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Optimization is the mathematical process through which the set of conditions (satisfying the 

constraints) that produces the optimum of a specified function is obtained.  

An optimization problem consists of design variables, objective function and constraints. Design 

variables are the quantities whose numerical values will be determined in the course of obtaining the 

optimal solution. Moreover the objective function is a mathematical equation that embodies the design 

variables to be minimized or maximized and constraints are conditions that must be satisfied to 

achieve the optimum.  

Besides the design space and optimality of the problem must be clear to define the problem. The 

design space is the total region, or domain, defined by the design variables in the objective function.  

When the above mentioned parameters are understood and applied, the problem can be formulated and 

a solution approach can be chosen to solve the optimization problem.  

During the past, several optimization algorithms have been developed by several authors, but at first 

optimization algorithms can be globally distinguished as deterministic or stochastic algorithms.  

Deterministic algorithms are algorithms which behave predictably. Given a particular input, it will 

always produce the same output, while stochastic algorithm is the opposite. Stochastic algorithms are 

the synonym of random search. 

Moreover, deterministic algorithms can be divided in gradient based and derivative free algorithms, 

while stochastic algorithms can be divided in simulated annealing and evolutionary algorithms.  

In this report several optimization methods have been studied and a one-dimensional model to 

determine the preliminary geometry of the radial compressor has been presented. 

Moreover, the most suitable optimization algorithm for this assignment has been chosen. GA’s has 

been chosen based on some criteria and advantages, which are shown in the report.  

The optimization of the compressor design led to the choice of impeller hub radius r1h =2.4 mm. The 

impeller tip radius is r1t =4.0 mm. The relative flow angle is 1β  =-59.76°, the relative tip Mach 

number is M1t=0.86 and the meridional velocity is Cm1 =147.24 m/s. 

The final configuration selected shows a blade number Zr=9 at a backsweep angle 2Bβ =−45 °. The 

correlated impeller exit radius r2 and blade height b2 are equal to 6.7 mm and 0.78 mm respectively, 

while the stage efficiency stageη = 0.5839.  

The absolute and relative flow angles at the impeller exit are 2β  = -62.93° and 2α = 73.33°. The 

Mach number at the impeller exit is M2 =0.7190 and the pressure ratio is equal to 2, which is the 

chosen design value. 

             

Summary 
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In the past years several optimization algorithms have been developed and tested for several purposes. 

Moreover these algorithms determine the way the optimization will be accomplished. 

This report represents an effort for optimizing a radial compressor, which will be installed in a micro 

turbine.  

The objective of this work was to study several optimization algorithms. 

Furthermore a suitable optimization technique had to be chosen to perform calculations for the 

preliminary design of the radial compressor.  

In chapter 1 a brief explanation has been given about several components necessary to perform 

optimization. When these components were clear, the second step was to study some optimization 

techniques. 

In chapter 2 some deterministic methods (algorithms) has been explained. Deterministic methods are 

algorithms which behave predictably. Given a particular input, it will always produce the same output. 

They can be further divided in derivative-free and gradient based methods.  

The following derivative free methods have been explained in this chapter: 

• The Hooke and Jeeves method [1] 

• The Hooke and Jeeves pattern search method modified by Onwubiko and  Park [1] 

followed by Escape Algorithm for Hooke and Jeeves Pattern [1] search; 

• Simplex Algorithm followed by Two-Phase Method and Dual Approach. 

Moreover the following Gradient based algorithms have been explained in this chapter: 

• The Lagrage’s Method; 

• Quadratic programming followed by Sequential Quadratic programming. 

In chapter 3, stochastic methods have been explained. Stochastic methods are the synonym of random 

search. Besides these methods can be divided in simulated annealing and evolutionary algorithms. 

In chapter 4, the station numbering and Euler turbomachinery equation have been presented followed 

by a one-dimensional model to determine the preliminary geometry of the radial compressor.  

In chapter 5 the most suitable optimization technique to determine the preliminary geometry of the 

radial compressor have been chosen, based on some criteria and advantages. Subsequently, the 

components necessary for optimization have been applied to the 1 D model followed by results and 

effects of impeller outlet on performance. 

Then in chapter 6 the final design has been presented after validation of several designs.   

Finally, in chapter 7 the conclusions are shown and recommendations for future works are given.

Introduction 
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In this chapter a brief explanation about optimization will be given. The chapter starts with an 

introduction to optimization, which gives some design optimization examples and the definition of 

optimization. 

Moreover an optimization problem consists of design variables, objective function and constraints. 

Furthermore, the design space and optimality of the problem must be clear to define the problem.  

The following section, classification of optimization problems gives some sections in which 

optimization problems can be classified. 

Finally, after previous sections is understood and applied, the problem can be formulated and a 

solution approach chosen to solve the optimization problem.  

 

1.1. Introduction to optimization 

Before the definition of optimization, an essential concept to understand optimization is considered. 

Although design methodology is often poorly understood, there are generally accepted design steps 

given in introductory design texts. If designers follow these steps, solutions can generally be found. 

However, two questions still need to be answered before the design can be considered complete:  

- Is it adequate?  

- Can it be improved? 

Adequate design can be defined as the selection of the sizes of materials that satisfy the functional 

requirements of the design while keeping the costs and undesirable effects within tolerable limits. 

Adequate design is usually based on the engineering information available in equations and graphs (in 

hand books) and on the experience of the designer. Often, because of cost considerations, adequate 

sizes are discarded in favour of a standard size. Although this approach may be satisfactory, other 

conditions may preclude its use. For example, in the design of a machine element such as a shaft, the 

size specified may really be the best solution, given the constraints of the original design. In other 

cases, it is necessary to modify the design, regardless of how good it is, in order to achieve other 

objectives. 

The fact that designer frequently modify existing designs is in effect an admission that adequate 

designs are not always the best possible designs, given all the constraints imposed on them.  

To fully consider how best to improve a design, the concept of optimum design must be understood, 

which is the best design among the alternatives that meet a specified objective. In many books 

optimization is defined as follows:  

- Optimization is the mathematical process through which the set of conditions (satisfying 

the constraints) is obtained that produces the maximum or minimum value of a specified 

function.  

Chapter 1. Optimization                    
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Ideally, one would like to obtain the perfect solution the design situation. But in the real world the 

only strive is to achieve the best solution possible within the present constraints of time and funds 

available.  

 

1.2. Design Variables 

An engineering optimization model consists of parameters and decision variables. Design parameters 

are data that define the problem.  

Design variables are the quantities whose numerical values will be determined in the course of 

obtaining the optimal solution. These decision variables are called design variables. They include such 

things as size or weight, geometry or the number of teeth in a gear, the number of coils in a spring, the 

number of blades in a hub, or the number of tubes in a heat exchanger. In short, they represent the 

variables that are required to quantify or completely describe an engineering system. The number of 

variables depends on the type of design involved, and as this number increases, so does the complexity 

of the solution.  

Design variables may be one of three types. A design variable is continuous if it is free to assume any 

value. However, when a design variable can only assume a fixed value, it is discrete [1]. This would 

be the case when, for example, rod diameter can only be selected from a set of finite standard sizes. In 

some situations, variables can only assume integer values. These design variables are known as integer 

variables. Typical examples include the number of teeth in a gear, the number of threads, the number 

of blades in a hub, or the number of rivets required to assemble a structure. 

It is important in design optimization to clearly identify the design variables and the design parameters 

because confusing them will result in an improper optimization model. Consider the simple case 

where the appropriate short rod for carrying a specified load P is to be selected using the simple 

model
A

P=σ . For this case, stress (σ ) and load are the design parameters and area A is the design 

variable.  

It would be incorrect to include stress as a design variable here because it is dependent on the area. 

However, should the design call for material selection, stress would then become a design variable and 

the other two would become design parameters. The point is that design variables are determined by 

the nature of the problem. Thus, a design variable in one situation may very well be a design 

parameter in another. So, always identify the design variables and design parameters carefully. It is 

also a good practice to select design variables such that they are as independent of each other as 

possible. 
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1.3. Objective Function 

The process of selecting the "best solution" from various possible solutions must be based on a 

prescribed criterion, which is the objective function. For the purpose of optimization, the objective 

function is defined as a mathematical equation that embodies the design variables to be minimized or 

maximized [1]. It can be given in the form: 

D = f(x),      (1.1) 

where D stands for a desired effect that is to be achieved. The vector ( )nxxxx ,...,, 21=  represents the 

design variables.  

The objective function may be the equation that maximizes the life and efficiency of a mechanical 

element such as a gear set, or it may be the equation that reduces an undesirable condition, such as the 

weight of a machine element. The choice of objective function is crucial, because different objective 

functions produce different optima.  

Therefore, choosing which objective function to optimize is one of the most important steps in the 

process.  

In cases where a company’s policy is clear, it may be an easy and obvious decision. However, in 

instances where no policy exists, it may not be obvious at all. Suppose it is decided to set up a 

CAD/CAM laboratory from scratch.  

At least two objectives-minimizing costs and maximizing the number of work stations-have to be 

pursued. These two objectives are, at first glance, in opposition to each other; every one leads to a 

different solution. Which one must be chosen? Selecting the objective function requires a great deal of 

care, insight, and experience.   

It is possible to have only one objective. This situation is referred as single criterion optimization. 

Situations where two or more objectives are desired are referred to as multi criteria or multi goal 

optimization. Sometimes objectives conflict with each other. Suppose a car manufacturer sets up four 

objectives: minimize cost, minimize weight, maximize structural integrity, and maximize vehicle size.  

Obviously, it would be very difficult to maximize the size and minimize the weight at the same time. 

Therefore, in the case of multigoals, the designer must establish priorities and assign weighted values 

to each set of design criteria.  

 

1.4. Constraints 

In this section constraints will be explained and some examples concerning constraints will be 

mentioned. 

Designers are rarely free to design as they please. In thermal system design, which requires high—

temperature conditions, designers are limited because few materials withstand high temperatures, and, 

for very high temperatures, suitable materials do not yet exist. A restriction which almost every time is 

taken into account is, of course, cost. Such restrictions are called restriction constraints [1]. 
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Optimization constraints are therefore numerical values of identified conditions that must be satisfied 

to achieve a feasible solution to a given problem. 

Generally, there are two types of constraints, internal and external. 

External constraints are those uncontrollable restrictions or specifications imposed on a system by an 

outside agency and therefore not under the direct control of the designer. Typical examples of external 

constraints include laws and regulations set by governmental agencies, such as allowable materials for 

house construction. Availability of raw materials can also be an external constraint. 

Internal constraints are those imposed by the designer. They require a keen understanding of the 

physical system or an engineering background. Such constraints arise from the fundamental laws of 

conservation of mass, momentum, and energy. Other constraints arise from stress and geometrical 

considerations. For example, the design of a helical spring may require a restrictive expression relating 

the volume, the number of coils N, the mean spring diameter D and the wire diameter d as: 

4

22 DNd
V

π
= . 

Additional constraints may be placed on the spring index (ratio D/ d) so that it is within a prescribed 

range. 

Mathematically, constraints can be written either in the form of an equality such as 0)( =xh or in the 

form of an inequality 0)( ≥xg . 

One major problem in optimization is how to handle constraints. It is often of practical value to 

analyze how a constraint affects the outcome of an optimization problem because this activity may 

help in problem simplification. Suppose a constraint is removed from the problem; how does this 

affect the optimization. If this approach does not affect the optimum value, the constraint is inactive; 

this implies that at a point x*, g(x*) > 0. However, if the optimum is affected, then the constraint is 

active (binding). Alternatively, an inequality constraint at some x* is now satisfied strictly in form of 

an equality of the form g(x*) = 0. 

 

1.5. Design space 

The total region, or domain, defined by the design variables in the objective function is called the 

design space. This is normally limited by constraints (Figure 1-1); otherwise, there is an unbounded 

design space for which no acceptable solution exists. 
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Figure 1-1. Definition of a design space [1] 

 

Therefore, the use of constraints is especially important in restricting the region in which the search 

for optimum values of the design variables will be done. 

The set of all points that satisfy both the equality and the inequality constraints is known as the 

feasible region of the objective function f (x). The vector x in the feasible region is called a feasible 

point. A feasible point can be either in the interior of the feasible region or at its boundary. 

Optimization involves selecting the feasible point that results in the best improvement of the objective 

function. Of course, if the problem is constrained, the optimum point must not only result in the best 

improvement of the objective function but must also satisfy the stated constraints.  

 

1.6. Optimality 

In most optimization problems, the objective is to find a minimum [1]. A maximization problem can 

be converted to minimization by changing the sign of the objective function such that, maximize f(x) = 

-minimize (-f(x)).The maximizing or minimizing of a function in a design situation requires the 

definition of certain terms. 
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Figure 1-2. Local and global maxima [1] 

 

Throughout the definition of the optimality, the term optimum to refer to the solution that best meets 

the design objective. That is, the optimum can be associated with either a minimum or a maximum 

solution. 

Consider the function shown in Figure 1-2; it is obvious that: 

( ) ( ) ( ) ( )AfBfCfDf >>> . 

Point A is the highest point in its immediate vicinity, yet it is the least of the four points. This 

illustrates the concept of local and global maxima. The point in the design space that is higher than all 

other points within its immediate vicinity is therefore the local maximum, whereas the highest of all 

local maxima is called the global maximum. Conversely, the global minimum is the smallest of all the 

local minima.  

 

1.7. Classification of Optimization Problems 

Before discussing some techniques used to find numerical solutions to optimization problems, various 

types of problems that will be encountered in optimization must be known.  

There are at least six categories [1] of optimization problems: 

- Category 1 (Constraint) lf the problem is stated with some constraints, this is a constrained 

optimization. If, however, the problem is stated without constraints, then this is an 

unconstrained optimization; 

- Category 2 (Variable) If the objective function is a function of one variable, 

this is a single-variable (or univariate) optimization. On the other hand, if the objective 

function consists of two or more variables, the problem is known as multivariable (or 

multivariate) optimization. If the design variables can only assume discrete values, this is 

a discrete optimization. Similarly, if the variables must assume integer values, this is 

integer optimization; 
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- Category 3 (Objective) An optimization problem with a single design objective is known 

as single-criterion optimization, but if there are two or more objectives, the problem is 

known as multicriteria optimization. 

- Category 4 (Linearity) If the objective function and its constraints consist of linear 

functions, the problem is known as a linear programming (LP) problem. 

However, if either the objective function or the constraints consist of nonlinear functions, 

the problem is known as a nonlinear programming (NP) problem. 

- Category 5 (Time) If the optimization problem is time-dependent, it is known as dynamic 

optimization. If, the problem is not time-dependent, this is static optimization. 

- Category 6 (Data) This category depends on the nature of the data available. If the data are 

known with certainty, the problem is said to be deterministic. If the data are not known 

with certainty, the problem is said to be stochastic optimization. 

 

1.8. Problem Formulation 

Two difficulties confront both the novice and the experienced designer in the   field of optimization. 

The first is how to solve an optimization problem and often the most discouraging to the novice, is 

how to formulate optimization problems. 

The first step in design optimization is to identify the objective. As in every design situation, it is often 

difficult to decide what should be the controlling objective, and good designers do not attempt 

optimization processes until their objective is defined. The next step is to identify the design variables 

that can be mathematically related to the objective. If the design objective cannot be modelled in terms 

of the design variables, the methods presented in this report are not appropriate, and an 

experimentation procedure may be necessary.  

After obtaining a mathematical model, which describes the system or process, the next step is to 

decide what constraints, if any, should be used. One classic source of frustration during the execution 

of an optimization process is an ill-defined design space.  

Therefore, great care must be exercised in defining the constraints. Even when it’s almost certain that 

the objective function and constraints have been properly defined, design-space problems may still 

exist. This is particularly the case when the objective function is a rational polynomial function (a 

function whose numerator and denominator are polynomials). When such an objective function exists, 

it may be necessary to restrict the denominator so that the objective function does not become 

unbounded. An illustration of an ill defined problem is given in Figure 1-3. 
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Figure 1-3. An ill-defined problem (The objective function is bounded on x1 but not on x2) [1] 

 

1.9. Solution approaches in Optimization 

The goal of a good optimization model is to obtain useful numerical values. 

Once the problem has been formulated, there are many ways to obtain a solution. 

These methods can be summarized as follows: 

- Graphical Method;  

- Analytical Technique ; 

- Numerical Techniques;  

- Experimental Technique.  

Each of the above mentioned methods will be briefly explained in the following sub-paragraphs. 

 

1.9.1. Graphical Method 

In this method the objective function is plotted in terms of the decision variables. This method is 

limited to two-dimensional problems that are problems with no more than two design variables. Once 

considered tedious and time-consuming, software packages have made this a much more attractive 

approach. 

 

1.9.2. Analytical Technique  

The cornerstone of this technique is differential calculus. The objective function is differentiated once 

and set to zero. The values of the variables at that instant are considered optimum. A second derivative 

test is then applied to determine whether the optimum is a maximum or a minimum. If the problem is a 

constrained optimization, the classical method of Lagrange multipliers can be used. The drawback in 
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this technique, as well as with many of the other techniques, is that the objective functions must be 

described 

as mathematical models. Also, this technique cannot be used if the objective 

function is not differentiable or if the derivatives are discontinuous. 

 

1.9.3. Numerical Techniques  

Most numerical techniques are iterative and come under the classification of search methods. One 

approach uses gradients. The other approach does not require knowledge of gradients. However, both 

approaches make use of past information during the iterative process. 

 

1.9.4. Experimental Technique  

This technique does not require a mathematical model of the physical system because the actual 

process is used. An experiment is performed on the process and the result is compared to that of the 

preceding experiment, in order to decide where to locate the next one. This procedure is continued 

until the optimum is achieved. 
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Deterministic methods are defined as methods whose resulting behaviour is entirely determined by its 

initial state and inputs, and which is not random or stochastic. 

These methods can be divided in derivative free and gradient based methods. 

This chapter starts with derivative free methods and ends with gradient based methods. 

The first section of this chapter starts with the Hooke and Jeeves pattern search method [1] continued 

by Hooke and Jeeves pattern search method modified by Onwubiko and Park [1]. Furthermore an 

explanation about the Escape Algorithm for Hooke and Jeeves Pattern search [1] will be given. 

Then the simplex Method will be explained continued by the two-phase method. 

Finally, the last method that will be explained in this chapter is the dual approach, which applies the 

simplex method after transformation of the objective function. 

 

2.1. Derivative-free Methods 

Derivative-free methods are convenient because they do not require the determination of the 

derivatives of the objective function or the constraints and are thus generally applicable because they 

can be used for functions whose differentiation is difficult and even for functions whose derivatives 

are discontinuous.  

Anyway, there are some disadvantages concerning these methods. They are not rooted in any 

mathematical basis, because most of them are based on function comparisons. Consequently, since no 

optimality conditions can be applied to them, solutions obtained by these methods cannot be 

considered optimum. No convergence criteria can be established and hence the search may be 

terminated prematurely.  

Anyway, when other techniques fail the only action that remains is to use these techniques. 

 

2.1.1. Hooke and Jeeves Method 

One of the most widely used direct-search techniques is the method developed by Hooke and Jeeves 

[1]. This method, known as the pattern search, is based on a sequence of exploratory and pattern 

moves, starting at an initial base point. A step size for each variable is selected. A local exploration 

begins with the evaluation of the objective function at an initial base point, x0 ={x1, x2,...,xn} and two 

other points removed from it by a predefined step size. If one of the points results in a decrease in the 

objective function (for the case of minimization), a success (S) is said to result and the particular point 

that produced the success is called a temporary base point,
'

0x . If neither of the two points produces a 

success, the step size for that variable is reduced by half and the exploration is repeated. Figure 2-1 

illustrates the local exploration for the two-dimensional case. 

Chapter 2. Deterministic Methods 
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Figure 2-1. Local exploration for the Hooke and Jeeves Method  [1] 

 

The search begins at the base point x0 with a step size of ±h. An exploration is carried out in the x1 -

dimension. Suppose that the point x1-h produces a success (S); this point becomes the temporary base. 

An exploration search is then performed in x2 using 
'

0x  as the base point. If a success results, then a 

new temporary base point is established and identified as x1. With the establishment of this new base 

point, the exploration is stopped and a pattern move is carried out. 

The pattern move accelerates the search process by using a greater step size. The original and the most 

recently established base points create a pattern that is used to locate the first pattern point designated 

xp,1. The direction of the pattern move is represented by a line passing through the original point (x0) 

and the newest base point (x1). The pattern base point (xp,1) is obtained by doubling the distance from 

x0  to x1, which is the same as subtracting the original base point from twice the newest base point. 

This is expressed as follows: 

xp,1= x0+2(x1- x0); 

or 

xp,1= 2x1- x0. 

To move to this new pattern point, it must be assured that such a move will result in a success. The 

objective function is evaluated at the pattern point (xp,1). If this results in an improvement of the 

objective, then the pattern is made to move to the pattern point (xp,1). From this point, the process of 

the local exploration is repeated. However, if there is no improvement in the objective function and if 

failure (F) has resulted, then the pattern move to point xp,1 is discontinued. Instead, local exploration is 

conducted using the base point x1. This alternation between local exploration and the pattern move is 

continued until the step size is reduced to the specified resolution and the search is terminated. A 

detailed algorithm for minimization, using the Hooke and Jeeves pattern search method is given here: 
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Step 1 Input initial base point (starting point) xb, step size h, and termination criterion є. 

Step 2 Conduct a local exploration about the base point; denote the resulting point as xt. 

Step 3  Is xt a better point than xb? 

(a) Yes: Go to step 5. 

(b) No: Go to step 4. 

Step 4  Is termination criterion satisfied? 

(a) Yes: Stop; xt approximates the optimal solution. 

(b) No: Reduce step size by half and return to step 2. 

Step 5 Accelerate search by making a pattern move to the point xp defined by: 

     xp= 2xt -xb. 

Step 6  Conduct a local exploration using the point xp and designate the resultant new point of 

the exploration as 
'

px . 

Step 7  Is 
'

px  a better point than xt ? 

(a) Yes: Set xb = xt  and xt = 
'

px . Go to step 5. 

(b) No: Set xb = xt. Go to step 4. 

An example of the Hooke and Jeeves method will be given in Appendix C.1. 

 

2.1.2. The Hooke and Jeeves pattern search method modified by Onwubiko and  Park  

The Hooke and Jeeves pattern search method [1] is based on the principle that during local exploratory 

moves the constraints are evaluated and, if any of them are violated, the step size is reduced. If there is 

no constraint violation, then a pattern move starts.  

Constraints are first checked to see whether the pattern move will result in constraint violation. If so, 

the step size is reduced until there is no constraint violation and the pattern move is then carried out. 

This procedure sometimes prematurely terminates the search. 

Consider Figure 2-2 and suppose that the following search direction, dk brings the search to the point 

xk , which is obviously not the minimum. Any local exploration in either direction of the two variables 

will result in constraint violation because it involves taking steps on either side of the base point along 

the direction of the coordinate. If the step size is continuously reduced, the termination criterion is 

reached without reaching the minimum.  
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Figure 2-2. Premature termination of pattern search and the escape mechanism by  [1] 

 

2.1.3. Escape Algorithm for Hooke and Jeeves Pattern search 

To avoid prematurely terminated search the following escape algorithm has been proposed [1].  

 

Step 1  Set 001.0=∂ which is the step size and i=1 

Step 2 Initiate an escape by perturbing on each variable xi using∂ . Evaluate the 

constraints. 

Step 3 If the constraints are violated, go to step 7; otherwise go to step 4. 

Step 4   Conduct a local exploration using a step size of 
100

∂
. 

Step 5 If the new point is better than the base point, go to step 6. If i = n (number of 

variables) terminate search. The base point is the optimum. Otherwise, set  

i = i +1 and return to step 2. 

Step 6 Accelerate search in the direction going from the base point through the 

escape point found in step 5. 

Step 7 Set 
2

∂
=∂ . If ≤∈∂  a specified tolerance then terminate the search because 

the base point is the optimum otherwise return to step 2 for more perturbation 

in the search direction. 
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The escape algorithm works well as a subroutine in the pattern search. However it is best used at the 

end of the search to prevent premature search termination. 

 

2.1.4. Simplex Algorithm  

The simplex method [1] developed by George Dantzig in 1947, is an efficient and systematic method 

for obtaining optimums if they exist for linear programming problems. In mathematics, linear 

programming (LP) problems involve the optimization of a linear objective function, subject to linear 

equality and inequality constraints.  

Anyway the principle behind the simplex method is elegant. The objective function is moved from one 

feasible basic solution to another. Only the feasible basic solutions increase (maximize) or decrease 

(minimize) the objective function considered. The simplex algorithm which is sometimes known as 

the primal simplex procedure is used to maximize the objective function of a linear programming 

problem. The steps which compose the algorithm are as follows: 

 

Step 1  Convert all inequalities to equalities using slack and artificial variables. 

Step 2 Set up an initial simplex tableau. The simplex tableau presents the system of 

equations in tabular form.  

Step 3 Identify the most negative entry that is the one with the largest magnitude in 

the objective row. The column containing this element is known as the pivot 

column denoted by the j
th
 column. If ties exist, choose anyone of the tied 

columns arbitrarily. 

Step 4 Divide each positive solution value by the corresponding positive element of 

the pivot column in the same row as the positive solution value. Store the 

value of each ratio and select the smallest one. The row, say the i
th
 that 

corresponds to the smallest ratio is the pivot row. The ai,j entry is the pivot 

element. Note that if there is a tie one of the tied rows is chosen arbitrarily, 

Step 5 Create a second simple tableau from the first using row operations. To begin 

make the value of the pivot element unity. Using the pivot element and row 

operations, all elements above and below the pivot element that are in the 

same pivot column must be cleared. 

Step 6 Check the objective function row, see whether any of its entries are still 

negative. If so return to step 3 and repeat the process. Otherwise the optimum 

has been achieved. 

 

2.1.5. The Two-Phase Method 

For constraints with inequality sign of the form “≤  “it was easy to obtain a subidentity matrix (i.e., 

initial feasible basis) by the addition of slack variables. However if, the constraints are either 
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inequality constraints of the form ≥  or equality constraints, it becomes difficult to find an initial 

feasible solution or a subidentity matrix. To solve this difficulty the two-phase method is used. 

The method consists of two phases. The objective of phase 1 is to find a feasible basic solution to use 

in phase 2. This is done by driving the artificial variables to zero. Once the feasible basic solution has 

been found, phase 2 simply consists of the application of simplex method.  

The first step is to begin by replacing the objective function of the original problem with the sum of 

the artificial variables while continuing to use the original constraints. The simplex algorithm is 

applied until an optimum is obtained. If the objective function has a value greater than zero the 

problem has no solution because the artificial variables are not part of the original problem. If the 

phase 1 has a solution, proceed to phase 2. 

 

2.1.6. The Dual Approach 

The simplex algorithm outlined in section 2.1.3 is for maximization problem. Naturally there arises the 

question of how to deal with minimization problems. 

An important property of linear programming (LP) is that every LP problem is associated with another 

LP problem. The initial problem is called primal and the associated problem is called dual. The 

implementation of duality is that a minimization problem can be converted into a maximization 

problem. 

If the primal problem is to minimize the following equation: 

CX; 

which is subjected to the following constraints:   

AX ≥  B; 

X ≥  0. 

When the dual approach is used the previous equation is transformed in the maximization of the 

following equation: 

B
T
Z; 

which is subjected to the following constraints: 

A
T
Z ≤  C

T
; 

Z≥  0. 

 

2.2. Gradient Based Methods 

Gradient methods differ from other search methods in the amount of computational effort involved. In 

other search methods, only the evaluation of the objective function is required, whereas gradient 

methods may also require the evaluation of the derivatives of the objective function. This drawback 

notwithstanding, the overall computational efficiency of certain gradient methods is higher than that of 

the search methods, because the gradient methods are able to converge in fewer steps. 
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Gradient methods are classified as either first-order or second-order methods, depending on whether 

the first partial derivatives or the second partial derivatives of the function are required.  

Quadratic Programming, Sequential Quadratic Programming, Steepest descent and Conjugate gradient 

method are some first-order methods and Newton’s Method is one of second-order methods.  

Lagrange’s Method is a first-order method which can be modified to a second-order method.  

In section 2.2 the Lagrange’s Method concerning first-order method will be described and an example 

is given in the appendix.  

Further on, Quadratic programming is considered .Also for this method an example is given in the 

appendix. 

Finally Sequential Quadratic Programming will be described and an example is given in the appendix 

 

2.2.1. Lagrange’s Method 

Suppose the optimization of a function of two variables f (x1, x2) subjected to the 

constraint g(x1, x2) =0. The constraint equation can be solved for one of the  

variables, say x1 resulting in: 

)( 21 xx φ= .      (2.1a) 

 The new constraint is:  

0)),(()( 222 == xxgxh φ .    (2.1b)

   

If the Variables in Equation 2.1a are substituted in the objective function:  

)),(()( 222 xxfxF φ= ,       (2.2) 

the original constraint problem is now an unconstraint problem.  

At the optimum x* the derivative of Equation 2.2 must disappear resulting in:  

0)( *

2

2

=x
dx

dF
.        (2.3) 

However: 

2122 xx

f

x

f

dx

dF

∂
∂

∂
∂

+
∂
∂

=
φ

 ;    (2.4a) 

and: 

      0
2122

=
∂
∂

∂
∂

+
∂
∂

=
xx

g

x

g

dx

dh φ
.    (2.4b) 

 

 

From Equation 2.4b:  
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
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∂
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x
g

dx

dφ
     (2.5a) 

then Equation 2.3 becomes:  

0
2

1

1

2

=
∂
∂

















∂
∂

∂
∂

−
∂
∂

x

g

x
g
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f

x

f
.    (2.5b) 

The following identity can be written:  

0
1

1

1

1

=
∂
∂

















∂
∂

∂
∂

−
∂
∂

x

g

x
g

x
f

x

f
,    (2.5c) 

adding Equation 2.5b and 2.5c and simplifying leads to:  

        0=∇−∇ gf λ ,     (2.5d) 

where:  

















∂
∂

∂
∂

=

1

1

x
g

x
f

λ   .     (2.6a) 

 

In Equation 2.6a, λ  is known as the Lagrange multiplier [1]. 

Equation 2.6a suggests that Lagrange multiplier measures the change of the objective function with 

respect to the constraint. In physical terms it represents a measure of the effect of the change in the 

objective function with respect to the right hand side of the constraint equation resulting in: 

i

ib

f
λ−=

∂
∂

.      (2.6b) 

 

Geometric Interpretation of a Lagrange Multiplier 

Consider the problem of optimizing a function of two variables f(x1, x2) subjected to constraint  

g(x1, x2) =c. Several levels of curve result from f(x1, x2) =k. The graph of  typical level curves of f for 

different k values are presented in Figure 2-3. 
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Figure 2-3. A function of two variables with different function values [1] 

 

To optimize the function subject to the given constraint, the optimal value of k must be determined 

such that a constraint intersects an objective function curve. The optimal point is generally at the point 

where the appropriate level curve is tangent to the constraint curve, provided the tangent exists at that 

point. The exact location of this point is given with the help of the theorem given by Purcell in [1], 

which says that the gradient of a function f at x0 is perpendicular to the level curve of f that passes 

through x0. 

It follows that if the level curve of f is tangent to the constraint curve g, they must both have a 

common tangent and a common normal. 

These normals are in directions of )( 0xf∇ and )( 0xg∇  and are parallel (Figure 2-4). 

 

This means:  

)()( 0xgxf ∇=∇ λ .       (2.7) 

 

Figure 2-4. The relationship between f∇ and g∇ at the point of tangency  [1] 

 

In addition:  
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.0

;0)( 0

≠

=−

λ

cxg
        (2.8)

     

Equations 2.7 and 2.8 can be solved for x0 andλ . Point x0 is a critical point for the constrained 

problem and must be an optimum, at least in local sense. 

The constrained problem can be extended to handle the problems with inequality constraints by  

introducing surplus or slack variables that convert the inequality constraint to an equality constraint. 

 

In general the object is to minimize the equation in the following form:  

)(xf ,  
nRx∈ ; 

which is subjected to the following constraints:  

0)( =xhi  i=1,2,…,k;      (2.9) 

     0)( ≥xg i  i=k+1,k+2,…,m; 

then the Lagrange problem is stated as minimize the function L(x,λ ), where L is given by 

))(())(()(),( 2

11

in

m

ki

iii

k

i

i xxgxhxfxL +
+==

−++= ∑∑ λλλ   (2.10) 

Equation 2.10 referred to as the Lagrange function, where 1+nx are artificial variables useful in stating 

the optimality condition for constrained optimization. The most general way in stating the optimality 

condition is by the use of Karush-Kuhn-Tucker conditions, which are explained in the following 

section. 

 

Karush-Kuhn-Tucker Optimality conditions 

Search methods for constrained optimization were not able to utilize an optimality condition. Other 

techniques rely on the optimality condition to qualify the optimum obtained, as at least a local 

optimum. If the objective function f(x) and the constraints g(x) and h(x) are once differentiable then 

the point x*is a local minimum if the following equation: 

0*)(*)(*)(
11

=∇−∇+∇ ∑∑
+==

xgxhxf
m

ki

iii

k

i

i λλ ;   (2.11) 

which is subjected to the following constraints:         

,0*)( =xhi  ki ,...,2,1= ;    (2.12) 

,0*)( ≥xg i  mkki ,...,2,1 ++= ;   (2.13) 

,0*)( =xg iiλ  mkki ,...,2,1 ++= ;   (2.14) 

,0≥iλ   mkki ,...,2,1 ++= .   (2.15) 
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The vector (x*, *λ ) that satisfies Equations 2.11 to 2.15 is known as the Karush-Kuhn-Tucker (KKT) 

point. KKT conditions are conditions necessary and sufficient for optimality based on the first order 

conditions. If the gradients of the objective and constrained functions are utilized in the optimization 

process, it may become necessary to consider the effect of the curvature of the given functions. In this 

situation, the first order method is inadequate and a second order method is required. 

The optimality conditions which apply to twice differentiable functions have been given in [1]. In 

what follows it is assumed that both the objective functions and the constraints are twice differentiable 

at the point x*. 

 

Second-Order Necessary Conditions 

The necessary conditions for the point x* to be local minimum to the problem given in equation 2.9 

are: 

1. There exists a KKT point *)*,( λx . 

2. For every nonzero vector u satisfying: 

0*)( =∇ xhu i

T
 ki ,...,2,1= ;                                          (2.16)

             

   0*)( =∇ xgu i

T
 mkki ,...,2,1 ++= ;            (2.17) 

 then    

0*)*,(2 ≥∇ uxLuT λ .     (2.18) 

 

2.2.2. General quadratic programming 

The general quadratic programming problem may be written as, the maximization of the following 

equation: 

xcQxxxf TT +=)( ; 

which is subjected to the following constraints:   

bAx ≤  ;       (2.19) 

0≥x . 

It is assumed that the quadratic form QxxT
is either negative-definite or negative-semi-definite and 

f(x) is strictly concave. Also, Q and A are real matrices of orders (n x n) and (m x n) respectively, with 

n being the number of variables and m the number of constraints. Note that c is an (n x 1) vector. 

The solution may be obtained by application of previous explained Kuhn-Tucker necessary conditions. 

If the constraint is in equality form, the problem reduces to a system of linear equation because 

application of the Kuhn-Tucker conditions to quadratic functions results in linear functions. To 

continue the case of inequality shall be explained. 

For the constraints of 2.19 to be compatible with Equation 2.9 the following must be true:  
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0Ax b− ≤ ;     (2.20) 

0x− ≤  .     (2.21) 

The Lagrangian function for Equation 2.19 is: 

( , ) ( )T T T TL x x Qx c x b Ax xλ λ µ= + + − + .   (2.22) 

 

Application of Kuhn-Tucker condition to Equation 2.22 gives: 

 

02 * =+−+ TTTAcQx µλ ; 

0)( * ≤−bAxλ ; 

0* ≤− bAx ; 

0* ≤xµ ;      (2.23) 

0* ≤− x ; 

0* ≥λ ; 

0* ≥µ . 

Note that 1 2( , ,..., )mλ λ λ λ= and 1 2( , ,..., )nµ µ µ µ= are the Lagrange multipliers for Equation 2.20 

and 2.21 respectively. Moreover note that the subscript * is for the condition at the optimum. If it is 

dropped and slack variables 1 2( , ,..., )nu u u u= are introduced, the KKT conditions can be written as: 

02 =+− µλTAQx ;     (2.24) 

0=+− ubAx ;     (2.25) 

0=xµ  ;      (2.26) 

0=uλ  .      (2.27) 

  

The optimum for Equation 2.19 can be obtained by finding x, u,λ and µ  that satisfy Equations 2.24 

to 2.27. All these variables except λ are restricted to either zero or positive values. The sign of an 

element of λ  can be 0≥ , 0≤ or unrestricted depending on whether the sign on the constraint in 

Equation 2.19 is≥ ,≤  or =.  

Note that the solution obtained by solving Equations 2.24 and 2.25 is a global optimum for Equation 

2.19 because )(xf is strictly concave and the feasible region is convex.  

Moreover, note that Equations 2.24 and 2.25 are in a linear programming form and hence the solution 

can be obtained by the use of phase 1 of the two-phase simplex method. If the phase 1 approach is 

used, special precaution must be taken to satisfy Equations 2.26 and 2.27. If an element of ,µ for 

example ,iµ is a basic variable, then the corresponding element of x, for example xi must not be 

allowed to become a basic variable, otherwise Equation 2.26 cannot be satisfied. If the pivoting rule in 
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the simplex suggests that xi should become a basic variable when ,µ is already in the basis, then the 

next best variable should be selected. The same reasoning applies to Equation 2.27. 

 

Hessian matrix of ( )f x  

 

If ( )f x is twice continuously differentiable then at the point x there exists a matrix of second order 

partial derivatives or Hessian matrix: 

 

2
2( ) ( ) ( )

i j

f
H x x f x

x x

 ∂ 
= = ∇ 

∂ ∂  
 

2 2

2

1 1 2

2

2 1

2 2

2

1

( ) ( ) ....
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.
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( ) .... ( )
n n

f f
x x

x x x

f
x

x x

f f
x x

x x x

 ∂ ∂
 ∂ ∂ ∂ 
 ∂
 
∂ ∂ =  
 
 
 ∂ ∂ 
 ∂ ∂ ∂ 

   (2.28) 

 

2.2.3. Sequential Quadratic Programming 

The sequential quadratic programming (SQP) method is considered one of the most promising 

techniques for problems dealing with nonlinear constraint optimization. Implemented in the 1970s [2] 

and [3], the basic idea behind the method was given [44]. Many variations of this technique have been 

presented by several authors [4], [5] and [6]. The method has become popular, because it has the 

property of finding the optimum from an arbitrary starting design point. In addition, it requires fewer 

function and gradient evaluations compared to other methods for constrained optimization. 

The method consists of approximating the Equation 2.9 with a quadratic programming subproblem 

and solving the subproblem successively until convergence has been achieved on the original problem. 

Thus for, Equation 2.9 with the binding constraint modified for the quadratic subproblem, P(d) may be 

represented as the minimization of the following equation: 

dddfP TT

x 5.0+∇= ,     (2.29) 

which is subjected to the following constraints:    

0)( =+∇ xhdhT
;     (2.30) 

0)( ≤+∇ xgdg T

x .     (2.31)
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After the optimum of the problem defined by Equations 2.29 to 2.31 is obtained, it is then used to 

obtain the new value of the original variable of the original problem at the k
th
  iteration as: 

   

kkk dxx +=+1
 .     (2.32) 

Using Equation 2.32, the problem is linearized through the new value of x. The processes are 

continued until a specified tolerance. 
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Stochastic methods are the synonym of random search. In essence, it simply consists in picking up 

random potential solutions and evaluating them. The best solution over a number of samples is the 

result of random search. 

These methods can be divided in Simulated Annealing (SA) and evolutionary algorithms.  

More over evolutionary algorithms can be divided in Genetic Algorithms (GA’s) and Evolutionary 

Strategies (ES). 

 

3.1. Simulated Annealing 

Simulated Annealing (SA) [7] is motivated by an analogy to annealing in solids. The idea of SA 

comes from a paper published by Metropolis in 1953. The algorithm in this paper simulated the 

cooling of material in a heat bath. This is a process known as annealing. 

If you heat a solid past melting point and then cool it, the structural properties of the solid depend on 

the rate of cooling. If the liquid is cooled slowly enough, large crystals will be formed. However, if the 

liquid is cooled quickly (quenched) the crystals will contain imperfections. 

Metropolis’s algorithm simulated the material as a system of particles. The algorithm simulates the 

cooling process by gradually lowering the temperature of the system until it converges to a steady, 

frozen state. 

In 1982, Kirkpatrick took the idea of the Metropolis algorithm and applied it to optimisation problems. 

The idea is to use simulated annealing to search for feasible solutions and converge to an optimal 

solution. 

 

3.1.1. Acceptance Criteria 

The law of thermodynamics state that at temperature, t, the probability of an increase in energy of 

magnitude, ∆E, is given by 

                                                                    ( ) kT

E

eEp

∆−

=∆  ,   (3.1) 

 

where T is the temperature of the body and k is the Boltzmann’s constant. 

Metropolis observed that the probability of higher energy is larger at higher temperatures and there is 

some chance of a high energy as the temperature drops. 

Energy in the annealing process sometimes increases even while the trend is a net decrease. 

This property applied to optimization problems is referred to as the Metropolis algorithm. In 

optimization applications the temperature is initialized at a high level. Boltzmann’s constant may be 
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chosen as equal to 1. The change ∆f in the function value is accepted whenever it represents a decrease 

if a minimization is applied. When it is an increase, it is accepted with a probability: 

                                                      ( ) T

f

eEp

∆−

=∆ .     (3.2) 

This is accomplished by generating a random number r in the range 0 to 1 and accepting the new value 

when pr ≤  Metropolis algorithm has been extended, coded and further explored [8]. 

 

3.1.2. Relationship between Physical Annealing and Simulated Annealing 

Table III-1 [51] shows how physical annealing can be mapped to simulated annealing.  

 

Thermodynamic Simulation Optimization 

System States Feasible Solutions 

Energy objective 

Change of State Neighbouring Solutions 

Temperature Control Parameter 

Frozen State Heuristic Solution 

 

Table III-1. Relationship between Physical and (SA) [51] 

 

Using these mappings any optimization problem can be converted into an annealing algorithm [9] and 

[10] by sampling the neighbourhood randomly and accepting worse solutions using Equation 3.2. 

Furthermore, heuristic is defined as a method of problem solving using exploration and trial and error 

methods [52]. 

 

3.1.2. Implementation of Simulated Annealing in a problem 

The objective of the algorithm is to minimize the following function: 

( )xf , 

which is subject to the following constraints: 

iii uxl ≤≤  i =1 to n. 

In this problem, each variable has lower and upper bounds. The search for the minimum is initiated at 

a feasible starting point x. Function value f is evaluated at x while xx =min , and ff =min is set. A 

vector s of step sizes with step size is  along the coordinate direction ie is chosen. Initially each is  

may be set equal to a step size 
Ts  (=1) and a step reduction parameter sr  chosen. A vector a of 

acceptance ratios with each element equal to 1 is defined. A starting temperature T and a temperature 

reduction factor Tr are chosen. Let say Tr and sr  have been chosen as 0.9 and 0.5 [11], other values 
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may be tried. The main loop is the temperature loop where the temperature is set as Tr T and the step 

size set as sr Tr  at the end of a temperature step.  

At each temperature, NT (= 5) [11] iterations are performed. Each iteration consists of Nc cycles. A 

cycle involves taking a random step in each of the n directions successively. A step in a direction i  is 

taken in the following manner. A random number r in the range -1 to 1 is generated and a new point 

sx  is evaluated using: 

iis ersxx += .                    (3.3) 

If this point is outside the bounds, the ith  component of sx  is adjusted to be a random point in the 

interval il  to iu . The function value sf  is then evaluated. If ff s ≤ then the point is accepted by 

setting sxx = . If minff s ≤ then minf and minx are updated. If ff s >  then it is accepted with a 

probability of T

ff s

ep

−

=  . 

A random number r is generated and sf is accepted if r < p. This is referred to as the 

Metropolis criterion. Whenever a rejection takes place, the acceptance ratio ia , which is the ratio of 

the number of acceptances to the total number of trials for direction i  is 

updated as: 

C

ii
N

aa
1

−= .                                                 (3.4) 

At the end of CN cycles, the value of the acceptance ratio ia  is used to update the step size for the 

direction. A low value implies that there are more rejections, suggesting that the step size is to be 

reduced. A high rate indicates more acceptances which may be due to small step size. In this case step 

size is to be increased .If ia  = 0 5, the current step size is adequate with the number of acceptances at 

the same level as that of rejections. Once again drawing from the work of Metropolis on Monte Carlo 

simulations of fluids, the idea is to adjust the steps to achieve the ratio of acceptances to rejections 

equal to 1. A step multiplication factor, ( )iag , is introduced as: 

( ) old

ii

new

i sags = .                                               (3.5)                                                                      

 

3.1.4. Start Temperature (start control parameter) 

The starting temperature must be hot enough to allow a move to almost any neighbourhood state. If 

this is not done then the ending solution will be the same (or very close) to the starting solution.  

However, if the temperature starts at value, which is too high, then the search can move to any 

neighbour and thus transform the search (at least in the early stages) into a random search.  
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The problem is finding the correct starting temperature. At present, there is no known method for 

finding a suitable starting temperature for a whole range of problems. Therefore, we need to consider 

other ways. 

If the maximum distance (objective function difference) between one neighbour and another is known, 

then this information can be used to calculate a starting temperature. 

Another method [12], is to start with a very high temperature and cool it rapidly until about 60% of 

worst solutions are being accepted. This forms the real starting temperature and it can now be cooled 

more slowly. 

A similar idea [13], is to rapidly heat the system until a certain proportion of worse solutions are 

accepted and then slow cooling can start. This can be seen to be similar to how physical annealing 

works in that the material is heated until it is liquid and then cooling begins (i.e. once the material is a 

liquid it is pointless carrying on heating it). 

 

3.1.5. Final Temperature (final control parameter) 

It is usual to let the temperature decrease until it reaches zero. However, this can make the algorithm 

run for a lot longer, especially when a geometric cooling schedule is being used (see below). 

In practise, it is not necessary to let the temperature reach zero because as it approaches zero the 

chances of accepting a worse move are almost the same as the temperature being equal to zero. 

Therefore, the stopping criteria can either be a suitably low temperature or when the system is 

“frozen” at the current temperature (i.e. no better or worse moves are being accepted). 

 

3.2.  (EAs) Evolutionary algorithms  

In general these algorithms are inspired by the principles of natural evolution to find an optimal 

solution to a problem. Natural evolution is driven by the principles of selection, recombination and 

mutation of genetic information. Individuals in a population which are well adapted to their 

environment have a higher probability to survive in the nature, known as ’survival of the fittest’. These 

individuals are declared with a higher fitness value and are chosen in order to become parents 

(selection) which produce offsprings for the following generation. The genetic information of the 

offspring is either a direct copy of the genes of just one single parent, which differs from the natural 

evolution, or results from the mating process of multiple parents (recombination or crossover). In the 

latter case the gene of the offspring is arranged form gene sequences of both parents. Additionally, a 

randomly generated mutation can modify the genetic information of the offspring’s (mutation) and the 

best solutions are selected in the selection process. 

Figure 3-1 shows the principle work flow of an evolutionary algorithm consisting 

of crossover, mutation and selection. 
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Figure 3-1. Principle work flow of an evolutionary algorithm 

  

Applied to engineering design problems, the genetic information corresponds to the design variables 

which specify the properties of a solution to the engineering optimization problem and the fitness of a 

solution is either determined directly by the objective function or by a combination between the 

objective function value and the constraints. 

It should be mentioned that (EAs) are building an upper class of algorithms containing the subgroups 

of Genetic Algorithms (GAs) and Evolutionary Strategies (ES). GAs were firstly proposed and applied  

[14] while Rechenberg [15] developed Evolutionary Strategies independently and applied them to 

some engineering design problems. Although based on a similar idea, both approaches were different 

in some aspects at the beginning of their development. 

In GAs an individual is represented by a string of bits and the evolutionary process is based on 

selection, recombination, and mutation techniques. In contrast to this, in ES each individual of the 

population is represented by a vector of real design variables and the evolutionary process is 

characterized by selection and mutation techniques only.  

Furthermore, because both approaches are based on a similar idea and the popularity of GAs in 

engineering, only GAs will be explained in this section. 

 

3.2.1. Introduction to Genetic Algorithms (GAs) 

A large class of interesting problems for which no reasonably fast algorithms have been developed 

exists. Many of these problems are optimization problems that arise frequently in applications. Given 

such a hard optimization problem, it is often possible to find an efficient algorithm whose solution is 

approximately optimal. For some hard optimization problems, probabilistic algorithms can be used, 

but these algorithms do not guarantee the optimum value; anyway by randomly choosing sufficiently 

many “witnesses”, the probability of error may be reduced as much as possible. 

For small spaces, classical exhaustive methods usually suffice; for larger spaces, special artificial 

intelligence techniques must be employed. GAs are among such techniques. They are adaptive 
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heuristic search algorithms premised on the evolutionary ideas of natural selection and genetic. The 

basic concept of GAs is to simulate processes in natural system necessary for evolution, specifically 

those that follow the principles first laid down by Charles Darwin of survival of the fittest. The 

metaphor underlying genetic algorithms is that of natural evolution. In evolution, the problem each 

species faces is searching for beneficial adaptations to a complicated and changing environment. The 

‘knowledge’ that each species has gained is embodied in the makeup of the chromosomes of its 

members. Thus, they represent an intelligent exploitation of a random search within a defined search 

space to solve a problem. First pioneered by John Holland in the 60s, GAs have been widely studied, 

experimented and applied in many fields in the engineering world. Not only do GAs provide 

alternative methods to solving problem, but they consistently outperform other traditional methods in 

most of the problems link. Many of the real world problems involved finding optimal parameters, 

which might prove difficult for traditional methods but ideal for GAs. 

The idea behind genetic algorithms is to do what nature does. Take the example [16] of rabbits “at any 

given time there is a population of rabbits”.  

Some of them are faster and smarter than other rabbits. These faster, smarter rabbits are less likely to 

be eaten by foxes and therefore many of them survive to breed. Of course, some of the slower, dumber 

rabbits survive just because of luck. This surviving population of rabbits starts breeding. The breeding 

results in a good mixture of rabbit genetic material. 

Some slow rabbits breed with fast rabbits, some fast with fast, some smart rabbits with dumb rabbits 

and so forth.  

On the top of that, nature throws in a ‘wild hare’ every once in a while by mutating some of the rabbit 

genetic material. The resulting baby rabbits will (on average) be faster and smarter than these in the 

original population because faster, smarter parents survived the foxes. It has to be noticed that a good 

thing that the foxes are undergoing similar process otherwise the rabbits might become too fast and 

smart for the foxes to catch any of them. 

A genetic algorithm follows a step-by-step procedure that closely matches the story of the rabbits.  

The fundamental principle of natural selection as the main evolutionary principle has been formulated 

by C. Darwin long before the discovery of genetic mechanisms.  

Genetic algorithms use a vocabulary borrowed from natural genetics. In genetic algorithms individuals 

(or genotypes or structures) are used in a population. Quite often these individuals are called also 

strings or chromosomes. This might be misleading, because each celi of every organism of a given 

species carries a certain number of chromosomes. However, in GAs only one chromosome individuals 

are taken into account. Each single chromosome represents a potential solution to a problem. An 

evolution process run on a population of chromosomes corresponds to a search through a space of 

potential solutions. Such a search requires balancing two (apparently conflicting) objectives: 

exploiting the best solutions and exploring the search space. 

GAs are a class of general purpose (domain independent) search methods which strike a remarkable 

balance between exploration and exploitation of the search space. 
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GAs have been quite successfully applied to optimization problems like wire routing, scheduling, 

adaptive control, game playing, cognitive modelling, transportation problems, travelling salesman 

problems, optimal control problems, database query optimization any many others. 

During the last decade, the significance of optimization has grown even further, because many 

important large-scale combinatorial optimization problems and highly constrained engineering 

problems can only be solved approximately on present day computers. 

Genetic algorithms aim at such complex problems. They belong to the class of probabilistic 

algorithms, yet they are very different from random algorithms as they combine elements of directed 

and stochastic search, since GAs are also more robust than existing directed search methods. Another 

important property of such genetic based search methods is that they maintain a population of 

potential solutions, while all other methods process a single point of the search space. 

As mentioned earlier, a GA performs a multi-directional search by maintaining a population of 

potential solutions and encourages information formation and exchange between these directions. The 

population undergoes a simulated evolution at each generation. The relatively good solutions 

reproduce, while the relatively bad solutions die. 

The structure of a simple genetic algorithm is the same as the structure of any evolution program 

(Figure 3-2). During iteration (t), a genetic algorithm maintains a population of potential solutions 

(chromosomes, vectors, variables), P (t) = 1{ ,......., }t t

nx x . Each solution 
t

ix  is evaluated to give some 

measure of its “fitness”. Most of the effort is spent on the reproduction operators: selection, crossover 

and mutation. A new population (iteration t + 1) is formed by selecting the most fit individuals. Some 

members of this new population undergo alterations by means of crossover and mutation, to form new 

solutions. 

Crossover combines the features of two parent chromosomes to form two similar offspring by 

swapping corresponding segments of the parents.  

Mutation arbitrarily alters one or more genes of a selected chromosome, by a random change with a 

probability equal to the mutation rate. The intuition behind the mutation operator is the introduction of 

some extra variability into the population. 
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begin 

     t←0 

     initialize P(t) 

     evaluate P(t)  

     while (not termination-condition) do 

     begin 

      t←t+1 

      select P(t) from P(t-1) 

      alter P(t) 

     end 

    end 

 

Figure 3-2. The structure of an evolution program [16] 

  

GAs (as any evolution program) for a particular problem must have the following five components: 

 

1. a genetic representation for potential solutions to the problem, 

2. a way to create an initial population of potential solutions, 

3. an evaluation function that plays the role of the environment, rating solutions in terms of their 

“fitness”, 

4. genetic operators that alter the composition of children, 

5. values for various parameters that the GAs uses (population size, probabilities of applying 

genetic operators and so forth). 

 

3.2.2. Selection Operator 

The reproduction process, like in biology, requires the selection of mates. In genetic algorithms, two 

chromosomes called parents are randomly selected to reproduce two new offspring. Selection 

basically involves four steps. First, the values of the objective function are determined for each 

chromosome in the current population. Second, a fitness function for each chromosome is determined. 

Third, the probability of each chromosome being selected is determined. Finally, the actual selection is 

made. 

The fitness value is determined from the value of the objective function. 

This value is often referred to as the raw fitness value. In some instances, raw   fitness values are used 

as fitness values only when they are positive. If they are negative, then constants are added to the raw 

fitness values to transform them into positive fitness functions. This modification works particularly 

well with the popular selection method known as the proportional selection algorithm. 

The fitness function U (x) [17], for a minimization problem is as follows: 
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

 <

=
otherwise                     0

Cmaxf(x) if   f(x)-Cmax
)(xU , 

where Cmax is a constant that can be chosen in a number of ways. In one method, the largest value of  

f (x) in the current population is used. If the problem is one of maximization, the transformation is 

carried out as: 

 



 >++

=
otherwise               0

0Cmin f(x) ifCmin  f(x)
)(xU , 

where Cmin is a constant. A good value is the absolute value of the worst raw fitness value in the 

current population. However, in the Boltzmann selection procedure [18], the raw fitness value is 

transformed into a fitness function by the following equation: 

 

TxfexU /)()( = , 

where T is a tolerance value that is adjusted during the succeeding generations.  

A good initial starting value reported in literature is 4 [1].  

Many selection methods such as linear rank selection have been presented [19]. 

Another method is the proportional selection method. In this method, first the probability Pi of a 

particular chromosome being selected is determined using the following equation:   

∑
=

=
n

k

k

i

i

xU

xU
P

1

)(

)(
, 

where n is the size of the population. Once the probability of selecting a particular chromosome is 

determined, the actual selection is carried out. 

A more popular selection procedure at this juncture is the roulette wheel [1]. The roulette wheel is 

divided into n slots weighted in proportion to the fitness 

values of the chromosomes (or population member). The wheel is "spun" and the selected member is 

the slot corresponding to the final position of the spinner. Clearly, the members with higher fitness 

values have higher chances of being selected. The outcome of the spin of the roulette wheel thus leads 

to parents being randomly selected. The underlying principle is quite simple. A random number 

generator yields a number, y є [0, 1]. The value of y is multiplied by the sum of the total fitness values 

in the population. Then a process of adding the fitness values begins with the first member of the 

current population. The first member at which the current value of the partial sum of the fitness values 

exceeds or equals the product of y and the total sum of the fitness values is the parent selected. This 

procedure is shown in Figure 3-3. 
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  ‘Algorithm assumes that the fitness values have been determined 

   ‘and stored as the variable “sumfitness.’ 

 

    k:=0 : partsum:=0  

   y:=RND :’RND is the value returned from a random number 

  generator 

   crit:= y*sumfitness 

   do until partsum ≥  crit OR k = popsize: ‘popsize is the size of  

population 

  k:=k+1 

  partsum:=partsum+fitness (k):’fitness is the value of the k
th
 fitness 

value 

   Od 

   {End algorithm} 

 

 

 

Figure 3-3.  Roulette Wheel Parent Selection Procedure [16] 

 

3.2.3. Mutation Operator 

The mutation process is a "flipping" operation that results in each bit in the binary string being 

changed from 0 to 1, or vice versa according to a random process. A bit is changed if the random 

number associated with it is less than or equal to a preset probability value, p(=0.2) [1], which is often 

set quite low. The process is very simple, and is illustrated in table III-2 

 

Chromosome before 

Mutation 

Random Numbers Chromosome after 

Mutation 

111000 0.0048  0.8459  0.4483  0.9517  0.4475  0.1295 011001 

111001 0.0130  0.2616  0.7553  0.7434  0.8090  0.2099 011001 

010111 0.1519  0.0793  0.4744  0.4443  0.0065  0.0920 010101 

100011 0.3877  0.5035  0.5535  0.8802  0.3959  0.5825 100011 

 

Table III-2 Example of mutation process 
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Several observations can be made from Table III-2. Since the chromosome has length 6, the mutation 

process is carried out six times for each bit in the string. Then, six random numbers are generated for 

each chromosome. 

At last, the bit is flipped only if the random number is less than the specified probability. Thus, bit 1 

for random number 0.0048 is flipped to 0 since 0.0048 < 0.2, but bit 1 for random number 0.8459 does 

not flip.  

 

3.2.4. The Crossover Operator 

The mutation and crossover operators are essential in assuring that the new chromosomes are different 

than their parents. The crossover process involves a swap of bits in specified locations of two parent 

chromosomes. A popular method of crossover is the one-point crossover [1]. Two-point crossovers 

and multipoint crossovers are also used [20]. A one-point crossover occurs when parts of two parent 

chromosomes are swapped at a specified position. In this operation, an integer number k is randomly 

selected between 1 and l -1 according to a uniform distribution, where l is the length of the binary 

string. The number k is referred to as the crossover site. All bits between the positions k + 1 and I are 

swapped to create two new binary strings. Let’s illustrate this method with an example. 

 

Consider two chromosomes given by: 

. 0 1 1 1 0 0 0 0:Y

;  1 0 1 0 1 1 0 1:Y

2

1

=

=
 

The crossover site is specified as 5. Then with l = 8, all characters between 6 and 8, are swapped 

resulting in: 

. 01 1 1 0 0 0 0:Y

 ;  10 1 0 1 1 0 1:Y

'

2

'

1

=

=
 

Two factors are fundamental in the crossover process. First, it is possible that after a crossover the new 

chromosomes will be radically different from their parent chromosomes. Second, if the bits have the 

same values at the same location on the chromosomes, no difference results from the crossover. This is 

the case in the example because both original chromosomes had values equal to 1 in the sixth position. 

Note that if the parent chromosomes are identical from the crossover site to the end of the string, the 

new chromosomes will be identical to each other and their generating parents. Since crossover is a 

random process, a probability for crossover is generally specified. Typical good values are generally 

between 0.6 and 0.8. As stated earlier, a crossover takes place if the random number generated is less 

or equal to the specified probability of crossover.  

This method is the original method [14] but recent efforts have attempted to improve the crossover 

operators by making them relevant to the objective function [45].  
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3.2.5. How do genetic algorithms work 

In this section, an explanation will be given about how GAs work. 

Suppose the intention is to maximize a function f(x1,….,xk)  of k variables, Suppose further that each 

variable xi can take values from a domain Di =[ai, bi]⊆  R and f(x1,…xk)>0 for all xi ∈  Di and the 

function must be optimized with some precision: suppose six decimal places for the variables values is 

desirable. 

It is clear that to achieve such precision each domain Di should be cut into ( ) 610ii ab − equal size 

ranges. The smallest integer is denoted by mi such that ( ) 12106 −≤− im

ii ab .Then a representation 

having each variable xi coded as a binary string of length mi clearly satisfies the precision requirement. 

Additionally the following formula interprets each such string: 

( )
12

001....1001 2 −

−
+=

im

ii

ii

ab
decimalax , 

where decimal (string2) represents the decimal value of that binary string. 

Now, each chromosome (as a potential solution) is represented by a binary string of 

length ∑ =
=

k

i imm
1

; the first m1 bits map into a value from the range [a1, b1], the next group of m2 bits 

map into a value from the range [a2, b2], and so on; the last group of mk bits map into a value from the 

range [ak, bk]. 

To initialize a population, some pop_size number of chromosomes can be set randomly in a bitwise 

fashion. However, if some knowledge about the distribution of potential optima is available, such 

information can be used to arrange the set of initial (potential) solutions. 

The rest of the algorithm is straightforward: in each generation each chromosome is evaluated (using 

the function f on the decoded sequences of variables), new population is selected with respect to the 

probability distribution based on fitness values and the chromosomes are altered in the new population 

by mutation and crossover operators. After some number of generations, when no further 

improvement is observed, the best chromosome represents an optimal solution (possibly the global). 

The algorithm often stops after a fixed number of iterations, depending on speed and resource criteria.  

For the selection process (selection of a new population with respect to the probability distribution 

based on fitness values), a roulette wheel with slots sized according to fitness is used.  

A roulette wheel is constructed as follows: 

 

- Calculate the fitness value eval (vi) for each chromosome vi (i = 1,...,popnsize); 

- Find the total fitness of the population )(
_

1∑ =
=

sizepop

i ivevalF ; 

- Calculate the probability of a selection pi for each chromosome vi (i = 1,...,popnsize): 

� pi = eval(vi)/F. 
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- Calculate a cumulative probability qi for each chromosome vi (i = 1,...,popnsize): 

� ∑ =
=

i

j ji pq
1

. 

The selection process is based on spinning the roulette wheel pop_size times; 

each time a single chromosome is selected for a new population in the following way: 

- Generate a random (float) number r from the range [0..1]; 

- If r < q1 then select the first chromosome (vi); otherwise select the i-th chromosome vi 

( sizepopi _2 ≤≤ ) such that ii qrq ≤<−1 . 

Obviously, some chromosomes would be selected more than once.  

Now it’s time to apply the recombination operator, crossover, to the individuals in the new population. 

As mentioned earlier, one of the parameters of a genetic system is probability of crossover pc. This 

probability gives the expected number pc · pop_size of chromosomes which undergo the crossover 

operation. The procedure is continued in the following way: 

- For each chromosome in the (new) population: 

• Generate a random (float) number r from the range [0,1]; 

•  if r < pc, select given chromosome for crossover. 

Now the selected chromosomes are mated randomly: for each pair of coupled chromosomes a random 

integer number pos from the range [1, m-1]  

(m is the total length —number of bits — in a chromosome) is generated.  

The number pos indicates the position of the crossing point. Two chromosomes: 

            ( )1 2 1... ...pos pos mb b b b b+  

and              ( )1 2 1... ...pos pos mc c c c c+ , 

are replaced by a pair of their offspring: 

( )1 2 1... ...pos pos mb b b c c+  

and               ( )1 2 1... ... .pos pos mc c c b b+  

The next operator, mutation, is performed on a bit-by-bit basis. Another parameter of the genetic 

system, probability of mutation pm, gives the expected number of mutated bits pm · m · pop_size. Every 

bit (in all chromosomes from the whole population) has an equal chance to undergo mutation (i.e., 

change from 0 to 1 or vice versa). So the procedure continues in the following way, or each 

chromosome in the current (i.e., after crossover) population and for each bit within the chromosome:  

- Generate a random (float) number r from the range [0,1];    

- If  r< pm, mutate the bit.       

Following selection, crossover and mutation, the new population is ready for its next evaluation. This 

evaluation is used to build the probability distribution, (for the next selection process), i.e., for a 
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construction of a roulette wheel with slots sized according to current fitness values. The rest of the 

evolution is just cyclic repetition of the above steps (Figure 3-2).     

An application of how a GA works will be given in Appendix C. 
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In this chapter a one-dimensional model to determine the preliminary geometry of the radial 

compressor will be discussed. But first the attention will be focused on the station numbering and the 

Euler turbomachinery equation.  

Further on the conditions needed to apply one-dimensional model will be discussed in the section of 

model for determining the geometry of the compressor.    

The model is carried out according to the one-dimensional calculations, which will be presented in the 

following sections.   

These one-dimensional calculations consist of impeller inlet design calculations and impeller exit 

design calculations.  

 

4.1. Stations numbering 

Before a detailed investigation of the quantities involved in the analysis of a radial compressor, the 

attention is focused on the numbering of the stations inside the compressor. 

Figure 4-1 shows the definition of this numbering and several other important geometric parameters, 

which will be used throughout the report with the same notation. 

 

 

Figure 4-1. Meridional view of a radial compressor [21] 

 

The impeller inlet is marked as station number 1, while station number 2 is located at the impeller exit. 

Station 3 is the diffuser inlet and station number 4 is the diffuser exit. In Figure 4-1 one can also notice 

the radii at the impeller inlet hub and tip, respectively r1h and r1t, the radius at the impeller exit r2 and 

the blade height b2. 

Chapter 4. Preliminary geometry of the compressor  
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4.2. The Euler turbomachinery equation 

This equation is of fundamental importance for turbomachinery. It stems directly from the energy and 

momentum equations applied to a blade row. The Newton Second Law of Motion applied to a rotating 

system must be initially considered. The torque developed is equal to the rate of change of angular 

momentum: 

( )
t

mrCu

∆

∆
=τ ,       (4.1) 

where m is the mass, r is the considered radius, Cu  the component of the absolute velocity in the 

tangential direction, at that radius, and t the time. 

The mass flow rate ∆m/∆t= mɺ  is constant for steady flow processes. Hence (Figure 4-2, where 

1 1uC Cθ =  and 2 2uC Cθ =  ): 

( ) ( )1 1 2 2u u um rC m rC r Cτ = ∆ = −ɺ ɺ .                                                (4.2)                

 

 

Figure 4-2. The Euler turbomachinery equation [21] 

 

The torque exerted on a fluid element is equal to the mass flow rate times the change of rCu. For a 

flow in which the torque is zero, rCu is constant. This is called a free vortex flow. In the impeller of a 

compressor, however, the torque exerted on the fluid is not zero. The amount of work per unit mass 

flow is equal to the product of the torque and the angular velocity ω : 

( )1 1 2 2x u uW rC r C
m

τω
ω= = −

ɺ
,                                            (4.3) 

where rω is now the blade speed U. 

In addition, the energy equation (First Law of Thermodynamics) states that the work 

done per unit mass flow is equal to the total enthalpy change in an adiabatic process. 

After a substitution, the Euler turbomachinery equation is obtained: 

0 01 02 1 1 2 2u uh h h U C U C∆ = − = − .     (4.4) 

This equation can be applied to turbines, pumps or compressors. It can be applied either to the ideal 

velocity triangles to determine the ideal enthalpy change (or head), or to the actual velocity triangles to 
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deduce the actual change in enthalpy. Since it is derived from the energy and momentum equations, it 

is independent of internal losses of the flow in the blade passages. 

 

4.3. Model for determining the geometry of the compressor 

A one-dimensional model has been used to determine the preliminary geometry of the radial 

compressor. 

Furthermore, it has been stated [25]  that a one-dimensional model assumes uniform flow conditions 

due to its own conditions and the air behaves as a perfect gas. 

A perfect or ideal gas is a hypothetical gas consisting of identical particles of negligible volume, with 

no intermolecular forces. Additionally, the constituent atoms or molecules undergo perfectly elastic 

collisions with the walls of the container. Real gases do not exhibit these exact properties, but the 

approximation is often good enough to describe them. However, it breaks down at high pressures and 

low temperatures, where the intermolecular forces play a greater role in determining the properties of 

the gas. The thermodynamic properties of an ideal gas can be described by two equations: 

- The equation of state of a classical ideal gas is given by the ideal gas law: 

0 0pV nRT NkT= = ,        (4.5) 

where p is the pressure, V is the volume, n is the amount of gas, R is the gas constant, 0T is the total 

temperature, N is the number of particles and k is the Boltzmann constant; nR Nk= is the amount of 

energy per degree . 

- The internal energy of an ideal gas is given by: 

     U=ĉvnRT0=ĉvNkT0 ,       (4.6) 

where U is the internal energy and ĉv is a constant equal to 3/2 for monatomic gases and to 5/2 for 

diatomic gases. 

 

4.4. Impeller inlet design calculations 

It’s important to examine the first station before calculations can be applied.  

The sign convention to be employed for velocities and angles is shown in Figure 4-3. 

 

Figure 4-3. Sign convention for velocity triangles [22] 
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Angles and components of velocity in the direction of the rotation are positive, whereas angles and 

velocities opposed to it are negative. Thus, in Figure 4-3 the relative flow angle β and the relative 

velocity W  are negative, while the absolute flow angle α and the absolute velocity C are positive. 

The inlet velocity triangle is shown in Figure 4-4. 

 

Figure 4-4. Impeller inlet velocity triangle [21] 

In Figure 4-4, a variety of possible inlet states is shown for a flow being conveyed to the eye of the 

impeller with a meridional velocity 1mC .  

The vector triangle is written according to the fundamental principle of vector addition: 

relative velocity+wheel speed=absolute velocity. 

For an inlet flow where 1 0uC = , the relative flow angle is set by the inlet meridional velocity (and 

hence by the mass flow and density variations) and the local wheel speed 1U . The use of preswirl 

(non-zero 1uC ) is comparatively rare for a pump but not at all rare for a compressor. 

     

Figure 4-5. Inlet velocity triangles at nonzero incidents [23] 

 

The resulting relative flow angle is 1β . If this angle is equal to the blade angle, then the flow 

approaches the blading dead-on. Under many operating conditions, however, the angle will be either 
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larger or lower than the blade angle, and hence the blading will be subject to an angle of incidence, 

which is defined in Figure 4-5 as:  

1 1 1Bi β β= −  , 

where 1Bβ  is the inlet blade angle and =m mV C  (Figure 4-5). 

The inlet flow state can be modified substantially by the use of preswirl, either with or against the 

direction of rotation. 

This has the effect of modifying the absolute flow angle 1α  and the tangential component of velocity 

1uC . 

Now that the impeller inlet has been examined with the help of velocity triangles, next step is to apply 

calculations to the impeller inlet. 

The design of a radial compressor starts from the impeller inlet, also known as inducer.  

Furthermore the tip relative Mach number 1tM  is limited to prevent any malfunction of the 

compressor such as chocking. Chocking occurs when the velocity of fluid in a passage reaches the 

speed of sound at any cross section and air ceases to flow. 

The total pressure 00p and temperature 00T at the impeller inlet and the mass flow rate mɺ  are 

necessary to determine the thermodynamic state of the gas at the impeller inlet. 

Moreover, the rotational speed of the impeller N and the hub radius 1hr are known and can be used to 

determine additional inlet geometry. 

Then, the inlet velocity triangle can be determined by an initial estimation of the meridional flow 

velocity 1mC and the amount of preswirl. 

In addition, an empirical blockage factor 1B is introduced as a measure of the thickness of the 

boundary layers at the impeller inlet. 

Aerodynamic blockage is directly related to the displacement thickness concept of boundary layers 

and represents the fraction by which a flow passage is effectively blocked by the presence of the low-

momentum boundary layer regions [24]. 

Furthermore, it has been claimed [25] that for an ideal simple axial inlet the blockage factor varies 

from 0.02 to 0.04, while the highest values (up to 0.14) are used for radial inlet guide vane systems. 

With these parameters known, the calculations of the inlet state can be made. As stated before, the 

inducer design should be optimised for a limited Mach number. In order to accomplish this, the 

starting guess of the meridional flow velocity should be iterated while the tip relative Mach number 

stays below the limited value. Another approach is to select 1mC in a certain range of values, in order 

to find the 1tM  below the limited within this interval. In this report an algorithm has been used to 

perform the optimization calculations. The chosen algorithm is given in the following chapter.  

Equations 4.7 to 4.18 summarise the calculations required to determine the inlet state of the impeller. 
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1 1 1tanu mC C α=         (4.7) 

     
2 2

1 1 1m uC C C= +        (4.8) 
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1 00
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= −         (4.9) 

     1
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=       (4.10) 
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     1
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ɺ
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     1
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     ( )22

1 1 1 1t m t uW C U C= + −     (4.16) 

     1
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=                                                                  (4.17) 

     1 1
1

1
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m

U C
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β

 −
=  

 
     (4.18) 

 

4.5  Impeller exit design calculations 

It’s important to examine the exit station before calculations can be applied.  

The compressor rotor exit velocity triangle is shown in Figure 4-6. 
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Figure 4-6. Impeller exit velocity triangle [21] 

 

The meridional velocity component 2mC is governed by the relationship of conservation of mass, and 

the absolute flow angle is a result of the relative flow angle and the wheel speed according to the 

velocity triangle relations. In the past, high speed impellers were traditionally designed with radial 

blades at exit ( )2 0Bβ = , but it has been stated that [26], for a modern impeller design the blades at 

exit will typically have a backswept angle of -30° to -40°. Moreover, a backswept angle of -45° has 

been stated [54]. This angle is negative according to the sign convention. In practice, the exit flow 

angle does not precisely follow the blading, but differs by an appreciable amount. This difference, in 

terms of tangential velocity, is known as slip velocity Cslip: 

     2, 2slip u uC C C∞= − ,     (4.19) 

where 2,uC ∞ is the tangential component of the absolute velocity which would exist if the flow exactly 

followed the blades. 

The slip velocity is an alternative to the angle of deviation, which is used to express the difference 

between the blade and flow angles at the exit of an axial stage. The slip velocity rather than the angle 

of deviation is most often (but not exclusively) used in radial stages. Based on the slip velocity, a slip 

factor can be derived; it is defined as follows: 

     
2

1
slipC

U
σ = − .      (4.20) 

An alternative definition frequently used in Europe is: 

     
' 2

2,

u

u

C

C
σ

∞

= .      (4.21) 

The magnitudes are similar but the meaning is different and attention must be paid in their usage. For 

either a radial or a backswept blade, the resulting absolute flow angle 2α  will be very large, typically 

in the range of 50° to 80° and most commonly between 65° and 75° [26]. 
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This velocity triangle is important not only in determining the level of work input, or pressure rise, but 

also in understanding the variation in pressure rise with changes in mass flow. Many parameters must 

be specified before a precise calculation of such results can be made.  

The impeller exit diameter, depth, flow state and velocity triangle at the impeller exit can be 

calculated, starting from the impeller inlet designed. 

The total pressure and temperature at the impeller inlet and the mass flow rate are again input 

quantities, as well as the desired stage pressure ratio prstage. The meridional flow velocity at the inlet, 

the amount of preswirl and the rotational speed come from the inducer design. 

At this point, a choice must be made on the desired shape of the velocity triangles presented above. 

This shape is a function of the swirl ratio 2λ  and the exit blade angle 2Bβ . As a guideline to the value 

of the swirl parameter, the following relation between 2λ  and the specific speed Ns has been claimed 

[25]: 

     2 6.5 0.025 sNλ = − .     (4.22) 

The specific speed has been defined and calculated in Appendix D [27]. 

For the calculations, some other empirical parameters must be assumed, such as the rotor efficiency 

rotorη  and the slip factor σ . The following equation for rotorη has been assumed [26]: 

     

1

02

01

02

01

1

1

rotor

p

p

T

T

γ
γ

η

−

 
− 

 =
 

− 
 

,     (4.23) 

which is the relation defined for compressible flow. 

Wiesner’s relation has been used to determine the slip factor from the backsweep angle 2Bβ  and the 

number of impeller blades Zr (both selected by the designer): 

As an initial guess, a value of the stage efficiency stageη must be given: it should then be iterated until 

the computed value of 2

00

sp

p
reaches the desired stage pressure ratio. 

Furthermore, it should be noted that the stage efficiency as calculated in Equation 4.42 is the total-to-

static efficiency. 

The calculations have been performed with Equations 4.22 to 4.44 except 4.23: 

 

2 6.5 0.025Nsλ = −      (4.24) 

2

0.7

cos
1

B

rZ

β
σ = −      (4.25) 

2
2

2 2tan B

σλ
µ

λ β
=

−
     (4.26) 
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     ( )2 2

2 2 2 2u mW U C C= − +     (4.43) 

 

     1

2

tW
DR

W
=       (4.44) 

 

The desired stage pressure ratio pr appears in Equation 4.27, while the estimated stage efficiency stageη  

appears in Equation 4.28. The assumed rotor efficiency rotorη  appears in Equation 4.36. At the end of 

the calculation the following must be accomplished:  

tspr pr= , 

,ts stage stageη η= . 
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This chapter starts with choosing a suitable optimization algorithm for the assignment.  

Moreover the design parameters followed by design variables, objective function and constraints of 

the radial compressor will be presented in this sections. 

Further on the design space and optimality of the compressor and optimization algorithm respectively 

will be presented.  

In the following section the inlet design results will be used as a starting point to avoid 1tM  higher 

then one.  

Finally, optimization Inlet and outlet results and effects of impeller outlet on performance will be 

presented. 

 

5.1. Chosen optimization Algorithm 
 

In this section, the advantages and disadvantages of algorithms presented in this report are given. 

Furthermore, the advantages and disadvantages have been given to choose one algorithm based on the 

criteria’s given at the end of this section. 

Then the chosen algorithm will be used to perform optimization calculation for the compressor design.        

 

Algorithm Hooke and Jeeves Method (pattern search) 

Advantage 

 

 

 

 

 

 

 

1. They are convenient because they do not require the determination of the 

derivatives of the objective function or the constraints. This implies that they 

are generally applicable because they can be used for functions whose 

differentiation is difficult and even for functions whose derivatives are 

discontinuous.  

Disadvantage 

 

 

 

 

 

 

 

1. No optimality conditions can be applied to them, solutions obtained by these 

methods cannot be considered optimum (stuck in local optimum).  

2. No convergence criteria can be established and hence the search may be 

terminated prematurely.  

 

 

Algorithm       The Simplex method 

Advantage 
1. Very effective for solving linear objective function. 

Disadvantage 
1. Not capable for solving nonlinear objective function. 

 

 

 

 

 

Chapter 5. Problem statement and results 
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Algorithm The Two-Phase Method 

Advantage 

 

 

 

1. Very effective for solving linear objective function. 

2. Capable for solving problems with inequality constraints of the form ≥  or 

equality constraints (=). 

Disadvantage 1. Not capable for solving nonlinear objective function. 

 

Algorithm The Dual Approach 

Advantage 

 

 

 

 

1. Very effective for solving linear objective function. 

2. Conversion of a minimization problem into a maximization problem and id. 

 

 

Disadvantage 1. Not capable for solving nonlinear objective function 

 

Algorithm Lagrange’s Method 

Advantage 

 

 

1. High overall computational efficiency, which leads to conversion in fewer 

steps. 

Disadvantage 

 

 

 

1. The amount of computational effort. 

2. This method also requires the evaluation of the derivatives of the objective 

function. 

 

Algorithm Quadratic Programming 

Advantage 1. No starting point needed. 

Disadvantage 

 

1. This method also requires the evaluation of the derivatives of the objective 

function. 

 

Algorithm Sequential Quadratic Programming 

Advantage 

 

 

 

1. Capable for solving problems dealing with nonlinear constraint optimization. 

2. No starting point needed. 

3. Fewer function and gradient evaluation needed. 

 

Disadvantage 

 

1. This method also requires the evaluation of the derivatives of the objective 

function. 
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Algorithm       GA 

Advantage 

 

 

 

 

 

 

 

 

 

 

 

 

1. GA’s begins a search from a population of points instead of a single point. 

Consequently, searches generate a population of points. As a result, many 

points are considered avoiding local optimum. 

2. They don’t use the information from objective function derivatives, but only 

the values of the objective function. 

3. They use probabilistic transition rules to select improved population points. 

4. No starting point is needed.   

 

 

Disadvantage 

 

 

 

 

 

1. They do not strictly guarantee the optimality of the solution. 

2. They do not guarantee that the solution is feasible because the solution is 

obtained by a statistical method. 

3. Computational time. 

 

Algorithm SA 

Advantage 

 

 

1. Random search method which avoids to get stuck in local optimums and 

therefore leads to global minimum or maximum. 

Disadvantage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. The major difficulty (art) in implementation of the algorithm is that there is no 

obvious analogy for the temperature T with respect to a free parameter in the 

problem.  

2. The avoidance of entrainment in local minima (quenching) is dependent on the 

"annealing schedule", the choice of initial temperature, the number of iterations 

performed at each temperature and the temperature decrease at each step as 

cooling proceeds. 

3. A starting point is needed. 

4. Computational time. 

 

The objective function has been analyzed and the following have been noticed: 

- The function is nonlinear; 

- The derivatives of the objective function can’t be used, because the objective variable 

disappears when the derivatives are calculated. 

A suitable algorithm has been chosen after reviewing the advantage(s) and disadvantage(s) of some 

optimization algorithms concerning the objective functions.  

Further on, after reviewing some articles [48], [49] and [50] concerning optimization in engineering 

design, it has been concluded that a GA will be used for the optimization of the design. 
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5.2. Operating conditions   

Figure 5-1 illustrates the meridional view of a radial compressor. The figure shows the impeller inlet 

(station 1) and exit (station 2). 

 

 

Figure 5-1. Meridional view of a radial compressor [21] 

 

The microturbine does not contain any diffuser. As a consequence, the maximum pressure recovery 

will be attained in the rotor. 

Furthermore, the total pressure 00p and temperature 00T and the mass flow rate mɺ  are necessary to 

determine the thermodynamic state of the gas at the inlet. Moreover, the rotational speed of the 

impeller N is known and can be used to determine additional inlet geometry. Besides, the inlet velocity 

triangle can be determined by the amount of preswirl and an empirical blockage factor 1B  is 

introduced as a measure of the thickness of the boundary layers at the inlet. The pressure ratio pr and 

the rotor efficiency rotorη  are input parameters necessary to determine the impeller exit. 

A rotational speed of 600,000 rpm have been chosen and it has been confirmed [28] that, some authors 

have verified that the efficiency peaks in the range between 95 rpm·ft
3/4

/s
1/2

 and 120 rpm·ft
3/4

/s
1/2

 

(between 7 rpm (m
3
 /s)

 0.5
 / (J/kg)

 0.75 
and 9 rpm (m

3
 /s)

 0.5
 / (J/kg)

 0.75 
in the International System of 

Units). It can be
 
noticed that the calculated specific speed (Ns ≈126) for N=600,000 rpm is slightly 

higher than the right-hand limit of the range (see Appendix D). 
 

Figures 5-2 and 5-3 illustrate the effect of the meridional flow velocity on the tip relative Mach 

number. 
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The design parameters are summarized in Table V-1. 

 

 

 

 

 

 

 

 

 

 
Table V-1. Operating conditions 

 

The optimization calculations for the impeller inlet and exit will be performed using a GA available in 

Matlab. Moreover, the impeller inlet has been calculated apart from the exit and considered as a pre 

design of the inlet to avoid  1tM  higher than one.  

Then the impeller inlet and impeller exit have been calculated at once, which is not the case with the 

procedure presented in [25]. The procedure described there performs calculations on the impeller inlet 

apart from the impeller exit only. Furthermore, the best results concerning stageη will be chosen. 

 

5.3. Design variables  

After analysing the inlet calculation formula’s and presenting the operation conditions, it can be 

concluded that 1mC  and 1hr  are design variables. 

The inlet velocity triangle can be determined by an initial estimation of the meridional flow velocity 

1mC and the amount of preswirl.  

According to section 4.4, the tip relative Mach number 1tM  is limited to prevent any malfunction of 

the compressor and can be considered a constraint. 

Furthermore, in section 5.5 the objective will be presented, concerning the maximization of stage 

efficiency ,ts stageη . 

Finally, according to section 4.5, the backsweep angle 2Bβ  and the number of impeller blades Zr must 

be selected by the designer, but also can be considered as design variables.  

00T [K] 298 

00p [Pa] 101,325 

mɺ  [kg/s] 0.005 

N [rpm] 600,000 

1α [°] 0 

B1 [-] 0.02-0.04 

pr [-] 2 

rotorη [-] 

starting value 

0.92 
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The design variables are then summarized in Table V-2. 

 

 

Cm1 Zr 

r1h 
2Bβ  

 
Table V-2. Design variables 

 

 

5.4. Design objective 

The design objective for this compressor is to find the maximum stage efficiency ,ts stageη  after 

satisfying the constraints specified in the following section.  

With a rotational speed of N=600,000 rpm and a 1mC  within the range of 0 m/s to 300 m/s [22], the 

optimum 1tM  has been found for different values of the hub radius 1hr .  

According to some publications ([29], [30], [31], [32], [28]), the hub radii chosen are summarized in 

Table V-3. 

 

1hr [mm] 1 2 3 4 5 6 9 12 15 18 21 24 

 

Table V-3. Hub radii chosen in the design 

 

These values have been used as a reference for the optimization calculation, but there is a possibility 

that the optimized hub radii could deviate from the reference values. 

Furthermore these values has been used to determine the final range of hub radii without exceeding the 

limited value of 1tM  
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Figure 5-2. Tip relative Mach number as function of meridional velocity for N=600,000 rpm and B1=0.02 
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Figure 5-3. Tip relative Mach number as function of meridional velocity for N=600,000 rpm and B1=0.03 
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Figure 5-4. Tip relative Mach number as function of meridional velocity for N=600,000 rpm and B1=0.04 

 

For clearness of the graphs only values of hub radius between 1 and 6 mm and then 12 mm and 24 mm 

have been depicted. 

In Figures 5-2 to 5-4 it can be noticed that, with increasing Cm1, M1t decreases until Cm1 reaches a 

minimum value and then increases.  

The trend of these figures can be explained recalling Figure 5-1 and Equations 4.7 to 4.18. If the hub 

radius, the total pressure and temperature at the impeller inlet, the rotational speed, the absolute inlet 

flow angle, the mass flow rate, the blockage factor and the flow properties are constant, by changing 

Cm1 the Af1 also changes. The two are related through the continuity equation (see Equation 4.13). If 

the Cm1 increases (like in these calculations), the Af1 must decrease, in order to keep the mass flow rate 

constant. As a consequence, the impeller tip radius decreases according to Equation 4.14. This will 

lead to a decrease in the blade speed U1t (see Equation 4.15). The W1t and M1t are dependent on both 

U1t and Cm1 (see Equations 4.15 and 4.16). As a consequence, M1t will decrease until the decreasing 

contribution of U1t larger than the increasing contribution of Cm1. 

 

5.5. Design Constraints 

In section 1.4, optimization constraints have been described as numerical values of identified 

conditions that must be satisfied to achieve a feasible solution to a given problem.  

The tspr must be iterated until it reaches the pressure ratio pr . In this case a pressure ratio of 2 must be 

achieved. Moreover the slip factor σ  must be iterated between 0.8 and 0.9 [33]. 

According to the operating conditions the absolute flow inlet angle is 0. Then, 1uC  = 0. 
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This requires that the absolute speed of air entering the compressor should vary from impeller root to 

tip. The tip velocity tU1  then becomes a maximum at the tip of the impeller. In addition it is quite 

possible that tW1  becomes so large that the inlet Mach number goes beyond unity. Then, the 

compressor inlet will be choked. Even when this Mach number is less then unity, it is possible that the 

local Mach number can become large at some point within the passage and choke the flow. In order 

that no choking may occur, it is essential to maintain the flow Mach number at the inlet tip below 0.9 

[47]. 

Furthermore, mɺ  and 
1α  can also be considered as constraints, because all the calculation will be based 

on the same values. 

Finally the last constraint concerning this design has been the diffusion ratio 1

2

tW
W

. 

It has been reported [34] that the diffusion ratio is a critical design parameter and it has been stated 

[35] that a diffusion ratio of 2.0 is typically suggested as a surge criterion. Also a diffusion ratio in the 

range of 1.9 to 2.0 as surge limit has been claimed [36].   

Nonetheless, impellers with a diffusion ratio above 2.0 have been described. 

Similarly, it has been claimed [38] that values between 0.45 and 0.60 are normally chosen for the 

simple relative velocity ratio 2

1t

W
W

, which they state to be an adequate design parameter. The 

reciprocal of that ratio gives then a diffusion ratio in the range of 1.67 ÷  2.22. 

The constraints are summarized in Table V-4. 

 

 

 

 

 

 

 

 

Table V-4. Design Constraints 

 

5.6. Design Space 

The design space for 1mC  is between 0 and 300 m
s

 [22] as presented in section 5.4 and the estimated 

stage efficiency stageη  is from 0.1 to 1. 

Moreover, the blades at exit are usually backswept by -30° to -40° [26] ,-45 [54], so the calculations 

have been carried out with the values summarized in Table V-5. 

tspr [-] 2 

σ [-] 0.8 - 0.9 

mɺ  [kg/s] 0.005 

1α [°] 0 

M1t [-] ≤ 0.9 

1

2

tW
W

[-] 
1.67 – 2.22 
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2Bβ [°] -45 -40 -30 -20 -10 0 

 

Table V-5. Exit blade angles chosen in the design 

 

According to some publications ([29], [30], [31], [32] and [28]), the hub radii design space is between 

1 mm and 24 mm. 

Moreover, although from literature the blade number usually appears to be between 26 and 30, [30] 

developed a MEMS-based turbocharger whose compressor has a pressure ratio of 2, a rotational speed 

of 1,000,000 rpm and 10 blades. Besides, [31] designed a microscale, high-speed compressor impeller 

with a design pressure ratio of 3, a shaft which must spin at 800,000 rpm and 12 blades (six fullblades 

and six splitters). Furthermore, the microturbine developed by [46] has a compressor with an 

extrapolated pressure ratio of 1.63 at 250,000 rpm, and 20 blades. 

As a consequence, the calculations have been performed with the values of blade number summarized 

in Table V-6. 

 

rZ  5 10 15 20 25 30 

 

Table V-6. Blade numbers reference values 

 

These values have been presented as a reference for the optimization calculation, but there is a 

possibility that the optimized blade number could deviate from the reference values. 

 

5.7. Design Optimality 
 

Although the optimization algorithms used for this design were only capable to minimize objective 

functions, a procedure described in section 1.6 has been used to convert minimization into 

maximization. 

Moreover, GAs are more likely capable to find global optimums than a local optimum. 

This means that more than one solution can be obtained and also the possibility to get the local 

optimum is available. 

 

5.8. Inlet Design 

Although calculations have been performed with the inlet and outlet combined, the inlet design results 

will be presented apart from exit results. These results will be considered as a pre design of the inlet to 

avoid  1tM  higher than 0.9 and to determine the final r1h range. 1tM  higher than 0.9 will lead to shock 

waves on the blade tips and also stresses on the blades will grow.  

The tip relative Mach number has been calculated for each impeller hub radius (see Table V-3). 

Moreover, as described in previous section, more than one solution can be obtained when GAs are 



   58

 

used. Thus the calculations concerning GAs have been done 5 times and the best from these solutions 

has been taken. 

Finally, Tables V-7 to V-12 summarizes the outcomes for  N=600,000 rpm.   

 

r1h [m] 0.001 0.002 0.003 0.004 0.005 0.006 

D1h [m] 0.002 0.004 0.006 0.008 0.01 0.012 

(M1t)min [-] 0.7507 0.8156 0.9137 1.0354 1.1735 1.3226 

r1t [m] 0.0035 0.0039 0.0045 0.0052 0.0061 0.0069 

D1t [m] 0.0070 0.0078 0.0090 0.0104 0.0122 0.0138 

r1t/r1h [-] 3.5000 1.9500 1.5000 1.3000 1.2200 1.1500 

β1 [°] 59.3130 62.1499 65.6126 68.9170 71.7935 74.2059 

Af1[m
2
] 3.5432e-5 3.5591e-5 3.5886e-5 3.6273e-5 3.6757e-5 3.7331e-5 

U1t [m/s] 220.1667 246.0006 283.9477 329.7680 380.6394 434.7796 

W1t [m/s] 256.0174 278.2267 311.7650 353.4262 400.6997 451.8384 

Cm1=C1[m/s] 130.6580 129.9762 128.7290 127.1342 125.1955 122.9822 

 

Table V-7. Inducer design results for N=600,000 rpm, B1=0.02 and  r1h=1, 2, 3, 4, 5, 6 mm 

 

r1h [m] 0.009 0.012 0.015 0.018 0.021 0.024 

D1h [m] 0.018 0.024 0.030 0.036 0.042 0.048 

(M1t)min [-] 1.8080 2.3216 2.8476 3.3799 3.9158 4.4539 

r1t [m] 0.0097 0.0125 0.0155 0.0184 0.0214 0.0244 

D1t [m] 0.0194 0.0250 0.0310 0.0368 0.0428 0.0488 

r1t/r1h [-] 1.0777 1.0416 1.0333 1.0222 1.0190 1.0166 

β1 [°] 79.2556 82.2539 84.1549 85.4298 86.3280 80.8709 

Af1[m
2
] 3.9498e-5 4.2156e-5 4.5118e-5 4.8252e-5 5.1522e-5 5.4734e-5 

U1t [m/s] 607.7907 788.3297 972.0910 1.1575e+003 1.3438e+003 1.5306e+003 

W1t [m/s] 618.6363 795.5894 977.1715 1.1612e+003 1.3465e+003 1.5327e+003 

Cm1=C1[m/s] 115.3315 107.2321 99.5151 92.5219 86.2394 80.8709 

 

Table V-8. Inducer design results for N=600,000 rpm, B1=0.02 and  r1h=9, 12, 15, 18, 21, 24 mm 
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r1h [m] 0.001 0.002 0.003 0.004 0.005 0.006 

D1h [m] 0.002 0.004 0.006 0.008 0.01 0.012 

(M1t)min [-] 0.7533 0.8181 0.9159 1.0374 1.1752 1.3242 

r1t [m] 0.0035 0.0039 0.0045 0.0053 0.0061 0.0069 

D1t [m] 0.0070 0.0078 0.009 0.0106 0.0121 0.0139 

r1t/r1h [-] 3.5164 1.9637 1.50961 1.31423 1.21312 1.15437 

β1 [°] 59.3237 62.1694 65.5922 68.891 71.7661 74.1734 

Af1[m
2
] 3.5704e-5 3.5889e-5 3.6160e-5 3.6553e-5 3.7044e-5 3.7614e-5 

U1t [m/s] 220.9399 246.7597 284.5541 330.3017 381.1133 435.1887 

W1t [m/s] 256.8879 279.0351 312.4814 354.0602 401.2618 452.3361 

Cm1=C1[m/s] 131.0609 130.2959 129.1262 127.5125 125.5536 123.3642 

 

Table V-9. Inducer design results for N=600,000 rpm, B1=0.03 and  r1h=1, 2, 3, 4, 5, 6 mm 

 

r1h [m] 0.009 0.012 0.015 0.018 0.021 0.024 

D1h [m] 0.018 0.024 0.030 0.036 0.042 0.048 

(M1t)min [-] 1.8092 2.3226 2.8485 3.3807 3.9165 4.4546 

r1t [m] 0.0097 0.0126 0.0155 0.0184 0.0214 0.0244 

D1t [m] 0.0194 0.0252 0.0310 0.0368 0.0428 0.0488 

r1t/r1h [-] 1.0754 1.0459 1.0317 1.0236 1.0185 1.0151 

β1 [°] 79.2306 82.231 84.1387 85.4165 86.3145 86.9676 

Af1[m
2
] 3.9803e-5 4.2464e-5 4.5457e-5 4.8610e-5 5.1869e-5 5.5155e-5 

U1t [m/s] 608.106 788.5753 972.3105 1.1577e3 1.3439e3 1.5308e3 

W1t [m/s] 619.008 795.8805 977.4205 1.1614e3 1.3467e3 1.5329e3 

Cm1=C1[m/s] 115.666 107.5861 99.8153 92.8077 86.5663 81.0932 

 

Table V-10. Inducer design results for N=600,000 rpm, B1=0.03 and r1h=9, 12, 15, 18, 21, 24 mm 

 

r1h [m] 0.001 0.002 0.003 0.004 0.005 0.006 

D1h [m] 0.002 0.004 0.006 0.008 0.01 0.012 

(M1t)min [-] 0.7559 0.8205 0.9181 1.0394 1.1770 1.3257 

r1t [m] 0.0035 0.0039 0.0045 0.0053 0.0061 0.0069 

D1t [m] 0.0070 0.0078 0.0090 0.0106 0.0122 0.0138 

r1t/r1h [-] 3.5000 1.9500 1.5000 1.3250 1.2200 1.1500 

β1 [°] 59.3420 62.1572 65.5765 68.8634 71.7320 74.1429 

Af1[m
2
] 3.5987e-5 3.6160e-5 3.6445e-5 3.6837e-5 3.7326e-5 3.7907e-5 

U1t [m/s] 221.7429 247.4501 285.1826 330.8407 381.5778 435.6113 

W1t [m/s] 257.7728 279.8473 313.2106 354.7040 401.8297 452.8438 

Cm1=C1[m/s] 131.4417 130.7018 129.5057 127.9037 125.9583 123.7347 

 

Table V-11. Inducer design results for N=600,000 rpm, B1=0.04 and  r1h=1, 2, 3, 4, 5, 6 mm 
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r1h [m] 0.009 0.012 0.015 0.018 0.021 0.024 

D1h [m] 0.018 0.024 0.030 0.036 0.042 0.048 

(M1t)min [-] 1.8104 2.3236 2.8494 3.3815 3.9173 4.4552 

r1t [m] 0.0097 0.0126 0.0155 0.0184 0.0214 0.0244 

D1t [m] 0.0194 0.0252 0.0310 0.0368 0.0428 0.0488 

r1t/r1h [-] 1.0777 1.0500 1.0333 1.0222 1.0190 1.0166 

β1 [°] 79.2010 82.2104 84.1200 85.4018 86.3009 86.9562 

Af1[m
2
] 4.0099e-5 4.2790e-5 4.5787e-5 4.8963e-5 5.2221e-5 5.5527e-5 

U1t [m/s] 608.4124 788.8350 972.5236 1.1579e+003 1.3441e+003 1.5309e+003 

W1t [m/s] 619.3813 796.1817 977.6675 1.1616e+003 1.3469e+003 1.5331e+003 

Cm1=C1[m/s] 116.0500 107.9109 100.1578 93.1225 86.8991 81.4072 

 

Table V-12. Inducer design results for N=600,000 rpm, B1=0.04 and  r1h=9, 12, 15, 18, 21, 24 mm 

 

Some observations concerning the inlet design (Tables V-7 to V-12) will follow. It can be noticed that 

the tip relative Mach number increases with increasing impeller hub radius. This trend is due to the 

fact that if the impeller tip radius is held constant, an increase in the hub radius decreases the inlet flow 

area ( )( )2 2

f1 1t 1hA r r π= − . According to the continuity equation
( )1

1 1 11
f

m

m
A

C Bρ

 
=  − 

ɺ
 , this increases 

the meridional velocity, because in this design the mass flow rate is fixed. 

Anyway, in Tables V-7 to V-12 it can also be noticed that the tip relative Mach numbers are higher 

than unity starting from r1h =4mm for N=600,000 rpm. This implies that for N=600,000 rpm only 

values of impeller hub radius equal to 1, 2 and 3 will be considered in the design process. 

Moreover it can be noticed that the highest Cm1 for N=600,000 rpm can be found in Table V-12. That 

implies that the design space for Cm1 can be reduced to 0 ÷  150 m/s. 

Furthermore reducing the design space [43] will improve the optimization calculation, because the 

space for exploration has been reduced, which can lead to more accurate and quick solutions. 
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Figure 5-5 shows M1t  as function of Cm1  for r1h =1, 2, 3 mm and B1=0.02. 
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Figure 5-5. Tip relative Mach number as function of meridional velocity for N=600,000 rpm, B1=0.02 and r1h 

=1, 2, 3 mm 

 

Figure 5-6 shows M1t  as function of Cm1  for r1h =1, 2, 3 mm and B1=0.03. 
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Figure 5-6. Tip relative Mach number as function of meridional velocity for N=600,000 rpm, B1=0.03 and 

r1h=1, 2, 3 mm 
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Figure 5-7 shows M1t  as function of Cm1  for r1h =1, 2, 3 mm and B1=0.04. 
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Figure 5-7. Tip relative Mach number as function of meridional velocity for N=600,000 rpm, B1=0.03 and 

r1h=1, 2, 3 mm 

 

Table V-13 to V-15 summarizes the impeller inlet geometry at 600,000 rpm for three impeller hub 

radii chosen according to the remarks about the tip relative Mach number.  

Furthermore, the optimized hub radii will be calculated in the range of 1÷3mm for N=600,000 rpm. 

 

r1h [m] 0.001 0.002 0.003 

(M1t)min [-] 0.7507 0.8156 0.9137 

r1t [m] 0.0035 0.0039 0.0045 

r1t/r1h [-] 3.5000 1.9500 1.5000 

β1 [°] 59.3130 62.1499 65.6126 

Af1[m
2
] 3.5432e-5 3.5591e-5 3.5886e-5 

U1t [m/s] 220.1667 246.0006 283.9477 

W1t [m/s] 256.0174 278.2267 311.7650 

Cm1=C1[m/s] 130.6580 129.9762 128.7290 

 

Table V-13. Inducer design results for N=600,000 rpm, B1=0.02 and r1h=1,2,3 mm respectively 
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r1h [m] 0.001 0.002 0.003 

(M1t)min [-] 0.7533 0.8181 0.9159 

r1t [m] 0.0035 0.0039 0.0045 

r1t/r1h [-] 3.5164 1.9637 1.50961 

1β  [ ° ] 59.3237 62.1694 65.5922 

U1t [m/s] 220.9399 246.7597 284.5541 

W1t [m/s] 256.8879 279.0351 312.4814 

Cm1=C1[m/s] 131.0609 130.2959 129.1262 

 
Table V-14. Inducer design results for N=600,000 rpm, B1=0.03 and r1h=1,2,3 mm respectively 

 

r1h [m] 0.001 0.002 0.003 

(M1t)min [-] 0.7559 0.8205 0.9181 

r1t [m] 0.0035 0.0039 0.0045 

r1t/r1h [-] 3.5000 1.9500 1.5000 

β1 [°] 59.3420 62.1572 65.5765 

Af1[m
2
] 3.5987e-5 3.6160e-5 3.6445e-5 

U1t [m/s] 221.7429 247.4501 285.1826 

W1t [m/s] 257.7728 279.8473 313.2106 

Cm1=C1[m/s] 131.4417 130.7018 129.5057 

 

Table V-15. Inducer design results for N=600,000 rpm, B1=0.04 and r1h=1,2,3 mm respectively 

 

 

 

5.9. Inlet and outlet optimization results and effects of impeller outlet on 

 performance 

 
The optimization calculations have been performed by taking mɺ , 

1α , DR, σ , tspr and M1t  as 

constraints: 

-  σ  and M1t are inequality constraints ( ≥≤, ,<, and >) ;  

- mɺ , 
1α , DR and tspr  are equality constraints (=).  

In section 5.5, several DR’s has been presented by some author’s and a range has been chosen. DR is a 

very important constraint, because this value is the only connection between the inlet and outlet 

design. This is very important when the inlet and outlet design must be calculated at the same time, 

which is the intention in this report.  

Furthermore, some (original) values in the DR range has been chosen (see first row of Tables V-16 to 

V-21) and used to perform optimization calculations. Besides there is a possibility that the original DR 

value will slightly change when the calculation has been completed, because of the tolerance installed 

in the optimization algorithm.  
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Moreover, the influence on the impeller exit of the blade number Zr and the backsweep angle 2Bβ  [33] 

will be presented in this section .Thus, the effects of these factors on the performance of the impeller 

will be carefully analyzed, with the help of the results of the optimized design.  

 

DR original 

 [-] 

1.67 1.7 1.8 1.9 2.0 2.1 2.2 

DR [-] 1.6700 1.6826 1.7998 1.8772 1.9733 2.1000     2.2200 

 r1h [m] 0.0018  0.0016  0.0024   0.0020   0.0024   0.0024   0.0025   

D1h [m] 0.0036 0.0032 0.0048 0.0040 0.0048 0.0048 0.0050 

(M1t) [-] 0.8004 

 

0.7816 0.8615 0.8143 0.8450 0.8619 0.8684 

r1t [m] 0.0039 0.0035 0.0040 0.0037 0.0039 0.0044 0.0040 

D1t [m] 0.0078 0.0070 0.0080 0.0074 0.0078 0.0088 0.0080 

r1t/r1h [-] 2.2182 2.3996 1.6439 1.9463 1.7249 1.8195 1.6148 

1β  [ ° ] 
   64.4031 

 

56.1175 59.1841 57.3580 58.8629 68.6207 59.5167 

Af1[m
2
] 3.8634e-5 3.1940e-5 3.1625e-5 3.1745e-5 3.1873e-5 4.2005e-5   3.1670e-5 

 U1t [m/s]  246.8465 

 

220.3922 251.1738 232.8060 245.6187 275.0076 254.0777 

W1t [m/s] 273.7095 265.4743 292.4645 276.4728 286.9603 295.3299 294.8301 

Cm1=C1[m/s] 118.2527 

 

147.9997 149.8240 149.1260 148.3836 107.6596 149.5637 

Zr [-] 10.9554    12.6045     12.4197     13.4940     21.4181     21.8970     19.0446     

B2β  [ ° ] -41.7842    -40.2209    -43.3790    -32.8465    -39.3189    -35.5499    -25.1377    

stageη [-] 0.5677 0.5581 0.5655 0.5401 0.5366 0.5273 0.5102 

 
b2 [m] 7.6095e-4 7.4828e-4 7.5784e-4 7.2490e-4 7.2000e-4   7.0771e-4 

 

6.8508e-4 

r2 [m] 0.0067 0.0066     0.0066 

 

0.0066 0.0066 0.0065 0.0065 

U2 [m/s] 417.8592 415.7503 417.4069 412.3216 411.8139 410.4174 408.3196 

W2 [m/s] 163.8979 157.7788 162.4978 147.2809 145.4212 140.6331 132.8061 

M2 [-] 0.7467 0.7633 0.7505 0.7948     0.8011 

 

0.8179 0.8495 

 

Table V-16. Optimization results with diffusion ratio as equality constraint for N=600,000 rpm and B1=0.02 

 

In Table V-16 it can be noticed that the highest efficiency can be found at DR =1.67 (original).   

Furthermore it can be noticed that the variable Zr is not an integer, so it must be converted into integer 

to continue with calculations (Table V-17). 
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DR original 

 [-] 

1.67 1.7 1.8 1.9 2.0 2.1 2.2 

DR [-] 1.6701 1.7351 1.8000 

 

1.9002 2.0172 2.1110 2.2202 

r1h [m] 0.0018  0.0015 0.0025  0.0021  0.0024  0.0025  0.0025  

D1h [m] 0.0036 0.0030 0.0050 0.0042 0.0048 0.0050 0.0050 

(M1t) [-] 0.8071 0.8005 0.8637 0.8299 0.8633 0.8770 0.8675 

r1t [m] 0.0036 0.0036 0.0040 0.0038 0.0040 0.0041 0.0041 

D1t [m] 0.0072 0.0072 0.0080 0.0076 0.0080 0.0082 0.0082 

r1t/r1h [-] 2.0213 2.0978 1.6345 1.8172 1.6360 1.5818 1.6187 

1β  [ ° ] 
56.8148 56.6768 59.3181 58.8047 59.4955 59.7525 59.8789 

Af1[m
2
] 3.1601e-5 3.1714e-5 3.1661e-5   3.2283e-5 

 

3.1799e-5 3.1600e-5 3.1963e-5 

U1t [m/s] 229.3032 227.0938 252.1632 241.2259 252.5821 257.1874 254.8671 

W1t [m/s] 273.9893 271.7782 293.2083 282.0013 293.1583 297.7198 294.6555 

Cm1=C1[m/s] 149.9673 149.3043 149.6156 146.0643 148.8089 149.9724 147.8668 

Zr [-] 11 13 12 13 21 22 19 

B2β  [ ° ] -42 -40 -43 -33 -39 -36 -25 

stageη [-] 0.5679 0.5563 0.5661 0.5421 0.5365 0.5282 

 

0.5100 

b2 [m] 7.6148e-4 7.4637e-4 7.5891e-4 7.2750e-4 7.2005e-4 7.0932e-4 6.8501e-4 

r2 [m] 0.0067 0.0066 0.0066 0.0066 0.0066 0.0065 0.0065 

U2 [m/s] 417.8814 415.2884 417.5061 412.6812 411.7447 410.4444 408.2624 

W2 [m/s] 164.0509 156.6369 162.8929 148.4050 145.3305 141.0294 132.7154 

M2 [-]     0.7462 

 

0.7663 0.7493 0.7912 0.8013 0.8162 0.8498 

 
 

Table V-17. Optimization results after converting Zr into an integer (values closed to the solutions) for 

N=600,000 rpm and B1=0.02 

 

In Table V-17 it can be noticed that the highest efficiency is still present for DR=1.67 (original). The 

same has been concluded in the previous table. 
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Figure 5-8 stageη  as function of DR for N=600,000 rpm and B1=0.02 

 

DR original 

[-] 

1.67 1.7 1.8 1.9 2.0 2.1 2.2 

DR [-] 1.6700 1.6998 1.7998 1.8893 2.0248 2.1188 2.2253 

r1h [m] 0.0022   0.0020   0.0022   0.0027   0.0024   0.0020   0.0022   

D1h [m] 0.0044 0.0040     0.0044 

 

0.0054 0.0048 0.0040 0.0044 

(M1t) [-] 0.8395 0.8223 0.8374 0.8869 

 

0.8757 0.8440 0.8624 

r1t [m] 0.0039 0.0038     0.0041 

 

0.0042 0.0041 0.0043 0.0045 

D1t [m] 0.0078 0.0076 0.0082 0.0084 0.0082 0.0086 0.0090 

r1t/r1h [-] 1.7753 1.8975 1.8658 1.5592 1.5994 2.0165 2.0391 

1β  [ ° ] 
59.0100 59.4220 64.8079 60.1877 59.6947 68.9160 71.2815 

Af1[m
2
] 3.2475e-5 3.3326e-5   3.8032e-5 

 

  3.1974e-5 

 

3.1922e-5 4.3748e-5 4.7552e-5 

U1t [m/s] 244.4882 240.7959 258.9489 261.2521 256.6328 270.0097   280.4957 

 W1t [m/s] 285.1982   279.6902 

 

286.1675 301.1000 297.2527 

 

289.3827 296.1606 

Cm1=C1[m/s] 146.8453   142.2813 

 

121.8085 149.6949 149.9960 104.1015 95.0434 

Zr [-] 8.3808     10.8199     14.6022     13.7814     15.7399     23.2603     23.4253     

B2β  [ ° ] -39.7686    -41.9613    -43.7820    -43.1017    -35.6345    -32.5678    -29.0026    

stageη [-] 0.5779 0.5686 0.5600 0.5606 0.5392 0.5188 0.5108 

b2 [m] 7.7440e-4 7.6197e-4 7.5059e-4 

 

7.5193e-4 7.2333e-4 6.9656e-4   6.8611e-4 

 r2 [m] 0.0067 0.0067 0.0066     0.0066 

 

0.0066 0.0065 0.0065 

U2 [m/s] 420.3463 418.1250 416.2026   416.2478 

 

  412.2410 

 

409.2847 408.3685 

W2 [m/s] 170.7774 164.5407 158.9992 159.3714 146.8071 136.5800 133.0885 

M2 [-] 0.7293 0.7451 0.7600 0.7587 0.7965 0.8335 0.8482 

 

Table V-18. Optimization results with diffusion ratio as equality constraint for N=600,000 rpm and B1=0.03 
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In Table V-18 it can be noticed that the highest efficiency can be found for DR = 1.67 (original).   

Furthermore, it can be noticed that the variables 2Bβ and Zr are not integers, so they must be converted 

into integers to continue with calculations (Table V-19). 

 

DR original 

[-] 

1.67 1.7 1.8 1.9 2.0 2.1 2.2 

DR [-] 1.6891 1.7214 1.8090 

 

1.9165 2.0033 2.1283 2.1898 

r1h [m] 0.0020  0.0020  0.0022  0.0027  0.0025  0.0023  0.0025  

D1h [m] 0.0040 0.0040 0.0044 0.0054 0.0050 0.0046 0.0050 

(M1t) [-] 0.8309 0.8310 0.8446 0.8968 0.8665 0.8600 0.8598 

r1t [m] 0.0038     0.0039 

 

0.0039 0.0042 0.0040 0.0040     0.0040 

 D1t [m] 0.0076 0.0078 0.0078 0.0084 0.0080 0.0080 0.0080 

r1t/r1h [-] 1.8333 1.8313 

 

1.7447 1.5277 1.6363 1.6656 

 

1.6663 

1β  [ ° ] 
58.2242 59.0145 59.5246 60.4868 59.4726 59.2159 59.4499 

Af1[m
2
] 3.2166e-5 3.2739e-5 3.2704e-5 3.1925e-5 3.2018e-5 3.2019e-5 3.2196e-5 

U1t [m/s] 239.8759   242.1178 

 

247.3961 264.9447 253.4150 250.8309 251.4589 

W1t [m/s] 282.1687 282.4197 287.0533 304.4493 294.1944 291.9687 291.9918 

Cm1=C1[m/s] 148.5891 145.3955 145.5842 149.9788 149.4362 149.4310 148.4172 

Zr [-] 9 11 15 14 16 23 23 

B2β  [ ° ] -39 -42 -44 -43 -36 -33 -29 

stageη [-] 0.5724 0.5679 0.5595 0.5598 0.5393 0.5201 0.5114 

b2 [m] 7.6689e-4 7.6129e-4 7.5019e-4   7.5060e-4 

 

7.2376e-4 6.9820e-4   6.8687e-4 

 r2 [m] 0.0067 0.0067 

 

0.0066 0.0066 0.0066 0.0065 0.0065 

U2 [m/s] 419.0308 417.9180 416.0553 416.1096 412.2094   409.4624 

 

408.4359 

W2 [m/s] 167.0541 164.0653 158.6817 158.8578 146.8561   137.1845 

 

133.3396 

M2 [-] 0.7387 0.7462     0.7608 

 

0.7603 0.7962 0.8311 0.8471 

 

Table V-19. Optimization results after converting Zr into an integer (values closed to the solutions) for 

N=600,000 rpm and B1=0.03 

 

In Table V-19 it can be noticed that the highest efficiency is still present for DR=1.67 (original). The 

same has been concluded in the previous table. 
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Figure 5-9 stageη  as function of DR for N=600,000 rpm and B1=0.03 

 

DR original 

 [-] 

1.67 1.7 1.8 1.9 2.0 2.1 2.2 

DR [-] 1.6752 1.7 1.8 1.9182 2 2.1002 2.2 

r1h [m] 0.0022 0.002 0.0027 0.0021 0.002 0.0019 0.0013  

D1h [m] 0.0044 0.004 0.0054 0.0042 0.004 0.0038 0.0026 

(M1t) [-] 0.8490 0.8199 0.8933 0.8370 0.8168 0.8187     0.8363 

 r1t [m] 0.0039 0.0039 0.0042 0.0039 0.0039 0.0037 0.0044 

D1t [m] 0.0078 0.0078 0.0084 0.0078 0.0078 0.0074 0.0088 

r1t/r1h [-] 1.7379 1.9479 1.5497 1.8118 1.9946 1.9587 3.3177 

1β  [ ° ] 
59.1729 60.0972 60.3879 59.3371 61.5730 57.8560 73.4007 

Af1[m
2
] 3.2644e-5 3.4303e-5 3.2281e-5 3.3137e-5 3.5728e-5 3.261e-5 5.5018e-5 

U1t [m/s] 247.6396 241.9341 263.6425 244.7124 244.8915 235.4437 275.7653 

W1t [m/s] 288.3831 279.0885 303.2498 284.4889 278.4679 278.0675   287.7572 

 Cm1=C1[m/s] 147.7818 139.1340 149.8435 145.0854 132.5615 147.9454    82.2055 

 Zr [-] 9.6681 11.7314 9.4690 13.5016 21.6434 24.3227 24.5877  

B2β  [ ° ] -44.7555 -43.4465 -41.5899 -33.7896 -34.0915 -28.7988 -25.6598  

stageη [-] 0.5798 0.5681 0.5745 0.5419 0.5244 0.5092 0.5022 

b2 [m] 7.7693e-4 7.6149e-4 7.6998e-4 7.2701e-4 7.0392e-4 6.8398e-4   6.7471e-4 

 r2 [m] 0.0067 0.0067 0.0067 0.0066 0.0065 0.0065 0.0065 

U2 [m/s] 420.8649 417.9553 419.4995 412.6939 410.0245 408.1899   407.5058 

 W2 [m/s] 172.1479 164.1694 168.4715 148.3132 139.2340 132.4027 129.6080 

M2 [-] 0.7260 0.7460 0.7350 0.7916 0.8231 0.8512     0.8645 

 
 

Table V-20. Optimization results with diffusion ratio as equality constraint for N=600,000 rpm and B1=0.04 
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In Table V-20 it can be noticed that the highest efficiency can be found for DR = 1.67 (original).   

Furthermore, it can be noticed that the variables 2Bβ and Zr are not integers, so they must be converted 

into integers to continue with calculations (Table V-21). 

 

DR original 

 [-] 

1.67 1.7 1.8 1.9 2.0 2.1 2.2 

DR [-] 1.6861     1.7173 

 

1.8002 1.9041 2.0001 

 

2.1261     2.2197 

 r1h [m] 0.0022 0.0019     0.0019     0.002 0.0019 0.0019     0.0022 

D1h [m] 0.0044 0.0038 0.0038 0.004 0.0038 0.0038 0.0044 

(M1t) [-] 0.8509     0.8240 

 

0.8184 0.8281 0.8182 0.8262 0.8481 

r1t [m] 0.0039 

 

0.0038 0.0037 0.0038 0.0037 0.0040 0.0039 

D1t [m] 0.0078 0.0076 0.0074 0.0076 0.0074 0.0080 0.0078 

r1t/r1h [-] 1.7279 1.9140 1.9340 1.8793 1.9670 

 

1.9647 1.7438 

1β  [ ° ] 
58.8919 57.5814 57.7468 57.8164 57.3620    64.0640 

 

58.6616 

Af1[m
2
] 3.2382e-5 

 

 3.2260e-5 3.2212e-5  3.2298e-5 

 

3.2287e-5   3.7985e-5 

 

3.2298e-5 

U1t [m/s] 247.3574 236.1340 235.0537 237.9429 233.9085 

 

253.8142   245.9130 

 W1t [m/s] 288.9036   279.7287 

 

  277.9404 

 

  281.1414 

 

277.7697   282.2406 

 

  287.9171 

 Cm1=C1[m/s] 149.2635 149.9629 148.3262 149.7453 149.8093 123.4427 149.7432 

Zr [-] 10 12 16 14 22 24 25 

B2β  [ ° ] -45 -43 -42 -34 -34 -29 -26 

stageη [-] 0.5787    0.5661 

 

0.5525 -0.5407 -0.5237 0.5101 0.5024 

b2 [m] 7.7575e-4  7.5891e-4 

 

7.4120e-4 7.2543e-4   7.0307e-4 

 

6.8521e-4 6.7454e-4 

r2 [m]     0.0067 

 

0.0066 0.0066 0.0066 

 

0.0065     0.0065 

 

0.0065 

U2 [m/s] 420.5193   417.5062 

 

  414.5875 

 

412.4901 409.9064   408.2586 

 

  407.6117 

 W2 [m/s] 171.3450 162.8929 154.3941 147.6509 138.8775   132.7515 

 

129.7081 

M2 [-] 0.7278 

 

0.7493     0.7729 

 

0.7938 

 

0.8244 0.8496 0.8643 

 

Table V-21. Optimization results after converting  Zr into an integer (values closed to the solutions) for 

N=600,000 rpm and B1=0.04 

 

In Table V-21 it can be noticed that the highest efficiency is still present for DR=1.67 (original). The 

same has been concluded in the previous table. 
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Figure 5-10 stageη  as function of DR for N=600,000 rpm and B1=0.04 

 

Figures 5-8 to 5-10 has been presented to give a clear view concerning DR as function of stageη  during 

optimization calculations. 

Furthermore, the outcome of these tables (V16 to V21) has been influenced not only by DR but by 

several variables to reach the optimum. The DR can be considered a measure of stage efficiency, 

because it is an estimation of the amount of diffusion in the impeller and gives an indirect 

measurement of the boundary layer thickness in the impeller. This behaviour can be noticed 

in Figures 5-8 to 5-10. Figures 5-8 to 5-10 are not straight decreasing lines, because the number 

of blades and the blade backsweep angles are not the same for each blockage factor. 

Flow separation is more likely to occur at high diffusion ratios, thus a lower diffusion ratio is 

desirable.  

Anyway the highest stageη has been found with DR = 1.67 and therefore this DR value will be used in 

the following calculations. 

The following calculations will present the performance of the compressor by adjusting 2Bβ  and Zr. 
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5.9.1. Effects of backsweep angle on performance 

In this section the effects of backsweep angle on performance for three blockage factors will be 

studied.  

The designs with the highest stageη has been found with DR = 1.67 for all three blockage factors (see 

Tables V-16 to V-21). 

Anyway the results from all three designs presented above have been arranged again in Tables V-21 to 

V-23. Then some calculation have been performed by keeping fixed  DR and Zr values from the 

designs presented above and varying 2Bβ   between -45 and 0 (see Table V-22, V-23 and V-24) . 

Tables V-22, V-23 and V-24 shows the calculation results in numbers whereas Figures 5-11 to 5-19 

shows graphical results for a quick view of the effect for three different blockage factors.   

 

DR original 

 [-] 

1.67 1.67 1.67 

DR [-] 1.6700 1.6701 1.6700 

r1h [m] 0.0021  0.0018  0.0016  

D1h [m] 0.0042 0.0036 0.0032 

(M1t) [-] 0.8274 0.8071 0.7938 

r1t [m] 0.0038 0.0036 0.0036 

D1t [m] 0.0076 0.0072 0.0072 

r1t/r1h [-] 1.8349 2.0213 2.1856 

1β  [ ° ] 
58.5934 56.8148 56.6403 

Af1[m
2
] 3.2206e-5 3.1601e-5 3.1898e-5 

U1t [m/s] 239.9363 229.3032 225.1620 

W1t [m/s] 281.1234 273.9893 269.5791 

Cm1=C1[m/s] 146.4955 

 

  149.9673 

 

148.2397 

Zr [-] 11 11 11 

B2β  [ ° ] -45 -42 -40 

stageη [-] 0.5743 0.5679 0.5639 

b2 [m] 7.6972e-4 7.6148e-4 7.5591e-4 

r2 [m] 0.0067 0.0067 0.0066 

U2 [m/s] 419.4505 

 

417.8814 416.9948 

W2 [m/s] 168.3373 164.0509 161.4244 

M2 [-] 0.7353 0.7462 0.7533 

 

Table V-22. Optimization results showing backsweep angle ( 2Bβ ) effects for N=600,000 rpm and B1=0.02 

 

In Table V-22 it can be noticed that for 2Bβ =-30, -20, -10 and 0 no solution has been obtained.  

Moreover for those blade angles mentioned above the optimization calculation has been terminated for 

some reason and no solution has been obtained.  

Anyway the optimization could be terminated (without solution), because of the following reasons: 

- Stall time limit exceeded. Stall time limit is the time needed to solve the optimization problem.      
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       The algorithm stops if there is no improvement in the objective function during an interval of time   

   in seconds equal to Stall time limit. 

- Stall generations (iterations) limit exceeded but constraints are not satisfied. 

  The algorithm stops if there is no improvement in the objective function for StallGenLimit    

  consecutive generations but the calculated constraints do not mach the input constraint.   

- Maximum number of generations (iterations) exceeded. 

Furthermore it is possible to change the stall time limit and the stall generation, which could result in 

the third reason given above. 

When there is no improvement in the objective function, this indicates that the Zr, 2Bβ , the constraints 

and design space were mismatched and will not lead to a solution. 
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Figure 5-11 Effect of βB2 on stageη  for N=600,000 rpm and B1=0.02 

 

Figure 5-11 illustrates the effect of blade angle on stage efficiency. Here it can be noticed that the 

stage efficiency decreases as the blade backsweep angle decreases.  

This means that decreasing blade backsweep angle have a negative effect on the stage efficiency. 

Furthermore this behaviour has been reported by another author [25]. 
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Figure 5-12 Effect of βB2 on M1t for N=600,000 rpm and B1=0.02 

 

Figure 5-12 illustrates the effect of blade angle on tip Mach number. Here it can be noticed that 

decreasing the blade backsweep angle has a positive effect on the tip Mach number. 
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Figure 5-13 stageη  as function of M1t for N=600,000 rpm and B1=0.02 

 

In this figure it can be noticed that the tip Mach number have a positive effect on stage efficiency as it 

increases, but the tip Mach number is limited.  

 

The same procedure as described above have been performed for the N=600,000 rpm and B1=0.03 

design. 
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Table V-22 shows the calculation results in numbers whereas Figures 5-14 5-15 and 5-16 shows 

graphical results for a quick view of the effect 

 

DR original 

 [-] 

1.67 1.67 1.67 1.67 

DR [-] 1.6700 1.6910 1.6891 1.6702 

r1h [m] 0.0024  0.0021  0.0020  0.0013  

D1h [m] 0.0048 0.0042 0.0040 0.0026 

(M1t) [-] 0.8609 

 

0.8358 0.8309 0.7710 

r1t [m] 0.0040 

 

0.0040 0.0038 0.0035 

D1t [m] 0.0080 0.0080 0.0076 0.0070 

r1t/r1h [-] 1.6612 1.8044 1.8333 2.7167 

1β  [ ° ] 
59.3758 60.7813 58.2242 56.6313 

Af1[m
2
] 3.2109e-5 3.3999e-5 3.2166e-5 3.2966e-5 

U1t [m/s] 251.5558 248.3247 239.8759 218.9046 

W1t [m/s] 292.3275 284.5272 282.1687 262.1147 

Cm1=C1[m/s] 148.9129   138.8905 

 

148.5891 144.1698     

Zr [-] 9 9 9 9 

B2β  [ ° ] -45 -40 -39 -30 

stageη [-] 0.5839 0.5742 0.5724 0.5567 

b2 [m] 7.8239e-4 7.6982e-4 7.6689e-4 7.4674e-4 

r2 [m] 0.0067 0.0067 0.0067 0.0066 

U2 [m/s] 421.9489 419.3875 419.0308   415.4299 

 W2 [m/s] 175.0465   168.2616 

 

167.0541 156.9382 

M2 [-] 0.7190     0.7354 

 

0.7387 0.7656 

 

Table V-23. Optimization results showing backsweep angle ( 2Bβ ) effects for N=600,000 rpm and B1=0.03 

 

The optimization calculation for 2Bβ =-20, -10 and 0 has been terminated for some reasons and no 

solution has been obtained.  

Anyway the following reasons for optimization termination have been found here: 

- stall time limit exceeded; 

- stall generations limit exceeded but constraints are not satisfied.  

These reasons have been explained above. 
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Figure 5-14 Effect of βB2 on stageη  for N=600,000 rpm and B1=0.03 

 

Figure 5-14 illustrates the same effect as Figure 5-11. Here it can be noticed that the stage efficiency 

decreases as the blade backsweep angle decreases.  

This means that, decreasing blade backsweep angle have a negative effect on the stage efficiency. 

Furthermore the same have been noticed by another author [25], which reported that every 10° of 

backsweep is an increase of one or two points of efficiency.  
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Figure 5-15 Effect of βB2 on M1t for N=600,000 rpm and B1=0.03 

 

 

Figure 5-15 illustrates the effect of blade angle on tip Mach number. Here it can be noticed that the 

overall effect is almost the same as the previous Figure 5-12. 

Furthermore decreasing the blade backsweep angle has a positive effect on the tip Mach number. 
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Figure 5-16  stageη  as function of M1t for N=600,000 rpm and B1=0.03 

 

In this figure it can be noticed that stage efficiency increases as Mach number increases.  

As stated before, tip Mach number have a positive effect on stage efficiency as it increases. 

 

The same procedure as described above have been performed for the N=600,000 rpm and B1=0.04 

design. 

Table V-24 shows the calculation results in numbers whereas Figures 5-17 5-18 and 5-19 shows 

graphical results for a quick view of the effect.   
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DR original 

 [-] 

1.67 1.67 

DR [-] 1.6861 1.6702 

r1h [m] 0.0022 0.0017 

D1h [m] 0.0044 0.0034 

(M1t) [-] 0.8509 0.8025 

r1t [m] 0.0039 

 

0.0040 

D1t [m] 0.0078 0.0080 

r1t/r1h [-] 1.7279 2.3804 

1β  [ ° ] 
58.8919    65.7588 

 Af1[m
2
] 3.2382e-5 

 

4.1125e-5 

U1t [m/s] 247.3574 250.5055 

W1t [m/s] 288.9036 274.7298 

Cm1=C1[m/s] 149.2635 112.7982 

Zr [-] 10 10 

B2β  [ ° ] -45 -40 

stageη [-] 0.5787 0.5686 

b2 [m] 7.7575e-4 7.6241e-4 

r2 [m]     0.0067 

 

0.0067 

U2 [m/s] 420.5193 418.0303 

W2 [m/s] 171.3450 164.4911 

M2 [-] 0.7278 

 

0.7450 

 

Table V-24. Optimization results showing backsweep angle ( 2Bβ ) effects for N=600,000 rpm and B1=0.04 

 

The optimization calculation for 2Bβ =-30, -20, -10 and 0 has been terminated for some reasons and no 

solution has been obtained.  

Anyway the following reasons for optimization termination have been found here: 

- stall time limit exceeded; 

- stall generations limit exceeded but constraints are not satisfied.  
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Figure 5-17 Effect of βB2 on stageη  for N=600,000 rpm and B1=0.04 

 

Figure 5-17 illustrates the same trend presented in Figure 5-11 and 5-14   
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 Figure 5-18 Effect of βB2 on M1t for N=600,000 rpm and B1=0.04 

 

Figure 5-18 illustrates the same trend presented in Figure 5-12 and 5-15   
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 Figure 5-19 stageη  as function of M1t for N=600,000 rpm and B1=0.04 

 

Figure 5-19 illustrates the same trend presented in Figure 5-13 and 5-16.   

 

5.9.2 Effects of blade number on performance 

In this section the effects of blade number on performance for both rotational speeds will be studied.  

The designs with the highest stageη has been found with DR = 1.67 for all three blockage factors (see 

Table V-16 to V-21). 

Anyway the results from all three designs presented above have been arranged again in Table V-25 to 

V-27. Then some calculations have been performed by holding the DR and 2Bβ  values from the 

designs presented above fixed and varying Zr between 5 and 30 (see Table V-25, V-26 and V-27). 

Table V-25, V26 and V27 shows the calculation results in numbers whereas Figures 5-20 to 5-28 

shows graphical results for a quick view of the effect. 
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DR original 

 [-] 

1.67 1.67 1.67 

DR [-] 1.6700 1.6701 1.6854 

r1h [m] 0.0020     0.0018  0.0012     

D1h [m] 0.0040 0.0036 0.0024 

(M1t) [-] 0.8213 0.8071 0.7725 

r1t [m] 0.0038 0.0036 0.0035 

D1t [m] 0.0076 0.0072 0.0070 

r1t/r1h [-] 1.8808 2.0213 2.5905 

1β  [ ° ] 
58.5324 56.8148 56.6682 

Af1[m
2
] 3.2349e-5 3.1601e-5 3.2604e-5 

U1t [m/s] 238.0604 229.3032 219.4223 

W1t [m/s] 279.1072 273.9893 262.6230 

Cm1=C1[m/s] 145.6986   149.9673 

 

144.3076 

Zr [-] 10 11 15 

B2β  [ ° ] -42 -42 -42 

stageη [-] 0.5725 0.5679 0.5549 

b2 [m] 7.6736e-4 7.6148e-4 7.4433e-4 

r2 [m] 0.0067 

 

0.0067 0.0066 

U2 [m/s]   419.0128 

 

417.8814 415.0573 

W2 [m/s] 167.1300 164.0509 155.8215 

M2 [-] 0.7384 0.7462 0.7687 

 

Table V-25. Optimization results showing blade number (Zr) effects for N=600,000 rpm and B1=0.02 

 

In Table V-25 it can be noticed that for Zr=5, 20, 25 and 30 no solution has been obtained 

The same reasons explained in section 5.9.1 could be applied here. 
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Figure 5-20 Effect of Zr on stageη  for N=600,000 rpm and B1 =0.02 
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Figure 5-20 illustrates the influence of blade number on the stage efficiency. 

Here it can be noticed that the stage efficiency decreases as the number of blades increases. This 

means that increasing number of blades has a negative effect on the stage efficiency. 

 

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

Zr [-]

M
1
t 
[-
]

 

Figure 5-21 Effect of Zr on M1t for N=600,000 rpm and B1=0.02 

 

Figure 5-21 illustrates the influence of blade number on the tip Mach number. 

Here it can be noticed that the tip Mach number decreases as the number of blades increases. This 

means that decreasing number of blades has a positive effect on the tip Mach number. 
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Figure 5-22 stageη  as function of M1t for N=600,000 rpm and B1=0.02 

 

In this figure it can be noticed that the tip Mach number have a positive effect on stage efficiency as it 

increases, but the tip Mach number is limited.  
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The same procedure as described above have been performed for N=600,000 rpm and B1 =0.03 

design. 

Table V-26 shows the calculation results in numbers whereas Figures 5-23 5-24 and 5-25 shows 

graphical results for a quick view of the effect.   

 

DR original 

 [-] 

1.67 1.67 

DR [-] 1.6891     1.6730 

 r1h [m] 0.0020  0.0015     

D1h [m] 0.0040 0.0030 

(M1t) [-] 0.8309 0.7970 

r1t [m] 0.0038 0.0040 

D1t [m] 0.0076 0.0080 

r1t/r1h [-] 1.8333 2.5692 

1β  [ ° ] 
58.2242 66.8975 

Af1[m
2
] 3.2166e-5   4.2614e-5 

 U1t [m/s] 239.8759 251.2186 

W1t [m/s] 282.1687 273.1218 

Cm1=C1[m/s] 148.5891 107.1668 

Zr [-] 9 10 

B2β  [ ° ] -39 -39 

stageη [-] 0.5724 0.5667 

b2 [m] 7.6689e-4 7.5964e-4 

r2 [m] 0.0067 0.0066 

U2 [m/s] 419.0308 417.6314 

W2 [m/s] 167.0541 163.2503 

M2 [-] 0.7387 0.7484 

 

Table V-26. Optimization results showing blade number (Zr) effects for N=600,000 rpm and B1=0.03 

 

The optimization calculation for Zr=5, 15, 20, 25 and 30 has been terminated for the same reasons 

described above.  
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Figure 5-23 Effect of Zr on stageη  for N=600,000 rpm and B1=0.03 
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Figure 5-24 Effect of Zr on M1t for N=600,000 rpm and B1=0.03 
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Figure 5-25 stageη  as function of M1t for N=600,000 rpm and B1=0.03 
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The same procedure as described above have been performed for N=600,000 rpm and B1=0.04 design. 

Table V-26 shows the calculation results in numbers whereas Figures 5-26 5-27 and 5-28 shows 

graphical results for a quick view of the effect.   

 

DR original 

 [-] 

1.67 1.67 1.67 

DR [-] 1.6861 1.6700 1.6700 

r1h [m] 0.0022 0.0015  0.0010 

D1h [m] 0.0044 0.0030 0.0020 

(M1t) [-] 0.8509     0.7867 

 

0.7581 

r1t [m] 0.0039 

 

0.0036 0.0034 

D1t [m] 0.0078 0.0072 0.0068 

r1t/r1h [-] 1.7279 2.3871 3.4159 

1β  [ ° ] 
58.8919 57.4951 56.7850 

Af1[m
2
] 3.2382e-5 

 

3.3391e-5 3.3872e-5 

U1t [m/s] 247.3574 225.5907 215.7638 

W1t [m/s] 288.9036 267.4950 257.8991 

Cm1=C1[m/s] 149.2635 143.7443 141.2724 

Zr [-] 10 15 20 

B2β  [ ° ] -45 -45 -45 

stageη [-] 0.5787 0.5619 0.5526 

b2 [m] 7.7575e-4 7.5333e-4   7.4101e-4 

 r2 [m]     0.0067 

 

0.0066 0.0066 

U2 [m/s] 420.5193 416.5648 414.6396 

W2 [m/s] 171.3450 160.1766   154.4303 

 M2 [-] 0.7278 

 

0.7566 0.7729 

 

Table V-27. Optimization results showing blade number (Zr) effects for N=600,000 rpm and B1=0.04 

 

The optimization calculation for Zr=5, 25 and 30 has been terminated for the same reasons described 

above.  
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Figure 5-26 Effect of Zr on stageη  for N=600,000 rpm and B1=0.04 
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Figure 5-27 Effect of Zr on M1t for N=600,000 rpm and B1=0.04 
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Figure 5-28 stageη  as function of M1t for N=600,000 rpm and B1=0.04 
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Figure 5-20 to 5-22 , 5-23 to 5-25 and 5-26 to 5-28 illustrates the same trends as follows: 

- increasing number of blades has a negative effect on the stage efficiency, 

- increasing number of blades has a positive effect on the tip Mach number, 

- increasing tip Mach number has a positive effect on the stage efficiency. 

 

Furthermore, increasing the number of blades causes less slip, which leads to increased velocities at 

the exit. This gives an increased work input and a higher pressure at the impeller exit. Besides, the 

static pressure increases less than the total pressure due to the increased flow velocities, but the overall 

effect is still positive on the total to static pressure ratio. At the same time the increasing blade number 

cause more blade blockage, a narrower passage and more surface area. The higher flow velocities and 

surface area result in higher drag losses. 

As a consequence of drag losses, the different increase in total pressure and static pressure, the 

efficiency decreases when the number of blades increases (Figure 5-18). 
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In this chapter the best results from the previous chapter will be evaluted in order to reach to the final 

optimization of the compressor. 

The chapter starts with the comparison of design data taken from literature and work of different 

authors. 

Then, results with influence of blade angle and number of blades for B1=0.02, 0.03 and 0.04 will be 

compared. 

Futhermore the design with the highest stageη  has been chosen and the blade number Zr and backsweep 

angle 2Bβ  has been used to calculate stageη  with another blockage factor  B1 .      

At the end the final design will be chosen. 

 

6.1.  Optimized design for N=600,000 rpm 

Table VI-1 shows optimization results for B1=0.02, 0.03 and 0.04 without taking the influence of blade 

angle and blade number into consideration. 

Furthermore, the optimization calculations could end here, but it has been decided to continue the 

search for the optimum by applying the influence of blade angle and blade number. 

Besides, this could lead to a better solution concerning stageη  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6 Final design  
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Table VI-1 shows the optimized designs without the influence of blade number Zr and exit blade angle 

βB2. 

B1 [-] 0.02 0.03 0.04 

DR [-] 1.6701 1.6891 1.6861 

r1h [m] 0.0018  0.0020  0.0022 

D1h [m] 0.0036 0.0040 0.0044 

(M1t)min [-] 0.8071 0.8309 0.8509 

r1t [m] 0.0036 0.0038 0.0039 

 
D1t [m] 0.0072 0.0076 0.0078 

r1t/r1h [-] 2.0213 1.8333 1.7279 

1β  [ ° ] 
56.8148 58.2242 58.8919 

Af1[m
2
] 3.1601e-5 3.2166e-5 3.2382e-5 

 
U1t [m/s] 229.3032 239.8759 247.3574 

W1t [m/s] 273.9893 282.1687 288.9036 

Cm1=C1[m/s] 149.9673 148.5891 149.2635 

Zr [-] 11 9 10 

B2β  [ ° ] -42 -39 -45 

stageη [-] 0.5679 0.5724 0.5787 

b2 [m] 7.6148e-4 7.6689e-4 7.7575e-4 

r2 [m] 0.0067 0.0067 0.0067 

 
U2 [m/s] 417.8814 419.0308 420.5193 

W2 [m/s] 164.0509 167.0541 171.3450 

M2 [-] 0.7462 

 

0.7387 0.7278 

 
 

Table VI-1. Optimization results for B1=0.02, 0.03, 0.04 without taking the influence of blade angle and blade 

number into consideration 

 

In section 5.2 it has been described that the best maximum efficiency is reached at a rotational speed 

of 600,000 rpm: as a consequence, this value has been used for the optimization calculations. 

Furthermore calculations from another author [33] resulted in a compressor high-speed radial  

compressor, which spins at 600,000 rpm, an impeller hub radius and an impeller tip radius of 2 mm 

and 3.93 mm resp. 

The final configuration selected shows a blade number 15 at a backsweep angle of 40. The pressure 

ratio is equal to 2 and the mass flow is 0.005 kg/s: they are chosen as design values. 

The Belgian PowerMEMS [53] has developed a micro gas turbine with compressor and turbine 

impellers of 20 mm and will produce a power output of about 1000 W. The system (Figure 6-1) 

basically consists of a compressor, regenerator, combustion chamber, turbine and electrical generator. 
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Figure 6-1 Gas turbine generator layout [52] 

 

Furthermore the rotational speed is set to 500,000 rpm and the compressor can achieve a pressure ratio 

of 3. The mass flow rate at the design point is 0.002 kg/s. 

By comparing the values found on previous works with the values presented in Table VI-1, the results 

are in the same order of magnitude. 

 

6.2. Optimized design for N=600,000 rpm for several exit 

          blade angles and number of blades 

In another work [33] , papers from different  authors has been used to compare results  for the exit and 

inlet geometry.  

Anyway in this report the work from the same authors [33] and an author conserning blade passages 

will be used.     

Now by using the results from these authors the results obtained by the 1D model can be validated.  

Furthermore another important consideration is the shape of the blade passages. The side elevation (r2 

/r1t) found in good pump practice are shown in Figure 6-2. 
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Figure 6-2 Pump side elevations [39] 

Although the impeller profiles shown in Figure 6-2 are pump profiles, they can also be used to 

determine the shape of a compressor impeller. 

Anyway it can be noticed that the range of r2  /r1t is between 1.1 and 3.5. 

By following what have been mentioned in section 6.1 about a better result for the stageη   , only tables 

V-21 to V-26 will be considered and the summarized results for B1 = 0.02, 0.03 and 0.04 will be 

presented in new tables. 

According to the range of r2 /r1t values presented in Figure 6-2, all designs presented in table V-22 to 

V-27 can be accepted.  
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Table VI-2 shows the summarized optimization calculation results, regarding the effects of blade 

number (Zr) and exit blade angle ( βB2) for N=600,000 rpm and B1=0.02. 

 

Effects 
B2β  Zr 

DR (original) 1.67 1.67 1.67 1.67 1.67 1.67 

DR [-] 1.6700 1.6701 1.6700 1.6700 1.6701 1.6854 

r1h [m] 0.0021  0.0018  0.0016  0.0020     0.0018  0.0012     

D1h [m] 0.0042 0.0036 0.0032 0.0040 0.0036 0.0024 

(M1t)min [-] 0.8274 0.8071 0.7938 0.8213 0.8071 0.7725 

r1t [m] 0.0038 0.0036 0.0036 0.0038 0.0036 0.0035 

D1t [m] 0.0076 0.0072 0.0072 0.0076 0.0072 0.0070 

r1h/r1t [-] 1.8349 2.0213 2.1856 1.8808 2.0213 2.5905 

1β  [ ° ] 
58.5934 56.8148 56.6403 58.5324 56.8148 56.6682 

Af1[m
2
] 3.2206e-5 3.1601e-5 3.1898e-5 3.2349e-5 3.1601e-5 3.2604e-5 

U1t [m/s] 239.9363 229.3032 225.1620 238.0604 229.3032 219.4223 

W1t [m/s] 281.1234 273.9893 269.5791 279.1072 273.9893 262.6230 

Cm1=C1[m/s] 146.4955 

 

  149.9673 

 

148.2397 145.6986   149.9673 

 

144.3076 

Zr [-] 11 11 11 10 11 15 

B2β  [ ° ] -45 -42 -40 -42 -42 -42 

stageη [-] 0.5743 0.5679 0.5639 0.5725 0.5679 0.5549 

b2 [m] 7.6972e-4 7.6148e-4 7.5591e-4 7.6736e-4 7.6148e-4 7.4433e-4 

r2 [m] 0.0067 0.0067 0.0066 0.0067 

 

0.0067 0.0066 

U2 [m/s] 419.4505 

 

417.8814 416.9948   419.0128 

 

417.8814 415.0573 

W2 [m/s] 168.3373 164.0509 161.4244 167.1300 164.0509 155.8215 

M2 [-] 0.7353 0.7462 0.7533 0.7384 0.7462 0.7687 

Φ [-] 0.0541 0.0543 0.0561 0.0542 0.0543 0.0564 

r2/r1t [-] 1.7631 1.8611 1.8333 1.7631 1.8611 1.8857 

 

Table VI-2.  Summarized optimization results for N=600,000 rpm for B1=0.02 
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Table VI-3 shows the summarized optimization calculation results, regarding the effects of blade 

number (Zr) and exit blade angle ( βB2) for N=600,000 rpm and B1=0.03. 

 

Effects 
B2β  

Zr 

DR (original) 1.67 1.67 1.67 1.67 1.67 1.67 

DR [-] 1.6700 1.6910 1.6891 1.6702 1.6891     1.6730 

 r1h [m] 0.0024  0.0021  0.0020  0.0013  0.0020  0.0015     

D1h [m] 0.0048 0.0042 0.0040 0.0026 0.0040 0.0030 

(M1t)min [-] 0.8609 

 

0.8358 0.8309 0.7710 0.8309 0.7970 

r1t [m] 0.0040 

 

0.0040 0.0038 0.0035 0.0038 0.0040 

D1t [m] 0.0080 0.0080 0.0076 0.0070 0.0076 0.0080 

r1h/r1t [-] 1.6612 1.8044 1.8333 2.7167 1.8333 2.5692 

1β  [ ° ] 
59.3758 60.7813 58.2242 56.6313 58.2242 66.8975 

Af1[m
2
] 3.2109e-5 3.3999e-5 3.2166e-5 3.2966e-5 3.2166e-5   4.2614e-5 

 
U1t [m/s] 251.5558 248.3247 239.8759 218.9046 239.8759 251.2186 

W1t [m/s] 292.3275 284.5272 282.1687 262.1147 282.1687 273.1218 

Cm1=C1[m/s] 148.9129   138.8905 

 

148.5891 144.1698     148.5891 107.1668 

Zr [-] 9 9 9 9 9 10 

B2β  [ ° ] -45 -40 -39 -30 -39 -39 

stageη [-] 0.5839 0.5742 0.5724 0.5567 0.5724 0.5667 

b2 [m] 7.8239e-4 7.6982e-4 7.6689e-4 7.4674e-4 7.6689e-4 7.5964e-4 

r2 [m] 0.0067 0.0067 0.0067 0.0066 0.0067 0.0066 

U2 [m/s] 421.9489 419.3875 419.0308   415.4299 

 

419.0308 417.6314 

W2 [m/s] 175.0465   168.2616 

 

167.0541 156.9382 167.0541 163.2503 

M2 [-] 0.7190     0.7354 

 

0.7387 0.7656 0.7387 0.7484 

Φ [-] 0.0538 0.0542 0.05424 0.0564 0.05424 0.0561 

r2/r1t [-] 1.675 1.675 1.7632 1.8857 1.7632 1.65 

 

Table VI-3.  Summarized optimization results for N=600,000 rpm for B1=0.03 
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Table VI-4 shows the summarized optimization calculation results, regarding the effects of blade 

number (Zr) and exit blade angle ( βB2) for N=600,000 rpm and B1=0.04. 

 

Effects 
B2β  

Zr 

DR (original) 1.67 1.67 1.67 1.67 1.67 

DR [-] 1.6861 1.6702 1.6861 1.6700 1.6700 

r1h [m] 0.0022 0.0017 0.0022 0.0015  0.0010 

D1h [m] 0.0044 0.0034 0.0044 0.0030 0.0020 

(M1t)min [-] 0.8509 0.8025 0.8509     0.7867 

 

0.7581 

r1t [m] 0.0039 

 

0.0040 0.0039 

 

0.0036 0.0034 

D1t [m] 0.0078 0.0080 0.0078 0.0072 0.0068 

r1h/r1t [-] 1.7279 2.3804 1.7279 2.3871 3.4159 

1β  [ ° ] 
58.8919    65.7588 

 

58.8919 57.4951 56.7850 

Af1[m
2
] 3.2382e-5 

 

4.1125e-5 3.2382e-5 

 

3.3391e-5 3.3872e-5 

U1t [m/s] 247.3574 250.5055 247.3574 225.5907 215.7638 

W1t [m/s] 288.9036 274.7298 288.9036 267.4950 257.8991 

Cm1=C1[m/s] 149.2635 112.7982 149.2635 143.7443 141.2724 

Zr [-] 10 10 10 15 20 

B2β  [ ° ] -45 -40 -45 -45 -45 

stageη [-] 0.5787 0.5686 0.5787 0.5619 0.5526 

b2 [m] 7.7575e-4 7.6241e-4 7.7575e-4 7.5333e-4   7.4101e-4 

 
r2 [m]     0.0067 

 

0.0067     0.0067 

 

0.0066 0.0066 

U2 [m/s] 420.5193 418.0303 420.5193 416.5648 414.6396 

W2 [m/s] 171.3450 164.4911 171.3450 160.1766   154.4303 

 
M2 [-] 0.7278 

 

0.7450 0.7278 

 

0.7566 0.7729 

Φ [-] 0.0541 0.0543 0.0541 0.0562 0.0564 

r2/r1t [-] 1.7179 1.675 1.7179 1.8333 1.9411 

 

Table VI-4.  Summarized optimization results for N=600,000 rpm for B1=0.04 
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6.3. Final overall design  

For the final overall design, results for B1 = 0.02, 0.03 and 0.04 with the highest stageη  has been 

summarized in one table and compared to each other for the final design. 

 

Table VI-5 shows the summarized optimization calculation results for the highest stageη  concerning B1 

= 0.02, 0.03 and 0.04. 

 

DR (original) 1.67 1.67 1.67 

DR [-] 1.6700 1.6700 1.6861 

r1h [m] 0.0021  0.0024  0.0022 

D1h [m] 0.0042 0.0048 0.0044 

(M1t)min [-] 0.8274 0.8609 

 

0.8509 

r1t [m] 0.0038 0.0040 

 

0.0039 

 
D1t [m] 0.0076 0.0080 0.0078 

r1h/r1t [-] 1.8349 1.6612 1.7279 

1β  [ ° ] 
58.5934 59.3758 58.8919 

Af1[m
2
] 3.2206e-5 3.2109e-5 3.2382e-5 

 
U1t [m/s] 239.9363 251.5558 247.3574 

W1t [m/s] 281.1234 292.3275 288.9036 

Cm1=C1[m/s] 146.4955 

 

148.9129 149.2635 

Zr [-] 11 9 10 

B2β  [ ° ] -45 -45 -45 

stageη [-] 0.5743 0.5839 0.5787 

b2 [m] 7.6972e-4 7.8239e-4 7.7575e-4 

r2 [m] 0.0067 0.0067     0.0067 

 
U2 [m/s] 419.4505 

 

421.9489 420.5193 

W2 [m/s] 168.3373 175.0465 171.3450 

M2 [-] 0.7353 0.7190 0.7278 

 
Φ [-] 0.0541 0.0538 0.0540 

r2/r1t [-] 1.7631 1.675 1.7179 

 

Table VI-5.  Summarized optimization results for  B1 = 0.02, 0.03 and 0.04 showing highest stage efficiencies 

( stageη ) 

 

In Table VI-5 it can be noticed that the highest stageη can be found for  B1=0.03. 

Moreover it can be noticed that the B1=0.03 design have the smallest blade number compared to the 

other designs.  
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Furthermore in section 5.9.2 it can be noticed that decreasing blade number have a positive effect on 

stageη  and is the reason why B1=0.03 design have the highest stageη . 

Anyway the same blade number Zr and backsweep angle 2Bβ  of the B1=0.03 design will be used for 

the other blockage factors to see if there is some improvement of the stageη     

 

Table VI-6 shows the summarized optimization calculation results for different B1, same blade number 

Zr and backsweep angle 2Bβ . 

 

 

B1 0.02  

 

0.03 0.04 

DR original 

 [-] 

1.67 1.67 1.67 

DR [-] 1.6700 1.6700 1.6700 

r1h [m] 0.0024 0.0024  0.0024 

D1h [m] 0.0048 0.0048 0.0048 

(M1t) [-] 0.8605 0.8609 

 

0.8611 

r1t [m] 0.0040 0.0040 

 

0.0040 

D1t [m] 0.0080 0.0080 0.0080 

r1h/r1t[-] 0.6 0.6 0.6 

1β  [ ° ] 
59.7563 59.3758 59.1719 

Af1[m
2
] 3.2074e-005 3.2109e-005   3.2287e-005 

 U1t [m/s] 252.5396 251.5558 251.0245 

W1t [m/s] 292.3281 292.3275 292.3281 

Cm1=C1[m/s] 147.2394 148.9129 149.8078 

Zr [-] 9 9 9 

B2β  [ ° ] -45 -45 -45 

stageη [-] 0.5839 0.5839 0.5839 

b2 [m] 7.8239e-004 7.8239e-004 7.8239e-004 

r2 [m] 0.0067 0.0067 0.0067 

U2 [m/s] 421.9489 421.9489 421.9489 

W2 [m/s] 175.0465 175.0465 175.0465 

M2 [-] 0.7190 0.7190 0.7190 

Φ [-] 0.0538 0.0538 0.0538 

r2/r1t [-] 1.675 1.675 1.675 

 

Table VI-6 Final optimization results for N=600,000 rpm 

 

In Table VI-6 it can be noticed that, the calculated stageη  is the same for all designs presented above. 

Besides there is almost no effect of the blockage factors presented above on stageη . Moreover an 

increasing flow area Af1, meridional inlet velocity Cm1, tip radius (negligible) r1t, and tip Mach number 



   96

 

can be noticed as the blockage factor B1 increases. The Af1, Cm1 and B1 are related through the 

continuity equation (see Equation 4.13). If the B1 increases, the Af1 and Cm1 must increase, in order to 

keep the mass flow rate constant. 

Although there is almost no effect of the blockage factors on stageη , increasing blockage factor B1 

could exceed the tip Mach number M1t limit  of 0.9. 

Furthermore, also the hub to tip radius ratio should be considered in the design of the impeller. The 

hub to tip ratio is the ratio of the hub radius to the tip radius. 

It has been mentioned [41] that the range of hub to tip radius ratio between 0.25 and 0.45 for 

multistage compressors. The low and high values of hub to tip radius ratio corresponds to high and 

low flow coefficients respectively. The limits of flow coefficient are between 0.01 and 0.15 according 

to the same author [41]. 

The flow coefficient Φ is a dimensionless parameter, which describes the volume flow through the 

stage. It has been defined [42] as follows: 

 

2

2 2

V
Φ=

U D

ɺ

 

Although the values of hub to tip radius ratio mentioned above corresponds to multistage compressors, 

they could be used as reference for one stage compressors. The hub to tip radius ratio of all the designs 

are a little bit out of range but in the same order of magnitude. 

Anyway all designs in Table VI-6 could be the final design, but in the aerodynamic point of view, the 

blockage factor should be kept as small as possible. For this reason the final design with an impeller 

hub radius equal to 2.4 mm and blockage factor of 0.02 is chosen. 
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In this chapter conclusions (see section 7.1) of the work and some recommendations (see section 7.2) 

about further developments will be given. 

 

7.1. Conclusions 

Several optimization methods have been studied in this report and the most suitable for this 

assignment has been chosen. It has been concluded that GA’s will be used to perform the optimization 

calculations. 

Subsequently, the basic thermodynamics and flow phenomena involved in the design of radial 

compressors were discussed. 

Furthermore, the impeller inlet and exit design parameters were investigated, and a one-dimensional 

model for a preliminary design of the geometry of radial compressors was explained. 

The model was applied to design a very small radial compressor.  

Moreover, the effects of the impeller hub and tip radii on the tip relative Mach number were studied. 

The influence of the blade number and backsweep angle on the performance of the impeller was 

analyzed. 

The final design of the radial compressor has rotational speed of 600,000 rpm and consists of one 

stage. The impeller inlet and outlet design has been carried out through an optimization technique 

named genetic algorithms. 

The purpose of the optimization was to optimize a compressor design to obtain a tip Mach number 

limited to 0.9 and maximum stage efficiency at once. 

By analyzing the optimization results, it can be concluded that the influence of blockage factors used 

in this report are negligible, because of the influence of blade number Zr and exit blade angle 2Bβ . 

Although larger blockage factors increases flow area Af1 and could exceed the tip Mach number M1t. 

The optimization of the compressor design led to the choice of impeller hub radius r1h =2.4 mm. The 

impeller tip radius is r1t =4.0 mm. The relative flow angle is 1β  =-59.76°, the relative tip mach number 

is M1t=0.86 and the meridional velocity is Cm1 =147.24 m/s. 

The final configuration selected shows a blade number Zr=9 at a backsweep angle 2Bβ =−45 °. The 

correlated impeller exit radius r2 and blade height b2 are equal to 6.7 mm and 0.78 mm respectively, 

while the stage efficiency stageη = 0.5839.  

The absolute and relative flow angles at the impeller exit are 2β  = -62.93° and  2α = 73.33°. The 

Mach number at the impeller exit is M2 =0.7190 and the pressure ratio is equal to 2, which is the 

chosen design value. 

All the geometric results of the radial compressor are summarized in Table VI-6. 

Chapter 7 Conclusions and recommendations for future 
work 

 



   98

 

7.2.  Recommendations 

I. GA’s has been chosen to optimize the design of the compressor. They perform random 

searches and are very suitable for this optimization problem. 

Maybe there is a possibility to use GA’s, which are a stochastic method, in combination with a 

deterministic method. 

The recommendation is to use the GA’s first and then a deterministic method and see if the 

optimized results can be improved   

 

II. After the 1D model is fully understood and optimized a 3D model must be developed and 

optimized to continue with the design. From the 3D model the full blading geometry must be 

specified and evaluated. It is essential to define all the blading (inlet guide vane, rotor, and 

return channel) in order to obtain the best performance for the compressor. Various geometric 

techniques are available to lay out the chosen blade shapes. 

After trial blade shapes are completed, the next step is the three-dimensional flow analysis of 

the flow through the blading. 

Commercial CFD codes are available and are an essential part of the design process. At the 

same time or sequentially, three-dimensional stress analysis can be conducted. 

 

III. A combination of GA’s and CFD, leading to the possibility to optimize a design and see the 

behavior of the design at once can be performed as well. 

 

IV. Perform optimization calculation with the same design in this work with a diffuser design and 

analyze if there is some improvement concerning the performance.    
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Introduction 

 

To comply with a continuous increasing request of energy from our society, an interesting way seems 

to be the development of high efficiency systems which can be installed in each singular house and 

can produce electrical energy and heat using natural gas. A very innovative microturbine concept has 

been analyzed and patented by MTT b.v. for this purpose. 

For that microturbine, a radial compressor without diffuser has been designed based on a 1D model 

(“Preliminary Design of a Radial Compressor of an Innovative Microturbine”). This thermodynamic 

model predicted the impeller inlet and exit design in two successive steps, each of which in turn 

included different optimization steps, carried Out several times one after the other. Compressor 

dimensions and flow properties (pressure, temperature, velocities...) have been obtained based on the 

optimized results of the quantities involved. 

It is now of interest the investigation of optimization methods and their application to the design 

process of that particular radial compressor, in order to summarize the previous design in as few steps 

as possible, to speed the procedure up and to make It a continuous method. Particularly, the 

optimization activity is focused on the minimum tip relative Mach number for the inlet and on the 

stage efficiency – to reach the desired pressure ratio - for the outlet. 

 

Objective 

 

- Review of the optimization techniques 

- Understanding of the proper formulation of an optimization task 

- Choosing of the most suitable technique taking into account different aspects (complexity of  

  the implementation, CPU cost.) 

- Analyze the sensitivity of different engine configuration to different figures of merit. 

- Study of the design constrains for a compressor on this small scale 

 

Activities 

 

The following steps are foreseen: 

1.  Survey of the literature available for the optimization techniques  

2. Survey of the possible applications to the design of compressors 

3. Development/use of a Matlab code to analyze and optimize a 1 D design process  

4. Application of the selected optimization techniques 

 

Report 

 

Appendix A. Assignment  
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The following software has been used for the outcome of this graduation thesis: 

Adobe Acrobat Reader 8.0  

Matlab R2007a/b 

MathType 5.2c 

Microsoft PowerPoint 

Microsoft Word 

Microsoft Excel 

Paint

Appendix B. Software Used                  
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In this appendix some examples of optimization methods will be given. 

The appendix starts with the following derivative-free deterministic methods: 

- Hooke and Jeeves method; 

- Simplex method; 

- Two-Phase Method;  

- Dual Approach. 

Then the appendix presents an example of the following gradient-based deterministic methods: 

- Lagrange’s Method; 

- Quadratic programming; 

- Sequential Quadratic Programming. 

The appendix ends with an example of the following stochastic methods: 

- Genetic algorithm; 

- Simulated annealing. 

 

C1. Hooke and Jeeves method   

 

The objective of this problem is to find the minimum of function ( ) 2 2

1 2 1 2 1 2 1 2, 3= + −f x x x x x x x x , 

starting at the point x0=(2, 2) with a stopping criteria of є = 
1

8
 and a step size of h0 = (0.5, 0.5).  

 

SOLUTION 

Success is denoted by S and failure by F. 

 

Step 1  

Using the initial base point x0=(2, 2) , first a local exploration is conducted in x1, keeping x2 constant 

by evaluating (2,2)f , 1 2( , )+f x h x and 1 2( , )−f x h x : 

(2,2) 4.0=f , 

(2.5, 2) 7.5=f , (F) 

    (1.5, 2) 1.5=f . (S) 

Since, the result of (2.5,2)f  is higher than (2,2)f  and the result of (1.5,2)f is lower than (2,2)f , 

the temporary base point 
'

0 (1.5,2)x = . Next a local exploration can be conducted in x2 by evaluating 

1 2( , )+f x x h  and 1 2( , )−f x x h : 

 

 

Appendix C. Optimization Method Examples                  
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(1.5, 2.5) 3.75=f ,  (F) 

    (1.5,1.5) 0.00=f . (S) 

Since the result of (1.5,1.5)f  is lower than (1.5,2)f , the new base point x1 = (1.5, 1.5). 

 

Step 2   

Now a pattern search can be conducted. The pattern point is determined by xp,1= 2x1- x0=(1,1). 

Evaluating f (xp,1), that is (1.5,2)f  gives -1. Since, the result of f (xp,1) is lower than f ( x1) a 

pattern move can be conducted to xp,1. For the next cycle of iteration x2= xp,1=(1,1). 

Furthermore a local exploration can be conducted in x1 starting at a  base point x2: 

(1,1) 1.0= −f ,  

(1.5,1) 0.7499= −f , (F) 

    (0.5,1) 0.75= −f . (F) 

Both (1.5,1)f  and (0.5,1)f  are greater than (1,1)f ), therefore there is no improvement in the 

function. Return to the base point x2 and explore in x2: 

 

(1,1.5) 0.7499= −f , (F) 

(1,0.5) 0.75= −f . (F) 

      

Again there is no improvement on the function, and the step size is greater than the desired accuracy. 

The step size must be reduced and the exploration repeated from the base point x2 

The new step size is given as follows: 

    h2= 0.5  

h0= (0.25, 0.25). 

Conducting local exploration in x1 gives: 

    (1,1) 1.0= −f , 

(1.25,1) 0.9375= −f ,  (F) 

    (0.75,1) 0.9375= −f , (F) 

and local exploration in x2 results in: 

    (1,1.25) 0.9375= −f , (F) 

    (1,0.75) 0.9375= −f . (F) 

Exploration results in failure in both x1 and x2, so the step size must be reduced by half again and the 

local exploration repeated. Exploring in x1 with a step size of 0.125 results in: 

 

 

(1,1) 1.0= −f , 
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(1.125,1) 0.98447= −f , (F) 

    (0.875,1) 0.9844= −f .  (F) 

Exploring in x2 gives the following result: 

(1,1.125) 0.9844= −f , (F) 

    (1,0.875) 0.9844= −f . (F) 

Once more failure results, because no improvement is realized in the function, and the step size is 

equal to the desired tolerance. 

The search terminates, giving the following results: 

 

1 1.0=x , 

2 1.0=x , 

min 1.0= −f . 

 

C2. Simplex method 

 

The objective is to maximize the following equation: 

1 2 35 4 3Z x x x= + + , 

which is subjected to the following constraints:  

532 321 ≤++ xxx , 

1124 321 ≤++ xxx , 

8243 321 ≤++ xxx , 

0,, 321 ≥xxx . 

This problem has a feasible origin. Slack variables 4 5,x x  and 6x are introduced to give the following 

first tableau: 

( )sxxxxx
2

5
|0325 13214 ≤≥−−−= , 

4

11
|02411 13215 ≤≥−−−= xxxxx , 

3

8
|02438 13216 ≤≥−−−= xxxxx , 

321 345 xxxZ ++= . 

Here 5>0 and 5>4>3. So 1x is chosen as incoming variable. To find the outgoing variable the 

constraints on all entries (see right side) has been calculated. The strictest (s) is given by the first entry, 

and thus the outgoing variable is 4x .  

The first entry in the next tableau is: 
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4321
2

1

2

1

2

3

2

5
xxxx −−−= . 

Replacing this expression for 1x in al other entries and simplifying to get the standard format leads to 

the second tableau: 

5|0
2

1

2

1

2

3

2

5
34321 ≤≥−−−= xxxxx , 

0251 425 ≥++= xxx | no bound because 3x  is not present in this equation, 

)(1|0
2

3

2

1

2

1

2

1
34326 sxxxxx ≤≥+−+= , 

432
2

5

3

1

2

7

5

25
xxxZ −+−= . 

 

This completes the first iteration. For the next step it is clear that 3x is the incoming variable and 

consequently the outgoing variable is 6x . The first entry for the next tableau is thus 

3 2 4 61 3 2x x x x= + + −   (third entry in previous tableau). 

Replacing this expression for 3x in all other entries and simplifying to get the standard format leads to 

the third tableau: 

 

0231 6423 ≥−++= xxxx , 

0222 6421 ≥+−−= xxxx , 

0251 425 ≥++= xxx , 

642313 xxxZ −−−= . 

 

In the last entry, all the coefficients of the nonbasic variables are negative. 

Consequently it is not possible to obtain a further increase in Z by increasing one of the nonbasic 

variables. The optimal value of Z in thus 13 with 1,0,2 *

3

*

2

*

1 === xxx . 
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C3.  Two-Phase Method 

 

The objective is to maximize the following equation: 

1 23 4 3x x+ − , 

which is subjected to the following constraints:   

63 21 ≥+ xx ,     (1) 

      33 21 =+− xx ,    (2) 

      63 21 ≤− xx ,     (3) 

0≥x  .  

 

The problem is first transformed into the standard form by introducing a surplus variable (a variable 

necessary to convert an inequality ""≥  into an equality equation) in Equation (1), artificial variables in 

Equations (1) and (2) and a slack variable in equation (3). The problem has been transformed to 

maximize the following equation: 

1 23 4 3x x+ − , 

which is subjected to the following constraints:  

4321 3 xxxx +−+        6= ,   (4) 

     21 3xx +−      5x+        3= ,   (5) 

     213 xx −            66 =+ x ,   (6) 

0≥x . 

 

Phase I Solution 

The problem is now to minimize the sum of 4x and 5x , which are the artificial variables, that is 

maximize )( 54 xx +− . From Equations (4) and (5) the objective function can be expressed in terms of 

other variables to maximize the following equation: 

96 32 −−= xxP , 

which is subjected  to equations (4) through (6).  

 

The initial tableau and subsequent iterations are shown from Tables C.III-1 to C.III-3. Phase 1 is now 

complete with the following results: 

5.121 == xx , 

36 =x , 

0543 === xxx . 
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The optimum for phase 1 was achieved, because the objective function is zero. Also 4x  and 5x have 

both been driven to zero. 

 

X1 X2 X3 X4 X5 X6 Solution 

1 3 -1 1 0 0 6 

-1 3 0 0 1 0 3 

3 -1 0 0 0 1 6 

0 -6 1 0 0 0 -9 

 

Table C.III-1.  Initial tableau (phase 1) 

 

Table C.III-2.  Iteration 1 (phase 1) 

 

 

Table C.III-3.  Iteration 2 (phase 1) 

 

 

Phase II Solution 

Phase II begins with dropping 4x and 5x . The objective function of the original problem is now 

included in the objective function row of simplex tableau. The iterations for phase II are given in 

Tables 4 and 5. The final tableau demonstrates that an optimum has been achieved because there are 

X1 X2 X3 X4 X5 X6 Solution 

2 0 -1 1 -1 0 3 

3
1−  1 0 0 

3
1  0 1 

3
8  0 0 0 

3
1  1 7 

-2 0 1 0 2 0 -3 

X1 X2 X3 X4 X5 X6 Solution 

1 0 
2

1−  
2

1  
2

1−  0 1.5 

0 1 
6

1−  
6

1  
6

1  0 1.5 

0 0 
3

4  
3

4−  
3

5  1 3 

0 0 0 1 1 0 0 
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no negative elements in the objective function row. The optimum is then 
8

21
1 =x  ,  

8

15
2 =x  and the 

objective function at the optimum is 
8

99
. 

 

X1 X2 X3 X6 Solution 

1 0 
2

1−  0 1 

0 1 
6

1−  0 1 

0 0 
3

4  1 3 

-3 -4 0 0 -3 

 

Table C.III-4.  Iteration 1 (phase 2) 

 

X1 X2 X3 X6 Solution 

1 0 0 
8

3  
8

21  

0 1 0 
8

1  
8

15  

0 0 1 
4

3  
4

9  

0 0 0 
8

11  
8

99  

 

Table C.III-5.  Final Iteration (phase 2) 
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C4. Dual Approach 

 

The objective is to minimize the following equation: 

321 43 xxxF +−= , 

which is subjected to the following constraints:      

722 321 ≥−+ xxx , 

432 321 ≥+− xxx , 

64 321 −≤+−− xxx . 

Solution 

The last constraint is converted to standard form by multiplying by -1 and the dual problem transforms 

in the following equation: 

321 647 zzzP ++= , 

The objective is to minimize the above equation which is subjected to the following transformed 

constraints:      

32 321 ≤++ zzz , 

142 321 −≤++ zzz , 

43 321 ≤++− zzz . 

 After the transformation above the dual problem can be solved using the simplex algorithm.  

 

C5. Lagrange’s Method 

 

The objective is to minimize the following equation:       

2 2

1 2( ) ( 2) ( 2)f x x x= − + − , 

which is subjected to the following constraint:      

1 2( ) 6h x x x= + = . 

The Lagragian is formulated as follows: 

2 2

1 2 1 2( , ) ( 2) ( 2) ( 6)L x x x x xλ λ= − + − + + − , 

then Karush-Kuhn-Tucker conditions for the constraint minimum are as follows: 

1

1

2( -2)+ =0 
L

x
x

λ
∂

=
∂

, 

2

2

2( -2)+ =0 
L

x
x

λ
∂

=
∂

, 

1 2+ -6=0 
L

x x
λ
∂

=
∂

. 

 

Solving these equations gives a candidate point: 
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1 2

* * *3, 3, 2x x λ= = = −  with 
*( ) 2f x =  

This solution is also depicted in Figure C.IV-1. 

 

 
Figure C.V-1 Graphical solution to the example 

 

C6. Quadratic programming 

 

The objective is to minimize the following equation: 
2 2 2

1 2 3( )f x x x x= + +  , 

which is subjected to the following constraints: 

1 1 2 3( ) 0h x x x x= + + = , 

2 1 2 3( ) 2 3 1 0h x x x x= + + − = . 

 

For the equality constraint problem the solution is obtained via the lagrangian method with: 
2 2 2

1 2 3 1 1 2 3 2 1 2 3( , ) ( ) ( 2 3 1).L x x x x x x x x x xλ λ λ= + + + + + + + + −  

 

The necessary conditions for a minimum give: 

1 1 2

1

2
L

x
x

λ λ
∂

= + +
∂

, 

1 1 2

1
( )

2
x λ λ= − + , 

2 1 2

2

2 2
L

x
x

λ λ
∂

= + +
∂

, 

2 1 2

1
( 2 )

2
x λ λ= − + , 

3 1 2

3

2 3
L

x
x

λ λ
∂

= + +
∂

, 

3 1 2

1
( 3 )

2
x λ λ= − + . 

 

3,3 

X2 

X2 

x1+x2=6 
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Substituting the results obtained above in the equality constraints gives the following equation: 

1 2 1 2 1 22 3
0

2 2 2

λ λ λ λ λ λ+ + + − + + = 
 

, 

resulting in 1 22 0λ λ+ =  and 1 2 1 2 1 2

1 3
( ) ( 2 ) ( 3 ) 1

2 2
λ λ λ λ λ λ+ + + + + = −  resulting in 173 21 =+ λλ . 

Combining the two solutions and solving for the 'sλ gives:  

2 1λ = −  and 1 2λ = . 

The candidate solution is therefore:  

*

1

1

2
x = − , 

*

2 0x = , 

*

3

1

2
x = . 

 

 

For further analysis: 

1
( ) ( )

2

Tf x x f x f x xH x+ ∆ = +∇ ∆ + ∆ ∆ ; 

where 
1 2 3(2 , 2 , 2 )Tf x x x∇ = and thus 

*( ) [ 1,0,1]Tf x∇ = −  and (Hessian matrix) 

2 0 0

0 2 0

0 0 2

H

 
 =  
  

 is positive definite. 

For changes consistent with the constraints: 

 

2

1 1 1

1
0

2

T Th h x x h x= ∆ = ∇ ∆ + ∆ ∇ ∆ , with 1

1

1

1

h

 
 ∇ =  
  

; 

2

2 2 2

1
0

2

T Th h x x h x= ∆ = ∇ ∆ + ∆ ∇ ∆ , with 1

1

2

3

h

 
 ∇ =  
  

. 

It follows that 1 2 3 0x x x∆ + ∆ + ∆ =  and  1 2 32 3 0x x x∆ + ∆ + ∆ =  giving  

1 3 0x x−∆ + ∆ =  and thus 

 

*

1 3

1 1
( ) 0

2 2

T Tf x x x x H x x H x∆ = −∆ + ∆ + ∆ ∆ = ∆ ∆ ≥  

The candidate point 
*x  above is therefore a constraint minimum. 

 

 

C7.Sequential Quadratic Programming 
 

The objective is to minimize the following equation: 

5.24 21

2

1 −−+ xxx , 

which is subjected to the following constraints:    

0125.1 1

2

1

2

2 ≥−+− xxx , 

025.42 1

22

2 1
=−−+ xxx . 
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The first constraint may be written as the following equation: 

         0125.1 1

2

1

2

2 ≤+−+− xxx . 

With a starting point of (0.5, 1) , the solutions are as follows:  

18[ 1 +=∇ xf T
    5[]1 =−   ]1− , 

23[ 1 −=∇ xg T
    5.0[]2 2 −=− x   ]2− , 

24[ 1 −=∇ xhT
    0[]2 2 =x   ]2 , 

g(0.5, 1)=
8

5
− , 

h(0.5, 1)= 
4

3
3− . 

The quadratic subproblem is, the minimization of the following equation: 

)(5.05 2

2

2

121 dddd ++− , 

which is subjected to the following constraints:    

4

3
32 2 ≤d ,      

 
8

5
25.0 21 ≤−− dd . 

      

Iteration d x 

1 (0, 0.933) (0.5, 1.933) 

2 (0, 0.262) (0.5, 2.195) 

 
Table C.VII-1. Iteration results 

 

Solving the quadratic problem by any method d= (0, 0.933), f(d)=2.127 is obtained. The new value of 

x=(0.5, 1.933). the quadratic subproblem is formed using this new value of x. The minimum is at (0.5, 

2.195) for a minimum function value of -3.195. Result of the iteration is given in the table above.
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C8. Genetic algorithm 

 

The whole process is illustrated by an example [16]. A simulation of a genetic algorithm for function 

optimization is runned. To begin with the simulation it is assumed that the population size_ pop-size = 

20 and the probabilities of genetic operators are pc = 0.25 and pm=0.01 

The objective is to maximize the following equation:     

( ) ( ) )20sin(4sin5.21, 221121 xxxxxxf ππ ++= , 

where 1.123 1 ≤≤− x  and 8.51.4 2 ≤≤ x . 

The graph of function f is given in figure C.VII-1. 

 

 
Figure C.VIII-1. Graph of function ( ) ( ) )20sin(4sin5.21, 221121 xxxxxxf ππ ++= [40] 

 

Further on a precision of four decimal places for each variable is assumed. The domain of variable x1 

has length 15.1; the precision requirement implies that the range [-3.0, 12.1] should be divided into at 

least 15.1 * 10000 equal size ranges. This means that 18 bits are required as the first part of the 

chromosome: 

2
17

 < 151000 ≤2
18

. 

The domain of variable x2 has length 1.7; the precision requirement implies that the range (4.1, 5.8) 

should be divided into at least 1.7 * 10000 equal size ranges. This means that 15 bits are required as 

the second part of the chromosome: 

  2
14

 < 17000 ≤2
15

. 

The total length of a chromosome (solution vector) is then m = 18 + 15 = 33 bits, which first 18 bits 

code x1 and remaining 15 bits (19-33) code x2. 

For example the following chromosome is considered for this problem: 
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(01000100101101000 111110010100010). 

The first 18 bits: 

  010001001011010000, 

represent x1 = 0.3−  + decimal(0100010010110100002) * =
−
−−
12

)0.3(1.12
18

 

052426.1052426.40.3
262143

1.15
*703520.3 =+−=+− . 

The next 15 bits: 

111110010100010, 

represent x2 = 1.4  + decimal(1111100101000102) * =
−
−

12

1.48.5
15

  

  755330.5655330.11.4
32767

7.1
*319061.4 =+=+ . 

So the chromosome: 

(010001001011010000111110010100010), 

corresponds to (x1, x2) = (1.052426, 5.755330). The fitness value for this chromosome is f(1.052426, 

5.755330) = 20.252640. 

To optimize the function f using a genetic algorithm, a population of 20 (popsize_size) chromosomes 

has been created. All 33 bits in all chromosomes are initialized randomly. 

Here it has been assumed that after the initialization process the following population is obtained: 

1v  = (100110100000001111111010011011111); 

2v  = (111000100100110111001010100011010); 

3v  = (000010000011001000001010111011101); 

4v  = (100011000101101001111000001110010); 

5v  = (000111011001010011010111111000101); 

6v  = (000101000010010101001010111111011); 

7v  = (001000100000110101111011011111011); 

8v  = (100001100001110100010110101100111); 

9v  = (010000000101100010110000001111100); 

10v  = (000001111000110000011010000111011); 

11v  = (011001111110110101100001101111000); 

12v  = (110100010111101101000101010000000); 

13v  = (111011111010001000110000001000110); 

14v  = (010010011000001010100111100101001); 
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15v  = (111011101101110000100011111011110); 

16v  = (110011110000011111100001101001011); 

17v  = (011010111111001111010001101111101); 

18v  = (011101000000001110100111110101101); 

19v  = (000101010011111111110000110001100); 

20v  = (101110010110011110011000101111110). 

 

During the evaluation phase, each chromosome has been decoded and the fitness function values 

calculated from (x1, x2) values just decoded. 

 

The results are as follows: 

eval ( 1v ) = f (6.084492, 5.652242) = 26.019600 ; 

eval ( 2v ) = f (10.348434, 4.380264) = 7.580015 ; 

eval ( 3v ) = f (-2.516603, 4.390381) = 19.526329 ; 

eval ( 4v )  = f (5.278638, 5.593460) = 17.406725 ; 

eval ( 5v ) = f (-1.255173, 4.734458) = 25.341160 ; 

eval ( 6v ) = f (-1.811725, 4.391937) = 18.100417 ; 

eval ( 7v ) = f (-0.991471, 5.680258) = 16.020812 ; 

eval ( 8v ) = f (4.910618, 4.703018) = 17.959701 ; 

eval ( 9v ) = f (0.795406, 5.381472) = 16.127799 ; 

eval ( 10v ) = f (-2.554851, 4.793707) = 21.278435 ; 

eval ( 11v ) = f (3.130078, 4.996097) = 23.410669 ; 

eval ( 12v ) = f (9.356179, 4.239457) = 15.011619 ; 

eval ( 13v ) = f (11.134646, 5.378671) = 27.316702 ; 

eval ( 14v ) = f (1.335944, 5.151378) = 19.876294 ; 

eval ( 15v ) = f (11.089025, 5.054515) = 30.060205 ; 

eval ( 16v ) = f (9.211598, 4.993762) = 23.867227 ; 

eval ( 17v ) = f (3.367514, 4.571343) = 13.696165 ; 

eval ( 18v ) = f (3.843020, 5.158226) = 15.414128 ; 

eval ( 19v ) = f (-1.746635, 5.395584) = 20.095903 ; 

eval ( 20v ) = f (7.935998, 4.757338) = 13.666916. 
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It is clear that chromosome v15 is the strongest one and chromosome v2 is the weakest. 

Now the system constructs a roulette wheel for the selection process. The 

total fitness of the population is as follows: 

.387.776822)(
20

1
==∑ =i ivevalF  

The probability of a selection pi for each chromosome vi (i=1, . . . , 20) is: 

p1= eval ( 1v ) /F = 0.067099 ; 

p2 = eval ( 2v ) /F = 0.019547 ; 

p3 = eval ( 3v ) /F = 0.050355 ; 

p4 = eval ( 4v ) /F = 0.044889 ; 

p5 = eval ( 5v ) /F = 0.065350 ; 

p6 = eval ( 6v ) /F = 0.046677; 

p7 = eval ( 7v ) /F = 0.041315 ; 

p8 = eval ( 8v ) /F = 0.046315 ; 

p9 = eval ( 9v ) /F = 0.041590 ; 

p10 = eval ( 10v ) /F = 0.054873 ; 

p11 = eval ( 11v ) /F = 0.060372 ; 

p12 = eval ( 12v ) /F = 0.038712 ; 

p13 = eval ( 13v ) /F = 0.070444 ; 

p14 = eval ( 14v ) /F = 0.051257 ; 

p15 = eval ( 15v ) /F = 0.077519 ; 

p16 = eval ( 16v ) /F = 0.061549 ; 

p17 = eval ( 17v ) /F = 0.035320 ; 

p18 = eval ( 18v ) /F = 0.039750 ; 

p19= eval ( 19v ) /F =0.051823 ; 

p20 = eval ( 20v ) /F= 0.035244. 

 

 

The cumulative probabilities qi for each chromosome iv  (i=1, . . . , 20) are: 

q1 = 0.067099; 

q2 = 0.086647; 

q3 = 0.137001; 
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q4 = 0.181890; 

q5 = 0.247240; 

q6 = 0.293917; 

q7 = 0.335232; 

q8 = 0.381546; 

q9 = 0.423137; 

q10 = 0.478009; 

q11 = 0.538381; 

q12 = 0.577093; 

q13 = 0.647537; 

q14 = 0.698794; 

q15 = 0.776314; 

q16 = 0.837863; 

q17 = 0.873182; 

q18 = 0.912932; 

q19 = 0.964756; 

q20 = 1.000000. 

 

Now the roulette wheel can be spun 20 times, each time a single chromosome for a new population is 

selected. Than it is assumed that a (random) sequence of 20 numbers from the range (0..1) is 

generated. 

 

The following  sequence of random numbers is assumed: 

0.513870  0.175741  0.308652  0.534534  0.947628; 

 0.171736  0.702231  0.226431  0.494773  0.424720; 

0.703899  0.389647  0.277226  0.368071  0.983437; 

   0.005398  0.765682  0.646473  0.767139  0.780237. 

 

The first number r = 0.513870 is greater than q10 and smaller than q11, meaning the chromosome v11 is 

selected for the new population. The second number r = 0.175741 is greater than q3 and smaller than 

q4, meaning the chromosome v4 is selected for the new population, etc.  
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Finally, the new population consists of the following chromosomes:   

 

'

1v  = (011001111110110101100001101111000) ( 11v ); 

'

2v  = (100011000101101001111000001110010) ( 4v ); 

'

3v  = (001000100000110101111011011111011) ( 7v ); 

'

4v  = (011001111110110101100001101111000) ( 11v ); 

'

5v  = (000101010011111111110000110001100) ( 19v ); 

'

6v  = (100011000101101001111000001110010) ( 4v ); 

'

7v = (111011101101110000100011111011110) ( 15v ); 

'

8v = (000111011001010011010111111000101) ( 5v ); 

'

9v = (011001111110110101100001101111000) ( 11v ); 

'

10v = (000010000011001000001010111011101) ( 3v ); 

'

11v = (111011101101110000100011111011110) ( 15v ); 

'

12v  = (010000000101100010110000001111100) ( 9v ); 

'

13v  = (000101000010010101001010111111011) ( 6v ); 

'

14v = (10000110000111010001011o1o11oo111) ( 8v ); 

'

15v  = (101110010110011110011000101111110) ( 20v ); 

'

16v = (1001101000O00O1111111010011011111) ( 1v ); 

'

17v = (000001111000110000011010000111011) ( 10v ); 

'

18v = (111011111010001000110000001000110) ( 13v ); 

'

19v = (111011101101110000100011111011110) ( 15v ); 

'

20v = (110011110000011111100001101001011) ( 16v ); 

 

Now the recombination operator, crossover can be applied to the individuals in the new population 

(vectors
'

iv ). The probability of crossover pc = 0.25, so (on average) 25% of chromosomes (i.e., 5 out 

of 20) is expected to undergo crossover.  

Than, for each chromosome in the (new) population a random number r from the range (0..1) is 

generated. If r < 0.25 a given chromosome is selected for crossover. 
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The following sequence of random numbers is assumed: 

0.822951  0.151932  0.625477  0.314685  0.346901; 

0.917204  0.519760  0.401154  0.606758  0.785402; 

0.031523  0.869921  0.166525  0.674520  0.758400; 

0.581893  0.389248  0.200232  0.355635  0.826927. 

This means that the chromosomes
'

2v , 
'

11v , 
'

13v  and 
'

8v were selected for crossover. It can be noted that 

the number of selected chromosomes is even, so they can be paired easily. If the number of selected 

chromosomes were odd, either one extra chromosome would be added or one selected chromosome 

would be removed (this choice is made randomly as well). 

Now selected chromosomes can be mated randomly. For example, the first two (
'

2v  and 
'

11v ) and the 

next two (
'

13v  and 
'

18v ) are coupled together. For each of these two pairs, a random integer number pos 

from the range (1..32) (33 is the total length — number of bits — in a chromosome) is generated. The 

number pos indicates the position of the crossing point.  

The first pair of chromosomes is as follows: 

'

2v = (100011000 | 101101001111000001110010); 

'

11v = (111011101 | 1011100001000l1111011110); 

and the generated number pos = 9. These chromosomes are cut after the 9
th
 bit and replaced by a pair 

of their offspring: 

"

2v  = (100011000 | 101110000100011111011110); 

"

11v = (111011101 | 101101001111000001110010). 

The second pair of chromosomes is as follows: 

'

13v = (00010100001001010100 | 1010111111011); 

'

18v = (11101111101000100011 | 0000001000110); 

and the generated number pos = 20. These chromosomes are replaced by a pair 

of their offspring: 

"

13v = (00010100001001010100 | 0000001000110); 

"

18v = (11101111101000100011 | 1010111111011). 

The current version of the population is as follows: 

'

1v  = (011001111110110101100001101111000); 

"

2v  = (100011000 | 101110000100011111011110); 

'

3v  = (001000100000110101111011011111011); 

'

4v  = (011001111110110101100001101111000); 

'

5v  = (000101010011111111110000110001100); 
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'

6v  = (100011000101101001111000001110010); 

'

7v = (111011101101110000100011111011110); 

'

8v = (000111011001010011010111111000101); 

'

9v = (011001111110110101100001101111000); 

'

10v = (000010000011001000001010111011101); 

"

11v = (111011101 | 101101001111000001110010); 

'

12v  = (010000000101100010110000001111100); 

"

13v = (00010100001001010100 | 0000001000110); 

'

14v = (100001100001110100010110101100111); 

'

15v  = (101110010110011110011000101111110); 

'

16v = (1001101000O00O1111111010011011111); 

'

17v = (000001111000110000011010000111011); 

"

18v = (11101111101000100011 | 1010111111011); 

'

19v = (111011101101110000100011111011110); 

'

20v = (110011110000011111100001101001011). 

 

Next operator, mutation is performed on a bit—by—bit basis. The probability of mutation pm = 0.01, 

so (on average) 1% of bits is expected to undergo mutation. There are m X pop-size = 33 X 20 = 660 

bits in the whole population, so (on average) 6.6 mutations are expected per generation. Every bit has 

an equal chance to be mutated, so for every bit in the population, a random number r from the range 

(0..1) is generated. If r < 0.01, the bit will be mutated. 

This means that 660 random numbers must be generated. In a sample run, 5 of these numbers were 

smaller than 0.01, the bit number and the random number are listed below in Table C8-1: 

 

Bit position Random number 

112 

349 

418 

429 

602 

0.000213 

0.009945 

0.008809 

0.005425 

0.002836 

 

TableC.VIII-1. Bit position and random number. 
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The following table translates the bit position into chromosome number and the bit number within the 

chromosome: 

 

Bit position Chromosome number Bit number within chromosome 

112 

349 

418 

429 

602 

4 

11 

13 

13 

19 

13 

19 

22 

33 

8 

 

Table C.VIII-2. Bit position, chromosome number and bit number within chromosome. 

 

This means that four chromosomes are affected by the mutation operator. One of the chromosomes 

(the 13th) has two bits changed. 

The final population is listed below and the mutated bits are in boldface. 

The population is listed as new vectors iv : 

1v  = (011001111110110101100001101111000); 

2v  = (100011000101110000100011111011110); 

3v  = (001000100000110101111011011111011); 

4v  = (011001111110010101100001101111000); 

5v  = (00O101010011111111110000110001100); 

6v  = (100011000101101001111000001110010); 

7v  = (111011101101110000100011111011110); 

8v  = (000111011001010011010111111000101); 

9v  = (011001111110110101100001101111000); 

10v  = (00001000001l001000001010111011101); 

11v  = (111011101101101001011000001110010); 

12v  = (010000000101100010110000001111100); 

13v  = (000101000010010101000100001000111); 

14v  = (100001100001110100010110101100111); 

15v  = (101110010110011110011000101111110); 

16v = (100110100000001111111010011011111); 

17v = (000001111000110000011010000111011); 
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18v  = (111011111010001000111010111111011); 

19v  = (111011100101110000100011111011110); 

20v  = (110011110000011111100001101001011). 

 

With this new population just one iteration (i.e., one generation) of the while loop in the genetic 

procedure (Figure 3-1) is completed. It is interesting to examine the results of the evaluation process 

of the new population. During the evaluation phase, each chromosome is decoded and the fitness 

function values calculated from (x1, x2) values just decoded. 

 

These are the results: 

eval ( 1v ) = f (3.130078,4.996097) = 23.410669; 

eval ( 2v ) = f (5.279042,5.054515) = 18.201083; 

eval ( 3v ) = f (-0.991471,5.680258) = 16.020812; 

eval ( 4v )  = f (3.128235,4.996097) = 23.412613; 

eval ( 5v ) = f (-1.746635,5.395584) = 20.095903; 

eval ( 6v ) = f (5.278638,5.593460) = 17.406725; 

eval ( 7v ) = f (11.089025, 5.054515) = 30.060205; 

eval ( 8v ) = f (-1.255173,4.734458) = 25.341160; 

eval ( 9v ) = f (3.130078,4.996097) = 23.410669; 

eval ( 10v ) = f (-2.516603, 4.390381) = 19.526329; 

eval ( 11v ) = f (11.088621, 4.743434) = 33.351874; 

eval ( 12v ) = f (0.795406, 5.381472) = 16.127799; 

eval ( 13v ) = f (-1.811725, 4.209937) = 22.692462; 

eval ( 14v ) = f (4.910618, 4.703018) = 17.959701; 

eval ( 15v ) = f (7.935998, 4.757338) = 13.666916; 

eval ( 16v ) = f (6.084492, 5.652242) = 26.019600; 

eval ( 17v ) = f (-2.554851, 4.793707) : 21.278435; 

eval ( 18v ) = f (11.134646, 5.666976) = 27.591064; 

eval ( 19v ) = f (11.059532, 5.054515) = 27.608441; 

eval ( 20v ) = f (9.211598, 4.993762) = 23.867227. 

It can be noticed that the total fitness of the new population F is 447049688, which is much higher 

than total fitness of the previous population, 387.776822. Also, the best chromosome now ( 11v ) has a 
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better evaluation (33.351874) than the best chromosome ( 15v ) from the previous population 

(30.060205). 

Now the procedure can be repeated by running the selection process again and apply the genetic 

operators, evaluate the next generation, etc.  

After 1000 generations the population is as follows: 

 

1v  = (111011110110011011100101010111011); 

2v  = (111001100110000100010101010111000); 

3v  = (111011110111011011100101010111011); 

4v  = (111001100010000110000101010111001); 

5v  = (111011110111011011100101010111011); 

6v  = (111001100110000100000100010100001); 

7v = (110101100010010010001100010110000); 

8v = (111101100010001010001101010010001); 

9v  = (111001100010010010001100010110001); 

10v = (111011110111011011100101010111011); 

11v  = (110101100000010010001100010110000); 

12v  = (110101100010010010001100010110001); 

13v  = (111011110111011011100101010111011); 

14v  = (111001100110000100000101010111011); 

15v  = (111001101010111001010100110110001); 

16v  = (11100110011000O101000100010100001); 

17v  = (111001100110000100000101010111011); 

18v  = (111001100110000100000101010111001); 

19v = (111101100010001010001110000010001); 

20v = (111001100110000100000101010111001). 
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The calculated fitness values are as follows: 

eval ( 1v ) = f (11.120940, 5.092514) = 30.298543; 

eval ( 2v ) = f (10.588756, 4.667358) = 26.869724; 

eval ( 3v ) = f (11.124627, 5.092514) = 30.316575; 

eval ( 4v ) = f (10.574125, 4.242410) = 31.933120; 

eval ( 5v ) = f (11.124627, 5.092514) = 30.316575; 

eval ( 6v ) = f (10.588756, 4.214603) = 34.356125; 

eval ( 7v ) = f (9.631066, 4.427881) = 35.458636; 

eval ( 8v ) = f (11.518106, 4.452835) : 23.309078; 

eval ( 9v ) = f (10.574816, 4.427933) = 34.393820; 

eval ( 10v ) = f (11.124627, 5.092514) = 30.316575; 

eval ( 11v ) = f (9.623693, 4.427881) = 35.477938; 

eval ( 12v ) = f (9.631066, 4.427933) = 35.456066; 

eval ( 13v ) = f (11.124627, 5.092514) = 30.316575; 

eval ( 14v ) = f (10.588756, 4.242514) = 32.932098; 

eval ( 15v ) = f (10.606555, 4.653714) = 30.746768; 

eval ( 16v ) = f (10.588814, 4.214603) = 34.359545; 

eval ( 17v ) = f (10.588756, 4.242514) = 32.932098; 

eval ( 18v ) = f (10.588756, 4.242410) = 32.956664; 

eval ( 19v ) = f (11.518106, 4.472757) = 19.669670; 

eval ( 20v )= f (10.588756, 4.242410) = 32.956664. 

 

However, it can be noted that in earlier generations the fitness values of some chromosomes were 

better than the value 35.477938 of the best chromosome after 1000 generations. For example, the best 

chromosome in generation 396 had value of 38.827553. This is due to the stochastic errors of 

sampling.  

It is relatively easy to keep track of the best individual in the evolution process. It is customary (in 

genetic algorithm implementations) to store the best ever individual at a separate location, in that way 

the algorithm would report the best value found during the whole process (as opposed to the best value 

in the final population). 
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C9. Simulated annealing  

A test function defining the form of a deflected corrugated spring in n dimensions is given by: 

( ) 21.0cos RkRf +−=  

where R is the radius ( ) ( ) ( )22

22

2

11 .... nn cxcxcxR −++−+−= ,c is the minimum  

point, and k defines the periodicity nature of the corrugations. For the case n = 2, c1 = 5, c2=5 and k = 

5, the Simulated annealing (SA) algorithm is used to find the minimum of f . 

 

 

Figure C.IX-1. Function plot [11] 
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D.1 Introduction 

The specific speed and specific diameter are similarity parameters, defined by [27]. They can be used 

together with the Mach and Reynolds numbers to give fairly complete information for the design of 

efficient turbomachines. The specific speed and specific diameter will be defined and examined in this 

appendix . 

 

D.2 Specific speed 

The specific speed has been defined by [27] in the following way: 

 

00

3

4

=s

ad

N Q
N

H

  ,                                                    (D.1)

                                        

where N is the rotational speed expressed in revolutions per minute, Q00 is the volume flow expressed 

in ft
3
/s and Had is the adiabatic head expressed in ft. The specific speed is then expressed in 

rpm·ft
3/4

/s
1/2

. 

The volume flow can be calculated in m
3
/s and then converted to ft

3
/s. It is usually calculated from 

inlet quantities for compressors. [36] 

Here, the stagnation inlet density will be used to calculate the volume flow. 

The adiabatic head can be calculated through the gas constant and isentropic 

temperature rise as follows: 
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where R=53.34 ft·lbf / lbm·R and T00  is the impeller inlet total temperature in degrees Rankine. 

Parallel to the original definition of the specific speed, a dimensionless specific speed also exists. It is 

defined by Equation D.3: 

( )
00
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4

ω
=s

ad

Q
n

gH

                                                                   (D.3)

     

where ω is the angular speed expressed in 1/s and g is the gravitational acceleration 

expressed in ft/s
2
. The volume flow and adiabatic head are the same as defined 

before. 

The dimensionless specific speed can be expressed in metric units as well: 

Appendix D. Specific speed and specific diameter 
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where the specific enthalpy rise ∆h0,is ,is based on the total-to-total temperature rise. 

Trazzi [2004] claims that some authors have verified the range between 95 rpm·ft
3/4

/s
1/2

 and 120 

rpm·ft
3/4

/s
1/2

 (between 7 rpm(m
3
 /s)

0.5
 /(J/kg)

0.75 
and 9 rpm(m

3
 /s)

0.5
 /(J/kg)

0.75 
in the International System 

of Units).  

With a rotational speed of  N=600,000 rpm, a mass flow rate mɺ  = 0.005kg/s, a required pressure ratio 

of 2 and an impeller inlet total temperature T00 =298 K, specific speed Ns=126.3897 rpm·ft
3/4

/s
1/2

 has 

been obtained. It can be noticed that (for N=600,000) it is slightly higher than the right-hand limit of 

the range. 
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In Appendix E, four Matlab files of the one-dimensional model will be presented.  

These files consists of an objective function file and a constraint function file. 

Different files have been used for the one-dimensional model described in Chapter 5.  

The first file has been used for preliminary inlet and outlet design of the compressor. Further more the 

second one has been used for preliminary inlet and outlet design with Zr and βB2 as known values. 

Since both files have been used for several blockage factors (0.02, 0.03, 0.04) the same equations but 

different input parameters, not every Matlab file will be displayed. 

E1. Preliminary inlet and outlet design 

Objective function 

 

function eta_ts_stage = complete_fitness(x) 

%Inlet 

%------------------------------------------------------------------------- 

% Thermodynamic constants 

g=1.4; % Isentropic coefficient (gamma) [-] 

R=287; % Gas constant of air [J/kg/K] 

cv=R/(g-1); % Specific heat of air at constant volume [J/kg/K] 

cp=g*cv; % Specific heat of air at constant pressure [J/kg/K] 

%------------------------------------------------------------------------- 

% Given thermodynamical 

p00=101325; % Inlet total pressure [Pa] 

T00=298; % Total inlet temperature [K] 

m=0.005; % Mass flow rate [kg/s] 

%------------------------------------------------------------------------- 

% Designer's choice 

N=600000; % Rotational speed [rpm] 

alpha1=0*pi/180; % Absolute inlet flow angle [deg] 

% r_1h=1e-3; % Hub radius [m] 

%------------------------------------------------------------------------- 

% Empirical 

B1=0.02; % Inlet aerodynamical blockage factor [-]; from [25] 

%------------------------------------------------------------------------- 

% x(1)=C_m1 

% x(2)=r_1h 

% Calculations 

C_u1=x(1)*tan(alpha1) 

C1=sqrt(C_u1.^2+x(1).^2) 

T_s1=T00-(C1.^2)./(2*cp); 

M1=C1./(sqrt(g*R*T_s1)); 

p_s1=p00*((T_s1./T00).^(g/(g-1))); 

RO_1=p_s1./(R*T_s1); 

A_f1=m/(RO_1*x(1)*(1-B1)) 

r_1t=sqrt((A_f1./pi)+x(2).^2) 

U_1t=2*pi*N*r_1t/60 

W_1t=sqrt(x(1).^2+U_1t.^2) 

M_1t=W_1t./sqrt(g*R*T_s1) 

beta1=180*(atan(U_1t./x(1)))/pi 

rr=r_1t/x(2) 

Appendix E. Matlab Files 
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%------------------------------------------------------------------------- 

  

%Outlet 

%------------------------------------------------------------------------- 

% Designer's choice 

% Zr=15; % Number of blades [-] 

% betaB2_deg=-40; % Backsweep angle [°] 

% eta_stage= 0.5504; % Stage efficiency [-] 

eta_rotor=0.92; % Rotor efficiency [-]; from [26] 

pr=2; % Stage pressure ratio 

  

%Specific speed calculation 

%Specific speed [rpm*(ft^0.75)/(s^0.5)]; it will be calculated with... 

% ...an expression defined by [27] 

RO_air=1.225; %In kg/m3 

%Q_00 is the volume flow in m3/s(1m3=35.3146ft3) 

%volume flow converted in ft3/s 

Q_00=(m/RO_air)*35.3146 

%Adiabatic head in ft 

%To calculate the following equation gas constant R(J/kgK)unit must be 

%converted in ft.lbf/lbm.R and the temperature T (K) unit must be converted 

%in °R. 

%1 J/kgK=0.33456*1/1.8ft.lbf/lbm.R and 1K=1.8°R. 

R_conv=R*(0.33456*1/1.8) 

T00_conv=T00*1.8 

H_ad=R_conv*(g/(g-1))*T00_conv*(pr^((g-1)/g)-1) 

Ns=(N*sqrt(Q_00))/(H_ad^0.75) 

% Ns=105.3248;  

%------------------------------------------------------------------------- 

% Calculations 

% x(3)=betaB2_deg 

% x(4)=Zr 

% x(5)=eta_stage 

betaB2=x(3)*pi/180 % Backsweep angle [rad] 

L2m=6.5-0.025*Ns; % Swirl parameter 

sigma=1-((sqrt(cos(betaB2)))/(x(4)^0.7)) % Wiener's slip factor 

mu_2=sigma*L2m/(L2m-tan(betaB2)); 

Dh0_is=cp*T00*((pr^((g-1)/g))-1); 

Wx=Dh0_is/x(5); 

T02=T00+Wx/cp; 

U2=sqrt(((U_1t*C_u1)+Wx)/mu_2) 

D2=60*U2/(pi*N); 

r2=D2/2 

Cu2=mu_2*U2; 

Cm2=Cu2/L2m; 

C2=sqrt(Cu2^2+Cm2^2); 

Ts2=T02-((C2^2)/(2*cp)); 

p02=p00*((1+(eta_rotor*Wx/(cp*T00)))^(g/(g-1))); 

ps2=p02*((Ts2./T02)^(g/(g-1))); 

ro_2=ps2/(R*Ts2); 

M2=C2/(sqrt(g*R*Ts2)) 

A2=m/(Cm2*ro_2); 

b2=A2/(pi*D2)  

W2=sqrt((U2-Cu2)^2+(Cm2)^2) 

M2_rel=W2/(sqrt(g*R*Ts2)) 

beta2m=(-acos(Cm2/W2))*(180/pi);  

alfa2m=(atan(Cu2/Cm2))*(180/pi);  
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pr_ts=ps2/p00 

eta_ts_stage=-(((pr_ts^((g-1)/g))-1)/((T02/T00)-1));  

DR=W_1t/W2 

%------------------------------------------------------------------------- 

 

Constraint function 

function [c, ceq] =complete_constraint(x) 

  

% Inlet 

% Thermodynamic constants 

g=1.4; % Isentropic coefficient (gamma) [-] 

R=287; % Gas constant of air [J/kg/K] 

cv=R/(g-1); % Specific heat of air at constant volume [J/kg/K] 

cp=g*cv; % Specific heat of air at constant pressure [J/kg/K] 

%------------------------------------------------------------------------- 

% Given thermodynamical 

p00=101325; % Inlet total pressure [Pa] 

T00=298; % Total inlet temperature [K] 

m=0.005; % Mass flow rate [kg/s] 

%------------------------------------------------------------------------- 

% Designer's choice 

N=600000; % Rotational speed [rpm] 

alpha1=0*pi/180; % Absolute inlet flow angle [deg] 

% r_1h=1e-3; % Hub radius [m] 

%------------------------------------------------------------------------- 

% Empirical 

B1=0.02; % Inlet aerodynamical blockage factor [-]; from [26] 

%------------------------------------------------------------------------- 

% Starting estimate 

% C_m1=linspace(0,300); % Meridional velocity [m/s]; from [22] 

%------------------------------------------------------------------------- 

% x(1)=C_m1 

% x(2)=r_1h 

% Calculations 

C_u1=x(1)*tan(alpha1); 

C1=sqrt(C_u1.^2+x(1).^2); 

T_s1=T00-(C1.^2)./(2*cp); 

M1=C1./(sqrt(g*R*T_s1)); 

p_s1=p00*((T_s1./T00).^(g/(g-1))); 

RO_1=p_s1./(R*T_s1); 

A_f1=m./(RO_1.*x(1)*(1-B1)); 

r_1t=sqrt((A_f1./pi)+x(2).^2); 

U_1t=2*pi*N*r_1t/60; 

W_1t=sqrt(x(1).^2+U_1t.^2); 

M_1t=W_1t./sqrt(g*R*T_s1); 

  

% outlet 

% Designer's choice 

% Zr=15; % Number of blades [-] 

% betaB2_deg=-40; % Backsweep angle [°] 

% eta_stage= 0.1; % Stage efficiency [-] 

eta_rotor=0.92; % Rotor efficiency [-]; from [26] 

pr=2; % Stage pressure ratio 

  

%Specific speed calculation 
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%Specific speed [rpm*(ft^0.75)/(s^0.5)]; it will be calculated with... 

% ...an expression defined by Baljé (1962) 

RO_air=1.225; %In kg/m3 

%Q_00 is the volume flow in m3/s(1m3=35.3146ft3) 

%volume flow converted in ft3/s 

Q_00=(m/RO_air)*35.3146 

%Adiabatic head in ft 

%To calculate the following equation gas constant R(J/kgK)unit must be 

%converted in ft.lbf/lbm.R and the temperature T (K) unit must be converted 

%in °R. 

%1 J/kgK=0.33456*1/1.8ft.lbf/lbm.R and 1K=1.8°R. 

R_conv=R*(0.33456*1/1.8) 

T00_conv=T00*1.8 

H_ad=R_conv*(g/(g-1))*T00_conv*(pr^((g-1)/g)-1) 

Ns=(N*sqrt(Q_00))/(H_ad^0.75) 

% Ns=105.3248;  

%------------------------------------------------------------------------- 

% Calculations 

% x(3)=betaB2_deg 

% x(4)=Zr 

% x(5)=eta_stage 

betaB2=x(3)*pi/180; % Backsweep angle [rad] 

L2m=6.5-0.025*Ns; % Swirl parameter 

sigma=1-((sqrt(cos(betaB2)))/(x(4)^0.7)) 

mu_2=sigma*L2m/(L2m-tan(betaB2)); 

Dh0_is=cp*T00*((pr^((g-1)/g))-1); 

Wx=Dh0_is/x(5); 

T02=T00+Wx/cp; 

U2=sqrt(Wx/mu_2); 

D2=60*U2/(pi*N); 

r2=D2/2; 

Cu2=mu_2.*U2; 

Cm2=Cu2./L2m; 

C2=sqrt(Cu2^2+Cm2^2); 

Ts2=T02-((C2.^2)/(2*cp)); 

p02=p00.*((1+(eta_rotor.*Wx./(cp*T00))).^(g/(g-1))); 

ps2=p02.*((Ts2./T02).^(g/(g-1))); 

ro_2=ps2/(R*Ts2); 

M2=C2/(sqrt(g*R*Ts2)); 

A2=m/(Cm2*ro_2); 

b2=A2/(pi*D2);  

W2=sqrt((U2-Cu2)^2+(Cm2)^2); 

  

c = [-0.9+(1-((sqrt(cos(betaB2)))/(x(4)^0.7))); 

-mu_2+0.8*L2m./(L2m-tan(betaB2)); 

-0.9+(W_1t./sqrt(g*R*T_s1))]; 

  

  

ceq = [-2+(ps2./p00); 

-1.67+(W_1t/W2)]; 
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E2. Preliminary inlet and outlet design with Zr and βB2 as known values 

Objective function 

function eta_ts_stage = complete_fitness(x) 

%Inlet 

%------------------------------------------------------------------------- 

% Thermodynamic constants 

g=1.4; % Isentropic coefficient (gamma) [-] 

R=287; % Gas constant of air [J/kg/K] 

cv=R/(g-1); % Specific heat of air at constant volume [J/kg/K] 

cp=g*cv; % Specific heat of air at constant pressure [J/kg/K] 

%------------------------------------------------------------------------- 

% Given thermodynamical 

p00=101325; % Inlet total pressure [Pa] 

T00=298; % Total inlet temperature [K] 

m=0.005; % Mass flow rate [kg/s] 

%------------------------------------------------------------------------- 

% Designer's choice 

N=600000; % Rotational speed [rpm] 

alpha1=0*pi/180; % Absolute inlet flow angle [deg] 

% r_1h=1e-3; % Hub radius [m] 

%------------------------------------------------------------------------- 

% Empirical 

B1=0.02; % Inlet aerodynamical blockage factor [-]; from [26] 

%------------------------------------------------------------------------- 

% Starting estimate 

% C_m1=linspace(0,300); % Meridional velocity [m/s]; from [22] 

%------------------------------------------------------------------------- 

% x(1)=C_m1 

% x(2)=r_1h 

% Calculations 

C_u1=x(1)*tan(alpha1) 

C1=sqrt(C_u1.^2+x(1).^2) 

T_s1=T00-(C1.^2)./(2*cp); 

M1=C1./(sqrt(g*R*T_s1)); 

p_s1=p00*((T_s1./T00).^(g/(g-1))); 

RO_1=p_s1./(R*T_s1); 

A_f1=m/(RO_1*x(1)*(1-B1)) 

r_1t=sqrt((A_f1./pi)+x(2).^2) 

U_1t=2*pi*N*r_1t/60 

W_1t=sqrt(x(1).^2+U_1t.^2) 

M_1t=W_1t./sqrt(g*R*T_s1) 

beta1=180*(atan(U_1t./x(1)))/pi 

rr=r_1t/x(2) 

%------------------------------------------------------------------------- 

  

%Outlet 

%------------------------------------------------------------------------- 

% Designer's choice 

Zr=9; % Number of blades [-] 

betaB2_deg=-45; % Backsweep angle [°] 

eta_rotor=0.92; % Rotor efficiency [-]; from [26] 

pr=2; % Stage pressure ratio 

  

%Specific speed calculation 

%Specific speed [rpm*(ft^0.75)/(s^0.5)]; it will be calculated with... 
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% ...an expression defined by [27] 

RO_air=1.225; %In kg/m3 

%Q_00 is the volume flow in m3/s(1m3=35.3146ft3) 

%volume flow converted in ft3/s 

Q_00=(m/RO_air)*35.3146 

%Adiabatic head in ft 

%To calculate the following equation gas constant R(J/kgK)unit must be 

%converted in ft.lbf/lbm.R and the temperature T (K) unit must be converted 

%in °R. 

%1 J/kgK=0.33456*1/1.8ft.lbf/lbm.R and 1K=1.8°R. 

R_conv=R*(0.33456*1/1.8) 

T00_conv=T00*1.8 

H_ad=R_conv*(g/(g-1))*T00_conv*(pr^((g-1)/g)-1) 

Ns=(N*sqrt(Q_00))/(H_ad^0.75) 

%------------------------------------------------------------------------- 

% Calculations 

% x(3)=eta_stage 

betaB2=betaB2_deg*pi/180 % Backsweep angle [rad] 

L2m=6.5-0.025*Ns; % Swirl parameter 

sigma=1-((sqrt(cos(betaB2)))/(Zr^0.7)) % Wiener's slip factor 

mu_2=sigma*L2m/(L2m-tan(betaB2)); 

Dh0_is=cp*T00*((pr^((g-1)/g))-1); 

Wx=Dh0_is/x(3); 

T02=T00+Wx/cp; 

U2=sqrt(((U_1t*C_u1)+Wx)/mu_2) 

D2=60*U2/(pi*N); 

r2=D2/2 

Cu2=mu_2*U2; 

Cm2=Cu2/L2m; 

C2=sqrt(Cu2^2+Cm2^2); 

Ts2=T02-((C2^2)/(2*cp)); 

p02=p00*((1+(eta_rotor*Wx/(cp*T00)))^(g/(g-1))); 

ps2=p02*((Ts2./T02)^(g/(g-1))); 

ro_2=ps2/(R*Ts2); 

M2=C2/(sqrt(g*R*Ts2)) 

A2=m/(Cm2*ro_2); 

b2=A2/(pi*D2)  

W2=sqrt((U2-Cu2)^2+(Cm2)^2) 

M2_rel=W2/(sqrt(g*R*Ts2));  

beta2m=(-acos(Cm2/W2))*(180/pi);  

alfa2m=(atan(Cu2/Cm2))*(180/pi);  

pr_ts=ps2/p00 

eta_ts_stage=-(((pr_ts^((g-1)/g))-1)/((T02/T00)-1));  

DR=W_1t/W2 

%------------------------------------------------------------------------- 
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Constraint function 

function [c, ceq] =complete_constraint(x) 

  

% Inlet 

% Thermodynamic constants 

g=1.4; % Isentropic coefficient (gamma) [-] 

R=287; % Gas constant of air [J/kg/K] 

cv=R/(g-1); % Specific heat of air at constant volume [J/kg/K] 

cp=g*cv; % Specific heat of air at constant pressure [J/kg/K] 

%------------------------------------------------------------------------- 

% Given thermodynamical 

p00=101325; % Inlet total pressure [Pa] 

T00=298; % Total inlet temperature [K] 

m=0.005; % Mass flow rate [kg/s] 

%------------------------------------------------------------------------- 

% Designer's choice 

N=600000; % Rotational speed [rpm] 

alpha1=0*pi/180; % Absolute inlet flow angle [deg] 

% r_1h=1e-3; % Hub radius [m] 

%------------------------------------------------------------------------- 

% Empirical 

B1=0.02; % Inlet aerodynamical blockage factor [-]; from [26] 

%------------------------------------------------------------------------- 

% Starting estimate 

% C_m1=linspace(0,300); % Meridional velocity [m/s]; from [22] 

%------------------------------------------------------------------------- 

% x(1)=C_m1 

% x(2)=r_1h 

% Calculations 

C_u1=x(1)*tan(alpha1); 

C1=sqrt(C_u1.^2+x(1).^2); 

T_s1=T00-(C1.^2)./(2*cp); 

M1=C1./(sqrt(g*R*T_s1)); 

p_s1=p00*((T_s1./T00).^(g/(g-1))); 

RO_1=p_s1./(R*T_s1); 

A_f1=m./(RO_1.*x(1)*(1-B1)); 

r_1t=sqrt((A_f1./pi)+x(2).^2); 

U_1t=2*pi*N*r_1t/60; 

W_1t=sqrt(x(1).^2+U_1t.^2); 

M_1t=W_1t./sqrt(g*R*T_s1); 

beta1=180*(atan(U_1t./x(1)))/pi; 

  

% outlet 

% Designer's choice 

Zr=9; % Number of blades [-] 

betaB2_deg=-45; % Backsweep angle [°] 

% eta_stage= 0.1; % Stage efficiency [-] 

eta_rotor=0.92; % Rotor efficiency [-]; from [26] 

pr=2; % Stage pressure ratio 

  

%Specific speed calculation 

%Specific speed [rpm*(ft^0.75)/(s^0.5)]; it will be calculated with... 

% ...an expression defined by [27] 

RO_air=1.225; %In kg/m3 

%Q_00 is the volume flow in m3/s(1m3=35.3146ft3) 

%volume flow converted in ft3/s 
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Q_00=(m/RO_air)*35.3146 

%Adiabatic head in ft 

%To calculate the following equation gas constant R(J/kgK)unit must be 

%converted in ft.lbf/lbm.R and the temperature T (K) unit must be converted 

%in °R. 

%1 J/kgK=0.33456*1/1.8ft.lbf/lbm.R and 1K=1.8°R. 

R_conv=R*(0.33456*1/1.8) 

T00_conv=T00*1.8 

H_ad=R_conv*(g/(g-1))*T00_conv*(pr^((g-1)/g)-1) 

Ns=(N*sqrt(Q_00))/(H_ad^0.75) 

%------------------------------------------------------------------------- 

% Calculations 

% x(3)=eta_stage 

betaB2=betaB2_deg*pi/180; % Backsweep angle [rad] 

L2m=6.5-0.025*Ns; % Swirl parameter 

sigma=1-((sqrt(cos(betaB2)))/(Zr^0.7)) 

mu_2=sigma*L2m/(L2m-tan(betaB2)); 

Dh0_is=cp*T00*((pr^((g-1)/g))-1); 

Wx=Dh0_is/x(3); 

T02=T00+Wx/cp; 

U2=sqrt(Wx/mu_2); 

D2=60*U2/(pi*N); 

r2=D2/2 

Cu2=mu_2.*U2; 

Cm2=Cu2./L2m; 

C2=sqrt(Cu2^2+Cm2^2); 

Ts2=T02-((C2.^2)/(2*cp)); 

p02=p00.*((1+(eta_rotor.*Wx./(cp*T00))).^(g/(g-1))); 

ps2=p02.*((Ts2./T02).^(g/(g-1))); 

ro_2=ps2/(R*Ts2); 

M2=C2/(sqrt(g*R*Ts2)); 

A2=m/(Cm2*ro_2); 

b2=A2/(pi*D2)  

W2=sqrt((U2-Cu2)^2+(Cm2)^2); 

  

c = [-0.9+(1-((sqrt(cos(betaB2)))/(x(3)^0.7))); 

-mu_2+0.8*L2m./(L2m-tan(betaB2)); 

-0.9+(W_1t./sqrt(g*R*T_s1))]; 

  

  

ceq = [-2+(ps2./p00); 

-1.67+(W_1t/W2)]; 
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