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A B S T R A C T

The burden of first-mile connection to public transit stations is a key barrier that discourages
riders from taking public transportation. Public transit agencies typically operate a modest
fleet of vehicles to provide first-mile services due to the high operating costs, thus failing
to adequately meet the first-mile travel demands, especially during peak hours. At the same
time, private cars are underutilized and have a lot of idle time. With the emergence of
self-driving vehicles, new opportunities for addressing the current dilemma arise, such as
integrating idle private self-driving vehicles to provide first-mile services, which is beneficial
for public transportation agencies to provide high-quality services at low costs. This study
investigates the first-mile ridesharing problem in which public transit agencies utilize idle
privately-owned autonomous vehicles to dynamically inflate their fleet. This problem is more
challenging in decision-making than conventional first-mile problems, as it involves decisions
on heterogeneous fleet scheduling, vehicle routing, and time scheduling, all while taking into
account the service quality for riders. To address this problem, an arc-based mixed-integer
linear programming (MILP) model and a trip-based set-partitioning model are developed, both
aiming to minimize total operational costs. To identify promising trips, we propose a tailored
labeling algorithm with a novel dominance rule, along with a time window shift algorithm
to determine the best schedule. To yield high-quality solutions in a short computation time,
a tailored column-generation matheuristic algorithm is introduced. A branch-and-price exact
algorithm and an adaptive large neighborhood search algorithm are developed to assess the
matheuristic algorithm. Numerical experiments are conducted to demonstrate the effectiveness
and applicability of the proposed models and algorithms. Experiments also show that this kind
of ridesharing service can provide low-cost and high-quality services for the first-mile problem.

1. Introduction

Public transportation, such as metros and buses, plays a vital role in the urban transport system (Lin et al., 2021). However,
in suburban areas, the population density is typically low, and thus the service radius of rail stations is often large, such as five
kilometers. This causes inefficient first- and last-mile connectivity with public transit stations and is a key barrier that precludes
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riders from using public transit systems (Park et al., 2021), as long walking access/egress distances (for instance, more than 500 m)
would prevent them from easily reaching public transportation stations. At present, public transportation agencies tend to employ
buses or mini-buses to provide demand-responsive connections to public transportation stations (Charisis et al., 2018). However,
most demand-responsive connections are unable to offer door-to-door services (Vansteenwegen et al., 2022), and the service quality
varies a lot due to the limited bus availability during rush hours, which may result in long waiting times for riders. Some riders
take cabs or private cars for their first-mile or last-mile trips, but it is uneconomical and extremely difficult to hail a taxi during
peak hours. As a result, it is critical to provide riders with efficient, convenient, and cost-effective first-mile and last-mile services.

With the increasing maturity of autonomous driving technology and its benefits in reducing transportation costs and improving
he utilization of parking lots (Liang et al., 2020; Tang et al., 2021), autonomous vehicles (AVs) have been piloted to provide
huttle services in some city centers, universities, hospitals, parks, and more (RoboticResearch, 2022), as well as first/last-mile
ervices (EasyMile, 2022). AVs do not require human drivers and are not subject to the constraint of drivers’ workload (Chen et al.,
020), so using AVs to provide first-mile services may enable higher vehicle utilization and help public transit agencies in reducing
perating costs. In addition, as ridesharing may further reduce operating costs, some studies (Chen et al., 2020; Shan et al., 2021)
nvestigated using AVs to provide first-mile ridesharing services.

As of now, private vehicles are often underutilized and parked in parking lots for at least 90% of the day on average (Schmöller
t al., 2015; Shaheen and Chan, 2016). To improve the utilization of private cars, carsharing has been promoted in recent
ears (Shaheen and Chan, 2016; Jochem et al., 2020). However, private car sharing still presents some inconveniences, such as
equiring users to pick up and return vehicles at specific parking lots (Xu et al., 2018; Huang et al., 2020). Self-driving technologies
ffer a potential solution to these problems and could provide additional momentum for carsharing (Nazari et al., 2018). As a
esult, privately-owned autonomous vehicles have a greater opportunity to be leased to other private users, transportation network
ompanies like Uber, Lyft, and Didi, and public transportation agencies during their idle times, and the owners can earn revenue.
t is worth noting that the idle time of private vehicles may consist of multiple time slots. For instance, a vehicle may not be used
uring 8:30–11:00, 12:00–17:00, and 19:00–21:00 (Beirigo et al., 2022). Meanwhile, the time required for a complete first-mile
ound trip is usually less than 1 h (Huang et al., 2022) due to the small service area of first-mile problems, such as a 5 km service
adius (Abe, 2021). Therefore, the first-mile problem is a promising application scenario for private autonomous vehicles with idle
ime slots. For public transit agencies, if they can leverage private vehicles to render on-demand first-mile services, they will be
ble to better meet travelers’ demands, especially during rush hours (Grahn et al., 2022).

Compared to the classical first-mile problem illustrated in Fig. 1(a), the first-mile ridesharing problem with private AVs poses
reater challenges for decision-making. First, this problem involves mixed fleet scheduling, which is more complicated than
cheduling a homogeneous fleet (Ho et al., 2008; Lu et al., 2022). It requires determining which public vehicles and private vehicles
re scheduled to provide first-mile services, taking into account the available capacity, earliest available time (also known as ‘‘ready
ime’’), and ready location for each vehicle. In addition, it is necessary to ensure that the scheduled private vehicles can reach the
esignated parking lot before the end of their corresponding idle time slot. As shown in Fig. 1(b), once private vehicle 2 completes
ts current first-mile services, it must head to the parking lot, which could be located at the owner’s residential area, workplace, or
ther locations.

Second, to ensure that each rider’s requirements for the latest arrival time at the hub station, the ride time, and the number of
o-riders are well met, it is essential to determine the optimal ridesharing routes and identify the best schedule for each route. This
chedule will specify the best departure time for each vehicle and the best pickup time at each node to reduce the waiting time
or picking up requests and thus the ride time for on-board riders. The schedule decision increases the decision challenges for the
irst-mile ridesharing problem with private autonomous vehicles, which is often overlooked in existing studies since they assume
hat riders can be picked up immediately upon the arrival of vehicles. Fig. 2 illustrates the significance of schedule decisions in
educing ride times. Without schedule decisions, vehicles typically depart as early as possible and wait for requests if they arrive at
he node before the corresponding earliest pickup time. However, this strategy may lead to longer ride times for on-board riders.
s shown in Fig. 2(a), requests 1 and 2 have longer actual ride times than their maximum ride time requirements due to waiting

or requests 3 and 4. By optimizing the departure and pickup times, the ride time requirements of requests 1 and 2 can be met on
he same route, as demonstrated in Fig. 2(b).

Motivated by the aforementioned analysis, this paper investigates the first-mile ridesharing problem with private AVs available
o schedule for public transit agencies. Our contributions consist of:

(1) investigating a first-mile ridesharing problem with publicly and privately owned autonomous vehicles to design high-quality
nd cost-effective first-mile services for passengers, developing an arc-based mixed integer programming model for this problem,
nd then reformulating it as a trip-based set partitioning model;

(2) presenting a novel column-generation math-heuristic algorithm to address the first-mile ridesharing problem with a mixed
utonomous fleet. Two tailored strategies are incorporated in this algorithm to expedite the solving process of pricing sub-problems
nd enhance the diversity of the column pool, namely, reusing columns generated for other vehicles and the incremental column
eneration. Numerical experiments demonstrate that this algorithm can identify near-optimal solutions for instances with fewer
han 50 requests in less than 35 s, outperforming the ALNS algorithm in terms of both computation time and solution quality. This
ath-heuristic algorithm framework is adaptable to other practical routing problems with mixed and heterogeneous fleets;

(3) proposing a time-window shift algorithm to determine the best schedule for a given ridesharing route and designing a
ustomized labeling algorithm with a novel dominance rule to determine optimal ridesharing schemes for the pricing sub-problem
f the column generation algorithm. This novel dominance rule is derived from the observation that the objective value of the sub-
2

roblem presents a piecewise linear convex function during the process of labeling extension. This labeling algorithm can be applied
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Fig. 1. An illustrative example of the difference in vehicle scheduling between the traditional first-mile ridesharing problem and the first-mile ridesharing
problem with private AVs. In (a), five requests are served by three public vehicles. In (b), two requests are served by one public vehicle, and three requests are
served by two private vehicles.

Fig. 2. Time schedule decisions for a route.

to other routing problems with travel time and latest arrival time constraints, such as the transportation of fresh and perishable goods
with strict in-vehicle time requirements (Deng et al., 2022);

(4) employing the branch-and-price exact algorithm and the ALNS metaheuristic algorithm to assess the solution time and quality
of the math-heuristic algorithm. The branch-and-price algorithm is capable of solving instances with up to 30 heterogeneous cars
and 50 requests to optimality, and the ALNS algorithm can find high-quality solutions within 190 s for these instances; and

(5) demonstrating through case studies that the proposed approaches effectively address the first-mile travel problem with mixed
fleets and passenger requirements on quality-of-service. Additionally, the integration of privately owned autonomous vehicles into
ridesharing services can provide passengers with high-quality and cost-effective services. Moreover, ridesharing has the potential to
substantially reduce operating costs for public transit agencies when the operating costs of privately owned autonomous vehicles
are equivalent to those of publicly owned autonomous vehicles.

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature and positions our work. Section 3
describes the studied first-mile ridesharing problem in detail, including the problem description and two mathematical formulations.
3
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Table 1
Overview of literature in first-mile ridesharing.

Reference Main consideration Solution method

Fleet Private cars Public cars IVT LAT MCR

Shen et al. (2018) Homo ✓ ✓ Agent based simulation
Stiglic et al. (2018) Homo ✓ ✓ ✓ Enumeration
Bian and Liu (2019a,b) Homo ✓ ✓ ✓ Solution pooling heuristic
Bian et al. (2020) Homo ✓ ✓ ✓ Solution pooling heuristic
Chen et al. (2020) Homo ✓ ✓ Cluster-based algorithm
Jiang et al. (2020) Homo ✓ ✓ Ant-colony optimization
Kumar and Khani (2021) Homo ✓ ✓ A matching algorithm
Ning et al. (2021) Hete ✓ ✓ Ant-colony optimization
Bian et al. (2022) Hete ✓ ✓ ✓ ✓ Solution pooling heuristic
Huang et al. (2022) Homo ✓ ✓ Dynamic pooling algorithm
This study Hete ✓ ✓ ✓ ✓ ✓ CGM + BP

*IVT: rider’s in-vehicle travel time; LAT: rider’s latest arrival time; MCR: rider’s maximum number of co-riders; Homo: Homogeneous fleet; Hete: Heterogeneous
fleet; CGM: Column-generation matheuristic algorithm; BP: Branch-and-price algorithm.

A branch-and-price algorithm, an adaptive large neighborhood search algorithm, and a column-generation matheuristic algorithm
are presented in Section 4. Numerical experiments are conducted in Section 5. Conclusions and some future work are summarized
in Section 6.

2. Literature review

We review three streams of literature that are closely related to our research: (1) demand-responsive transit and first-mile
idesharing services; (2) vehicle sharing and fleet elasticity with autonomous vehicles; and (3) mixed fleets for first-mile and last-mile
ervices.

.1. Demand-responsive transit and first-mile ridesharing services

In practice, public transportation agencies often utilize buses or mini-buses to provide flexible demand-responsive transit (DRT)
ervices to improve the connection of public transit stations (Aldaihani et al., 2004; Quadrifoglio and Li, 2009; Alshalalfah and
halaby, 2012; Chandra and Quadrifoglio, 2013; Yu et al., 2015; Charisis et al., 2018; Lin et al., 2021; Yang et al., 2021). For
nstance, Aldaihani et al. (2004) developed an analytical model to design a hybrid grid network that integrates demand-responsive
onnectors with fixed-route major transit services. Quadrifoglio and Li (2009) utilized the continuous approximation method to solve
he demand-responsive circulator service network design problem and compared the resulting demand-responsive and fixed-route
olutions. Alshalalfah and Shalaby (2012) investigated the feasibility and benefits of leveraging flex-route feeder transit service
onnecting with the regional rail station. Yu et al. (2015) proposed a DRT system for commuting passengers departing their rail
tations to their final work destinations in a seamless way. Charisis et al. (2018) presented a mathematical model and a genetic
lgorithm for designing a DRT feeder service for the first-mile and last-mile problem and applied their methods to the case of
residential area in Athens, Greece. Yang et al. (2021) designed DRT services by considering elastic demand and utilized the
ugmented Lagrange Multiplier Method to solve this nonlinear optimization problem. However, passengers may have to wait a

ong time for the first-mile service due to the limited service capacity of DRTs during rush hours, and most DRTs do not provide
oor-to-door service (Vansteenwegen et al., 2022), which remains inconvenient for the elderly and disabled.

In this context, ridesharing via passenger cars has been proposed as a solution to the first-mile problem since it can provide more
lexible and convenient door-to-door services (Shen et al., 2018; Stiglic et al., 2018; Ma et al., 2019; Bian and Liu, 2019a,b; Chen
t al., 2020; Kumar and Khani, 2021). For instance, Stiglic et al. (2018) investigated how the seamless integration of ridesharing and
ublic transit station can effectively solve the first-mile and last-mile problems as well as increase the use of public transport. Bian
nd Liu (2019a,b) proposed a novel mechanism for the first-mile ridesharing services and a heuristic algorithm to solve the
roblem. Ma et al. (2019) proposed a ridesharing strategy for private mobility service operators to render first- and last-mile services
or riders. Chen et al. (2020) explored leveraging AVs to handle the first-mile ridesharing problem and designed a cluster-based
olution method for it. Kumar and Khani (2021) integrated peer-to-peer ride-sharing and route-based transport to enhance the first-
ile and last-mile connection. However, as shown in Table 1, most of the current studies, except Bian et al. (2022), have not given

ufficient consideration for service quality: the latest arrival time, the maximum ride time, and the maximum number of co-riders.
n addition, current studies typically assume riders can be picked up at any time after entering the system, without taking into
ccount that some riders may have a preferred earliest pickup time. In this study, we consider this pickup time and allow vehicles
o wait if they arrive earlier than the corresponding earliest pickup time. However, this waiting time will increase the ride time for
n-board riders. Thus, a pickup schedule decision is necessary to minimize waiting time and better meet the ride time requirements
4

or riders.
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Table 2
Key distinctions between autonomous vehicles and human-driven vehicles for ridesharing services.

Vehicle category Driving mode Operation cost Use experience Vehicle availability

Human-driven
vehicle

Manual
driving

Labor and vehicle
operation costs

Influenced by
drivers

Dependent on
drivers

Autonomous
vehicle

Autonomous
driving

Vehicle operation
costs

Smoother and more
comfortable

Available at all times
when not in use

Fig. 3. An illustrative example demonstrating the trips of a driver and the parking time slots of the corresponding vehicle throughout the day.

2.2. Vehicle sharing and fleet elasticity with autonomous vehicles

In recent years, vehicle sharing has garnered significant attention as a promising complement to public transportation systems,
ince it increases the utilization of idle vehicles and provides more flexibility to meet travel demands (Schmöller et al., 2015; Shaheen
nd Chan, 2016). However, vehicle sharing still faces challenges, such as the inconvenience of picking up and returning vehicles at
ixed parking spots (Jochem et al., 2020). With the emergence of self-driving vehicles, these issues can be well addressed (Nazari
t al., 2018). Moreover, as presented in Table 2, self-driving vehicles have the following advantages over conventional human-driven
ehicles: higher vehicle availability, lower operating costs, and enhanced user experiences (Bagloee et al., 2016; Hussain and Sherali,
018). The integration of shared autonomous vehicles (SAVs) into transportation services can effectively reduce the total cost of
wnership for transportation service providers, better align with the quality-of-service requirements for passengers, and diminish
he idle rate for privately owned vehicles (Beirigo et al., 2022).

From an operational perspective, there are some differences between human-driven vehicles and self-driving vehicles, particularly
oncerning supply elasticity or vehicle availability. First, the elasticity of drivers is heavily influenced by factors such as wages and
eather conditions (Farber, 2015; Sun et al., 2019; Angrist et al., 2021). For instance, higher wages typically attract more drivers,

eading to an increase in the overall fleet supply. However, these factors have a limited impact on self-driving vehicles, ensuring
greater availability of vehicles. This increase in vehicle availability enhances the matching rate between passenger demand and

ehicle supply, thus enhancing passenger service satisfaction. Second, human-driven vehicles are subject to the constraints of drivers’
chedules and preferences. In contrast, self-driving cars can operate continuously during their idle periods, unrestricted by drivers’
hifts or working hours.

Therefore, more and more studies focus on using self-driving cars to provide first-mile feeder services (Shen et al., 2018; Levin
t al., 2019; Gurumurthy et al., 2020; Abe, 2021; Shan et al., 2021; Huang et al., 2022). For instance, Shen et al. (2018) simulated
first-mile transport system during morning rush hours by integrating SAVs. Levin et al. (2019) investigated a linear programming
odel for the optimal integration of SAVs with transit stations and proposed a rolling horizon method and a first-come-first-served

trategy to obtain the suboptimal solution. Gurumurthy et al. (2020) carried out an agent-based simulation to identify the impact of
sing SAVs to provide first-mile and last-mile feeder services for the city of Austin, Texas. Shan et al. (2021) proposed an integrated
ptimization framework for railway transit systems and first-mile services using SAVs and developed a fixed-point algorithm for the
roblem. Huang et al. (2022) proposed a new service mode using SAVs to provide first-mile connections and introduced a novel
ooling algorithm to match SAVs with riders.

To the best of our knowledge, current studies primarily rely on SAVs that remain idle throughout the day to offer first-mile
ervices. However, the potential of using privately-owned autonomous vehicles with multiple idle time slots (for instance, 8:30-11:00,
2:00-17:00, and 19:00-21:00 (Pasaoglu et al., 2012; Beirigo et al., 2022)) for first-mile services has not yet been explored. Pasaoglu
t al. (2012) presented compelling statistics indicating that privately owned vehicles are in motion for approximately 2 h per
ay, with the remaining time spent parked in areas like homes and offices. It is noteworthy that the parked time is not entirely
onsecutive, with roughly 6 h of parking time between all trips of their drivers (Pasaoglu et al., 2012). Moreover, private vehicle
wners typically undertake an average of 2.5 trips per day (Pasaoglu et al., 2012), encompassing commuting to the office, returning
rom the office to home, and traveling from home or office to the mall, as illustrated in Fig. 3. As a result, the parking time between
wo consecutive trips is about 2.4 h, creating multiple idle time slots between these trips.

During these idle time slots, owners of autonomous private vehicles have the opportunity to lease their vehicles to generate some
evenue. These idle and hireable autonomous vehicles could be temporarily employed to expand the fleets managed by public transit
gencies or transportation network companies (TNCs). Fleet operators would gain benefits from this short-term fleet size elasticity by
iring privately-owned autonomous vehicles (Beirigo et al., 2022). For instance, this fleet elasticity enables fleet operators to better
eet transportation demand with lower operating costs, especially during rush hours. At the same time, first-mile transportation

ervices have the characteristic of relatively short trips, that is, relatively short transit times, which allows public transit agencies
o schedule available private AVs to provide first-mile feeder services.
5
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However, integrating privately owned self-driving vehicles to provide first- and last-mile ridesharing services also presents
couple of operational challenges. First, privately owned self-driving vehicles may have different seat numbers, resulting in

eterogeneity in a previously homogeneous fleet and making fleet composition more complex. Second, privately owned vehicles may
e dispersed throughout multiple parking lots, complicating vehicle scheduling and passenger matching decisions. Third, it is critical
o ensure that the owner’s trip chain remains uninterrupted when employing privately owned self-driving vehicles. Specifically, the
idesharing scheme provided by a privately owned vehicle must ensure that the vehicle can return to its designated parking lot
efore the owner’s next trip.

.3. Mixed fleets for offering first-mile and last-mile services

Several studies have explored the use of mixed fleets to address first- and last-mile transportation challenges. For instance, Grahn
t al. (2022) found that the hybrid fleet with shuttle bus and ride-hailing vehicles to provide first-mile and last-mile services can
educe operating costs and tend to be more robust to variations in demand; Lu et al. (2022) investigated a last-mile problem with a
ixed fleet of shared taxis to transport passengers and parcels; Grahn et al. (2023) explored the environmental impacts of a hybrid

leet consisting of ride-hailing vehicles and shared autonomous vehicles for the first-mile and last-mile travel services; Sipetas et al.
2023) studied a mixed fleet of both automated and human-driven vehicles to provide the feeder service in low-density areas. These
tudies concluded that mixed fleets are helpful for reducing emissions or operational costs for public transit agencies and improving
ervice levels for passengers, especially during rush hours.

Motivated by the aforementioned analysis, we focus on the first-mile problem where public transit agencies integrate publicly-
wned and privately-owned AVs to provide ridesharing services with the following considerations: (1) with the objective of
inimizing the total operating costs; (2) riders’ requirements for the latest arrival time, the maximum ride time, and the maximum
umber of co-riders; (3) heterogeneous fleet scheduling. To cope with this new challenging problem, we propose an arc-based and
rip-based mathematical model, as well as develop a branch-and-price algorithm, an adaptive large neighborhood search algorithm,
nd a column-generation matheuristic algorithm.

. First-mile ridesharing with private autonomous vehicles

This section will first elaborate on the problem of first-mile ridesharing by integrating private AVs. Then, an arc-based MILP
odel is presented. In light of the unique structure of this model, we reformulate it using Dantzig–Wolfe decomposition technology

nd develop a set-partitioning formulation.

.1. Problem description

Consider a public transit agency that operates a fixed fleet of public AVs and can hire private AVs to dynamically expand the fleet
o offer first-mile ridesharing services. For each hired private AV, the public transit agency may need to pay fees to its owner. Each
equest consists of a pickup location, the number of riders (𝑝𝑖), the maximum number of co-riders (𝐶𝑂𝑖), the earliest service (pickup)

time (𝐸𝑇𝑖), the maximum in-vehicle travel time (𝐼𝑉 𝑇𝑖), and the latest arrival time (𝐿𝐴𝑇𝑖). The maximum number of co-riders refers
o the number of travelers that the request is willing to share the trip with. The maximum in-vehicle travel time is employed to limit
etours for each request, and it can be requested by riders according to their detour tolerance. Note that some riders may request a
trict ride time or a strict number of co-riders, but these requirements may not always be met due to insufficient fleet availability or
igh service costs. If a request’s detour or co-riding requirements cannot be met, a penalty cost is imposed on the service provider.
dditionally, some passengers may need to reach their destination punctually, such as their offices, which necessitates arriving at

he station on time. As a result, they will have the latest arrival time requirement. For instance, if a request needs to catch a train
eparting at 8:20, he or she may want to arrive at the station by 8:15.

The vehicles available for scheduling include en-route public and private vehicles, as well as public and private vehicles parked
t the station and in garages. En-route vehicles are offering first-mile services and may already have riders on board (𝒪𝑘). If they

still have available seats (𝑞𝑘), they can be rescheduled to pick up other requests. Each vehicle has the following characteristics: a
ready time (𝑟𝑘), a ready location (𝑔𝑘), and available seats at the ready location. The ready location denotes where the vehicle is
available to provide first-mile services, while the ready time indicates the earliest available time to offer services. For each private
vehicle scheduled, it is crucial to ensure that it can return to the designated parking lot (𝑔𝑘) before the end of the corresponding
idle time slot (𝑟𝑘) to avoid disrupting the owner’s travel plan.

To better respond to dynamic requests and reduce decision challenges, the rolling horizon method has been widely adopted for
olving the dynamic vehicle routing problem and its variants (Pillac et al., 2013; Psaraftis et al., 2016; Ritzinger et al., 2016). This
roblem is also a variant of the dynamic vehicle routing problem with the arrival deadline, pickup time, ride time, and co-riding
onstraints. Therefore, we can also apply the rolling horizon method to solve this problem, similar to recent studies by Bian et al.
2020), Chen et al. (2020), and Bian et al. (2022). As illustrated in Fig. 4, the total planning horizon can be divided into a set of
maller horizons, with a fixed interval between each horizon, such as 10 min. This allows us to update the ridesharing schemes
n response to incoming requests and available vehicles’ states. At the beginning of each time horizon, the agency makes decisions
n vehicles’ scheduling and riders’ matching for those requests whose earliest pickup time falls within the time horizon. Riders are
hen notified of their first-mile service information. Fig. 4 shows ridesharing schemes for two horizons, where one private car and
6

ne public car are scheduled to serve requests 1, 2, 3, and 4 in the first horizon. Before the re-optimization for the second horizon,
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Fig. 4. An illustrative example of employing the rolling horizon method to dynamically solve the first-mile ridesharing problem.

requests 5 and 6 enter the system. Accordingly, the ridesharing schemes are updated at the beginning of the second horizon, with
requests 5 and 6 assigned to private and public cars, respectively. To lower transportation costs, requests that have already been
assigned previously but not yet picked up may be reassigned to other vehicles. To ensure service quality, the newly assigned pickup
time must equal the previously assigned pickup time (𝐿𝑇𝑖), which means that the newly matched vehicle must arrive at this request
before the 𝐿𝑇𝑖.

The goal of public transit agencies is to determine the optimal dispatching scheme for vehicles and the high-quality ridesharing
scheme for passengers with the objective of minimizing total costs while considering the following constraints: (1) If vehicles parked
in the station and en-route vehicles are scheduled to provide first-mile services, they will depart from their ready locations, then
pick up riders, and finally head to the station; (2) If private vehicles parked in garages are scheduled to provide services, they will
depart from their garages, pick up riders, and take them to the station. Then they park in the station for the next service or return
to the assigned garage of its owner; (3) The number of matched passengers cannot exceed the carrying capacity of each vehicle; (4)
Each request must be served; (5) The pickup time window of each request must be met; (6) Vehicles should arrive at the station
before the latest arrival time of requests it is serving; and (7) Penalty costs will incur if a rider’s ride time tolerance or its willingness
to share the trip cannot be met. Note that this study focuses on the problem setting of a single station for first-mile services. If there
are multiple stations in the nearby area, they will be handled separately.

3.2. Arc-based MILP model

3.2.1. Notations
We represent the problem on a directed graph 𝐺 = (𝒩 ,𝒜 ), where 𝒩 denotes the set of all nodes, including requesting nodes

𝒞 = 1, 2, 3… , 𝑛, parking lots for private vehicles 𝒢 , and the depot at the hub station, which is denoted as 0. 𝒜 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝒩 , 𝑖 ≠ 𝑗}
denotes the set of arcs between all nodes. Other notations are defined in Table 3.

3.2.2. Mathematical model
Then, an arc-flow MILP model is formulated as follows:

𝑚𝑖𝑛
∑

𝑘∈𝒦

∑

𝑖∈𝒩

∑

𝑗∈𝒩
𝑐𝑘𝑑𝑖,𝑗𝑥

𝑘
𝑖,𝑗 +

∑

𝑘∈𝒦𝐺

𝑓𝑦𝑘 +
∑

𝑖∈𝒞∪𝒪
𝛽𝜁𝑖 (1)

subject to:
∑

𝑘∈𝒦

∑

𝑗∈𝒩 ∖{𝒢∪{𝑖}}
𝑥𝑘𝑖,𝑗 = 1,∀𝑖 ∈ 𝒞 (2)

∑

𝑥𝑘𝑖,𝑗 =
∑

𝑥𝑘𝑗,𝑖,∀𝑖 ∈ 𝒞 ,∀𝑘 ∈ 𝒦 (3)
7

𝑗∈𝒩 ∖{𝒢∪{𝑖}} 𝑗∈𝒩 ∖{𝑖}
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Table 3
Parameters and decision variables.

Notations Descriptions

Sets
𝒦𝐴

𝑃 /𝒦𝐵
𝑃 Set of public vehicles parked at the station/Set of en-route public vehicles

𝒦𝐴
𝑆 /𝒦𝐵

𝑆 Set of previously scheduled private vehicles parked at the station (or parking lots)/en-route
𝒦𝑃 Set of total public vehicles, 𝒦𝑃 = 𝒦𝐴

𝑃 ∪𝒦𝐵
𝑃

𝒦𝑆 Set of total previously scheduled private vehicles, 𝒦𝑆 = 𝒦𝐴
𝑆 ∪𝒦𝐵

𝑆
𝒦𝐺 Set of private idle vehicles that have not been scheduled before
𝒦 Set of total vehicles, 𝒦 = 𝒦𝑃 ∪𝒦𝑆 ∪𝒦𝐺
𝒞 Set of requesting nodes
𝒞 + Set of requests have been matched previously with a vehicle but not yet picked up, 𝒞 + ⊂ 𝒞
𝒪 Set of on-board requests for en-route vehicles, 𝒪 = {𝒪1 ,𝒪2 ,…𝒪

|𝒦𝐵
𝑃 ∪𝒦𝐵

𝑆 |

}
𝒢 Set of garages for parking private vehicles
𝒩 Set of all nodes, 𝒩 = 𝒞 ∪{0}∪ 𝒢
Param-
eters
𝑔𝑘 The garage, station, or parking lot where vehicle 𝑘 will depart from it to serve requests, 𝑔𝑘 ∈ 𝒢 ∪ {0}
𝑔𝑘 The garage or parking lot where private car 𝑘 must return by the end of this idle time slot, 𝑔𝑘 ∈ 𝒢
𝑞𝑘 Available seat number of vehicle 𝑘, 𝑘 ∈ 𝒦
𝑟𝑘 Ready time for vehicle 𝑘, 𝑘 ∈ 𝒦
𝑟𝑘 Latest return time for private vehicle 𝑘, 𝑘 ∈ 𝒦𝑆 ∪𝒦𝐺
𝑎𝑘 Latest arrival time for vehicle 𝑘, 𝑘 ∈ 𝒦𝐵

𝑃 ∪𝒦𝐵
𝑆

𝑐𝑘 Transportation cost ($) per kilometer for vehicle 𝑘, 𝑘 ∈ 𝒦
𝑝𝑖 Number of riders for request 𝑖, 𝑖 ∈ 𝒞∪𝒪
𝐶𝑂𝑖 Maximum number of co-riders for request 𝑖, 𝑖 ∈ 𝒞∪𝒪
𝐿𝐴𝑇 𝑖 Latest arrival time of request 𝑖, 𝑖 ∈ 𝒞∪𝒪
𝐼𝑉 𝑇 𝑖 Maximum (remaining) in-vehicle travel time for request 𝑖, 𝑖 ∈ 𝒞∪𝒪
𝐸𝑇 𝑖 Earliest service (pickup) start time for request 𝑖, 𝑖 ∈ 𝒞 ∖𝒞 +

𝐿𝑇 𝑖 Latest service (pickup) start time for matched but not yet picked up request 𝑖, 𝑖 ∈ 𝒞 + (𝐸𝑇𝑖 = 𝐿𝑇𝑖)
𝑠𝑖 Service duration for request 𝑖, 𝑖 ∈ 𝒞
𝑑𝑖,𝑗 Distances (km) between nodes 𝑖 and 𝑗, 𝑖, 𝑗 ∈ 𝒩
𝑡𝑖,𝑗 Travel time between nodes 𝑖 and 𝑗, 𝑖, 𝑗 ∈ 𝒩
𝑀 A large positive constant
𝑓 Fixed cost ($) of hiring a private vehicle that has not been scheduled previously
𝛽 Penalty cost coefficient ($) if the service quality for request 𝑖 cannot be met, 𝑖 ∈ 𝒞 ∪ 𝒪
Decision
variables
𝑥𝑘𝑖,𝑗 ∈ {0, 1}. 1 if vehicle 𝑘 traverses arc (𝑖, 𝑗); otherwise, 0
𝑡𝑘𝑖 ≥ 0. Service start time for request 𝑖 by vehicle 𝑘
𝜁𝑖 ∈ {0, 1}. 1 if the service quality requirements of request 𝑖 cannot be met
𝜉𝑖 ≥ 0. In-vehicle ride time for request 𝑖
𝜓𝑖 ∈ Z+ ∪ {0}. Number of co-riders for request 𝑖
𝑦𝑘 ∈ {0, 1}. 1 if vehicle 𝑘 is scheduled; otherwise, 0
𝑡𝑘 ≥ 0. The departure time of vehicle 𝑘

𝑦𝑘 =
∑

𝑗∈𝒞
𝑥𝑘𝑔𝑘 ,𝑗 =

∑

𝑗∈𝒞
𝑥𝑘𝑗,0 ≤ 1,∀𝑘 ∈ 𝒦 (4)

∑

𝑖∈𝒞

∑

𝑗∈𝒩 ∖{𝑖}
𝑝𝑖 𝑥

𝑘
𝑖,𝑗 + |𝒪𝑘| ≤ 𝑞𝑘,∀𝑘 ∈ 𝒦 (5)

𝑡𝑘 ≥ 𝑟𝑘,∀𝑘 ∈ 𝒦 (6)

𝑡𝑘0 + 𝑠0 + 𝑡0,𝑔𝑘 −𝑀
(

1 − 𝑦𝑘
)

≤ 𝑟𝑘,∀𝑘 ∈ 𝒦∖𝒦𝑃 (7)

𝑡𝑘𝑗 ≥ 𝑡𝑘𝑖 + 𝑡𝑖,𝑗 + 𝑠𝑖 −𝑀
(

1 − 𝑥𝑘𝑖,𝑗
)

,∀𝑖, 𝑗 ∈ 𝒩 ∖{𝑔𝑘},∀𝑘 ∈ 𝒦 (8)

𝑡𝑘𝑗 ≥ 𝑡𝑘 + 𝑡𝑔𝑘 ,𝑗 −𝑀
(

1 − 𝑥𝑘𝑔𝑘 ,𝑗
)

,∀𝑗 ∈ 𝒩 ∖{𝑔𝑘},∀𝑘 ∈ 𝒦 (9)

𝑡𝑘𝑖 = 𝐿𝑇 𝑖,∀𝑖 ∈ 𝒞+,∀𝑘 ∈ 𝒦 (10)

𝐸𝑇 𝑖 ≤ 𝑡𝑘𝑖 ≤ 𝐿𝐴𝑇𝑖 − 𝑡𝑖,0 − 𝑠𝑖,∀𝑖 ∈ 𝒞∖𝒞+,∀𝑘 ∈ 𝒦 (11)

𝑡𝑘0 ≤ 𝐿𝐴𝑇𝑖 +𝑀(1 −
∑

𝑥𝑘𝑖,𝑗 ),∀𝑖 ∈ 𝒞 ,∀𝑘 ∈ 𝒦 (12)
8
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𝑡𝑘0 ≤ 𝑎𝑘,∀𝑘 ∈ 𝒦𝐵
𝑃 ∪𝒦𝐵

𝑆 (13)

𝑡𝑘0 − 𝑡
𝑘
𝑖 −𝑀(1 −

∑

𝑗∈𝒞∪{0}
𝑥𝑘𝑖,𝑗 ) ≤ 𝜉𝑖,∀𝑖 ∈ 𝒞 ,∀𝑘 ∈ 𝒦 (14)

𝑡𝑘0 − 𝑟𝑘 ≤ 𝜉𝑖,∀𝑖 ∈ 𝒪𝑘,∀𝑘 ∈ 𝒦𝐵
𝑃 ∪𝒦𝐵

𝑆 (15)

𝜓𝑖 ≥
∑

𝑚∈𝒩

∑

𝑛∈𝒩
𝑝𝑚𝑥

𝑘
𝑚𝑛 + |𝒪𝑘| − 𝑝𝑖, 𝑖 ∈ 𝒪𝑘,∀𝑘 ∈ 𝒦𝐵

𝑃 ∪𝒦𝐵
𝑆 (16)

𝜓𝑖 ≥
∑

𝑚∈𝒩 ∖{𝑖}

∑

𝑛∈𝒩
𝑝𝑚𝑥

𝑘
𝑚𝑛 + |𝒪𝑘| −𝑀(1 −

∑

𝑗∈𝒩
𝑥𝑘𝑖,𝑗 ),∀𝑖 ∈ 𝒞 ,∀𝑘 ∈ 𝒦 (17)

𝑀𝜁𝑖 ≥ 𝑚𝑎𝑥{𝜉𝑖 − 𝐼𝑉 𝑇𝑖, 𝜓𝑖 − 𝐶𝑂𝑖},∀𝑖 ∈ 𝒞 ∪ 𝒪 (18)

𝑥𝑘𝑖,𝑗 ∈ {0, 1} ,∀𝑖 ∈ 𝒩 ,∀𝑗 ∈ 𝒩 ,∀𝑘 ∈ 𝒦 (19)

𝑡𝑘𝑖 ≥ 0,∀𝑖 ∈ 𝒩 ,∀𝑘 ∈ 𝒦 (20)

𝑡𝑘 ≥ 0,∀𝑘 ∈ 𝒦 (21)

𝜁𝑖 ∈ {0, 1} ,∀𝑖 ∈ 𝒞 ∪ 𝒪 (22)

𝜉𝑖 ≥ 0,∀𝑖 ∈ 𝒞 ∪ 𝒪 (23)

𝜓𝑖 ∈ Z+ ∪ {0},∀𝑖 ∈ 𝒞 ∪ 𝒪 (24)

𝑦𝑘 ∈ {0, 1} ,∀𝑘 ∈ 𝒦 (25)

The objective function (1) minimizes total operating costs, including transportation costs, fixed costs associated with hiring
private autonomous vehicles that have not been scheduled previously, and penalty costs incurred when the actual ride time or
the number of co-riders exceeds a request’s requirements for detour tolerance or co-riding willingness. Constraints (2) guarantee
that each request must be served. Constraints (3) indicate that each request is served by the same vehicle and the service flow is
conserved. Constraints (4) denote whether the vehicle is scheduled to render services. Constraints (5) ensure that the number of
served passengers, including both on-board and newly matched requests, does not exceed the capacity of each vehicle. Constraints
(6) represent that the vehicle departure time is greater than or equal to its ready time. Constraints (7) ensure that the private
vehicle must return to the designated parking lot before its latest return time. Constraints (8)–(9) represent the pickup time of each
request. For those requests that have already been matched but not yet picked up, their ridesharing schemes may be changed, but
the newly assigned pickup time should equal the previously assigned time, which is ensured by constraints (10). Constraints (11)
ensure that the pickup time for each new incoming request meets its service (pickup) time window, in which the latest pickup time
is equal to the corresponding latest arrival time minus service time and the direct travel time to the station. Constraints (12) and
(13) guarantee that the arrival time at the station must meet the latest arrival time requirements of on-board and newly picked-up
passengers. Constraints (14) and (15) determine the actual ride time for newly picked-up riders and on-board riders, respectively.
Constraints (16) and (17) identify the number of co-riders for newly picked-up riders and on-board riders, respectively. Constraints
(18) check whether the detour tolerance and the co-riding willingness for each request are met. Constraints (19)–(25) define the
domain of decision variables.

It is worth noting that the private fleet in this model is not restricted to self-driving cars and can also be human-driven private
vehicles or free-floating vehicles. With respect to human-driven vehicles, some drivers are willing to make a detour to pick up
first-mile passengers and take them to the station before heading to their destinations (Stiglic et al., 2018). Accordingly, drivers
may also have requirements for detours, the number of co-riders, and the latest arrival time at the station to ensure that they
can reach their destinations on time. These requirements have already been considered in this model, making these human-driven
vehicles a viable option for private fleets. Free-floating vehicles, similar to those operated by TNCs, typically do not have restrictions
on the latest arrival time or ride time, so they can be directly incorporated into our model.

While this model primarily targets the first-mile ridesharing scenario, it can be extended to address the last-mile ridesharing
problem by simplifying some parameters and constraints. This extension is feasible because passengers requiring last-mile services
typically do not have strict pickup and arrival time requirements compared to first-mile cases (Chen and Wang, 2018; Agussurja
9

et al., 2019; Wang, 2019).
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Fig. 5. Two optimal schedules for a route.

.3. A set partitioning formulation

Before introducing the set partitioning model, we give the following definitions:

efinition 1 (Schedule of a Route). For a given route with node sequence S = {𝑖0 = 𝑔𝑘, 𝑖1,… , 𝑖𝑛}, let S𝑡 = {𝑡0, 𝑡1,… , 𝑡𝑛} be a feasible
schedule that meets the pickup time and latest arrival time requirements for each request visited. Here, 𝑡0 refers to the departure
time at the parking lot or the ready location of vehicle 𝑘, and 𝑡𝑛 is the pickup time at the node 𝑛.

Definition 2 (Optimal Schedule of a Route S). Let 𝐶(S, S𝑡) be the total cost of route S associated with schedule S𝑡, and let 𝛺(S) be the
set of feasible schedules for route S. The schedule S𝑡 is the optimal schedule for route S if and only if 𝐶(S, S𝑡) ≤ 𝐶(S, S𝑡), ∀ S𝑡 ∈ 𝛺(S).

Definition 2 indicates that the optimal schedule for route S aims to minimize the penalty cost incurred by exceeding the ride
time tolerances for each served request. It is worth noting that multiple optimal schedules for route S may exist, as illustrated in
Fig. 5, which depicts two optimal schedules along with one feasible schedule. Additionally, there are many other potential optimal
schedules between the two depicted in the figure. In such cases, we select the schedule with the earliest arrival time at node 𝑛 as
the best one, as it enables the vehicle to arrive at the destination earlier than other schedules and provide subsequent first-mile
services sooner.

Definition 3 (Trip). Let route S and its associated S𝑡 denote a trip, which must meet all the constraints of the served requests and
the employed vehicle.

Based on these definitions, the MILP model can be seen as finding the best trip for each car, which motivates us to reformulate
it as a set-partitioning model using the Dantzig–Wolfe decomposition. The original model can be decomposed into a series of sub-
problems to determine a promising trip for each car and a master problem to select the best combination of trips. We use  to denote
the set of trips for vehicles. A binary decision variable 𝜗𝑠 is defined to determine whether the trip 𝑠 ∈  is employed. Additional
parameters are as follows:

• 𝛼𝑠𝑖 ∈ {0, 1}: 1 if request 𝑖 is served by trip 𝑠; 0 otherwise.
• 𝜇𝑠𝑘 ∈ {0, 1}: 1 if vehicle 𝑘 is employed by trip 𝑠; 0 otherwise.
• 𝑐𝑠: total costs of trip 𝑠, including total transportation costs, penalty costs if some requests’ requirements on co-riding or detour

are unmet by this trip, and the cost of employing a private vehicle that has not been scheduled before.
With these notations, the MILP model can be rewritten as the following set-partitioning model.

[𝐌𝐏] 𝑚𝑖𝑛
∑

𝑠∈
𝑐𝑠𝜗𝑠 (26)

subject to:
∑

𝑠∈
𝛼𝑠𝑖 𝜗𝑠 = 1,∀𝑖 ∈ 𝒞 (27)

∑

𝜇𝑠𝑘𝜗𝑠 ≤ 1,∀𝑘 ∈ 𝒦 (28)
10
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𝜗𝑠 ∈ {0, 1} ,∀𝑠 ∈  (29)

The objective function (26) minimizes the total costs of each trip. Constraints (27) ensure that each request is served by a trip
f vehicles. Constraints (28) guarantee that each vehicle can serve at most one trip. Constraints (29) define the domain of decision
ariables.

. Solution methodology

In this section, we develop a branch-and-price algorithm to determine the exact solution, a column-generation matheuristic
CGM) algorithm to obtain a near-optimal solution in less computation time than the branch-and-price algorithm, and an adaptive
arge neighborhood search (ALNS) algorithm to further evaluate the performance of the CGM algorithm.

.1. Restricted master problem (RMP)

The number of complete columns in MP is exponential. Thus, enumerating all columns is computationally intractable for most
ases. The common practice is repeatedly solving the restricted master problem (RMP) by focusing on a subset  ⊂  and relaxing

the decision variables 𝜗𝑠 to be continuous variables. To ensure RMP is always feasible, we directly employ a set of auxiliary decision
variables 𝜈𝑖, 𝑖 ∈ 𝒞 to represent the initial column set 0. If the value of 𝜈𝑖, 𝑖 ∈ 𝒞 is positive, it will incur a penalty cost in the objective
function.

[𝐑𝐌𝐏] 𝑚𝑖𝑛
∑

𝑠∈

𝑐𝑠𝜗𝑠 +
∑

𝑖∈𝒞
𝑀𝜈𝑖 (30)

ubject to:
∑

𝑠∈

𝛼𝑠𝑖 𝜗𝑠 + 𝜈𝑖 ≥ 1,∀𝑖 ∈ 𝒞 (31)

∑

𝑠∈

𝜇𝑠𝑘𝜗𝑠 ≤ 1,∀𝑘 ∈ 𝒦 (32)

𝜗𝑠 ≥ 0,∀𝑠 ∈  (33)

𝜈𝑖 ≥ 0,∀𝑖 ∈ 𝒞 (34)

4.2. Pricing subproblem (PSP)

Let 𝜋𝑖, 𝜔𝑘 denote dual variables corresponding to constraints (31) and (32) of RMP. Then, the reduced cost of trip 𝑠 associated
with vehicle 𝑘 is:

𝑐𝑘𝑠 = 𝑐𝑠 −
∑

𝑖∈𝒞
𝛼𝑠𝑖 𝜋𝑖 − 𝜔𝑘 (35)

Let binary variable 𝑥𝑖,𝑗 denote whether arc(𝑖, 𝑗) is traversed. 𝑡𝑖 is the visiting time of request 𝑖. 𝜏 is the departure time of the
vehicle. 𝑓𝑘 is the fixed cost of scheduling a private vehicle that has not been scheduled previously; otherwise, 𝑓𝑘 equals 0.

𝑐𝑠 =
∑

𝑖∈𝒩

∑

𝑗∈𝒩
𝑐𝑘𝑑𝑖,𝑗𝑥𝑖,𝑗 + 𝑓𝑘 +

∑

𝑖∈𝒞∪𝒪
𝛽𝜁𝑖 (36)

We need to determine the best trip for each vehicle due to the heterogeneous locations, ready times, and capacities of vehicles.
Therefore, the subproblem for vehicle 𝑘 can be formulated as:

[𝐏𝐒𝐏] 𝑚𝑖𝑛 𝑐𝑘𝑠 =
∑

𝑖∈𝒩

∑

𝑗∈𝒩
𝑐𝑘𝑑𝑖,𝑗𝑥𝑖,𝑗 + 𝑓𝑘 + 𝛽

∑

𝑖∈𝒞∪𝒪
𝜁𝑖 −

∑

𝑖∈𝒞
𝛼𝑠𝑖 𝜋𝑖 − 𝜔𝑘 (37)

subject to:
∑

𝑗∈𝒩 ∖{𝒢∪{𝑖}}
𝑥𝑖,𝑗 =

∑

𝑗∈𝒩 ∖{𝑖}
𝑥𝑗,𝑖,∀𝑖 ∈ 𝒞 (38)

∑

𝑗∈𝒩
𝑥𝑔𝑘 ,𝑗 =

∑

𝑗∈𝒞
𝑥𝑗,0 = 1 (39)

∑

𝑖∈𝒞

∑

𝑗∈𝒩 ∖{𝑖}
𝑝𝑖𝑥𝑖,𝑗 + |𝒪𝑘| ≤ 𝑞𝑘 (40)
11
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𝑡0 + 𝑠0 + 𝑡0,𝑔𝑘 ≤ 𝑟𝑘,∀𝑘 ∈ 𝒦∖𝒦𝑃 (42)

𝑡𝑗 ≥ 𝑡𝑖 + 𝑡𝑖,𝑗 + 𝑠𝑖 −𝑀
(

1 − 𝑥𝑖,𝑗
)

,∀𝑖, 𝑗 ∈ 𝒩 ∖{𝑔𝑘} (43)

𝑡𝑗 ≥ 𝜏 + 𝑡𝑔𝑘 ,𝑗 −𝑀
(

1 − 𝑥𝑔𝑘 ,𝑗
)

,∀𝑗 ∈ 𝒩 ∖{𝑔𝑘} (44)

𝑡𝑖 = 𝐿𝑇 𝑖,∀𝑖 ∈ 𝒞+ (45)

𝐸𝑇 𝑖 ≤ 𝑡𝑖 ≤ 𝐿𝐴𝑇𝑖 − 𝑡𝑖,0 − 𝑠𝑖,∀𝑖 ∈ 𝒞∖𝒞+ (46)

𝑡0 ≤ 𝐿𝐴𝑇𝑖 +𝑀(1 −
∑

𝑗∈𝒞∪{𝑔𝑘}
𝑥𝑖,𝑗 ),∀𝑖 ∈ 𝒞 (47)

𝑡0 ≤ 𝑎𝑘,∀𝑘 ∈ 𝒦𝐵
𝑃 ∪𝒦𝐵

𝑆 (48)

𝑡0 − 𝑡𝑖 −𝑀(1 −
∑

𝑗∈𝒞∪{0}
𝑥𝑖,𝑗 ) ≤ 𝜉𝑖,∀𝑖 ∈ 𝒞 (49)

𝑡0 − 𝑟𝑘 ≤ 𝜉𝑖,∀𝑖 ∈ 𝒪𝑘,∀𝑘 ∈ 𝒦𝐵
𝑃 ∪𝒦𝐵

𝑆 (50)

𝜓𝑖 ≥
∑

𝑚∈𝒩

∑

𝑛∈𝒩
𝑝𝑚𝑥𝑚𝑛 + |𝒪𝑘| − 𝑝𝑖,∀𝑖 ∈ 𝒪𝑘,∀𝑘 ∈ 𝒦𝐵

𝑃 ∪𝒦𝐵
𝑆 (51)

𝜓𝑖 ≥
∑

𝑚∈𝒩 ∖{𝑖}

∑

𝑛∈𝒩
𝑝𝑚𝑥𝑚𝑛 + |𝒪𝑘| −𝑀(1 −

∑

𝑗∈𝒩
𝑥𝑖,𝑗 ),∀𝑖 ∈ 𝒞 (52)

𝑀𝜁𝑖 ≥ 𝑚𝑎𝑥{𝜉𝑖 − 𝐼𝑉 𝑇𝑖, 𝜓𝑘𝑖 − 𝐶𝑂𝑖},∀𝑖 ∈ 𝒞 ∪ 𝒪 (53)

𝑥𝑖,𝑗 ∈ {0, 1} ,∀𝑖 ∈ 𝒩 ,∀𝑗 ∈ 𝒩 (54)

𝑡𝑖 ≥ 0,∀𝑖 ∈ 𝒩 (55)

𝜏 ≥ 0 (56)

𝜁𝑖 ∈ {0, 1} ,∀𝑖 ∈ 𝒞 ∪ 𝒪 (57)

𝜉𝑖 ≥ 0,∀𝑖 ∈ 𝒞 ∪ 𝒪 (58)

𝜓𝑖 ∈ Z+ ∪ {0},∀𝑖 ∈ 𝒞 ∪ 𝒪 (59)

The objective function (37) finds the trip with the minimum reduced cost for vehicle 𝑘. Other constraints are similar to the
onstraints corresponding to the original MILP model.

.3. Solution techniques for the subproblem

The subproblem is a variant of the elementary shortest path problem with resource constraints (ESPPRC). The labeling algorithm
dynamic programming) is a commonly used approach to solve ESPPRC and its variants to optimality. This subproblem is more
hallenging than the ESPPRC since it involves not only routing decisions but also schedule decisions, which need to consider the
ide time and latest arrival time of each request. To solve this more challenging problem, a time window shift algorithm is designed
o determine the best schedule for a route, and then a tailored labeling algorithm is introduced. The computational efficiency of
he subproblem is the critical part of the total computation time for the branch-and-price algorithm and the column-generation
atheuristic algorithm. To speed up the computational efficiency, we combine the exact and heuristic labeling algorithms, along
12

ith heuristic dominance rules, to identify the vehicle trip with the minimum reduced cost.
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Algorithm 1: Time window shift algorithm
1 Input: A route sequence S = {𝑖, 𝑖 + 1, ..., 𝑛} associated with a vehicle 𝑘
2 Output: A best schedule for the route

//identify the earliest pickup time at node 𝑛;
3 for each node 𝑖 on this route do
4 𝑒𝑠𝑖 ← 𝑒𝑠𝑖−1+𝑡𝑖−1,𝑖+𝑠𝑖−1; 𝑙𝑠𝑖 ← 𝑙𝑠𝑖−1+𝑡𝑖−1,𝑖+𝑠𝑖−1 ;
5 if 𝑒𝑠𝑖 > 𝐿𝑇𝑖 then
6 return false //violate the corresponding latest pickup time;
7 else if 𝑙𝑠𝑖 < 𝐸𝑇𝑖 then
8 𝑒𝑠𝑖 ← 𝐸𝑇𝑖; 𝑙𝑠𝑖 ← 𝐸𝑇𝑖;
9 else
10 𝑒𝑠𝑖 ← 𝑚𝑎𝑥{𝑒𝑠𝑖, 𝐸𝑇𝑖}; 𝑙𝑠𝑖 ← 𝑚𝑖𝑛{𝑙𝑠𝑖, 𝐿𝑇𝑖};

//check the feasibility of the latest arrival times;
11 if 𝑒𝑠𝑛 + 𝑠𝑛 + 𝑡𝑛,0 > 𝑎𝑘 then
12 return false;
13 for each node 𝑖 on this route do
14 if 𝑒𝑠𝑛 + 𝑠𝑛 + 𝑡𝑛,0 > 𝐿𝐴𝑇𝑖 then
15 return false;

//determine the best schedule;
16 for each node 𝑗 on this route in a reverse order do
17 𝑒𝑠𝑗 ← 𝑚𝑖𝑛{𝑒𝑠𝑗+1 − 𝑠𝑗 − 𝑡𝑗,𝑗+1, 𝐿𝑇𝑗}; 𝑙𝑠𝑗 ← 𝑚𝑖𝑛{𝑙𝑠𝑗+1 − 𝑠𝑗 − 𝑡𝑗,𝑗+1, 𝐿𝑇𝑗};
18 update the ride time for request 𝑗 (𝑒𝑠𝑛 − 𝑒𝑠𝑗);
19 return the best schedule {𝑒𝑠𝑖,∀𝑖 ∈ S}

4.3.1. A time window shift algorithm for identifying the best schedule of a route
For a given route, the feasibility of ride times can be trivially checked with the eight-step time slack algorithm (Cordeau and

aporte, 2003), which has been well applied in dial-a-ride problems with ride time constraints. However, in this problem, it is
ecessary to identify the optimal schedule for each route, including the best departure and pickup times, rather than just checking
he feasibility of ride times, which makes the eight-step feasibility check procedure inapplicable. As a result, we propose an algorithm
ith the computation complexity of 𝑂(𝑛) to determine the best schedule. The basic idea is that we first determine the earliest pickup

time at the last node in the route to check whether the latest arrival time of each request can be met, and then identify the best
pickup time for requests and departure time for the vehicle. The detailed procedure is presented in Algorithm 1, in which 𝑒𝑠𝑛 and
𝑙𝑠𝑛 denote the earliest and latest feasible pickup times at node 𝑛, respectively. Note that we can use 𝑒𝑠𝑛 of each node to construct
a feasible schedule.

Lines 3 to 10 in Algorithm 1 are used to determine the earliest and latest feasible pickup time for each request, using a forward
time window shift method (see Lim et al. (2017) for more details). Based on these calculations, we can check whether the latest
arrival times can be met with lines 11 to 15. If these requirements are met, the algorithm proceeds to identify the best schedule.
During this process, some wait times may be able to be reduced by postponing the pickup or departure time from the predecessor
node (line 17). Taking Fig. 6 as an example, we assume that the pickup time equals the departure time, without considering the
service duration for picking up a request. If the vehicle picks up request 𝑖 at 𝑙𝑠𝑖, it will wait for 5 min before picking up the request
𝑗, as shown in Fig. 6(a). However, if it postpones the pickup time to 𝐿𝑇𝑖 at request 𝑖, the wait time can be reduced to 2 min, and
the total ride time of request 𝑖 can be shortened by 3 min, as shown in Fig. 6(b). In addition, if the latest pickup time at request 𝑖
is larger than the current value 𝐿𝑇𝑖, the wait time may be able to be eliminated, resulting in a shorter ride time for request 𝑖, as
shown in Fig. 6(c). By doing this process reversely from the last node of the route, we can finally get the earliest and latest pickup
times with the minimum ride time for each request, and select these earliest pickup times as the best schedule.

4.3.2. Customized labeling algorithm

(1) Label definition
Define a label 𝐿𝑖𝑘 =

{

𝐶𝑖, 𝑉𝑖, 𝑈𝑖, 𝑃𝑖, 𝐿𝐴𝑖,
{

𝐿𝐼𝑉 𝑇𝑛, 𝐿𝐶𝑂𝑛,𝐷𝑅𝑛, 𝐸𝑉 𝑇𝑛, 𝐿𝑉 𝑇𝑛,∀𝑛 ∈ 𝑃𝑖∖{𝑔𝑘}
}}

to denote the partial path and the
corresponding information from the station or garage to a requesting node 𝑖 for vehicle 𝑘, where:

• 𝐶𝑖: the reduced cost of the partial path;
• 𝑉𝑖: the consumed capacity of this label;
• 𝑈𝑖: a vector of visited requests and the inextensible requests for this label;
• 𝑃𝑖: the set of path nodes of label 𝐿𝑖𝑘;• 𝐿𝐴𝑖: the latest arrival time for all requests of the label;
13

• 𝐿𝐼𝑉 𝑇𝑛: the remaining in-vehicle travel time for request 𝑛 without exceeding its detour tolerance;
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Fig. 6. Shorten the ride time of a request with the backward pickup time shift method.

• 𝐿𝐶𝑂𝑛: the remaining number of co-riders without exceeding the maximum number of co-riders for request 𝑛;
• 𝐷𝑅𝑛: the minimum ride time from node 𝑛 to node 𝑖;
• 𝐸𝑉 𝑇𝑛: the earliest visiting time at node 𝑛 considering 𝐿𝐴𝑖 and 𝐿𝐼𝑉 𝑇𝑛; and
• 𝐿𝑉 𝑇𝑛: the latest visiting time at node 𝑛 considering 𝐿𝐴𝑖 and 𝐿𝐼𝑉 𝑇𝑛;

(2) Label extension and feasibility check
The label with the minimum reduced cost is selected and extended to all the reachable nodes. After the label extension procedure,

we need to update several pieces of information, such as the latest arrival time of the route, the remaining ride time as well as the
number of co-riders of requests, and the capacity of vehicles, which is more complicated than the conventional label extension
procedure. Accordingly, we design a specialized label extension algorithm for this entire extension process, incorporating Algorithm
1 to determine the schedule. The label extension algorithm works as follows:

Step 1: Partial information update after extending on node 𝑗

𝑃𝑗 = 𝑃𝑖 ∪ {𝑗} (60)

𝑉𝑗 = 𝑉𝑖 + 𝑝𝑗 (61)

𝐸𝑉 𝑇𝑗 = 𝑚𝑎𝑥
{

𝐸𝑉 𝑇𝑖 + 𝑡𝑖,𝑗 + 𝑠𝑖, 𝐸𝑇𝑗
}

(62)

𝐿𝑉 𝑇𝑗 =

⎧

⎪

⎨

⎪

⎩

𝐿𝑇𝑗 𝑖𝑓𝐿𝑉 𝑇𝑖 > 𝐸𝑉 𝑇𝑖, 𝑎𝑛𝑑 𝑗 ∈ 𝒞+

𝑚𝑖𝑛{𝑚𝑎𝑥{𝐸𝑇𝑗 , 𝐿𝑉 𝑇𝑖 + 𝑡𝑖,𝑗 + 𝑠𝑖}, 𝐿𝐴𝑇𝑗 − 𝑡𝑗,0 − 𝑠𝑗} 𝑖𝑓𝐿𝑉 𝑇𝑖 > 𝐸𝑉 𝑇𝑖, 𝑎𝑛𝑑 𝑗 ∈ 𝒞∖𝒞+

𝐸𝑉 𝑇𝑗 if 𝐿𝑉 𝑇𝑖 = 𝐸𝑉 𝑇𝑖

(63)

Eqs. (60)–(61) respectively update the visited requests and the consumed capacity for the new label. Eq. (62) renews the earliest
pickup time at node 𝑗, it should be the maximum value between the earliest service start time of request 𝑗 and the earliest arriving
time from requesting node 𝑖. Eq. (63) updates the latest pickup time at node 𝑗, which consists of three cases: (a) if the earliest
pickup time is less than the latest pickup time at node 𝑖 and node 𝑗 is a request that has already been matched previously but not
yet picked up, 𝐿𝑉 𝑇𝑗 will be updated to latest pickup time previously assigned to 𝑗; (b) if the earliest pickup time is less than the
latest pickup time at node 𝑖 and node 𝑗 is a new incoming request, 𝐿𝑉 𝑇𝑗 will be updated to the minimum value between the latest
arrival time from request 𝑖 and the latest service start time for request 𝑗; and (c) if the earliest pickup time equals the latest pickup
time at node 𝑖, this relationship exists at node 𝑗;

Step 2: Check whether the feasibility of the pickup time at request 𝑗 is satisfied, and the extension is infeasible if 𝐸𝑉 𝑇𝑗 >
𝐿𝐴𝑇𝑗 − 𝑡𝑗,0 − 𝑠𝑗 or 𝐸𝑉 𝑇𝑗 > 𝐿𝑉 𝑇𝑗 .

Step 3: Starting from the last node, update the pickup time window for each preceding request step-by-step backward:
For each request 𝑛, the earliest and latest pickup times of its preceding node 𝑛 − 1 are updated via Eqs. (64) and (65):

𝐸𝑉 𝑇𝑛−1 =

{

𝐿𝑇𝑛−1 ∀𝑛 − 1 ∈ 𝒞+
{ } +

(64)
14

𝑚𝑖𝑛 𝐸𝑉 𝑇𝑛 − 𝑠𝑛−1 − 𝑡𝑛−1,𝑛, 𝐿𝐴𝑇𝑛−1 − 𝑠𝑛−1 − 𝑡𝑛−1,0 ∀𝑛 − 1 ∈ 𝒞∖𝒞
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𝐿𝑉 𝑇𝑛−1 =

{

𝐿𝑇𝑛−1 ∀𝑛 − 1 ∈ 𝒞+

𝑚𝑖𝑛
{

𝐿𝑉 𝑇𝑛 − 𝑠𝑛−1 − 𝑡𝑛−1,𝑛, 𝐿𝐴𝑇𝑛−1 − 𝑠𝑛−1 − 𝑡𝑛−1,0
}

∀𝑛 − 1 ∈ 𝒞∖𝒞+
(65)

Step 4: Update the ride time for each request served by the new label 𝐿𝑗𝑘

𝐷𝑅𝑛 =

{

𝐸𝑉 𝑇𝑗 − 𝐸𝑉 𝑇𝑛 ∀𝑛 ∈ 𝑃𝑗
𝐸𝑉 𝑇𝑗 − 𝑟𝑘 ∀𝑛 ∈ 𝒪𝑘

(66)

Step 5: Update the latest arrival time for 𝐿𝑗𝑘
The latest arrival time of the new label can be updated by Eq. (67), and the extension is infeasible if 𝑡𝑗,0 + 𝑠𝑗 + 𝐸𝑉 𝑇𝑗 >

𝑚𝑖𝑛{𝐿𝐴𝑖, 𝐿𝐴𝑇𝑗}.

𝐿𝐴𝑗 = 𝑚𝑖𝑛{𝐿𝐴𝑖, 𝐿𝐴𝑇𝑗} (67)

Step 6: Renew the remaining in-vehicle travel time and the remaining number of co-riders without penalty costs for each served
equest

𝐿𝐼𝑉 𝑇𝑛 = 𝑚𝑎𝑥
{

0, 𝐼𝑉 𝑇𝑛 −𝐷𝑅𝑛,∀𝑛 ∈ 𝑃𝑗 ∪ 𝒪𝑘
}

(68)

𝐿𝐶𝑂𝑛 = 𝑚𝑎𝑥
{

0, 𝐶𝑂𝑛 − (𝑉𝑗 − 𝑝𝑛),∀𝑛 ∈ 𝑃𝑗 ∪ 𝒪𝑘
}

(69)

Step 7: Renew the inextensible nodes for the new label
Let 𝑈𝑗 ← 𝑃𝑗 ∪ 𝑈𝑖, then the above steps can be utilized to check whether it is feasible to extend the label 𝐿𝑗𝑘 to node 𝑛 ∈ 𝒞∖𝑈𝑖.

f the extension to node 𝑛 is infeasible, the inextensible nodes will be : 𝑈𝑗 ← 𝑈𝑗 ∪ {𝑛}.
Step 8: Update the reduced cost for the new label 𝐿𝑗𝑘

𝐶𝑗 = 𝑓𝑘 + 𝑐𝑘
∑

𝑛∈𝑃𝑗∖{𝑔𝑘}
𝑑𝑛−1,𝑛 +

∑

𝑛∈𝑃𝑗∪𝒪𝑘

𝛽 𝑚𝑖𝑛{1, 𝑚𝑎𝑥{0, ⌈𝐷𝑅𝑛 − 𝐼𝑉 𝑇𝑛⌉, 𝑉𝑗 − 𝑝𝑛 − 𝐶𝑂𝑛}} −
∑

𝑛∈𝑃𝑗

𝛼𝑠𝑛𝜋𝑛 − 𝜔𝑘 (70)

3) Dominance Rule
Consider two different labels ending at the same request 𝑖 ∶ 𝐿𝑖1𝑘 = {𝐶1

𝑖 , 𝑉
1
𝑖 , 𝑈

1
𝑖 , 𝑃

1
𝑖 , 𝐿𝐴

1
𝑖 , {𝐿𝐼𝑉 𝑇

1
𝑛 , 𝐿𝐶𝑂

1
𝑛 , 𝐷𝑅

1
𝑛, 𝐸𝑉 𝑇

1
𝑛 , 𝐿𝑉 𝑇

1
𝑛 ,∀𝑛 ∈

𝑖∖{𝑔𝑘}}} and 𝐿𝑖2𝑘 = {𝐶2
𝑖 , 𝑉

2
𝑖 , 𝑈

2
𝑖 , 𝑃

2
𝑖 , 𝐿𝐴

2
𝑖 , {𝐿𝐼𝑉 𝑇

2
𝑛 , 𝐿𝐶𝑂

2
𝑛 , 𝐷𝑅

2
𝑛, 𝐸𝑉 𝑇

2
𝑛 , 𝐿𝑉 𝑇

2
𝑛 ,∀𝑛 ∈ 𝑃𝑖∖{𝑔𝑘}}}. Let Q(𝐿𝑖1𝑘 ) be the set of feasible

xtensions of label 𝐿𝑖1𝑘 to the station. For each 𝓁 ∈ Q(𝐿𝑖1𝑘 ), we use 𝐿𝑖1𝑘 ⊕ 𝓁 denote a feasible complete path by concatenating 𝓁
o label 𝐿𝑖1𝑘 , and 𝐶(𝐿𝑖1𝑘 ⊕ 𝓁) is the resulting reduced cost. Then, the standard dominance rule concluded by Dabia et al. (2013) can
e introduced, namely Proposition 1.

roposition 1. For labels 𝐿𝑖1𝑘 and 𝐿𝑖2𝑘 ending at the same node 𝑖, 𝐿𝑖1𝑘 dominates 𝐿𝑖2𝑘 if conditions (a) and (b) hold.

Q(𝐿𝑖2𝑘 ) ⊆ Q(𝐿𝑖1𝑘 ) (a)

𝐶(𝐿𝑖1𝑘 ⊕ 𝓁) ≤ 𝐶(𝐿𝑖2𝑘 ⊕ 𝓁),∀𝓁 ∈ Q(𝐿𝑖2𝑘 ) (b)

See Dabia et al. (2013) for proofing of Proposition 1. Condition (a) means that 𝐿𝑖1𝑘 can concatenate with more feasible extensions
o the station to obtain a complete path than 𝐿𝑖2𝑘 . To ensure that condition (a) always holds in this PSP problem, we must ensure that
𝑖1
𝑘 has more seats available, fewer inextensible nodes, a later latest arrival time, an earlier earliest pickup time, and a later latest
ickup time at request 𝑖. In the conventional shortest path problem to minimize total transportation costs, condition (b) is met if 𝐿𝑖1𝑘
enerates a smaller reduced cost than 𝐿𝑖2𝑘 . However, a lower reduced cost does not always guarantee that condition (b) holds for
his PSP, as the same extension may result in different penalty cost increases for 𝐿𝑖1𝑘 and 𝐿𝑖2𝑘 . Fig. 7 provides an illustrative example.
efore extending to request 𝑚, we assume that 𝐶1

𝑖 is lower than 𝐶2
𝑖 . However, after extending to request 𝑚, label 𝐿𝑖1𝑘 incurs more

enalties than label 𝐿𝑖2𝑘 , which may result in 𝐶1
𝑚 > 𝐶2

𝑚. As a result, we must take additional measures to ensure that condition (b)
lways holds. The most straightforward approach is to check that each request (served by 𝐿𝑖1𝑘 and 𝐿𝑖2𝑘 ) in 𝐿𝑖1𝑘 has a longer remaining

ride time and a larger number of co-riders than 𝐿𝑖2𝑘 . Consequently, the following conditions need to be checked to identify whether
𝐿𝑖1𝑘 dominates 𝐿𝑖2𝑘 .

Lower reduced cost: 𝐶1
𝑖 ≤ 𝐶2

𝑖 (I)

𝐿𝐶𝑂1
𝑛 ≥ 𝐿𝐶𝑂2

𝑛 , 𝑎𝑛𝑑 𝐿𝐼𝑉 𝑇
1
𝑛 ≥ 𝐿𝐼𝑉 𝑇 2

𝑛 ,∀𝑛 ∈ 𝑃 1
𝑖 ∪ 𝑃 2

𝑖 ∪ 𝒪𝑘 (II)

Fewer occupied seats: 𝑉 1
𝑖 ≤ 𝑉 2

𝑖 (III)

Fewer inextensible nodes: 𝑈1
𝑖 ≤ 𝑈2

𝑖 (IV)

Longer latest arrival time: 𝐿𝐴1
𝑖 ≥ 𝐿𝐴2

𝑖 (V)

Smaller earliest pickup time at request 𝑖: 𝐸𝑉 𝑇 1
𝑖 ≤ 𝐸𝑉 𝑇 2

𝑖 (VI)
1 2
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Larger latest pickup time at request 𝑗: 𝐿𝑉 𝑇𝑖 ≥ 𝐿𝑉 𝑇𝑖 (VII)
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Fig. 7. Two different labels, ending with the same node 2, extend to the same node 𝑚 but result in different penalties.

Fig. 8. Visualizations of penalty functions for the label extension.

Definition 4 (Dominance Rule 1). If inequalities (I)–(VI) hold and at least one is strict, then 𝐿𝑖1𝑘 dominates 𝐿𝑖2𝑘 .

However, applying this dominance rule cannot eliminate too many unpromising labels since condition (II) is weak. As a result,
we propose a stronger dominance rule. As shown in Fig. 8, the total penalty costs incurred by detour (or co-riding) for served
requests of 𝐿𝑖𝑘 are in the form of a non-decreasing step function (or a non-decreasing discrete-point function) as the ride time (or
the number of co-riders) increases. Let 𝛷𝐿𝑖𝑘 (𝑢) and 𝛷𝐿𝑖𝑘 (𝑣) denote the total penalty costs for served requests of 𝐿𝑖𝑘 when 𝑢 riders and
𝑣 ride time are added to 𝐿𝑖𝑘, respectively. Then, we can ensure that condition (b) in Proposition 1 always holds via inequality (VIII).

𝛷𝐿𝑖1𝑘
(𝑢) ≤ 𝛷𝐿𝑖2𝑘

(𝑢), 𝛹𝐿𝑖1𝑘
(𝑣) ≤ 𝛹𝐿𝑖2𝑘

(𝑣),∀𝑢 ∈ Z+, 𝑢 ≤ 𝑚𝑖𝑛{𝑞𝑘 − 𝑉 1
𝑖 , 𝑞𝑘 − 𝑉

2
𝑖 },∀𝑣 > 0, 𝑣 ≤ 𝑚𝑖𝑛{𝐿𝐴1

𝑖 − 𝐸𝑉 𝑇𝑗 (𝐿
𝑖1
𝑘 ), 𝐿𝐴

2
𝑖 − 𝐸𝑉 𝑇𝑗 (𝐿

𝑖2
𝑘 )}

(VIII)

Given the characteristics of the non-decreasing step/discrete-point function, inequality (VIII) can be met if the penalty of 𝐿𝑖1𝑘 is
always lower than that of 𝐿𝑖2𝑘 at each inflection point (such as a, b, c, d, e, f, and g in Fig. 8(a)) of the penalty functions for 𝐿𝑖1𝑘 and
𝐿𝑖2𝑘 . The inflection points are all attributed to the increased ride time exceeding the detour tolerance of some requests. Consequently,
we just need to ensure that the penalty of 𝐿𝑖1𝑘 is always lower than that of 𝐿𝑖2𝑘 when the increased ride time equals the remaining
ride time without penalty for each request in the labels 𝐿𝑖1𝑘 and 𝐿𝑖2𝑘 , as well as when the increased ride time equals the minimum
difference between the latest arrival time and the earliest pickup time for 𝐿𝑖1𝑘 and 𝐿𝑖2𝑘 . Likewise, the penalty corresponding to the
co-riding can be treated in this way. This simplifies the check for inequality (VIII).

Definition 5 (Dominance Rule*). If inequalities (VIII), (I), and (III)–(VII) hold and at least one is strict, then 𝐿𝑖1𝑘 dominates 𝐿𝑖2𝑘 .

Based on these preparations, the standard framework of the labeling algorithm (see, for example, Feillet et al. (2004) and Irnich
and Desaulniers (2005)) can be employed for this problem.

4.3.3. Heuristic labeling algorithm
The dominance rule mentioned above is still not very strong. To accelerate the solving process for the pricing problem, we propose

two heuristic dominance rules based on the aforementioned exact dominance rule, which enables more labels to be dominated. The
computation time can be significantly reduced for the entire solving process via the heuristic labeling algorithm, but the optimality
of the subproblem is sacrificed. Therefore, when there are no negative columns that can be identified by the heuristic labeling
16

algorithm, the exact labeling algorithm becomes necessary as a supplement.
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Heuristic dominance rule 1. If inequalities (I) and (III)–(VII) hold, 𝐿𝑖1𝑘 dominates 𝐿𝑖2𝑘 .
As inequalities (II) and (IV) are too strict in dominance rule *, we can remove them to derive this heuristic dominance rule,

hich helps eliminate more labels and therefore effectively improves the computational efficiency of the labeling algorithm, but
ay also eliminate some promising labels that constitute the optimal route.

Prior to presenting heuristic dominance rule 2, we provide the following two definitions.
• 𝐿𝐶𝑂(𝐿𝑖𝑘): remaining number of co-riders without co-riding penalty costs for label 𝐿𝑖𝑘.
• 𝐿𝐼𝑉 𝑇 (𝐿𝑖𝑘): remaining ride time without exceeding detour tolerances for requests of label 𝐿𝑖𝑘.
Heuristic dominance rule 2. If inequalities (I), (III)–(VII) and (IX) hold, then 𝐿𝑖1𝑘 dominates 𝐿𝑖2𝑘 .

𝐿𝐶𝑂(𝐿𝑖1𝑘 ) ≥ 𝐿𝐶𝑂(𝐿𝑖2𝑘 ), 𝐿𝐼𝑉 𝑇 (𝐿
𝑖1
𝑘 ) ≥ 𝐿𝐼𝑉 𝑇 (𝐿𝑖2𝑘 ) (IX)

The inequality (IX) relaxes (II) since (IX) focuses only on the minimum remaining ride time and the number of co-riders for all
requests on the label, which also helps to find high-quality routes and facilitates a reduction in computation time for the labeling
algorithm.

4.4. Branch-and-price algorithm

The column generation procedure can be used to solve the linear relaxation of the restricted master problem. However, the
solution obtained may not be an integer solution. In such cases, the branch-and-bound tree is employed to search for an integer
solution. The tree is explored using the best-first search strategy, whereby the node with the lowest lower bound will be explored
first.

Once the fractional solution is found at a tree node, we will branch on the arc flow variables. First, we need to determine the
values of each arc flow variable 𝑥𝑖,𝑗 =

∑

𝑠∈ 𝛼
𝑠
𝑖,𝑗𝜗𝑠 Then, we select the 𝑎𝑟𝑐 (𝑖, 𝑗) ← 𝑎𝑟𝑔𝑚𝑖𝑛|𝑥𝑖,𝑗 − 0.5| and generate two child nodes with

imposed constraints 𝑥𝑖,𝑗 = 0 and 𝑥𝑖,𝑗 = 1, respectively. Accordingly, the directed graph 𝐺 (𝒩 ,𝒜 ) and the columns of the restricted
master problem will be modified. Details are as follows:

• Impose the constraint 𝑥𝑖,𝑗 = 0 to one child node.
At this node, the 𝑎𝑟𝑐 (𝑖, 𝑗) is forbidden in the subproblem and master problem. Therefore, the distance of the 𝑎𝑟𝑐 (𝑖, 𝑗) can be set

o positive infinity, and columns containing this arc are removed from the master problem.
• Impose the constraint 𝑥𝑖,𝑗 = 1 to another child node.
At this node, the successor of node 𝑖 must be node 𝑗. Accordingly, the distances of 𝑎𝑟𝑐𝑠 {(𝑖, 𝑘) |𝑘! = 𝑗} and 𝑎𝑟𝑐𝑠 {(𝑚, 𝑗) |𝑚! = 𝑖} can

e set to positive infinity, and columns that contain node 𝑖 without the successor node 𝑗 and contain node 𝑗 without the predecessor
ode 𝑖 are deleted from the master problem.

.5. Column-generation matheuristic algorithm

The process of closing the optimality gap of the branch-and-bound tree may be slow, even if each node already provides a tight
inear relaxation gap thanks to the property of the set-partitioning model. To obtain high-quality solutions more efficiently, we
esign a column-generation matheuristic algorithm focusing on the root node of the branch-and-bound tree. The column-generation
atheuristic algorithm incorporates the following two techniques:
• Technique1: reusing columns of other vehicles
As mentioned before, we solve the subproblem to identify a trip for each vehicle. However, some vehicles with similar properties,

uch as the ready time, the capacity, and the latest return time, can use the same trip. As a result, before applying the labeling
lgorithm to determine the best trip for the vehicle, we can check if the trips generated for other vehicles in the current iteration
f the column-generation matheuristic can be employed directly for this vehicle. By doing so, the overall computation time can be
educed, and the diversity of the column pool can be enhanced.

• Technique2: incremental column generation
First, we incrementally set the number of visited requests (𝑁) from 1 to 𝐿 (Jin et al., 2021) for the pricing problem. With the

iven number of visited requests for each route, we employ column generation with technique 1 to generate the column set 2.
ithout the restriction on the number of visited requests for the pricing problem, the column generation procedure tends to generate

olumns (trips) visiting requests as many as possible. However, the optimal integer solution often consists of routes with a mixed
umber of visited requests (Jin et al., 2021). The incremental column generation procedure can promote the diversity of columns
n terms of route length.

The procedure of the column-generation matheuristic algorithm is as follows, with a flowchart in Fig. 9.
Step 1: Initializing the column set 0.
Step 2: Solving the RMP and PSP with techniques 1 and 2 to get the column set 1.
Step 3: Solving the RMP and PSP with technique 1 to get the column set 2.
Step 4: Converting variables 𝜗 into binary variables and determining the integer solution based on the union of  and  .
17
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Fig. 9. Flowchart of the column-generation matheuristic algorithm.

4.6. An adaptive large neighborhood search algorithm

We leverage the adaptive large neighborhood search algorithm (ALNS) to evaluate the performance of the column generation
algorithm. The main steps of the ALNS algorithm are outlined in Pisinger and Ropke (2007). First, an initial solution is constructed
by randomly inserting each request into a feasible position of a car’s route. Then, four removal operators and four repair operators
are utilized to search for neighborhood solutions, with the Metropolis rule accepting the new solution. Note that Algorithm 1 can
be directly employed in this ALNS algorithm to determine the best schedule for a route.

4.6.1. Removal operators
Random Removal. Requests can be randomly chosen and removed from the routes.
Worst Removal. First, we calculate the cost reduction for each request after it is removed. Then, the request with the highest

cost reduction is removed from the current solution. Third, repeat these two steps to remove the remaining requests that need to
be removed.

Route Removal. A route is chosen randomly and removed.
Shaw Removal. We define three shaw removal operators based on the closeness (𝐶𝐿(𝑖, 𝑗)) of two requests 𝑖 and 𝑗 on travel

ime (𝐶𝐿(𝑖, 𝑗) = 𝑡𝑖,𝑗), latest arrival time and maximum ride time (𝐶𝐿(𝑖, 𝑗) = |𝐼𝑉 𝑇 𝑖 − 𝐼𝑉 𝑇 𝑗 | + |𝐿𝐴𝑇𝑖 − 𝐿𝐴𝑇 𝑗 |), and reachability
𝐶𝐿(𝑖, 𝑗) = 𝑚𝑎𝑥{|𝐸𝑇 𝑖 − 𝐿𝑇 𝑗 − 𝑡𝑖,𝑗 − 𝑠𝑖|, |𝐸𝑇𝑗 − 𝐿𝑇𝑖 − 𝑡𝑗,𝑖 − 𝑠𝑗 |}), respectively.

.6.2. Repair operators
Random Repair. Requests are randomly inserted into a feasible insertion position.
Best Repair. Requests will be inserted into the lowest-cost position if feasible insertion positions exist in the available routes.
Greedy Repair. We first compute the insertion costs for each request at every available position. Then, we select the lowest-cost

equest-position pair as the request and position for insertion. If the lowest insertion cost equals 𝑀 (an extremely large number
sed to indicate the infeasibility of a route), then there is no feasible position to insert this request.
Regret Repair. The regret repair operator (Pisinger and Ropke, 2007), a variant of the greedy repair operator, uses the look-ahead

nformation to select the request and position for insertion. In this study, 2-regret and 3-regret repair operators are employed and
re randomly selected in each iteration.

Note that during the repair process, some requests may not have any feasible positions for insertion. In such cases, these requests
re not inserted in the current iteration and are instead assigned a penalty value of 𝑀 .
18
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Fig. 10. Total cost and average computation time under different lengths of time horizon.

5. Case study

To evaluate the performance of the proposed branch-and-price method and the column-generation matheuristic approach, we
conducted computational experiments based on real-world case studies and randomly generated test instances. The algorithms are
coded in C++ and run on a 64-bit computer with a 2.3 GHz Intel Core i5-10500T processor and 8 GB RAM. The MILP is solved by
the CPLEX 12.8. The maximum running time of the CPLEX and the branch-and-price algorithm is 7200 s. The maximum number of
iterations of the ALNS algorithm is set to 20000. Other parameters of the ALNS algorithm are the same as He et al. (2023).

5.1. Instance generation and parameters settings

Since there is no available benchmark for this problem, we conducted experiments on randomly generated instances based on
the Xinzhuang metro station in Shanghai. Each instance consists of requests and vehicles, with their locations randomly generated
from the road network. The set of vehicles includes public and private vehicles, and it is assumed that there are enough vehicles to
serve all requests. The number of riders for each request is set to 1 or 2, with the probability of 75% and 25%, respectively. The
maximum ride time is calculated as the direct travel time plus the tolerable detour time (5 min + 15 × rand, Bian et al. (2022)). The
latest arrival times are randomly generated. The earliest pickup times are also randomly generated within the current time horizon,
for instance [8:00,9:00]. The latest pickup times for new incoming requests in this time horizon are set to the latest arrival time
minus the direct travel time and service time. Each request’s maximum number of co-riders is randomly generated from 2, 3, or 4.
Other parameters are as follows:

• 4-seat cars are available;
• The fixed cost of hiring a private vehicle that has not yet been scheduled previously is $10;
• The travel costs of public and private vehicles are 0.5 and 0.8 $/mile, respectively;
• The service duration for each request is 1 min;
• The penalty cost coefficient (𝛽) is 3 $/person;
• The vehicle’s travel speed is 25 km/h.
To determine the best length for each time horizon, we conduct experiments with five different time intervals, using 180 requests

that are randomly distributed over three hours. The results, shown in Fig. 10, indicated that the total operating cost will decrease
with the length of intervals increasing, with a cost reduction of 4% when the length increased from 30 min to 90 min. However, the
computation time varies significantly with different intervals, with the average computation time increasing from 5 s to 276 s when
the length increases from 30 min to 90 min. As a result, we rule out the 90-minute interval and select 60 min as the best interval
based on both computation time and operating cost. Compared to the 90-minute interval, using the 60-minute interval results in
only a 1% increase in operating costs, while the computation time is very efficient at only 58 s. In addition, the time interval we
chose is consistent with Bian’s work (Bian et al., 2022).

5.2. Computational performance

To assess the computational performance of the column-generation matheuristic algorithm, we compare the results with the
19

CPLEX solver, the branch-and-price algorithm, and the ALNS algorithm based on small- and large-scale instances.
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Table 4
Computational performance of small-scale instances.

Instances CPLEX solver Branch-and-Price ALNS CG matheuristic Gap* (%)

Obj Time Gap(%) 𝑂𝑏𝑗𝐵𝑃 Time 𝑂𝑏𝑗𝐴𝐿𝑁𝑆 Time 𝑂𝑏𝑗𝐶𝐺𝑀 Time Gap1 Gap2 Gap3
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Se
t1

6_5_1 21.46 0.2 0.00 21.46 0.1 21.46 1.9 21.46 0.2 0.00 0.00 0.00
7_5_1 22.66 0.6 0.00 22.66 0.1 22.66 2.0 22.66 0.2 0.00 0.00 0.00
8_5_2 24.17 1.2 0.00 24.17 0.1 24.17 2.4 24.17 0.3 0.00 0.00 0.00
9_5_2 24.39 1.3 0.00 24.39 0.1 24.39 3.1 24.39 0.4 0.00 0.00 0.00
10_5_3 27.35 5.1 0.00 27.35 0.1 27.35 4.6 27.35 0.5 0.00 0.00 0.00
11_5_3 32.52 9.3 0.00 32.52 0.1 32.52 4.1 32.52 0.4 0.00 0.00 0.00
12_5_4 36.05 9.1 0.00 36.05 0.2 36.05 5.3 36.05 0.6 0.00 0.00 0.00
13_5_4 37.61 144.8 0.00 37.61 0.2 37.61 5.8 37.61 0.7 0.00 0.00 0.00
14_5_5 43.42 1928.6 0.00 43.42 1.8 43.42 7.3 43.42 0.7 0.00 0.00 0.00
15_5_5 51.86 7206.3 6.02 51.86 3.4 51.86 8.4 51.86 0.8 0.00 0.00 0.00
16_5_6 60.87 7201.2 19.70 60.87 0.7 60.87 9.7 60.87 1.1 0.00 0.00 0.00
17_5_6 65.05 7200.1 13.20 65.05 1.2 65.05 11.7 65.05 1.2 0.00 0.00 0.00
18_5_7 60.13 7217.7 24.60 60.13 0.6 60.13 13.9 60.13 1.4 0.00 0.00 0.00
19_5_7 64.38 7206.3 34.90 64.38 6.4 64.38 13.1 64.38 1.5 0.00 0.00 0.00
20_5_8 71.04 7224.6 53.10 71.04 0.9 71.04 15.5 71.04 1.8 0.00 0.00 0.00

Se
t2

6_6_0 18.81 0.1 0.00 18.81 0.1 18.81 1.9 18.81 0.2 0.00 0.00 0.00
7_6_0 20.02 0.3 0.00 20.02 0.1 20.02 2.1 20.02 0.2 0.00 0.00 0.00
8_7_0 20.26 1.4 0.00 20.26 0.1 20.26 3.7 20.26 0.2 0.00 0.00 0.00
9_7_0 20.48 2.5 0.00 20.48 0.1 20.48 3.3 20.48 0.2 0.00 0.00 0.00
10_8_0 23.54 3.2 0.00 23.54 2.3 23.54 4.2 23.54 0.3 0.00 0.00 0.00
11_8_0 27.04 8.2 0.00 27.04 0.1 27.04 4.4 27.04 0.3 0.00 0.00 0.00
12_9_0 29.02 48.2 0.00 29.02 0.1 29.02 5.4 29.02 0.4 0.00 0.00 0.00
13_9_0 29.95 195.9 0.00 29.95 0.2 29.95 5.6 29.95 0.6 0.00 0.00 0.00
14_10_0 29.57 274.8 0.00 29.57 0.2 29.57 7.7 29.57 0.5 0.00 0.00 0.00
15_10_0 33.57 5490.5 0.00 33.57 0.2 33.57 8.0 33.57 0.7 0.00 0.00 0.00
16_11_0 37.19 7215.4 27.60 37.19 0.2 37.19 8.4 37.19 0.8 0.00 0.00 0.00
17_11_0 35.14 7261.4 35.60 35.14 0.4 35.14 10.5 35.14 1.0 0.00 0.00 0.00
18_12_0 33.94 7232.9 36.30 33.94 0.4 33.94 12.8 33.94 1.2 0.00 0.00 0.00
19_12_0 34.13 7226.8 41.30 34.13 0.6 34.13 13.0 34.13 1.3 0.00 0.00 0.00
20_13_0 38.23 7230.2 46.00 38.23 0.5 38.23 15.8 38.23 1.5 0.00 0.00 0.00

Average 35.80 2918.27 11.96 35.80 0.7 35.80 7.2 35.80 0.7 0.00 0.00 0.00

Note: Obj, 𝑂𝑏𝑗𝐵𝑃 , 𝑂𝑏𝑗𝐴𝐿𝑁𝑆 , and, 𝑂𝑏𝑗𝐶𝐺𝑀 are the best objective value identified by the CPLEX solver, the Branch-and-price algorithm, the ALNS algorithm, and
the CG math-heuristic algorithm, respectively. Column of ‘Time’ is the computation time of the corresponding algorithm. Units of ‘Obj’ and ‘Time’ are $ and
seconds, respectively. Gap1 = [(5) - (2)]/(2)×100%, Gap2 = [(7) - (2)]/(2)×100%, and Gap3 = [(9) - (2)]/(2)×100%.

5.2.1. Small-scale instances
The experiments are first conducted on two sets of small-scale instances, each set consisting of 15 instances with the number of

requests ranging from 6 to 20. In set 1, vehicles include en-route publicly- and privately-owned vehicles, publicly- and privately-
owned vehicles parked in the station, and privately-owned vehicles parked in garages. In set 2, all vehicles are public vehicles with
the state of parking at the station or en route. The detailed computational results are included in Table 4. The first column ‘‘Instance’’
is named in the format of ‘‘A_B_C’’, with ‘‘A’’ denoting the number of requests, ‘‘B’’ indicating the number of public vehicles, and
‘‘C’’ representing the number of private vehicles. The columns ‘‘Obj’’, ‘‘𝑂𝑏𝑗𝐵𝑃 ’’, ‘‘𝑂𝑏𝑗𝐴𝐿𝑁𝑆 ’’, and ‘‘𝑂𝑏𝑗𝐶𝐺𝑀 ’’ are the objective values
obtained by the CPLEX solver, the branch-and-price algorithm, the ALNS algorithm, and the CGM algorithm, respectively. It is
worth noting that we run the ALNS algorithm five times for each instance, and we find that the objective values for each instance
are identical. This means that the average and best objective values obtained by the ALNS algorithm for small-scale instances are
equivalent.

As shown in Table 4, CPLEX can find the optimal solutions for all small-scale instances, but it can only prove optimality for
some instances within a time limit of 7200 s. In terms of solution quality, all the algorithms can find optimal solutions for these
instances. However, regarding the computation time, both the branch-and-price algorithm and the CGM algorithm perform better
than the ALNS algorithm.

5.2.2. Large-scale instances
To evaluate the computational performance of the CGM algorithm on large-scale instances, we compare its results with those

of the branch-and-price algorithm and the ALNS algorithm on 16 instances, each with 20 to 50 requests and 15 public vehicles.
Table 5 summarizes the detailed results. The meaning of columns ‘‘𝑂𝑏𝑗𝐵𝑃 ’’ and ‘‘𝑂𝑏𝑗𝐶𝐺𝑀 ’’ is similar to that in Table 4. The columns
‘‘𝑂𝑏𝑗𝐵𝑒𝑠𝑡’’ and ‘‘𝑂𝑏𝑗𝐴𝑣𝑒’’ are the best objective values and the average objective values identified by running the ALNS algorithm five
times, respectively. In terms of solution quality, the CGM algorithm performs remarkably well in obtaining high-quality solutions,
with a maximum gap of only 3.75 compared to the exact solution. Moreover, the vast majority of its solutions are better than or
equal to those found by the ALNS algorithm. In terms of computational efficiency, the CGM algorithm outperforms the other two
algorithms, being capable of solving all instances in less than 35 s.
20
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Table 5
Computational performance of large-scale instances.

Instances Branch-and-Price ALNS CG matheuristic Gap

𝑂𝑏𝑗𝐵𝑃 ($) Time (s) 𝑂𝑏𝑗𝐵𝑒𝑠𝑡 ($) 𝑂𝑏𝑗𝐴𝑣𝑒 ($) Time (s) 𝑂𝑏𝑗𝐶𝐺𝑀 ($) Time (s) Gap1 (%) Gap2 (%)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

20_15_0 46.10 0.5 46.10 46.10 25.4 46.10 1.5 0.00 0.00
22_15_1 46.58 0.7 46.58 46.58 27.5 46.58 2.0 0.00 0.00
24_15_2 56.96 3.9 56.96 56.96 27.4 56.96 3.1 0.00 0.00
26_15_3 67.05 55.40 67.05 67.05 34.7 67.05 4.3 0.00 0.00
28_15_4 72.71 125.1 72.71 73.11 38.0 72.71 4.3 0.00 0.00
30_15_5 79.90 8.2 79.90 80.59 54.8 79.90 5.1 0.00 0.00
32_15_6 88.59 156.2 88.59 89.31 63.5 88.59 6.6 0.00 0.00
34_15_7 91.70 101.4 91.70 92.83 80.7 92.89 8.4 0.00 1.30
36_15_8 97.20 91.1 97.20 98.79 86.3 97.20 8.3 0.00 0.00
38_15_9 106.34 151.2 114.25 116.30 90.6 107.55 11.3 7.44 1.14
40_15_10 111.45 64.2 120.61 123.48 114.9 111.45 13.6 8.22 0.00
42_15_11 124.57 20.2 133.19 136.86 124.0 129.24 15.6 6.92 3.75
44_15_12 115.77 314.8 123.49 126.48 148.4 118.31 25.3 6.67 2.19
46_15_13 124.40 220.5 129.12 133.85 169.2 124.40 33.8 3.79 0.00
48_15_14 130.26 160.5 136.53 140.93 187.5 130.39 33.0 4.81 0.10
50_15_15 135.64 194.5 142.16 145.97 220.3 137.43 33.6 4.81 1.32

Average 93.45 104.3 96.63 98.45 93.3 94.22 13.1 2.67 0.61

*Gap1 = [(4) - (2)]/(2)×100%; Gap2 = [(7) - (2)]/(2)×100%.

Table 6
Computational performance of large-scale instances without incorporating private vehicles.

Instances Branch and Price ALNS CG Heuristic Gap

𝑂𝑏𝑗𝐵𝑃 ($) Time (s) 𝑂𝑏𝑗𝐵𝑒𝑠𝑡 ($) 𝑂𝑏𝑗𝐴𝑣𝑒 ($) Time (s) 𝑂𝑏𝑗𝐶𝐺𝑀 ($) Time (s) Gap1 (%) Gap2 (%)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

20_15 36.87 0.7 36.87 36.87 18.3 36.87 0.8 0.00 0.00
22_16 39.51 1.1 39.51 39.51 20.8 39.51 1.2 0.00 0.00
24_17 41.72 1.3 41.72 41.72 30.1 41.72 1.4 0.00 0.00
26_18 47.44 2.5 47.44 47.44 31.7 47.44 1.6 0.00 0.00
28_19 50.98 3.2 50.98 50.98 38.8 50.98 2.1 0.00 0.00
30_20 51.60 4.7 51.60 51.60 46.6 51.60 2.1 0.00 0.00
32_21 53.58 3.7 53.58 53.58 53.6 53.58 3.1 0.00 0.00
34_22 57.08 4.3 57.08 57.77 61.3 57.08 5.5 0.00 0.00
36_23 60.15 10.4 60.15 60.15 74.5 60.97 6.4 0.00 1.36
38_24 60.62 16.4 60.62 60.82 80.4 60.62 6.2 0.00 0.00
40_25 62.36 13.6 62.36 62.40 88.4 64.43 7.6 0.00 0.00
42_26 74.10 14.2 74.10 74.60 107.7 74.10 11.2 0.00 0.00
44_27 82.03 166.9 82.03 83.50 147.1 82.44 11.1 0.00 0.50
46_28 70.04 48.1 70.23 70.75 146.3 70.23 15.2 0.27 0.27
48_29 70.78 38.6 70.78 70.83 171.8 70.78 20.2 0.00 0.00
50_30 74.73 458.8 74.93 75.97 189.3 75.84 26.1 0.27 1.49

Average 58.36 49.3 58.37 58.66 74.5 58.51 7.7 0.03 0.23

*Gap1 = [(4) - (2)]/(2)×100%; Gap2 = [(7) - (2)]/(2)×100%.

To demonstrate that incorporating private vehicles would increase the complexity of decision-making, we conduct additional
xperiments on the same instances with all vehicles being homogeneous publicly-owned vehicles, and the results are reported in
able 6. In terms of solution quality, both the ALNS and the CGM algorithms outperform the scenario considering private cars, as
heir average gap decreased from 2.67% and 0.61% to 0.03% and 0.23%, respectively. This implies that the presence of private
ehicles increases the decision-making challenge, as the heterogeneous fleet may enlarge the solution space. It should be noted that
n this scenario, the ALNS algorithm outperforms the CGM algorithm in terms of solution quality. Combining the results in Table 5,
e can conclude that the ALNS algorithm is more suitable for scenarios without private cars, while the CGM algorithm is better

uited for scenarios where private cars are included in the fleet. With regard to computation time, all algorithms exhibit decreased
omputation time, further proving the increased complexity of decision-making with the inclusion of a private fleet.

.3. Benefits and drawbacks of ridesharing

To identify the benefits and drawbacks associated with first-mile ridesharing, we compared the total travel distances, a measure
f total operating costs, and in-vehicle travel time variation with the non-ridesharing mode where one car serves only one request
er trip. All the large-scale instances in Section 5.2.2 are used to conduct the experiment, and the results are reported in Fig. 11,
hich displays the distribution of distance-savings and in-vehicle ride time increases of ridesharing for these instances. We can
21

onclude that ridesharing is effective in reducing travel distances while only moderately increasing riders’ in-vehicle travel time.
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Fig. 11. Benefits and drawbacks of ridesharing compared to the non-ridesharing model.

Fig. 12. Travel times under different first-mile travel modes at Xinzhuang station.

On average, the percentage of distance saved is about three times the percentage increase in ride time. Specifically, the average
distance-saving percentage is 50.67%, while the percentage increase in ride time is 16.81%. Additionally, we also compared riders’
travel time across different travel modes, as shown in Fig. 12. Although ridesharing increases riders’ in-vehicle travel time when
compared to non-ridesharing modes such as travel by taxi, the travel time remains highly attractive when compared to bus travel.
For instance, the average bus journey takes 40.3 min, whereas the average travel time for ridesharing is less than 16.7 min.

5.4. Impact of operating costs of private vehicles on ridesharing schemes

To analyze how the difference in operating costs between private and public vehicles affects vehicle dispatching, total operating
costs, and passengers’ ride times. Two groups of experiments, different and identical operating costs for privately-owned and
publicly-owned vehicles, are conducted for each large-scale instance in Section 5.2.2, and the results are shown in Table 7. The
‘‘Used car’’ column denotes the constitution of scheduled cars, defined in the form of ‘‘Q/W/E’’. Here, ‘‘Q’’ denotes the number of
scheduled public vehicles, ‘‘W’’ indicates the total number of scheduled private vehicles, and ‘‘E’’ represents the number of newly
hired private vehicles that are parked in garages and have not been scheduled before. Two conclusions are drawn:
22



Transportation Research Part C 160 (2024) 104516P. He et al.
Table 7
Results comparing under the same/different operating costs for private and public vehicles.

Instance
(1)

Different operating cost Same operating cost Results comparing

Operator’s
cost($)
(2)

Used
cars
(3)

In-vehicle
time (m)
(4)

Operator’s
cost($)
(5)

Used
cars
(6)

In-vehicle
time (m)
(7)

Cost
saving(%)
(8)

Time
increasing(%)
(9)

20_15_0 46.10 10/0/0 16.13 46.10 10/0/0 16.13 0 0
22_15_1 46.58 10/0/0 16.48 43.71 9/1/1 16.52 6.16 −0.24
24_15_2 56.96 11/0/0 16.89 51.61 10/2/2 17.69 9.39 −4.52
26_15_3 67.05 12/0/0 16.69 55.40 10/2/2 17.96 17.38 −7.07
28_15_4 72.71 12/1/0 16.67 58.59 10/3/2 17.49 19.42 −4.69
30_15_5 79.90 13/1/0 17.62 65.05 11/3/2 16.93 18.59 4.08
32_15_6 88.59 13/2/0 17.53 70.15 10/5/2 17.22 20.81 1.80
34_15_7 92.89 13/3/0 16.28 68.58 11/5/3 16.54 26.17 −1.57
36_15_8 97.20 13/4/0 16.56 72.25 10/7/4 16.65 25.67 −0.54
38_15_9 107.55 13/4/0 17.46 74.11 11/8/5 16.06 31.09 8.72
40_15_10 111.45 12/5/1 17.09 74.09 11/8/6 16.06 33.52 6.41
42_15_11 129.24 13/5/1 16.87 79.04 11/8/6 16.41 38.84 2.80
44_15_12 118.31 14/6/1 16.76 76.08 12/9/6 16.06 35.69 4.36
46_15_13 124.40 14/6/1 16.75 79.04 11/10/7 16.95 36.46 −1.18
48_15_14 130.39 15/6/1 16.83 77.41 12/10/8 16.60 40.63 1.39
50_15_15 137.43 15/7/2 16.70 75.26 11/12/9 15.74 45.24 6.10

Average 25.32 0.99

*(8) = [(5) - (2)]/(2)×100%; (9) = [(4) - (7)]/(7)×100%.

(1) When the operating costs of private and public vehicles are identical, the more private vehicles scheduled, the lower the
operating costs. Since privately-owned vehicles are typically parked in different garages, scheduling them to serve nearby demands
can effectively reduce transport distances and thus operating costs. In addition, we conducted numerical experiments with differences
in transportation costs per mile between private and public vehicles of $0.05, $0.1, $0.2, and $0.3, respectively. We found that when
the transportation cost of private vehicles is higher, even if it is only by $0.05 per mile, priority should be given to publicly owned
vehicles.

(2) The impact of scheduling private vehicles to provide feeder services on riders’ in-vehicle travel times is not significant. For
instance, the average in-vehicle travel time in both modes varied by only 0.99%.

5.5. Sensitivity analysis on penalty cost coefficients

To analyze the effect of penalty cost factors on the satisfaction rate of passenger preferences for co-riding and detouring, as well
as the impact on the operating costs for the public transit agency, we conduct the experiment using the instances in Section 5.2.2
The results, showing the variation in total operating costs and the total number of unmet requests, are presented in Fig. 13. It can
be observed that even a small penalty factor, such as 0.5, immediately makes the passenger preferences well satisfied, with unmet
requests decreasing from 79.63% to 23.33%. As the penalty factor increases, the satisfaction rate also increases. When the penalty
factor exceeds 2, all passengers’ preferences are satisfied, with the operating cost increased by almost 1/7. The increase in cost is
primarily due to some passengers’ reluctance to share the trip with too many other people or to take longer routes. Therefore, taking
measures to encourage passengers to share trips and tolerate detours as much as possible can help public transit agencies further
reduce operating costs.

5.6. Simulation for dynamic scenarios

To verify the effectiveness of the models and algorithms in dynamic scenarios, we carry out a series of experiments to examine
how ridesharing schemes respond to variations in demands and travel times. Initially, we establish a base scenario with ten requests
and seven vehicles, comprising five private cars parked in garages and two public cars parked at the station. Next, as illustrated in
Fig. 14(a), we employ the CG math-heuristic algorithm to generate a ridesharing scheme for this scenario, scheduling five vehicles
to serve these requests. Subsequently, we assume that some road segments experience severe congestion during the execution of the
ridesharing scheme, resulting in increased travel times for some requests. To ensure time-related requirements, such as travel time,
are adequately met following this variation, we update the ridesharing scheme based on the new travel time information. Although
the routes of vehicles 6 and 7 are modified, the new ridesharing scheme, as shown in Fig. 14(b), remains unchanged.

Second, we assume that during the execution of the ridesharing scheme in the base scenario, five new requests (requests 11, 12,
13, 14, and 15) entered, and request 8 canceled its order. In addition, three hireable vehicles entered the system, namely vehicles
8, 9, and 10. Based on the demand and vehicle information, we obtain a new ridesharing scheme as shown in Fig. 14(c). In this
scheme, vehicle 5, after picking up request 6, instead of fulfilling the canceled order of request 8, picks up the new request 15. The
newly available vehicles 8 and 10 are assigned to serve requests 11, 12, and 13. Meanwhile, new request 14 is picked up by vehicle
23

1 with a detour. The ridesharing scheme for other passengers and vehicles remains unchanged.
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Fig. 13. Sensitivity analysis on the coefficient of penalty costs.

Third, we assume that there are simultaneous changes in demand and travel time in the two dynamic scenarios mentioned
above. Similarly, we obtain a new ridesharing scheme for vehicles and passengers, as shown in Fig. 14(d). The ridesharing scheme
in this scenario is consistent with the last scenario, but the travel routes of vehicles 6 and 7 have been altered. From these dynamic
scenarios, we observe that our algorithm can adapt the ridesharing scheme to dynamic changes in both demand and travel time.

Based on these case studies, we could infer that: (1) Changes in passenger demand have a more pronounced impact on the
ridesharing scheme compared to travel time uncertainty. This is because ridesharing schemes can still be executed by altering
vehicle paths when there is congestion on specific road segments. However, significant changes in passenger demand require not
only path modifications but also scaling the employed fleet to align with the demand variations. (2) Detours resulting from traffic
congestion may increase passenger ride times and vehicle arrival times, while changes in passenger demand may lead to reductions
in these values. For instance, in case 2, the average passenger ride time increased from 15.1 min to 16.9 min compared to case 1,
as some paths were detoured. Conversely, average ride times decreased in cases 3 (13.5 min) and 4 (15.3 min) compared to cases
1 or 2.

6. Conclusion

In this paper, we investigate a first-mile issue where public transit agencies can integrate privately-owned autonomous vehicles
during their idle time to provide high-quality first-mile ridesharing services, which involves both routing and time scheduling
decisions. To address this issue, an arc-based MILP model is developed to minimize the total operating cost while considering
the available time and location of vehicles, the return time of private vehicles, ride times, the number of co-riders, and latest
arrival times. Then, we reformulate the MILP model as a trip-based set-partitioning model using the Dantzig–Wolfe decomposition
and develop an exact branch-and-price algorithm. To identify promising trips, we propose a tailored labeling algorithm with a
novel dominance rule, along with a time window shift algorithm to determine the best schedule. To yield near-optimal solutions
in a shorter amount of computation time, we devise a customized column-generation matheuristic procedure that includes two
strategies for generating more high-quality columns: (1) reusing columns of other vehicles; and (2) incremental column generation.
Additionally, we develop an adaptive large neighborhood search algorithm to evaluate the performance of the column-generation
algorithm.

Real-world case studies are conducted based on the road network in the vicinity of the Xinzhuang metro station. Results show that
(i) the branch-and-price algorithm can obtain the optimal solution for each given instance within 500 s. (ii) The column-generation
matheuristic algorithm can find high-quality solutions for instances in less than 35 s, outperforming the ALNS algorithm in terms
of solution quality and computation time. (iii) Compared to the non-ridesharing mode, ridesharing can reduce travel distances by
about 50% while maintaining service quality for passengers.

The current work still has some limitations and there are several promising research directions for future research. First, this
study updates the ridesharing scheme using the rolling horizon method, without considering real-time request-vehicle matching
and routing. As a result, developing a real-time algorithm to assign real-time requests to en-route vehicles would be a promising
extension. Second, this work does not investigate how to determine the optimal publicly-owned fleet size for the first-mile
transportation service provider. Although they can inflate the fleet by dynamically hiring privately-owned autonomous vehicles
to meet travel demand, especially during rush hours, the number of publicly-owned vehicles that need to be deployed remains a
key decision problem. Third, it would be worthwhile to investigate the mechanism design problem for boosting the willingness of
24

private owners to participate in vehicle sharing.
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Fig. 14. Ridesharing schemes for one base scenario and three dynamic scenarios.
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