
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy
an

d
N

or
w

eg
ia

n
U

ni
ve

rs
it

y
of

Sc
ie

nc
e

an
d

Te
ch

no
lo

gy

Implementation of
Methods for Generation
Adequacy Assessment
with Wind
Considerations
Julian Wuijts

Implementation of
Methods for Generation
Adequacy Assessment

with Wind Considerations
by

Julian Wuijts

to obtain the degree of MSc. Electrical Engineering
at the Delft University of Technology,
and the degree of MSc. Wind Energy,

at the Norwegian University of Science and Technology,
to be defended publicly on the 5th of July, 2024 at 09:00 AM

Student number: 5168538 (TU Delft) and 103162 (NTNU)
Project duration: November 1, 2023 – July 5, 2024
Supervision Team: Dr. ir. Vĳay Venu Vadlamudi, NTNU

Dr. ir. Iver Bakken Sperstad, SINTEF Energy
Ir. Ivar Bjerkebæk, SINTEF Energy
Dr. ir. José Rueda Torres, TU Delft

Thesis committee: Dr. ir. José Rueda Torres, TU Delft, committee chair & supervisor
Dr. ir. Vĳay Venu Vadlamudi, NTNU, supervisor
Dr. ir. Aditya Shekhar, TU Delft, committee member

Cover: Unitech Zefyros (Hywind Demo) [1]
Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.
The scripts presented in this thesis are available at

https://github.com/Julian-Wuijts/Generation-Adequacy-Scripts

http://repository.tudelft.nl/
https://github.com/Julian-Wuijts/Generation-Adequacy-Scripts

Acknowledgements

With this Master’s thesis, my academic journey comes to an end for now. The European Wind Energy
Master program has helped me develop both on a personal and academic level. I want to express my
gratitude to a few people who helped me during this period.

First, I would like to thank the supervision team at NTNU: Vĳay Venu Vadlamudi, Ivar Bjerkebæk and
Iver Bakken Sperstad. They have encouraged me throughout the thesis process and helped me deepen
my knowledge in the wonderful area of power system reliability studies. Their step-by-step approach to
creating this thesis work has made the whole process clear and enjoyable.

I also want to thank my TU Delft supervisor, Jose Rueda Torres. He has provided me with valuable
insights to improve the quality of my thesis. His guidance throughout the thesis work has allowed me
to finish my thesis within the given timeframe.

Finally, I am eternally thankful to my parents and sister for their support throughout my studies and
thesis work.

Julian Wuĳts
Trondheim, July 2024

i

Abstract

This thesis creates open-source Python scripts for conducting generation adequacy analysis studies
(available on GitHub). First, scripts without wind considerations are constructed, and then the scripts
have been modified to include wind considerations. Generation and load models have been implemented
to obtain the reliability (adequacy) indices Loss of Load Expectation (LOLE) and Expected Energy
Not Served (EENS). Two probabilistic methods have been implemented: an analytical method and a
non-sequential Monte Carlo Simulation (MCS) method. Both methods use the IEEE load curve for
their load model, but different generation models are used. The analytical model uses a recursive
algorithm, where generation units are added one by one to obtain a Capacity Outage Probability
Table (COPT). The non-sequential MCS method uses state sampling, where a uniform random number
is generated for each hourly increment and a state is selected based on the state probabilities of a generator.

Wind considerations, which can be any number of turbines located on- or offshore, have been added to
the scripts by modelling the power output curve of a wind turbine. The analytical method models a
wind turbine as a conventional generation with multiple states, where a state probability table is based
on the wind power distribution and the mechanical availability. The power distribution is obtained
by converting wind speeds to power outputs using the power output curve. The MCS method, on
the other hand, simulates the wind speed with a Weibull distribution and a uniform random number
generator. It also uses the power output curve, and the result is combined with the mechanical availability.

The proposed scripts have been tested on two test systems - the Roy Billinton Test System and the IEEE
Reliability Test System. The resulting reliability metrics have been compared with benchmark values in
the literature and found to be closely matching. Furthermore, methodological clarity on how to obtain
the presented scripts is given. Even though all elements of the implemented methods are present in the lit-
erature, not all are clearly explained or combined in one place. This work aims to overcome this limitation.

Additionally, the effect of turbine outage rates on the output of an offshore wind farm has been
assessed. The cumulative distribution showed that the portion of the graph operating between no
output and the rated output is close to linear for turbines with perfect reliability. Introducing non-
zero Forced Outage Rates for the turbines results in a stepwise probability behaviour towards the
upper end of the wind farm output. These steps occur around increments of the rated capacity of a
singular turbine and lower the probability of operating in the intervals at the upper end of the wind farm.

An approximately linear relation between a turbine’s Forced Outage Rate (FOR) and the yearly energy
production can be observed. An increase in FOR, for FORs above 0.10, seems to have an increasingly
bigger impact on the yearly energy production. The same behaviour can be observed in the case study
that is carried out. The study looks at how many turbines are required to supply energy to the city of
Trondheim, assuming that a storage solution takes care of all the power fluctuations. A constant power
demand of 688 MW can be covered by a 1.43 GW wind farm with perfect reliability. The farm uses 10
MW turbines, and 3 additional turbines are needed for a 0.02 increase in FOR. From a FOR of 0.10, this
value seems to increase to 4 turbines to satisfy the demand.

The results for the non-sequential MCS method with wind considerations are off by up to 15% due to
a poorly fitting Weibull distribution for the wind speeds. Furthermore, a third probabilistic method
has also been implemented, a sequential MCS without wind considerations in the form of the state
duration method. These results are off by 5 to 10%, but there are two main reasons for this mismatch.
One of them is rounding the simulated state duration to an integer number of hours to match the integer
hourly load profile. The second limitation is due to the way that the generation profile is initialised. The
generator is currently assumed to be operational at the start of each simulation year. However, carrying
over the state and state duration from the previous simulation year would yield better results. These
two limitations can be addressed in future work.

ii

https://github.com/Julian-Wuijts/Generation-Adequacy-Scripts

Contents

Acknowledgements i

Abstract ii

Nomenclature v

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Scope and Contributions . 2
1.3 Thesis Outline . 2

2 Background 4
2.1 Reliability Assessment of Power Systems . 4

2.1.1 Deterministic Methods . 5
2.1.2 Probabilistic Methods . 5

2.2 Analytical Methods . 6
2.2.1 Generation Model . 6
2.2.2 Load Model . 8

2.3 Monte Carlo Simulation Methods . 8
2.3.1 State Sampling Method . 10
2.3.2 State Duration Method . 10
2.3.3 State Transition Method . 13
2.3.4 Stopping Criteria . 13

2.4 Reliability Metrics . 14
2.4.1 LOLP . 14
2.4.2 LOLE . 14
2.4.3 EENS . 15
2.4.4 ENDS and LOLP’ . 15

3 Test Systems 16
3.1 IEEE Reliability Test System . 16
3.2 Roy Billinton Test System . 18

4 Methodological Approach for Constructing the Analytical Scripts 20
4.1 Analytical Method without Wind Considerations . 20

4.1.1 COPT . 20
4.1.2 Load Curves . 22
4.1.3 Reliability Metrics . 23

4.2 Analytical Method with Wind Considerations . 27
4.2.1 COPT . 27
4.2.2 Validation of the Results . 31

5 Methodological Approach for Constructing the Non-Sequential MCS Scripts 33
5.1 Monte Carlo Simulation Method without Wind Considerations 33

5.1.1 Generator Profile . 33
5.1.2 Load Curves . 35
5.1.3 Reliability Metrics . 35
5.1.4 Comparing the Reliability Metrics for the MCS Method with the Analytical Method 39

5.2 Monte Carlo Simulation Method with Wind Considerations 39

iii

Contents iv

6 Examining the Impact of Outages on the Output of a Wind Farm 42
6.1 Investigating the Effect of Different FORs on the Output of Wind Farms CDFs 42

6.1.1 Power Output CDF . 43
6.1.2 Yearly Energy Production . 45

6.2 Case Study - Supplying the City of Trondheim with Power from an Offshore Wind Farm 46

7 Conclusions and Future Work 48
7.1 Conclusions . 48
7.2 Future Work . 50

7.2.1 Extending the Generation Adequacy to Composite Adequacy Analysis 50
7.2.2 Improving the Sequential State Duration MCS Method 50
7.2.3 Compare Methods to Integrate Offshore Wind Farms into the Existing Grid . . . 51

References 52

A Methodological Approach for Constructing the Sequential MCS Scripts 55
A.1 Generation Profile . 55
A.2 Reliability Metrics . 56

B Analytical Method Scripts 58
B.1 COPT for Conventional Generators Including Derated States 58
B.2 IEEE Load Profile . 60
B.3 Reliability Indices . 62
B.4 COPT for Wind Turbines . 64

C Non-Sequential MCS Scripts 69
C.1 Generator Profile for Both Wind and Conventional Generators without Derated States . 69
C.2 Generator profile for Both Wind and Conventional Generators with Derated States . . . 70
C.3 Reliability Indices . 72

D Sequential MCS Scripts 75
D.1 Generator Profile for Conventional Generators without Derated States 75
D.2 Generator Profile for Conventional Generators with Derated States 76

E Wind Turbine FOR Power Output Comparison and Weibull Distribution Fitting Scripts 78
E.1 Wind Turbine FOR Power Output Comparison . 78
E.2 Weibull Distribution Fitting . 80

F IEEE Load Curve 81
F.1 Weekly Peak Load . 81
F.2 Daily Peak Load . 82
F.3 Hourly Peak Load . 82

G MCS State Sampling Convergence Process for the IEEE RTS 83
G.1 LOLE . 83
G.2 EENS . 83

H MCS State Duration Convergence Process for the IEEE RTS 84
H.1 LOLE . 84
H.2 EENS . 84

Nomenclature

Abbreviations

Abbreviation Definition
ARMA Autoregressive Moving-Average
CDF Cumulative Distribution Function
COPT Capacity Outage Probability Table
CoV Coefficient of Variation
CYPL Constant Yearly Peak Load
DPL Daily Peak Load
EENS Expected Energy Not Served
EDNS Expected Demand Not Served (derived from EENS)
FOR Forced Outage Rate
HL Hierarchical Level
HPL Hourly Peak Load
IEEE Institute of Electrical and Electronics Engineers
IEEE RTS IEEE Reliability Test System
LDC Load Duration Curve
LOEE Loss of Energy Expectation
LOLE Loss of Load Expectation
LOLP Loss of Load Probability
LOLP’ Loss of Load Probability (derived from LOLE)
MCS Monte Carlo Simulation
MTTF Mean Time to Failure
MTTR Mean Time to Repair
PDF Probability Distribution Function
PRNG Pseudo-Random Number Generator
pu Per-Unit
RBTS Roy Billinton Test System
RES Renewable Energy Sources
SCOPT State Capacity Outage Probability Table
TTF Time to Failure
TTR Time to Repair
WECS Wind Energy Conversion System Model
WPL Weekly Peak Load

v

Contents vi

Symbols

Symbol Definition Unit
𝐴𝑖 Availability of state 𝑖 [-]
𝐴𝑚𝑖 Availability of the upper apportioned level [-]
𝐴𝑛𝑖 Availability of the lower apportioned level [-]
C Capacity of the added unit [MW]
𝐶𝑖 Outage capacity of state 𝑖 [MW]
𝐶𝑚 Outage capacity of the upper apportioned level [MW]
𝐶𝑛 Outage capacity of the lower apportioned level [MW]
𝑐 𝑗 Turbine output in state 𝑗 [-]
E(x) Expected value [-]
f(x) Probability distribution function [-]
F(x) Cumulative distribution function [-]
H(x) Heavyside step function [-]
𝐿𝑡 Load at time instance 𝑡 [MW]
N Number of iterations [-]
N/A Not Applicable [-]
P[X] Cumulative probability of the capacity outage state

X after adding a unit
[-]

P’[X] Cumulative probability of the capacity outage state
X before adding a unit

[-]

𝑝𝑖 Probability of 𝑖 turbines being available [-]
𝑃𝑜𝑢𝑡𝑝𝑢𝑡 Output power [MW]
𝑃𝑟 Rated power [MW]
𝑞 𝑗 Probability of operating in output state 𝑐 𝑗 [-]
u Unavailability of a generator [-]
U Uniform distribution [-]
𝑉𝑐𝑖 Cut-in wind speed [m/s]
𝑉𝑐𝑜 Cut-out wind speed [m/s]
𝑉𝑟 Rated wind speed [m/s]
X Capacity outage state [MW]
Xoutput Wind farm output [MW]
x Random variate [-]
𝑥 𝑗 Outage state [MW]
𝛼 Weibull shape parameter [-]
𝛽 Weibull scale parameter [-]
𝜆 Failure rate parameter [-]
𝜇 Repair rate parameter [-]
𝜎 Standard deviation [-]
Δ Procentual difference [%]
ΔT duration of the time increment [1 day/ 1 hour/

1 week/ 1 year]

List of Figures

1.1 Schematic outline of the thesis structure . 3

2.1 An overview of the methods used in power system reliability studies, adapted from [11] 4
2.2 Hierarchical levels within power system reliability assessment, based on [7]. 5
2.3 IEEE load curve and load duration curve . 8
2.4 Probability density function f(x) for a uniform distribution, adapted from [18] 9
2.5 Graphical representation of the inverse transform method, adapted from [9] 9
2.6 Individual generation profiles for the generators . 11
2.7 System state profile for the generators presented in Table 2.6 12
2.8 Schematic of the states of a generation unit with a derated state, based on [20] 12

3.1 Schematic of the IEEE RTS, reproduced from [10] . 17
3.2 Schematic of the RBTS, reproduced from [10] . 19

4.1 Power output profile for the DTU 10 MW reference turbine based on the method in [27] 28
4.2 Wind speed data of the coast of Trondheim for 2019 [29] 28
4.3 Power output probability distribution for a turbine of the coast of Trondheim in 2019 . . 29

5.1 Converging process for the average LOLE value . 35
5.2 Converging process for the average EENS value . 36
5.3 Weibull distribution fitting to a wind speed probability distribution with data from [29] 40
5.4 Observed and simulated wind speed at North Battleford, reproduced from [12] 41
5.5 Weibull distribution fitting to a wind speed probability distribution with data from [32] 41

6.1 Wind speed and power output data for the DTU 10 MW reference turbine of the coast of
Trondheim . 43

6.2 CDF for a 100 MW wind farm with 10x 10 MW turbines with different FORs 44
6.3 Location of the wind farm off the coast of Trondheim at 64°N, 8°E 46
6.4 CDF for a 1.43 GW wind farm with 143x 10 MW turbines with different FORs 47

7.1 Tennet’s target grid map for the North Sea in 2045, reproduced from [38] 51

A.1 Converging process for the average LOLE value . 56
A.2 Converging process for the average EENS value . 57

G.1 Converging process for the average LOLE value . 83
G.2 Converging process for the average EENS value . 83

H.1 Converging process for the average LOLE value . 84
H.2 Converging process for the average EENS value . 84

vii

List of Tables

2.1 Generator data for an example of how to construct a COPT 6
2.2 Generator states for Generator 4 for an example on how to construct a COPT 6
2.3 A generator state probability table and its corresponding state sampling table 10
2.4 Generator state probability table . 10
2.5 Generator state sampling table . 10
2.6 Characteristics of the generators used in the summed generation profile example in

Figures 2.6 and 2.7 . 11

3.1 Key figures for the IEEE RTS . 16
3.2 Generator data for the IEEE RTS . 16
3.3 Key figures for the RBTS . 18
3.4 Generator data for the RBTS . 18

4.1 Comparison between benchmark data and the scripts presented in this thesis for the HPL
model . 26

4.2 Comparison between benchmark data and the scripts presented in this thesis for the YPL
model . 26

4.3 5 state COPT for the wind conditions . 31
4.4 Capacity outage probability due to the mechanical reliability of the turbines for a FOR of 4% 31
4.5 COPT for the 20 MW wind farm presented in [13] . 32
4.6 Reduced 5-state COPT for the 20 MW wind farm presented in [13] 32

5.1 Comparison between an MCS benchmark [26] and the MCS scripts for LOLE 36
5.2 Comparison between an MCS benchmark [26] and the MCS scripts for EENS 36
5.3 Comparison between the benchmark and the script reliability metric values for an MCS

with derated states using the RBTS . 37
5.4 Comparison between the benchmark and the script reliability metric values for an MCS

with derated states using the IEEE RTS . 37
5.5 Comparison between the benchmark and the script LOLE value for an MCS with derated

states using the IEEE RTS . 37
5.6 Comparison between the analytical and MCS scripts for LOLE 39
5.7 Comparison between the analytical and MCS scripts for EENS 39
5.8 Comparison between the reliability metrics in [12] and the script for the RBTS with added

wind generation . 40
5.9 Comparison between the reliability metrics in [12], [9] and the scripts for the RBTS and

RBTS with additional generation . 41

6.1 Data used for the analysis on the effect of FOR on the power output of wind farms . . . 42
6.2 Individual probabilities of having a certain number of turbines available for a FOR of

0.02 and 0.10 . 44
6.3 Yearly energy production of a 100 MW wind farm with 10x 10 MW turbines for different

FORs . 45
6.4 Minimum number of turbines needed to match the yearly energy demand of the city of

Trondheim for different turbine FORs . 47

A.1 Comparison between the analytical and MCS scripts for LOLE [26] 56
A.2 Comparison between the analytical and MCS scripts for EENS [26] 57

F.1 WPL as a percentage of the YPL . 81

viii

List of Tables ix

F.2 DPL as a percentage of the WPL . 82
F.3 HPL as a percentage of the DPL . 82

1
Introduction

The world is moving away from fossil fuels as an energy source in order to limit the temperature increase
in compliance with the Paris Agreement [2]. Electricity accounts for a large share of the total energy
mix, which will only increase due to the electrification of the industry and mobility. A way to reduce
the carbon emissions of electricity production is to phase out fossil fuels and thus increase the share of
renewable energy sources (RES), such as wind, hydro and solar. One major difference between RES and
the fossil-fuel-based generation they are replacing is the variable, weather-dependent power output
over time. This creates challenges regarding the adequacy of the grid, which needs to be considered
carefully to retain a reliable system.

1.1. Motivation
In Norway, the grid already has one of the lowest 𝐶𝑂2 emissions per kWh worldwide [3], due to its
suitable geography for hydro power [4]. This is a controllable generation source, but its year-by-year
power output varies based on the amount of precipitation. With limited solar resources and great wind
resources off the coast, offshore wind farms seem suitable to complement the existing hydro-based
power grid and prepare for the increasing electricity demand. One of the projects that looks into this is
the OceanGrid project [5], which considers the role that offshore wind farms could play in the future
power grid, more specifically from 2030 onwards.

The research work in this thesis is carried out in collaboration with SINTEF Energy as part of work
package 1 of Sub Project 5 [6] of the OceanGrid project. The OceanGrid project focuses on building
knowledge, conducting open research and publishing the results in four key areas: Grid expansion
optimisation, Energy market design, System interoperability, and Wet design cables. This thesis work is
part of the grid expansion optimisation package; the package aims to develop optimisation models to
identify a step-by-step optimal offshore energy infrastructure buildout, also considering the reliability
(adequacy) perspective. The work done in this thesis is a first step towards addressing the reliability
perspective of the grid expansion optimisation package.

Even though the algorithms used for reliability assessment of traditional power systems are present in
the literature [7], [8], [9], and [10], and the ones dealing with (onshore) wind power considerations are
present in the literature [11], [12], and [13], not all are clearly explained or synthesised in one place. For
example, the apportioning method is mentioned in [13], and a reference to [7] is provided. Eventually,
the method was found in this textbook, but the word ’apportioning’ is not mentioned in the explanation.
A reference that does clearly mention the apportioning method and provides an explanation is [14].

This work aims to overcome this limitation by aiming for methodological clarity and algorithmic
transparency in obtaining the scripts for reliability metrics.

1

1.2. Scope and Contributions 2

1.2. Scope and Contributions
This thesis builds towards developing a framework to assess the adequacy of a future grid with the
addition of an offshore energy infrastructure. However, the scope of this thesis is limited to the
development and validation of open-source Python scripts for generation adequacy analysis with the
possibility to include wind considerations and examining the impact of outages on the output of a wind
farm. With wind considerations, any number of turbines located on- or offshore is meant. Transmission
system considerations are not taken into account in this work.

Probabilistic methods for reliability assessment are well-defined within the field of power system
reliability, and two main methods can be identified: Analytical methods and Monte Carlo Simulation
(MCS) methods. Both methods will be implemented to obtain the reliability metrics Loss-of-Load
Expectancy (LOLE) and Expected Energy Not Served (EENS) for systems with and without wind
generation. Methodological clarity for creating the scripts will be provided, along with a comparison
of the results with benchmark values in the literature and between the two methods to validate the scripts.

Some time will also be spent on understanding the impact that turbine outages have on the output of
wind farms. The impact of turbine outage rates on the power output probability distribution will be
studied, as well as the yearly energy output of a wind farm for different outage rates. A case study will
be carried out to assess the impact of turbine outage rates on the required number of turbines.

The main focus of this thesis is to develop open-source Python scripts for generation adequacy and
validate them based on test systems found in the literature. Therefore, this work will not consider the
transmission system and actual power system data.

The presented open-source scripts are licensed using the GNU General Public License (GPL) Version 3.0.
The scripts can be freely used, modified and distributed, as long as any new distributed versions of the
scripts are also published as open-source scripts and licensed under the GPL Version 3.0 license. The
complete description of the GNU GPL v3.0 can be found in [15]. The scripts are available on GitHub at
https://github.com/Julian-Wuĳts/Generation-Adequacy-Scripts.

1.3. Thesis Outline
First, the basics of reliability assessment and the theory for implementing the required scripts are
covered in Chapter 2. The test systems that will be used to test the script are introduced in Chapter 3,
after which the methodology for implementing the Analytical method and Monte Carlo Simulation
method scripts, along with the results, is presented in Chapters 4 and 5. A chapter that focuses on the
impact of outages on the output of a wind farm can be found in Chapter 6, with a case study on a wind
farm to supply energy to the city of Trondheim. Finally, Chapter 7 provides conclusions and presents
recommendations for future work. A flowchart of the thesis outline is presented in Figure 1.1.

https://github.com/Julian-Wuijts/Generation-Adequacy-Scripts

1.3. Thesis Outline 3

Chapter 1: Introduction

Motivation, scope and thesis outline

Chapter 2: Background

Provides the required theory for

constructing the scripts: reliability

assessment, Analytical and MCS

methods and reliability metrics

Chapter 4: Methodological Approach

for Constructing the Analytical Scripts

Outlines the methodology and results

for the analytical scripts

Chapter 5: Methodological Approach

for Constructing the Non-Sequential

MCS Scripts

Outlines the methodology and results

for the non-sequential MCS scripts

Chapter 6: Examining the Impact of

Outages on the Output of a Wind Farm

Considers the effect of FOR on the

power and energy output of a wind

farm, along with a case study

Chapter 7: Conclusions and Future Work

Conclusion of the scripts’ results and the

impact of outages on the output of a

wind farm. Recommendations for future

work are also provided

Chapter 3: Test Systems

Introduction of the test systems used for

validating the scripts

Motivation, scope and thesis outline

Provides the required theory for

constructing the scripts: reliability

assessment, Analytical and MCS

methods and reliability metrics

Introduction of the test systems used

for validating the scripts

Outlines the methodology and results

for the analytical scripts

Outlines the methodology and results

for the non-sequential MCS scripts

Considers the effect of FOR on the

power and energy output of a wind

farm, along with a case study

Conclusions of the scripts’ results and

the impact of outages on the output of a

wind farm. Recommendations for future

work are also provided

Figure 1.1: Schematic outline of the thesis structure

2
Background

This Chapter will give an overview of the terminology used in power system reliability assessment. Furthermore,
the metrics used to quantify reliability and the methods for obtaining these metrics will be presented.

2.1. Reliability Assessment of Power Systems
Power system reliability studies cover many aspects, and various definitions are available online.
Reliability in itself can be defined as:

"Reliability is the ability of the system to fulfil its intended function" [16]

This general definition can be extended to power systems by including its function: supply power to
customers as economically as possible and with acceptable reliability and quality [17].

Within the definition of a reliable power system, there is still room for different concepts. They
can be defined as system security and system adequacy. System security considers the system’s ability
to respond to disturbances [7]. It can be used to ensure that the grid operates within its limits and the
system can fulfil its function. Limit violations that are observed during reliability studies can be used to
make changes to the system configuration.

System adequacy, on the other hand, doesn’t consider transient disturbances, i.e. static conditions
are assumed. It checks whether the components in the system are sufficient to supply energy to the
customers [7]. It can be used for long-term system planning to identify weaknesses and shortcomings in
the current system and/or possible future system expansions. A schematic indicating the relations
between the different power system reliability concepts is given in Figure 2.1.

Reliability
Assessment

Planning
Adequacy

Operational
 Security

Deterministic

Probabilisitic

Analytical
Methods

Monte Carlo
Simulation

Contingency
Analysis
(N-1, N-k
scenarios)

Figure 2.1: An overview of the methods used in power system reliability studies, adapted from [11]

4

2.1. Reliability Assessment of Power Systems 5

Both concepts should be considered to create a stable system that is resilient to disturbances in the short
term and can meet the consumer’s demand in the long term. Only system adequacy will be considered
for this thesis, as the focus is on long-term offshore wind farm planning.

Power system reliability assessment can also be split into functional zones: generation, transmis-
sion and distribution facilities [7]. Doing so allows for considering smaller, more relevant parts of a
system to improve the computational time and the interpretability of the results.

Based on these functional zones, hierarchical levels can be defined. They classify the considered
functional zones [17]. Hierarchical level 1 (HL1) only considers generation. Level 2 adds the transmission
system to the scope. Hierarchical level 3 considers all functional zones and thus looks at the complete
system. An overview of the different hierarchical levels is given in Figure 2.2.

Figure 2.2: Hierarchical levels within power system reliability assessment, based on [7].

2.1.1. Deterministic Methods
With deterministic methods, the effect of an event is studied, and it is checked whether the system is
still within an acceptable range. This method, thus, doesn’t consider the likelihood of an event and will
not be considered in this thesis.

A popular type of deterministic reliability study is the N-1 study, where one checks if the system is still
operational if any singular component fails at a particular time.

2.1.2. Probabilistic Methods
Some system states are more likely to occur than others, so it makes sense to consider the probability of
being in that state. Probabilistic methods do exactly this, and two commonly used methods, analytical
and Monte Carlo Simulation methods, will be elaborated on below.

2.2. Analytical Methods 6

2.2. Analytical Methods
With analytical reliability studies, a mathematical model of a system is used to calculate the reliability
metrics. Generation and load models are required to assess the system’s adequacy for a given time
instance to obtain these metrics. The chosen models are elaborated on in the forthcoming sections.

2.2.1. Generation Model
A way to model the generation units is by using a Capacity Outage Probability Table (COPT), presented
in [7]. It gives an overview of the states the generators can be in and their corresponding output. In
its basic form, it takes the capacity and (un)availability as inputs, with which the probability of being
in a specific state can be found using a recursive algorithm. The formula for finding the cumulative
probability for a given capacity outage state is shown in Equation 2.1.

𝑃[𝑋] = (1 − 𝑢) · 𝑃′[𝑋] + 𝑢 · 𝑃′[𝑋 − 𝐶] (2.1)

where: X = Capacity outage state [MW]
u = Unavailability of the generator
𝐶 = Capacity of the generation unit being added
𝑝𝑖 = Probability of being in state 𝑖

𝑃[𝑋] = Cumulative probability after the new generation unit is added
𝑃′[𝑋] = Cumulative probability before the new generation unit is added

In Equation 2.1, P’[X] is initialised to 1 for X ≤ 0 and the probabilities that are not defined yet are set to zero.

A possible extension to this method is to include additional states for a generation unit. In its
simplest form, a generation unit has two states: available at full capacity or unavailable. It could,
however, also be possible for the generation unit to unintentionally be forced to operate below the rated
capacity in a so-called derated state. Adding a generation unit with derated states can be done by
summing over all states, as shown in Equation 2.2. In the case that n=2, i.e. no derated states, Equation
2.2 reduces to Equation 2.1.

𝑃[𝑋] =
𝑛∑
𝑖=1

𝑝𝑖 · 𝑃′[𝑋 − 𝐶𝑖] (2.2)

where: X = Capacity outage state [MW]
n = Number of unit states
𝐶𝑖 = Capacity outage of state 𝑖 for the generation unit being added
𝑝𝑖 = Probability of being in state 𝑖

𝑃[𝑋] = Cumulative probability after the new generation unit is added
𝑃′[𝑋] = Cumulative probability before the new generation unit is added

A short example of how to construct a COPT with a few generation units, where one has a derated state,
is given below, with the generator data given in Tables 2.1 and 2.2.

Table 2.1: Generator data for an example of how to construct a COPT

Generator
number

Capacity
[MW] Unavailability

1 10 0.02
2 25 0.03
3 50 0.01
4 25 see Table 2.2

Table 2.2: Generator states for Generator 4 for an
example on how to construct a COPT

State
number

Capacity
outage
[MW]

State
probability

1 0 0.97
2 15 0.02
3 25 0.01

2.2. Analytical Methods 7

Adding the first generation unit:

𝑃(0) = (1 − 0.02) · 1.0 + 0.02 · 1.0 = 1.0
𝑃(10) = (1 − 0.02) · 0 + 0.02 · 1.0 = 0.02

Adding the second generation unit:

𝑃(0) = (1 − 0.03) · 1.0 + 0.03 · 1.0 = 1.0
𝑃(10) = (1 − 0.03) · 0.02 + 0.03 · 1.0 = 0.0494

𝑃(25) = (1 − 0.03) · 0 + 0.03 · 1.0 = 0.03
𝑃(35) = (1 − 0.03) · 0 + 0.03 · 0.02 = 0.0006

Adding the third generation unit:

𝑃(0) = (1 − 0.01) · 1.0 + 0.01 · 1.0 = 1.0
𝑃(10) = (1 − 0.01) · 0.0494 + 0.01 · 1.0 = 0.058906

𝑃(25) = (1 − 0.01) · 0.03 + 0.01 · 1.0 = 0.0397
𝑃(35) = (1 − 0.01) · 0.0006 + 0.01 · 1.0 = 0.010594

𝑃(50) = (1 − 0.01) · 0 + 0.01 · 1.0 = 0.01
𝑃(60) = (1 − 0.01) · 0 + 0.01 · 0.0494 = 0.000494

𝑃(75) = (1 − 0.01) · 0 + 0.01 · 0.03 = 0.0003
𝑃(85) = (1 − 0.01) · 0 + 0.01 · 0.0006 = 0.000006

Adding the fourth generation unit:

𝑃(0) = 0.97 · 1.0 + 0.02 · 1.0 + 0.01 · 1.0 = 1.0
𝑃(10) = 0.97 · 0.058906 + 0.02 · 1.0 + 0.01 · 1.0 = 0.08713882

𝑃(15) = 0.97 · 0.0397 + 0.02 · 1.0 + 0.01 · 1.0 = 0.068509
𝑃(25) = 0.97 · 0.0397 + 0.02 · 0.058906 + 0.01 · 1.0 = 0.04968712

𝑃(35) = 0.97 · 0.010594 + 0.02 · 0.0397 + 0.01 · 0.058906 = 0.01165924
𝑃(40) = 0.97 · 0.01 + 0.02 · 0.0397 + 0.01 · 0.0397 = 0.010891

𝑃(50) = 0.97 · 0.01 + 0.02 · 0.010594 + 0.01 · 0.0397 = 0.01030888
𝑃(60) = 0.97 · 0.000494 + 0.02 · 0.01 + 0.01 · 0.010594 = 0.00078512

𝑃(65) = 0.97 · 0.0003 + 0.02 · 0.01 + 0.01 · 0.01 = 0.000591
𝑃(75) = 0.97 · 0.0003 + 0.02 · 0.000494 + 0.01 · 0.01 = 0.00040088

𝑃(85) = 0.97 · 0.000006 + 0.02 · 0.0003 + 0.01 · 0.000494 = 0.00001676
𝑃(90) = 0.97 · 0 + 0.02 · 0.0003 + 0.01 · 0.0003 = 8.99 · 10−6

𝑃(100) = 0.97 · 0 + 0.02 · 0.000006 + 0.01 · 0.0003 = 3.12 · 10−6

𝑃(110) = 0.97 · 0 + 0.02 · 0 + 0.01 · 0.000006 = 6 · 10−8

2.3. Monte Carlo Simulation Methods 8

2.2.2. Load Model
A load model describes the loading in a system over a given period, which is usually chosen to be a year.
Within the specified period, there are several time increments of equal size. Commonly used increments
are yearly, weekly, daily and hourly loads. The profiles can be created with real-world data or be based
on it.

The chosen profile for this application is the IEEE load model due to the availability of reference
reliability metrics in literature, which will be elaborated on in 4.1.3. It has multiple timescales, such as a
yearly, weekly, daily and hourly peak load. Only the yearly peak load has to be specified to create these
different timescales. The other profiles are a percentage of the peak load one timescale layer above it.
For example, the Weekly Peak Load (WPL) is a percentage of the Yearly Peak Load (YPL) for 52 weeks.
To obtain the Daily Peak Load (DPL) from the WPL, a percentage of the WPL is specified for all seven
days of the week. Finally, the Hourly Peak Load (HPL) is calculated as a percentage of the DPL for the
24 hours in a day. The IEEE load profile even distinguishes between a weekday and the weekend, as
well as between winter, summer and spring/fall. The percentages to obtain these profiles are given in
Tables F.1, F.2 and F.3 in Appendix F.

The load curves can be plotted in chronological or descending order, as shown in Figure 2.3. The latter
is called a Load Duration Curve (LDC) and gives an overview of the distribution of the load levels for a
year in per-unit (pu). From Figure 2.3b, it can be noted that increasing the resolution of the load profiles
results in lower peak load values. As the profiles with fewer time increments consider the peak load
value during that period for the entire duration, the actual loading is overestimated.

(a) IEEE load curve for the various peak loads in per-unit (b) IEEE load duration curve for the various peak loads in per-unit

Figure 2.3: IEEE load curve and load duration curve

2.3. Monte Carlo Simulation Methods
If no mathematical system model is available or when an analytical method’s computational time
becomes too large, Monte Carlo Simulation (MCS) methods become a viable alternative. Instead of
using predefined mathematical models and data, a number is generated from a distribution to indicate
the system’s state. Uniform and exponential distributions are commonly used to draw random variables.
The former has an equal probability for every value between 0 and 1, while the latter has a probability
that decreases exponentially the closer it gets to 1. A graph illustrating the probabilities within a uniform
distribution is shown in Figure 2.4.

2.3. Monte Carlo Simulation Methods 9

f(x)

1

10 x

Figure 2.4: Probability density function f(x) for a uniform distribution, adapted from [18]

In Figure 2.4, the entire interval between 0 and 1 has the same probability, and integrating the area
underneath the curve results in a cumulative probability of 1.
A random variate from a non-uniform distribution cannot be obtained directly from a random number
generator. Therefore, another method is used: the inverse transform method. The exponential
distribution will be used as an example here, with a probability distribution function (PDF) as shown in
Equation 2.3, where 𝜆 represents the rate parameter of the distribution.

𝑓 (x) = 𝜆 · 𝑒−𝜆·x (2.3)
The cumulative distribution function (CDF) can be obtained by integrating the PDF, resulting in a
distribution between 0 and 1. The formula to obtain the CDF is shown in Equation 2.4.

𝐹(x) = 1 − 𝑒−𝜆·x (2.4)
Now that the CDF has been obtained as a distribution between 0 and 1, it can be set equal to a uniform
distribution U, resulting in F(x)=U. The inverse transform method now takes the inverse of the CDF to
obtain Equation 2.5. Figure 2.5 gives a graphical representation of the inverse transform method.

𝑋 = 𝐹−1(U) = − 1
𝜆
· ln(1 − U) = − 1

𝜆
· ln(U) (2.5)

Simplifying 1-U to U in Equation 2.5 is possible due to the uniform probabilities between 0 and 1 for U.
1-U results in a mirrored distribution, but this is the same as the distribution U because of the equal
probability for all values.

Figure 2.5: Graphical representation of the inverse transform method, adapted from [9]

2.3. Monte Carlo Simulation Methods 10

From Figure 2.5, it can be observed that integrating the PDF results in a CDF. A random number from
the uniform distribution U is found, and the intersection with the CDF curve results in the value of x,
called the random variate. A random number is drawn from a certain distribution with a value between
0 and 1. It can indicate the state of a system or component, which will be elaborated on in the three
MCS methods below.

The MCS methods can be introduced now that the different ways to obtain a random variate have been
discussed. This thesis will focus on how to apply the MCS methods to obtain a generation model. A
more general description of MCS methods can be found in [19].

There are a few differences between the methods, but one significant distinction is whether a sequential
or non-sequential sampling method is used. The sequential method considers the previous state
in determining the next state, while the non-sequential method assumes that all sampled states are
independent. The available MCS methods will be elaborated on in the sections below.

2.3.1. State Sampling Method
State sampling is a non-sequential method. This means that the current state is not dependent on
previous or future states. A random number is generated in the interval [0,1] for each component in
the system and combined to determine the state of the complete system. Taking a generator with an
UP and DOWN state and a specific forced outage rate (FOR) as an example, the generator state can be
determined by generating a random number and comparing it with the FOR. A random number smaller
than the FOR means that the generator is in the DOWN state, while a random number that is greater
than the FOR results in the generator being in the UP state. This modelling approach can also be used
for a generator with derated states by adding additional probability ranges for each state. An example
of how to transform a generator model to a component state probability table is given in Table 2.3.

Table 2.3: A generator state probability table and its corresponding state sampling table

Table 2.4: Generator state probability table

Generator State Probability
Up (100%) 0.85
Derated 1 (50%) 0.07
Derated 2 (25%) 0.05
Down (0%) 0.03

Table 2.5: Generator state sampling table

Generator State Probability Range
Up (100%) U ≥ 0.15
Derated 1 (50%) 0.08 ≤ U < 0.15
Derated 2 (25%) 0.03 ≤ U < 0.08
Down (0%) U < 0.03

One of the advantages of state sampling is the simplicity of sampling a random number from a uniform
distribution, while a drawback is that the frequency and duration of individual events cannot be
represented with this non-sequential method [10].

2.3.2. State Duration Method
A sequential approach to MCS could be the state duration method. The sequential nature means that
the next component state depends on the previous one. A chronological state profile is created for
each component, where the component alternates between an UP and DOWN state. Furthermore, the
assumption is made that the generator is in the UP state at the start of an iteration. The profiles are
obtained by considering a component’s time to failure (TTF) and time to repair (TTR) distributions.
Exponential distributions are commonly chosen to represent the TTF and TTR distributions, but other
distributions could also be used. The formulas for obtaining TTF and TTR values can be found in
Equation 2.6.

TTF = − 1
𝜆
· ln(𝑈)

TTR = − 1
𝜇
· ln(𝑈)

(2.6)

2.3. Monte Carlo Simulation Methods 11

An example of constructing a state profile for a two-generator system will be given below. The two
generators in this example use imaginary and unrealistic data with a high MTTR value. This is done to
clearly demonstrate the sequence of states, although a more realistic system would have a much shorter
repair time in relation to the MTTF. The generator data that is used in this example is presented in Table
2.6, while the resulting state duration profiles are given in Figure 2.6. The summed generation profile is
obtained by summing the two generation profiles together and is shown in Figure 2.7.

Table 2.6: Characteristics of the generators used in the summed generation profile example in Figures 2.6 and 2.7

Generator type Hydro Thermal
Capacity [MW] 20 40
MTTF [hours] 3650 1460
MTTR [hours] 825 675

Thermal generation profile

Hydro generation profile

Figure 2.6: Individual generation profiles for the generators

2.3. Monte Carlo Simulation Methods 12

Summed generation profile

Figure 2.7: System state profile for the generators presented in Table 2.6

A similar procedure is followed when adding derated states. The assumption that the generator is
operational at the start of the generator profile still holds. After that, the failure rates that connect the
operational state to all the other states are used to calculate a TTF for each transition. The shortest
duration out of these TTFs will be chosen as the state to transition to. An example of a generator model
with a derated state is given in Figure 2.8.

Up

Derated Down

𝜆1 𝜆2

𝜇1 𝜇2

Figure 2.8: Schematic of the states of a generation unit with a derated state, based on [20]

The 𝜆 and 𝜇 parameters shown in Figure 2.8 represent the transition rates between the states. It
can be observed that there are no transitions between the derated state and down state. This is
because the assumption is made that the generator will be repaired immediately once it leaves the
operational state. The shortest TTF is thus followed by the TTR that is simulated using the repair
rate from the state it is departing. Implementations without this assumption are described in [9] and [20].

An advantage of this method is the ease of reliability metric calculations by overlaying the system state
profile with the load profile. Disadvantages include the increased computational time compared to the
state sampling method and the potential lack of available metrics like the TTF and TTR distributions
[10].

2.3. Monte Carlo Simulation Methods 13

2.3.3. State Transition Method
The state transition method is also sequential but considers the transitions between system states instead
of individual components. An important criterion is that this method can only be used if the TTF and
TTR distributions are exponential. This allows for the summation of the individual component failure
rates, resulting in a system transition rate 𝜆 that can be used to determine the duration of the current
state. The system transition rate can be calculated using Equation 2.7.

𝜆 =

𝑛∑
𝑖=1

𝜆𝑖 (2.7)

To obtain the next state that the system will transition to, the probability of transitioning to each state
has to be calculated using Equation 2.8. In this equation, the transition rate for state 𝑗 is divided by the
sum of all state transition rates to get the probability of transitioning to state 𝑗, 𝑃𝑗 .

𝑃𝑗 =
𝜆 𝑗

𝑛∑
𝑖=1

𝜆𝑖

(2.8)

The sum of the individual state probabilities is one, as the system will transition to another state at some
point. A list with the cumulative state probabilities is created to find the next state. Then, a uniform
random number is generated and projected on the cumulative probability distribution. The interval in
which the random number falls will be selected as the next state. If this means that a component fails,
its failure rate will be replaced by its repair rate, and the procedure of obtaining a new state will be
repeated.
A deeper understanding of the state transition method, including the mathematical proof, can be
obtained from [21].

2.3.4. Stopping Criteria
The principle behind MCS methods is built upon two fundamental mathematical theorems: the law of
large numbers and the central limit theorem [22]. An observation 𝑋𝑖 can be made, but one observation
will not give an accurate result. However, by repeating this process for 𝑁 simulation years, a sample
mean 𝐸(𝑋) can be obtained. The formula for obtaining the sample mean can be found in Equation 2.9.

𝐸(𝑋) = 1
𝑁

𝑁∑
𝑖=1

𝑋𝑖 (2.9)

According to the law of large numbers, the sample mean will converge to the true mean if a large number
of simulation years is considered. This law can be combined with the central limit theorem, that states
that any distribution with a large number of samples will follow a Gaussian distribution. In this case,
the sampled mean can be approximated by a mean of 𝜇𝑥 and a variance of 𝜎𝑥2

𝑁 , when 𝑁 is sufficiently
large, as shown in Equation 2.10.

lim
𝑁→∞

𝐸(𝑋) = 𝜇𝑥 (2.10)

Increasing the number of simulation years will reduce the variance of the sampled mean. This will
increase the accuracy of the sampled mean and get it closer to the true mean. An important distinction
can be made between accuracy and precision. The accuracy of an index refers to the difference between
the estimated value and the true value, while the precision considers the variance from the obtained
sample mean. An example illustrating the differences between accuracy and precision can be found in [9].

Increasing the number of simulation years will increase computational time, so a trade-off has to be
made between accuracy and computational time. An index that can aid in making that decision is the
coefficient of variation (CoV). It is a unitless quantity that measures the convergence of a simulation
and is given as the ratio between the sampled standard deviation and the mean. The formula for the
standard deviation is shown in Equation 2.11, while the formula for the CoV can be found in Equation
2.12.

2.4. Reliability Metrics 14

𝜎 =

√√√
1

𝑁 − 1

𝑁∑
𝑖=1

(𝑋𝑖 − 𝐸(𝑋))2 (2.11)

𝐶𝑜𝑉 =
𝜎√

𝑁 · 𝐸(𝑋)
(2.12)

The CoV can be used in two ways to determine when to stop the simulation. The first option is to
calculate the CoV during every iteration and stop when it is less than a predefined value. Although
this approach ensures that no redundant simulations are done, the computational time could still be
higher due to calculating the CoV, which includes a computationally intensive summation, during each
iteration. A second option would be to calculate the CoV once after a specified number of iterations has
been carried out. If the CoV has not gotten below a predefined value, the number of samples has to be
increased. This method has reduced computational requirements because the CoV is only calculated
once, but finding the correct number of iterations takes some trial and error. Not choosing the correct
number of iterations could lead to an unnecessarily longer computation time.

2.4. Reliability Metrics
Now that a framework for classifying reliability studies has been defined, a closer look will be taken at
the output of these studies: How can reliability be quantified? When specifically looking at generation
adequacy, the moments when the load is greater than the generation are given as a fraction of the total
timescale. This can be a single number, such as the total time or total lost energy, or a series of numbers
with the frequency and duration of insufficient generation. The first metric gives a quick overview of a
system’s adequacy, while the latter provides more insight into the severity of individual generation
deficits over time. Both metrics are used for reliability studies, depending on the type of study.

2.4.1. LOLP
The simplest Loss of Load based index is the Loss of Load Probability (LOLP). It combines the load
profile and installed capacity to compute the maximum allowable capacity outage at a given instance, 𝑡.
The probability of having a capacity outage larger than the maximum allowable capacity outage yields
LOLP, using Equation 2.13.

𝐿𝑂𝐿𝑃𝑡 = 𝑃(𝑋 > 𝐶 − 𝐿𝑡) (2.13)

LOLP is a given as a unitless probability but can be interpreted as the fraction of time that the load
demand is not met during the time interval considered for calculating LOLP (i.e. x hour(s) or x year(s),
with x ≤ 1). The conversion from a unitless probability to a fraction with time units can only be done if
a singular load increment is used, like a CYPL model. Furthermore, with a singular load increment, it
is possible to change the fraction to a different time increment, like hours or days/year for the CYPL
model, by multiplying the fraction by the number of hours (8760) or days (365) in a year, respectively.

2.4.2. LOLE
The most used metric for power system reliability studies is Loss of Load Expectation (LOLE) [8], which
builds on the calculation for LOLP by multiplying the probability of each time increment with the
duration of that time increment. Equation 2.14 gives the formula to calculate LOLE.

𝐿𝑂𝐿𝐸 =

365 or 8760∑
t=1

𝐿𝑂𝐿𝑃𝑡 · Δ𝑇
[
days
year or hours

year

]
(2.14)

The unit for LOLE depends on the time increment used. Any of the load profiles mentioned in 2.2.2 can
be used, but the two most common ones are the DPL, where Δ𝑇 is one day, and the HPL, where one
hour is used for Δ𝑇. There are some important things to be considered when converting between LOLE,
LOLP and the time units. It is possible to convert an LOLE value to an LOLP value by multiplying by
the number of time increments in a year, which can only be done the other way around by considering a
single load increment.

2.4. Reliability Metrics 15

Converting between units for LOLE is not possible, as the load profiles used are different. For example,
if a LOLE value in days/year would be converted to hours/year by multiplying by a factor of 24, it is
assumed that the loading during each hour stays the same. This is rarely the case and does not occur for
this thesis’s daily peak load model.

2.4.3. EENS
Another metric used is the Expected Energy Not Served (EENS), also known as Loss of Energy
Expectation (LOEE). The benefit of this metric is that the severity of an outage is now taken into account
instead of only indicating the fraction of time when generation is insufficient for the load. The first step
in obtaining EENS is to find the expected unserved energy by multiplying the amount of unserved
energy by the probability of being in that state, as shown in Equation 2.15.

Expected Unserved Energy = [𝑥 𝑗 − (𝐶 − 𝐿𝑡)] · 𝑝(𝑋 = 𝑥 𝑗) (2.15)

It should be noted that the expected unserved energy cannot be negative. If the outage state 𝑥 𝑗 is smaller
than the allowed outage, [𝑥 𝑗 − (𝐶 − 𝐿𝑡)] will be a negative number. In this case, there is no unserved
energy, and its value should be discarded when calculating EENS. The expected unserved energy for
a singular time increment can now be found using Equation 2.15 for all outage states, starting from
𝑥 𝑗 = 𝐶 − 𝐿𝑡 to avoid the negative capacity deficits. The resulting formula is given in Equation 2.16

𝐸𝐸𝑁𝑆𝑡 =

𝐶∑
𝑥 𝑗=𝐶−𝐿𝑡

[𝑥 𝑗 − (𝐶 − 𝐿𝑡)] · 𝑝(𝑋 = 𝑥 𝑗) [MWh] (2.16)

Finally, EENS can be obtained by iterating over all time increments with Equation 2.17.

𝐸𝐸𝑁𝑆 =

8760∑
𝑡=1

𝐶∑
𝑥 𝑗=𝐶−𝐿𝑡

[𝑥 𝑗 − (𝐶 − 𝐿𝑡)] · 𝑝(𝑋 = 𝑥 𝑗)
[
MWh
year

]
(2.17)

2.4.4. ENDS and LOLP’
Furthermore, complementary metrics exist for LOLE and EENS, where the metrics are given as a
percentage of a year instead of the hours or days per year. These are called LOLP’ and Expected Demand
Not Served (EDNS), respectively, and can be obtained by dividing LOLE or EENS by the number of
hours or days in a year, depending on the unit used. LOLP’ is used instead of LOLP to indicate that the
quantity could have been derived from a LOLE value that was constructed with more than one time
increment. However, when a CYPL model is used, the values of LOLP and LOLP’ are the same.

3
Test Systems

This chapter presents the creation and validation of scripts for HL1 adequacy analysis for the analytical and Monte
Carlo simulation methods. The scripts will be tested using two well-known test systems: the IEEE Reliability
Test System (IEEE RTS) [23] and the Roy Billinton Test System (RBTS) [24]. These will be elaborated on in the
sections below.

3.1. IEEE Reliability Test System
The IEEE RTS was published in 1979 by the IEEE Subcommittee on the Application of Probability
Methods to compare reliability evaluation techniques. The reliability test system has been updated
over the years to incorporate new technologies and additional component data into the system. In the
literature, these revisions are denoted by including the year of the revision behind the name of the test
system. The original system from 1979 would thus be denoted as "RTS-79". Revisions were made in
1986 and 1996, but the benchmark data used for validating the scripts in this thesis use the original
system from 1979. Some key figures of the IEEE RTS-79 can be found in Table 3.1

Table 3.1: Key figures for the IEEE RTS

Number of buses 24
Number of
transmission lines 38

Number of generators 32

Voltages [kV] 230,
138

System peak load [MW] 2850
Total installed capacity [MW] 3405

To create a COPT for the analytical method, the capacities of individual generators must be known. The
type of generator, along with their capacity and FOR, is presented in Table 3.2

Table 3.2: Generator data for the IEEE RTS

Generator type Capacity
[MW] Number of units Forced Outage Rate

(FOR)
Oil/Steam 12 5 0.02

Oil/Combustion Turbine 20 4 0.1
Hydro 50 6 0.01

Coal/Steam 76 4 0.02
Oil/Steam 100 3 0.04

Coal/Steam 155 4 0.04
Oil/Steam 197 3 0.05

Coal/Steam 350 1 0.08
Nuclear 400 2 0.12

A one-line diagram of the IEEE RTS-79 can be found below in Figure 3.1. Additional system data can be
found in [23].

16

3.1. IEEE Reliability Test System 17

Figure 3.1: Schematic of the IEEE RTS, reproduced from [10]

3.2. Roy Billinton Test System 18

3.2. Roy Billinton Test System
The RBTS is a test system developed by the Power System Research Group at the University of
Saskatchewan, Canada, as part of their research programs and education on reliability. As the IEEE
RTS already existed, the reason for proposing a new test system is that the IEEE RTS needs a computer
to be solved. The RBTS aims to be more suitable for understanding basic reliability concepts. This is
mainly done through reducing the size of the network. Derated states can be included for the two
40 MW thermal units if desired. They are operation states of a generation unit in which the output
is somewhere in between the fully operational, UP, state and the outage, DOWN, state. The 40 MW
thermal generators in the RBTS have been assigned one derated state, which operates at half of the
maximum capacity. Including an extra state means that the availability and FOR probabilities also
change. Each output has been assigned a new probability to be in that particular state, with the sum of
all state probabilities still equal to one.

The original system [24], which was created in 1989, will be used in this thesis. A summary of
some key characteristics of the RBTS is given in Table 3.3.

Table 3.3: Key figures for the RBTS

Number of buses 6
Number of
transmission lines 9

Number of generators 11
Voltage [kV] 230

Bus voltage limits 𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥 [pu] 0.97,
1.05

System peak load [MW] 185
Total installed capacity [MW] 240

The generator characteristics for constructing a COPT for the analytical method are given in Table 3.4.

Table 3.4: Generator data for the RBTS

Generator type Capacity
[MW] Number of units Forced Outage Rate

(FOR)
Hydro 5 2 0.01

Thermal 10 1 0.02
Hydro 20 4 0.015

Thermal 20 1 0.025
Hydro 40 1 0.02

Thermal 40 2 0.03

A one-line diagram of the RBTS can be found below in Figure 3.2. For additional data about the system,
such as the bus and line data, the reader is referred to [24].

3.2. Roy Billinton Test System 19

Figure 3.2: Schematic of the RBTS, reproduced from [10]

4
Methodological Approach for

Constructing the Analytical Scripts

Using the theory in Sections 2.2 and 2.4, scripts are created to obtain the load curves and the COPT and calculate
the reliability metrics. A distinction will be made between the analytical method with and without wind, as there
are differences between the procedure for constructing the COPT and the available benchmark data for validating
the results. As the scripts for obtaining the load curves and the reliability indices are only used for validating
the results for the method without wind, they will only be elaborated on in Section 4.1. The inclusion of wind
generation into the scripts will be covered in Section 4.2.

4.1. Analytical Method without Wind Considerations
The scripts used to obtain reliability indices using the analytical method without wind considerations
will be elaborated on in the upcoming sections. The complete codes for the COPT, load curves and
reliability indices scripts can be found in Appendices B.1, B.2 and B.3.

4.1.1. COPT
The procedure for obtaining the Capacity Outage Probability Table is based on the description given in
Section 2.2.1. All the computations for obtaining the COPT are done within the calc_COPT function,
which takes the generator data as input. It contains the capacity outage levels and accompanying
probabilities of having that much capacity outage for all generators. This data is defined in an Excel file
and imported to the script, after which the capacity outage levels and probabilities are stored in sepa-
rate variables. These are either lists or matrices, depending on whether or not derated states are included.

A COPT is created using a recursive algorithm. The same procedure is used for each iteration
in which a new generator is added. The first step of an iteration is to create a list with the new generator
capacity outage levels. This is done by adding all the capacity outage states of the generator that are
added during that iteration individually to the existing list of outage capacities, resulting in an updated
list. There could be duplicate outage levels in the list, which will be checked by the remove_duplicates
function, and duplicate levels will be removed if applicable.

The cumulative probability associated with every capacity outage level can now be calculated us-
ing Equation 2.1. The cumulative probabilities from the previous iteration are found by subtracting
each outage capacity level of the added generator from the capacity outage list. The result of this
subtraction is then checked in the COPT from the previous iteration. If the result is smaller than zero,
the cumulative probability equals 0. A result larger than the largest capacity outage in the previous
COPT also yields a zero probability. Another possibility is an exact match between the COPT and the
result, in which case the probability of that outage level in the COPT is assigned. For the final case, when
the result is between the minimum and maximum capacity outage level of the COPT, and there is no
exact match, the capacity outage levels in which the result lies are identified. The probability of being in
the upper capacity outage level out of the two neighbouring outage levels is chosen. These probabilities
are obtained for all outage states for the generator that is added to the COPT and appended to a list.

20

4.1. Analytical Method without Wind Considerations 21

The list of cumulative probabilities is then multiplied by the probability of being in that generator’s
capacity outage state. A generator without derated states would only have an available and unavailable
state. Summing the multiplication results together yields the cumulative probabilities for the updated
COPT. This process is repeated until all generators are added to the COPT. Pseudo-code for creating a
COPT without wind considerations can be found below in Algorithm 1.

Algorithm 1: Pseudo-code for obtaining a COPT without wind considerations
Input: Generator data is imported from a datafile, containing the capacity outage levels for each

generator Gen_outage_capacity and the associated probability of being in that state
Gen_outage_probability.

Output: A list with the combined generator outage capacities System_Outage_Capacity and a list
with the cumulative probabilities for the combined generator outage capacities
System_Outage_Probability.

1 Function calc_COPT(Generator_data):
2 Initialise lists for the System_Outage_Probability for the next and previous iteration;
3 for Each generator do
4 for The selected generator do
5 Add each capacity outage state of the specific generator to each value in the

System_Outage_Capacity list and remove duplicate outage levels;
6 Initialise the new_System_Outage_Probability list;
7 for Each System Outage Capacity do
8 Initialise the new and old probability lists;
9 for Each Generator Outage capacity state do

10 Calculate X - C for each System Outage Capacity and store the results in System
Outage Capacity minus New Generator;

11 if X-C is smaller than 0 then
12 𝑃𝑜𝑙𝑑 equals 1;
13 else if X-C is bigger than the maximum old system outage then
14 𝑃𝑜𝑙𝑑 equals 0;
15 else if X-C is equal to an old system outage value then
16 𝑃𝑜𝑙𝑑 equals the old system outage probability value;
17 else
18 X-C falls between one of the states. The probability associated with the upper

state boundary is assigned to 𝑃𝑜𝑙𝑑;
19 Add the value of 𝑃𝑜𝑙𝑑 to a list

Calculate 𝑃𝑛𝑒𝑤,𝑡𝑒𝑚𝑝 using EQUATION
Add the value of 𝑃𝑛𝑒𝑤,𝑡𝑒𝑚𝑝 to a list

20 Sum the probability contributions of one System Outage Capacity and add them to
the list of all System Outage Capacities.

21 Assign the new system outage capacity and probability to the old lists in preparation for
the next iteration.

22 return System_Outage_Capacity, System_Outage_Probability

4.1. Analytical Method without Wind Considerations 22

4.1.2. Load Curves
The load curves for the yearly, weekly, daily and hourly peak load are made with the function Cre-
ateLoadCurve, which takes the YPL as an input. This thesis uses the YPL from either the IEEE RTS-79
or RBTS. The percentages for obtaining WPL, DPL and HPL, given in Appendix F, are imported from
an Excel file. All load profiles are then modified to have a load increment for every hour, which allows
for plotting all load profiles in one graph.

Obtaining lists with hourly load increments is straightforward for the YPL, WPL and DPL. Mul-
tiply the load with a list of ones with the number of hours in the load profile’s time increment as its
length. The YPL would thus be multiplied by a list of ones with a length equal to the number of hours
in a year. The IEEE load profile uses 8736 for the number of hours in a year instead of the usual 8760.
This is because the model uses 52 weeks to represent a year, seven days for a week and 24 hours for a
day. This results in 52 · 7 · 24 = 8736 hours in a year. The YPL variable becomes a list with 8736 times the
YPL as an entry.

The WPL and DPL are constructed using the same method by multiplying all load increments
within the load profile with a list of ones that have a length of either 168 (the number of hours in a week)
or 24 (hours in a day). The HPL, on the other hand, is obtained using a different procedure. Its time
increment is already hours, so there is no need to use lists with ones to change the unit of time. The
hourly data is given as 24 data points during a day, but a distinction is made between a weekday and a
weekend. Furthermore, different load profiles are given depending on the season. Profiles are specified
for the summer, winter and spring/fall, as can be seen in Table F.3 in Appendix F. The first step in
constructing the HPL variable is to create lists for the three given seasons, with five weekdays and two
weekenddays. Based on the indicated week numbers for each season, i.e. weeks 1-8 correspond to the
winter, the corresponding data for a whole week during that season can be added to a list. The resulting
load curves are shown in Figure 2.3a, while load duration curves can be obtained by sorting the load
curves in descending order. These can be found in Figure 2.3b. The Python code used for constructing
and plotting the load (duration) curves can be found in Appendix B.2. Pseudo-code for the load curves
is shown below in Algorithm 2.

Algorithm 2: Pseudo-code for obtaining the IEEE load curves
Input: The Yearly Peak Load value of the test system is defined outside of the function and used

as an input for the load profiles
Output: Lists for the YPL, WPL, DPL and HPL in chronological and descending order for each

time increment specified in the time list. The descending lists are obtained by sorting
the chronological lists

1 Function createLoadCurve(YPL_value):
2 Define the number of time increments, which is 8736 for the IEEE profile

Multiply the YPL_value with a list of ones with the length of the time to obtain YPL_plot. As
all the values are the same, this is both the chronological and descending order list

3 WPL_chrono can be obtained by multiplying each weekly percentage by a list of 168
increments for the 7 x 24 = 168 hours in a week.

4 DPL_chrono is created by multiplying all the daily percentages by a list of 24 ones to create a
profile of a week with hourly increments. The profile is then duplicated to create a profile
with 52 weeks.

5 The HPL_chrono has different values for weekdays and weekends, as well as seasons. First, a
profile for a week is created for all seasons by adding 5 weekdays and 2 weekend days to
obtain week profiles.
The week profiles are then added to the year profile by selecting the right season based on
the week number ranges for the seasons.

6 return time, YPL_plot,
WPL_chrono,WPL_descend,DPL_chrono,DPL_descendHPL_chrono,HPL_descend

4.1. Analytical Method without Wind Considerations 23

4.1.3. Reliability Metrics
The script for calculating LOLP, LOLE, EENS, LOLP’ and ENDS is based on the theory presented
in Section 2.4. The three main metrics, LOLP, LOLE and EENS, are calculated using the following
functions: calc_LOLP, calc_LOLE and calc_EENS. The derived metrics, LOLP’ and ENDS, are obtained
by dividing LOLE and EENS by the number of time units in a year for the used unit. For example, if the
unit of LOLE is hours/year, the unitless metric LOLP’ can be found by dividing by the number of hours
in a year, which is 8736 for the used load profile. The Python code used for calculating the reliability
metrics can be found in Appendix B.3.

LOLP is a unitless metric that gives the probability of having a capacity deficit at one particular
time instant. The calc_LOLP function takes the capacity outage and cumulative probability of the COPT
and the load value as inputs. The load is subtracted from the installed capacity, and the COPT is used
to find the cumulative probability corresponding to the resulting value. For values below zero, the
cumulative probability is 1. A value higher than the highest outage level in the COPT has a cumulative
probability of 0. An exact match between the COPT outage level and value means that the probability
corresponding to the COPT outage level is assigned. Finally, if the value is between two outage levels,
the probability of the higher outage level is used.

The function for calculating LOLE, calc_LOLE, uses the same logic as the LOLP function. The
only difference this time is that multiple load increments are considered. The time increment is usually
a day or hour, and the considered period is often a year. The LOLP procedure is carried out for each
time increment, and the probabilities from each iteration are multiplied by the time increment used and
summed together. The Pseudo-code for obtaining LOLP and LOLE is given in Algorithm 27.

4.1. Analytical Method without Wind Considerations 24

Algorithm 3: Pseudo-code for obtaining the reliability indices LOLP and LOLE using an
analytical method

Input: The capacity outage levels for each generator Gen_outage_capacity and the associated
cumulative probability of being in that state Gen_outage_probability are used for obtaining
the reliability metrics, as well as the load profile

Output: A singular value for either LOLP or LOLE

1 Function calc_LOLP(Generator_Outage_Capacity, Cumulative_Outage_Probability, Load_Profile):
2 Find the maximum installed capacity Max_Capacity

The amount of outage that would cause a deficit Max_Outage = Max_Capacity - Load
3 if Max_Outage is smaller than 0 then
4 LOLP equals 1;
5 else if Max_Outage is equal to an outage state in Generator_Outage_Capacity then
6 LOLP equals the Cumulative_Outage_Probability associated with

Generator_Outage_Capacity;
7 else if Max_Outage is larger than Generator_Outage_Capacity then
8 LOLP equals 0;
9 else

10 Max_Outage falls between one of the states. for every outage state i in
Generator_Outage_Capacity do

11 if Max_Outage is between Generator_Outage_Capacity[i] and
Generator_Outage_Capacity[i+1] then

12 The probability associated with the upper state boundary is assigned to LOLP;

13 return LOLP
14 Function calc_LOLE(Generator_Outage_Capacity, Cumulative_Outage_Probability, Load_Profile):
15 Initialise an empty list P_list to store all probabilities

Find the maximum installed capacity Max_Capacity
16 for each time increment do
17 The amount of outage that would cause a deficit Max_Outage = Max_Capacity - Load if

Max_Outage is smaller than 0 then
18 P for the time increment equals 1;
19 else if Max_Outage is equal to an outage state in Generator_Outage_Capacity then
20 P for the time increment equals the Cumulative_Outage_Probability associated with one

state above the matching Generator_Outage_Capacity;
21 else if Max_Outage is larger than Generator_Outage_Capacity then
22 P for the time increment equals 0;
23 else
24 Max_Outage falls between one of the states. for every outage state i in

Generator_Outage_Capacity do
25 if Max_Outage is between Generator_Outage_Capacity[i] and

Generator_Outage_Capacity[i+1] then
26 The probability associated with the upper state boundary is assigned to LOLP;

27 return LOLE

4.1. Analytical Method without Wind Considerations 25

The calc_EENS function builds upon the LOLE function by including the severity of a capacity deficit.
The difference between the installed capacity and load is subtracted from all capacity outage states to
find possible capacity deficits. If there is a capacity deficit, it is multiplied by the probability of having
that amount of capacity outage. The energy computed for a single iteration is then summed together for
all time increments to obtain EENS over the specified period. The Pseudo-code for obtaining EENS is
given in Algorithm 4.

Algorithm 4: Pseudo-code for obtaining the reliability index EENS using an analytical method
Input: The capacity outage levels for each generator Gen_outage_capacity and the associated

individual probability of being in that state Gen_outage_probability are used for obtaining
the reliability metrics, as well as the load profile

Output: A singular value forEENS

1 Function calc_EENS(Generator_Outage_Capacity, Individual_Outage_Probability, Load_Profile):
2 Initialise the EENS value to 0

Find the maximum installed capacity Max_Capacity
3 for each time increment do
4 Initialise the energy sum E_Sum which stores the value of the energy not delivered

during one time increment for each outage state in Generator_Outage_Capacity do
5 The capacity outage Cap_Outage is equal to

(Generator_Outage_Capacity-(Max_Capacity-Load) if Cap_Outage is larger than 0 then
6 Energy not served contribution = Cap_Outage · Individual_Outage_Probability

associated with the outage state in Generator_Outage_Capacity
The individual Energy not served contributions are summed together in E_Sum ;

7 else
8 pass
9 The E_Sum of each time increment is added to EENS

10 return EENS

The reliability indices that are obtained using the script described in this section are verified using the
two test systems introduced in Sections 3.1 and 3.2: the IEEE RTS and RBTS. Benchmark values for the
IEEE RTS-79 are presented in [25] for an HPL model. It contains results for LOLE, EENS and their
derived metrics LOLP’ and EDNS.

The RBTS benchmark values are obtained from [26], which presents results for both an HPL and
YPL model. It doesn’t provide the derived quantities LOLP’ and EDNS, but these could be obtained
using the method presented in Section 2.4.4 if desired.

Another type of benchmark data that will be used are the values obtained from the scripts in [8].
The scripts developed in Kjetil’s Master Thesis also calculate reliability indices for the two test systems
mentioned before. A comparison between the available benchmark data and the results from the
scripts described in this thesis is given in Table 4.1 for the HPL model and Table 4.2 for the YPL model.
The absolute percentage difference between the benchmark value and the script is denoted with Δ.
Benchmark data that isn’t available has been denoted with ’N/A’ in the tables.

4.1. Analytical Method without Wind Considerations 26

Table 4.1: Comparison between benchmark data and the scripts presented in this thesis for the HPL model

LOLE
[hours/year]

LOLP’
[unitless]

Test System Benchmark Kjetil’s
Script [8] Script Δ

[%] Benchmark Kjetil’s
Sscript [8] Script Δ

[%]
IEEE RTS-79 9.36881 9.39389 9.39390 0.268 0.001069 0.001075 0.001075 0.561

RBTS 1.0919 1.0914 1.0914 0.046 N/A 0.000125 0.000125 N/A

EENS
[MWh/year]

EDNS
[MW/year]

Test System Benchmark Kjetil’s
Script [8] Script Δ

[%] Benchmark Kjetil’s
Script [8] Script Δ

[%]
IEEE RTS-79 1181.195 1176.278 1176.278 0.416 0.1348396 0.13464710 0.13464716 0.143

RBTS 9.8613 9.8603 9.8603 0.010 N/A 0.00112869 0.00112869 N/A

Table 4.2: Comparison between benchmark data and the scripts presented in this thesis for the YPL model

LOLE
[hours/year]

LOLP’
[unitless]

Test System Benchmark Kjetil’s
Script [8] Script Δ

[%] Benchmark Kjetil’s
Script [8] Script Δ

[%]
IEEE RTS-79 N/A 738.874 738.874 N/A N/A 0.08458 0.08458 N/A

RBTS 73.0728 72.8722 72.8723 0.274 N/A 0.00834 0.00834 N/A

EENS
[MWh/year]

EDNS
[MW/year]

Test System Benchmark Kjetil’s
Script [8] Script Δ

[%] Benchmark Kjetil’s
Script [8] Script Δ

[%]
IEEE RTS-79 N/A 128364.0 128364.0 N/A N/A 14.69368 14.69368 N/A

RBTS 823.2555 821.0000 821.0000 0.274 N/A 0.093979 0.093979 N/A

The results in Tables 4.1 and 4.2 show that the script developed in this thesis exactly matches the values
obtained in [8] apart from a one-digit difference on the last significant digit of some metrics. There are
minor differences compared to the other benchmark data, ranging from 0.1 to 0.5 %. A possible factor
contributing to the differences could be how different programming languages round intermediate
results. Overall, it can be concluded that the script used in this thesis is accurate enough to obtain
reliability metrics for generation adequacy analysis.

4.2. Analytical Method with Wind Considerations 27

4.2. Analytical Method with Wind Considerations
The COPT script used for creating a COPT table for a wind farm, and the procedure for validating the
obtained COPT will be elaborated on below.

4.2.1. COPT
A COPT can be constructed for a wind farm, as it consists of individual generators. One of the major
differences, however, is the absence of a limited number of power output states. A wind turbine starts
producing power from a wind speed referred to as the cut-in wind speed. With increasing wind speeds,
the power increases to its rated power and accompanying rated wind speed. From this point onwards,
the power is kept at the rated power level to protect the wind turbine’s components and limit the noise
production if there are limits at the turbine site, but this won’t be an issue for offshore wind farms. The
angle of the turbine blades with respect to the rotor hub, the so-called pitch, is altered for wind speeds
above the rated speed. If the pitch cannot be altered sufficiently anymore for higher wind speeds to keep
the stresses on the wind turbine within limits, the rotor will be positioned out of the wind direction,
and a brake will be applied. The wind speed at which this happens is called the cut-out wind speed.
A method to model the power profile of a wind turbine based on the rated power and wind speed
characteristics like the cut-in, rated, and cut-out wind speed is proposed in [27]. The power curve can
be plotted based on Equation 4.1:

𝑃output = 0 if 0 ≤ 𝑉 < 𝑉𝑐𝑖

= (𝐴 + 𝐵𝑣 + 𝐶𝑣2)𝑃𝑟 if 𝑉𝑐𝑖 ≤ 𝑉 < 𝑉𝑟

= 𝑃𝑟 if 𝑉𝑟 ≤ 𝑉 < 𝑉𝑐𝑜

= 0 if 𝑉 ≥ 𝑉𝑐𝑜

(4.1)

where: 𝑃𝑟 = rated power
𝑉𝑐𝑖 = cut-in wind speed
𝑉𝑟 = rated wind speed
𝑉𝑐𝑜 = cut-out wind speed

The variables A, B and C, which are used to find the power output between the cut-in and rated wind
speed, can be calculated using Equations 4.2, 4.3 and 4.4.

𝐴 =
1

(𝑉𝑐𝑖 −𝑉𝑟)2
·
(
𝑉𝑐𝑖(𝑉𝑐𝑖 +𝑉𝑟) − 4𝑉𝑐𝑖𝑉𝑟 ·

(
𝑉𝑐𝑖 +𝑉𝑟

2𝑉𝑟

)3
)

(4.2)

𝐵 =
1

(𝑉𝑐𝑖 −𝑉𝑟)2
·
(
4(𝑉𝑐𝑖 +𝑉𝑟) ·

(
𝑉𝑐𝑖 +𝑉𝑟

2𝑉𝑟

)3
− (3𝑉𝑐𝑖 +𝑉𝑟)

)
(4.3)

𝐶 =
1

(𝑉𝑐𝑖 −𝑉𝑟)2
·
(
2 − 4 ·

(
𝑉𝑐𝑖 +𝑉𝑟

2𝑉𝑟

)3
)

(4.4)

By inputting a wind speed profile ranging from 0 to 30 m/s into Equation 4.1, the power profile of a
wind turbine can be obtained by plotting the wind speed against the power output. This is done for a
typical wind turbine, the DTU 10 MW reference wind turbine [28], in Figure 4.1.

4.2. Analytical Method with Wind Considerations 28

Figure 4.1: Power output profile for the DTU 10 MW reference turbine based on the method in [27]

The next step in obtaining a wind turbine COPT would be creating a state probability table for the
power output. The power output of a wind turbine depends on the encountered wind speeds. For this
example, wind speeds of the coast of Trondheim (latitude 64°N, longitude 8°E) for 2019 have been used
from the xyz windatlas [29]. A chronological plot of the wind speeds is shown in Figure 4.2a, while
Figure 4.2b gives a probability distribution of the same data.

(a) Chronological wind speeds (b) Wind speed probability distribution

Figure 4.2: Wind speed data of the coast of Trondheim for 2019 [29]

By combining the power profile of a turbine and wind speed data, a probability distribution for the
power output can be made. This distribution can be split into several intervals, representing the output
states of a turbine. These states could be compared to the derated states of a conventional generation,
but the mechanical availability has not yet been considered. An example of a power output probability
distribution for the DTU 10 MW reference turbine with wind speeds from [29] is presented in Figure 4.3.

4.2. Analytical Method with Wind Considerations 29

Figure 4.3: Power output probability distribution for a turbine of the coast of Trondheim in 2019

With a probability distribution for the power output of a wind turbine now in place, the mechanical
failures of the turbine should be added to create a COPT. This can be done using Equation 4.5, presented
in [27]. It should be noted, however, that this equation returns the cumulative output instead of the
cumulative outage. Another example to aid the reader’s understanding can be found in [11].

Cumulative output probability for 𝑋output =

Xmax∑
k=0

©«
t∑

i=0

©«
s∑

j=0
qjH

(
𝑋output

i − cj

)ª®¬ · pi
ª®¬ (4.5)

where: Xmax = Maximum wind farm output
k = Number of possible Xoutput states
t = Number of turbines in the wind farm
s = Number of capacity states for a wind turbine

qj = Probability of operating in output state cj

H = Heaviside step function to check for valid states
Xoutput = Wind farm output [MW]

i = Available wind turbines
cj = Turbine output in state j
pi = Probability of i turbines being available

With Equation 4.5, the probability of having a particular output due to the wind is multiplied by the
probability of having a certain number of turbines available due to mechanical outages. The Heaviside
step function, H

(
𝑋𝑜𝑢𝑡𝑝𝑢𝑡

𝑖 − 𝑐 𝑗

)
, in Equation 4.5 checks if a combination of the number of available turbines

i and the power output state j is a valid result. If the argument is smaller than zero, H will be 0.
Otherwise, H is equal to 1.

If the result of the check is smaller than zero, the combination of i and j will result in an Xoutput larger
than the specified output. It should, therefore, not be included in the cumulative probability ranging
from 0 to Xoutput.

4.2. Analytical Method with Wind Considerations 30

Going through all positive output levels yields a Capacity Output Probability Table. A Capacity Outage
Probability table can now be obtained by reversing the order of the probabilities.
One optional step could be to reduce the number of states in the COPT. The number of states could
be significant, depending on the number of turbines and output states per turbine. The apportioning
method [14] can reduce the number of states to any desired number. The probabilities from the states
that fall between two of the new state levels are split up and assigned/apportioned to the probability of
the new state levels. The following equations, 4.6 and 4.7, can reduce the number of states in a COPT. It
uses the availability A and the outage capacity C. The subscripts m and n are used for the upper and
lower levels of the apportioned capacity outage levels, while the subscript i can be used for both the C
and A of the state that is being apportioned.

𝐴𝑛𝑖 = 𝐴𝑖 ·
𝐶𝑚 − 𝐶𝑖

𝐶𝑚 − 𝐶𝑛
(4.6)

𝐴𝑚𝑖 = 𝐴𝑖 ·
𝐶𝑖 − 𝐶𝑛

𝐶𝑚 − 𝐶𝑛
(4.7)

The described methods have been implemented in Python and will be validated in Section 4.2.2. The
script can be found in Appendix B.4, while the pseudo-code can be found in Algorithm 5.

Algorithm 5: Pseudo-code for obtaining a COPT with wind considerations
Input: Turbine data is imported from a datafile, containing the rated power, cut-in wind speed,

rated wind speed and cut-out wind speed. The FOR is specified in the file itself
Output: A list with the combined wind farm outage capacities Farm_Outage_Capacity and a list

with the cumulative probabilities for the combined wind farm outage capacities
Farm_Outage_Probability.

1 Function createPowerProfile(wind_speed,turbine_power_profile):
2 Import the turbine characteristics

Put the wind speed list through Equation 4.1 to find the power output profile. return
P_output, P_rated,wind_speed

3 A list of available power outputs states of the wind farm is created. Based on the power output
profile, the probability of being in any of the states can be determined.
The mechanical outage probability of the turbines can be found using a binomial distribution
for the (un)availability. The mechanical outage and wind power output are combined using
Equation 4.5.
The output probability table can be converted to an outage probability table by inverting the
order of the probability list.

4 Function Apportioning(Apportioned_States,State_Outage,State_Outage_Probability):
5 The desired Apportioned_States can be specified

Go through all states and apportion the probability of the states according to Equations 4.6
and 4.7.

6 return Apportioned_State_Outage, Apportioned_State_Outage_Probability

4.2. Analytical Method with Wind Considerations 31

4.2.2. Validation of the Results
Not many references are available that clearly describe the complete process from wind speeds to a
COPT. Therefore, the validation of the analytical method with wind considerations will be limited to
creating a COPT from the power output probability distribution.

An example of obtaining a reduced COPT using the apportioning method from a power output
probability distribution is presented in [13]. This paper uses a wind farm consisting of 10 turbines
with a power rating of 2 MW each. The number of states used to describe the wind conditions can
be chosen based on the desired accuracy and possible limitations in computational power. These are
presented in [13] in so-called State Capacity Outage Probability Tables (SCOPT), ranging from 2 to 11
states between 0 and 100 % capacity outage. A 5-state SCOPT for the wind farm has been chosen to
validate the results, as it is later given as an example in [13] when the wind conditions and mechanical
reliability are combined. The 5-state SCOPT obtained from the script is shown below in Table 4.3.

Table 4.3: 5 state COPT for the wind conditions

5 SCOPT
Capacity Outage

[%]
Individual
Probability

0 0.07021
25 0.05944
50 0.11688
75 0.24450
100 0.50897

The unavailability of the wind turbines is assumed to be four percent. The probability distribution in
Table 4.4 is obtained for the wind farm using a binomial distribution.

Table 4.4: Capacity outage probability due to the mechanical reliability of the turbines for a FOR of 4%

Capacity Outage
[MW]

Individual
Probability

0 0.66486
2 0.27701
4 0.05194
6 0.00577
8 0.00042
10 0.00002
12 0.00000
14 0.00000
16 0.00000
18 0.00000
20 0.00000

The outage capacity due to the wind conditions is converted to a output capacity table. It can now be
combined with the mechanical outage data using Equation 4.5, resulting in a capacity output table. A
so-called Wind Energy Conversion System Model (WECS) can be obtained with the outage probabilities
by reversing the order of the probabilities list. The WECS COPT for a 5-state model is shown in Table 4.5.

4.2. Analytical Method with Wind Considerations 32

Table 4.5: COPT for the 20 MW wind farm presented in [13]

COPT for 5 SCOPT
Capacity Outage

[MW]
Individual
Probability

Capacity Outage
[MW]

Individual
Probability

0 0.04668 14 0.00005
2 0.01945 15 0.16255
4 0.00365 15.5 0.06773
5 0.03952 16 0.01270
6 0.00041 16.5 0.00141

6.5 0.01647 17 0.00010
8 0.00312 17.5 0.00001

9.5 0.00034 18 0.00000
10 0.07771 18.5 0.00000
11 0.03240 19 0.00000
12 0.00607 19.5 0.00000

12.5 0.00000 20 0.50897
13 0.00067

The reduced 5-state COPT for a 20 MW wind farm is obtained by applying the apportioning method
and can be found in Table 4.6.

Table 4.6: Reduced 5-state COPT for the 20 MW wind farm presented in [13]

Capacity Outage
[MW]

Individual
Probability

0 0.05908
5 0.06335
10 0.11475
15 0.24408
20 0.51875

These results match the ones presented in [13], and the script for obtaining the COPT of a wind farm
thus works correctly.

5
Methodological Approach for

Constructing the Non-Sequential MCS
Scripts

Using the theory in Sections 2.3, scripts are created for obtaining a generation profile and calculating the reliability
metrics. The load curves script is the same as the one used for the analytical method, presented in Section 4.1.2.
An overview of the methodology used to create the MCS scripts and a comparison of the results with analytical
and MCS benchmark values will be given.

5.1. Monte Carlo Simulation Method without Wind Considerations
The scripts that are used to obtain reliability indices using an MCS method without wind considerations
will be elaborated on below. There are four scripts for the MCS method: two for the generation
profile, one for the load curves and one for calculating the reliability metrics. An additional script
for the generation profile has been created when there are no derated states in the system, as the
script’s execution time can be significantly sped up in this case. The load curves script can be found in
Appendix B.2, while the scripts for the two generation profiles and the reliability metrics can be found
in Appendices C.1, C.2 and C.3.

5.1.1. Generator Profile
Three methods can be used to implement the generator profile for an MCS, which are mentioned in
Section 2.3: the state sampling, state duration and state transition method. Out of these options, the
state sampling and state duration method will be implemented, but the focus in this section will be on
the non-sequential state sampling method. The scope of this thesis is limited to obtaining the reliability
metrics LOLE and EENS, for which the chronology is not important. An initial implementation of the
sequential state duration method can be found in Appendix A.

The state sampling method uses the state probabilities of a generator, and the generator state profile
matches the duration of the IEEE load curve with 8736 hourly generation increments. The state
probabilities are either based on previous reliability data of generators or an educated guess is made
based on similar generators. The generated random numbers follow a uniform random number
generator from the NumPy library called ’numpy.random.rand()’. Although computers cannot generate
truly random numbers due to their deterministic nature, the mentioned function uses pseudo-random
number generators (PRNGs). The generated sequences can be assumed to be independent for all
practical purposes and thus for this implementation as well [30].

For every generator in the system, a state is obtained for each hourly increment by comparing a random
number from a uniform distribution to some specified state probability boundaries. The generator
state profile is now an array consisting of zeros and ones to indicate whether the generator is down or
operational for each hourly increment. If derated states are present, the state probability ranges can be
adjusted as shown in Table 2.3. When a generator operates in a derated state, the percentage of the
operational installed capacity will be added to the generator state profile. For example, if a derated state
operates at 40% of the rated capacity, 0.4 will be added to the generator state profile. By multiplying the
generator state profile with the generator capacity, a new array is created that has the output profile of a

33

5.1. Monte Carlo Simulation Method without Wind Considerations 34

generator. Summing the contributions from all generators together results in a summed generation
profile for the entire system. Pseudo-code for creating the generator profile can be found below in
Algorithm 6.

Algorithm 6: Pseudo-code for obtaining a generation profile for the non-sequential MCS
method

Input: Generator data is imported from a datafile, containing the capacity outage levels for each
generator Gen_outage_capacity and the associated probability of being in that state
Gen_outage_probability. If wind generation is present in the system, the characteristics of
the turbines are loaded from a datafile. The wind speed parameters 𝛼 and 𝛽 can be
specified in the code

Output: A list with the available generation capacity for each time increment
Summed_Generation_Profile

1 Function generate_random_values(number of time increments):
2 Pre-compute a list of uniformly distributed numbers for each time increment and store in a

list U
return U

3 Function generate_wind_speeds(number of time increments, 𝛼, 𝛽):
4 Pre-compute a list of wind speeds by generating a list of uniformly distributed numbers for

each time increment and plugging those into Equation 5.1 to obtain Wind_Speeds_List
return Wind_Speeds_List

5 Function generate_generator_state(number of time increments,
Generator_Outage_Probability_List ,Generator_Outage_List):

6 Use the function generate_random_values to generate a list of random numbers
Create a list with the cumulative probabilities of all generator outage states using
Generator_Outage_Probability_List
Check for each random number in which cumulative probability interval it belongs to
determine the Generator_Outage for that time instance
Store the generator output as a percentage by using 1 - (Generator_Outage

𝑚𝑎𝑥(Generator_Outage_List)
return generator_profile_state

7 Function generation_profile(Generator_Data),𝛼, 𝛽, Turbine_Data:
8 Use the generate_wind_speeds and createPowerProfile (from Algorithm 5) functions to create a

wind_power_output_profile for a wind turbine if present in the system.

9 Initialise a list with zeros for each time increment called Summed_Generation_Profile
for each generator do

10 Use the generate_generator_state function to generate a list of generator states if The
generator is a conventional generator then

11 The generator_profile_state is multiplied by the rated generator capacity;
12 else if The generator is a wind turbine then
13 The generator_profile_state is multiplied by the wind_power_output_profile ;
14 return Summed_Generation_Profile

A benefit of the state sampling implementation over the state duration method is the fact that the state
sampling method can deal with more types of input data. It uses the state probabilities, which can be
obtained from the failure and repair rates. It is, however, not possible to convert from state probabilities
to failure and repair rates. The relation between the two can be derived, but not their exact values. The
state sampling is, therefore, a more versatile method if failure and repair rate data are missing.

5.1. Monte Carlo Simulation Method without Wind Considerations 35

5.1.2. Load Curves
The load curves used for the MCS scripts are the same as those used for the analytical method. The
chosen load profiles depend on the presented benchmark values, but this again leads to the use of the
CYPL and HPL. One benchmark value uses the DPL, but the WPL is still unused. The load increments
are taken in chronological order, but this is not required due to the non-sequential nature of the state
sampling method. The benchmark values found in the literature [20], [26] do not sample the load curve
either, which is why a sequential load curve is used in a non-sequential MCS method.

Furthermore, the assumption is made that the load profile doesn’t change yearly. One could argue that
the load profile changes from year to year, for example due to a change in the temperature profile and
the subsequent heating and cooling requirements. Still, the year-to-year variation will be averaged out
by taking a large number of simulation years.

5.1.3. Reliability Metrics
The scripts for calculating LOLE and EENS are again based on the theory presented in Section 2.4 and
are computed with the functions calc_LOLE_MCS and calc_EENS_MCS. The derived quantities LOLP’
and ENDS could also be computed, but they are not presented here as they provide no additional
insight. They are obtained by dividing LOLE and EENS by a constant, such that the relative difference
with benchmark values stays the same.

The calc_LOLE_MCS function has the generator profile, load profile and stopping criteria as inputs.
The load is subtracted from the generation, and the instances with an energy deficit are counted. This
process is repeated until the stopping criteria is reached. As mentioned in Section 2.3.4, there are two
ways to implement the stopping criteria. For this script, the number of iterations is used as the stopping
criterion, as it removes the computational power of calculating the CoV during every iteration. Once
the specified number of iterations is reached, the CoV is calculated, and it can be checked whether this
value is acceptable.

Since the EENS metric has two variables, energy deficit instances and energy deficit magnitude,
compared to the single variable of energy deficit instances for LOLE, the EENS metric takes more
iterations to converge. It will, therefore, determine the number of simulation years for an acceptable
CoV. After trying multiple simulation years, it could be observed that the EENS value stabilises after
10000 simulation years, with a CoV of 0.0002 for the HPL model. The CoV for LOLE using the HPL
model is even lower, with a value of 10−6 using 10000 simulation years.
The convergence process for the LOLE value of the RBTS for both an HPL and CYPL model is shown in
Figure 5.1, while the LOLE values are shown in Table 5.1 along with MCS benchmark values [26]. The
average LOLE value convergence graphs for the IEEE-RTS can be found in Appendix G.1.

(a) average LOLE value for the HPL model (b) average LOLE value for the CYPL model

Figure 5.1: Converging process for the average LOLE value

5.1. Monte Carlo Simulation Method without Wind Considerations 36

Table 5.1: Comparison between an MCS benchmark [26] and the MCS scripts for LOLE

LOLE HPL
[hours/year]

LOLE CYPL
[hours/year]

Test System MCS
benchmark

MCS
script

Δ

[%]
MCS

benchmark
MCS
script

Δ

[%]
IEEE RTS-79 9.3868 9.3889 0.022 - 738.4945 -

RBTS 1.0901 1.0945 0.40 72.6183 72.8445 0.31

The calc_EENS_MCS function also calculates the net energy, but instead of only counting the energy
deficit instances, it sums the magnitudes of these energy deficits together. The resulting "energy not
served" value is then stored in a list for each simulation year, which is used for the average EENS value
and the CoV.

A graphical representation of how the average EENS value for the RBTS converges can be found
in Figure 5.2. Performance metrics of the EENS calculation for the HPL and CYPL models are presented
in Table 5.2. The average EENS value convergence graphs for the IEEE-RTS are given in Appendix G.2.

(a) average EENS value for the HPL model (b) average EENS value for the CYPL model

Figure 5.2: Converging process for the average EENS value

Table 5.2: Comparison between an MCS benchmark [26] and the MCS scripts for EENS

EENS HPL
[MWh/year]

EENS CYPL
[MWh/year]

Test System MCS
benchmark

MCS
script

Δ

[%]
MCS

benchmark
MCS
script

Δ

[%]
IEEE RTS-79 1192.5072 1179.0790 1.1 - 128402.0322 -

RBTS 9.9268 9.8535 0.74 816.8147 820.983 0.51

To test the script with derated states, a modified version of the RBTS is used [24], where the two 40 MW
thermal power plants have a derated state of 20 MW. Reference values for HL1 adequacy for both the
RBTS and IEEE RTS are presented in [20]. A comparison with the values obtained from the script can
be found in Table 5.3. A sample size of 10000 simulation years has been chosen, as it again gives an
acceptable CoV below 2 · 10−5 for EENS.

5.1. Monte Carlo Simulation Method without Wind Considerations 37

Table 5.3: Comparison between the benchmark and the script reliability metric values for an MCS with derated states using the
RBTS

HPL CYPL

Reliability metric MCS
benchmark [20]

MCS
script

Δ

[%]
MCS

benchmark [20]
MCS
script

Δ

[%]
LOLE [hours/year] 0.68 0.7279 6.58 66.97 65.771 1.82
EENS [MWh/year] 6.58 6.3345 3.88 635.68 633.6075 0.33

A modified version of the IEEE RTS is given in the same paper [20]. The 350 and 400 MW generator
units are modified to include a 50 % derated state. Making these adjustments results in the LOLE and
EENS values in Table 5.5, which are compared to the values in [20].

Table 5.4: Comparison between the benchmark and the script reliability metric values for an MCS with derated states using the
IEEE RTS

HPL CYPL

Reliability metric MCS
benchmark [20]

MCS
script

Δ

[%]
MCS

benchmark [20]
MCS
script

Δ

[%]
LOLE [hours/year] 5.78 5.6773 1.81 663.57 652.9985 1.62
EENS [MWh/year] 648.65 651.7428 0.47 93088.28 93222.141 0.14

In another paper [31], an LOLE value using a DPL profile is given. A comparison of this reference LOLE
value and the one from the script is shown in Table 5.5.

Table 5.5: Comparison between the benchmark and the script LOLE value for an MCS with derated states using the IEEE RTS

MCS
benchmark [31]

MCS
script

Δ

[%]
LOLE [days/year] 0.88258 0.8833 0.08

From Tables 5.1, 5.2, 5.3, 5.4 and 5.5, it can be observed that the reliability metrics from the script match
the reference values within a few percent. Due to the nature of MCS, a slightly different value will
be obtained each time an MCS is carried out. Repeating the simulations a few times could result in a
value closer to the benchmark values, but the obtained values are always within a few percent of the
benchmark values. It can be concluded that the scripts work as intended and provide accurate results.
The script for computing the reliability metrcis with an MCS method can be found in Appendix C.3.
The pseudo-code for the script is given in Algorithm 7.

5.1. Monte Carlo Simulation Method without Wind Considerations 38

Algorithm 7: Pseudo-code for obtaining the reliability indices LOLE and EENS for an MCS
method

Input: The capacity outage levels for each generator Gen_outage_capacity and the associated
cumulative probability of being in that state Gen_outage_probability are used for obtaining
the reliability metrics, as well as the load profile and a stopping criterion

Output: A singular value for either LOLE or EENS

1 Function calc_LOLE(Generator_Outage_Capacity, Cumulative_Outage_Probability, Load_Profile,
Stopping_Criterion):

2 Initialise empty lists LOLE_List and LOLE_Average_Value_List to store the LOLE contributions
for each iteration and the mean LOLE value after each iteration
Find the maximum installed capacity Max_Capacity

3 while number of iterations is smaller than the stopping criterion do
4 Obtain the Summed_Generation_Profile from the Generation_Profile function

Initialise the LOLE value LOLE_value
Calculate the net energy by subtracting the Load from the Summed_Generation_Profile
Sum together all the instances where the net energy is smaller than 0 and store them in
LOLE_value
Store LOLE_value in the LOLE_List and add the mean value of LOLE_List to
LOLE_Average_Value_List

5 Calculate the Coefficient of Variation using Equation 2.12 to check if the chosen number of
simulation years is sufficient

6 return LOLE
7 Function calc_EENS(Generator_Outage_Capacity, Individual_Outage_Probability, Load_Profile,

Stopping_Criterion):
8 Initialise empty lists EENS_List and EENS_Average_Value_List to store the EENS contributions

for each iteration and the mean EENS value after each iteration

9 while number of iterations is smaller than the stopping criterion do
10 Obtain the Summed_Generation_Profile from the Generation_Profile function

Initialise the EENS value LOLE_value
Calculate the net energy by subtracting the Load from the Summed_Generation_Profile
Keep all the instances where the net energy is smaller than 0 and sum the remaining
Energy_Not_Served instances together in Sum_Energy_Not_Served
Store Sum_Energy_Not_Served in the EENS_List and add the mean value of EENS_List to
EENS_Average_Value_List

11 Calculate the Coefficient of Variation using Equation 2.12 to check if the chosen number of
simulation years is sufficient

12 return EENS

5.2. Monte Carlo Simulation Method with Wind Considerations 39

5.1.4. Comparing the Reliability Metrics for the MCS Method with the Analytical
Method

Now that reliability metrics have been obtained for the RBTS and IEEE RTS using the analytical and
MCS methods, a comparison can be made between the two. The results for both methods are presented
in Tables 5.6 and 5.7 below,

Table 5.6: Comparison between the analytical and MCS scripts for LOLE

LOLE HPL
[hours/year]

LOLE CYPL
[hours/year]

Test System MCS
benchmark

MCS
script

Δ

[%]
Analytical

script
MCS
script

Δ

[%]
IEEE RTS-79 9.39390 9.3889 0.05 738.874 738.4945 0.05

RBTS 1.0914 1.0945 0.28 72.8723 72.8445 0.04

Table 5.7: Comparison between the analytical and MCS scripts for EENS

EENS HPL
[MWh/year]

EENS CYPL
[MWh/year]

Test System Analytical
script

MCS
script

Δ

[%]
MCS

benchmark
MCS
script

Δ

[%]
IEEE RTS-79 1176.278 1179.0790 0.24 128364.0 128402.0322 0.03

RBTS 9.8603 9.8535 0.07 821.0000 820.983 0.002

The results show that the analytical script matches the reliability metrics of the non-sequential state
sampling MCS script with negligible differences of less than 0.3%. If the test system is well-defined, the
two scripts can thus be used interchangeably.

5.2. Monte Carlo Simulation Method with Wind Considerations
Including wind farms in the MCS generation adequacy is not much different from the method without
wind farms. The mechanical availability of the wind farm, so not considering a loss of output due to the
wind conditions, follows the same procedure. This can be with or without derated states, as Section
5.1.1 explains. The scripts for the load model and the reliability metrics calculations are the same, with
the difference being in the power profile of the generators. The generator state profile, which indicates
the mechanical availability of the generator, is now multiplied by the power output profile based on the
wind speeds.

The first step in creating a power output profile is obtaining 8736 wind speeds to match the IEEE load
curve. If the wind characteristics of a specific site can be expressed as a Weibull distribution, Equation
5.1 can be used to find a wind speed. This process can be repeated to create a wind speed array for a
year.

Wind speed = 𝛼 · −𝑙𝑛(U)(1
𝛽
) (5.1)

In Equation 5.1, 𝛼 and 𝛽 are the Weibull shape and scale parameters, which determine the characteristics
of the distribution. The built-in Python function ’weibull_min.fit’ is used to fit a Weibull curve with
parameters 𝛼 and 𝛽 to a probability distribution of wind speeds. An example of a wind speed probability
distribution curve with a Weibull curve estimate can be found in Figure 5.3. It uses data from the
website "windatlas.xyz" [29] for a period of 40 years (1980 - 2019) of the coast of Trondheim (latitude:
64°, longitude: 8°).

5.2. Monte Carlo Simulation Method with Wind Considerations 40

Figure 5.3: Weibull distribution fitting to a wind speed probability distribution with data from [29]

The conversion from wind speed to power output is again done using the CreatePowerProfile function.
In the case of a singular wind farm, the wind conditions are the same for each turbine if wake effects are
neglected. Therefore, the same sampled wind profile will be used for all turbines. The system will be
benchmarked against a system with known reliability metrics to verify that the script works as intended.

The system of choice will be the RBTS with an additional 22.5 MW of wind turbines, presented in
[12]. It uses wind data from a weather station near North Battleford. The exact station is not specified,
but the "North Battleford A" station data from Environment Canada is used in this thesis [32]. The
paper specifies that hourly wind data from 1991 to 1993 is used, as well as the average and standard
deviation of the wind speed over a longer period. The wind speeds in the paper are modelled using
an Auto-regressive Moving-Average (ARMA) model, but the Weibull distribution used in this thesis
should yield similar results. The added wind generation capacity consists of 100 turbines with a rating
of 225 kW each. The reliability data for the wind turbines in [32] is only given as the FOR, so the state
sampling method is used. Doing so results in the reliability metrics shown in Table 5.8, where they are
compared to the reference values presented in [12].

Table 5.8: Comparison between the reliability metrics in [12] and the script for the RBTS with added wind generation

MCS
benchmark [12]

MCS
script

Δ

[%]
LOLE [days/year] 0.7895 0.9076 15.0
EENS [MWh/year] 7.3572 7.7681 5.6

From Table 5.8, it can be observed that there is some difference between the reliability metrics. The
most likely reason for this is the wind profile that is used for each respective method. The average wind
speed of the data used in this thesis is 13.94 km/h, while the exact average wind speed value in [12] is
not given. However, a graph is presented in the paper with the observed and simulated wind speeds for
each month in a year. It isn’t easy to obtain an exact average from Figure 5.4, but it seems to be slightly
above 14 km/h. Higher wind speeds result in larger power outputs and, thus, potentially fewer loss of
load instances, with lower deficits for each instance.

5.2. Monte Carlo Simulation Method with Wind Considerations 41

Figure 5.4: Observed and simulated wind speed at North Battleford, reproduced from [12]

Furthermore, the assumption that the wind speeds follow a Weibull distribution doesn’t fully hold in
this case. The Weibull fitting shown in Figure 5.5 has some outliers in the wind speeds, contributing to
the differences in the reliability metrics between the benchmark values and the script.

Figure 5.5: Weibull distribution fitting to a wind speed probability distribution with data from [32]

Apart from reliability metrics for the RBTS with wind generation, the metrics for the RBTS with an
additional 22.5 MW of conventional generation are given, as well as the RBTS metrics. These do not
depend on the wind speed and should thus provide the same results. An overview of the results from
[12], the scripts presented in this thesis and a recent master thesis with benchmark values [9] is given in
Table 5.9.

Table 5.9: Comparison between the reliability metrics in [12], [9] and the scripts for the RBTS and RBTS with additional generation

MCS
[12]

MCS
[9]

MCS
script

Δ

[12]
[%]

Δ

[9]
[%]

RBTS LOLE [days/year] 1.1282 1.0899 1.1157 1.12 2.31
EENS [MWh/year] 10.3109 9.8260 10.0392 2.71 2.12

RBTS + 22.5MW
convential generation

LOLE [days/year] 0.099 - 0.1007 1.69 -
EENS [MWh/year] 0.8251 - 0.8342 1.09 -

The results in Table 5.9 show that the script gives correct results. The differences in Table 5.8 are thus
due to the addition of wind generation to the system. As the procedure for converting the wind speed
to a power output has been verified in Section 4.2.2, it seems like the difference in wind speed data is
responsible for the observed differences.

6
Examining the Impact of Outages on

the Output of a Wind Farm

A useful insight for the energy sector could be looking into the effect a turbine’s FOR has on a wind farm’s power
output. It can help wind farm planners calculate the expected energy production, and wind turbine manufacturers
can decide whether it makes sense to focus time and money on improving the FOR. To gain more insight into the
relation between the turbine FOR and wind farm power output, a closer look will be taken at the distribution of the
power output of a wind farm and the yearly energy production. Both of these metrics will be obtained and analysed
in Sections 6.1.1 and 6.1.2 below. A case study will also be carried out for the city of Trondheim to see the impact
of outages on the yearly energy production.

6.1. Investigating the Effect of Different FORs on the Output of Wind
Farms CDFs

The power output CDF and yearly energy production will be obtained using a modified version of the
MCS generation model, presented in Section 5.1.1. The state sampling method will be used to obtain a
summed generation model. The data presented in Table 6.1 will be used in the analysis in this section.

Table 6.1: Data used for the analysis on the effect of FOR on the power output of wind farms

Number of
simulation years 25 years

Number of turbines 10
Rated power turbine 10 MW
Cut-in wind speed 4 m/s
Rated wind speed 11.4 m/s
Cut-out wind speed 25 m/s

Wind farm location latitude 64°
longitude 8°

Wind speed parameters 𝛼 = 10.2239
𝛽 = 1.8865

Some further explanation about the data in Table 6.1 will be given below. The number of simulation
years, 25, is selected because modern wind farms are designed to operate for this period.[33] The wind
turbine data is from the DTU 10 MW reference turbine [28], and the wind speeds at the specified
coordinates are from the xyz windatlas [29], based on 40 years of data between 1980 and 2019.

42

6.1. Investigating the Effect of Different FORs on the Output of Wind Farms CDFs 43

6.1.1. Power Output CDF
One way to look at the difference that a turbine’s FOR can make on a wind farm’s power output
is to consider the distribution of the power outputs within a year. There are two main factors
influencing the power output of a wind farm: the fluctuations in the output due to varying wind
speed and the ’mechanical’ reliability of wind turbines, causing a loss of power if turbines are unavailable.

When perfect reliability is considered, the variation in wind speed becomes the only variable influencing
the power output. The exact distribution of wind speeds can vary between sites, but a Weibull
distribution can generally characterise wind speeds [34]. This distribution can also be observed in
Figure 6.1a, where a Weibull distribution has been fitted to the wind speed distribution. The given wind
speed distribution is used as an input for the power curve formula in Equation 4.1, and the resulting
power output probability for a singular turbine is presented in Figure 6.1b.

(a) Weibull distribution fitting to a wind speed probability distribution
with data from [29]

(b) Power output probability distribution

Figure 6.1: Wind speed and power output data for the DTU 10 MW reference turbine of the coast of Trondheim

It can be observed that the two largest probabilities are at the minimum and maximum power output
of the wind turbine, with an almost uniform distribution of the power between 0 MW and the rated
power. Within this range, the probability of being in the lower half of the 0 to 10 MW is higher than
the upper half because the wind speed is often closer to the cut-in wind speed than the rated wind
speed. A power distribution function with perfect reliability would thus have a vertical probability in-
crease at 0 MW and 10 MW and a continuous but slowly decreasing probability between these two values.

Introducing mechanical failures to the turbines will reduce the probability of higher power outputs,
as the probability of having none or a few turbines available is way more significant than more than
50% of the turbines. The lower power outputs are thus less affected than the higher outputs, and the
CDF curves will shift up for bigger FORs. On top of that, vertical jumps in the CDF plot will appear at
the turbine power increments. Previously, all wind speeds above the rated value would result in the
wind farm operating at rated power. With unavailable turbines, fractions of this probability will be
allocated to power levels at intervals equal to the rated power of a singular turbine. In this case, the
wind speed is still high enough for the turbines to operate at rated power, but the wind farm production
would be capped at 80 or 90 MW if one or two turbines are unavailable. This effect does not significantly
impact the lower power output range of the wind farm, as the probability of having a lot of turbines
unavailable with realistic FORs is small. An example of the probability associated with having some
turbines unavailable for different FORs is given in Table 6.2, while the CDF power output plot for various
turbine FORs can be found below in Figure 6.2.

6.1. Investigating the Effect of Different FORs on the Output of Wind Farms CDFs 44

Figure 6.2: CDF for a 100 MW wind farm with 10x 10 MW turbines with different FORs

The graph shows that the probability distributions for the different FORs go down in steps from the
rated wind farm output of 100 MW before they converge the closer they get to zero. When looking at
the distribution for a wind farm with perfect reliability, i.e. FOR = 0.00, it can be seen that the curve is
smooth between 0 and 10 MW, with jumps at 0 and 10 MW if the wind speed is below the cut-in or
above the rated wind speed. This curve thus follows the wind speed distribution.

Any non-zero FOR will lead to jumps in the CDF graphs between 0 and 10 MW. This stepwise behaviour
can be explained by looking at the probability tables for the number of turbines out of service. The
probabilities of having a certain number of turbines unavailable for a FOR of both 0.02 and 0.10 are
given in Table 6.2. Probabilities smaller than 10−5 have been rounded to zero.

Table 6.2: Individual probabilities of having a certain number of turbines available for a FOR of 0.02 and 0.10

Number of
unavailable turbines

Individual probability
FOR = 0.02 FOR = 0.10

0 0.8171 0.3487
1 0.1668 0.3874
2 0.0153 0.1937
3 0.0008 0.0574
4 2.98 ·10−5 0.0112
5 0 0.0015
6 0 0.0001
7 0 0
8 0 0
9 0 0
10 0 0

From Table 6.2, it can be concluded that the probability of having none or a few turbines out of service
is way higher than having more than half of them unavailable. The jumps in the CDFs in Figure 6.2
happen at every 10 MW increment, which is the capacity of one turbine. A higher FOR means having a
lower probability of all turbines being available, reducing the probability of having a 100 MW output. It
also results in the curves being above the CDF of a wind farm with lower FORs, as the probability of
having a higher output is smaller. Another observation is that a higher FOR results in more steps in the
CDF. This is because a higher FOR results in a higher probability of having more unavailable turbines.

6.1. Investigating the Effect of Different FORs on the Output of Wind Farms CDFs 45

Table 6.2 illustrates this phenomenon, where the probability of having x turbines available for a FOR of
0.10 is significant enough to show up in the curve. At the same time, a step will barely be visible in the
CDF for a FOR of 0.02.

Furthermore, it can be noted that the distributions all overlap at a power output of 0 MW. This is because
wind speeds below the cut-in wind speed are responsible for an output of 0 MW, irrespective of the
FOR of the turbines in the wind farm.

6.1.2. Yearly Energy Production
Another metric that can contribute to gaining insight into the difference that the FOR of a turbine
can make is the yearly energy output. It can be calculated by summing together all the hourly power
increments in the summed generation profile. Repeating this process 25 times for the lifespan of a
wind farm and taking the average value results in the yearly energy production. The absolute value
of the annual energy production of the wind farm and the energy production as a percentage of the
production with perfect reliability are presented in Table 6.3 below.

Table 6.3: Yearly energy production of a 100 MW wind farm with 10x 10 MW turbines for different FORs

FOR Yearly Energy Production
[MWh] [%]

0.00 424204 100.00
0.02 416281 98.13
0.04 407283 96.01
0.06 400132 94.33
0.08 389887 91.91
0.10 381420 89.91
0.12 372538 87.82
0.14 365036 86.05
0.16 355658 83.84
0.18 348098 82.06
0.20 338210 79.73

From Table 6.3, it is clear that there is a relation between the yearly energy production of the wind farm
and the FOR of the individual turbines. The FOR of the turbine corresponds to the percentage of energy
lost compared to the case with perfect reliability. It does seem to be the case that the percentage of lost
energy becomes marginally larger than the FOR for the higher FORs, which could be due to the rapid
decline in the probability of having all turbines available for higher FORs. This means that a larger
fraction of the rated wind farm power output is taken, resulting in an energy production percentage
decrease greater than the FOR percentage.

6.2. Case Study - Supplying the City of Trondheim with Power from an Offshore Wind Farm 46

6.2. Case Study - Supplying the City of Trondheim with Power from
an Offshore Wind Farm

One of the ways to model a wind farm similarly to a conventional, controllable generation unit would
be to assume that a wind farm can deliver a constant power output and that a storage solution would
take care of the fluctuations in the power production. The correct sizing and feasibility of such a storage
solution are out of the scope of this thesis, so for now, the assumption is made that the storage is adequate.

The script introduced in Section 6.1 will now be used to find the required amount of wind turbines in a
wind farm to power an area. This will be done by matching the yearly energy production of the wind
farm to the energy consumption of the selected area for various turbine FORs. The area of choice is the
city of Trondheim, where the main NTNU university campuses are located. The wind farm will be
located off the coast of Trondheim, as shown on the map in Figure 6.3.

Figure 6.3: Location of the wind farm off the coast of Trondheim at 64°N, 8°E

The wind speeds at this location are obtained from the website "windatlas.xyz" [29]. As for the turbines,
the 10 MW DTU reference turbine will be chosen [28]. In contrast to actual turbines from manufacturers,
the hypothetical DTU reference turbine is well defined.

According to Our World in Data [35], Norway’s electricity consumption per capita in 2022 was equal to
28,095 kWh. The city of Trondheim has a population of 214,565 [36], resulting in an energy consumption
of 6.028 TWh. This would equate to a constant power requirement of 6.028TWh/8760 = 688MW. This
is again under the assumption that a storage solution, which could be batteries, hydrogen or hydro
reservoirs, filters out the fluctuations in the power production. If the wind farm would operate at
rated capacity with perfect reliability throughout the year, 688/10 = 69 turbines are needed. However,
the wind speeds are not always high enough to operate at rated capacity, and actual turbines have
failures. The actual energy production as a percentage of the rated energy production is defined as
the capacity factor, which can range between 40 and 60% for offshore wind farms. This percentage
depends on the wind site conditions and turbine characteristics, but the number of turbines needed to
supply Trondheim, assuming perfect reliability, would at least be double. An overview of the minimum
amount of turbines needed to match the yearly energy demand of the city of Trondheim for different
turbine FORs can be found below in Table 6.4.

6.2. Case Study - Supplying the City of Trondheim with Power from an Offshore Wind Farm 47

Table 6.4: Minimum number of turbines needed to match the yearly energy demand of the city of Trondheim for different turbine
FORs

FOR Yearly Energy Production
[TWh]

Number of
Turbines

0.00 6.063 143
0.02 6.073 146
0.04 6.064 149
0.06 6.048 152
0.08 6.072 155
0.10 6.078 159
0.12 6.063 162
0.14 6.078 167
0.16 6.049 170
0.18 6.039 174
0.20 6.034 178

From Table 6.4, an approximately linear relation between the FOR and the number of turbines can be
observed, especially for a FOR below 0.10, where a 0.02 increment in the FOR requires three additional
turbines to satisfy Trondheim’s energy consumption. There is still a linear relation for higher FOR
values, but the number of additional turbines for a 0.02 FOR increase seems to move closer to 4. An
increase in the FOR leads to a more than linear decrease in energy production. This behaviour can be
observed in Figure 6.4 and is responsible for increasing the additional required turbines for bigger FOR
values.

Figure 6.4: CDF for a 1.43 GW wind farm with 143x 10 MW turbines with different FORs

7
Conclusions and Future Work

7.1. Conclusions
This work contributes to building a framework to assess the adequacy of a future grid with offshore
wind farms. The scope of the thesis has been limited to developing and validating open-source scripts
for generation adequacy analysis and examining the impact of outages on the output of a wind farm.
Two methods have been implemented: an analytical method and an MCS method. Both of these
methods can analyse a conventional generation-based system, a wind generation-based system or
a combination of the two systems. The outputs of these scripts are the reliability indices LOLE and EENS.

The validation of the scripts has been done using two test systems: the RBTS [24] and IEEE RTS [31],
including their variants with derated states. Other test systems that were used are a standalone 20 MW
wind farm [13] and the RBTS system with an additional 22.5 MW MW of wind generation, consisting of
100 turbines with a 225 kW rating [12].

The analytical method script is constructed using a recursive algorithm [7] to obtain a COPT as the
generation model. The IEEE load curve is chosen for the load model. These two models are combined
to obtain LOLE and EENS for both test systems using a CYPL and HPL. The resulting metrics are
presented in Tables 4.1 and 4.2, and are compared to two benchmark values: a paper from Roy Billinton
[26] and a recent master thesis [8]. It can be observed that the values from the scripts developed in this
thesis match the results in [8] one to one, while there are marginal differences of at most 0.5% when
comparing the results to the ones in [26]. A possible reason for the difference could be the rounding of
intermediate results and the software used back in 2006.

Wind can be added to the analytical method by converting a wind speed profile to a power output
profile using Equation 4.1. A state probability table with a select number of states can be constructed
by obtaining the PDF of the power output. The state probabilities due to fluctuations in the wind
speed are then combined with the state probabilities due to the mechanical reliability with Equation 4.5.
The resulting COPT could have many states, which can be reduced using the apportioning method.
The resulting COPT can be used to assess a system consisting solely of wind generation or to create a
generation unit with derated states to be added to a system with conventional generation units. The
script has been tested using data from [13], and the resulting apportioned COPT is identical to the one
presented in the paper.

The chosen MCS method uses non-sequential state sampling to obtain a generation profile. A uniform
random number is generated for each hourly time increment, and the state associated with the probability
interval where the number falls between is selected. The resulting array contains values between 0 and 1
to indicate the percentage of installed capacity available during that period. Combining the generation
and load profiles again results in reliability indices. With an MCS, this procedure has to be repeated for
multiple years for the simulation to converge towards the true mean value. A stopping criteria, given in
Equation 2.12, can be used to determine whether the chosen number of simulations has an acceptable
variance. The number of years used for these scripts is 10000, and the resulting reliability metrics can be
found in Tables 5.1 and 5.2.

48

7.1. Conclusions 49

The results are compared to MCS benchmark values [26], and it can be observed that the scripts closely
match the benchmark values, with less than 0.5% of a difference for the LOLE values. The EENS values
are also close to the benchmark values, with the differences ranging between 0.5% and 1.1%. The larger
error margin for EENS compared to LOLE is due to the difference in the degrees of freedom, as the
number of energy deficit instances is combined with the magnitude of the energy deficit for EENS.
LOLE, on the other hand, only considers the number of energy deficit instances and has one source of
discrepancy compared to the two for EENS.

Derated states are added to the scripts by including additional state probability ranges for each generation
unit. From the results in Tables 5.3 and 5.5, it can be seen that the values match closely, except for the
HPL model for the RBTS.
Wind considerations are added to the MCS by sampling wind speeds from a Weibull distribution using
Equation 5.1. The Weibull shape and scale parameters, 𝛼 and 𝛽, are obtained by fitting a Weibull
distribution to a wind speed probability distribution. Converting the wind speeds to a power output
is again done with Equation 4.1, and the resulting output power is combined with a sampled state
based on the state probability profile of the turbine. The result is added to the generation profile, and
reliability metrics can be obtained. These can be found in Table 5.8, where the results of the scripts are
compared to MCS benchmark values [12]. It can be seen that the metrics are off by quite a bit, with a
15% difference for the LOLE value. It can, however, be noted that both metrics show the same pattern
of being less reliable than the benchmark. The most probable factor contributing to the differences
is the uncertainty of the exact wind data used in [12]. Based on Figure 5.4, it seems like the average
wind speed for the paper is higher, resulting in higher power outputs and smaller values for LOLE and
EENS. Another reason could be the implemented wind speed model. An ARMA model is used for the
benchmark results, while this thesis uses a Weibull distribution.

Additional results from [9] and [12] are used to verify that the discrepancy in the results is solely due to
a difference in the wind data. Reliability metrics for the RBTS are given, as well as the RBTS system with
an additional 22.5 MW of conventional generation. The results are within 1% to 3% of the benchmark
values, so the differences are due to the inclusion of wind generation. As the procedure to convert from
wind speeds to power output has been tested in Section 4.2.2, the difference in the wind speed data
seems responsible for the mismatch in results.

The final test for the adequacy scripts compares the output of the analytical and MCS scripts. The
results are given in Tables 5.6 and 5.7. It can be observed that the difference in results between the two
methods is negligible, with most differences under 0.05% and the largest differences being 0.28%.

When considering the effect of outage on the output of a wind farm, a closer look has been taken at
the impact of the FOR of a turbine on the wind farm power output by plotting the CDF of the power
output for various FORs in Figure 6.2. A stepwise pattern has been observed towards the upper end of
the power output due to the mechanical reliability probabilities superimposed on the wind power output.

Furthermore, the yearly energy production averaged over the 25-year lifespan of a wind farm has
been computed in Table 6.3, from which it can be seen that the percentage of lost energy production
compared to the production with perfect reliability closely follows the FOR of the individual turbines.
The production loss percentage seems to increase faster than the increase in FOR, as a higher FOR takes
away a larger fraction of the highest power output range.

The script for calculating the yearly energy production was used in a case study to see how many
turbines would be needed to power the city of Trondheim. The wind farm is assumed to behave like a
conventional generating unit with a constant power output throughout the year. For this simplification
to hold, the assumption is made that a storage solution deals with fluctuations in the power output.
From Table 6.4, it can be concluded that a linear relation exists between the FOR and the number of
turbines needed to supply energy to Trondheim. For turbine outage rates above 0.10, it can be observed
that the linear coefficient slowly increases. This is due to a more-than-linear decrease in probability for
the highest wind farm power output for higher FORs.

7.2. Future Work 50

7.2. Future Work
The scope of this thesis only represents a small part of the previously mentioned framework. Multiple
aspects can be expanded on in future work. These will be elaborated on in the sections below.

7.2.1. Extending the Generation Adequacy to Composite Adequacy Analysis
A logical next step towards building a framework for adequacy analysis would be to include the
transmission system in the scripts. The assumption that there are no limitations to the transmission
network with perfect reliability, the so-called copper plate assumption, is not applicable in the real
world. Including the reliability and limitations of the transmission network would consider the load
flows and failure rates of lines and transformers.

7.2.2. Improving the Sequential State Duration MCS Method
A sequential MCS allows gathering information about the frequency and duration of events within the
system that cannot be obtained from a non-sequential method like the state sampling method. A start
has been made with implementing the sequential MCS method, but two main limitations prevent the
scripts from getting results that match the benchmark values.

One of the main reasons is that the generation profile of each simulation year starts in the UP state,
and the time overshoot from the previous year is currently not being carried over. This could lead to a
system that appears to be more reliable than it is, which is observed in the simulation results in Tables
A.1 and A.2. This can be solved by keeping track of the amount of overshoot at the end of a year and the
state of this overshoot.

Another factor that could be addressed is the rounding of TTF and TTR durations. The generation
profile array is created using 8736 hourly increments. The calculated state durations contain a decimal
number of hours behind the dot, but these are omitted to fit within the integer number of hours in a
year. This shortens the duration of both the TTF and the TTR. In the test systems used in this thesis, the
MTTF is in the order of 103, while that of the MTTR is in the order of 101, so the rounding will have a
bigger effect on the TTR. Getting rid of up to 1 hour on that scale for the TTR will reduce the repair time,
and the system will thus be down for a shorter period. Changing this would lead to longer operational
and repair times but would influence the repair rate more, resulting in worse reliability. This would
bring the results closer to the benchmark values as well.

7.2. Future Work 51

7.2.3. Compare Methods to Integrate Offshore Wind Farms into the Existing Grid
The optimal way to integrate wind farms into the existing energy mix could vary based on its purpose.
Most wind farms are currently connected to shore by a single connection. It is also possible to intercon-
nect countries through a wind farm, with an example being the planned Lionlink connection between
the Netherlands and the UK [37].

It is also possible to interconnect multiple wind farms with each other and even connect them to multiple
points onshore. Doing so would create a grid at sea that extends the existing grid on land. Plans for
such an offshore grid have already been made, with an example of an offshore grid for the North Sea
presented below in Figure 7.1.

Figure 7.1: Tennet’s target grid map for the North Sea in 2045, reproduced from [38]

Another possibility would be to add storage options to the offshore wind farms. The main options for
storage are batteries or using electrolysis to produce hydrogen. Both options could be used to control
and smooth out the power sent to the onshore grid, but the conversion from electricity to hydrogen and
back will have significant losses. That’s why including pipelines to shore for hydrogen could be a good
idea, which eliminates the electrical losses for transporting the electricity to an onshore electrolyser and
can be used in industry processes that cannot be electrified.

An example of integrating storage with an offshore wind farm is the energy islands Denmark plans to
build [39], where hydrogen is produced offshore.
The mentioned possibilities could be considered, and the optimal one can be selected for each country
or continent.

References

[1] Zephyros, Unitech Zefyros (Hywind Demo) [Online], Available: https://zephyros.no/sites/,
2024.

[2] United Nations Framework Convention on Climate Change (UNFCCC), Paris Agreement, Available:
https://unfccc.int/sites/default/files/english_paris_agreement.pdf, 2015.

[3] Electricity Maps, Live electricity map, Available: https://app.electricitymaps.com/map, 2024.
[4] Statkraft, Hydropower, Available: https://www.statkraft.com/what-we-do/hydropower/, 2024.
[5] Ocean Grid Project, New grid solutions for profitable offshore wind development, Available: https:

//oceangridproject.no/, 2024.
[6] Ocean Grid Project, Ocean Grid Research (SP5), Available: https://oceangridproject.no/

research/ocean-grid-research, 2024.
[7] R. Billinton and R. N. Allan, Reliability Evaluation of Power Systems, 2nd ed. New York and London:

Plenum Press, 1996.
[8] K. Koldingsnes, “Reliability-based Derating Approach for Interconnectors,” Department of Electric

Power Engineering, IEL, M.S. thesis, NTNU, Trondheim, Norway, Jun. 2017.
[9] Ø. S. Laengen, “Application of Monte Carlo Simulation to Power System Adequacy Assessment,”

Department of Electric Power Engineering, IEL, M.S. thesis, NTNU, Trondheim, Norway, Jun.
2018.

[10] R. Billinton and W. Li, Reliability Assessment of Electric Power Systems Using Monte Carlo Methods.
Boston, MA: Springer US, 1994. [Online]. Available: http://link.springer.com/10.1007/978-
1-4899-1346-3.

[11] M. Bjørkeland, “Generation System Adequacy Studies in the Presence of Wind Energy Resources,”
Department of Electric Power Engineering, IEL, M.S. thesis, NTNU, Trondheim, Norway, Feb.
2018.

[12] R. Billinton, H. Chen, and R. Ghajar, “A sequential simulation technique for adequacy evaluation
of generating systems including wind energy,” IEEE Transactions on Energy Conversion, vol. 11, no. 4,
pp. 728–734, Dec. 1996. [Online]. Available: http://ieeexplore.ieee.org/document/556371/.

[13] R. Billinton and Y. Gao, “Multistate Wind Energy Conversion System Models for Adequacy
Assessment of Generating Systems Incorporating Wind Energy,” IEEE Transactions on Energy
Conversion, vol. 23, no. 1, pp. 163–170, Mar. 2008. [Online]. Available: http://ieeexplore.ieee.
org/document/4453976/.

[14] R. Allan and F. Takieddine, “Generator-maintenance scheduling using simplified frequency-and
duration-reliability criteria,” Proceedings of the Institution of Electrical Engineers, vol. 124, no. 10,
p. 873, 1977. [Online]. Available: https://digital-library.theiet.org/content/journals/
10.1049/piee.1977.0191.

[15] Free Software Foundation, GNU General Public License, Version 3, Available: https://www.gnu.
org/licenses/gpl-3.0.txt, Jun. 2007.

[16] B. W. Tuinema, J. L. Rueda Torres, A. I. Stefanov, F. M. Gonzalez-Longatt, and M. A. M. M. van der
Meĳden, Probabilistic Reliability Analysis of Power Systems: A Student’s Introduction. Cham: Springer,
2020.

[17] R. Billinton and R. Allan, “Power-system reliability in perspective,” Electronics and Power, vol. 30,
no. 3, p. 231, 1984. [Online]. Available: https://digital-library.theiet.org/content/
journals/10.1049/ep.1984.0118.

52

https://zephyros.no/sites/
https://unfccc.int/sites/default/files/english_paris_agreement.pdf
https://app.electricitymaps.com/map
https://www.statkraft.com/what-we-do/hydropower/
https://oceangridproject.no/
https://oceangridproject.no/
https://oceangridproject.no/research/ocean-grid-research
https://oceangridproject.no/research/ocean-grid-research
http://link.springer.com/10.1007/978-1-4899-1346-3
http://link.springer.com/10.1007/978-1-4899-1346-3
http://ieeexplore.ieee.org/document/556371/
http://ieeexplore.ieee.org/document/4453976/
http://ieeexplore.ieee.org/document/4453976/
https://digital-library.theiet.org/content/journals/10.1049/piee.1977.0191
https://digital-library.theiet.org/content/journals/10.1049/piee.1977.0191
https://www.gnu.org/licenses/gpl-3.0.txt
https://www.gnu.org/licenses/gpl-3.0.txt
https://digital-library.theiet.org/content/journals/10.1049/ep.1984.0118
https://digital-library.theiet.org/content/journals/10.1049/ep.1984.0118

References 53

[18] IkamusumeFan, PDF of the uniform probability distribution using the maximum convention at the
transition points, Wikimedia Commons, 2022. [Online]. Available: https://en.wikipedia.org/
wiki/Continuous_uniform_distribution#/media/File:Uniform_Distribution_PDF_SVG.
svg.

[19] N. Thomopoulos, Essentials of Monte Carlo Simulation: Statistical Methods for Building Simulation
Models. Nov. 2013, pp. 1–171.

[20] M. Bhuiyan, “Modelling multistate problems in sequential simulation of power system reliability
studies,” IEE Proceedings - Generation, Transmission and Distribution, vol. 142, no. 4, p. 343, 1995.
[Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/ip-
gtd_19951871.

[21] R. Billinton and W. Li, “A system state transition sampling method for composite system reliability
evaluation,” IEEE Transactions on Power Systems, vol. 8, no. 3, pp. 761–770, 1993.

[22] W. L. Dunn and J. K. Shultis, Exploring Monte Carlo Methods. Amsterdam, The Netherlands:
Elsevier/Academic Press, 2012.

[23] Probability Methods Subcommittee, “IEEE Reliability Test System,” IEEE Transactions on Power
Apparatus and Systems, vol. PAS-98, no. 6, pp. 2047–2054, 1979.

[24] R. Billinton, S. Kumar, N. Chowdhury, et al., “A reliability test system for educational purposes-
basic data,” IEEE Transactions on Power Systems, vol. 4, no. 3, pp. 1238–1244, 1989.

[25] S. Sulaeman, M. Benidris, J. Mitra, and C. Singh, “A Wind Farm Reliability Model Considering Both
Wind Variability and Turbine Forced Outages,” IEEE Transactions on Sustainable Energy, vol. 8, no. 2,
pp. 629–637, Apr. 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7579211/.

[26] R. Billinton and D. Huang, “Basic Concepts in Generating Capacity Adequacy Evaluation,” in 2006
International Conference on Probabilistic Methods Applied to Power Systems, Stockholm, Sweden: IEEE,
Jun. 2006, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/document/4202394/.

[27] P. Giorsetto and K. F. Utsurogi, “Development of a New Procedure for Reliability Modeling of
Wind Turbine Generators,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-102, no. 1,
pp. 134–143, 1983.

[28] C. Bak et al., “The DTU 10-MW Reference Wind Turbine,” Tech. Rep., 2013.
[29] WindAtlas.xyz, Wind data for 2019 of the coast of trondheim, Windsite data: lattitude: ’64.0’, longitude:

’8.0’, height: ’100’, date from: ’2019-01-01’, date to: ’2019-12-31’, 2019. [Online]. Available: https:
//windatlas.xyz.

[30] NumPy Developers. “NumPy documentation: Numpy.random.” (2024), [Online]. Available:
https://numpy.org/devdocs/reference/random/index.html.

[31] R. N. Allan, R. Billinton, and N. M. K. Abdel-Gawad, “The IEEE Reliability Test System - Extensions
to and Evaluation of the Generating System,” IEEE Transactions on Power Systems, vol. 1, no. 4,
pp. 1–7, 1986.

[32] ClimateData.ca, Historical wind data from the North Battleford A weather station, 2024. [Online].
Available: https://climatedata.ca/download/#station-download.

[33] NextEra Energy, Fact sheet: What happens at the end of a wind farm’s useful life? Available: https:
//www.nexteraenergyresources.com/pdf/NEER-Decommissioning-FactSheet.pdf, 2024.

[34] H. Shi, Z. Dong, N. Xiao, and Q. Huang, “Wind Speed Distributions Used in Wind Energy
Assessment: A Review,” Frontiers in Energy Research, vol. 9, Nov. 2021.

[35] Ember, Energy Institute, and Our World in Data, Total electricity generation per person – Ember and
Energy Institute, Available: https://ourworldindata.org/grapher/per-capita-electricity-
generation, Statistical Review of World Energy (2023); Population based on various sources
(2023) – with major processing by Our World in Data. Dataset retrieved May 15, 2024, 2024.

[36] Trondheim Municipality, Population statistics, Available: https://www-trondheim-kommune-
no.translate.goog/aktuelt/om-kommunen/statistikk/befolkningsstatistikk/?_x_tr_
sl=auto&_x_tr_tl=en&_x_tr_hl=no, 2024.

[37] TenneT, Lionlink, Available: https://www.tennet.eu/lionlink, 2024.

https://en.wikipedia.org/wiki/Continuous_uniform_distribution#/media/File:Uniform_Distribution_PDF_SVG.svg
https://en.wikipedia.org/wiki/Continuous_uniform_distribution#/media/File:Uniform_Distribution_PDF_SVG.svg
https://en.wikipedia.org/wiki/Continuous_uniform_distribution#/media/File:Uniform_Distribution_PDF_SVG.svg
https://digital-library.theiet.org/content/journals/10.1049/ip-gtd_19951871
https://digital-library.theiet.org/content/journals/10.1049/ip-gtd_19951871
http://ieeexplore.ieee.org/document/7579211/
http://ieeexplore.ieee.org/document/4202394/
https://windatlas.xyz
https://windatlas.xyz
https://numpy.org/devdocs/reference/random/index.html
https://climatedata.ca/download/#station-download
https://www.nexteraenergyresources.com/pdf/NEER-Decommissioning-FactSheet.pdf
https://www.nexteraenergyresources.com/pdf/NEER-Decommissioning-FactSheet.pdf
https://ourworldindata.org/grapher/per-capita-electricity-generation
https://ourworldindata.org/grapher/per-capita-electricity-generation
https://www-trondheim-kommune-no.translate.goog/aktuelt/om-kommunen/statistikk/befolkningsstatistikk/?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=no
https://www-trondheim-kommune-no.translate.goog/aktuelt/om-kommunen/statistikk/befolkningsstatistikk/?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=no
https://www-trondheim-kommune-no.translate.goog/aktuelt/om-kommunen/statistikk/befolkningsstatistikk/?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=no
https://www.tennet.eu/lionlink

References 54

[38] TenneT, Target grid, Available: https://www.tennet.eu/target-grid, 2024.
[39] The Danish Energy Agency, Denmark’s Energy Islands, Available: https://ens.dk/en/our-

responsibilities/offshore-wind-power/denmarks-energy-islands, 2024.

https://www.tennet.eu/target-grid
https://ens.dk/en/our-responsibilities/offshore-wind-power/denmarks-energy-islands
https://ens.dk/en/our-responsibilities/offshore-wind-power/denmarks-energy-islands

A
Methodological Approach for

Constructing the Sequential MCS
Scripts

The scripts that are used to obtain reliability indices using a sequential MCS method will be elaborated
on below. The load curves and reliability metrics scripts will be the same as for the non-sequential MCS
method and can be found in Appendices B.2 and C.3, while the generation profile can be obtained
using two scripts. One has the option to add derated states, while the other does not to reduce the
computation time. They can be found in Appendices D.1 and D.2.

A.1. Generation Profile
The state duration method has been chosen as the sequential MCS method, as the procedure to obtain an
availability profile is much more straightforward than the state transition method, the other sequential
MCS method. It uses a generator’s failure and repair rates and the generator state profile again matches
the duration of the load curve with 8736 hourly generation increments. The duration of the alternating
UP and DOWN state is calculated using Equation 2.6. The MTTF and MTTR are either based on previous
reliability data of generators or an educated guess is taken based on similar generators. The generated
random numbers use the same ’numpy.random.rand()’ function as the state sampling method.
Every generator in the system is assumed to be operational at the start of the first year. Operational and
repair states alternate until a generation profile for a full year is reached. To ensure that the generation
profile doesn’t exceed the 8736 hours in the IEEE load curve, it is checked whether the sum of the hours
in the generation state profile is below the total hours before adding a new state.
When adding a new state, one final check is carried out to ensure that the addition of this new state
won’t exceed the total hours. This is done by taking the smaller value out of the new state’s added time
and the difference between the total hours and the sum of hours in the generation profile. The duration
of the latest added state that is not making it into the generation profile will be stored and transferred
over to the next iteration of the MCS.

The generator state profile has the same format as the state sampling method. The generator contribu-
tions can be combined to obtain a summed generation profile for the entire system.

When a generator has derated states, one cannot simply assume that UP and DOWN states fol-
low each other. At the start of the first simulation year, the generators are still assumed to be in the
UP state. The failure rates from the UP state to the DERATED state(s) and DOWN state are used to
calculate a TTF using Equation 2.6. The state with the smallest duration out of all the computed TTFs is
chosen as the next state. The generator will then return to the UP state again, where the duration is
calculated using the repair rate 𝜇 from the state that is being left. This is under the assumption that a
generator is repaired immediately once it is not operating at full capacity anymore.

55

A.2. Reliability Metrics 56

A.2. Reliability Metrics
The summed generation profiles from the state sampling and state duration method have the same
format, so the calc_LOLE_MCS and calc_EENS_MCS functions can again be used. The number of
simulation years is chosen to be 10000 years, as this value gives a CoV that is in the same range as the
one for the state sampling method around 10−5.

The convergence process for the LOLE value of the RBTS for both an HPL and CYPL model is shown in
Figure A.1, while the LOLE values are shown in Table A.1 along with MCS benchmark values [26]. The
average LOLE value convergence graphs for the IEEE-RTS can be found in Appendix H.1.

(a) average LOLE value for the HPL model (b) average LOLE value for the CYPL model

Figure A.1: Converging process for the average LOLE value

Table A.1: Comparison between the analytical and MCS scripts for LOLE [26]

LOLE HPL
[hours/year]

LOLE CYPL
[hours/year]

Test System MCS
benchmark

MCS
script

Δ

[%]
MCS

benchmark
MCS
script

Δ

[%]
IEEE RTS-79 9.3868 8.9038 5.42 - 717.3284 -

RBTS 1.0901 1.0695 1.93 72.6183 70.8222 2.54

A graphical representation of how the average EENS value for the RBTS converges can be found in
Figure A.2, while performance metrics of the EENS calculation for the HPL and CYPL models are
presented in Table A.2. The average EENS value convergence graphs for the IEEE-RTS are given in
Appendix H.2.

A.2. Reliability Metrics 57

(a) average EENS value for the HPL model (b) average EENS value for the CYPL model

Figure A.2: Converging process for the average EENS value

Table A.2: Comparison between the analytical and MCS scripts for EENS [26]

EENS HPL
[MWh/year]

EENS CYPL
[MWh/year]

Test System MCS
benchmark

MCS
script

Δ

[%]
MCS

benchmark
MCS
script

Δ

[%]
IEEE RTS-79 1192.5072 1125.7439 5.93 - 123977.6720 -

RBTS 9.9268 9.3133 6.59 816.8147 796.9362 2.49

The values for LOLE and EENS seem to be off by a few percent, and there are two main reasons. One of
them is the fact that the TTF and TTR are rounded down to an integer value, i.e. the decimal part is
dropped, to ensure that they fit within the summed generation profile and can be multiplied with a
zero, one or a fraction between these two values for a derated state. This shortens the duration of both
the TTF and the TTR, but it has a more significant effect on the TTR. In the test systems used in this
thesis, the MTTF is in the order of 103, while that of the MTTR is in the order of 101. Getting rid of up
to 1 hour on that scale for the TTR will reduce the repair time, and the system will thus be down for
a shorter period. One would expect the system to be more reliable and have lower LOLE and EENS
values, which can be observed in Tables A.1 and A.2.

Another factor that could contribute to the differences compared to the benchmark values is that the
generation profile of each simulation year starts in the UP state, and the time overshoot from the previous
year is currently not being carried over. This could lead to a system that appears more reliable than
it actually is, as observed in the simulation results. An attempt has been made to carry over the over-
shoot to the next year in the script, but this wasn’t fully achieved within the given timeframe of this thesis.

Results for the RBTS with a wind farm [12] using the state duration method couldn’t be obtained, as
the wind farm is only described by its FOR. The correct values for the failure and repair rate cannot be
derived from the FOR, as multiple combinations of 𝜆 and 𝜇 satisfy the relation between availability and
unavailability of the wind farm.

B
Analytical Method Scripts

B.1. COPT for Conventional Generators Including Derated States

1 """

2 File: COPT_derated_states.py

3 Author: Julian Wuijts

4 Date: 05-07-2024

5 Description: A Python script to create a COPT from a list of generators.

6 """

7

8 #Importing packages

9 import pandas as pd

10 import numpy as np

11 from tabulate import tabulate

12

13

14 def remove_duplicates(dupl): #Function for removing duplicate values in the capacity outage array

15 return list(dict.fromkeys(dupl))

16

17 def calc_COPT(generator_data):

18

19 number_of_generators = int(sum(pd.to_numeric(generator_data.iloc[1], errors='coerce').notna())/2) # Count the number

of capacity outages and probabilities that are defined in a row, and divide by 2 to obtain the number of

generators

↩→
↩→

20

21 # Define the indices for the capacity and probability in the generator data variable

22 select_capacity = [(2 * n)-1 for n in range(1,number_of_generators+1)]

23 select_probability = [(2 * n) for n in range(1,number_of_generators+1)]

24

25 # Create a matrix with the possbile capacity states the generators. There is one generator per row and one generator

capacity state per column↩→
26 Gen_capacity_matrix = generator_data.iloc[1:,select_capacity].T

27 Gen_capacity_matrix = Gen_capacity_matrix.reset_index(drop=True)

28 Gen_capacity_matrix.columns = range(Gen_capacity_matrix.shape[1]) # Reset the indices of both the columns and rows

to start from zero↩→
29

30 # Create a matrix with the probabilities of being in a certain capacity state. The probabilities for one generator

are given in a row.↩→
31 Gen_unavailability_matrix = generator_data.iloc[1:,select_probability].T

32 Gen_unavailability_matrix = Gen_unavailability_matrix.reset_index(drop=True)

33 Gen_unavailability_matrix.columns = range(Gen_unavailability_matrix.shape[1]) # Reset the indices of both the

columns and rows to start from zero↩→
34

35 #Initialise lists for the COPT recursive algorithm

36 Gen_outage_capacity = []

37 Gen_outage_capacity_update =[]

38

39 Old_gen_outage_capacity = [0]

40 Gen_outage_capacity = [0]

41 P_old_list_prev_gen = []

42

43 for row in Gen_capacity_matrix.index: # Go through all generators one by one

44 for column in Gen_capacity_matrix.columns: # Go through all capacity states of one generator

45 Gen_outage_capacity_update_temp = [x+Gen_capacity_matrix.loc[row,column] for x in Gen_outage_capacity] # Add

the capacity of the current generator outage state to all previous total capacity outages↩→
46 Gen_outage_capacity_update = Gen_outage_capacity_update + Gen_outage_capacity_update_temp #

Append the new total capacity outages for the current generator outage state to the end of a list with

the previous total capacity outages

↩→
↩→

58

B.1. COPT for Conventional Generators Including Derated States 59

47 Gen_outage_capacity = Gen_outage_capacity + Gen_outage_capacity_update #

Append all the new total capacity outages for one generator to a list with the previous total capacity

outages

↩→
↩→

48 Gen_outage_capacity = remove_duplicates(Gen_outage_capacity) #

Remove duplicate capacity outage values from the list↩→
49 Gen_outage_capacity.sort() #

Sort the capacity outage values in ascending order↩→
50

51 P_new_list = [] # Initalise the list with the cumulative probabilities for the COPT

52

53 for i in range(len(Gen_outage_capacity)): # Go through all outage states for the generator that is added to the

COPT↩→
54

55 # Initialise the lists for temporarily storing probability values

56 P_new = []

57 P_old_list = []

58 P_new_sum = 0

59

60 for j in range(len(Gen_unavailability_matrix.columns)): # Go through all capacity states of one generator

61 Capacity_outage_minus_new_gen = [Gen_outage_capacity[i] - x for x in Gen_capacity_matrix.values[row]] #

Create a list with the generation surplus / deficit↩→
62

63 if Capacity_outage_minus_new_gen[j] <= 0 : # If x_j - g_i is smaller than 0, the cumulative probability

is one (improve this explanation)↩→
64 P_old = 1

65 elif Capacity_outage_minus_new_gen[j] in Old_gen_outage_capacity: # If x_j - g_i matches

a capacity outage level from the previous iteration,↩→
66 P_old_index = Old_gen_outage_capacity.index(Capacity_outage_minus_new_gen[j]) # assign the

probability from the previous iteration to the current↩→
67 P_old = P_old_list_prev_gen[P_old_index]

68 elif Capacity_outage_minus_new_gen[j] > max(Old_gen_outage_capacity): # If x_j - g_i is larger than the

largest capacity outage from the previous iteration,↩→
69 P_old = 0 # the cumulative probability is

zero↩→
70 else: # If x_j - g_i is in between outage capacity values, it gets the probability from the upper outage

capacity value↩→
71 for k in range(len(Old_gen_outage_capacity)-1):

72 if Old_gen_outage_capacity[k] <= Capacity_outage_minus_new_gen[j] < Old_gen_outage_capacity[k+1]:

73 P_old = P_old_list_prev_gen[k+1]

74 break

75 else:

76 P_old = 0

77

78 P_old_list.append(P_old) # Add the probability for the current capacity outage state to a list

79 P_new_temp = Gen_unavailability_matrix.values[row,j] * P_old_list[j] # Mulitply the probability of the

capacity outage state with the (un)availability of the current generator capacity state↩→
80 P_new.append(P_new_temp) # Add the new probability to a list

81

82 P_new_sum = np.sum(P_new) # Sum all probabilities for one outage state

83 P_new_list.append(P_new_sum) # Add the probability for one outage state to a list with all outage states

84

85 #Update the outage capacity and probability lists by converting the new list to the old list

86 Old_gen_outage_capacity = Gen_outage_capacity

87 P_old_list_prev_gen = P_new_list

88 return Gen_outage_capacity, P_new_list

89

90 if __name__ == "__main__": # Only print these graphs if the COPT_derated_states script is ran

91

92

93 ## UPDATE THE PATH BELOW TO WHERE YOUR FILE IS LOCATED. USE / INSTEAD OF THE \ GENERATED BY WINDOWS ##

94 generator_data = pd.read_excel("/Users/jswui/Desktop/COPT_example.xlsx", sheet_name="Generators") #Import generator

data from Excel↩→
95

96

97 Gen_outage_capacity, P_new_list = calc_COPT(generator_data)

98

99 COPT_table_headers = ['Generator Outage Capacity [MW]','Cumulative probability']

100 P_new_list_rounded = ["{:.5f}".format(x) for x in P_new_list]

101 COPT = list(zip(Gen_outage_capacity,P_new_list_rounded))

B.2. IEEE Load Profile 60

102 COPT_format = tabulate(COPT, headers=COPT_table_headers, tablefmt="grid", numalign="center",stralign="center")

103

104 print('\n\n')

105 print(COPT_format)

106

107 # This command saves the COPT as a .txt file to the current folder. It can be uncommented if the table is too large

to print in the terminal↩→
108

109 # with open("COPT_table.txt", "w") as f:

110 # print(COPT_format, file=f)

B.2. IEEE Load Profile

1 """

2 File: Load_curves.py

3 Author: Julian Wuijts

4 Date: 05-07-2024

5 Description: A Python script to create the IEEE load curves.

6 """

7

8 from matplotlib import pyplot as plt

9 import numpy as np

10 import pandas as pd

11

12 def CreateLoadCurve(YPL):

13 #Import the load data from excel

14 WPL_excel = pd.read_excel("/Users/jswui/Desktop/Load_curves.xlsx", sheet_name="WPL")

15 DPL_excel = pd.read_excel("/Users/jswui/Desktop/Load_curves.xlsx", sheet_name="DPL")

16 HPL_excel = pd.read_excel("/Users/jswui/Desktop/Load_curves.xlsx", sheet_name="HPL")

17

18 time = list(range(1,8737)) # Create a list with hourly increments for the duration of a year (52 weeks * 7 days * 24

hours = 8736 hours)↩→
19

20 ############### YPL ###############

21

22 YPL_plot = YPL * np.ones(8736) # Create hourly increments for the YPL model

23

24

25 ############### WPL ###############

26

27 #Adapt the WPL data from excel and store them in a list

28 WPL = WPL_excel.to_numpy()

29 WPL = WPL[np.ix_([1],np.arange(1, WPL.shape[1]))]

30 WPL = WPL.flatten()

31 WPL_list = []

32

33 for i in range(len(WPL)): # Add hourly increments to each WPL value (7 days * 24 hours = 168

hours)↩→
34 WPL_list.extend(WPL[i]*np.ones(168))

35

36 WPL_plot = [x * YPL / 100 for x in WPL_list] # Divide WPL_list by 100 to get a percentage and multiply it with the

YPL to get the absolute value↩→
37 WPL_plot_sorted = np.sort(WPL_plot)[::-1] # Order the WPL_plot list in descending order for the Load Duration

Curve↩→
38

39

40 ############### DPL ###############

41

42 # Adapt the DPL data from excel and store them in a list

43 DPL = DPL_excel.to_numpy()

44 DPL = DPL[np.ix_([1],np.arange(1, DPL.shape[1]))]

45 DPL = DPL.flatten()

46 DPL_list_temp= []

47 DPL_list = []

48

49 for j in range(len(DPL)): # Duplicate DPL 24 times for each day to obtain a week of load data with hourly increments

B.2. IEEE Load Profile 61

50 DPL_list_temp.extend(list(DPL[j]*np.ones(24)))

51

52 for k in range(52): # Duplicate DPL_list_temp 52 times to go from a week to a year

53 DPL_list.extend(DPL_list_temp)

54

55 DPL_plot = np.multiply(WPL_plot, DPL_list) / 100 # Divide DPL_list by 100 to get a percentage and multiply it with

the WPL_plot values to get the absolute value↩→
56 DPL_plot_sorted = np.sort(DPL_plot)[::-1] # Order the DPL_plot list in descending order for the Load Duration

Curve↩→
57

58

59 ############### HPL ###############

60

61 # Adapt the HPL data from excel and store them in a list

62 # There are separate lists for a weekday and a weekend day, as well as for the three specified season categories

63 HPL = HPL_excel.to_numpy()

64 HPL_winter_weekday = HPL[np.ix_([1],np.arange(3, HPL.shape[1]))].flatten()

65 HPL_summer_weekday = HPL[np.ix_([7],np.arange(3, HPL.shape[1]))].flatten()

66 HPL_spring_fall_weekday = HPL[np.ix_([13],np.arange(3, HPL.shape[1]))].flatten()

67

68 HPL_winter_weekend = HPL[np.ix_([4],np.arange(3, HPL.shape[1]))].flatten()

69 HPL_summer_weekend = HPL[np.ix_([10],np.arange(3, HPL.shape[1]))].flatten()

70 HPL_spring_fall_weekend = HPL[np.ix_([16],np.arange(3, HPL.shape[1]))].flatten()

71

72 # Initialising the lists with the hourly data for a week

73 HPL_winter = []

74 HPL_summer = []

75 HPL_spring_fall = []

76

77

78 for l in range(7): # Create variables that contain the data of a whole week by combining 5 weekdays and 2 weekend

days in a new variable↩→
79 if l < 5:

80 HPL_winter.extend(list(HPL_winter_weekday))

81 HPL_summer.extend(list(HPL_summer_weekday))

82 HPL_spring_fall.extend(list(HPL_spring_fall_weekday))

83 else:

84 HPL_winter.extend(list(HPL_winter_weekend))

85 HPL_summer.extend(list(HPL_summer_weekend))

86 HPL_spring_fall.extend(list(HPL_spring_fall_weekend))

87

88 # Initialising the list with the hourly data for a year

89 HPL_list = []

90

91 for m in range(52): # Check which seasons corresponds to the current week number and add the hourly data for a week

to the list for a↩→
92 if m < 8 or 43 <= m < 52:

93 HPL_list.extend(HPL_winter)

94 elif 17 <= m < 30:

95 HPL_list.extend(HPL_summer)

96 elif 8 <= m < 17 or 30 <= m < 43:

97 HPL_list.extend(HPL_spring_fall)

98 else:

99 print('something went wrong!') # A check to ensure that all 52 weeks are assigned

100

101

102 HPL_plot = np.multiply(DPL_plot, HPL_list) / 100 # Divide HPL_list by 100 to get a percentage and multiply it with

the DPL_plot values to get the absolute value↩→
103 HPL_plot_sorted = np.sort(HPL_plot)[::-1]

104 return time, YPL_plot, WPL_plot, DPL_plot, HPL_plot, WPL_plot_sorted, DPL_plot_sorted, HPL_plot_sorted

105

106 if __name__ == "__main__": # Only print these graphs if the Load_curves script is ran

107

108 #Define the Yearly Peak Load for the test systems

109 YPL_RBTS = 185

110 YPL_RTS = 2850

111

112 #Choose which one of the two test systems should be used by uncommenting that entry

113 YPL = YPL_RBTS

B.3. Reliability Indices 62

114 #YPL = YPL_RTS

115

116 time, YPL_plot, WPL_plot, DPL_plot, HPL_plot, WPL_plot_sorted, DPL_plot_sorted, HPL_plot_sorted =

CreateLoadCurve(YPL)↩→
117

118 plt.figure(1)

119 plt.plot(time, YPL_plot, label='YPL')

120 plt.plot(time, WPL_plot, label='WPL')

121 plt.plot(time, DPL_plot, label='DPL')

122 plt.xlabel('Time [hours]')

123 plt.ylabel('Load [MW]')

124 plt.title('Load Curves for the RBTS')

125 plt.title('IEEE load curves in Per-unit')

126 plt.legend()

127

128 plt.figure(2)

129 plt.plot(time, YPL_plot, label='YPL')

130 plt.plot(time, WPL_plot_sorted, label='WPL')

131 plt.plot(time, DPL_plot_sorted, label='DPL')

132 plt.plot(time, HPL_plot_sorted, label='HPL')

133 plt.xlabel('Time [hours]')

134 plt.ylabel('Load [MW]')

135 plt.title('Load Duration Curves for the RBTS in descending order')

136 plt.title('IEEE Load Duration Curves in Per-unit')

137 plt.legend()

138 plt.show()

B.3. Reliability Indices

1 """

2 File: Reliability_indices.py

3 Author: Julian Wuijts

4 Date: 05-07-2024

5 Description: A Python script to obtain the reliability indices LOLP, LOLE and EENS.

6 """

7

8 import pandas as pd

9

10 from Load_curves import CreateLoadCurve

11 from COPT_derated_states import calc_COPT

12

13

14 def calc_LOLP(Gen_outage_capacity,P_outage,load):

15 Installed_generation = Gen_outage_capacity[-1]

16 Max_outage = Installed_generation - load

17 j = 0

18 if Max_outage <= 0 :

19 P= 1

20 elif Max_outage in Gen_outage_capacity:

21 P_index = Gen_outage_capacity.index(Max_outage)

22 P = P_outage[P_index]

23 elif Max_outage > max(Gen_outage_capacity):

24 P = 0

25 else:

26 for j in range(len(Gen_outage_capacity)-1):

27 if Gen_outage_capacity[j] <= Max_outage < Gen_outage_capacity[j+1]:

28 P = P_outage[j+1]

29 break

30 else:

31 print('Something went wrong!')

32 return P

33

34 def calc_LOLE(Gen_outage_capacity,P_outage, load):

35 i = 0

36 j = 0

37 P_list = []

B.3. Reliability Indices 63

38 Installed_generation = Gen_outage_capacity[-1]

39 for i in range(len(time)):

40 Max_outage = Installed_generation - (load[i])

41 if Max_outage <= 0 :

42 P= 1

43 elif Max_outage in Gen_outage_capacity:

44 P_index = Gen_outage_capacity.index(Max_outage)

45 P = P_outage[P_index+1]

46 elif Max_outage > max(Gen_outage_capacity):

47 P = 0

48 else:

49 for j in range(len(Gen_outage_capacity)-1):

50 if Gen_outage_capacity[j] <= Max_outage < Gen_outage_capacity[j+1]:

51 P = P_outage[j+1]

52 break

53 else:

54 pass

55 P_list.append(P)

56 LOLE = sum(P_list)

57 return LOLE

58

59 def calc_EENS(Gen_outage_capacity,P_individual, load):

60 i = 0

61 j = 0

62 EENS = 0

63 #EENS_list = []

64 Installed_generation = Gen_outage_capacity[-1]

65 for i in range(len(time)):

66 E_sum = 0

67 for j in range(len(Gen_outage_capacity)):

68 Capacity_outage = (Gen_outage_capacity[j] -(Installed_generation - load[i]))

69 if Capacity_outage > 0:

70 E_individual = Capacity_outage*P_individual[j]

71 E_sum += E_individual

72 else:

73 pass

74 EENS += E_sum

75 return EENS

76

77 generator_data = pd.read_excel("/Users/jswui/Desktop/COPT_RBTS.xlsx", sheet_name="Generators") #Import generator data

from Excel↩→
78 YPL_RBTS = 185

79 YPL_RTS = 2850

80

81 YPL = YPL_RBTS

82

83 Gen_outage_capacity, P_outage = calc_COPT(generator_data)

84 time, YPL_plot, WPL_plot, DPL_plot, HPL_plot, WPL_plot_sorted, DPL_plot_sorted, HPL_plot_sorted = CreateLoadCurve(YPL)

85

86 P_outage2 = P_outage

87 P_outage2.append(0)

88 P_individual = [P_outage2[i - 1] - P_outage2[i] for i in range(1, len(P_outage2))]

89

90

91 # Calculate LOLP

92 # P = calc_LOLP(Gen_outage_capacity,P_outage,YPL)

93 # print('\nLOLP', P,'\n')

94

95 # Calculate LOLE

96 LOLE_HPL = calc_LOLE(Gen_outage_capacity,P_outage,HPL_plot)

97 print('\nLOLE HPL',LOLE_HPL,'hours/year \n')

98 print('\nLOLP dash HPL',LOLE_HPL/8736,'\n')

99

100 # LOLE_DPL = calc_LOLE(Gen_outage_capacity,P_outage,DPL_plot)/24

101 # print('\nLOLE DPL',LOLE_DPL,'days/year \n')

102

103 LOLE_YPL = calc_LOLE(Gen_outage_capacity,P_outage,YPL_plot)

104 print('\nLOLE YPL',LOLE_YPL,'hours/year \n')

105 print('\nLOLE YPL',LOLE_YPL/24,'days/year \n')

B.4. COPT for Wind Turbines 64

106 print('\nLOLP dash YPL',LOLE_YPL/8736,'\n\n')

107

108 # Calculate EENS

109 EENS_HPL = calc_EENS(Gen_outage_capacity,P_individual, HPL_plot)

110 print('\nEENS HPL', EENS_HPL, 'MWh / year\n')

111 print('\nENDS HPL', EENS_HPL/8736,'\n')

112

113 EENS_YPL = calc_EENS(Gen_outage_capacity,P_individual, YPL_plot)

114 print('\nEENS YPL', EENS_YPL, 'MWh / year\n')

115 print('\nENDS YPL', EENS_YPL/8736,'\n')

B.4. COPT for Wind Turbines

1 """

2 File: COPT_wind.py

3 Author: Julian Wuijts

4 Date: 05-07-2024

5 Description: A Python script to create a COPT for wind turbines.

6 """

7

8 import pandas as pd

9 import numpy as np

10 import matplotlib.pyplot as plt

11 from scipy.stats import binom

12 from tabulate import tabulate

13

14 def remove_duplicates(dupl): #Function for removing duplicate values in the capacity outage array

15 return list(dict.fromkeys(dupl))

16

17 def CreatePowerProfile(wind_speed,Turbine_power_profile_excel):

18

19 #Extract the turbine power profile data from the excel file

20 Turbine_power_profile = Turbine_power_profile_excel.to_numpy()

21 Turbine_power_profile = Turbine_power_profile[:,1:]

22 P_rated = Turbine_power_profile[0,1]

23 V_cut_in = float(Turbine_power_profile[1,1])

24 V_rated = float(Turbine_power_profile[2,1])

25 V_cut_out = float(Turbine_power_profile[3,1])

26

27 #Calculate the constants for creating the power profile

28 A = 1/(V_cut_in-V_rated)**2 * (V_cut_in*(V_cut_in+V_rated)-4*V_cut_in*V_rated*((V_cut_in+V_rated)/(2*V_rated))**3)

29 B = 1/(V_cut_in-V_rated)**2 * (4*(V_cut_in+V_rated)*((V_cut_in+V_rated)/(2*V_rated))**3-(3*V_cut_in+V_rated))

30 C = 1/(V_cut_in-V_rated)**2 * (2-4*((V_cut_in+V_rated)/(2*V_rated))**3)

31

32 P_output_list = []

33

34 for i in wind_speed:

35 if i < V_cut_in:

36 P_output = 0

37 elif V_cut_in <= i < V_rated:

38 P_output = (A+B*i+C*(i)**2)*P_rated

39 elif V_rated <= i < V_cut_out:

40 P_output = P_rated

41 else:

42 P_output = 0

43 P_output_list.append(P_output)

44

45 return P_output_list, P_rated, wind_speed

46

47 def combine_wind_mechanical_outage (all_states, number_of_turbines, output_states,

turbine_power_profile_probability_test):↩→
48 #Enter the power outage and mechanical outage from 0 MW / turbines to the maximum MW / number of turbines

49 multi_state_COPT =[]

50 for k, value1 in enumerate(all_states):

51 probability_all_turbines =[]

52 for i in range(number_of_turbines+1):

B.4. COPT for Wind Turbines 65

53 result_sum = 0

54 probability_one_turbine_list = []

55 for j in range(number_of_wind_output_states):

56 result = 0

57 result_temp =0

58 if i == 0:

59 result = turbine_power_profile_probability_test[j]

60 else:

61 valid_state_check = (all_states[k]/i - output_states[j])

62 if k == 0:

63 if j == 0:

64 result = turbine_power_profile_probability_test[j]

65 else:

66 if valid_state_check >= 0:

67 result_temp = turbine_power_profile_probability_test[j]

68 result_sum+=result_temp

69 probability_one_turbine = result*individual_prob[i]

70 probability_one_turbine_list.append(probability_one_turbine)

71

72 probability_one_turbine_sum = result_sum*individual_prob[i]

73 probability_one_turbine_list_sum = sum(probability_one_turbine_list)

74 probabilities_summed = probability_one_turbine_sum+probability_one_turbine_list_sum

75 probability_all_turbines.append(probabilities_summed)

76

77 multi_state_COPT.append(sum(probability_all_turbines))

78

79 multi_state_COPT_individual_temp = [0] + multi_state_COPT

80 multi_state_COPT_individual = [multi_state_COPT_individual_temp[i+1] - multi_state_COPT_individual_temp[i] for i in

range(len(multi_state_COPT_individual_temp)-1)]↩→
81 return multi_state_COPT_individual

82

83 def Apportioning (Apportioned_states, all_states_outage, Outage_multi_state_COPT_individual):

84

85 #Initialising the apportioning variables

86 Apportioned_probability_lower = 0

87 Apportioned_probability_upper = 0

88 Apportioned_list_lower_outage = []

89 Apportioned_list_upper_outage = []

90 Apportioned_list = [0] *len(Apportioned_states)

91

92

93 #print('COPT individual probabilities', Outage_multi_state_COPT_individual)

94

95 for index_i, i in enumerate(Apportioned_states):

96 count = 0

97 for index_j, j in enumerate(all_states_outage):

98 if index_i < len(Apportioned_states)-1:

99 if i == j and count == 0:

100 Apportioned_probability_lower_temp = Outage_multi_state_COPT_individual[index_j]

101 Apportioned_probability_upper_temp = 0

102 count = 1

103 elif Apportioned_states[index_i] < j < Apportioned_states[index_i+1]:

104 # Using the apportioning formula

105 Apportioned_probability_lower_temp = Outage_multi_state_COPT_individual[index_j] *

((Apportioned_states[index_i+1]-j) / (Apportioned_states[index_i+1]-Apportioned_states[index_i]))↩→
106 Apportioned_probability_upper_temp = Outage_multi_state_COPT_individual[index_j] *

((j-Apportioned_states[index_i]) / (Apportioned_states[index_i+1]-Apportioned_states[index_i]))↩→
107 else:

108 Apportioned_probability_lower_temp = 0

109 Apportioned_probability_upper_temp = 0

110 Apportioned_probability_lower+=Apportioned_probability_lower_temp

111 Apportioned_probability_upper+=Apportioned_probability_upper_temp

112 else:

113 if i == j:

114 Apportioned_probability_lower_temp = Outage_multi_state_COPT_individual[index_j]

115 Apportioned_probability_upper_temp = 0

116 Apportioned_probability_lower+=Apportioned_probability_lower_temp

117 Apportioned_probability_upper+=Apportioned_probability_upper_temp

118 Apportioned_list[index_i]+=Apportioned_probability_lower

B.4. COPT for Wind Turbines 66

119 if index_i < len(Apportioned_states)-1:

120 Apportioned_list[index_i+1]+=Apportioned_probability_upper

121

122 Apportioned_list_cumulative_outage = Apportioned_list

123 Apportioned_list_individual_temp_outage = [0] + Apportioned_list_cumulative_outage

124 Apportioned_list_individual_outage = [Apportioned_list_individual_temp_outage[i+1] -

Apportioned_list_individual_temp_outage[i] for i in range(len(Apportioned_list_individual_temp_outage)-1)]↩→
125

126 return Apportioned_list_individual_outage, Apportioned_list_cumulative_outage

127

128 def Windplots(time, wind_speed, P_output_list, P_output_test):

129 # Plot the wind speed distribution

130 plt.figure(1)

131 plt.hist(wind_speed, bins=25, edgecolor='black',density=True)

132 plt.title('Wind speed probability distribution for winds of the coast of Trondheim in 2019')

133 plt.xlabel('Wind Speed [m/s]')

134 plt.ylabel('Probability')

135

136 # Plot the wind speed chronologically

137 plt.figure(2)

138 plt.plot(time, wind_speed, label='Wind speeds')

139 plt.xlabel('Time [hours]')

140 plt.ylabel('Wind Speed [m/s]')

141 plt.title('Wind speeds of the coast of Trondheim in 2019')

142

143 # Plot the power output probability distribution individually or cumulatively

144 plt.figure(3)

145 plt.hist(P_output_list, bins=11, edgecolor='black',density=True) # Plot the individual probabilites

146 #plt.hist(P_output_list, bins=20, density=True, cumulative=True) # Plot the cumulative probabilities

147 plt.xlabel('Output Power [MW]')

148 plt.ylabel('Probability')

149 plt.title('Power output probability distribution for a turbine of the coast of Trondheim in 2019')

150

151 # Plot the power output of a turbine chronologically

152 plt.figure(4)

153 plt.plot(time, P_output_list, label='Power output')

154 plt.xlabel('Time [hours]')

155 plt.ylabel('Power [MW]')

156 plt.title('Power output for the DTU 10 MW reference turbine of the coast of Trondheim in 2019')

157

158 # Plot the power curve for a wind turbine

159 plt.figure(5)

160 plt.plot(wind_speed_test, P_output_test, label='Power output')

161 plt.xlabel('Wind Speed [m/s]')

162 plt.ylabel('Power Output [MW]')

163 plt.title('Power output profile for the DTU 10 MW reference wind turbine')

164

165 plt.show()

166 return

167

168 time = list(range(1,8761))

169 ############### Specify wind turbine generator data ###############

170

171 number_of_wind_output_states = 5

172 FOR = 0.04

173 number_of_turbines = 10

174 P_rated = 2 # in MW

175 turbine_power_profile_probability_test = [0.50897,0.24450,0.11688,0.05944,0.07021] #5

176

177 ####### Construct the mechanical outage probability table ########

178 if __name__ == "__main__":

179 availability = 1 - FOR

180 x = range(number_of_turbines+1)

181 cumulative_prob = binom.cdf(x, number_of_turbines,availability)

182 individual_prob = binom.pmf(x, number_of_turbines,availability)

183

184 individual_prob_outage = individual_prob[::-1]

185

186 Installed_capacity = P_rated*number_of_turbines

B.4. COPT for Wind Turbines 67

187 Capacity_outage = np.linspace(0,Installed_capacity,number_of_turbines+1)

188

189 Mechanical_outage_headers = ['Capacity Outage [MW]','Individual probability']

190 individual_prob_outage_rounded = ["{:.5f}".format(x) for x in individual_prob_outage]

191 Mechanical_outage_table = list(zip(Capacity_outage,individual_prob_outage_rounded))

192 Mechanical_outage_table_format = tabulate(Mechanical_outage_table, headers=Mechanical_outage_headers,

tablefmt="grid", numalign="center",stralign="center")↩→
193

194 print('Mechanical outage probability table \n')

195 print(Mechanical_outage_table_format)

196

197 print('\n mechanical availability',individual_prob*100,'\n')

198

199

200 output_states = np.linspace(0,P_rated,number_of_wind_output_states)

201

202 all_states = []

203 for i in range(1,number_of_turbines+1):

204 for j in range(len(output_states)):

205 possible_state=i*output_states[j]

206 all_states.append(possible_state)

207

208 all_states = remove_duplicates(all_states)

209

210

211 all_states.sort()

212 all_states_outage = all_states

213 all_states_outage = [number_of_turbines*P_rated - x for x in all_states_outage]

214 all_states_outage.sort()

215

216 Wind_speed_excel = pd.read_excel("/Users/jswui/Desktop/Thesis codes/Analytical/COPT_wind.xlsx", sheet_name="Wind_speed")

217 Wind_speed_test = pd.read_excel("/Users/jswui/Desktop/Thesis codes/Analytical/COPT_wind.xlsx",

sheet_name="Wind_speed_power_curve")↩→
218 Turbine_power_profile_excel = pd.read_excel("/Users/jswui/Desktop/Thesis codes/Analytical/COPT_wind.xlsx",

sheet_name="Turbine_power_profile")↩→
219

220 #Extract the wind speeds from the excel file

221 wind_speed = Wind_speed_excel.to_numpy()

222 wind_speed = wind_speed[np.ix_(np.arange(2, wind_speed.shape[0]),[1])]

223 wind_speed = wind_speed.flatten()

224

225 wind_speed_test = Wind_speed_test.to_numpy()

226 wind_speed_test = wind_speed_test[2:,1]

227 wind_speed_test = wind_speed_test.flatten()

228

229

230

231 if __name__ == "__main__":

232

233 P_output_list, P_rated, wind_speed = CreatePowerProfile(wind_speed,Turbine_power_profile_excel)

234 P_output_test, P_rated, wind_speed_test = CreatePowerProfile(wind_speed_test,Turbine_power_profile_excel)

235

236 # Go from a list of power outputs to a state probability table

237

238 State_probability_list = []

239

240 for j, value in enumerate(output_states):

241 counter = 0

242 for k in P_output_list:

243 if output_states[j] < output_states[-1]:

244 if output_states[j] <= k < output_states[j+1]:

245 counter+=1

246 elif output_states[j] == output_states[-1] and k == output_states[-1]:

247 counter+=1

248 State_probability = counter/len(P_output_list)

249 State_probability_list.append(State_probability)

250

251

252 multi_state_COPT_individual = combine_wind_mechanical_outage(all_states, number_of_turbines, output_states,

turbine_power_profile_probability_test)↩→

B.4. COPT for Wind Turbines 68

253

254 Output_table_headers = ['Capacity \n Output \n[MW]',' Individual\n probability']

255 multi_state_COPT_individual_rounded = ["{:.5f}".format(x) for x in multi_state_COPT_individual]

256 Output_table = list(zip(all_states,multi_state_COPT_individual_rounded))

257 Output_table_format = tabulate(Output_table, headers=Output_table_headers, tablefmt="grid",

numalign="center",stralign="center")↩→
258

259 print('\n Capacity Output Probability Table \n')

260 print(Output_table_format)

261

262 Outage_table_headers = ['Capacity Outage [MW]','Individual probability']

263 Outage_multi_state_COPT_individual = multi_state_COPT_individual[::-1]

264 Outage_multi_state_COPT_individual_rounded = ["{:.5f}".format(x) for x in Outage_multi_state_COPT_individual]

265 Outage_table = list(zip(all_states_outage,Outage_multi_state_COPT_individual_rounded))

266 Outage_table_format = tabulate(Outage_table, headers=Outage_table_headers, tablefmt="grid",

numalign="center",stralign="center")↩→
267

268 print('\n Capacity Outage Probability Table\n')

269 print(Outage_table_format)

270

271 # Specify the states to reduce the COPT to

272 Apportioned_states = [0,5,10,15,20]

273

274 Apportioned_list_individual_outage, Apportioned_list_cumulative_outage = Apportioning(Apportioned_states,

all_states_outage, Outage_multi_state_COPT_individual)↩→
275

276 # Create the apportioned COPT

277 Outage_table_reduced_headers = ['Capacity Outage [MW]','Individual probability']

278 Apportioned_list_individual_outage_rounded = ["{:.5f}".format(x) for x in Apportioned_list_individual_outage]

279 Outage_table_reduced = list(zip(Apportioned_states,Apportioned_list_individual_outage_rounded))

280 Outage_table_reduced_format = tabulate(Outage_table_reduced, headers=Outage_table_reduced_headers, tablefmt="grid",

numalign="center",stralign="center")↩→
281

282 print('\n Apportioned COPT\n')

283 print(Outage_table_reduced_format)

284

285 Windplots(time, wind_speed, P_output_list, P_output_test)

C
Non-Sequential MCS Scripts

C.1. Generator Profile for Both Wind and Conventional Generators
without Derated States

1 """

2 File: MCS_state_sampling_derated.py

3 Author: Julian Wuijts

4 Date: 05-07-2024

5 Description: A Python script to create a generation profile for a non-sequential MCS with the option for wind generation,

6 but without derated states to speed up the computational time.

7 """

8

9 import numpy as np

10 import matplotlib.pyplot as plt

11 import pandas as pd

12

13 from COPT_wind import CreatePowerProfile

14

15 # Precompute random values

16 def generate_random_values(total_hours):

17 U = np.random.rand(total_hours)

18 return U

19

20 # Generate wind speed list using precomputed random values

21 def generate_wind_speed_list(total_hours, alpha, beta):

22 U = generate_random_values(total_hours)

23 wind_speed_list = alpha * ((-np.log(U))**(1/beta))

24 return wind_speed_list

25

26 # Generate generator profile state using precomputed random values

27 def generate_generator_profile_state(total_hours, FOR):

28 U = generate_random_values(total_hours)

29 generator_profile_state = (U >= FOR).astype(int)

30 return generator_profile_state

31

32 # Optimize generation_profile function

33 def generation_profile(generator_data, alpha, beta, turbine_specs):

34 generator_data = generator_data.to_numpy()

35

36 FOR = generator_data[2, 2::2]

37 generator_capacity_list = generator_data[2, 1::2]

38 generator_type_list = generator_data[3, 1::2]

39 number_of_generators = generator_data[4, 1::2].astype(int)

40 generator_number = sum(number_of_generators)

41

42 total_hours = 8736

43 wind_speed_list = generate_wind_speed_list(total_hours, alpha, beta)

44 P_output_list, _, _ = CreatePowerProfile(wind_speed_list, turbine_specs)

45 wind_power_profile = P_output_list[:total_hours]

46

47 generator_data_filtered = np.repeat([generator_type_list, generator_capacity_list, FOR], number_of_generators,

axis=1)↩→
48 generator_type_list = generator_data_filtered[0]

49 generator_capacity_list = generator_data_filtered[1]

50 FOR = generator_data_filtered[2]

69

C.2. Generator profile for Both Wind and Conventional Generators with Derated States 70

51

52 summed_generator_profile = np.zeros(total_hours)

53

54 for i in range(generator_number):

55 generator_profile_state = generate_generator_profile_state(total_hours, FOR[i])

56

57 if generator_type_list[i] == 0:

58 generator_profile_capacity = generator_capacity_list[i] * generator_profile_state

59 elif generator_type_list[i] == 1:

60 generator_profile_capacity = wind_power_profile * generator_profile_state

61 else:

62 raise ValueError('Invalid generator type')

63

64 summed_generator_profile += generator_profile_capacity

65

66 return summed_generator_profile

67

68 # Use the optimized generation_profile function

69 if __name__ == "__main__":

70 beta = 1.8459062218183633

71 alpha = 4.703721846769401

72

73 generator_data = pd.read_excel("/Users/jswui/Desktop/RBTS_MCS_wind_state_sampling.xlsx", sheet_name="Generators")

#Import generator data from Excel↩→
74 turbine_specs = pd.read_excel("/Users/jswui/Desktop/RBTS_MCS_wind_state_sampling.xlsx", sheet_name="Turbines")

75

76 summed_generator_profile = generation_profile(generator_data, alpha, beta, turbine_specs)

77 time = np.arange(1, 8737)

78

79 plt.plot(time, summed_generator_profile)

80 plt.xlabel('Time [hours]')

81 plt.ylabel('Output [MW]')

82 plt.title('Generator Availability')

83 plt.grid(True)

84 plt.show()

C.2. Generator profile for Both Wind and Conventional Generators
with Derated States

1 """

2 File: MCS_state_sampling_derated.py

3 Author: Julian Wuijts

4 Date: 05-07-2024

5 Description: A Python script to create a generation profile for a non-sequential MCS with the option for wind generation

and derated states.↩→
6 """

7

8 import numpy as np

9 import matplotlib.pyplot as plt

10 import pandas as pd

11

12 from COPT_wind import CreatePowerProfile

13

14 def object_to_numpy_array(object):

15 processed_list = []

16 for value in object:

17 try:

18 processed_list.append(float(value))

19 except (ValueError, TypeError):

20 processed_list.append(np.nan)

21 return np.array(processed_list)

22

23 # Precompute random values

24 def generate_random_values(total_hours):

25 U = np.random.rand(total_hours)

C.2. Generator profile for Both Wind and Conventional Generators with Derated States 71

26 return U

27

28 # Generate wind speed list using precomputed random values

29 def generate_wind_speed_list(total_hours, alpha, beta):

30 U = generate_random_values(total_hours)

31 wind_speed_list = alpha * ((-np.log(U))**(1/beta))

32 return wind_speed_list

33

34 # Generate generator profile state using precomputed random values

35 def generate_generator_profile_state(total_hours, state_probability,generator_capacity):

36 U = generate_random_values(total_hours)

37

38 state_probability_cleaned = state_probability[~np.isnan(state_probability)]

39 state_probability_boundaries = np.cumsum(state_probability_cleaned)

40

41 state = np.searchsorted(state_probability_boundaries, U, side='right')

42 state_outage = generator_capacity[state]

43 state_outage = np.array(state_outage, dtype=float)

44 generator_profile_state = 1-(state_outage/max(generator_capacity))

45

46 return generator_profile_state

47

48 # Optimize generation_profile function

49 def generation_profile(generator_data, alpha, beta, turbine_specs):

50

51 generator_data = generator_data.to_numpy()

52

53 state_probability = generator_data[3:, 2::2]

54 generator_capacity_list = generator_data[3:, 1::2]

55 generator_type_list = generator_data[0, 1::2]

56 number_of_generators = generator_data[1, 1::2].astype(int)

57 number_of_states = generator_data[3,0]

58 generator_number = sum(number_of_generators)

59

60 repeated_generator_type_list = np.repeat(generator_type_list, number_of_generators)

61 repeated_generator_capacity_list = np.repeat(generator_capacity_list, number_of_generators, axis=1)

62 repeated_state_probability = np.repeat(state_probability, number_of_generators, axis=1)

63

64 # Concatenate the repeated arrays into the final structure

65 generator_data_filtered = np.vstack([repeated_generator_type_list, repeated_generator_capacity_list,

repeated_state_probability])↩→
66

67 # Splitting the concatenated data into individual components

68 generator_type_list = generator_data_filtered[0]

69 generator_capacity_list = generator_data_filtered[1:number_of_states+1]

70 state_probability_list = generator_data_filtered[number_of_states+1:]

71 state_probability_list = np.array([object_to_numpy_array(row) for row in state_probability_list])

72

73 total_hours = 8736

74 wind_speed_list = generate_wind_speed_list(total_hours, alpha, beta)

75 P_output_list, _, _ = CreatePowerProfile(wind_speed_list, turbine_specs)

76 wind_power_profile = P_output_list[:total_hours]

77

78 summed_generator_profile = np.zeros(total_hours)

79

80 for i in range(generator_number):

81 generator_profile_state = generate_generator_profile_state(total_hours,

state_probability_list[:,i],generator_capacity_list[:,i])↩→
82

83

84 if generator_type_list[i] == 0:

85 generator_profile_capacity = max(generator_capacity_list[:,i]) * generator_profile_state

86 elif generator_type_list[i] == 1:

87 generator_profile_capacity = wind_power_profile * generator_profile_state

88 else:

89 print('Invalid generator type')

90

91 summed_generator_profile += generator_profile_capacity

92

C.3. Reliability Indices 72

93 return summed_generator_profile

94

95 # Use the optimized generation_profile function

96 if __name__ == "__main__":

97 beta = 1.8459062218183633

98 alpha = 4.703721846769401

99

100 ## CHANGE THE DATAPATH HERE ##

101 generator_data = pd.read_excel("/Users/jswui/Desktop/RBTS_MCS_wind_state_sampling_derated.xlsx",

sheet_name="Generators") #Import generator data from Excel↩→
102 turbine_specs = pd.read_excel("/Users/jswui/Desktop/RBTS_MCS_wind_state_sampling_derated.xlsx",

sheet_name="Turbines")↩→
103

104 summed_generator_profile = generation_profile(generator_data, alpha, beta, turbine_specs)

105 time = np.arange(1, 8737)

106

107 plt.plot(time, summed_generator_profile)

108 plt.xlabel('Time [hours]')

109 plt.ylabel('Output [MW]')

110 plt.title('Generator Availability')

111 plt.grid(True)

112 plt.show()

C.3. Reliability Indices

1 """

2 File: Reliability_indices_MCS.py

3 Author: Julian Wuijts

4 Date: 05-07-2024

5 Description: A Python script to obtain the reliability indices LOLE and EENS using a non-sequential MCS method.

6 """

7

8 import pandas as pd

9 import numpy as np

10 import time

11

12 from Load_curves import CreateLoadCurve

13 from MCS_state_sampling_no_derated import generation_profile

14 #from MCS_state_sampling_derated import generation_profile

15 from matplotlib import pyplot as plt

16

17 def calc_LOLE_MCS(load,stopping_criteria):

18 print('LOLE MCS calculation \n')

19 num_of_iterations = 0

20 LOLE_list = []

21 LOLE_average_value_list = []

22 LOLE_average_value = 0

23

24 while num_of_iterations < stopping_criteria:

25 time_unit = 0

26

27 summed_generator_profile = generation_profile(generator_data,alpha,beta,turbine_specs)

28

29 net_energy = summed_generator_profile-load

30 time_unit = np.sum(net_energy < 0)

31 LOLE_list.append(time_unit)

32

33 num_of_iterations +=1

34 LOLE_average_value = np.mean(LOLE_list)

35 LOLE_average_value_list.append(LOLE_average_value)

36

37 print('number of iterations', num_of_iterations)

38 print('LOLE value',LOLE_average_value)

39 num_of_iterations_list = np.arange(1, num_of_iterations + 1)

40

41 std_dev_temp_list = (LOLE_list - LOLE_average_value) ** 2

C.3. Reliability Indices 73

42 std_dev_temp = np.sum(std_dev_temp_list)

43

44 std_dev = (1/(num_of_iterations*(num_of_iterations-1)))*std_dev_temp

45 CoV = (std_dev/np.sqrt(num_of_iterations))/LOLE_average_value

46 print('CoV LOLE',CoV)

47

48 end_time = time.time()

49 execution_time = end_time - start_time

50 print('execution time: ',execution_time,' seconds')

51

52 plt.figure(1)

53 plt.plot(num_of_iterations_list, LOLE_average_value_list)

54 plt.axhline(y=LOLE_average_value, color='r', linestyle='--', label='LOLE Average')

55 plt.xlabel('Number of iterations')

56 plt.ylabel('LOLE average value [hours/year]')

57 plt.title('MCS LOLE calculation')

58 plt.grid(True)

59 plt.show()

60

61 return

62

63

64 def calc_EENS_MCS(load,stopping_criteria):

65 print('EENS MCS calculation \n')

66 num_of_iterations = 0

67 EENS_list = []

68 EENS_average_value_list = []

69 EENS_average_value = 0

70

71 while num_of_iterations < stopping_criteria:

72 energy_not_served = 0

73 summed_generator_profile = generation_profile(generator_data,alpha,beta,turbine_specs)

74

75 net_energy = summed_generator_profile-load

76 net_energy_negative = np.minimum(net_energy, 0)

77 energy_not_served = np.sum(-net_energy_negative)

78 EENS_list.append(energy_not_served)

79

80 num_of_iterations +=1

81 EENS_average_value = np.mean(EENS_list)

82 EENS_average_value_list.append(EENS_average_value)

83

84 print('number of iterations', num_of_iterations)

85 print('EENS value',EENS_average_value)

86 num_of_iterations_list = list(range(1,num_of_iterations+1))

87

88 std_dev_temp_list = []

89

90 std_dev_temp_list = (EENS_list - EENS_average_value) ** 2

91 std_dev_temp = np.sum(std_dev_temp_list)

92 std_dev = (1/(num_of_iterations*(num_of_iterations-1)))*std_dev_temp

93 CoV = (std_dev/np.sqrt(num_of_iterations))/EENS_average_value

94 print('CoV EENS',CoV)

95

96 end_time = time.time()

97 execution_time = end_time - start_time

98 print('execution time: ',execution_time,' seconds')

99

100 plt.figure(2)

101 plt.plot(num_of_iterations_list, EENS_average_value_list)

102 plt.axhline(y=EENS_average_value, color='r', linestyle='--', label='EENS Average')

103 plt.xlabel('Number of iterations')

104 plt.ylabel('EENS average value [MWh/year]')

105 plt.title('MCS EENS calculation')

106 plt.grid(True)

107 plt.show()

108

109 return

110

C.3. Reliability Indices 74

111

112 start_time = time.time()

113

114 # Specify the alpha and beta parameters based on the wind characteristics #

115 alpha = 4.703721846769401

116 beta = 1.8459062218183633

117

118 ## CHANGE THE PATH HERE ##

119 generator_data = pd.read_excel("/Users/jswui/Desktop/RBTS_MCS_wind_state_sampling.xlsx", sheet_name="Generators")

#Import generator data from Excel↩→
120 turbine_specs = pd.read_excel("/Users/jswui/Desktop/RBTS_MCS_wind_state_sampling.xlsx", sheet_name="Turbines")

121

122 YPL_RBTS = 185

123 YPL_RTS = 2850

124

125 YPL = YPL_RBTS

126

127 _ , YPL_plot, WPL_plot, DPL_plot, HPL_plot, WPL_plot_sorted, DPL_plot_sorted, HPL_plot_sorted = CreateLoadCurve(YPL)

128

129

130 calc_LOLE_MCS(HPL_plot,10000)

131 #calc_EENS_MCS(HPL_plot,10000)

D
Sequential MCS Scripts

D.1. Generator Profile for Conventional Generators without Derated
States

1 """

2 File: MCS_state_duration_no_derated.py

3 Author: Julian Wuijts

4 Date: 05-07-2024

5 Description: A Python script to create a generation profile for a sequential MCS.

6 """

7

8 import numpy as np

9 import math

10 import matplotlib.pyplot as plt

11 import pandas as pd

12

13 generator_data = pd.read_excel("/Users/jswui/Desktop/RBTS_MCS_no_wind_state_duration.xlsx", sheet_name="Generators")

#Import generator data from Excel↩→
14

15 ## Create a generator profile ##

16 def generation_profile(generator_data):

17

18 generator_data = generator_data.to_numpy()

19

20 generator_capacity =generator_data[0,1:]

21 MTTF = generator_data[1,1:]

22 MTTR = generator_data[2,1:]

23

24 generator_number = len(generator_capacity)

25 total_hours = 8736

26

27 summed_generator_profile = np.zeros(total_hours)

28

29 for i in range(generator_number):

30

31 sum_hours = 0

32 generator_profile_state = []

33

34 while sum_hours < total_hours:

35 U1, U2 = np.random.rand(2)

36 TTF = int(-MTTF[i] * math.log(U1))

37 TTR = int(-MTTR[i] * math.log(U2))

38

39 generator_profile_state.extend([1] * min(TTF, total_hours - sum_hours))

40 sum_hours += TTF

41

42 if sum_hours < total_hours:

43 generator_profile_state.extend([0] * min(TTR, total_hours - sum_hours))

44 sum_hours += TTR

45

46 generator_profile_state = generator_profile_state[:total_hours]

47

48 generator_profile_capacity = generator_capacity[i] * np.array(generator_profile_state)

49

50 summed_generator_profile += generator_profile_capacity

75

D.2. Generator Profile for Conventional Generators with Derated States 76

51

52 return summed_generator_profile

53

54

55 if __name__ == "__main__":

56

57 #print('profile length',len(generator_profile_state))

58

59 summed_generator_profile = generation_profile(generator_data)

60 time = list(range(1,8737))

61

62 plt.plot(time, summed_generator_profile)

63 plt.xlabel('Time [hours]')

64 plt.ylabel('Output [MW]')

65 plt.title('Generator Availability')

66 plt.grid(True)

67 plt.show()

D.2. Generator Profile for Conventional Generators with Derated States

1 """

2 File: MCS_state_duration_derated.py

3 Author: Julian Wuijts

4 Date: 05-07-2024

5 Description: A Python script to create a generation profile for a sequential MCS with the option to include derated

states.↩→
6 """

7

8 import numpy as np

9 import math

10 import matplotlib.pyplot as plt

11 import pandas as pd

12

13

14 generator_data = pd.read_excel("/Users/jswui/Desktop/RBTS_MCS_no_wind_state_duration.xlsx", sheet_name="derated")

#Import generator data from Excel↩→
15 print('generator data',generator_data)

16

17

18 ## Create a generator profile ##

19 def generation_profile(generator_data):

20

21 generator_data = generator_data.to_numpy()

22

23 generator_capacity = generator_data[0,1:]

24 num_of_transition_states = int(generator_data[1,1])

25 derated_states_nan = (generator_data[2,1:])

26 derated_states = []

27

28 for value in derated_states_nan:

29 try:

30 numeric_value = float(value)

31 if not np.isnan(numeric_value):

32 derated_states.append(numeric_value)

33 except ValueError:

34 pass

35

36 derated_states = np.array(derated_states)

37

38 repair_rate = generator_data[3:3+num_of_transition_states,1:]

39 failure_rate = generator_data[3+num_of_transition_states:3+2*num_of_transition_states,1:]

40

41 generator_number = len(generator_capacity)

42 total_hours = 8736

43

44 summed_generator_profile = np.zeros(total_hours)

D.2. Generator Profile for Conventional Generators with Derated States 77

45

46 for i in range(generator_number):

47

48 sum_hours = 0

49 generator_profile_state = []

50

51 while sum_hours < total_hours:

52

53 TTF = np.zeros(num_of_transition_states)

54

55 for j in range(num_of_transition_states):

56 U = np.random.rand()

57 if math.isnan(failure_rate[j,i]):

58 TTF[j] = 1e6

59 else:

60 TTF[j] = int(-(8760/failure_rate[j,i]) * math.log(U))

61

62 state_duration_TTF = int(min(TTF))

63 state_TTF = np.argmin(TTF)

64 generator_profile_state.extend([1] * min(state_duration_TTF, total_hours - sum_hours))

65

66 sum_hours+=state_duration_TTF

67

68 if sum_hours < total_hours:

69 U = np.random.rand()

70 state_duration_TTR = 0

71 state_duration_TTR = int((-8760/repair_rate[state_TTF,i])* math.log(U))

72 generator_profile_state.extend([(derated_states[state_TTF])/100] * min(state_duration_TTR, total_hours -

sum_hours))↩→
73

74 sum_hours+=state_duration_TTR

75

76 generator_profile_state = generator_profile_state[:total_hours]

77

78 generator_profile_capacity = generator_capacity[i] * np.array(generator_profile_state)

79

80 summed_generator_profile += generator_profile_capacity

81

82 return summed_generator_profile

83

84

85 if __name__ == "__main__":

86

87 #print('profile length',len(generator_profile_state))

88

89 summed_generator_profile = generation_profile(generator_data)

90 time = list(range(1,8737))

91

92 plt.plot(time, summed_generator_profile)

93 plt.xlabel('Time [hours]')

94 plt.ylabel('Output [MW]')

95 plt.title('Generator Availability')

96 plt.grid(True)

97 plt.show()

E
Wind Turbine FOR Power Output

Comparison and Weibull Distribution
Fitting Scripts

E.1. Wind Turbine FOR Power Output Comparison

1 """

2 File: Wind_turbine_reliability_comparison.py

3 Author: Julian Wuijts

4 Date: 05-07-2024

5 Description: A Python script to compare the power output distribution of a wind farm for various FORs .

6 """

7

8 from COPT_wind import CreatePowerProfile

9 from MCS_state_sampling_no_derated import *

10

11 import numpy as np

12 import pandas as pd

13 import matplotlib.pyplot as plt

14 #import math

15

16 def wind_power_distribution_FOR(num_of_years,alpha,beta,generator_data,turbine_specs,FOR_value):

17 power_distribution_plot = []

18 generator_data = generator_data.to_numpy()

19 FOR = generator_data[4, 2::2]

20 generator_capacity_list = generator_data[4, 1::2]

21 generator_type_list = generator_data[0, 1::2]

22 number_of_generators = generator_data[1, 1::2].astype(int)

23 generator_number = sum(number_of_generators)

24

25 generator_data_filtered = np.repeat([generator_type_list, generator_capacity_list, FOR], number_of_generators,

axis=1)↩→
26 generator_type_list = generator_data_filtered[0]

27 generator_capacity_list = generator_data_filtered[1]

28 FOR = generator_data_filtered[2]

29

30 FOR = np.full(generator_number,FOR_value)

31

32 total_hours = 8760

33

34 for i in range(num_of_years):

35 summed_generator_profile = np.zeros(total_hours)

36

37 wind_speed_list = generate_wind_speed_list(total_hours, alpha, beta)

38 P_output_list, _, _ = CreatePowerProfile(wind_speed_list, turbine_specs)

39 wind_power_profile = P_output_list[:total_hours]

40

41 for i in range(generator_number):

42 generator_profile_state = generate_generator_profile_state(total_hours, FOR[i])

43

44 if generator_type_list[i] == 0:

45 generator_profile_capacity = generator_capacity_list[i] * generator_profile_state

46 elif generator_type_list[i] == 1:

78

E.1. Wind Turbine FOR Power Output Comparison 79

47 generator_profile_capacity = wind_power_profile * generator_profile_state

48 else:

49 raise ValueError('Invalid generator type')

50

51 summed_generator_profile += generator_profile_capacity

52 power_distribution_plot.extend(summed_generator_profile)

53

54 return power_distribution_plot

55

56 num_of_years = 25

57

58 ## Trondheim ##

59 alpha = 10.2239

60 beta = 1.8865

61

62 turbine_specs = pd.read_excel("/Users/jswui/Desktop/Thesis codes/MCS/Wind_reliability_comparison.xlsx",

sheet_name="Turbine_power_profile")↩→
63 generator_data = pd.read_excel("/Users/jswui/Desktop/Thesis codes/MCS/Wind_reliability_comparison.xlsx",

sheet_name="Generators")↩→
64

65 FOR1 = 0.04

66 FOR2 = 0.08

67

68 FOR_test = np.arange(0.00,0.22,0.02)

69 yearly_power_outputs = []

70 perfect_reliability_output = 0

71

72 for FOR in FOR_test:

73 power_distribution_plot = wind_power_distribution_FOR(num_of_years, alpha, beta, generator_data, turbine_specs, FOR)

74 yearly_power_output = sum(power_distribution_plot) / num_of_years

75 yearly_power_outputs.append(yearly_power_output)

76

77 if FOR == 0.00:

78 perfect_reliability_output = yearly_power_output

79

80 # Sort the power distribution plot

81 power_distribution_plot = np.sort(power_distribution_plot)

82

83 # Calculate the cumulative probabilities

84 cumulative_power_distribution_plot = np.arange(len(power_distribution_plot)) / float(len(power_distribution_plot))

85

86 median_index = len(power_distribution_plot) // 2

87 median_power_output = power_distribution_plot[median_index]

88 #print(f'FOR = {FOR:.2f}, Median power output: {median_power_output:.2f} MW')

89

90 if FOR == 0.00:

91 perfect_reliability_median = median_power_output

92

93 percentage_median_output = (median_power_output / perfect_reliability_median) * 100 if perfect_reliability_median !=

0 else 100↩→
94 print(f'FOR = {FOR:.2f}, Median power output: {median_power_output:.2f} MW, {percentage_median_output:.2f}% of

perfect reliability')↩→
95

96 # Plot the cumulative distribution function

97 plt.plot(power_distribution_plot, cumulative_power_distribution_plot, linestyle='-', label=f'FOR={FOR:.2f}')

98

99 # Convert the list of yearly power outputs to a NumPy array

100 yearly_power_outputs = np.array(yearly_power_outputs)

101 print('\n')

102 # Print the yearly power outputs as an absolute value and percentage

103 for FOR, output in zip(FOR_test, yearly_power_outputs):

104 percentage_output = (output / perfect_reliability_output) * 100

105 print(f'FOR = {FOR:.2f}, Yearly power output is: {output:.2f} MWh, {percentage_output:.2f}% of perfect reliability')

106

107

108 # Plot the cumulative distribution functions for different FOR

109 plt.xlabel('Wind Farm Output Power [MW]', fontsize=24)

110 plt.ylabel('Probability', fontsize=20)

111 #plt.title('Cumulative distribution function for turbines with varying FOR')

E.2. Weibull Distribution Fitting 80

112 plt.legend(loc='upper left', prop={'size': 14})

113 plt.show()

E.2. Weibull Distribution Fitting

1 """

2 File: Weibull_distribution_fitting.py

3 Author: Julian Wuijts

4 Date: 05-07-2024

5 Description: A Python script to fit a Weibull distribution with parameters alpha and beta to a wind speed distribution.

6 """

7

8 import pandas as pd

9 import numpy as np

10 import matplotlib.pyplot as plt

11 from scipy.stats import weibull_min

12

13 ## wind site Trondheim ##

14

15 Wind_speed_excel = pd.read_excel("/Users/jswui/Desktop/Thesis codes/MCS/windatlas-xyz-data_39_years_Trondheim.xlsx",

sheet_name="windatlas-xyz-data_39_years")↩→
16

17 # #Extract the wind speeds from the excel file

18 wind_speed = Wind_speed_excel.to_numpy()

19 wind_speed = wind_speed[2:, 1]

20 wind_speed = wind_speed.flatten()

21

22 cleaned_wind_speed = []

23

24 # Iterate over each element in wind_speed

25 for val in wind_speed:

26 try:

27 # Try converting the element to float

28 num_val = float(val)

29 # Check if it's not NaN

30 if not np.isnan(num_val):

31 # Append to cleaned_wind_speed

32 cleaned_wind_speed.append(num_val)

33 except ValueError:

34 # If conversion to float fails, continue to the next element

35 continue

36

37 # Convert cleaned_wind_speed to a numpy array

38 cleaned_wind_speed = np.array(cleaned_wind_speed)

39

40 # Fit the Weibull distribution

41 alpha, loc, beta = weibull_min.fit(cleaned_wind_speed, floc=0)

42

43

44 print('alpha, beta',alpha,beta)

45

46 plt.figure(1)

47 plt.hist(wind_speed, bins=25, edgecolor='black',density=True)

48 plt.title('Wind speed probability distribution for winds of the coast of Trondheim 1980-2019')

49 plt.xlabel('Wind Speed [m/s]',fontsize=20)

50 plt.ylabel('Probability',fontsize=20)

51 plt.xlim(right=30)

52

53

54 x = np.linspace(wind_speed.min(), wind_speed.max(), 100)

55 plt.plot(x, weibull_min(alpha,0,beta).pdf(x))

56

57 plt.show()

F
IEEE Load Curve

F.1. Weekly Peak Load
Table F.1: WPL as a percentage of the YPL

Week number WPL as a % of YPL Week number WPL as a % of YPL
1 86.2 27 75.5
2 90.0 28 81.6
3 87.8 29 80.1
4 83.4 30 88.0
5 88.0 31 72.2
6 84.1 32 77.6
7 83.2 33 80.0
8 80.6 34 72.9
9 74.0 35 72.6
10 73.7 36 70.5
11 71.5 37 78.0
12 72.7 38 69.5
13 70.4 39 72.4
14 75.0 40 72.4
15 72.1 41 74.3
16 80.0 42 74.4
17 75.4 43 80.0
18 83.7 44 88.1
19 87.0 45 88.5
20 88.0 46 90.9
21 85.6 47 94.0
22 81.1 48 89.0
23 90.0 49 94.2
24 88.7 50 97.0
25 89.6 51 100.0
26 86.1 52 95.2

81

F.2. Daily Peak Load 82

F.2. Daily Peak Load

Table F.2: DPL as a percentage of the WPL

Day DPL as a % of WPL
Monday 93
Tuesday 100

Wednesday 98
Thursday 96

Friday 94
Saturday 77
Sunday 75

F.3. Hourly Peak Load
Table F.3: HPL as a percentage of the DPL

Season Winter Summer Spring / Fall
Weeks 1-8 & 44-52 18-30 9-17 & 31-43

Hour
Day type Weekday Weekend Weekday Weekend Weekday Weekend

00.00-01.00 67 78 64 74 63 75
01.00-02.00 63 72 60 70 62 73
02.00-03.00 60 68 58 66 60 69
03.00-04.00 59 66 56 65 58 66
04.00-05.00 59 64 56 64 59 65
05.00-06.00 60 65 58 62 65 65
06.00-07.00 74 66 64 62 72 68
07.00-08.00 86 70 76 66 85 74
08.00-09.00 95 80 87 81 95 83
09.00-10.00 96 88 95 86 99 89
10.00-11.00 96 90 99 91 100 92
11.00-12.00 95 91 100 93 99 94
12.00-13.00 95 90 99 93 93 91
13.00-14.00 95 88 100 92 92 90
14.00-15.00 93 87 100 91 90 90
15.00-16.00 94 87 97 91 88 86
16.00-17.00 99 91 96 92 90 85
17.00-18.00 100 100 96 94 92 88
18.00-19.00 100 99 93 95 96 92
19.00-20.00 96 97 92 95 98 100
20.00-21.00 91 94 92 100 96 97
21.00-22.00 83 92 93 93 90 95
22.00-23.00 73 87 87 88 80 90
23.00-00.00 63 81 72 80 70 85

G
MCS State Sampling Convergence

Process for the IEEE RTS

The following figures show the convergence process for LOLE and EENS values for the IEEE RTS using
the state sampling method.

G.1. LOLE

(a) average LOLE value for the HPL model (b) average LOLE value for the CYPL model

Figure G.1: Converging process for the average LOLE value

G.2. EENS

(a) average EENS value for the HPL model
(b) average EENS value for the CYPL model

Figure G.2: Converging process for the average EENS value

83

H
MCS State Duration Convergence

Process for the IEEE RTS

The following figures show the convergence process for LOLE and EENS values for the IEEE RTS using
the state duration method.

H.1. LOLE

(a) average LOLE value for the HPL model (b) average LOLE value for the CYPL model

Figure H.1: Converging process for the average LOLE value

H.2. EENS

(a) average EENS value for the HPL model (b) average EENS value for the CYPL model

Figure H.2: Converging process for the average EENS value

84

	Acknowledgements
	Abstract
	Nomenclature
	List of Figures
	List of Tables
	Introduction
	Motivation
	Scope and Contributions
	Thesis Outline

	Background
	Reliability Assessment of Power Systems
	Deterministic Methods
	Probabilistic Methods

	Analytical Methods
	Generation Model
	Load Model

	Monte Carlo Simulation Methods
	State Sampling Method
	State Duration Method
	State Transition Method
	Stopping Criteria

	Reliability Metrics
	LOLP
	LOLE
	EENS
	ENDS and LOLP'

	Test Systems
	IEEE Reliability Test System
	Roy Billinton Test System

	Methodological Approach for Constructing the Analytical Scripts
	Analytical Method without Wind Considerations
	COPT
	Load Curves
	Reliability Metrics

	Analytical Method with Wind Considerations
	COPT
	Validation of the Results

	Methodological Approach for Constructing the Non-Sequential MCS Scripts
	Monte Carlo Simulation Method without Wind Considerations
	Generator Profile
	Load Curves
	Reliability Metrics
	Comparing the Reliability Metrics for the MCS Method with the Analytical Method

	Monte Carlo Simulation Method with Wind Considerations

	Examining the Impact of Outages on the Output of a Wind Farm
	Investigating the Effect of Different FORs on the Output of Wind Farms CDFs
	Power Output CDF
	Yearly Energy Production

	Case Study - Supplying the City of Trondheim with Power from an Offshore Wind Farm

	Conclusions and Future Work
	Conclusions
	Future Work
	Extending the Generation Adequacy to Composite Adequacy Analysis
	Improving the Sequential State Duration MCS Method
	Compare Methods to Integrate Offshore Wind Farms into the Existing Grid

	References
	Methodological Approach for Constructing the Sequential MCS Scripts
	Generation Profile
	Reliability Metrics

	Analytical Method Scripts
	COPT for Conventional Generators Including Derated States
	IEEE Load Profile
	Reliability Indices
	COPT for Wind Turbines

	Non-Sequential MCS Scripts
	Generator Profile for Both Wind and Conventional Generators without Derated States
	Generator profile for Both Wind and Conventional Generators with Derated States
	Reliability Indices

	Sequential MCS Scripts
	Generator Profile for Conventional Generators without Derated States
	Generator Profile for Conventional Generators with Derated States

	Wind Turbine FOR Power Output Comparison and Weibull Distribution Fitting Scripts
	Wind Turbine FOR Power Output Comparison
	Weibull Distribution Fitting

	IEEE Load Curve
	Weekly Peak Load
	Daily Peak Load
	Hourly Peak Load

	MCS State Sampling Convergence Process for the IEEE RTS
	LOLE
	EENS

	MCS State Duration Convergence Process for the IEEE RTS
	LOLE
	EENS

