem and modified the Levenberg algorithm ([19]). This final modification in
its whole is called the Levenberg-Marquardt method and the update of this algorithm is
given by: (

J T J +λD2
k

)
hLM =−J T e (4.26)
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where the scaling matrix Dk can change per iteration. Dk has to be a diagonal matrix
with positive diagonal entries. Seber and Wild [20] proposed to take Dk such that

D2
k = diag(J T

k Jk ) (4.27)

The argumentation behind this idea is that the algorithm will become invariant under
diagonal scaling of the elements of β. The iterative step in the Levenberg-Marquardt al-
gorithm can be described in pseudo code as:

Solve:
(

J T
k Jk +λdiag(J T

k Jk )
)

hk =−J T
k e(βk )

Update: βk+1 =βk +hk

4.7. MEASUREMENT ERRORS
In a similar fashion, the same analysis can be done, with an additional weighting matrix
W , that takes measurements errors into account. Typically W is a diagonal matrix with
Wi i = 1

σ2
yi

, where σyi is the measurement error for the measurement y(xi ,β). This will

result in the following pseudo codes:
Gradient descent:

Calculate: ∇E(βk ) = J (βk )T W e(βk )

Update: βk+1 =βk +αk
∇E(βk∥∥∇E(βk

∥∥
Gauss-Newton:

Solve: J (βk )T W J (βk )hk =−J (βk )T W e(βk )

Update: βk+1 =βk +αk hk

Levenberg-Marquardt:

Solve:
(

J T
k W Jk +λdiag(J T

k W Jk )
)

hk =−J T
k eW (βk )

Update: βk+1 =βk +hk
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5.1. DATA

For the simulations made, the data of various model tests are used. The motivation be-
hind this is to only analyse the performance of the current correction methods under
the presence of measurement noise. Model tests are performed in a towing tank, with-
out any additional wave- or wind resistance. Furthermore the water speed is a known
value in a model test. In order to simulate the current correction methods, an academic
example of a current function is used. This current function is chosen to be positive at all
times, such that downstream- and upstream Runs alternate. The parameters are chosen
to be:

A = 1.5

B = 1.3

C = 0.8

D = 1.5

For every simulation that is carried out (simulation 1.1 up to and including simulation
3.2), the associated data sets can be found in appendix C. In this appendix, the used
(non-dimensional) time vectors, power vectors and ground speed vectors are given.

5.2. "ITERATIVE" METHOD VS "DIRECT" METHOD

In this section, the performances of the "Iterative" Method and the "Direct" Method will
be analyzed, through six partly academic simulations, with varying parameters. The dif-
ferences between these simulations are chosen mainly to observe the influence of the
differences in delivered power (both ’small’ and ’big’ ships), the number of Runs, the
measurement noise on specific variables and the interval of the water speed. Every sim-
ulation is carried out 1000 times. The average of the errors are compared between differ-
ent methods. The following abbreviations and errors are used:
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Definition
MN Measurement Noise
IM-TRR "Iterative" Method, using Trust Region Reflective
IM-LM "Iterative" Method, using Levenberg Marquardt
DM-TRR "Direct" Method, using Trust Region Reflective
DM-LM "Direct" Method, using Levenberg Marquardt

EP

√
1
n

∑n
i=1(P (VS,i )−Pi )2

EVC

√
1
n

∑n
i=1(VC (τi )−VC ,i )2

E1 EP of IM-TRR
E2 EP of IM-LM
E3 EP of DM-TRR
E4 EP of DM-LM
E5 EVC of IM-TRR
E6 EVC of IM-LM
E7 EVC of DM-TRR
E8 EVC of DM-LM
E∗ mean (out of 1000 runs) of error E∗ where ∗ ∈ {1,2, ...,8}

5.3. MEASUREMENT NOISE

In order to evaluate the difference between the methods, normally distributed measure-
ment noise was added to the data discussed in 5.1. The mean of the normally distributed
noise is always taken as 0. The standard deviation depends on the parameter. The stan-
dard deviation is taken as one-third of the maximum error, such that 99.73 % of the mea-
surement errors produced, lie within the interval of maximum errors.

The following maximum errors are used:

• The desired maximum error in the measurement of power is 25 kW (according to
Naval Architect Hans Huisman)

• A maximum error of 0.05 kt s is taken for the measurement of ground speed [8]

• The maximum measurement error of the time is taken to be 36 seconds [8]

To check which noise gives the most trouble, the simulations are also carried out with
only noise on respectively the ground speed, the time and the delivered power. This re-
sulted in the following tables:
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With MN Only MN for VG Only MN for τ Only MN for P
E1 27.2683 26.6745 15.8345 16.2969
E2 27.2751 26.6683 15.8249 16.2975
E3 37.6322 36.8216 15.6210 16.7799
E4 37.6517 36.8216 15.6341 16.7910
E5 0.0106 0.0102 0.0013 0.0028
E6 0.0106 0.0102 0.0012 0.0028
E7 0.0117 0.0113 0.0015 0.0028
E8 0.0118 0.0113 0.0015 0.0028

Table 5.1: Effect of noise, simulation 1.1

With MN Only MN for VG Only MN for τ Only MN for P
E1 75.1424 74.9381 72.1807 72.3705
E2 75.5081 75.3119 72.5957 72.7814
E3 63.5869 62.8880 56.2183 56.5816
E4 63.5869 62.8901 56.2183 56.5824
E5 0.0621 0.0611 0.0611 0.0610
E6 0.0621 0.0620 0.0620 0.0619
E7 0.0221 0.0220 0.0180 0.0184
E8 0.0221 0.0220 0.0180 0.0184

Table 5.2: Effect of noise, simulation 1.2

With MN Only MN for VG Only MN for τ Only MN for P
E1 120.7689 118.2249 72.3666 78.2625
E2 132.7752 130.1251 76.5222 71.2028
E3 133.3464 132.5885 69.3641 68.8340
E4 133.0717 132.4448 69.0242 68.5866
E5 0.0119 0.0115 0.0022 0.0028
E6 0.0125 0.0130 0.0026 0.0017
E7 0.0118 0.0115 0.0034 0.0033
E8 0.0118 0.0115 0.0033 0.0033

Table 5.3: Effect of noise, simulation 2.1
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With MN Only MN for VG Only MN for τ Only MN for P
E1 122.9398 126.6331 89.6081 89.1764
E2 127.6453 128.7517 90.4859 90.5551
E3 124.5025 126.8945 67.8445 67.5090
E4 124.5743 126.7790 67.6222 67.3098
E5 0.0150 0.0148 0.0095 0.0095
E6 0.0144 0.0138 0.0090 0.0088
E7 0.0142 0.0140 0.0078 0.0078
E8 0.0143 0.0140 0.0079 0.0079

Table 5.4: Effect of noise, simulation 2.2

With MN Only MN for VG Only MN for τ Only MN for P
E1 195.6527 195.2012 191.9206 192.9281
E2 222.9617 238.4654 235.4622 236.9145
E3 41.5872 40.6229 36.2987 36.9153
E4 41.5835 40.5794 36.2604 38.8818
E5 0.5439 0.5442 0.5409 0.5420
E6 0.4252 0.4239 0.4253 0.4260
E7 0.0333 0.0314 0.0302 0.0307
E8 0.0330 0.0309 0.0297 0.0303

Table 5.5: Effect of noise, simulation 3.1

With MN Only MN for VG Only MN for τ Only MN for P
E1 187.9131 187.7091 188.3313 188.2271
E2 198.6361 197.7476 201.7287 192.0345
E3 58.9172 58.4425 56.3291 56.7464
E4 58.9212 58.4435 56.3270 57.7441
E5 0.6131 0.6130 0.6125 0.6129
E6 0.6484 0.6574 0.6759 0.6642
E7 0.0695 0.0680 0.0673 0.0678
E8 0.0694 0.0679 0.0672 0.0677

Table 5.6: Effect of noise, simulation 3.2

From the simulations, it clearly comes out that for the performed simulations, the
measurement noise for variable VG has by far the most effect on the total outcome. That
is, it has the biggest negative impact on the results in average. Since the time- and ground
speed vectors remain in the same order of magnitude, the effects for each simulation are
more or less the same. However the effect of measurement noise for the delivered power
can vary largely in between simulations. Logically this noise makes very little difference
for simulation 2.1 and 2.2, since the delivered power is much bigger than in the other
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simulations. Evidently the noise will be a smaller percentage of the delivered power in
this simulation and thus have less influence on the fitting.



5.4. RESULTS

5

35

5.4. RESULTS

The results from the simulations are given by:

Without MN With MN 8 Runs (without last DR) 8 Runs (without middle DR)
E1 15.5096 27.2683 38.1573 22.2606
E2 15.5016 27.2751 37.0640 22.3006
E3 15.3047 37.6322 39.0031 36.4072
E4 15.3047 37.6517 38.9998 36.4155
E5 0.0005 0.0106 0.0156 0.0117
E6 0.0004 0.0106 0.0153 0.0118
E7 0.0011 0.0117 0.0145 0.0133
E8 0.0011 0.0118 0.0145 0.0133

Table 5.7: Results simulation 1.1

Without MN With MN 8 Runs (without last DR) 8 Runs (without middle DR)
E1 72.1232 75.1424 47.2946 66.0671
E2 72.5363 75.5081 47.1464 65.9531
E3 56.1472 63.5869 43.2975 58.8061
E4 56.1472 63.5869 43.2972 58.8058
E5 0.0610 0.0612 0.0349 0.0367
E6 0.0620 0.0621 0.0345 0.0362
E7 0.0179 0.0221 0.0207 0.0357
E8 0.0179 0.0221 0.0207 0.0358

Table 5.8: Results simulation 1.2

Without MN With MN 8 Runs (without first DR) 8 Runs (without middle DR)
E1 71.3158 120.7689 173.3588 166.3249
E2 71.2384 132.7752 139.6555 126.9443
E3 68.3178 133.3464 144.3827 153.0499
E4 69.2502 133.0717 144.4060 152.8960
E5 0.0018 0.0119 0.0174 0.0167
E6 0.0017 0.0125 0.0143 0.0121
E7 0.0032 0.0118 0.0142 0.0137
E8 0.0032 0.0118 0.0142 0.0137

Table 5.9: Results simulation 2.1
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Without MN With MN 8 Runs (without first DR) 8 Runs (without middle DR)
E1 88.9418 122.9398 126.9183 139.7789
E2 89.9528 127.6453 141.0659 138.5970
E3 66.9680 124.5025 125.1196 146.2348
E4 66.9300 124.5743 125.3697 146.3506
E5 0.0095 0.0150 0.0157 0.0177
E6 0.0087 0.0144 0.0160 0.0171
E7 0.0077 0.0142 0.0159 0.0161
E8 0.0078 0.0143 0.0160 0.0162

Table 5.10: Results simulation 2.2

Without MN With MN 8 Runs (without first DR) 8 Runs (without middle DR)
E1 192.0725 195.6527 178.5741 162.1266
E2 189.0745 222.9617 38.9607 247.3323
E3 36.2841 41.5872 28.4146 36.9910
E4 36.2263 41.5835 25.6604 36.9726
E5 0.5411 0.5439 0.2149 0.5686
E6 0.1987 0.4252 0.0282 0.2354
E7 0.0303 0.0333 0.0222 0.0610
E8 0.0296 0.0330 0.0219 0.0611

Table 5.11: Results simulation 3.1

Without MN With MN 8 Runs (without first DR) 8 Runs (without middle DR)
E1 192.0725 195.2012 178.5741 162.1266
E2 140.2041 198.6361 87.5697 234.5306
E3 56.3148 58.9172 35.5060 59.3848
E4 56.3148 58.9212 24.6920 60.0274
E5 0.6127 0.6131 0.7938 0.5906
E6 0.5317 0.6484 0.1240 0.8609
E7 0.0672 0.0695 0.0696 0.0810
E8 0.0672 0.0694 0.0576 0.0814

Table 5.12: Results simulation 3.2

5.4.1. GENERAL OBSERVATIONS
Note that the most important error for the application of the methods is EVC , since the
goal is to approximate the current as good as possible. In comparing the different meth-
ods, this error will implicitly play a bigger role.
Apart from the actual simulation results, the simulations with less data (8 Runs) took
way longer. This resulted in long run times for the simulations, since 1000 Runs were
executed for every data set combination. As stated before in this report, the problem
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needs to be well defined and this is usually achieved by adding more Runs. This is prob-
ably the reason that speed trials with less (Double) Runs can result in more calculation
time. Furthermore simulation 3.1 and simulation 3.2 took significantly longer than the
other simulations. For some reason this data set is hard to cope with for the methods.

5.4.2. INTERPRETATION SIMULATION RESULTS

If there is a local minimum that minimizes the error term EP both the Trust Region Re-
flective and the Levenberg-Marquardt algorithm should yield the same answer. To ob-
tain the exact same answer is however impossible, since there will always be errors made
on noise level. Furthermore, specifically in the "Iterative" Method, the rate of conver-
gence does not have to be the same, but can be fitting method- dependent. Since the
value of the stopping criterion is set on 10−4, a slower convergence will lead to a pre-
mature stop of the iterative loop. This is because the steps could be so small, that they
become smaller than the stopping criterion. Fortunately, no major differences were seen
in the results by adjusting the stopping criterion. The results are more or less the same.
The calculation time however increases drastically for a smaller stopping criterion value,
so that is why a stopping criterion of 10−4 is preferred. In that way the method is both
fast and accurate enough.

A quick observation shows us that in general the error terms turn out higher for the sim-
ulations with non-coinciding points (’impure’ Double Runs), i.e. simulations 1.1, 2.1 and
3.1. This was expected, since less points need to be fitted, using ’pure’ Double Runs. The
fitting can be made way more precise. It can be concluded from these simulations that
it is always a good idea to do a minimum of two Runs for the contract speed, of course
provided that there are enough Runs performed on different power settings, but this is
already concluded in ISO [4]. The closer the delivered powers for these Runs, the better
the fitting result.

It is difficult to say something about the difference between the speed trials with 10 Runs
and the speed trials with 8 Runs. This strongly depends on the input data. For example
the regular 10 Run speed trial performance is better for simulation 2.1 and 2.2. In other
cases either 8 Runs (without middle DR) and 8 Runs (without first/last DR) perform bet-
ter. Of course in the case of 8 Runs, fitting can be better or worse for the used points, but
the error for the left out Double Run is certainly worse. It is thus important to perform
Double Runs for at least all the contract speeds, in order to get a good result.

The most remarkable aspect of the simulation results is that the "Direct" Method per-
forms better in almost all the simulations. Furthermore in the only simulation where
the "Iterative" Method performs better (simulation 1.1), the difference is not that big. Of
course this conclusion is only drawn based on these specific academic simulations, but
it sure looks promising.

Another interesting aspect of the "Direct" Method is the calculation time. The "Direct"
Method only needs to perform a non-linear fitting once. The "Iterative" Method on the
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other hand contains a loop, in which two fittings take place: a linear- and a non-linear
fitting. This means that if the method stops after 100 iterations, 100 non-linear fittings
are carried out. Obviously this results in a significantly larger calculation time than that
of the "Direct" Method.

As can be seen in the results of simulations 3.1 and 3.2, the "Iterative" Method gives
a poor estimate parameter vector. The reason for this is unclear. The only difference
that can be found between the data sets is that the power settings of simulation 3.1 and
3.2 are a lot smaller than the remainder of the simulations. However theoretically there
is no clue to assume this should result in a misfit. Additionally the "Iterative" Method
does not even give the same estimation for the Trust Region Reflective - and Levenberg-
Marquardt algorithm. Maybe the "Iterative" Method provides another local minimum
(but not global) as a result. This will be analysed in section 5.4.4. It could also be the
case that something went wrong in the non-linear fitting process. In some cases of
measurement noise, this could be fixed by tweaking the parameters of the Matlab func-
tion. For example it sometimes lowering the Function Tolerance, Optimality Tolerance
and/or Step Tolerance from 10−6 to 10−8 or even smaller. Unfortunately this results in
non-proportionate computation times, that could be up to a few hours per simulation.
Naturally simulating this is close to impossible time wise, especially given that proper
convergence for all noise additions is still not assured with these tweaked parameters.
It can be concluded that the "Iterative" Method is simply not working the way it is de-
sired for this specific data set. The "Direct" Method on the other hand, proves itself to
be a very robust algorithm. All the results seem to be quite accurate and no major dif-
ferences can be seen by changing the non-linear fitting method. Consequently it looks
like a trustworthy method, that can either be used to provide the curve fitting needed, or
provide an initial estimate for the "Iterative" Method.

5.4.3. LIMITING PARAMETERS

The parameters found for the fitting are usually not realistic. For example the expo-
nential parameter q is expected to be somewhere around 3. However, in simulation 3.2
(without measurement noise) this parameter is estimated to be around 8.7. Even though
this is not a realistic value for the behaviour of the ship resistance, for all 0 ≤ VS <∞, it
can be the best approximation for a small interval of the positive real axis. Furthermore
since we are only interested in the fitting of the current speed in the end, the values do
not have to be realistic in order to get a realistic approximation of the current speed.

Yet, this only works when this unrealistic value gives indeed the best approximation
for the P-V relation on this interval. The Trust-Region Reflective gives us the freedom to
set bounds for the to-be-fitted parameters. In this fashion we can observe the effect of
setting bounds for q . This will be exclusively for q , since this is the only parameter where
we have an idea about the order of magnitude. Namely we can not say a lot more about
a and b, apart from that they both should be positive. Parameters A,B ,C and D are even
more difficult to get a hold on. As lower bound for q , 2.5 is chosen. The upper bound will
be set on 4. An example simulation with bounds for q is given by table 5.13.
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With bounds Without bounds
E1 255.6652 187.9131
E3 164.3271 58.9172
E5 0.2063 0.6131
E7 0.2242 0.0695

Table 5.13: Simulation 3.2 (10 Runs), with and without bounds

As can be seen in table 5.13, EVC becomes smaller for the "Iterative" Method, by set-
ting bounds. However this is not a fair comparison, since the fitting without bounds
was already considered to be wrong. On top of that, the errors are still way larger than
desired. If we look at the error terms for the "Direct" Method, they become remarkably
larger. Whereas this initial fitting was already very accurate, setting bounds only worsens
the performance of the "Direct" Method in this case. If the same bounds are applied on
the other simulations, they all confirm this statement. Thus it is important to keep in
mind that unrealistic values of parameters do not necessarily imply bad performance of
the method. As seen here, they even perform better than using the method with bounds.

5.4.4. INITIAL VALUE

Of course the fitting of the curves heavily depends on the initial estimate of the parame-
ter vector that is used for the fitting. This initial estimate can luckily be chosen in a smart
way. For example, it is known that the parameter a of the P-V relation 2.8 should be larger
than 0 (it represents the stationary resistance), but smaller than the value of the smallest
power setting. The variables b and q should be positive and somewhere in the order of
magnitude 100, which we know from fundamental estimations in the calculation of ship
resistance. For the "Direct" Method, estimates for the parameters of the current func-
tion are also needed. Constant C is usually close to 0 (otherwise the current would have
a large trend). Constant D is the value that can be seen as the equilibrium position. The
sinusoid that represents the current curve oscillates around this value. This parameter
can thus be taken somewhere around half of the difference from two Runs in the same
Double Run. It is a lot harder to get a grip on parameters A and B , so it is of great impor-
tance to choose these parameters in a neutral way. In the simulations all these values are
chosen to be 1. This is the thought process that lies behind the choices of initial param-
eter vector, that can be found under the figures for each simulation.

The initial estimates of the simulations seem to work out nicely, except for simulations
3.1 and 3.2. The "Iterative" Method in particular fails here. It could be that the initial
estimate plays a role in this failure. To check this, distinctive estimates are used in the
case that there is no measurement noise. Note that C and D are kept the same, since
there is just been argued that these are reasonably easy to estimate. The results of these
simulations can be found in tables 5.14 and 5.15.

The other distinctive initial estimates do not seem to have an effect on the results for
simulation 3.1. The "Iterative" Method still gives bad results, but the "Direct" Method
did not budge, except for the case that all five variables are taken distinctive of the ones
used in the simulations (the last two columns).
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x0



10
2
3
1
1
1
1





1000
2
3
1
1
1
1





10
0.2
0.3
1
1
1
1





1000
0.2
0.3
1
1
1
1





10
2
3

10
10
1
1





1000
2
3

10
10
1
1





10
0.2
0.3
10
10
1
1





1000
0.2
0.3
10
10
1
1


E1 209.7860 251.1788 197.5166 218.8581 209.7860 251.1788 197.5166 218.8581
E2 160.8347 282.7447 204.5678 272.2534 160.8347 282.7447 204.5678 272.2534
E3 36.2263 36.2299 36.2278 36.6347 36.2790 38.3074 179.6543 286.0984
E4 36.2263 36.2263 36.2263 36.2263 36.2263 36.2263 1272.9 1272.9
E5 0.5589 0.3704 0.5463 0.3080 0.5589 0.3704 0.5463 0.3080
E6 0.3253 0.7561 0.7282 0.3310 0.3253 0.7561 0.7282 0.3310
E7 0.0296 0.0295 0.0294 0.0315 0.0331 0.0312 0.4412 0.6963
E8 0.0296 0.0296 0.0296 0.0296 0.0296 0.0296 7067.8 7154.4

Table 5.14: Results simulation 3.1 with various initial estimates
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1
1





1000
2
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1
1





10
0.2
0.3
10
10
1
1





1000
0.2
0.3
10
10
1
1


E1 188.3137 188.3298 188.1081 188.3972 188.3137 188.3298 188.1081 188.3972
E2 222.6484 228.8363 116.3035 277.4651 222.6484 228.8363 116.3035 277.4561
E3 56.3149 56.3148 56.3164 56.3452 56.3148 56.3148 56.3164 56.3148
E4 56.3148 56.3148 56.3148 56.3148 56.3148 56.3148 1159.5 1159.5
E5 0.6129 0.6128 0.6120 0.6124 0.6129 0.6128 0.6120 0.6124
E6 0.6762 0.7044 0.5010 0.5028 0.6762 0.7044 0.5010 0.5028
E7 0.0671 0.0672 0.0668 0.0685 0.0672 0.0672 0.0672 0.0672
E8 0.0672 0.0672 0.0672 0.0672 0.0672 0.0672 795.89 + 66.090i 805.61 + 98.404i

Table 5.15: Results simulation 3.2 with various initial estimates
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For simulation 3.2, not a lot of differences can be seen either. The "Iterative" Method,
using the Levenberg-Marquardt method behaves better when a = 10, b = 0.2 and q = 0.3.
However once a = 1000 it behaves far worse. All the other initial values still give similar
bad results as the one used for the simulations.
The "Direct" Method behaves quite similar for all the different initial parameter vectors.
Only in the case that all five variables are chosen differently, the "Direct" Method using
Levenberg-Marquardt fails (it even takes complex values).

It can be concluded that, if the initial estimate of the parameter vector is reason-
ably close, the methods should converge to the right value (that is, if no other causes for
wrong convergence or divergence are present). Additionally, the Trust Region Reflective
Method seems to be more robust, i.e. it is more likely to converge to the right value in
the case that the initial value is chosen far from the actual value. It is thus recommended
to use the Trust Region Reflective. However note that this is not yet ’hard’ proof, since it
is only shown to be the case for this example.

5.4.5. ERROR DISTRIBUTION

The error distributions of the measured errors E1 up to E8 usually follow more or less
the same distribution, if the fitting gives a proper result. The distributions generally look
similar to a normal distribution or part of a normal distribution. This is an expected
result, since the noise was generated with the use of a normal distribution. In order to
give an idea of the distributions, an example will be shown of simulation 1.2, using 10
Runs with measurement noise, in appendix D.

5.4.6. EXAMPLES OF FITTING

Two visualise the outcome of the simulations, two examples of fittings will be shown in
figures here, simulation 2.2 and simulation 3.2. Notice that the fitting for simulation 2.2
more or less works in all cases, but the fitting for simulation 3.2 fails for the "Iterative"
Method.
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SIMULATION 2.2

Figure 5.1: Current fitting IM-TRR of simulation 2.2

Figure 5.2: Current fitting IM-LM of simulation 2.2
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Figure 5.3: P-V fitting IM-TRR of simulation 2.2

Figure 5.4: P-V fitting IM-LM of simulation 2.2
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Figure 5.5: Current fitting DM-TRR of simulation 2.2

Figure 5.6: Current fitting DM-LM of simulation 2.2
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Figure 5.7: P-V fitting DM-TRR of simulation 2.2

Figure 5.8: P-V fitting DM-LM of simulation 2.2
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SIMULATION 3.2

Figure 5.9: Current fitting IM-TRR of simulation 3.2

Figure 5.10: Current fitting IM-LM of simulation 3.2
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Figure 5.11: P-V fitting IM-TRR of simulation 3.2

Figure 5.12: P-V fitting IM-LM of simulation 3.2
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Figure 5.13: Current fitting DM-TRR of simulation 3.2

Figure 5.14: Current fitting DM-LM of simulation 3.2
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Figure 5.15: P-V fitting DM-TRR of simulation 3.2

Figure 5.16: P-V fitting DM-LM of simulation 3.2





6
CONCLUSION

The main purpose of this research is to analyse current correction methods under spe-
cific parameter combinations, curve fitting algorithms and exposed to different data
sets, that are derived from actual data retained in speed trials. The research question
is thus formulated as:

What is the best possible current correction method for speed trial analysis?

In order to answer this question, it is parsed into sub questions:

• What is the cause of wrong convergence/divergence of the "Iterative" Method?

• What can be said about the reproducibility of both methods?

• Which algorithm can best be used for non-linear fitting?

• Which of the two methods has the best performance?

Unfortunately the answer of the first question was not found. The "Iterative" Method
converged for simulations 1.1 up to simulation 2.2, but failed for simulation 3.1 and 3.2.
The only difference was that the order of magnitude of the power vector was smaller than
those of other simulations. Nonetheless there is not any theoretical or empirical proof
that this should result in a misfit.

The reproducibilty of the "Direct" Method and the "Iterative" Method comes down to
a few aspects. To start the parameters for non-linear fitting (f.e. Optimality Tolerance,
Max Iterations, ...) and the initial estimation of the solution. In 5.4.4 an example is given,
where various initial estimations are used as input for the methods. It can be seen here
that, as long as the initial estimation is not to far off the true value, both Methods are
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quite robust. It can be concluded that reproducibility is retained if the initial parame-
ter vector is chosen wisely. The parameters for the non-linear fitting on the other hand,
do provide a reproducibility problem. In the simulations it was observed that in some
cases the "Iterative" Method would give an incorrect answer, if the parameters were too
small. This gives a problem for reproducibility when there are no guidelines, regarding
this matter. Further research is needed in order to generalise this. The "Direct" Method
always converged in the performed simulations, but it is not unlikely that there will be re-
producibility problems for this method as well, regarding the non-linear fitting parame-
ters. The "Iterative" Method has an extra aspect that can cause reproducibilty problems,
namely the stopping criterion. In the simulations performed in this research, this value
did not have a great effect on the solution. However it is still unknown if this holds in
general. Also further research is needed for this.

Regarding the algorithms used for non-linear fitting, both the Trust Region Reflective
and the Levenberg-Marquardt algorithm usually provided the same local minimum. Yet
in 5.4.4 it was observed that, taking an initial value that is far off from the true value,
the Levenberg-Marquardt method failed, while the Trust Region Reflective did not. The
Trust Region Reflective seems to be a bit more robust. It is thus recommended to use the
Trust Region Reflective, since both methods converge to the same value anyway in good
circumstances.

In the simulations performed, based on the chosen data sets, the "Direct" Method was
more stable than the "Iterative" Method, since it provided a good fit for simulations 3.1
and 3.2, while the "Iterative" Method failed. From a mathematical point of view, this
makes sense. If a local minimum is found for the "Direct" Method, the solution auto-
matically has to be a local minimum for the current correction problem. This is simply
how the "Direct" Method is defined. The "Iterative" Method on the other hand, does not
have this guarantee. There is no theoretical proof that a local minimum of the "Iterative"
Method is equivalent to the solution of the current correction problem. It just turns out
to be this way in some cases, where the problem is well defined and holds to certain re-
quirements, that are still unknown to us.

Taken everything together, it can be concluded that the "Direct" Method provides a more
(mathematically) trustworthy and robust approach of the current correction. Of course
this conclusion is based on a few academic examples and needs more testing to verify
this statement.
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As stated in chapter 2, both methods ("Iterative" Method and "Direct" Method) as-
sume:

• The relation between power and water speed of a ship can be approximated as
P (VS ) = a +bV q

S

• The current speed can be approximated as VC (t ) = A cos( 2π
TC

t )+B sin( 2π
TC

t )+C t+D

The accuracy of the methods strongly depends on the correctness of this assumptions.
It is important to realize that once these approximations are proven to be the most ac-
curate, current correction methods are also optimized. Fundamental research for this is
needed. Especially an important question regarding this matter is in which time frame
these approximations are valid.

Even though the research was carried out under generally accepted assumptions and
with partly real data from model tests, both methods have not been compared to data of
actual speed trials yet. The results of this research are thus valid in a controlled space,
where a lot of data is known quite precisely. In order to extend the research, a thorough
analysis of both methods has to be made, using data from actual speed trials.

A first step would be to observe both methods under various current functions, since
only one current function has been used in this research. Important to mention is that
this specific current function resulted in bad fittings for some data, but very precise fit-
tings for other data. This shows that the problem primarily depends on the input data,
that is collected in the speed trials or model tests. However, in order to make general
conclusions, more current functions have to be examined.

Once both methods pass this test, they can be applied to actual speed trial data, i.e. with
a completely unknown current curve. An accessory issue in this matter is that various
corrections have to be implemented too, for example the draft correction.
Of course it is also important to test the current corrections method for more different
data sets, since six is still a reasonably small number.
Another interesting development is bisection, a numerical method that is now used in
STAIMO. Unfortunately I found out too late about this to really dig into the theory, but
of what I heard at MARIN it sure sounds promising. This could be an interesting subject
for further research, regarding the improvement of the "Iterative" Method.

Last but not least, I propose that further research also experiments with various initial
values. The non-linear fitting tends to a local minimum, so it is possible that it some-
times converges to the wrong local minimum, that is not the global minimum. Since the
results in this report hint that the "Direct" Method is more robust, this could be used as
the initial value for the "Iterative" Method. Unfortunately I did not have the time to take
a closer look at this idea.



Appendices

55





A
PROOFS

57



A

58 A. PROOFS

Theorem 1. For a approximation of the current speed by a nth order polynomial, the
"Mean of means" approximation is given by:

VMoM = 1

2n+1

n+2∑
i=1

(
n +1

i −1

)
Vi (A.1)

Proof. The statement will be proven by induction.
Induction basis (n = 0)
For n = 0, it holds that:

1

2n+1

n+2∑
i=1

(
n +1

i −1

)
Vi = 1

21
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1

i −1
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=
(1

0

)
V1 +

(1
1

)
V2

2

= V1 +V2

2
=VMoM ,0

Induction hypothesis
The following notation will be used:

VMoM ,i : the "Mean of means" value for a i th order polynomial approximation

VMoM ,i ... j : the "Mean of means" value of measurements Vi up to and including V j

Assume that there exists an k ∈N such that:

VMoM ,k = 1
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(
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Vi

Then:
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by Pascal’s rule. This can be rewritten as:
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1

2
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By induction, it is proven that:

VMoM = 1
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i=1
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n +1

i −1

)
Vi

Theorem 2.
∑n+2

i=1

(n+1
i−1

)
(−1)i+1i j = 0 ∀n ∈N, j = 0, ...,n

Proof. The statement will be proven by induction.
Induction basis (n = 0)

For n = 0, it holds that:
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Induction hypothesis

Assume that there exists an k ∈N such that:
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)
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Then:

k+3∑
i=1
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where the second equality follows from Pascal’s rule.
By the induction hypothesis, the first term vanishes, such that:
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The last step follows by the hypothesis induction (two times). Note that j −m ∈ {0, ...,k}.
The statement also has to hold for the case that j = k +1. Fortunately it does, since:
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by the induction hypothesis with j = m. It can be concluded that:

k+3∑
i=1

(
k +2

i −1

)
(−1)i+1i j = 0 ∀n ∈N, j = 0, ...,k +1

Thus theorem 2 is true by induction.
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1 %% Input data
2 clear all
3 close all
4

5 % % time of tidal current (in s)
6 % TC = 12*3600+25*60+12;
7 % % virtual exact dimensionless times
8 % Texact = [0, 0.07, 0.12, 0.18, 0.26, 0.33, 0.38, 0.47, 0.52, 0.62];
9 % % virtual exact waterspeeds

10 % VSexact = [24, 24, 25, 25, 26, 26, 27, 27, 28, 28];
11 % % virtual exact ground speeds
12 % VGexact = [27, 20.5332,28.5794, 21.5411, 28.9112,
13 % 23.8194, 28.6005, 26.3538, 28.2649, 27.9874];
14 % % virtual exact current speed
15 % VCexact = abs(VGexact − VSexact);
16 % % noise levels
17 % n1 = 0.05/3; %sigma of noise ground speed
18 % n2 = 36/(3*TC); %sigma of noise time
19 % n3 = 25/3; % sigma of noise power
20 % % virtual exact corrected powers
21 % Pcor = [34713, 34713, 40478, 40478, 47305, 47305, 55599, 55599, 65932, 65932];
22

23 % time of tidal current (in s)
24 TC = 12*3600+25*60+12;
25 % virtual exact dimensionless times
26 Texact = [0, 0.07, 0.12, 0.18, 0.26, 0.33, 0.38, 0.47, 0.52, 0.62];
27 % virtual exact waterspeeds
28 VSexact = [23.5 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5, 28];
29 % virtual exact ground speeds
30 VGexact = [26.5, 20.5332, 28.0794, 21.5411, 28.4112, 23.8194, 28.1005,
31 26.3538, 27.7649, 27.9874];
32 % virtual exact current speed
33 VCexact = abs(VGexact − VSexact);
34 % noise levels
35 n1 = 0.05/3; %sigma of noise ground speed
36 n2 = 36/(3*TC); %sigma of noise time
37 n3 = 25/3; % sigma of noise power
38 % virtual exact corrected powers
39 Pcor = [32141, 34713, 37483, 40478, 43737, 47305, 51238, 55599, 60466, 65932];
40

41 % virtual exact parameter vector
42 % beta = [?, ?, ?, 1.5, 1.3, 0.8, 1.5] ;
43 % initial guess of parameters P−V relation
44 x0step1 = [1000, 2, 3];
45

46 options1 = optimoptions('lsqnonlin', 'Algorithm', 'trust−region−reflective',
47 'FunctionTolerance', 1e−6, 'MaxFunctionEvaluations', 100000, 'MaxIterations',
48 100000, 'OptimalityTolerance', 1e−6, 'StepTolerance', 1e−6);
49 options2 = optimoptions('lsqnonlin', 'Algorithm', 'levenberg−marquardt',
50 'FunctionTolerance', 1e−6, 'MaxFunctionEvaluations', 100000, 'MaxIterations',
51 100000, 'OptimalityTolerance', 1e−6, 'StepTolerance', 1e−6);
52

53 % bounds
54 % lbim = [0, 0, 2.5];
55 % ubim = [1000000, 1000000, 4];
56 % lbdm = [0, 0, 2.5, −1000000, −1000000, −1000000, −1000000];
57 % ubdm = [1000000, 1000000, 4, 1000000, 1000000, 1000000, 1000000];
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58

59 %% Simulation matrices
60 k = 1;
61 VCerror_imtrr = [];
62 VCerror_imlm = [];
63 VCerror_dirtrr = [];
64 VCerror_dirlm = [];
65

66 Est_imtrr = [];
67 Est_imlm = [];
68 Est_dirtrr = [];
69 Est_dirlm = [];
70

71 while k < 2
72 %% Noise
73 % % virtual measured ground speeds (with noise)
74 % VGnoise = [normrnd(27, n1), normrnd(20.5332, n1),normrnd(28.5794, n1),
75 % normrnd(21.5411, n1), normrnd(28.9112, n1), normrnd(23.8194, n1),
76 % normrnd(28.6005, n1), normrnd(26.3538, n1), normrnd(28.2649, n1),
77 % normrnd(27.9874, n1)];
78 % VGdifference = VGexact − VGnoise;
79 % % virtual measured dimensionless time (with noise)
80 % Tnoise = [normrnd(0, n2), normrnd(0.07, n2), normrnd(0.12, n2),
81 % normrnd(0.18, n2), normrnd(0.26, n2), normrnd(0.33, n2),
82 % normrnd(0.38, n2), normrnd(0.47, n2), normrnd(0.52, n2), normrnd(0.62, n2)];
83 % Tdifference = Texact − Tnoise;
84 % % virtual measured powers (with noise)
85 % Pcornoise = [normrnd(34713, n3), normrnd(34713, n3), normrnd(40478, n3),
86 % normrnd(40478, n3), normrnd(47305, n3), normrnd(47305, n3),
87 % normrnd(55599, n3), normrnd(55599, n3), normrnd(65932, n3), normrnd(65932, n3)];
88 % Pdifference = Pcor − Pcornoise;
89

90 % virtual measured ground speeds (with noise)
91 VGnoise = [normrnd(26.5, n1), normrnd(20.5332, n1), normrnd(28.0794, n1),
92 normrnd(21.5411, n1), normrnd(28.4112, n1), normrnd(23.8194, n1),
93 normrnd(28.1005, n1), normrnd(26.3538, n1), normrnd(27.7649, n1), normrnd(27.9874, n1)];
94 VGdifference = VGexact − VGnoise;
95 % virtual measured dimensionless time (with noise)
96 Tnoise = [normrnd(0, n2), normrnd(0.07, n2), normrnd(0.12, n2), normrnd(0.18, n2),
97 normrnd(0.26, n2), normrnd(0.33, n2), normrnd(0.38, n2), normrnd(0.47, n2),
98 normrnd(0.52, n2), normrnd(0.62, n2)];
99 Tdifference = Texact − Tnoise;

100 % virtual measured powers (with noise)
101 Pcornoise = [normrnd(32141, n3), normrnd(34713, n3), normrnd(37483, n3),
102 normrnd(40478, n3), normrnd(43737, n3), normrnd(47305, n3), normrnd(51238, n3),
103 normrnd(55599, n3), normrnd(60466, n3), normrnd(65932, n3)];
104 Pdifference = Pcor − Pcornoise;
105

106 %% Iterative Method
107 % Creation of helpful vectors
108

109 % number of runs
110 n_runs = length(Texact);
111 % vectors for plotting the functions
112 vs = linspace(min(VSexact) − 0.5,max(VSexact) + 0.5,100);
113 tau = linspace(min(Tnoise) − 0.1, max(Tnoise) + 0.1,100);
114



B

66 B. MATLAB IMPLEMENTATION

115 % vectors for initial fitting iterative method
116 for i=1:1:n_runs*0.5
117 Pstep1(i) = (Pcornoise(2*i−1) + Pcornoise(2*i))/2;
118 VGstep1(i) = (VGnoise(2*i−1) + VGnoise(2*i))/2;
119 end
120

121 % function initial fitting iterative method
122 fun1 = @(B)B(1)+B(2)*VGstep1.^B(3) − Pstep1;
123

124 % initial fitting with Trust Region Reflective
125 [x,resnorm,residual,exitflag,output] = lsqnonlin(fun1,x0step1,[],[],options1);
126 % initial fitting with Levenberg Marquardt
127 [y,resnorm,residual,exitflag,output] = lsqnonlin(fun1,x0step1,[],[],options2);
128

129 % creation of matrices that contain parameter estimations and standard errors for
130 % every iteration
131

132 % parameter matrices, for Trust Region Reflective and Levenberg−Marquardt
133 Ptrr = [];
134 Plm = [];
135 Ptrrlin = [];
136 Plmlin = [];
137 % error matrices, for Trust Region Reflective and Levenberg−Marquardt
138 % initial error
139 Etrr = [sqrt(sum(Pcornoise.^2)/n_runs)];
140 Elm = [sqrt(sum(Pcornoise.^2)/n_runs)];
141

142 % iteration variable
143 j1=1;
144 j2=1;
145

146 %% first iteration
147

148 % addition of new parameter vector estimations
149 Ptrr = [Ptrr; x];
150 Plm = [Plm; y];
151

152 % calculation of water speeds for first iteration
153 VS1 = VS(Ptrr(j1,:), Pcornoise);
154 VS2 = VS(Plm(j1,:), Pcornoise);
155

156 % calculation of current speeds for first iteration
157 VC1 = abs(VGnoise − VS1);
158 VC2 = abs(VGnoise − VS2);
159

160 % current function
161 fun2 = @(D)D(1).*cos(2*pi*Tnoise) + D(2).*sin(2*pi*Tnoise) + D(3).*Tnoise + D(4);
162

163 % linear least squares fitting current function to data
164 C = [cos(2*pi*Tnoise).' sin(2*pi*Tnoise).' Tnoise.' ones(n_runs, 1)];
165 xlin = lsqlin(C, VC1);
166 ylin = lsqlin(C, VC2);
167

168 %update linear part
169 Ptrrlin = [Ptrrlin; xlin.'];
170 Plmlin = [Plmlin; ylin.'];
171
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172 % calculation of new current speeds with found parameter vector
173 VC_1 = fun2(xlin);
174 VC_2 = fun2(ylin);
175

176 % calculation of new water speeds
177 for i=1:1:n_runs
178 VS_1(i) = VGnoise(i) + (−1)^(i)*VC_1(i);
179 VS_2(i) = VGnoise(i) + (−1)^(i)*VC_2(i);
180 end
181

182 % new P−V relation that needs fitting
183 fun3 = @(B)B(1)+B(2)*VS_1.^B(3) − Pcornoise;
184 fun4 = @(B)B(1)+B(2)*VS_2.^B(3) − Pcornoise;
185

186 % non−linear least squares fitting
187 [x,resnorm,residual,exitflag,output] = lsqnonlin(fun3,Ptrr(j1,:),[],[],options1);
188 [y,resnorm,residual,exitflag,output] = lsqnonlin(fun4,Plm(j1,:),[],[],options2);
189

190 % addition of new standard errors
191 Etrr = [Etrr;sqrt(sum(fun3(x).^2)/n_runs)];
192 Elm = [Etrr;sqrt(sum(fun4(y).^2)/n_runs)];
193 % update parameter matrices
194 Ptrr = [Ptrr; x];
195 Plm = [Plm; y];
196

197 % update iteration variable
198 j1 = j1+1;
199 j2 = j2+1;
200

201 %% Iteration process TRR
202 % stopping criterion: if consequent steps of both methods are close enough,
203 % the iteration process stops
204 while abs(Etrr(j1−1,:) − Etrr(j1,:)) > 10^(−4)
205

206 % update water speeds
207 VS1 = VS(Ptrr(j1,:), Pcornoise);
208

209 % update current speeds
210 VC1 = abs(VGnoise − VS1);
211

212 % linear least squares fitting
213 xlin = (C.'*C)\(C.'*VC1.');
214 Ptrrlin = [Ptrrlin; xlin.'];
215

216 % update current speeds
217 VC_1 = fun2(xlin);
218

219 % update water speeds
220 for i=1:1:n_runs
221 VS_1(i) = VGnoise(i) + (−1)^(i)*VC_1(i);
222 end
223

224 % non−linear least squares fitting
225 [x,resnorm,residual,exitflag,output] = lsqnonlin(fun3,Ptrr(j1,:),[],[],options1);
226

227 % update parameter matrices
228 Ptrr = [Ptrr; x];
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229 % update error matrix
230 Etrr = [Etrr;sqrt(sum(fun3(x).^2)/n_runs)];
231

232 % update iteration variable
233 j1 = j1+1;
234 end
235

236 % select best minimizer of last two iterations
237 if Etrr(j1−1,:) < Etrr(j1,:)
238 x = Ptrr(j1−1,:);
239 xlin = Ptrrlin(j1−1,:);
240 end
241

242 %% Iteration process LM
243 % stopping criterion: if consequent steps of both methods are close enough,
244 % the iteration process stops
245 while abs(Elm(j2−1,:) − Elm(j2,:)) > 10^(−4)
246

247 % update parameter matrices
248 Plm = [Plm; y];
249

250 % update water speeds
251 VS2 = VS(Plm(j2,:), Pcornoise);
252

253 % update current speeds
254 VC2 = abs(VGnoise − VS2);
255

256 % linear least squares fitting
257 ylin = (C.'*C)\(C.'*VC2.');
258 Plmlin = [Plmlin; ylin.'];
259

260 % update current speeds
261 VC_2 = fun2(ylin);
262

263 % update water speeds
264 for i=1:1:n_runs
265 VS_2(i) = VGnoise(i) + (−1)^(i)*VC_2(i);
266 end
267

268 % non−linear least squares fitting
269 [y,resnorm,residual,exitflag,output] = lsqnonlin(fun4,Plm(j2,:),[],[],options2);
270

271 % update error matrices
272 Elm = [Etrr;sqrt(sum(fun4(y).^2)/n_runs)];
273

274 % update iteration variable
275 j2 = j2+1;
276 end
277

278 % select best minimizer of last two iterations
279 if Elm(j2−1,:) < Elm(j2,:)
280 y = Plm(j2−1,:);
281 ylin = Plmlin(j2−1,:);
282 end
283

284 %% Analysis of results
285
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286 % current function
287 fun5 = @(B)B(1)*cos(2*pi*tau) + B(2)*sin(2*pi*tau) + B(3)*tau + B(4);
288

289 % current difference function
290 fun6 = @(B)B(1)*cos(2*pi*Texact) + B(2)*sin(2*pi*Texact) + B(3)*Texact + B(4) − VCexact;
291

292 % calculation of real standard errors
293 fun7 = @(B)B(1)+B(2)*VSexact.^B(3) − Pcor;
294 Eim_trr = sqrt(sum(fun7(x).^2)/n_runs);
295 Eim_lm = sqrt(sum(fun7(y).^2)/n_runs);
296 EVCim_trr = sqrt(sum(fun6(xlin).^2)/n_runs);
297 EVCim_lm = sqrt(sum(fun6(ylin).^2)/n_runs);
298

299 % P−V function
300 fun8 = @(B) B(1) + B(2)*vs.^B(3);
301

302 % final P−V formula plots (plotted against data points without noise)
303 for i=1:1:n_runs
304 VSnoise(i) = VGnoise(i) + (−1)^(i)*VCexact(i);
305 end
306

307 % update exact matrices
308 VCerror_imtrr = [VCerror_imtrr; EVCim_trr];
309 VCerror_imlm = [VCerror_imlm; EVCim_lm];
310 Est_imtrr = [Est_imtrr; Eim_trr];
311 Est_imlm = [Est_imlm; Eim_lm];
312

313

314 %% Direct Method
315

316 % initial guess parameter vector
317 x0 = [500,2,3,1,1,1,1];
318

319 % direction vector of current
320 for i=1:n_runs
321 c(i) = (−1).^(i);
322 end
323

324 % total P−VG, tau relation with and without noise
325 fun9 = @(B)B(1)+B(2)*(VGnoise + c.*(B(4)*cos(2*pi*Tnoise) + B(5)*sin(2*pi*Texact)
326 + B(6)*Texact + B(7))).^B(3) − Pcornoise;
327 fun10 = @(B)B(1)+B(2)*(VGexact + c.*(B(4)*cos(2*pi*Texact) + B(5)*sin(2*pi*Texact)
328 + B(6)*Texact + B(7))).^B(3) − Pcor;
329

330 % non−linear fitting with Trust Region Reflective and Levenberg−Marquardt
331 [xdir,resnorm,residual,exitflag,output] = lsqnonlin(fun9,x0,[],[],options1);
332 [ydir,resnorm,residual,exitflag,output] = lsqnonlin(fun9,x0,[],[],options2);
333

334 % needed entries of parameter vector
335 xdirpv = xdir(1:3);
336 ydirpv = ydir(1:3);
337 xdircf = xdir(4:7);
338 ydircf = ydir(4:7);
339

340 % calculation of real errors
341 Edm_trr = sqrt(sum(fun10(xdir).^2)/n_runs);
342 Edm_lm = sqrt(sum(fun10(ydir).^2)/n_runs);
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343 EVCdm_trr = sqrt(sum(fun6(xdircf).^2)/n_runs);
344 EVCdm_lm = sqrt(sum(fun6(ydircf).^2)/n_runs);
345

346 VCerror_dirtrr = [VCerror_dirtrr; EVCdm_trr];
347 VCerror_dirlm = [VCerror_dirlm; EVCdm_lm];
348 Est_dirtrr = [Est_dirtrr; Edm_trr];
349 Est_dirlm = [Est_dirlm; Edm_lm];
350

351 k = k + 1
352 end
353

354 % plots (optional)
355 VCnoise = abs(VGnoise − VSexact);
356 figure(1)
357 plot(Texact,VCexact, 'g*', Tnoise, VCnoise, 'ro',tau,fun5(xlin),'b−')
358 xlabel('time (dimensionless)')
359 ylabel('current speed (in kts)')
360 legend('Actual data points', 'Measured data points','Fitting VC−tau IM−TRR')
361 figure(2)
362 plot(Texact,VCexact, 'g*', Tnoise, VCnoise, 'ro',tau,fun5(ylin),'b−')
363 xlabel('time (dimensionless)')
364 ylabel('current speed (in kts)')
365 legend('Actual data points', 'Measured data points','Fitting VC−tau IM−LM')
366 figure(3)
367 plot(VSexact,Pcor, 'g*', VSnoise, Pcornoise, 'ro',vs,fun8(x),'b−')
368 xlabel('water speed (in kts)')
369 ylabel('Delivered power (in kW)')
370 legend('Actual data points', 'Measured data points', 'Fitting P−V IM−TRR')
371 figure(4)
372 plot(VSexact,Pcor, 'g*', VSnoise, Pcornoise, 'ro',vs,fun8(y),'b−')
373 xlabel('water speed (in kts)')
374 ylabel('Delivered power (in kW)')
375 legend('Actual data points', 'Measured data points', 'Fitting P−V IM−LM')
376 figure(5)
377 plot(Texact,VCexact, 'g*', Tnoise, VCnoise, 'ro',tau,fun5(xdircf),'b−')
378 xlabel('time (dimensionless)')
379 ylabel('current speed (in kts)')
380 legend('Actual data points', 'Measured data points','Fitting VC−tau DM−TRR')
381 figure(6)
382 plot(Texact,VCexact, 'g*', Tnoise, VCnoise, 'ro',tau,fun5(ydircf),'b−')
383 xlabel('time (dimensionless)')
384 ylabel('current speed (in kts)')
385 legend('Actual data points', 'Measured data points','Fitting VC−tau DM−LM')
386 figure(7)
387 plot(VSexact,Pcor, 'g*', VSnoise, Pcornoise, 'ro',vs,fun8(xdirpv),'b−')
388 xlabel('water speed (in kts)')
389 ylabel('Delivered power (in kW)')
390 legend('Actual data points', 'Measured data points', 'Fitting P−V DM−TRR')
391 figure(8)
392 plot(VSexact,Pcor, 'g*', VSnoise, Pcornoise, 'ro',vs,fun8(ydirpv),'b−')
393 xlabel('water speed (in kts)')
394 ylabel('Delivered power (in kW)')
395 legend('Actual data points', 'Measured data points', 'Fitting P−V DM−LM')
396

397 % calculation of means
398 E1 = mean2(Est_imtrr);
399 E2 = mean2(Est_imlm);
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400 E3 = mean2(Est_dirtrr);
401 E4 = mean2(Est_dirlm);
402 E5 = mean2(VCerror_imtrr);
403 E6 = mean2(VCerror_imlm);
404 E7 = mean2(VCerror_dirtrr);
405 E8 = mean2(VCerror_dirlm);
406

407 %% Used functions
408 function V = VS(x, P)
409 V = ((P−x(1))/x(2)).^(1/x(3));
410 end
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C.1. DATA AND RESULTS

Six tuples of (P ,VS ) vectors were used for simulations. These combinations are taken
from existing model test data. Both P and VS vectors are 10-dimensional, i.e. cover a
speed trial of 10 Runs. In order to observe the effect between a speed trial with 8 - and 10
Runs, simulations are also made where two Runs are taken away.

For all simulations the same current function and non-dimensional time vector was
used:

β1 =


1.5
1.3
0.8
1.5

 , τ=



0
0.07
0.12
0.18
0.26
0.33
0.38
0.47
0.52
0.62



C.2. SIMULATION 1

Based on the model tests of training case [21].

Pi (kW) VS,i (kts)
1 5225 14
2 5225 14
3 6728 15
4 6728 15
5 8716 16
6 8716 16
7 11503 17
8 11503 17
9 11503 17
10 11503 17

Table C.1: Data tuples simulation 1.1
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Pi (kW) VS,i (kts)
1 2313 11
2 3035 12
3 4018 13
4 5225 14
5 6728 15
6 8716 16
7 9987 16.5
8 9987 16.5
9 11503 17
10 11503 17

Table C.2: Data tuples simulation 1.2

C.3. SIMULATION 2
Based on the model tests of training case [22].

Pi (kW) VS,i (kts)
1 34713 24
2 34713 24
3 40478 25
4 40478 25
5 47305 26
6 47305 26
7 55599 27
8 55599 27
9 65932 28
10 65932 28

Table C.3: Data tuples simulation 2.1

Pi (kW) VS,i (kts)
1 32141 23.5
2 34713 24
3 37483 24.5
4 40478 25
5 43737 25.5
6 47305 26
7 51238 26.5
8 55599 27
9 60466 27.5
10 65932 28

Table C.4: Data tuples simulation 2.2
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C.4. SIMULATION 3
Based on the model tests of training case [23].

Pi (kW) VS,i (kts)
1 1699 12
2 1699 12
3 2094 13
4 2094 13
5 2554 14
6 2554 14
7 3525 15
8 3525 15
9 5262 16
10 5262 16

Table C.5: Data tuples simulation 3.1

Pi (kW) VS,i (kts)
1 1483 11.5
2 1699 12
3 1896 12.5
4 2094 13
5 2296 13.5
6 2554 14
7 2939 14.5
8 3525 15
9 4304 15.5
10 5262 16

Table C.6: Data tuples simulation 3.2
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Figure D.1: Error distribution E1

Figure D.2: Error distribution E2



D

79

Figure D.3: Error distribution E3

Figure D.4: Error distribution E4
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Figure D.5: Error distribution E5

Figure D.6: Error distribution E6
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Figure D.7: Error distribution E7

Figure D.8: Error distribution E8
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On the 30th of June 2017, I paid a visit to the MARIN, the Maritime Research Institute
Netherlands, located in Wageningen. This internationally renown institute has various
experimental facilities like model basins with wave- and current generators, various sim-
ulators and in the near future an unique two phase laboratry becomes availables tank to
analyse the behaviour of gas-liquid mixtures. Furthermore they also provide software
tools for hydrodynamic design and analysis to the maritime industry. One of these tools
is the shareware STAIMO [24]. STAIMO is a software tool which analyses the data from
Speed/Power Trials through the "Iterative" Method or the "Mean of means" Method.
Needless to say, MARIN also benefits from a more stable method, since it encounters
the same problems that are stumbled upon in the industry. Martin van Hees and Henk
van den Boom are gradually improving STAIMO. One of the issues that needs to be dealth
with is related to the "Iterative" Method. During my visit to MARIN, I had a meeting with
both of them, to exchange ideas and ask questions.
In this meeting I found out that in STAIMO, both the "Iterative" Method and the "Mean of
means" Method are solely used to approximate the current function. The parameters of
the P-V relation are irrelevant, once the parameters of the current function are obtained.
With this current function, the (P,VS ) points can be calculated from the (P,VG ) points.
For new ships, MARIN or other model basis should perform model tests if the sea trial
loading condition does not correspond with the contract loading condition. Since these
tests are performed in nearly perfect circumstances (no wind, no waves, known current),
the P-V curve of the actual ship (in ideal weather conditions) would have to look like the
curve found in the model test. The shape of the curve found in the model test will there-
fore be fitted to the calculated (P,VS ) found through the analysis. This final curve will be
used to determine whether the ship satisfies the contract speeds or not. Of course the
(P,VS ) points first have to be corrected, since the trials are basically never performed in
ideal weather conditions. In this report, ideal weather conditions are assumed to merely
analyse the difference between various methods. However it is important to realize that
corrections always have to be made.

The "Mean of means" Method has a similar approach. For each Double Run the
mean of the measured powers and the measured ground speeds are taken. These tupels
are used as new (P,VS ) points. Again, the curve found in the model test will be fitted to
these points.

In the new STAIMO software, the "Mean of means" solution is used as the initial
guess for the "Iterative" Method, which seems to result in better results. Furthermore
bisection is used for parameter q in the P-V relation. MARIN claims that this makes
the "Iterative" Method more stable and thus reliable. I hope that with my analysis I can
help the people at MARIN (and other Research Institutes) to view the problem from a
more mathematical perspective and in that way contribute to improving the "Iterative"
Method or provide an alternative method.



REFERENCES 85

REFERENCES
[1] J.D. van Manen and P. van Oossanen. Principles of Naval Architecture, Volume II:

Resistance, Propulsion and Vibration. The Society of Naval Architects and Marine
Engineers, 1988.

[2] E.C. Tupper. Introduction to Naval Architecture. Butterworth Heinemann, 1996.

[3] J.J. Stoker. Waves caused by a moving pressure point. kelvin’s theory of the wave
pattern created by a moving ship. In Water Waves: the Mathematical Theory with
Applications, chapter 8. John Wiley Sons, Inc.

[4] Iso15016: Guidelines for the assessment of speed and power performance by anal-
ysis of speed trial data. Technical report, ISO and ITTC, 2015.

[5] G. Strasser, K. Takagai, and S. Werner. A verification of the ittc/iso speed/power
trials analysis. Journal of Marine Science and Technology, 20:2–13, 2015.

[6] K. Takagi. New standard for speed trial analysis iso 15016:2015. http://www.
jstra.jp/html/PDF/ws20150722_6.pdf, 2015.

[7] N. Toki. New procedure for the analysis of speed trial results, with special attention
to the correction of tidal current effect. Journal of Marine Science and Technology,
21:1–22, 2016.

[8] Floris Buwalda. Analysis of methods for determining ship speed during a sea trial,
2016.

[9] K. Madsen, H.B. Nielsen, and O. Tingleff. Methods for non-linear least squares
problems (2nd edition), April 2004.

[10] A. Björck. Numerical Methods for Least Squares Problems. SIAM, 1996.

[11] MATLAB. Equation solving algorithms. http://nl.mathworks.com/help/
optim/ug/equation-solving-algorithms.html#f51887, 2017.

[12] J.J. Moré and D.C. Sorensen. Computing a trust region step. Journal of the Society
for Industrial and Applied Mathematics, 4(3):553–572, 1983.

[13] X. Chenguang and A.K. Usman. Directed-distributed gradient descent. http://
www.eecs.tufts.edu/~cxi01/paper/2015D-DGD_Conf.pdf, 2015.

[14] J. Nocedal and S.J. Wright. Numerical optimization (2nd edition). Springer, 2006.

[15] M.I.A. Lourakis. A brief description of the levenberg-marquardt algorithm imple-
mented by levmar. Technical report, Institute of Computer Science Hellas, 2005.

[16] K. Levenberg. A method for the solution of certain non-linear problems in least
squares. Quarterly of Applied Mathematics, 2:164–168, 1944.

[17] H.P. Gavin. The levenberg-marquardt method for nonlinear least squares curve-
fitting problems, March 2017.

http://www.jstra.jp/html/PDF/ws20150722_6.pdf
http://www.jstra.jp/html/PDF/ws20150722_6.pdf
http://nl.mathworks.com/help/optim/ug/equation-solving-algorithms.html#f51887
http://nl.mathworks.com/help/optim/ug/equation-solving-algorithms.html#f51887
http://www.eecs.tufts.edu/~cxi01/paper/2015D-DGD_Conf.pdf
http://www.eecs.tufts.edu/~cxi01/paper/2015D-DGD_Conf.pdf


86 REFERENCES

[18] A. Ranganathan. The levenberg-marquardt algorithm. http://www.ananth.in/
docs/lmtut.pdf, 2004.

[19] D.W. Marquardt. An algorithm for least-squares estimation of nonlinear parame-
ters. Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441,
1963.

[20] G.A.F. Seber and C.J. Wild. Nonlinear Regression. John Wiley Sons, 1989.

[21] Analysis of speed/power trial data (sea trials m.v. bulker). Technical report, MARIN.

[22] Analysis of speed/power trial data (sea trials m.v. container). Technical report,
MARIN.

[23] Analysis of speed/power trial data (sea trials m.v. supplier). Technical report,
MARIN.

[24] STA and MARIN. Staimo. http://www.staimo.org/, 2014–2017.

http://www.ananth.in/docs/lmtut.pdf
http://www.ananth.in/docs/lmtut.pdf
http://www.staimo.org/

	Abstract
	Acknowledgements
	List of abbreviations
	List of physical constants
	List of Symbols
	Introduction
	Theoretical ship behaviour
	Theoretical ship behaviour
	Introduction
	Types of Resistance
	The eddy making resistance
	Dimensional Analysis
	Empirical expressions for resistance


	Existing current correction methods for speed trials
	Introduction
	Speed Trials
	"Mean of means" Method
	Pascal's Triangle
	Convergence of "Mean of means" Method
	Application "Mean of means" Method

	"Iterative" Method
	Stage 1: initial approximation of power/speed function
	Stage 2: initial approximation of current speed function
	Stage 3: calculation of relative ship's speed
	Ambiguity "Iterative" Method

	"Direct" Method

	New improvement of the "Iterative" Method
	Improvements of the "Iterative" Method

	Numerical Methods
	Introduction
	Non-linear least squares fitting
	Trust Region Reflective
	Gradient Descent method
	The Gauss-Newton method
	The Levenberg-Marquardt method
	Measurement errors

	Results
	Data
	"Iterative" Method vs "Direct" Method
	Measurement noise
	Results
	General observations
	Interpretation simulation results
	Limiting parameters
	Initial value
	Error distribution
	Examples of fitting


	Conclusion
	Discussion
	Appendices
	Proofs
	Matlab implementation
	Simulation data
	Data and results
	Simulation 1
	Simulation 2
	Simulation 3

	Error distribution
	Visit MARIN
	titleReferences

	gebruikrefpag en inhoudsopgave.pdf
	Abstract
	Acknowledgements
	List of abbreviations
	List of physical constants
	List of Symbols
	Introduction
	Theoretical ship behaviour
	Theoretical ship behaviour
	Introduction
	Types of Resistance
	The eddy making resistance
	Dimensional Analysis
	Empirical expressions for resistance


	Existing current correction methods for speed trials
	Introduction
	Speed Trials
	"Mean of means" Method
	Pascal's Triangle
	Convergence of "Mean of means" Method
	Application "Mean of means" Method

	"Iterative" Method
	Stage 1: initial approximation of power/speed function
	Stage 2: initial approximation of current speed function
	Stage 3: calculation of relative ship's speed
	Ambiguity "Iterative" Method

	"Direct" Method

	New improvement of the "Iterative" Method
	Improvements of the "Iterative" Method

	Numerical Methods
	Introduction
	Non-linear least squares fitting
	Trust Region Reflective
	Gradient Descent method
	The Gauss-Newton method
	The Levenberg-Marquardt method
	Measurement errors

	Results
	Data
	"Iterative" Method vs "Direct" Method
	Measurement noise
	Results
	General observations
	Interpretation simulation results
	Limiting parameters
	Initial value
	Error distribution
	Examples of fitting


	Conclusion
	Discussion
	Appendices
	Proofs
	Matlab implementation
	Simulation data
	Data and results
	Simulation 1
	Simulation 2
	Simulation 3

	Error distribution
	Visit MARIN
	titleReferences





