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Eoreword

Computed early results of the M.A.Sc. project of Stephen Foster have
been incorporated in a paper* by Ribner and Foster, to be published in the
Journal of Aircraft. Substantial extensions and vastly more computed curves
are included in the lengthy thesis.T These are presented in the context of a
detailed review of relevant parts of Theodorsen's theory of propellers.

The present Technical Note is essentially a duplicate of the thesis
(slightly revised), made more readily available. As such it contains expository
accounts of aerodynamic theory and relevant mathematics not normally
included in a research paper: on balance, it was decided to retain these.

Since the format and exposition are Foster's, but the concepts and
analytical methods are a mix of Theodorsen's, his, and mine there are
differences of interpretation. | have presented some additional thoughts in
Appendix D: these take the form of new developments bearing on slipstream
contraction and displacement velocity. In addition, a short direct derivation of
the integral conservation equation for propeller power has been inserted as

Appendix A.3.

H. S. Ribner

*Ribner, H. S., and Foster, S. P., "Ideal Efficiency of Propellers: Theodorsen Revisited," J. Aircraft,
Vol. 27, No. 9, Sept. 1990, pp. 810-819.

fFoster, Stephen P., "Ideal Efficiency of Propellers: A Computer Study,” University of Toronto Institute
for Aerospace Studies, M.A.Sc. Thesis, Jan. 1990, 75 pp. + 50 charts.
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Abstract

Ideal propeller performance is explored in an examination of
Theodorsen's theory of propellers. This work presents an overview of the
theory with analysis and interpretation. Computational methods are used in
place of Theodorsen's analog techniques to calculate key parameters for more
cases. In addition, relations between the fundamental quantities — thrust,
power, advance, efficiency — are presented in his format plus a more
convenient one that avoids iteration. Theodorsen's methodology is further
applied to calculate the slipstream contraction; however, a slightly more general
approach is taken with the removal of several light loading assumptions. A
review of how the updated results may be applied to the design of single

rotation propellers is also provided.
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NOMENCLATURE®

ag = displacement velocity at the propeller plane
ao = ao/V

¢ = blade element chord

é= efR

c. = power loss coefficient [E/(1/2pV37R2)]

¢, = power coefficient [P/(1/2pV37 R%)]
Cpp = (RTOO)z Cp

é, = power coefficient due only to wake overpressure

¢, = thrust coefficient [T'/(1/2pV 31 R2%)]
e = (B c,
¢ = influence coefficient for the velocity component in direction « at the

it" control point due to the j** filament

¢s = thrust coefficient due only to wake overpressure
e* = principal coordinate unit vector

| = axial distance between turns
m = number of helical filaments per blade
(n},n? n?) = coordinates of normal to the helicoid

n = number of wake diameters over which numerical integration of the Biot-

Savart integral is performed

p = fluid pressure
po = fluid pressure in the far field

r = radial distance from the propeller axis
to = D,/(1/2pV?*r R?)

t, = wQ /(1/2pV3*rR?)

u = local flow speed relative to a propeller blade element
2= u/V

¥ = disturbance velocity due to motion of the helical wake
#; = induced velocity at i* control point

v,, v,V = axial, tangential, radial components of v




w = rearward speed of helical wake infinitely far downstream of the propeller
(the displacement velocity)

w= w/V
A = area of wake cross section projected on a plane perpendicular to the
wake axis

B = blade number

Cr, = blade section lift coefficient

D, = total axial force arising from blade drag

D = drag distribution along propeller blade

E = power lost to the fluid comprising the propeller wake

& = kinetic energy per unit length of 2-blade propeller in the limit of in-
finitely large advance (A — o)

Fij= Yom ciing

K = non-dimensional circulation function

K100 = approximation to K based on 100 filaments per blade

P = propeller power

Po = geometric pitch of the propeller path

P(r) = pitch of the wake helicoid

Po = far wake pitch

@ = propeller torque

Q = torque due to blade drag

QB = torque of B-blade propeller in the limit A — oo

R = propeller radius

Roo = ultimate radius of the helical wake far downstream of the propeller

AR = absolute wake contraction

Sj(z) = j* cubic polynomial utilized in spline interpolation

T = propeller thrust

T = thrust arising from wake overpressure

V = Forward speed of propeller

Y = contraction ratio (éﬂi)

R cs

Y = contraction coefficient ;—w%



o = number which indicates a particular principal coordinate direction (o =
1,2, 3 corresponds to the x,y z axes respectively)

= vortex strength of the j** helical filament

il wl
= disturbance velocity potential

angular offset from x-axis of vortex sheets at the xy plane

angular speed of propeller

& £ o3

angular velocity of helical rotation that is kinematically equivalent to
axial motion with speed w

0(r) = pitch angle of the wake helicoid
0o(r) = geometric pitch angle of the propeller path
05 = Qo/Q%

n = propeller efficiency
n. = actuator disc efficiency
na = efliciency of differential element of thrust

A = advance coefficient (V/wRy,)
Ar = helical advance coefficient [(V + w)/wR]
Ap = propeller advance coefficient (V/wR)

p = fluid density

k = mass coefficient ([ v,ds/wA)

€ = axial kinetic energy loss factor (J v2ds/w?A)
T = 2n/)\T
(1, €2

5 j,ff) = coordinates of a point on T
(¢}, ¢2, ¢3) = coordinates of the :** control point

I' = propeller circulation function

—

1 = fluid vorticity
T) = helical filament of radius r; from k* propeller blade



1 Introduction

1.1 The Propeller Problem

The function of a propeller, in the most general terms, is to produce thrust in
order that forces opposing the motion of a vehicle through a fluid medium
may be balanced. A propeller generates thrust by imparting a rearward
change in momentum of the fluid through which it operates. The momentum
change is a consequence of the aerodynamic forces of lift and drag that are
generated along each blade. These forces are responsible for the total thrust
and torque experienced by the propeller. Moreover, it is the reactions to
these forces that gives rise to the change in kinetic energy and momentum of
the fluid that flows through the disc swept by the propeller and subsequently
forms the slipstream.

An important task of propeller theory is to model propeller operation
with sufficent accuracy for prediction and design purposes. Prediction is
concerned with the estimation of the thrust, torque and efficiency of a par-
ticular propeller design under given operating conditions. Many modern
computational algorithms are available for the analysis of specific propeller
designs. However, these codes do not give an indication of the highest
possible efficiency, neglecting blade profile drag, given the set of basic pro-
peller parameters: blade number, propeller advance coefficient, and power
(or thrust) loading. This work, built within the theoretical framework of
Theodorsen ! examines the performance of ideal or optimum propellers us-
ing numerical techniques. Moreover, this work assists in the interpretation
of Theodorsens’s theory, updates and extends some of its main results.

1.2 Historical Background

Early developments in propeller theory were divided into two schools of
thought. The first approach, proposed by Rankine in 1865, is known as
the simple momemtum or actuator disc theory. Because of its extensive
simplifying assumptions, the actuator disc theory provided only a very crude
estimate of the upper limit to propeller efficiency. Propeller operation is
modelled by a thin disc across which a discontinuous jump in pressure is
produced; and, the resulting slipstream is modelled by a uniform velocity
field wherein residual fluid axial kinetic energy constitutes the only loss
mechanism. Consequently, the actuator disc theory (ADT) completely fails

1T, Theodorsen, Theory of Propellers (New York: McGraw-Hill, 1948)




to fix propeller geometry. In addition, the actuator disc model is not a true
limit case of the propeller. 2

A second approach to the propeller problem was first proposed by W.
Froude in 1878 and later expanded by Drzewiecki in 1892. The early blade
element theory made blade geometry central to the analysis. As a basic
premise of the theory, each propeller blade is modelled by a number of
blade elements, each regarded as an independent airfoil with an impinging
flow derived from translation and rotation of the blade. The aerodynamic
properties of each element are determined exclusively from experimental
data with arbitrarily assumed aspect ratios. Similar to actuator disc theory,
no information is derived about propeller geometry; in contrast, the simple
blade element theory predicts an efficiency of 100% for frictionless flow while
the actuator disc model maintains that the ideal efficiency must be less than
100% for all non-zero loadings.

Attempts to reconcile fundamental differences between the two propeller
models resulted in a marriage of the two theories. The idea was to couple
the inflow velocity at the propeller plane from momentum theory with the
conception of independent blade elements from the blade element theory.
A great deal of empiricism still remained until the association of lift with
circulation about a contour was made. Lanchester proposed in 1907 that the
effective velocity at each blade element must include the velocity induced
by a trailing vortex system.

Similar to wing theory, the vortex theory of the propeller led to the con-
cept of an optimum distribution of circulation for minimum induced loss.
In 1919, Betz proved that the optimum circulation distribution is realized
when the self-induced motion of the trailing vortex system emulates the
motion of a rigid screw surface; but, the complexity of the optimum circu-
lation problem forced Betz to the simplifying assumption of infinite blade
number. Prandtl subsequently derived an approximate correction factor to
obtain solutions corresponding to finite blade numbers. Prandtl obtained
these tip loss correction factors by modelling the wake by a cascade of pla-
nar lamina which move with the uniform axial velocity w. However, the tip
loss correction factors gave reasonably accurate results only for propellers
with large blade numbers or for propellers operating at small values of ad-
vance. It wasn’t until 1929 that Goldstein  calculated an exact solution for

2T. Theodorsen, Theory of Propellers (New York:Mcgraw-Hill,1948), p. 31.
3S. Goldstein, 'On the Vortex Theory of Screw Propellers’, Proc. Roy. Soc., London,
Vol 123, 1929.



the optimum radial distribution of circultion for a propeller having a finite
number of blades. Goldstein’s analytic solution to the potential flow prob-
lem involves the use of Bessel functions and the evaluation of infinite series.
Goldstein’s method of solution was not without problems: his assumptions
of light blade loadings raised concerns about the applicability of his results
to normal design loadings. Moreover, Goldstein’s series solution had certain
convergence difficulties at large values of advance.

Theodorsen addressed some of the limitations of Goldstein’s work in the
form of a general theory of propellers. Theodorsen asserted that the Gold-
stein circulation functions need not be restricted to light loadings provided
that reference is made to the same ultimate wake helix infinitely far down-
stream of the propeller. By formulating the problem in terms of parameters
referring to the far wake, Theodorsen removed the propeller configuration
(except blade number) from consideration, except as a final step in the
design process. Theodorsen also addressed the problems involved with gen-
erating optimum circulation functions by employing an analog model to the
potential flow problem: solutions were obtained experimentally by exploit-
ing the mathematical identity of ideal fluid flow with the flow of electric
current under equivalent boundary conditions. Theodorsen integrated these
ideal circulation functions into a general theory which characterizes ideal
propeller behavior including large advance coefficients and high blade load-
ings.

2 Flow Model

In the examination of ideal propeller properties, the flow field is assumed
to be incompressible, irrotational and inviscid. Similar to wing theory, pro-
peller theory is based on the concept of a trailing wake consisting of vorticity
shed from each finite lifting surface . The wake is modelled by sheets of vor-
ticity which are considered to be infinitely thin surfaces of discontinuity
within a potential flow field. Specification of the wake geometry can be uti-
lized to determine the ideal properties of the propeller. In fact, Theodorsen
showed that thrust, torque and efficiency of the ideal propeller are com-
pletely determined by the far wake.

2.1 Potential Flow

The magnitude of vorticity at a point within a vortex field is defined as a
limit of the circulation of the velocity field about a closed contour ¢ per unit



enclosed area s,

Q = lim §.Todl

s—0 S

(1)

In accordance with vector calculus convention, the vortex field may be ex-
pressed in terms of the velocity field by the relation

Q=Vx7 (2)

A region of the flow field is defined as being irrotational if ¢ = 0 at all points
within the region. Thus, the following vector identity for an arbitrary scalar
function f,

Vx(Vf)=0 (3)

can be used to express an irrotational velocity field in terms of the gradient
of a scalar function ¢, giving finally

(z,y,2,t) = ﬁé(z, Y, 2,t) (4)

Equation 4 defines a velocity field that is potential.

2.2 Vortex Flow

Similar to streamlines in the velocity field, the vorticity field given by equa-
tion 2 may be considered to be composed of vector lines. A vortex line is a
line in which the vorticity vector at every point is directed along a tangent
of the line. Thus, a vortex line satisfies the relation

QL 9 Q
[zl il )

Another useful construct, the vortex tube, is an extension of the vortex line
concept: a vortex tube is a union of vortex lines in a cylindrical form which
may be thought of as a bundle of vortex lines. The circulation about a
simply connected path ¢ about a vortex tube is defined by

rzfﬁoﬂ (6)

Stokes’ theorem applied to equation 6 yields

r=/ﬁ ko 7
Aos (7



with A being a cross-section perpendicular to the vortex tube axis. I' may
be referred to as the strength of the vortex tube. Consider now a vortex tube
as the area of A becomes small. In such a limit, the vortex tube becomes a
filament of cross sectional area o with a vortex strength of I' = Qo.

A law governing vortex filament conservation, first derived by Helmholtz
in 1858, may be deduced from the following vector identity,

Vo(Vx#)=0 (8)

or equivalently,
VoQ=0 (9)

Integrating equation 9 through the volume between two endpoints of a vor-
tex filament enclosed by the surface ¥ yields, upon application of Gauss’
theorem,

/ﬁod”s:o (10)
b))

Since the circumferential surface of a vortex filament is composed entirely of
vector lines, { o ds = 0 everywhere except at the endpoints. Thus, surface
integral 10 reduces to

910'1 = 920'2 (11)

which simply states that the intensity of a vortex filament must be constant
along the length of the filament. Helmholtz further established a theorem
governing the conservation of vortex lines, which states:

Assuming an ideal (i.e. inviscid) barotropic * fluid, with a body
force having a potential, the fluid particles which at a certain
instant of time form a vortex line will form a vortex line at all
times of the motion °

A very similar result, known as Thompson’s theorem may be represented by
the following equation under the same assumptions

D o

- f;f)’o di=0 (12)
where differentiation is taken following a set of fluid particles. Thus, cir-
culation about the moving path ¢ is constant throughout the motion. A
corollary of Thompson’s theorem, known as Lagrange’s theorem, states the
following:

*a fluid in which the density is a function of pressure alone is said to be barotropic
5N.E. Kochin et al, Theoretical Hydromechanics (New York:John Wiley, 1964), p. 155



If at the initial instant of time there are no vortices in a certain
part of the fluid, this part of the fluid did not contain any vortices
in the past and will not contain any vortices in the future ©

Consequently, one may consider vorticity to be transported through the fluid
as if it were physically attached to individual fluid particles.
2.2.1 The Biot-Savart Law

The equation of mass conservation for incompressible flow may be written
in the vector form
Vovo=0 (13)

which when coupled with vector identity 8 guarantees the existence of a
function A such that

F=VxA (14)
Equation 2 then becomes
0=V x(V x A) (15)
which is transformed by a vector identity to become
Q=V(Vod)-V24 (16)

Without loss of generality 7 , A can be chosen such that ¥V o A4 = 0. Then,
the vector potential function A satisfies Poisson’s equation,

—

VA= -@Q (17)

It can be shown 8 that the following volume integral is a particular solution
of equation 17

A 1 Q LA
A:E/—(ET"—OdT (18)

where (£,7,() are cartesian coordinates of the differential volume element
dr within the vortex field. If the spatial distribution of vorticity is that of
a vortex filament, then one may express the vorticity vector as the product

6ibid., p. 154
"N.E. Kochin et al, op. cit., p. 188
8ibid.



of a magnitude and unit tangent at every point of the filament; and, the
differential volume element becomes dr = odl. Equation 18 then gives the

line integral,
. |8le pipae. dn. dc
i= L0 LG G+ G (19)

If (z,y,z) is the coordinate of the point at which the induction of the vortex
system is to be evaluated, then

r=[€- o+ -9+ -2 (20)

Substituting equations 19 and 20 into equation 14 while noting that |ﬁl o=T
finally yields the Biot Savart law for the induction of a vortex filament:

a,0,7) = 5= [ (21)

T Arx 73

2.2.2 The Formation of Vortices

A wake of vorticity is generated by a propeller as it progresses through fluid
regions which were previously irrotational . In light of Lagrange’s theorem,
however, parts of the fluid that at one time were irrotational cannot contain
vortices at any other instant in time: the assumption of ideal fluid flow
precludes the creation of a trailing vortex system. This paradox is resolved
by the realization that the formation of vorticity is a consequence of non-
ideal fluid behavior; and, an ideal fluid formulation is constructed to model
this result.

The viscosity of a real fluid results in a no-slip condition for the flow at
the surface of each propeller blade i.e. the fluid in contact with the propeller
blade must move with the blade. Consequently, vorticity is generated at the
blade surfaces, and is subsequently shed downstream. Hence, the production
of thrust and the formation of a trailing wake are ultimately consequences
of viscosity.

An ideal fluid flow model of the propeller is described in section 2.3.

2.3 Propeller Model

As a propeller moves through a fluid with forward speed V and angular
speed w, the lift distribution generated along each propeller blade is mod-
elled by a radial distribution of bound’ circulation in an ideal fluid. In

10
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Figure 1: Circulation Along A Blade with Shed Wake

accordance with the vortex intensity conservation theorem (equation 11),
changes in bound circulation can only be accomplished by the addition of
vorticity from vortex filaments extending to infinity. The propeller wake is
modelled by a continuous distribution of such vortex filaments which consti-
tute helical vortex sheets of infinite length. These vortex sheets float freely
within the surrounding potential flow field as massless, infinitely flexible and
impenetrable entities. Continuity ensures that the flow component normal
to a vortex sheet must be the same on both sides. In contrast, tangential
flow components are different on opposite sides: the discontinuous jump in
tangential flow velocity is a direct measure of the local intensity of the vortex
sheet.

As a direct consequence of vortex conservation, the radial distribution of
circulation at the propeller is the same as the distribution of circulation in
the far wake. Theodorsen maps the distribution along the propeller I'(r/R)
to an unaltered distribution I'(r/R.,) far downstream (R < R) i.e the
circulation at radius 7 in the far wake is identical to the circulation at an
associated point r + §7 at the propeller.

The detailed design of the propeller (i.e. pitch, chord distribution and
airfoil selection) is of no concern for the purpose of ideal performance cal-
culations: the propeller is regarded purely as a device that produces a set
of helical vortex sheets which extend infinitely far downstream and which
possess a certain distribution of circulation. The conservation laws of en-
ergy, momentum, and vorticity are sufficient to relate the kinetic energy,
potential energy, momentum and vorticity of the wake to the thrust, torque,
efficiency and bound circulation of the optimum propeller.

11



Figure 2: Relative flow for non-thrusting propeller

2.4 The Betz Condition

As stated earlier, Betz proved that minimum induced loss results when the
shed vortex system forms a helical surface which, by its self-induced motion,
appears to move as if rigid. It is, however, not obvious why this must be the
case. To reinterpret Betz’s theorem, consider an infinitesimal variation of
the wake vorticity distribution by introducing an imaginary second propeller
located infinitely far downstream of the first propeller with its blades tracing
a path nearly coincident with the preceding wake helicoid. As the first
propeller moves through the fluid with forward speed V and angular speed
w, the trailing edge of each blade will trace out a path known as the advance
helicoid. The geometric pitch of the advance helicoid (a constant) is related
to its pitch angle distribution 6,(r) (see fig. 2) by

Py = 2mr tanfgy(r) (22)

Due to wake self-induction, the pitch distribution, P(r), of the far wake
helicoid will differ from the geometric pitch of the propeller path,

P(r) = 2nr tan 6(r) (23)

Let dL denote the increment in lift at the second propeller due to the varia-
tion in circulation. Since the relative flow at the second propeller is inclined
to the plane of rotation by the angle 6(r), the thrust and torque variation
at r is given by

dT = dL cosf(r) (24)
dQ = rdLsiné(r) (25)
The efficiency of the differential load increment is,
vdT
= 2
"= a0 (26)

12




w = displacement velocity

@ = equivalent angular speed

(w—a)r w

wr

Figure 3: Equivalence of wake induction parameters

which upon substution of equations 24 and 25 plus V/wr = tan 04(r) yields

tan 6,(r) .
8= tan 0(r) o
From equation 22 and 23, the efficiency is finally given by
Py
= 28
=5 0 (28)

Therefore, the efficiency of the differential element of loading is simply given
by the pitch ratio of the advance helicoid to the wake helicoid far dowstream
of the first propeller. If the pitch of the wake spiral changes with radius,
then it would be possible to vary the circulation distribution to reduce power
while maintaining constant thrust. This can be accomplished by the ad-
dition of differential thrust elements in regions of higher efficiency while
decreasing the thrust by equal amounts in regions of lower efficiency; but,
further reductions in power cannot be achieved once the pitch distribution
is constant. With a constant far wake pitch, any further variation in the
circulation distribution at constant total thrust will cause no change in the
total power input. Therefore, a stationary value is achieved for the total
propeller efficiency; and, the wake will appear as a rigid screw surface.

2.5 The Displacement Velocity

The displacement velocity represents the self-induced axial motion of a he-
lical surface moving with speed w. Equivalently, the induced motion may
be regarded as purely rotational with angular speed @&. This motion equiva-
lence is strictly a consequence of the helical geometry. The relation between
these quantities can be seen by the velocity diagram in the propeller frame
of reference (fig. 3):
V+w |4
wr  (w-Q)r

(29)

13



For a system of vortices to move as if rigid (i.e. non-distorting), the dis-
placement velocity, w, must be independent of wake radius. Note, however,
that the displacement velocity is not the fluid velocity.

The far wake pitch, Py, is nondimensionalized by the wake circumference
2T R. The generalized wake advance coefficient thus derived is equivalent
to the tangent of the tip helix angle infinitely far downstream of the propeller

ie.,
¥ o/
’\t = ﬁ = tan 0tip (30)

Expressed in terms of velocity parameters, this is equivalent to
%
A= —((1+w 31
o= sp(1+0) (31)

where @ = w/V is the dimensionless displacement velocity. The coefficient

defined by
V

- wR
is used as an approximation to the propeller advance coefficient Ap =V/wR
where R is the propeller radius.

A (32)
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2.5.1 Example: Optimum Circulation Distribution For A Pro-
peller Having An Infinite Number of Blades

The following is an example illustrating the application of the Betz condition
to obtain the ideal circulation distribution for a propeller having an infinite
number of blades. If the pitch of the far wake helicoid is P, then the
distance between adjacent vortex sheets for a propeller with B blades is
then I = P, /B. Thus the system of vortex sheets is more tightly packed
over one turn of the helicoid as the number of blades increase. For non-zero
[, there exists a radial flow component around the edges of each vortex sheet
in addition to the axial and rotational flow components. However, I — 0 as
B — oo which results in the degree of radial flow approaching zero; and, the
fluid column receives the full effect of the vortex system motion. Therefore,
the velocity field everywhere within the slipstream corresponds exactly to
the motion of the vortex sheets ®. The induced flow is locally normal to the
vortex sheet; hence, the induced velocity is given by the component of w on
the unit surface normal:

v, = w cos O(r) (33)

and, the corresponding fluid velocity components (axial and tangential) are:
v, = wcos? 4(r) (34)

and,
vy = wcos O(7) sin O(P)..u (35)

The total circulation shed from B blades into the slipstream will be equal
to the contour integral at r,

Br:fvod‘z (36)

where ¢ is a contour of radius r coaxial with the wake vortex system taken
about a plane perpendicular to the axis of symmetry. As B — 00, the ve-
locity field within the slipstream becomes independent of z and §. Conse-
quently,

BT 2mrog (37)

2w cos O(r) sin 6(r) (38)

®this is also the case for propellers of finite blade number as A\, — 0
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The wake advance coefficient, defined by equation 30 is used in conjunction
with the relations

wr

cosf(r) = N COETUETOL (39)
. B V+w

sinf(r) = N COETCETNL (40)

to express 38 in the form

(r/Reo) - Mt

BF(T) = ZFTW‘(—W

(41)

But, the circulation function may be non-dimensionalized by the following,

I(r) = lwK(r) (42)
Po .
= ?wlx(r) (43)
QWROO)\t -
= Tw[x (r) (44)

Substituting 44 into 41 yields the optimum circulation distribution,

(/R
MR = wray 20 (45)

3 Theodorsen’s Formulation

Theodorsen introduced a general theory based on optimum circulation func-
tions to describe ideal propeller behavior. Goldstein’s solutions for optimum
circulation functions were originally thought to apply only for lightly loaded
propellers. However, Theodorsen introduced the generalization that Gold-
stein functions need not be limited to light loadings if reference is made to
the ultimate helix surface infinitely far downstream of the propeller. For
example, the optimum circulation function of a heavily loaded propeller is
the same as that of a lightly loaded propeller operating at a higher geometric
advance since they can produce identical far wake helicoids: the geometry
of the far wake governs the non-dimensional circulation function which is
independent of loading. If the problem is cast in terms of the far-wake
advance coefficient (equation 30), instead of the advance coefficient (equa-
tion 32), then the restriction to light propeller loadings is eliminated. If
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the degree of wake contraction is small, then the displacement velocity w is
sufficient to relate the wake advance coefficient to the propeller advance for
most purposes (see section 7). Theodorsen’s formalism is cast in terms of
the initially unknown displacement velocity and parameters describing the
far wake; hence, an iteration procedure is required to relate conditions in the
far wake to corresponding values at the propeller. This approach represents
somewhat of a reversal of design procedure: the design of the propeller is
not considered, except as the final step in the design process.

3.1 The Mass Coefficient

The mass coefficient is defined by the relation

_ Jroads
K= 46
oA (46)
where the integral is evaluated over the helicoid cross section and out to
r = o0. Since the circumferential average of v, is zero for r > R, this
represents the average axial velocity over the helicoid cross section F of area
A = nR?,. Equation 46 applies to any wake section far back; thus, an axial
average over a distance [ of the righthand side does not alter the value of «:
p fé dz [y v.ds

= plwA (1)
m,

- plwA b

Here m, is the axial momentum of the fluid contained in a wake cylinder
of height | = P, /B where [ is the axial separation between adjacent vortex
sheets.

Since the potential ¢ is constant along a helical path of pitch P, the
difference in potential between adjacent vortex sheets is equal to the jump
in potential across one sheet which is equivalent to I'. Upon interchanging
the order of integration, the numerator of equation 47 becomes

¢
m,; = p//}_adzds (49)
= p/ I'ds (50)
F
This is non-dimensionalized by
I = wlK (51)
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ds = rdrdf v (52)
= R: zdzdd (53)

to give

X ..
m, = pwAl - 2/ K(z)zdz (54)
0

From equation 48, this leads to the important result

k=2 /0 K(z)edz (55)

The mass coefficient, one of the most fundamental parameters in Theodorsen’s
theoretical formulation, may be interpreted as the ratio of an effective wake
cross section (based on axial momentum) to the wake area A. It can be
seen from equation 48 that the vortex system may be considered to impart
a uniform axial velocity w to a fluid column of cross sectional area KA.

3.2 Equation of Motion

The velocity potential characterizing the motion of the far wake is time
dependent; and, it is governed by the unsteady Bernoulli equation,

0 1L, p

— 4+ =v°“ + — = const. 56

ot * 2 f p (58
Because of helical geometry, %? can be expressed in terms of flow veloci-
ties. As detailed earlier, the slipstream field pattern may be considered to
move with a uniform axial velocity w. Thus the velocity potential has the
functional form,

¢ = ¢(1‘,0,Z - U)t) (57)

from which the following may be derived,
0 ;
a_gtb = —wv, (58)

Far away from the wake axis %%’ — 0,v? — 0; hence, the constant of equa-
tion 56 approaches po/p. Equation 56 finally becomes,

1
(P = po) + 5pv* = pwr; (59)
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3.3 Thrust, Power and Efficiency

Ideal propeller thrust, power and efficiency are determined exclusively from
conditions in the ultimate wake. Conservation laws of momentum and en-
ergy are applied to a control volume of infinite extent surrounding the far
wake to obtain the desired relation. Conservation of momentum leads to
the expression

T = [ [(p- o) +p(V +v.)u:lds (60)
I1

where II is an infinite plane perpendicular to the propeller axis, located
infinitely far downstream (i.e. the Trefftz plane). Similarly, conservation of
energy results in the following expression for the power lost to the wake,

e /n[(p—po+ 5PV )0z + 5pv°V]ds (61)

The pressure term, (p— po), in equations 60 and 61 is an important feature of
the theoretical formulation. In contrast to the actuator disc, Theodorsen’s
model permits the existence of a wake pressure exceeding ambient conditions
(see section 3.4). Substituting equation 59 into 60 - 61 yields

T = p/ [(V + w)v, + vE - %v2]ds (62)
I
and IE .
e 2, 1vr.2
— p/ﬂ(wvz + 2Vv )ds (63)

Equations 62 and 63 can be expressed in terms of physically significant
integrated parameters; these being the mass coefficient and the axial kinetic
energy loss coefficient. In addition to the earlier description of the mass
coefficient, this parameter may also be interpreted as the total kinetic energy
loss coefficient ( see Appendix A). Secondly, the axial kinetic energy loss
coefficient, defined by

1 2, 1 2
§p/n vids = e[ipAw ] (64)

may be thought of as a factor which relates the wake area, A = 7R%, to an
effective cross section (in terms of axial kinetic energy), ¢ A, upon which the
vortex system may be considered to impart a pure axial velocity equal to

19



the displacement velocity. Equations 62 and 63 are now expressed in terms
of the coefficients x and e:

T = prwA[V + w(% + E)] (65)

dE 2 A€ 1

— = PR A[;w + §V] (66)
The total power input required by the ideal propeller must equal the sum
of the useful power and induced power,

P=TV + -(fi—lf = prwA(V + w)(V + w%) (67)

In nondimensional coefficient form, thrust and power equations 65 and 67

become
T
IpV2A

Cs =

= 2x0(l +0(5 + )] (68)
P

%pV?’A

= 2xo(l + o)1+ m%) (69)

p =

where @ = w/V. For further information, one could refer to the development
of the above equations in Theodorsen 1°; but, a more detailed derivation has
been provided in appendix A.

The efficiency is defined by the ratio

e
n= . (70)

Thus from equations 68 and 69 one obtains

_ 1+ @(}+5)
T T+ o)+l

(71)

1%Theodorsen,op. cit., pp. 23-29

20



Figure 4: Flow about an axially moving cascade (cascade frame of reference)

The connection between the axial and total kinetic energy factors is, from

Theodorsen 1! L4
€ =K+ 5/\t'd—:; (72)

This relation was derived by equating the efficiency of a differential element
of loading to the functions ¢, and c,:

& 1
== — 73
¢ l+@® (73)

where differentiation with respect to @ is denoted by primes.

3.4 Wake Overpressure

A physical basis for overpressure within the wake can be explored by consid-
ering flow within boundary regions of the wake produced by a finite number
of blades. If the wake is approximated by a cascade of planar lamina mov-
ing axially with speed w, then the flow field has the illustrated form (fig. 4).
The approximation represented by figure 4 is that employed by Prandtl in
his estimate of the losses represented by the consequent flow in the edge re-
gions 12, This model, for which analytic solutions exist, serves to illustrate
the curvature of the streamlines between vortex sheets. The centripetal
acceleration of the edge flow between sheets must be accompanied by an
inwardly directed pressure gradient; thus, higher pressures result within the

ibid., p. 35
?W.F. Durand, Aerodynamic Theory, Vol. iv, 1935, pp. 261-267
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wake. Strictly speaking, the above flow depiction is truly representative for
small values of advance; nonetheless, the above model generally character-
izes the situation that occurs near the outer regions of the wake for finite
blade numbers. Wake overpressure represents an additional mechanism for
the loss of energy to the slipstream. Theodorsen’s model then accounts for a
total of four loss mechanisms: axial kinetic energy loss, swirl loss (rotational
kinetic energy), radial flow kinetic energy loss and energy loss due to wake
overpressure (p — po > 0).
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4 Asymptotic Results

Analysis of the various limit cases lend insights to propeller behavior and
provide a valuable means for verification of computational algorithms (sec-
tion 5). This section examines the properties of ideal propellers in the limit
of both large and small advance coefficients.

4.1 Limit Case: \; —» 0

Upon the examination of helicoid geometry, some physical insights into pro-
peller behavior can be realized in the limit A; — 0. One can consider this
case to arise when the flight speed of a propeller approaches zero. As the
pitch of each helicoidal vortex sheet becomes small, the distance between
adjacent vortex sheets is also reduced. The reduction in vortex spacing ex-
tends the region within the wake for which radial flow is negligible; thus, the
magnitude of tip loss is diminished with A;. In this sense the ideal circula-
tion function for a propeller having a finite number of blades approaches the
distribution for an infinite blade propeller at the same generalized advance
coefficient A\;. A further consequence of reduced pitch is that the pitch angle
distribution along each sheet is diminished according to the relation

0(r) = arctan (74)

At
(7/Roo)
Since the fluid becomes trapped between vortex sheets for small );, the
fluid velocity field approaches the velocity of the vortex system. Thus, the
gradient v = 0¢/0n (@ is normal to the vortex surface) more closely rep-
resents the slipstream velocity field. In accordance with equation 74, the
magnitude of slipstream rotation is diminished with \; because 7 becomes
more aligned with the propeller axis as the pitch approaches zero; thus,
axial flow dominates throughout the wake. The influence on the mass co-
efficient is clear: as the flow becomes purely axial, the real flow velocity
approaches the displacement velocity which causes the effective wake cross
section, based on axial momentum, to approach the wake area. Hence, the
mass coefficient approaches unity as A; — 0. Likewise, the effective cross
section based on axial kinetic energy will approach the wake area resulting
in € — 1. Applying these deductions to equations 68, 69 and 71 yields

. _ 3 _
,\ltn_r}o cs = 2w(l+ Ew) (75)
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Figure 5: Infinite Control Volume Containing Actuator Disc and Wake

/\limo ¢, = 20(14 )2 (76)
. - 1+ 5@
/\l,l—r-r»lon - (14 w)? (77)

Note that these relations are independent of blade number.

4.1.1 Comparison with the Actuator Disc Model

Herein the equations of thrust,power and efficiency for the actuator disc
model are derived by applying conservation laws to a control volume that
is stationary with respect to the far field and which encloses the disc and
wake (Fig. 5).

Conservation of axial momentum yields,

0 .
—/pvzdr+/pv2<17oﬁ>ds:T—/p<ﬁok>ds (78)
ot Jx s s
Since the pressure is everywhere equal to ambient pressure po,
/p<ﬁoE>ds:0 (79)
S

The rate of increase in axial momentum within the control volume due to
the rate of elongation of the wake,

%/Spvzd‘r =pwVA (80)

and, the net momentum flux across the control surface

/Spvz<1')‘0'h‘>ds:pw2A (81)
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yield, upon substitution into equation 78, an expression for the total thrust,
T = pwA(V + w) (82)
or, in coefficient form based on the area of the far wake, A = TR%,
Cs,o = 20(1 + W) (83)

The following equation represents the principle of energy conservation ap-
plied to the same control volume,

dE
%L%pﬁdr%—[q%pvz<1'J’oﬁ>ds=—(—l-t-—/;p<17oﬁ>ds (84)

where %If: is the rate of energy loss to the slipstream. Evaluating each term
in the above equation, in accordance with the actuator disc model, gives an
expression for the energy loss rate,

dE. 1 ,

— = —pw*A(V +w 85

- = 50 AV +v) (85)

or

Cea = D2 (1 + W) (86)
Then, the total power, P = TV + dFE/dt, is given in coefficient form by
Cpa = Cs,q + Cea = W(1 + @)(2 + @) (87)

to give the efficiency
Cs.a 1

= '—1 —
¢pa  1+3®

Ma = (88)
The initial expectation is that the actuator disc model should agree with
the limit case A\; — 0 of Theodorsen’s equations. However, a comparison of
equations 83, 87 and 88 with the asymptotic relations 77 belie intuitive ex-
pectation. This is consistent with Theodorsen’s assertion that the actuator
disc model is not a true limit of the propeller as A; — 0 3.

To reconcile the differences between the two formulations, Theodosen’s
pressure integral can be evaluated separately in the limit A; — 0 . The
contribution of wake overpressure to the thrust expression is then

7 = [(p- p)ds (89)

13T Theodorsen, Theory of Propellers (New York:McGraw-Hill, 1948), p. 31
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but, substitution of equation 59 into equation 89 gives

T = p/(wvZ - %v2)ds (90)
Evaluating 90 in the limit A\; — 0 yields
T = p—;-sz (91)
or,
& = 0° (92)

Similarly, the contribution of the pressure term to the energy equation is
then

dFE
E’ - /(p - pO)vzdS

1
p/(wvf - -2-v2vz)ds (93)

In the limit as A; — 0, equation 93 becomes

o = PGui)A (94)
or, in coefficient form
be = @° (95)
and
& = w* + @° (96)

Subtracting 92 and 96 from equations 77 yield expressions without the con-
tribution of wake overpressure in the limit of small A;:

e = 2@(1+%@)—w2

= 2u0(1+ ) (97)
¢ = 20(l+ )% - (@0? 4+ @°)
= o(l+ )2+ o) (98)

The above equations are precisely the same relations derived from actuator
disc theory . Therefore, the difference between actuator disc theory and
the limit case Ay — 0 of Theodorsen’s equations lies in the absence of the
pressure integral [(p — po)ds.
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4.2 Limit Case: B — oo

As shown in section 2.5.1, the Betz condition governs the optimum circu-
lation distribution as the blade number approaches infinity resulting in the

exact solution,
2

z
z2 4+ A\?
where 2 = r/R. Analytic solutions for the loss coefficients are readily ob-

tained by substituting the ideal circulation distribution 99 into equation 54.
Theodorsen gives,

K(z) = (99)

K(A) = 1-=A2In(1+1/2%) (100)
2

M) = 1+ at = —2X2In(1 + 1/22) (101)
1+ A

As the blade number approaches infinity, the distance between adjacent
vortex sheet approaches zero for an arbitrary advance coefficient. Conse-
quently, radial flow becomes non-existent throughout the slipstream; but, in
constrast with the limit of small advance coefficients, swirl loss is maintained
for all A; > 0.

4.3 Limit Case: \; — oo

As shown in section 2.5, the helicoidal vortex system can be characterized
by either an equivalent axial velocity w or an equivalent angular veolcity @.
The helix angle may then be represented by one of the following,

tanO(r)—Pm—V+w— | "
T 2rr T wr  (w-@)r 7/Re

(102)

For large advance coefficients, the helicoid may be considered to be a ribbon-
like structure of width 2R, rotating with an angular velocity @. Ribner 4
examined such a case for which it was shown that the kinetic energy per
unit length of the wake of a two blade propeller at large advance coefficients

approaches the value
£ = llﬁpa:?Rgo (103)

1 H.S. Ribner, ’A Transonic Propeller of Triangular Plan Form’, NACA TN 1303, 1947.
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Qo' /Qsd
1
1.35
1.621
2.03
2.33

oo AW N

Table 1: Propeller Torque Ratios for Infinitely Large Advance Coefficients

However, another expression can be derived from Theodorsen’s formalism
1
£ =x(Ag; B) - §pw27ngo (104)

where k();; B) denotes the total kinetic energy loss factor (or mass coeffi-
cient) of a B-blade propeller. Equating relations 103 and 104 generates an
expression for the mass coefficient of a 2-blade propeller,

1

k(A B = 2) 23! 3V
t

(105)
Ribner further demonstrated that torque, ng ) , scales with kinetic energy

per unit length of the ultimate wake for large \; . It then follows from 104

k(Ay; B = 2) . QS,?
k(As; B) ngB)

(106)

so that
(B)
K(\i; B) — —2 (107)
8x2QY
where the torque ratios '° are given by table 1. From the definition of
the axial kinetic energy loss coefficient (eqn. 72), it can be easily shown
that ¢/k — 0 for A; >> 1. Consequently, equations 68, 69 and 71 with the
substitution A\; = (1 + w)A become in the limit

Q%) a(1+3w)
0@ (1 + )

Cs

(108)

1SH.S. Ribner, ’Damping in Roll of Cruciform and Some Related Delta Wings at Su-
personic Speeds’, NACA TN 2285, 1951.
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QP @

Cp = . =

P 0@ (1 + )
143w

7% (1+ w)

The displacement velocity may be expressed in terms of the ideal efficiency

2(1 - n)
2n -1

w =

(109)

so the equations 108 are expressed in terms of the ideal propeller efficiency

Q%) n(1-n)

© T 0P T 118}
QR (1-n)
% = om (111)
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Rigid helical vortex sheet

Figure 6: Coordinate System of the Computational Domain

5 Numerical Algorithms

Following Theodorsen’s approach, only the properties of the far wake, char-
acterized by the generalized advance coefficient, are considered in the evalu-
ation of ideal propeller behavior. Within the far wake there exists a certain
distribution of circulation I' (7)) for which the self induced motion results
in minimum induced energy loss. The following discussion describes the
computational algorithms employed to calculate optimum circulation distri-
butions and the associated parameters derived therefrom.

Betz’s theorem stipulates the condition necessary for a propeller to op-
erate at maximum ideal efficiency (section 2.4). In short, the Betz condition
requires that the vortex sheets move as if rigid, which is equivalent to re-
quiring the apparent axial velocity w to be independent of radius.

Approximate solutions for the ideal circulation function are obtained by
discretizing each helical vortex surface of constant pitch into a finite number
of helical vortex filaments. The induction of the vortex system is calculated
at specified control points by means of computed influence coefficients and
unknown filament intensities. In this way, the Betz condition is manifest as
a linear system of equations in terms of unknown filament strengths.

A cartesian coordinate system is constructed with the x axis coincident
with one vortex sheet and the z coordinate direction forming the wake axis.
The y axis then completes the right hand coordinate system. The situation
is shown by fig. 6. By virtue of skewsymmetry, the displacement velocity
at one end of the semi-infinite wake extending from z = 0 to z = +o0 is
precisely one half of the value induced by the infinite wake. Full advantage
is made of this result to minimize computational cost: only one half of the
wake needs to be considered in the computation of influence coefficients. The
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3 flelical Filaments

Xt 0 7= +00

Figure 7: Control point-vortex filament positioning

zy plane may then be viewed as a cutting plane which eliminates the region
z < 0 from consideration. The control point and vortex filament geometry
is illustrated by fig. 7. Each z; denotes a point at which a filament is severed
from the upstream section of the wake. The direction of vorticity is defined
as positive in the rearward sense. The radial distribution of circulation is
then modelled as a summation of helical vortices of strength v; ~ —(%)6:1:.

In accordance with the Betz condition, the infinite wake must induce
a velocity of magnitude w cos 8; locally normal to the helicoid at point P;,
where 6; is the local helix angle, and w is the unknown constant displacement
velocity. Let #; be the velocity induced by the collection of vortices of
strength 7; which approximate the infinite wake. If we further define #; as
the local normal to the vortex sheet at P;, then to satisfy the Betz condition
we must have

3
Gom =Y vfnd = wcosb; (112)
a=1
with the local normal given by helicoid geometry,
n} = 0
n? = —sin; (113)
nd = cosé;

The local velocity ; results from the combined influence of all helical vortex
filaments. Each velocity component of %; may be expressed as the sum of
the product of vortex strength and influence coefficient pairs over all helical
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filaments .
vf‘Ech?}‘j ' (114)

where 4; = v;/wl. Equation 114 into 112 yields
3 m
z(chf‘j‘/j)n? = wcosb; (115)
=1 j=1
Exchanging the order of summation,

i Z ciniq; = cos ; (116)

F; = Z e (117)
finally results in the system of equations
m
Y Fijyj=cos; 1<i<m-—1 (118)
i=1

where m is the number of helical filaments per blade. With the condition of
vortex continuity

S =0 (119)
i=1

appended to the linear system 118, the discrete approximation to the circu-
lation distribution is readily obtained.

5.1 Influence Coefficients

The Biot-Savart law (section 2.2.1) is used to compute the velocity induced
by a line vortex. The induced velocity at point P; due to a single helical
filament of radius r; is then

3
= E: a o
v; = ’v,-jg
a=1
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v [ Axdl

= W (120)
where e* = principal coordinate unit vector
T = helical path of radius r;
p = vector from P; to a point on T

However, the above equation fails to account for more than one vortex sheet
(i.e. for more than one propeller blade). To account for multiple blade num-
ber it is necessary to include the induction from a set of helical filaments of
the same radius with one filament associated with each blade. The induced
velocity of B filaments of radius r; at P; becomes

3
T o= wj ) et
a=1
wl'y”j i p X dl (121)
47!' k=1 Tk Iﬁ]S

where T} is a vortex filament of radius r; from blade k. Expressing the
Biot-Savart integral in equation 121 in non-dimensional form gives finally

3 B — T
oo M (P/Roo) X (dL/Roo)
Y o= == Z/ L (122)
a=1 k=1"Tk |7/ Rool
The cartesian coordinates of a point on the helical filament T, are defined
by (5]1-, ]2,513) Expressed in terms of the parameter v, the coordinates are
given by

Jl- r; cos(v + Px)

2 = rjsin(v + ¢) (123)
? = )‘tRooV
(124)
where an(k — 1)
w(k —
Yk =—p—" (125)

The angular separation between helical filaments originating from adjacent
propeller blades is 1x41 — 9. If the coordinates of the control point P; are
designated by P; = (¢},¢?,(?) then the vector j can be expressed as

p=(rjcos(v+ ) — ¢} risin(v + ¥r) — ¢3 MRoov — () (126)
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The infinite wake influence coefficients are then given by the expansion of

equation 122,

- 7 g s
Qo M /oo i Fosin(v + §i) — g — 7 cos(v + ) (v — %o
gy 2B =00 p—1 Iﬁ/Rools
Ty 1 Ty . 3
. = _)\_tz o i R{;COS(V + i) — EC: + ﬁtSIH(V + ) (v — /\cCR!oo .
ij 2B J_ F—1 Iﬁ/Roo|3
5 1 2
% = it— T_J/oo ) 7#-:—é;cos(u-i-ibk)—é‘;sm(y.}_@bk)du (127)
ij 2B Roo oo 4 1P/ Reo|?
and
- 3 r. r: Czl Clz .
o 0
Ly (S 4 (- Sy (128
+(Roo +(Roo 4 = 3 )

However, skewsymmetry of the wake helicoid about v may be exploited to
obtain

/\2

o = —EtIQ(O,oo) (129)
A T;

¢ = Et'ﬁi-fs((),oo)

where I5(0,00) and I3(0,00) represent the values of the corresponding in-
tegrals of 127 with ¥ = 0 and v = oo as the bounds of integration. Since
the integrands of equations 127 decay as 1/|p]® , only the portion of the
wake near the control points needs to be considered. For all practical pur-
poses the wake may be truncated at a predetermined distance downstream.
Hence, the functions /3(0,00) and I3(0, 00) are approximated by I2(0,7) and
I3(0,7) where T is expressed in terms of the number of wake diameters, n,
downstream of the control points

_2n

Y

Direct numerical integration is used to evaluate I5(0,7) and I3(0,7) for
n = 5. The helix is approximated as a set of ring vortices plus a sheath

T

(130)
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of axial vorticity beyond n = 5 to a final truncation point at n = 15. The .
purpose of this approximation is to further refine each influence coefficient

value using less computer time than would otherwise be necessary if the

quadrature algorithm were applied over the interval » = 0 to n = 15.
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5.2 Quadrature Algorithm

Initially, standard quadrature routines from IMSL and NAG libraries were
used to obtain numerical values for influence coefficients. Code execution
profiling demonstrated that numerical integration consumed the greatest
proportion of total computer processing time. Early attempts to improve
performance focused on reducing the domain over which quadrature algo-
rithms were applied by employing more approximate models for the far wake.
Although modest improvements were made, greater performance gains were
realized through code optimization specifically for the Cray X-MP/24. It
was necessary to specially design a quadrature algorithm to take full ad-
vantage of the vector processing capability of this computer system (a brief
outline of the vector processing concept has been provided in Appendix B).

The following criteria were applied in the design of the quadrature algo-
rithm:

e Maximize the degree of vectorization
e Minimize the number of quadrature points

The degree of vectorization was increased by storing quadrature points
in two large sparse 1-D arrays to which up to 32 points are added at a
time. Having the quadrature points stored in vector data constructs permits
vectorized point evaluation and vectorized application of the quadrature
rule.

An important design requirement is to generate integral estimates with
the least number of total function evaluations. Once again, the aforemen-
tioned data construct is advantageous since previously calculated quadrature
points are retained for successive refinements. The algorithm must generate
an integral estimate to within a specified tolerance or relative error. Gen-
erally, more closely spaced quadrature points will result in a more accurate
integral estimate. But, integrand properties may be such that a high point
density may only be required in a certain part of the domain to reach the de-
sired level of accuracy. Early attempts consisted of concentrating quadrature
points in regions nearest control points where the close proximity of vortices
causes greater rates of change of each integrand. This approach met with
limited success: performance was inconsistent across the parameter space.
Finally, interval refinement was made dynamic so that the algorithm auto-
matically responds to the behavior of each particular integrand. A stack
based adaptive algorithm was designed to successively refine each half of an
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interval in which convergence is not yet achieved. Consequently, quadrature
points are concentrated only in regions of more difficult integrand behavior.

The choice of quadrature rule affects the number of function evaluations
to convergence. A composite Newton-Cotes 5 point rule was selected to
generate integral estimates. With five quadrature points over the interval
[a,b], the 5 point rule is

b
/ f(z)dz =~ %[7f0 +32f1 +12f; + 32f3 + 7 f4) (131)

where h = (b—a)/n is the width of each one of n subintervals. If n is evenly
divisible by four, the following composite rule follows directly from 131

/bf(z)dac ~ %[m +32fi +12f,+ 32fs+ 14fs+---+ 7f]  (132)

The Newton-Cotes 5 point rule is essentially an integral estimate given by a
quartic polynomial fit over four subintervals; hence, the 5 point rule is exact
for all polynomials of degree < 5. The following illustrates the algorithm:

1. Divide the main integration interval into 32 subintervals.
2. Apply composite rule 132 to obtain integral estimate I;.
3. Divide the interval into 64 subintervals.

4. Apply 132 to obtain I.

5. If |(Iz — I)/I2| is less than the specified tolerance, then the desired
integral value has been reached for the current subinterval.

6. If |(I; — I)/ 15| is greater than the specified tolerance, then divide the
current interval in half. The location within the work arrays of one
half of this interval is saved in a stack to be processed at a later time.
The other half interval is then processed through stages 2-6.

7. If convergence is difficult to obtain, many iterations of 2-6 will take
place with many stack entries. Once convergence is reached for a subin-
terval, a previously stored subinterval is then recalled and processed
in accordance with 2-6.

8. The final integral estimate is obtained once the stack is empty i.e.
convergence has been achieved for all subintervals.
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Figure 8: Two-dimensional representation of helical vortex system

The final algorithm design increased the average speed performance of
the entire code by a factor of 2-3 times. In certain extreme cases such as
large blade numbers and small advance coefficients, a better than four-fold
increase in performance was realized.

5.3 The Far-Wake Approximation

The vorticity vector along a helical vortex line may be resolved into ax-
ial and circumferential components. The situation is illustrated in a two-
dimensional representation (*unfolding’) of a succession of helical filaments
of radius r (fig. 8)

The vorticity vector 3 along a helical filament may be resolved into axial
and tangential components ,, , respectively. Total tangential vorticity
due to a set of vortex filaments of equal radius is approximated by a cascade
of ring vortices centered about the wake axis; and, total axial vorticity is
approximated by a sheath of vorticity which is uniformly distributed over
an imaginary cylindrical surface on which the helical filaments lie.

5.3.1 Ring Influence Coefficients

Ring vortices are separated by a distance equivalent to the axial separation
between adjacent helical filaments, | = P, /B. Each ring is positioned
according to the relation,

2 2k — 1 27!'/\t

where n is the number of wake diameters over which numerical integration
is applied. Rings are added in accordance with equation 133 until a distance
of 15 wake diameters from the zy plane is reached.

The approximate nature of the ring vortex cascade is such that a high
degree of accuracy for each constituent ring influence coefficient is essentially
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Figure 9: Approximation to a ring vortex

superfluous. Sufficient accuracy was obtained by generating each ring vortex
from 15 straight-line segments. The advantage of this formulation lies in the
fact that the influence coefficients for each segment are expressed in closed
form. With the ring vortex geometry shown in fig. 9, the influence coefficient
of ring vortex k at control point P(¢},0,0) is given by a summation over 15
straight-line elements,

/\t 15
Gr=7g > {(z5 = (H(wpt+1 — ys) — yp(zp41 — z5)} D (134)
p=1

where
1 a+b b ]
D = - — 135
ac — b2 [\/17+2b+c Ve (135)
a = (zp41—2p)° + (yp+1 — yp)? (136)
= (zp41 —2p)(@s — 1) + (Y41 — Yp)p (137)
c = (zp—C)+y5+7 (138)

5.3.2 Sheath Influence Coefficients

Axial vorticity 2, is smeared out over a cylindrical surface of radius r;
to form a vortex sheath. Consider the corresponding two-dimensional case
illustrated by figure 10. If the sheath vortex density is defined as 7, then
circulation about the differential arc element is

dl', = ysrdv ; 7s = constant (139)
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Figure 10: Sheath Induction - Exterior Region

From the definition of a 2-D vortex, the magnitude of the induced velocity

at P, is simply
~vsrdy

2rd
By symmetry it can be seen that the integrated velocity due to the entire
sheath will retain only the y component. Then,

|dd| =

(140)

d
dvy = 7;;; - cosa (141)
but .
T — T Ccosv
COB = g (142)
giving

¥sT(z — T cosv)
27w d?

The distance d from the field point to a point on the sheath is also a function

of v

dvy = dv (143)

d* = 2?4+ r? - 2zrcosv (144)

giving the integral
YT 2% T —rcosv
= d 14

by 27r/0 22+ 12— 2zrcosv {145)

which finally yields
21Ty,
vy =5 (146)

It can be readily seen from equation 146 that the vortex distribution is
equivalent to a point vortex of intensity 277y, situated at the center.
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Figure 11: Sheath Induction - Interior Region

The induced velocity field in the interior regions of a vortex sheath can
be explored through arguments of symmetry. Consider an arbitrary point
P: within the circular region enclosed by the vortex sheath, as shown by
figure 11. Consider two chords which meet at P; with the differential angle
dv. Further, denote the point on the circumference which is a distance of
ry for P; by a. Similarly, denote the point on the opposite side which is a
distance of r9 from P; by b. The differential arc lengths at a and b are then

EEIN . .. (147)
cos Qg
d
qh = (148)
cos ap

where a, and a; are angles between the tangent to the circumference and
the normal to the chord at a and b respectively. The velocity induced at P
by the vortex elements of length ds, and ds; is

di = ['ysdsa B Ysdsp

= 27”2] f ; 7 = unit normal to ab (149)

Upon substitution of equations 148 one obtains

sd
w=7”[1 - l]ﬁ (150)
2w |cosa, cosqy

But, an axis of symmetry bisecting the chord ab will always exist. There-
fore, the angles a, and a; are equivalent, which results in do = 0. The
induction of the circumferential distribution of vorticity can be derived by
the summation of all possible opposing element pairs in the above fashion.
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Consequently, the flow velocity at all points within the circular region is
equal to zero. The previous derivations have been developed assuming two
dimensional flow. However, similar conclusions can be drawn in an exten-
sion to three dimensions. The parallel 3-D case is given simply by replacing
the 2-D sheath with a cylindrical surface of vorticity; and, the equivalent
point vortex is replaced by a line vortex of infinite extent. As a part of
the far wake assumption the sheath approximation is introduced for the
portion of the wake beyond 29/D., = 5. Consequently, the contribution
to the rotational component is approximated by the influence coefficient of
a line vortex coincident with the wake axis extending from z/D., = 5 to
z2[Do = 400. Specifically, for B filaments of radius r; the approximate
influence coefficient values for the far wake approximation are
E?j = 0 Cil <rj

~2. - X X _ Zo/Roo 1 i

(151)

5.4 The Optimum Circulation Function

The solution of the system of equations 118 represents a set of nondimen-
sional vortex filament intensities {§;}. The ideal circulation function is then
approximated by the distribution formed by a set of step discontinuities -
each step being of magnitude 4;. Let 2; = 7;/R be the nondimensional
radius of a particular set of B helical filaments. The assigned value for the
circulation distribution function at z; is assumed to be equal to the average
across the step as shown by figure 12. The approximate circulation intensity
at points within {z;} is then

» 0 j=1,7=m
= { B+ D % 1<i<m i
Functions K(A¢;z,B), calculated using 100 vortex filaments per pro-
peller blade, are presented as lines of constant radius of which z = 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95 (see figs. 20-28). These curves
essentially represent a cross plot of data from equation 152 which approxi-
mates the function K (z;A;, B). Circulation functions are computed for 22
values of A; over the interval 0.1 < A\; < 3. The curves are extended to
At = 0 using cubic spline interpolation over the interval 0 < X\; < 3. The
spline is evaulated using theoretical boundary values K()\; = 0;z,B) = 1
dK e
and Lo ™ 0.
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Figure 12: Step Approximation to the Ideal Circulation Function

5.5 The Mass Coefficient

The mass coefficient is defined by the integral (see section 3.1)
1
k(Ay; B) = 2/ K(z; A\, B)zdz (153)
0

which is numerically evaluated by exactly integrating a cubic spline which
is fit to the discrete distribution 152. A cubic spline is a piecewise cubic
polynomial interpolation function in which the first and second derivatives
are continuous across each data point. The spline consists of m — 1 cubic
polynomials each of which is defined by

Si(z) = a?—}—a;(x—xj)+a§(z—xj)2+a?(a:—xj)3 (154)

where
z; <z < Tjp
1<j<m-1 (135)
Finally, the mass coefficient is approximated by
m—1 Tit1
KA B)~2 ) / Si(z)zdx (156)
j:l Tj

The accuracy of each mass coefficient estimate improves with the number
of helical filaments used to approximate each vortex sheet; however, practical
computational limits are reached very rapidly as the number of filaments
increase because of the m? dependence of processing time. One hundred
filaments per blade was finally selected as the density limit. But, even
more accurate mass coefficient values were obtained by extrapolating to an
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infinite vortex filament density. Final mass coefficient values are obtained by
extrapolating the series {Km=25, Km=50,Km=100} to the limit m = co. The
assumed interpolation function

Rm = go + g1/m + go/m? (157)
is used to obtain the refined estimate
k(A; B) =~ n}imoo Em = 9o (158)

Mass coefficient values are calculated in this way for a set of values over
0 < A < 10.

Early calculations assumed endpoint values of the circulation function to
be equal to one half of the step height at = 0 and z = 1; but, the circulation
should be identically equal to zero at the endpoints of the distribution. It
has been shown that this oversight introduced less than 0.05% error in the
final mass coefficient values.

5.6 Evaluation of Thrust and Power Coefficients

From section 3.3, the main performance parameters are given by

1 e
& — 2,.‘ 0 — —_—
c nw[1+w(2+n)]
¢, = 2kw(l+o)(1+ m%) (159)

14+ @(1/2 + €/k)
1+ w)(14 w-€/k)

'[I:

Since the coefficients x and € are functions of blade number and the far wake
advance coefficient, the following functional dependencies are evident

Cs = fn(At,’lD,B)
¢, = Fu(h,®,B) (160)
n = fn(AtamaB)

But, this can be carried a step further since the far wake advance coefficient
is related to the advance coefficient by

At = (14 B)A (161)
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hence, the functional relationships become

¢s = Fu(A®,B) (162)
¢y = Fal\ ,B) (163)
n = fn(’\aﬁ)aB) (164)

However, it is more convenient to eliminate the displacement velocity in the
thrust and power relations using

® = Fp(A, 1, B) (165)

which is derived from 164. Hence, the more abstract displacement velocity
is replaced by the propeller efficiency 7,

Il

Cs ]:ﬂ(’\7 77,B) (166)
CP = fn(’\,an)

Therefore, propeller thrust and power may be expressed in terms of the
advance coefficient (which is approximated to first order by the propeller
advance coefficient - see section 7), ideal efficiency ( accounts for a total of
four loss mechanisms), and the blade number. Following the format due
to Kramer 6 curves of thrust or power vs. advance coefficient at constant
efficiency were generated for different blade numbers. Figures 29-37 give
curves of ¢; vs. A and figures 38-46 represent curves of ¢, vs A - all curves
are at constant 7. These graphs include the theoretical asymptotes corre-
sponding to the limit A — 0 (see section 4.1). This format is a substantial
improvement over Theodorsen’s format in which graphical iteration is re-
quired. Instead, iteration is performed for the user which allows for direct
interpretation of ideal propeller behavior.

The algorithm for generating curves c,(A;7, B) and c,(); 7, B) begins
with solving relation 165 for the displacement velocity: For specified (), n, B),
the required value for @ is the root of the equation

n(1+m)(1+£w)—(%+§)w—1=0 (167)

Equation 167 is not a quadratic function since € and « are implicit functions
of @ through equation 161. The functions (A, @, B) and €(\, @, B) which

®K.N. Kramer,” The Induced Efficiency of Optimum Propellers Having a Finite Number
of Blades”, NACA tech. memo. No. 884
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is derived therefrom are limited by the domain of available mass coefficient
data. Consequently, the iteration algorithm must be guaranteed to operate
within the limited domain at all times. A Newton-Raphson type algorithm
illustrates what could otherwise occur: if at some time during the iteration
a point near a stationary value is encountered, the next iteration could
conceivably go well outside of the domain. The method of regula-falsi 17
was selected because it has a relatively fast rate of convergence and it always
stays within a determined bracket about the zero.

For each iteration, the required values of € and s are calculated from
an interpolation function which is constructed from previously computed
data {k(A; B),1 <i < N} where N is the total number of points defining
the mass coefficient. A cubic spline, generated with free end boundary
conditions, consists of N —1 piecewise cubic polynomials defined in a similar
fashion to equation 154. The spline is then used to calculate the necessary
coeflicients:

Q

K(A¢) Si(Ae) A A< Ay (168)
’—i'(/\t) ~ 1.*.%?/(\{\75.‘1_‘5:2%2 At,‘ S’\t S’\t.‘.n

Once w(A,n, B) is determined, then substitution into equations 159 with the
corresponding interpolated values for k and € yield the desired thrust and
power coefficient values.

'"R.L. Johnston, Numerical Methods (Toronto: J. Wiley & Sons, 1982), p. 162
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6 Algorithm Verification

Verification of the numerical algorithms may be divided into three categories:
1. Comparison with results from Theodorsen and Goldstein.
2. Numerical experiments.
3. Numerical estimates of limiting values and comparisons to theory.

In Theodorsen’s approach, values characterizing ideal propeller behavior,
including high loadings, are referenced to the far wake. Goldstein computed
ideal circulation functions assuming light propeller loadings or, equivalently,
vanishingly small displacement velocites w. But, Goldstein circulation func-
tions are also applicable to high loadings if values of advance are defined
in terms of the far wake. A number of data points calculated by Gold-
stein ! for a two blade propeller at A; = 0.1,0.25 along with solutions from
Kramer !° are provided by figure 15 to facilitate a comparison with computed
results. Data from Kramer were chosen for A\; = 0.5,1.0 because Kramer
managed to circumvent some of the convergence difficulties experienced by
Goldstein at large advance coefficients. These points are plotted with dis-
tributions generated by the code using 100 vortex filaments per blade for
A+ = 0.1,0.25,0.5,1.0. Very good agreement is observed. The general ten-
dency is for the code generated curves to lie above values from Goldstein
and Kramer.

Goldstein circulation distributions for A\; = 0.1,0.25 were utilized to
validate extrapolated mass coefficient estimates. The means of verification
consists of calculating the correction factor to K100 based on the differences
between the computed circulation distribution Kj99 and Goldstein’s data
K,. These values are then compared with the correction factors derived by
extrapolation (section 5.5). Define the function ¢(z) such that

K, (2) = [1 + ¢(2)] K100(c) (169)

Then, the corresponding mass coefficient values are related by

1
Kg = K100 + 2/ o(z)z K100(z)dz (170)
0

18T, Theodorsen, Theory of Propellers (New York, 1948),p. 20
Kramer, op. cit.
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m )\t ={J.2 )\t =0.5 /\t =1.0 )‘t = 5.0
25 | .62944 .27485 | .10074 .0050302
50 | .62792 .27331 | .10009 .0049963
100 | .62614 27209 | .099587 | .0049696
200 | .62490 27133 | .099275 | .0049529
200 | .62499 27137 | .099291 | .0049538
oo* | .62367 27058 | .098966 | .0049364

Table 2: Mass coefficients based on m filaments/blade(B = 2); * = extrap-
olated value based on m = 25,50, 100

Consequently, the relative difference between the two mass coefficient esti-
mates is then
Kg — K100 _ 2 3 (z)z K100(2)dz
Koo 2]01 zKy00(z)dz

Equation 171 simply represents an average of the relative difference in the
circulation functions that is weighted by zKjoo(z). A discrete version of
the weighted average was applied to the data listed by table 9 and table 10.
For At = 0.1 the weighted relative difference is -0.4% compared with the
correction factor of -0.3% predicted by mass coefficient extrapolation. Simi-
larly, the weighted relative difference for A; = 0.25 is -0.6% and a correction
factor of -0.57% is predicted by mass coefficient extrapolation. Correction
factors for all blade numbers range from -0.2% for small advance coefficients
to -0.8% for large advance coefficients. Comparisons with Goldstein’s data,
(three figure accuracy) lend a great deal of credibility to the refinement of
mass coefficient values through extrapolation. Further validation of the ex-
trapolation procedure was provided by comparing mass coefficients derived
by extrapolation to 200 filaments per blade with directly computed values
(m = 200). Test results for B = 2 at various values of advance are given
by table 2. It can be seen from this table that the relative differences be-
tween extrapolated values (m = 200) and explicitly computed results are
one order of magnitude smaller than the relative differences between k¢
and k00. Spotchecks for other blade numbers confirm these findings.
Various numerical experiments were performed to estimate the magni-
tude of error introduced by wake truncation and the far wake approximation.
The effect of truncation was gauged for B = 2 and B = 6 by the progression
of a series of mass coefficient values with {n = 1,2,5,10,15} where n is the
number of wake diameters to the point of truncation. Each value is com-

(171)
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n /\t =0.2 )‘t =05 /\t =1.0 /\t =5.0

1 | .6632 2784 .1001 .004966

2 | .6344 | -4.3% | .2727 | -2.0% | .09932 | -0.8% | .004942 | -.5%
5 | .6249 | -1.5 2709 | -.7 .09906 | -.3 .004940 | -.04
10 | .6235 | -.2 2707 | -.07 .09902 | -.04 .004940 | -

15 | .6232 | -.05 2706 | -.04 .09901 | -.01 .004940 | -

Table 3: Influence of truncation point on mass coefficient estimate, B = 2

n At =0.2 At =0.5 Ar = 1.0 At =5.0
1 | .8466 .4700 .1934 .01011
2 |.8019 | -5.3% | .4549 | -3.2% | .1902 | -1.7% | .01004 | -.7%
5 |.7869 | -1.9 4499 | -1.1 1892 | -5 .01003 | -.1
10 | .7846 | -.3 4492 | -.2 .1891 | -.05 .01003 | -
15 | .7842 | -.05 .4490 | -.04 1891 | - .01003 | -

Table 4: Influence of truncation point on mass coefficient estimate, B = 6

puted without the use of the ring/sheath approximation; but, extrapolation
to an infinite vortex filament density is performed. The degree of error due
to truncation is inferred from the rate of convergence of each series. The
results are given by table 3 and table 4 for \; = 0.2,0.5,1.0,5.0. It has been
generally observed that the change in mass coefficient values from n = 10
to n = 15 is less than 0.05%. It is perhaps a little surprising to realize
that for small \; mass coefficient values reach 5-10% of their final values
after only n = 1; and, mass coefficient values are within 1% of their final
values for large \;. The error introduced by the far wake approximation is
estimated by a few spot checks computed with numerical integration of the
Biot- Savart law over the first 5 wake diameters (specified integration rel-
ative error = 0.000005) followed by the ring/sheath approximation beyond
n = 5to n =15 (table 5). A comparison with results generated exclusively
from the quadrature algorithm to n = 15 implies that the ring/sheath model
introduces an error typically in the range of 0.05% to 0.1%. Combined, trun-
cation and the ring/sheath approximation introduce errors in the order of
0.1%.

Figure 16 gives the mass coefficient for B = 2,3,4,6,10,12,00 with a
few data points taken from Theodorsen ?° for comparison. Note that data
representing the case B = 6 were obtained by graphical interpolation from

20Theodorsen, op. cit., p.36
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B|lXx=02|X=05]|X=10]|XA=5.0
2 | .6236 .2706 .09897 .004936
6 | .7845 4491 .1889 .01002

Table 5: Mass coefficient values - wake approximation over the interval
5<z/De <15

a set of curves 2! and are subject to graph reproduction and reading error
whereas the data for B = 2,4 are tabulated and are not subject to such
additional error. The data points from Theodorsen generally agree with
the computed curves to within 1-3%. Similarly, figure 17 compares the loss
coefficient ratio curves ¢/k with tabulated data for B = 2,4. However, a
discrepancy with Theodorsen appears for the case B = 4 for A; > 0.75. Since
the behavior of Theodorsen’s results is inconsistent with behavior exhibited
by curves B = 2 and B = oo (known exactly), these points can be safely
discounted.

Theoretical propeller characteristics at large values of advance (see sec-
tion 4.3) are used to formulate a further check on numerical solutions. The
asymptotes to which computed values should progress are estimated by ex-
trapolation and compared with theory. Ribmer 22 showed, in effect (see
pp. 28 herein), that for large A; the mass coefficient of a two blade propeller

behaves as 1

8x?
Further, it was shown that propeller torque scales with wake kinetic energy
per unit length giving,

k(A; B = 2) —> (172)

(\i; B L1eR 173
"6 B) = g L@ (173)

Theoretical torque ratio values for different blade numbers are listed in ta-
ble 1. For convenience, the torque ratio is denoted by

QL

i)
Although the domain of computed data is A; < 10, the value of op can be
estimated from the ratio of code generated mass coefficients to the theo-
retical values {k(\;, B = 2); A\; >> 1}. An assumed extrapolation function

(174)

21Theodorsen, op. cit. , p.133
22Ribner op. cit.
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At=8 /\t:9 At:].O 8&1
.0019425 | .0015365 | .0012455 | 0.998
.0026114 | .0020655 | .0016744 | 1.347
.0031471 | .0024894 | .0020180 | 1.618
.0039460 | .0031220 | .0025310 | 2.024
.0045114 | .0035692 | .0028938 | 2.327

o o W Ny

Table 6: Mass coefficients and resulting approximate torque ratios

was used to estimate the value of this ratio in the limit of large advance
coefficients. If the mass coefficient is assumed to take the form

a as as

then applying the interpolation condition at points {\;, = 8, A, =9, =
10} yields the unknown constants a;. The extrapolation will approach the
curve a;/A? for large A;. The ratio of approximation 175 for A; >> 1 to
equation 172 yields

oB = 8a; (176)

The results are given by table 6. The torque ratios deduced by extrapolated
code output agree with theory (table 1) to within 0.2% .

A similar approach was taken to find the asymptote of the thrust coeffi-
cient curve for large A;. The following assumed function is used to extrapo-
late thrust coefficient data:

by by b3
Cs:ﬁ-*-ﬁ-{_.)? (177)
Hence, for large values of advance, the thrust coefficient will behave as
by
Cs — v (178)

If the numerical algorithms for ¢, are correct then by, which is derived from
computed data using equation 177, should match theoretical expectation
(section 4.3), namely

1 =
by = 577(1 - ﬂ)ag—) (179)

Results are provided by table 7 and table 8. Excellent agreement is realized
for most cases; however, agreement is not as good for the case n = 0.5.
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7 by 21(1 = n)og
0.5 |0.1297 | 0.1250
0.7 | 0.10503 | 0.1050
0.9 | 0.04502 | 0.04500
0.95 | 0.02373 | 0.02375
0.99 | 0.004945 | 0.004950

Table 7: Constants defining ¢; for A >> 1; (B = 2)

7 by 21(1 — n)og
0.5 | 0.2554 | 0.2913
0.7 | 0.2439 | 0.2447
0.9 |0.1052 | 0.1049
0.95 | 0.05528 | 0.05534
0.99 | 0.01151 | 0.01153

Table 8: Constants defining ¢s for A >> 1; (B = 8)

This is probably due to the limited domain of computed data which spans
0.06 < A\; < 10. Consequently, the behavior in the limit is evaluated using
much smaller values of A for large w. In fact the estimate for n = 0.5 had
to be computed using the values {\ = 0.6,0.7,0.8}.

7 Slipstream Contraction

In addition to axial and rotational motion, wake self induction maintains a
generally small radial component, v, which is responsible for contraction of
the slipstream. The magnitude of v, decreases from its value at the propeller
to asymptotically approach zero in the far wake: arguments of antisymmetry
can be used to prove that radial motion of a filament must vanish infinitely
far downstream. Consequently, the wake radius asymptotically approaches
the far wake value R, starting from the radius at the propeller R.

For heavy blade loadings, slipstream contraction is important in relating
conditions in the far wake to conditions at the propeller - a necessary task in
applying Theodorsen’s theory. The propeller advance coefficient A\, = V/wR
is related to the far wake advance coefficient by

Roo
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Roo /\t

R 1+w

and thrust and power coefficients based on parameters at the propeller plane,

P
= — 181
Cp.p %pVBﬂ'R2 ( )
T
op = m——— 182
“r = T VIR (182)
are related to their far wake counterparts by
R
Cpp = (T)ch (183)
Csp = (%)265 (184)

It can be seen that even a modest degree of slipstream contraction, say 5%,
would cause approximately 10% error in the thrust and power coefficients if
it were assumed that R.,/R = 1. Fortunately, it turns out that contraction
is generally much less for moderate loadings; hence, its effect can usually be
ignored. However, slipstream contraction should be examined in an analysis
involving heavily loaded propellers.

7.1 Theory

In actuator disc theory, the wake is contained by a stream tube surface
through which no fluid may pass. Consequently, mass continuity can be
readily applied to relate propeller and far wake radii. In contrast, the vor-
tex model imposes no such condition on the flow; hence, evaluating wake
contraction is more complex. Theodorsen detailed two methods from which
contraction estimates may be derived 23, the first of which consists of inte-
grating the radial velocity along the edge of a helical vortex sheet. Wake
contraction , AR, is given by

AR

[
|
~—
=y

(185)
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22Theodorsen, op. cit. , pp. 77-87
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but,

dr v
_—= - =9 18
Loy (186)
giving
(o]
AR = _/ o i (187)
0

Theodorsen found it more convenient to express the problem in terms of the
angular displacement 6,

dé
dz = -2; . Poo
= R \:idl (188)
which yields the integral
A o'}
8 _ _,\,/ %, d (189)
Roo 0

for which Theodorsen obtained numerical estimates for 2 and 4 blades. But,
radial velocities were calculated from a prescribed spatial distribution of
vorticity; namely, a system of interleaved vortex sheets of constant pitch .
Since the displacement velocity increases from approximately w/2 at the
propeller to w in the far wake, helicoid pitch will change significantly with
downstream distance under heavy loading. Thus, Theodorsen’s contraction
coefficients are only valid for light propeller loadings (i.e. @ << 1).

A second approach based on the condition of compatibility between
thrust expressions was also developed by Theodorsen.

Vortex continuity equates bound circulation at the propeller with the far
wake distribution. Integration of the thrust distribution derived therefrom
along a propeller blade yields a value that must be identical with equation 68.
Consider the velocity diagram at the propeller plane illustrated by figure 13.
Therein ag represents the displacement velocity and @ is the resultant flow
vector which is inclined to the plane of rotation by 6,. The resultant @ is the
vector sum of the induced velocity ag cos 8,, flight velocity V', and rotational
velocity wr. The magnitude of i is given by

v = ‘;: 0‘;" _ agsiné, (190)
V + ag cos? 6,

sin 6,

54



Figure 13: Flow Vector Diagram in Propeller Fixed Frame

From the Kutta-Joukowski theorem, a single blade element at » will generate
lift

dL = pul dr (191)
which has a thrust component of
dT = pul cos 8, dr (192)
Consequently, a propeller with B blades will produce a total thrust of
RV 4 agcos 0,,
T = pB/ — g T (193)
Since tan 6, = (V + ag)/wr, one has
RV 4 qgcos® 8
T =pB e
p w/o VT ac L(r)rdr (194)
Equation 194 is nondimensionalized using
r = Rz
ag = Vag (195)
w = Vw
1
= 5pV%rRiocs (196)
' = lwK
_ 21w(V 4 w)
B wB s
which yields
2w(1 + w)

Roo 2 ! - 2
=2\, = . K .
( 7 )c 1+ 2/0 (14 @g cos” 0p) K (z)x dx (197)
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and, from Theodorsen’s theory of the far wake, the quantities

1 {
K = /2:1:1((a:)d:c (198)
0
_ 1 €
s = 2nw[1+w(§+;)]

are coupled with the definition

S= %/01 22K (z) cos? 8,(z) dz (199)
giving finally » ( ’ 5)
e 1+ @)(1 + o
()= (1+ao)[1 + @(1/2 + ¢/r)] (200)

as the equation for evaluating the contraction. Theodorsen 24 states that if
the efficiency is written in the form

1
1+ ag
then the quantity ag gives the displacement velocity at the propeller plane.

This result can be seen if one considers the rate at which the reaction to the
lift distribution £(r) does work on the induced flow at the propeller plane,

n= (201)

Pioss= B /OR L(r)ag cos b,(r) dr (202)

and, the total thrust
T:BARQMmMAﬂM (203)
when multiplied by the flight speed gives the rate at which useful work is

done. Efficiency is defined by the ratio,

_ TV
= TV 4 B loss
which yields upon substitution of equations 202 and 203 the desired re-

sult 201. Equating equation 201 to the efficiency based on the far wake
(equation 71) gives,

(204)

(205)

**Theodorsen, op. cit. , p.31




With the corresponding power series in @ from Theodorsen

G-Hor e ld-Sare (206)

it can be seen that for light loadings (@ << 1)

1
ag ~ =W (207)
2
which is identical to actuator disc theory. Theodorsen used the linearizing
approximation @ << 1 several times to obtain

AR &k

Y ~
R ¢

S) (208)

(

=
b )
N| =

7.2 Numerical Solutions

Numerical techniques were applied to obtain contraction coefficient values
without resorting to linearizing approximations. The algorithm is designed
to calculate the contraction coefficient

1 AR

Y=o (209)

given W, A¢, B. The displacement velocity at the propeller is given immedi-
ately by substitution into equation 205. The identity

1

2
0, = ————
cos” b = T tan?0, (210)
and the relation )
V + ao)
29 —
tan® 6, = ( e (211)
are used to express cos? 8, in terms of A, and ao,
2
29, = = 212
T T I (1 + a0)? (212)
hence, 199 becomes
22 K (:1: dz (213)
'/ ( 1+w) ( )2/\t2
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The circulation functions needed to evaluate S are calculated from pre-
computed data which consists of 22 distributions over the interval 0 <A<
3. This data was evaluated using 100 vortex filaments per blade. Circulation
distributions for any A; within the interval are obtained by cubic spline in-
terpolation. On each iteration, S is evaluated using cubic spline integration
over 100 quadrature points. Note that exact analytic expressions for K(z),
K, and € are used for B = oo.

It is because of the functional dependence of S on (B}%V-) that the contrac-
tion ratio cannot be evaluated by direct substitution into 200. A regula-falsi
iteration is used to solve the equation

(&$2 (1+0)(1 + a0S(f))
R

Tt amiredt o) (214)

from which the contraction coefficient is evaluated

Y=ce(l -2 (215)

Families of curves Y vs. ); at various constant @ are given by figures 47-
55 for B = 2,3,4,5,6,8,10,12,00. Data presentation includes values from
Theodorsen ?° for comparison. Best agreement should be found between
Theodorsen’s data and the curves @ = 0.01. Only modest agreement is
observed for B = 2,4. It should be noted, however, that Theodorsen did
express certain reservations about the accuracy of his computed results. He
stated that for B = 2,4:

The calculations involve triple integrations and are therefore

somewhat laborious and susceptable to numerical errors ... it
is hoped that the values given in this paper will serve the pur-
pose 26

Very good agreement is seen for B = co. Further verification was supplied
from the theoretical limit A; — 0. In this limit ¢/k — 1 and cos? 6, — 1

giving

N 1 14+
Y=—|1- 216
2@( 1+ 3w (216

25Theodorsen, op. cit., p. 82

26T, Theodorsen, *The Theory of Propellers III - The Slipstream Contraction with
Numerical Values for Two-Blade and Four-Blade Propellers’, NACA ACR L4J10, 1944,
p- 12
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which is independent of blade number. This equation verifies the intercepts
along the line A; = 0.

The contraction coefficient is seen to decrease with increasing A;. This
effect can be attributed to the increase in rotation at the expense of axial
flow. In fact, axial flow is non-existant with zero contraction at A\; = oo.
A further observation is that the rate at which the contraction coefficient
decays with ); is greater for B = 2 than B = co. This effect may be ascribed
to tip loss: reduced blade number increases the degree of flow spillage outside
the helicoid. This effect may also be responsible for the slight wake ezpansion
observed for finite blade numbers under high loadings.

As a cautionary note, verification of negative contraction coefficients
has not been performed because of time constraints. As a possible means
of verification, equation 189 can be numerically evaluated wherein v, is
calculated by the Biot-Savart law along a filament of radius Ro,. But, this
process would be complicated by the axial variation in pitch given by

P(z) = 22V + W(2)) (217)

where W will increase from ag at the propeller and asymptotically approach
the far wake value w. W would have to be obtained from a time iteration
of the self-induced motion of the wake helicoid. The displacement velocity
function would then be calculated from the converged wake shape.

8 Propeller Design

The following is a summary of Theodorsen’s design methodology 7 with
some slight modifications. Herein the updated and extended curves assist
in this design method.

At each blade section, the flow is considered to be locally two dimensional
where the resultant relative flow vector is derived from the flight speed and
rotation of the propeller plus the axial and rotational increments due to wake
induction. Under this assumption, the design problem essentially consists
of deriving the pitch distribution, chord distribution and choice of airfoil
sections for the optimum propeller given the shaft power, rate of rotation,
flight speed and propeller radius.

The flow vector diagram (figure 13) illustrates the desired quantities u, 8,
which are expressed exactly in terms of the far wake parameters A\;, w. As

2"Theodorsen, op. cit. , pp. 46-65
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detailed earlier in section 7, the magnitude of the flow velocity relative to
the blade element at radius r is

U _ 1+ agcos? 0,
— I i e P 21
v=" sin 6, (218)
where the displacement velocity at the propeller plane is
1. €.
o= dt D 219
BTy 1)
and the direction of the flow is given by
_V(+a)
tan 6, = — (220)
In terms of \;, w, the direction of @ becomes
P A o Sl 221
tan 6, z 178 & (221)
but, slipstream contraction is given by
AR _ et (0 (222)
R
yielding \
t l+a -
6,(z) = arctan { e N 2wY(/\t)]} (223)

where z = r/R. Moreover, specification of A, w immediately gives the
optimum circulation function at the propeller,

I(z) = sz(RL;At) (224)
2rRoo At 1
= Ttwl‘(m;/\t) (225)

where K(r/Rs,) is given by a cross-plot of curves K(A¢;2,B) from one of
figures 20-28. With the relative flow velocity and circulation known, the
distribution of lift results

pul = %puchL (226)
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from which one has

4T Ay wsin 0

: 1-2@Y)K ' 22
B 1+(‘10c0520,,( oY) K (227)

cCr =

where the nondimensionalized chord is given by ¢ = ¢/R and Cf, is the
section lift coefficient at . Theodorsen ?® recommends specifying a value
for C, and choosing an airfoil section for which this value represents the
ideal lift coefficient. Whatever the choice of C and profile section, the
combination should correspond to the least possible sectional drag based
on experimental data. Once appropriate lift coefficient values are chosen
along the propeller blade, equation 227 specifies the chord distribution. The
angle of attack, which is specified by the chosen Cp, and profile section, is
a = f# — 0, where j is the local propeller pitch angle. Therefore,

At 14 a
Jé; a+arcan{x T+ %

(1- 2wf/)} (228)

Thus far, all quantities have been expressed exactly in terms of the far
wake parameters \; and @; but, these quantities are initially unknown. From
the specified design parameters the following coefficient values at the pro-
peller are known

P

= — 229
CP,P %pv3”R2 ( )
v
Ay = R (230)

The power input P represents the sum of useful power TV, induced loss
Py,ss, and power loss due to friction. But, Theodorsen’s equations (eqn.
nos. 68, 69 and 71) do not account for the latter. If ¢; represents the
portion of shaft power lost due to drag (in coefficient form) then the power
coefficient becomes

¢ = B2 Y (231)

(1-2wY)2

However, Theodorsen argues that ¢, is generally quite small (¢, ~ 0.01c,)
and may be ignored; however, if it is found to be a significant term then
the correction may be subsequently applied ?°. Therefore, the far wake

28Theodorsen, op. cit., p. 61
Theodorsen, op. cit., p. 54
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counterparts of equations 229 and 230 are

Cp,p
g B — B 232
? (1-20Y)? (232)
/\P
(1-2aY)

(233)

Herein lies the requirement for iteration: the denominators are functions of
the initially unknown parameters. The iteration is initiated by assuming
Y; = 0. From equations 232 and 233 one obtains ¢p,, A\; which is then used
to obtain the displacment velocity w;. The displacement velocity represents
the solution of the equation

20K(A, @)[1 4+ @][1 + w%(,\, W) —¢c, =0 (234)

which is numerically evaluated by a process identical to that described in
section 5.6. Solutions generated therefrom are presented as curves of @ vs.
cp at constant A for various B (figures 56-64): the displacement velocity is
then obtained by interpolation.

The updated estimate of the contraction coefficient Y is obtained for
Ay, = (14 w1)A; by interpolation using one of figures 47-55. Substitution
into equation 232 and 233 then yields the next set of values cp, and Az from
which @, is obtained. For most cases the small degree of contraction is such
that no more than one iteration may be required.

Drag estimates may be obtained by integrating the drag distribution

- 1
D= §pu2cCD .

| =

I (235)

along the span of the propeller. The total axial force opposing the thrust
vector is then

&

R
Dy = B/ ipuchD -sin @, dr (236)
0
which becomes upon substitution of equation 218

D, = lPV2 /R (1 L3 (_l(.) o 0p)2
2 0 sin 6,

cCpdr (237)
with the nondimensional equivalent based on the propeller radius

ta =

1 = 2 2
5 / (1+30cos 0p)" o 1 (238)
0

T sin 6,

62




The additional torque due to frictional losses is obtained from the tangential
component of D,

R
Q= B/ %puch’D -7 cos @, dr (239)
0
Again, substitution of equation 218 yields
L | wr? (14 @o cos? 6,)?
= B —pV? . P eCpd 240
e /0 2? V(1 + ao) sin 6, e (240

The corresponding power increment expressed in nondimensional form is
finally

wQ
ty, = ——m— 241
‘ $pV37R? (241)

B 1 i 20 )2
= 2/ (L+ 3005 8) o 22
A2 Jo (14 @o)sinb,

Theodorsen’s expressions for ,,%; can be obtained from equations 238 and
241 by introducing the approximation @ = 0, which is equivalent to the
assumption of zero loading,.

The influence of viscous losses on total thrust and power coefficients is
clear: the axial drag component gives a reduction in thrust

Cop =05~ (1~ 20V ) — 1, (242)
and the tangential drag component produces an increase in power

Cop = Cp- (1 —20Y)? + ¢, (243)
which finally gives the propeller efficiency

Cs,
np = —* (244)

Cpp

The preceding analysis differs from Theodorsen in the reduced reliance
on the assumption of light loadings: 1) he assumed that ap = @/2 in the
derivation of the function ¢Cp, 2) he assumed that ¢, & ¢p, essentially
omitting corrections necessary to account for wake contraction and viscous
losses by arguing that these effects are small and tend to oppose each other,
3) he assumed that @ = 0 in calculating the corrections to ideal thrust
and power coefficients due to friction; but, this was justified by the degree

63



of error in drag coefficient data. The design method is assisted by the
curves w(cp; A, B) from which @ may be obtained directly by interpolation.
Moreover, extended circulation function data has been provided by this work
for many more cases over a wider domain: load distributions for any A;,
(0 £ A¢ £ 2), have been provided for B = 2,3,4,5,6,8,10,12, co. Similarly,
more extensive contraction coefficient curves have been provided for B =
2,3,4,5,6,8,10,12, co.

9 Summary and Discussion

The behavior of ideal propellers has been examined using the theoretical
tools provided by Theodorsen. Therein, all results are expressed in terms
of parameters describing the far wake. The rationale for this approach lies
principally in its ability to remove the restriction to light loadings found in
earlier theories. Hence, fundamental wake properties such as momentum
and axial kinetic energy cross section ratios (i.e. ,€) are rendered indepen-
dent of the displacement velocity w (i.e. independent of loading). Similarly,
ideal load distributions are collapsed for all @. The basic equations of thrust,
power and efficiency are then expressed as functions of w, &, € using conser-
vation equations. The cost of this approach lies with the initially unknown
parameter w: iteration is required to express w in terms of quantities known
at the propeller.

The mass coefficient k represents an average value of the ideal circula-
tion distribution weighted by 2z. The ideal circulation function is, in turn, a
unique function of the far wake pitch for a given blade number. Circulation
functions K were calculated using a numerical model of the far wake con-
sisting of a finite number of helical vortex filaments. With this model, the
Betz condition is manifest as a linear system of equations in the unknown
filament intensities - the solution of which represents an approximation to
K. All other quantites, which are essentially subordinate to K, are com-
puted by various quadrature and interpolation algorithms. Mass coefficient
values k, and loss coefficient ratios €/x are presented by figures 16-19 for
various number of blades: B=2,3,4,5,6,8,10, 12,00.

Figures 20-28 present ideal circulation (100 filaments/blade) as a func-
tion of A; at constant blade radius. Circulation values are given for any ),
(0 < A < 2) at a number of radial stations: z = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.85, 0.9, 0.95. Circulation distributions along the wake radius are
thus equivalent to a cross plots of these curves.
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Theodorsen’s theory gives exact expressions for thrust and power in
terms of the far wake advance A; and the displacement velocity w. These
equations were recast herein in terms of A = V/wR,, which approximates
the propeller advance coefficient A\, = V/wR, and the ideal efficiency 75
instead of A;, @. Thus, ideal propeller behavior has been expressed (ap-
proximately) in terms of quantities at the propeller: the requisite iterations
have been performed for the user in the elimination of @ from the equa-
tions. Thrust coefficients for various blade numbers are given as lines of
constant ideal efficiency vs. A by figures 29-37, and figures 38-46 give the
corresponding power coefficient curves.

Figures 56-64 present the displacement velocity as a function of ¢, at
constant A\. Curves w(cp; A, B) represent an improvement over Theodorsen’s
format in which the user must obtain each @ by iteration. This is particu-
larly important to the application of this theory to propeller design.

Theodorsen presented two possible means with which one may compute
the contraction of the slipstream. Once approach consists of integrating the
radial flow velocity along the edge of the helicoid. The second approach
is based on the condition of compatibility between thrust at the propeller
and thrust expressed in terms of the far wake. Theodorsen applied the first
approach to obtain contraction coefficients for two blade and four blade pro-
pellers; but, the assumption of light loading was made in his calculations.
Herein, contraction coeflicients were evaluated using the second approach
without the simplifying assumption of light loading. Figures 47-55 give con-
traction coefficient curves at various constant @ for various blade numbers.
The results demonstrate that wake contraction generally varies inversely
with A;. Surprisingly, negative contraction coefficients were observed for fi-
nite blade numbers at certain A; under heavy loading. It is possible that
this effect is due to tip loss - the flow spillage outside the helicoid. However,
verification of this result using a different means has not been perfromed;
hence, this result should be viewed with slight caution.
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A Detailed Derivation of the Thrust and Power
Equations

A.1 Thrust Equation

A cylindrical control volume of infinite radius coaxial with the wake axis is
constructed about the propeller and a portion of its wake. Faces 1 and 2
(see fig. 14) are perpendicular to the wake axis and are set far upstream and
downstream of the propeller. The thrust produced is then derived from mo-
mentum conservation principles applied to this control volume. Momentum
conservation requires the rate of change of momentum of a fixed collection
of fluid particles to be equal to the net force acting upon the fluid. The
net force is composed of the propeller thrust reaction force and the sum of
pressure forces acting on the surface of the volume, hence

D vdr = Tk fid

Di )y pvdr = Tk — S,pn s (245)
where 1‘% denotes the total or substantial derivative with ¥’ denoting a
moving control volume and S’ denoting a moving control surface accorded
to the fixed collection of fluid particles. By Reynold’s transport theorem,
the substantial derivative can be expressed in terms of integrals over regions
¥ and S which are stationary with respect to the far field,

D
Di 2/pﬁdr:%/£pfidr+/spf)’< voii>ds (246)

The application of Reynold’s transport theorem to equation 245 for axial
momentum balance yields

g/pvzdr+/pvz<17ofi>ds=T-—/p<1'ioE>ds (247)
ot Js s s

Each constituent integral of 247 is evaluated with reference to figure 14:

1. The first term represents the rate of increase of axial momentum within
the fixed volume ¥. Momentum increase is caused by the rate of elon-
gation of the contained wake due to the flight speed of the propeller.
In a differential time period one has the increase in momentum,

dm, = th/ pv.ds (248)
2.
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Figure 14: Infinite Control Volume Containing Propeller and Wake

Thus, the integral becomes
0
—/pvsz:/ pVu.ds (249)
ot Jx 2.

2. The second integral represents the axial momentum flux out of the
control volume over region 2 which is given by

/ pv, < Toft >ds = / pvids (250)
s 2
3. The final integral becomes

/p<ﬁoE>ds=/(p—pg)ds (251)
S 2.

Consequently, the momentum equation 247 becomes

T = [ (=) +po.(V +v.)ds (252)
The unsteady Bernoulli equation (section 3.2) applied to the wake model,
1
(p = o) = pwo; — 5pv* (253)

pe

substituted into equation 252 finally gives the result

P= pé (v +1nv)vz + 02— %v2]ds (254)
* -~
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A.2 Induced Power Loss

The conservation of energy applied to a fixed collection of fluid particles
may be stated in the form

D 1 dE
- - d = . — g d
Dt/:?pv T dt+./s'( p)< Toil>ds (255)

where %1;2 represents the rate at which energy is transferred to the slip-

stream through propeller operation. Again, one obtains the corresponding
expression over fixed control regions by Reynold’s transport theorem,

dE

d 1 , 1,
— — - d = - - oL
dt at/EQP'U T+/52p’0 <Uon>ds+Lp<von>dS (256)

The rate of elongation of the wake within the fixed control volume ¥ due to
the flight speed of the propeller yields

O [1 o, 1,
5/25,02) dr_/2‘-2-pv Vds (257)

and, the rate at which kinetic energy is convected out of the control volume
through the surface S is given by

1 1 1
/ —pv’ < Goii>ds= / —pvv,ds +/ —pv2v.ds (258)
52 2.2 3.2
However, the product v?v, over surface 3. will decay faster than the circum-

ferencial surface area will increase as the radius approaches infinity; thus, in
this limit one has the following,

1 1
/ 5/}1}2 < Tofi>ds ——+/ 3pv2v2ds (259)
S 2. 4

The term representing work done by the control volume against the external
pressure field is expanded,

/ p< Tofi>ds= / pv,ds +/ povrds (260)
s 2. 3.

but, continuity demands that

/vzds-{-/ veds =0 (261)
2. B
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This requires the following equivalence between work terms:

/ Povrds = —/ Pov.ds (262)
3. 2.

Substitution of 262 into 260 gives

/p<i)'ofi>ds=/(p—po)vzd.s (263)
S 2.

Equation 256 then becomes

dE 1 1
mor = / {[(» = po) + 5pv°|v; + =pv*V }ds (264)
dt 2. 2 2

With equation 59, the above relation reduces to
d 1
g = / [pwo? + =pv?Vds (265)
dt 2. 2

The first term of the integrand of 265 is given by the definition of the axial
kinetic energy loss factor (equation 64). The second term is given by an
additional interpretation of the mass coefficient which is derived by the
following: The vector identity

Vo (¢Ve) = Vo Vé + $V24 (266)

may be integrated through the volume between adjacent vortex sheets:

/v Vo {dVhdr = /v (Vo)kdr + /v $V2dr (267)

where V is the volume between two adjacent vortex sheets which is enclosed
by the surface ¢; but, within this region one has

V=0 (268)

and
7=V¢ (269)

Upon the application of Gauss’ theorem one obtains

/Cqb%ds:/vvzd‘r (270)
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however, the normal flow component at c is given in terms of the displace-
ment velocity

9¢

on
where 6 is the local pitch angle of the helicoid. Therefore,

= wcos @ (271)

c

/ vidr = w/¢cos fds (272)
v c

If the surfaces of integration are projected through the angle 8 onto the plane
JF which is perpendicular to the wake axis, then equation 272 becomes

/vzdr = w/ Ids (273)
v F

However, as shown in section 3.1 the mass coefficient is related to the circu-
lation function by

w /f Ids = w’(kA)l (274)

Therefore,
p/ vidr = pw?(kA)l (275)
Y

It can be shown that 275 is equivalent to the relation

p/ v ds = pw?(kA) (276)

where integration is performed over the Trefftz plane. The propeller may be
considered to impart an axial flow velocity equivalent to the displacement
velocity on a fluid column with an effective area (in terms of total kinetic
energy) k times the wake area. With the definition of x from section 3.1,
the definition of € from section 3.3 and equation 276, equations 254 and 265
are finally

T = prwA[V + w(% + %)] (277)
dE 2 e 1
o = Prw A(w; + §V) (278)
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A.3 Total Power (short form i ibn
The algebra for the derivation is simplest if we use a control surface that is
stationary with respect to the fluid at infinity; we use a slightly relabeled version of

Figure 14, with V being the propeller speed through the fluid:

Féi’r
S a
/
/
'ﬁ I
> +2 \'} v———m 4\“) PVz
P | i
\
Vdt \
N
F, Fz
Figure 14a

The pressure does work on the external fluid on faces F2 and S at a rate

f poVrdS + f pVZdS
s F2 (279)
By conservation of mass
fv,dS = f v,dS (280)
S F2
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so that (279) becomes

f (P - Po)v2dS (281)
F2

The wake elongates by an amount (V + vz)dt in a time dt. Thus the rate of increase of

kinetic energy of the fluid is

;—p f v2(V + v;)dS (282)
F2

The rate of energy lost to the fluid owing to propeller operation, dE/dt, is the sum of
(281) and (282). This loss plus the useful power TV is the total (ideal) power P

consumed by the propeller. Using the form (252) for T gives after slight reduction

P= f [P~ po) +p{L-v2 + V|V + v2)ds (283)
F2

The pressure term may be eliminated via the relation

|o-po=p\¢vvz-;—pv2

P
=

(59), (253)

which results (Sec. 3.2) from application of the unsteady Bernoulli's equation. The

1Epv2 term cancels to yield, after a little rearrangement, the final result16,17

P= pf (V +w)(Vvz + v2)dS (284)
Fo 2
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B Brief Description of the Vector Processing Con-
cept

Vector processing is one of the high performance cornerstones of the Cray X-
MP /24 system. All processing of data within the CPU (central processing
unit) or transfer of data to and from central memory is coordinated by
the system clock. The shortest time interval between changes in machine
state is one clock period, which is equal to the reciprocal of the clock signal
frequency. For conventional computers, fundamental computations such as
multiplies, adds etc., or the transfer of data can occur only once every few
clock periods. However, vector architecture permits certain mathematical
operations to be performed at a rate of one result per clock period. As
an example, consider an addition of a set of numeric pairs. The set of
numbers are considered to be processed in a scalar fashion if each pair of
operands is read from memory to an add unit of the CPU, processed by
the add unit over six clock periods, and stored back into central memory
in a sequential fashion. However, if the add functional unit is segmented
into six independent sub-units, each performing one sixth of the necessary
operations in parallel, then after 6 clock cycles the segmented add unit
can produce a result once every clock period. Since conventional memory
cannot supply operands at a rate of one per clock period, special registers
of high speed memory containing 64 words (1 word=64 bits) are employed.
In the case of the above example, two such registers are loaded from main
memory. Then, the contents of these registers is processed through a fully
segmented functional add unit at the rate of one per clock period. Because
of the fashion in which data is processed, this procedure is referred to as
vectorization: the data is first collected then processed as a group at very
high speed. A set of operands can be processed under vectorization up to
10 times faster than what is possible with scalar processing.

Any quadrature algorithm will evaluate an integrand at a certain num-
ber of points within the domain of integration. Off-the-shelf quadrature
packages evaluate quadrature points by way of calls to a user supplied sub-
program: code execution is transferred to a sub-program once for every
quadrature point. However, this process excludes any hope of vectorization.
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C Goldstein Circulation Data with Code Gener-
ated Values




z | Koo | Goldstein | rel. diff | z K00
.02 | .1255 126 .40% .0025
.04 | 2442 .245 .33 .0098
.06 | .3514 .352 A7 .0211
.08 | .4449 445 .02 .0356
.10 | .5249 .526 21 .0525
.12 | .5926 .593 .07 0711
.14 | .6496 .650 .06 .0909
.16 | .6976 .698 .06 1116
.18 | .7379 .738 .01 1328
.20 | .7720 770 — .1544
.25 | .8363 .836 -.04 .2091
.30 | .8794 .878 -.16 .2638
.35 | .9088 .908 -.09 3181
.40 | .9290 .927 -.22 3716
.45 | .9428 .940 -.30 4243
.50 | .9517 .950 -.18 4759
.60 | .9574 .955 -.25 5744
.70 | .9438 941 -.30 .6607
.80 | .8919 .890 -21 .7135
.90 | .7427 .738 -.63 .6684
.95 | .5758 .569 -1.2 5470
.98 | .3948 .388 -1.7 .3869

Table 9: Code generated values vs. Goldstein data, A\; = 0.10,B = 2
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T K100 | Goldstein | rel. diff | 2 K00
.05 | .1196 .120 .33% .0060
.10 ] .2320 232 — .0232
15 | 3324 331 -.42 .0499
.20 | .4185 418 -.12 .0837
.25 | .4901 .489 -.22 1225
30 | .5482 .548 -.04 .1645
.35 | .5943 .592 -.39 .2080
40 | .6296 .628 -25 .2518
45 | .6553 .654 -.20 .2949
.50 | .6720 .670 -.30 .3360

.625 | .6772 .676 -.18 4233
75 | .6264 .621 -.86 4698
875 | .4949 486 -1.8 .4330
.95 | .3363 334 -.68 3195

Table 10: Code generated values vs. Goldstein data, A; = 0.25, B = 2

78




APPENDIX D

WAKE CONTRACTION AND DISPLACEMENT VELOCITY
FOR HEAVY LOADING: AN ALTERNATIVE DERIVATION
AT A1 =0 INVOKING DETAILS OF THE AERODYNAMICS

by H. S. Ribner

Theodorsen's treatment of the contraction R./R, as has been pointed out, is

deliberately restricted to the light loading case by the a priori specification

w << 1. It is not clear why this was done, since it seems unnecessary. With
this in mind, his derivation of (R../R)2is carried through in the main text without
this restriction. The result, Eq. (200), is more broadly applicable than
Theodorsen's (Ref. 17, p. 84, fourth equation from top™ ): the displacement

velocity taken as % W is replaced in two places by the more general value ap,

which reduces to % w forw — 0.

The computed contraction is expressed in coefficient form as:

\751_(%); AR=R- R (209), (215)

for comparison with Theodorsen's limiting result for light loadingt

Y=L(ﬁ _1le.1g 20

where S is an intégral defined by Eq. (199) of the main text.

* This expression contains a typo inversion. A/F should be replaced by F/A = TR.2/MR2.
T Here we eliminate the unnecessary small w approximation, 2w ~ cg/x in his definition of Y.
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Whereas (for a given number of blades, B) his Y is displayed as a single curve
vs. AT, the generalized contraction coefficient Y is displayed (Figs. 47-55) as a
family of curves for various values of w.

Compared with Theodorsen's single curve for w — 0, the Theodorsen-
based family of curves ¥ vs. (AT; W) exhibits two features: (i) the curves are
lower** with increasing w, and (ii) at the higher w and AT, some dip slightly
below zero: this implies a (weak) expansion rather than a contraction. The
explanation of (ii) involves aerodynamic assumptions that are difficult to prove.
However, (i) is accessible to verification at the AT = 0 limit. This allows us, in
what follows, to apply simple conservation of mass to the flow within the helicoid

wake.

D.1  Wake Contraction by Continuity Argument. Advance AT =0

It is difficult, as pointed out in Section 7.1, to apply mass continuity to
determine the wake contraction in the general case. However, as the pitch
(e<AT) of the helicoid surface approaches zero the turns become nearly circular
and closely packed. The fluid between the turns is essentially "trapped" and
shares the displacement velocity of the surface (except for a small zone near
the edges). This uniform velocity is ag at the propeller plane (radius R) and w
far back (radius Re). On adding the stream velocity V, simple mass continuity

yields

- 143, g _an, w=wv 285
k2 V+w 1+W S \263)

** This implies that, for a fixed advance AT, the curve of AR/R (=2w¥) vs. W is nonlinear: it curves
markedly downward from its tangent at the origin (the Theodorsen w — 0 straight line).
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Theodorsen's expression for ag, Eq. (205), may be rearranged in the form

1+W+E(W+W2)
1+3,= K (286)
1+W(—1—+f=)
2 K
Since e/x — 1, this reduces to
L w2
1+a,=0%W" aiar=0 (287)
1+2w
2
so that
R..\? &
(—) = 1+W = atar=0 (288)
R 1+

QW,
2

The general contraction equation obtained by Theodorsen's methods (but with

his restriction to w << 1 removed), reads

R (1+W)(1 +3,S)
(R T (1 +§o){1 +W(;—+%)] 0%

Since the parameter S (see text, Eq. (199)) and e/x both —» 1 as AT — 0, this

reduces to

R.|? %
(—) =1+W  4)7=0 (289)
R 1+%W

in exact agreement with Eq. (288). Thus at vanishing advance coefficient the

simple continuity argument and Theodorsen's deduction from thrust
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considerations give identical results. And both confirm observation (i) made in

the last paragraph of the introduction to this section.

D.2 Displacement Velocity ap_at Propeller Plane vs. w. Advance AT.=0

For finite displacement velocity, the turns of the wake (multiple) helicoid
are more crowded (smaller pitch) near the propeller plane than far back (Trefftz
plane, z = ). This follows from the displacement velocity increasing from ag (of .

order % w) to w with increasing axial distance.* Accordingly, the spacing L

between turns scales as

Le_V+a 148 . G_w g (290)

In the light loading limit (W — 0), L/Lg approaches unity, and the turns are

uniformly spaced. In this case a simple symmetry argument applied to the

helicoid yields ag = % w. For finite w the varying spacing invalidates this

argument, and it accounts for & # % w. »
For evaluation of ag we must determine Lg/L independently of Eq. (290).

For arbitrary advance AT this is difficult, so we limit attention to the case AT — 0.

For this case the propeller circulation along the blade is uniform, of value v, say.

Then the tip vortices shed to constitute the helicoid wake have the same value.

A cut through these vortices in the wake diametral plane appears as in the

sketch, showing the contraction AR:

* This applies a little beyond the propeller blade trailing edge, where the short-range induced
velocities of the bound vortices have become negligible.
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Suppose there are ng turns in a length dl at z = 0 and n turns far back:
No = dl cos yo/L, (291)
n = dl/L, (292)

The maximum velocity vj induced by the sheet of edge vortices must lie along

the sheet. Since the axial component is ag by definition,
3o = Vj COS Yo (293)

where o is the initial slope of the contraction flare. By Ampere's law applied to

circuits (1) and (2):

I =f vi -dl =dl 2a,/cos y, (294)
(1)
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F=j vi-dil=dlw (295)
)

(The contribution of the stream velocity (not shown) = 0.) Since each vortex has

strength v, it is also true that

I'o = ngy = ydl cos Yo/lo (296)
I'=ny=ydl/L (297)
Equating the alternative expressions for the ratio I'o/I" from the last four

equations yields

L_o _ W C0S2 Yo — w COS—2 Yo (298)
L 2a, 23,

This and the earlier Eq. (290) are alternative expressions for Lo/L; equating and

rearranging gives the quadratic

28,2 + 28, - W(1 + W)Cos2y, =0 (299)

A formal solution for a, is thus

A= ;— + %ﬁ + 2W(1 + W) cos2y, (300)

This result applies, by the terms of the derivation, at the AT = 0O limit.

For comparison, Theodorsen's general result for arbitrary advance, Eq.

(205), reduces at AT =0 to

84



o)

+
ao=
3
1+~2'

(301)

3

These two expressions are compared in the following sections.

Approximation: Wak re (~Contracti lan

If the wake contraction had been ignored at the outset (yo = 0), the

derivation would have been noticeably simplified, with the quick result

§o=-;—+-;-vl+2W(1+W) (302)

This is obtained alternatively by letting cos?yg = 1 in Eq. (300). Table | below
shows numerical comparisons of predictions of Eq. (301) of Theodorsen (our

extended form) and Eq. (302) above.

Table |
ap/W
& Eq. (302) Eq. (301) % Error
.0 .500 .500 0
B .581 571 +1.8
1.0 .618 .600 +3.0
1.5 .638 611 +3.7
2.0 .651 .625 +4.2
yo=0, AT=0

This simplistic approach neglecting yo already gives agreement with

Theodorsen's results for AT = 0 within a few percent.
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Second Approximation: Wake Flare Angle yo Estimated

Theodorsen7 computed and plotted the shape of the helicoid
contraction flare for several cases (his Fig. 28, a-d). We can infer that the tip

tangent scales with AR, so that

tan y, =4R = ABR, (303)

where z1/R does not depend on w. The curves show slight or no dependence
on blade number B for small AT; they give z1/R of order 0.6 for AT = 1/4, with
progressive increase for larger AT. For our case, AT = 0, a still smaller value of

z1/R seems implied. In (285) we have effectively evaluated AR/R at AT =0 as

ARR=1- V(1 + W1 +§W) (304)
and we assume here that
z4/R = 0.52 (305)
Insertion in Eq. (303) determines the value of yg to be used in Eq. (300); this
will yield predictions of ap/w vs. w by the present method. In the following table .

these predictions are compared with those by Theodorsen's "exact" formula

Eq. (301).

Table I
a/w
W This Appendix Theodorsen/Foster
Eq. (300) Eq. (301)
0 .5000 .5000
5 Uvd b .5714
1.0 .6002 .6000
1.5 .6155 .6154
2.0 .6251 .6250
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We recall that the choice z4/R = « (Table 1), which implies yg = 0, yields a

maximum error of only 4.2% at W = 2. The empirical but realistic choice
z1/R = 0.52 (Table 1) reduces the error consistently to the fourth decimal place.
From the internal logic and this agreement one would infer that the present

aerodynamic model is essentially correct.
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