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ABSTRACT
Federated learning (FL) systems enable multiple clients to train

a machine learning model iteratively through synchronously ex-

changing the intermediate model weights with a single server. The

scalability of such FL systems can be limited by two factors: server

idle time due to synchronous communication and the risk of a

single server becoming the bottleneck. In this paper, we propose

a new FL architecture, Spyker, the first multi-server FL system

that is entirely asynchronous, and therefore addresses these two

limitations simultaneously. Spyker keeps both servers and clients

continuously active. As in previous multi-server methods, clients

interact solely with their nearest server, ensuring efficient update

integration into the model. Differently, however, servers also pe-

riodically update each other asynchronously, and never postpone

interactions with clients. We compare Spyker to three representa-

tive baselines – FedAvg, FedAsync and HierFAVG – on the MNIST

and CIFAR-10 image classification datasets and on the WikiText-2

language modeling dataset. Spyker converges to similar or higher

accuracy levels than previous baselines and requires 61% less time

to do so in geo-distributed settings.

CCS CONCEPTS
• Computing methodologies→ Distributed artificial intelli-
gence; • Computer systems organization→ Cloud computing.
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Figure 1: A training round of a synchronous FL system with
heterogeneous devices and networks. The times at which
the server receives client updates are indicated with colored
spheres. The server waits for all client updates to be received
to update the model, which results in a mostly idle server.

1 INTRODUCTION
Federated Learning (FL) is an emerging paradigm to train machine

learning models iteratively on extensive data that are dispersed

across many users and cannot be openly shared due to privacy

regulations [24]. FL is widely uses in applications such as mobile

keyboard prediction [15], spoken language comprehension [17],

and digital healthcare [4, 21, 27, 36].

Themost prevalent FL architecture is composed of a single-server

and multiple clients, and assumes a synchronous training process

over multiple rounds [24]. In each round, the server selects a set

of clients that receive the current global model, train it with their

local dataset, and send a model update back to the server. Once

it has received all model updates, the server aggregates them and

computes the new global model that is used in the subsequent round.

The training process is repeated until the global model converges.

The duration of a training round in a synchronous FL frame-

work is determined by the longest client update time because a

round only completes when all updates of selected clients are re-

ceived. Clients exhibiting heterogeneous computational capacity

and network bandwidth can unfortunately prolong the update time,

degrading the efficiency of FL systems.

The computational heterogeneity stems from the difference in

their hardware and software stacks; whereas network latency dif-

ference is rooted in the geo-distributed settings where clients are

spread across several countries or continents [5, 16, 40]. The result
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Table 1: Comparison of representative multi-server FL algorithms with Spyker.

Mutli-Server Async Client/Server Async Server/Server
FedAvg [24] ✗ ✗ N/A

FedAsync [34] ✗ ✓ N/A

HierFAVG [1] ✓ ✓ ✗

Spyker ✓ ✓ ✓

Sync-Spyker ✓ ✓ ✗

of such heterogeneity is often system inefficiency: the server, along

with clients near it or those with superior computing power, remain

underutilized. Fig. 1 illustrates this problem with a synchronous

FL round that involves five clients distributed over two continents.

The server has to collect all five client updates before updating the

global model. The first four clients become idle after they send an

update to the server and the server remains idle until the end of the

round. It is worth noting that such heterogeneous settings gener-

ally imply a non-Independent and Identicallly Distributed (non-IID)

data distribution [9, 26] since data generated by each client can be

influenced by their immediate environment.

Asynchronous FL frameworks [6, 31, 34] aim at eliminating per-

formance bottlenecks arising from heterogeneous networks and

clients power. Under such frameworks, the server immediately pro-

cesses a client’s model update upon receiving it and returns the

updated global model to the corresponding client. Thus, slow clients

in an asynchronous FL framework no longer hamper the overall

performance. However, this can inadvertently shift the bottleneck

to the server. Specifically, if the server is continuously busy pro-

cessing client updates, it might cause waiting periods for clients, in

particular as the number of clients increases.

To prevent potential server-based bottlenecks, one can deploy

multiple servers that each interact with a subset of the clients. In

particular, hierarchical FL frameworks [1, 19, 22] rely on secondary

servers that interact with clients, and on a primary server that

merges the models of the secondary servers. This multi-server

structure decreases the average communication latency between a

client and a server, given that clients upload their model updates to

the nearest server. However, in such hierarchical FL frameworks, the

primary server still relies on a synchronous procedure to update

its global model, which in geo-distributed settings implies that

secondary servers stop replying to clients.

We introduce Spyker
1
, a novel multi-server and fully asynchro-

nous FL framework that relies on a flat architecture of geo-distributed

servers. Moreover, interactions between clients and their nearest

server, and between servers themselves are asynchronous to main-

tain low response times, and reduce both client and server idle

times. Spyker accelerates the training of a model in geo-distributed

settings, where heterogeneous clients and servers are located in

different geographical regions. Table 1 compares Spyker to the

relevant related work and highlight its main characteristics

Contributions. This work makes the following contributions

to realize the asynchronous multi-server FL vision:

1
The Spyker was the first four-wheel-drive car. The wheels of such a car are similar to

our FL framework’s servers: they make progress asynchronously and independently

from each other, and occasionally synchronize.

• To support multi-server asynchronous FL, we define the

age of a server model and the staleness of a client update.

Based on these definitions, a server determines the weight

that server models or client updates should be given when

aggregating them into its local model.

• To maintain high accuracy despite resource heterogeneity,

Spyker triggers an exchange and aggregation of server up-

dates when the ages of two server models differ too much

or when the age of a model is sufficiently changed since the

last server model aggregation. To minimize the complexity

of the server model aggregation process, in particular in

asynchronous networks, a single server at a time can trigger

the exchange of server models. This decision is helped by

a token that servers circulate among themselves and that

collects the age of all server models.

• To further maintain accuracy despite data heterogeneity, i.e.,

clients having non-independent and identically distributed

(non-iid) datasets, we detail a local learning rate decay strat-

egy that prevents server models from becoming biased to-

wards the data distributions of fast clients.

• We evaluate Spyker’s performance and compare it to three re-

cent and representative FL frameworks, namely FedAvg [24],

HierFAVG [1] and FedAsync [34]. We also consider a vari-

ant of Spyker, which we call Sync-Spyker, where servers

use a synchronous model exchange protocol. We evaluate

all frameworks in emulated geo-distributed settings using

the MNIST and CIFAR-10 image datasets and the WikiText2

language modeling dataset. We report the accuracy and con-

vergence speed of all frameworks, and evaluate their ability

to scale with the numbers of clients and servers.

Our results show that Spyker converges to similar or higher

accuracy levels than previous baselines with a 61% shorter running

time in geo-distributed settings. Spyker also scales better than other

baselines with the number of clients thanks to its flat multi-server

architecture. For example, increasing the number of clients from

100 to 200 multiplies the time our three baselines require to reach

90% accuracy by at least 1.64, while Spyker’s convergence time is

only multiplied by 1.21 (i.e., scalability is improved by 26%).

This paper is organized as follows. Sec. 3 provides background on

FL systems and introduces the most commonly used synchronous,

asynchronous, and hierarchical FL algorithms. Sec. 4 describes our

system model and gives an overview of Spyker. Sec. 5 discusses

Spyker in detail, including the local update and global model ex-

change strategies. Sec. 6 presents our performance evaluation.

Sec. 2 discusses the related work, and Sec. 7 concludes this paper.
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2 RELATEDWORK
This section discusses additional related work on asynchronous

and multi-server FL that complements Sec. 3.

2.1 Asynchronous FL
ASO-Fed [6] is an asynchronous FL framework that enables wait-

free computation and communication. ASO-Fed allows client up-

dates to stream into the federator in different rounds and each local

training is based on the newly streamed-in data.

FedAsync [34] is an asynchronous optimization algorithm for FL

that guarantees a near-linear convergence and address the staleness

problem in the asynchronous setting. Each time an update arrives,

the weighted averaging is applied for the current global model and

the update.

AsyncFedED is an adaptive asynchronous FL aggregation based

on Euclidean distance [31]. If the global model is updated before a

client sends back its update, the learning rate of the server should be

adjusted based on the staleness of the current update. AsyncFedED

evaluates the staleness of an update by its Euclidean distance from

the server. Larger staleness leads to a smaller learning rate for its

aggregation. The staleness of weight is the relative weight differ-

ences.

FedAsync [34] introduces a staleness strategy where the influ-

ence of a client’s update decreases when its staleness grows as the

inverse function of 𝛼 , the adaptive parameter. A larger 𝛼 indicates

the influence of stale updates should be reduced. FedAsync per-

forms best when the staleness is small, and it can converge faster

than FedAvg.

Overall, asynchronous FL approaches incur a high computational

load on the server and therefore do not scale well with the number

of clients. Intelligent node selection techniques [7, 14, 39] aim at

alleviating this burden but are often biased towards specific clients.

ASO-Fed and AsyncFedED have been evaluated in non-IID data

settings with the Synthetic-1-1, FEMNIST, and Shakespeare datasets,

which have inherent data heterogeneity. Bothworks do not consider

scenarios that involve multiple servers.

2.2 Multi-Server FL
Existing multi-server methods [1, 3, 20, 22, 33] add edge servers or

assign proxy clients to undertake part of the workload. Hierarchical

FL approaches have also been described [1, 19, 22, 33]. Qu et al.

demonstrated the convergence of a multi-server FL algorithm [25]

where servers indirectly synchronize their models through over-

lapping client sets. Clustering is frequently used in multi-task and

unsupervised FL [2, 13, 30]. Incorporating clustering algorithms in

our framework for potential refinement is future work.

Xie et al. proposed a multi-center FL algorithm, FeSEM [35], to

address the challenge of data heterogeneity. The main idea is to

cluster the updates and assign them to their closest global model

(i.e. center). They showed in experiments that the clusters of local

updates characterize clients’ data distribution thus models gener-

ated from similar data distributions are gathered on the same center

and aggregated.

HierFAVG [22] is a client-edge-cloud hierarchical framework,

which can be considered as a multi-server version of the FedAvg

algorithm. Each edge server employs averaging aggregation for

its clients. After every certain number of rounds, the cloud server

applies averaging strategy to the edge servers. The introduction

of the hierarchical structure reduces the communication burden

on servers and improves the capability of the single-server FedAvg

algorithm while maintaining the stability of synchronous systems.

Despite their ability to support a larger number of clients, current

multi-server and hierarchical-server algorithms do not directly ad-

dress the sensitivity to large system heterogeneity of synchronous

systems.

2.3 Geo-distributed Machine Learning
Many distributed ML systems target large-scale ML applications [8,

11, 12], however, they assume that network communication hap-

pens within a datacenter. Cano et al. [5] discussed running a ma-

chine learning system in geo-distributed settings. They show that

one can leverage a communication-efficient algorithm for logistic

regression models [23] to improve performance. Several works [16,

18, 38] focused on the design of communication-efficient mech-

anisms that leaves the ML algorithms unmodified. These works

are orthogonal to our approach, since we design asynchronous

multi-server FL algorithms for the geo-distributed settings.

3 BACKGROUND
This section provides necessary background on synchronous, asyn-

chronous and multi-server Federated Learning. Fig. 2 illustrates the

architectures these paradigms rely on, and Tab. 2 summarizes the

notations we use throughout the paper.

Table 2: Notations and parameter values

Symbol Description

𝐷𝑘 Local dataset of client 𝑘

𝑑𝑘 Number of data points in 𝐷𝑘
𝑑 Total number of data points

∑
𝑘 𝑑𝑘

𝑛 Number of servers

𝑛𝐶 Number of clients

𝑊 𝑡
𝑘

Weight vector of a model at client 𝑘

𝜂𝑘 Learning rate of client/server 𝑘

𝑇𝑘 Number of local epochs on client 𝑘

𝐴𝑘 Model age of client/server 𝑘

Symbol Value Description

𝜂𝑖𝑛𝑖𝑡 0.5 Initial client learning rate

𝜂𝑚𝑖𝑛 10
−6

Minimum client learning rate

𝛽 0.05 Decaying rate

ℎinter 𝑛𝐶/5𝑛 Age drift threshold between server mod-

els

ℎintra 350 Age drift threshold since last global ag-

gregation

𝜙 1.5 Activation rate

𝜂𝛼 0.6 Aggregation rate (server side)

𝑠 (𝜏) (𝜏 + 1)−𝛼 Staleness parameter
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510 ms

435 ms
37 ms

(a) Centralized

350 ms
320 ms

50 ms 60 ms
71 ms 58 ms

(b) Hierarchical Multi-Server

351 ms

314 ms

290 ms

50 ms

62 ms

45 ms

37 ms

55 ms

39 ms

(c) Flat Multi-Server (used in this work)

Figure 2: Architectures of FL systems

3.1 Synchronous Federated Learning
The first FL frameworkwas proposed byMcMahan et al. in 2017 [24].

It relies on a classical centralized architecture where a server in-

teracts with all clients (Fig. 2a). The first FL algorithms, namely

FedAvg and FedSgd, are synchronous. In each round, the server

selects a group of clients and sends them the latest global model.

Upon receiving a global model𝑊 𝑡
, a client 𝑘 trains it on its local

dataset 𝐷𝑘 to obtain𝑊 𝑡+1
𝑘

using Eq. 1, where 𝐹 is the loss function

of the classification, and 𝜂𝑘 is the learning rate.

𝑊 𝑡+1
𝑘

=𝑊 𝑡
𝑘
− 𝜂𝑘

𝜕𝐹 (𝑊 𝑡 , 𝐷𝑘 )
𝜕𝑊 𝑡

, (1)

Afterwards, client 𝑘 sends its model update𝑊 𝑡+1
𝑘

to the server.

Upon receiving all client updates it expects in a given round, the

server aggregates them to compute the next global model𝑊 𝑡+1

using Eq. 2. In this equation, 𝑑𝑘 is the number of data points of

client 𝑘 and 𝑑 is the total number of data points across all clients.

𝑊 𝑡+1 =
𝐾∑︁
𝑘=1

𝑑𝑘

𝑑
𝑊 𝑡
𝑘
. (2)

The ratio
𝑑𝑘
𝑑

weights the participation of a client during aggre-

gation. At the beginning of the following round, the server sends

𝑊 𝑡+1
to the next selected clients. The training process is repeated

over multiple rounds until the global model converges. In practical

settings, where clients have different computing speeds and are

connected to the server with heterogeneous network links, synchro-

nous FL algorithms may lead to the server and some clients staying

idle. For example, one client in Fig. 2a would communicate with

the server within only 37ms. This client and the server would stay

idle waiting for the clients with 435ms and 510ms communication

latency with the server to send their update.

3.2 Asynchronous Federated Learning
Asynchronous FL systems, such as FedAsync [34], accelerate con-

vergence in heterogeneous networks and under client heterogeneity.

To do so, the server aggregates an update into a global model im-

mediately after it receives it, and returns the new global model to

the client. For example, a server using the asynchronous version

of FedAvg in classical centralized settings (Fig. 2a) would update

the global model using Eq. 3. In this equation,𝑊 𝑡
is the 𝑡-th global

model,𝑊 𝑘
𝑡 is the local update client 𝑘 computed on𝑊 𝑡

,
𝑑𝑘
𝑑

is the

data proportion of the update, and 𝑠 (𝜏) is a staleness parameter

that dampens the effect of client 𝑘’s update if it relates to a model

that is older than the one the server currently has.

𝑊 𝑡+1 =𝑊 𝑡 − 𝑠 (𝜏)𝑑𝑘
𝑑

(
𝑊 𝑡
𝑘
−𝑊 𝑡+1

𝑘

)
. (3)

An asynchronous FL scheme aims at keeping the clients busy

training a model on their datasets, and the server updating its model

more frequently, both of which are expected to speed up the model

convergence. However, asynchronous schemes also increase the

computational and communication loads on the server, whichmight

become a performance bottleneck if the number of clients is too

high.

3.3 Multi-server Federated Learning
Multi-server FL systems rely on multiple servers that interact with

disjoint subsets of the clients to limit their computational and com-

munication loads. Hierarchical FL systems (Fig. 2b), such as Hier-

FAVG [1], are multi-server and rely on a principal server to maintain

the global model [1, 19, 22, 33]. In those systems, a model is updated

in two times in each round. The first aggregation is managed by the

edge servers that aggregate model updates from a group of clients

and send their own model update to the principal server. Upon

receiving all model updates from the servers, the principal server

executes the second-level aggregation and generates the global

model for the new round. The global model is then distributed to

all servers, and eventually to all clients. Previous hierarchical FL

frameworks are synchronous. In geo-distributed settings, where

the servers would be located far from each other, a round in a hi-

erarchical FL framework involves several successive long distance

communications and model aggregations, which would limit its

speed.

4 OVERVIEW OF SPYKER
In this section, we start the presentation of Spyker by providing

the key ideas behind its design.

Flat multi-server architecture. To get the best of the asyn-

chronous and hierarchical FL paradigms, Spyker relies on multiple

servers that directly interact with each other and with clients in

a fully asynchronous manner. The servers are organized in a flat

multi-server infrastructure (Fig. 2c). Each server is the center of

a star sub-network, and interacts with a group of clients that are

assigned to it based on geographical proximity to minimize com-

munication latency. In this way, communication latency between
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clients and servers are reduced, and servers are always able to pro-

cess client or server updates. On the contrary, the related studies

mainly consider that clients interact with a single server.

Asynchronous training and communications. Clients inter-
act with their assigned server in the same way they would in a

classical asynchronous FL system: they receive a global model from

the server, train it over their local dataset and send their model

update back to the server. Spyker’s servers rely on asynchronous

communications to exchange their models and benefit from the

dataset of their respective clients. To minimize the complexity of

this procedure, servers rely on a token-based strategy to trigger

the asynchronous exchange of their models. Model aggregation

also happens asynchronously and in a peer-to-peer fashion among

servers. The model exchange can only be initiated by the server

that holds the token, which prevents potential concurrent and re-

dundant model broadcasts. At a given point in time, servers might

maintain slightly different models.

Handling model staleness and fast clients. Since all interac-
tions in Spyker are asynchronous, servers take into account model

staleness at all levels to maintain accurate models. To do so, servers

maintain the age of their model. A server increases the age of its

model whenever it processes a client model update, or the model

of another server. Spyker uses the age of models to dampen the

contribution of an old model update when processing it. Similarly,

Spyker uses a learning rate decay to limit the influence of clients

that frequently produce updates.

Preventing servermodels fromdrifting apart.The frequency
at which servers synchronize their models significantly influences

the performance of the system in presence of data and resource het-

erogeneity. It is therefore important to ensure that a server model

does not become biased toward the datasets of its clients, and that

it leverages all client datasets. The model exchange and aggrega-

tion procedures allow servers to asynchronously homogenize their

models. To prevent server models from drifting too much from each

other during the training process, servers exchange and aggregate

their models whenever they detect that their ages differ too much,

and whenever a server has updated its model too many times since

the last model exchange.

We assume that all servers and clients are honest, i.e., they do

not launch data or model poisoning attacks [10, 32], or privacy

attacks [29, 37], and never deviate from their protocol specification.

5 SPYKER DETAILS
In this section, we present the details of Spyker’s building blocks.

We first detail how servers and clients interact. We then discuss

Spyker’s aggregation algorithm that merges two server models and

the token-based algorithm that triggers the asynchronous exchange

of server models. Tab. 2 details our notations and the values of all

parameters.

5.1 Local Training and Decaying Learning Rates
Alg. 1 describes the asynchronous interactions between a client and

a server in Spyker, which are divided into two main procedures.

The first procedure, LocalTraining, is executed by a client 𝐶𝑘
to train a model over its local dataset (Alg. 1, ll. 1-7), and is triggered

upon receiving a model𝑊 𝑡
𝑖
, along with its age 𝐴𝑖 and a learning

Algorithm 1 Interactions between clients and servers

𝜂𝑖 : server 𝑆𝑖 ’s learning rate

𝜂𝑘 : client 𝐶𝑘 ’s learning rate (given by 𝑆𝑖 )

1: [Client 𝐶𝑘 ] Procedure LocalTraining(𝑊 𝑡
𝑖
, 𝐴𝑖 , 𝜂𝑘 )

2: ⊲receive model𝑊 𝑡
𝑖
with age 𝐴𝑖 from server 𝑆𝑖

3: 𝑊 𝑡
𝑘
=𝑊 𝑡

𝑖

4: for each epoch ∈ 𝑇𝑘 do
5: update𝑊𝑘 with learning rate 𝜂𝑘

6: 𝑊 𝑡+1
𝑘

=𝑊 𝑡
𝑘

7: send

(
𝑊 𝑡+1
𝑘

, 𝐴𝑖

)
to server 𝑆𝑖

8: [Server 𝑆𝑖] Procedure Aggregation(𝑊 𝑡 ′

𝑘
, 𝐴𝑘 )

9: ⊲receive model𝑊 𝑡 ′

𝑘
with age 𝐴𝑘=𝑡 ′ from client 𝐶𝑘

10: 𝑤𝑡
𝑘
= 𝐴𝑖 −𝐴𝑘

11: 𝑊 𝑡+1
𝑖

=𝑊 𝑡
𝑖
+ 𝜂𝑖 ·𝑤𝑡𝑘 ·

(
𝑊 𝑡 ′

𝑘
−𝑊 𝑡

𝑖

)
12: 𝐴𝑖 = 𝐴𝑖 + 1

13: 𝑢 [𝑘] = 𝑢 [𝑘] + 1 ⊲num. updates received per client
14: 𝜂 [𝑘] = Decay(𝜂 [𝑢 [𝑘]], 𝑢 [𝑘], 𝑢)
15: send

(
𝑊 𝑡+1
𝑖

, 𝐴𝑖 , 𝜂 [𝑘]
)
to client 𝐶𝑘

16: checkSynchronization()

rate 𝜂𝑘 from a server. The client then trains the model over its

dataset using the specified learning rate (Alg. 1, ll. 4-5), and sends

the trained model back to the server along with the age 𝐴𝑖 (Alg. 1,

l. 7). Note that instead of having the client sends the model’s age

with its update, the server could remember the age of the model

it has sent to every client. We adopted this option to simplify our

pseudocode.

The second procedure, Aggregation, is executed by a server

upon receiving a client update (Alg. 1, ll. 8-15). The server first

determines the age difference between its current model and the

model it sent to the client (Alg. 1, l. 10), and uses it to possibly

decrease the impact of the received update on its model when

updating it (Alg. 1, l. 11). The server then computes the learning

rate 𝜂𝑘 that the client should use for its next local training (Alg. 1,

l. 14), before returning its new model𝑊 𝑡+1
𝑖

along with 𝐴𝑖 and 𝜂𝑘
to client 𝐶𝑘 (Alg. 1, l. 15). Finally, the server verifies whether it

should trigger a synchronization of server models (Alg. 1, l. 16) if its

model age has sufficiently increased since the latest synchronization

by calling function checkSynchronization() (defined at l. 17 in

Alg. 2).

Let us provide more information on the way a server in Spyker

updates the learning rate of a client (Alg. 1, l. 14) to maintain high

model accuracy despite clients and network heterogeneity, i.e., de-

spite the fact that some fast clients might consistently send updates

at short intervals, while slow clients might contribute infrequently.

Spyker adopts an adaptive strategy that tailors the impact of each

client update. More precisely, a server uses function Decay (Alg. 1,

l. 14) to decrease the impact of the fast clients that frequently gen-

erate updates on its model. The definition of this decay function

relies on the observation that fast clients update more frequently

and bias the model, and that therefore reducing the learning rate
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of fast clients with the decay function reduces their impact on the

aggregated model. To do so, the server maintains the number of

updates it has received from each client in an array 𝑢, and therefore

increments 𝑢 [𝑘] (Alg. 1, l. 13) upon receiving a model from𝐶𝑘 . The

server adjusts client 𝐶𝑘 ’s learning rate using the following Decay

function:

Decay(𝜂 [𝑢 [𝑘]], 𝑢 [𝑘], 𝑢) ={
𝜂𝑘 if 𝑢 [𝑘] < 𝑢

max (𝜂𝑚𝑖𝑛, 𝜂 [𝑢 [𝑘]] − 𝛽 (𝑢 [𝑘] − 𝑢)) if 𝑢 [𝑘] ≥ 𝑢

The Decay function takes three inputs: 𝑢 [𝑘] is the number of

updates that the server received from client 𝐶𝑘 ; 𝜂 [𝑢 [𝑘]] is the
learning rate a client would use without decay, which classically

decreases with 𝑢 [𝑘]; and 𝑢 is the average number of updates that

clients have sent to server 𝑆𝑖 .Decay also uses two parameters: 𝜂𝑚𝑖𝑛
is a lower bound for learning rates; and 𝛽 is the decaying rate. We

empirically determined that 𝛽 = 0.05 and 𝜂𝑚𝑖𝑛 = 10
−6

provide the

best results (cf. Tab. 2). The value of 𝛽 controls the impact of fast

clients: a small 𝛽 benefits fast clients while a small 𝛽 benefits slow

clients.

5.2 Token-Triggered Server Model Aggregations
In addition to interacting with their clients, Spyker’s servers syn-

chronize their models using Alg. 2. Since the age of a server model

impacts the way its client updates are aggregated, Spyker triggers

an asynchronous server model synchronization whenever the ages

of server models are drifting too much or when a server has pro-

cessed a large enough number of client updates to make sure that

all client datasets are fairly represented in server models.

To avoid the complexity of having to handle multiple concurrent

synchronizations, servers rely on a token so that only one server

can trigger the model broadcasts and aggregations. This token

contains a synchronization ID 𝑏𝑖𝑑 that allows a server to broadcast

their model only once per synchronization. Only the server holding

the token can trigger a synchronization, but other servers might

indirectly learn about an ongoing synchronization and broadcast

their models to each other. A server broadcasts its model either

because it holds the token and because some conditions are met

(more details below), or by receiving another server’s model with

an unknown synchronization ID. To maintain fairness, the token

is circulated among all servers. To accelerate synchronizations,

whenever necessary, servers can broadcast their age so that the

token holder triggers a synchronization. Note that we assume that

links are FIFO, which can easily be enforced if it is not the case, so

that a server receives the models of any other server according to

increasing synchronization IDs and can process them all.

Upon executing the ServerInit initialization procedure (Alg. 2,

l. 1), a server 𝑆𝑖 initializes several variables to coordinate the ex-

change of models between servers. The token initially resides at a

randomly chosen server (here server 𝑆1), and contains a synchro-

nization ID 𝑏𝑖𝑑 set to 1 and a vector of server model ages that

are all initially equal to 0. The hashmap 𝑐𝑛𝑡 is used to count the

number of models that have been received for a given synchroniza-

tion ID. The known age of server models is kept in 𝑎𝑔𝑒𝑠𝑖 . Variable

𝑑𝑖𝑑𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 contains the set of synchronization IDs for which 𝑆𝑖
has broadcast its model. The Boolean variable 𝑜𝑛𝑔𝑜𝑖𝑛𝑔𝑆𝑦𝑛𝑐ℎ𝑟𝑜 is

used by the server holding the token to initiate a synchronization

only once before forwarding the token. The model age at which

the latest synchronization happened, and the current model age

are respectively stored in 𝐴𝑖,𝑝𝑟𝑒𝑣 and 𝐴𝑖 . Finally, a server randomly

initializes its model.

The token keeps visiting every server following a random ring-

based topology. Upon arrival of the token (Alg. 2, ll. 11– 16), a

server 𝑆𝑖 updates the ages of the models that it maintains using

the token’s information. It then calls the CheckSynchronization

procedure (Alg. 2, l. 17) to determine whether a model synchro-

nization should be triggered. The frequency at which server model

exchanges happen is controlled by the ℎinter and ℎintra parameters

(cf. Tab. 2): ℎinter is the threshold for the maximum age difference

between different server models; and ℎintra is the threshold for the

maximum age difference between a server model’s current age and

the age it had during the last server model synchronization. If the

inter-server age difference exceeds threshold ℎinter, or if the intra-

server age difference exceeds threshold ℎintra, then server 𝑆𝑖 might

trigger a server model exchange. First, if 𝑆𝑖 holds the token and has

not already triggered a server model exchange, then it broadcasts

its current model𝑊 𝑡
𝑖
of age 𝐴𝑖 along with the current broadcast ID

𝑡 .𝑏𝑖𝑑 to all the other servers. Second, if 𝑆𝑖 does not hold the token,

it can broadcast its model age to all other servers, so that the server

that holds the token can execute procedure RcvAge (Alg. 2, l. 8),

which updates the age of a server model and possibly triggers a

model synchronization.

Procedure RcvModel (Alg. 2, ll. 27-38) is executed when a server

receives a server model, and is also in charge of relaying the token.

Upon receiving a server model from a server 𝑆𝑖 , server 𝑆 𝑗 first up-

dates its local age for server model 𝑖 . It then verifies whether it has

already broadcast is model for the synchronization ID indicated by

server 𝑆𝑖 using its local 𝑑𝑖𝑑𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 set, and if necessary broad-

casts its model and updates the relevant variables. A server that

receives a server model then executes the aggregation procedure

ServerAgg (Alg. 2, l. 41), which is described in details in the next

section. Finally, the server that holds the token makes sure that

it receives the model of all other servers (using the 𝑐𝑛𝑡 hashmap)

before forwarding the token to its successor on the ring of servers.

5.3 Aggregation of Server Models
Following their exchange of models, servers aggregate them asyn-

chronously immediately after they are received. Alg. 2 also details

the procedures that a server 𝑆𝑖 follows to aggregate a model that it

receives from another server 𝑆 𝑗 . This algorithm first calculates the

weight that should be used to update the local server model with

the received one. The aggregation weight𝑤𝑖, 𝑗 is computed based

on the age of the two server models 𝐴𝑖 and 𝐴 𝑗 using a sigmoid

function that is parameterized using parameter 𝜙 (Alg. 2, ll. 43-44):

𝑤𝑖, 𝑗 =
1

1 + 𝑒−𝑎
, where 𝑎 =

𝜙 (𝐴 𝑗 −𝐴𝑖 )
𝐴𝑖

The age difference𝐴 𝑗 −𝐴𝑖 indicates whether𝑊
𝑡
𝑗
is more mature

than𝑊 𝑡
𝑖
in terms of the number of updates both models have been

trained on. The influence of𝑊 𝑡
𝑗
increases with this age difference.

Denominator 𝐴𝑖 makes the absolute weight relative to the current

age of server 𝑆𝑖 . As a model age increases, it becomes more stable
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Algorithm 2 Token-triggered aggregation of server models.

1: [Server 𝑆𝑖] ServerInit()
2: 𝑡𝑜𝑘𝑒𝑛 = (𝑖≠1)? 𝑁𝑈𝐿𝐿 : {𝑏𝑖𝑑=1, 𝑎𝑔𝑒𝑠=[0, · · · , 0]}
3: 𝑐𝑛𝑡 = 𝑎𝑔𝑒𝑠𝑖 = {} ⊲hashmaps
4: 𝑑𝑖𝑑𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 = ∅
5: 𝑜𝑛𝑔𝑜𝑖𝑛𝑔𝑆𝑦𝑛𝑐ℎ𝑟𝑜 = False

6: 𝐴𝑖,𝑝𝑟𝑒𝑣 = 𝐴𝑖 = 0

7: set𝑊 0

𝑖
to random model

8: [Server 𝑆𝑖] Procedure RcvAge(𝐴 𝑗 )
9: 𝑎𝑔𝑒𝑠𝑖 [ 𝑗] = max(𝑎𝑔𝑒𝑠𝑖 [ 𝑗], 𝐴 𝑗 )
10: checkSynchronization()

11: [Server 𝑆𝑖] Procedure RcvToken(t)
12: for 𝑗 ∈ [1, 𝑁 ] do
13: 𝑎𝑔𝑒𝑠𝑖 [ 𝑗] = max(𝑎𝑔𝑒𝑠𝑖 [ 𝑗], 𝑡 .𝑎𝑔𝑒𝑠 [ 𝑗])
14: 𝑡𝑜𝑘𝑒𝑛 = 𝑡

15: 𝑡 .𝑏𝑖𝑑 = 𝑡 .𝑏𝑖𝑑 + 1

16: checkSynchronization()

17: [Server 𝑆𝑖] Procedure checkSynchronization()
18: if max(𝑎𝑔𝑒𝑠)−min(𝑎𝑔𝑒𝑠)≥ℎinter or 𝐴𝑖−𝐴𝑖,𝑝𝑟𝑒≥ℎintra then
19: if ℎ𝑎𝑠𝑇𝑜𝑘𝑒𝑛 and (not 𝑜𝑛𝑔𝑜𝑖𝑛𝑔𝑆𝑦𝑛𝑐ℎ𝑟𝑜) then
20: 𝐴𝑖,𝑝𝑟𝑒 = 𝐴𝑖
21: 𝑜𝑛𝑔𝑜𝑖𝑛𝑔𝑆𝑦𝑛𝑐ℎ𝑟𝑜 = True

22: send (𝑊 𝑡
𝑖
, 𝐴𝑖 , 𝑡 .𝑏𝑖𝑑) to all servers

23: 𝑑𝑖𝑑𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 = 𝑑𝑖𝑑𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 ∪ {𝑡 .𝑏𝑖𝑑}

24: 𝑐𝑛𝑡𝑖 [𝑡𝑜𝑘𝑒𝑛.𝑏𝑖𝑑] = 1

25: else
26: send 𝐴𝑖 to all servers

27: [Server 𝑆 𝑗 ] Procedure RcvModel(𝑊 𝑡
𝑖
, 𝐴𝑖 , 𝑏𝑖𝑑𝑖 )

28: 𝑎𝑔𝑒𝑠 𝑗 [𝑖] = max(𝑎𝑔𝑒𝑠 𝑗 [𝑖], 𝐴𝑖 )
29: if not 𝑏𝑖𝑑𝑖 ∈ 𝑑𝑖𝑑𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 then
30: 𝑑𝑖𝑑𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 = 𝑑𝑖𝑑𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 ∪ {𝑏𝑖𝑑𝑖 }
31: 𝐴 𝑗,𝑝𝑟𝑒 = 𝐴 𝑗

32: send

(
𝑊 𝑡
𝑗
, 𝐴 𝑗 , 𝑏𝑖𝑑𝑖

)
to all servers

33: ServerAgg(𝑊 𝑡
𝑖
, 𝐴𝑖 )

34: if 𝑡𝑜𝑘𝑒𝑛 ≠ NULL and 𝑡 .𝑏𝑖𝑑 = 𝑏𝑖𝑑𝑖 then
35: 𝑐𝑛𝑡 [𝑏𝑖𝑑𝑖 ] = 𝑐𝑛𝑡 [𝑏𝑖𝑑𝑖 ] + 1

36: if 𝑐𝑛𝑡 [𝑏𝑖𝑑𝑖 ] = 𝑛 then
37: 𝑡 .𝑎𝑔𝑒𝑠 = 𝑎𝑔𝑒𝑠 𝑗
38: send token 𝑡 to the next server on ring

39: 𝑡𝑜𝑘𝑒𝑛 = NULL

40: 𝑜𝑛𝑔𝑜𝑖𝑛𝑔𝑆𝑦𝑛𝑐ℎ𝑟𝑜 = False

41: [Server 𝑆𝑖] Procedure ServerAgg(𝑊 𝑡
𝑗
, 𝐴 𝑗 )

42: process model𝑊 𝑡
𝑗
of age 𝐴 𝑗 = 𝑡 from server 𝑆 𝑗

43: 𝑎 =
𝜙 (𝐴 𝑗−𝐴𝑖 )

𝐴𝑖

44: 𝑤𝑖, 𝑗 = (1 + 𝑒−𝑎)−1

45: 𝑊 𝑡+1
𝑖

=𝑊 𝑡
𝑖
+ 𝜂𝑎 ·𝑤𝑖, 𝑗

(
𝑊 𝑡
𝑗
−𝑊 𝑡

𝑖

)
46: 𝐴𝑖 =

(
1 − 𝜂𝑎 ·𝑤𝑖, 𝑗

)
𝐴𝑖 + 𝜂𝑎 ·𝑤𝑖, 𝑗 · 𝐴 𝑗

and the impact of other server models should be decreased. The

sigmoid function ensures that𝑤𝑖, 𝑗 remains between 0 and 1. The

derivative of this function becomes 0 and results in a weight of 1

when the relative model age difference is too large. Parameter 𝜙

indicates in which range the sigmoid function is active. A larger 𝜙

leads to a smaller active range, leaving a larger area for the weight

of 0 and 1.

The aggregation rate 𝜂𝑎 also scales the influence of other servers

during model aggregation. When the aggregation with server 𝑆𝑖
happens locally at server 𝑆 𝑗 , a large 𝜂𝑎 indicates that server 𝑆𝑖 could

greatly influence server 𝑆 𝑗 ’s model, and 𝜂𝑎 = 1 means it could

replace server 𝑆 𝑗 ’s model when their ages are equal. Parameter 𝜂𝑎
needs to be carefully tuned. If 𝜂𝑎 is too large, the influence of the

server itself is eliminated; if 𝜂𝑎 is too small, the server learns too

little from its peers thus its model could be biased to its clients’ data

distribution. We empirically determined 𝜙 = 1.5 and 𝜂𝛼 = 0.6 to

provide the best results (cf. Tab. 2).

Server 𝑆𝑖 finally updates its local model age after aggregating

a server model using the weight𝑤𝑖, 𝑗 that has been applied to the

model aggregation (Alg. 2, l. 46). As the aggregation of a server

model embeds more than one client update, we apply a weighting

strategy to increase a model’s age after aggregating another server’s

model.

6 PERFORMANCE EVALUATION
In this section, we describe our experimental settings, and compare

Spyker to state-of-the-art representative FL algorithms. We show

the superior accuracy of Spyker over previous baselines, demon-

strate its improved scalabilitywith the number of servers, and report

the positive impact of our learning rate decay function on accuracy.

We also report the network consumption of all algorithms.

6.1 Settings
Baselines. We compare Spyker with three recent Federated Learn-

ing algorithms: FedAvg [24], FedAsync [34] and HierFedAvg [22].

FedAvg is the original synchronous FL framework, while FedAsync

and HierFedAvg are respectively state-of-the-art asynchronous and

hierarchical FL frameworks. We also implemented a synchronous

version of Spyker, which we call Sync-Spyker, that uses a synchro-

nous server-server model aggregation procedure. Sync-Spyker pe-

riodically triggers synchronous model exchanges between servers

(i.e., ignoring the influence of ℎ𝑖𝑛𝑡𝑒𝑟 to trigger model exchanges).

Periodically, the servers broadcast their model, along with their age,

and wait for all other server models. Upon receiving all models, a

server aggregates them following a deterministic order (i.e., using

the server IDs). Following this exchange and aggregation of server

models, all servers own the same model. In Sync-Spyker, when the

server synchronization algorithm is started, servers stop processing
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Figure 3: WikiText2: Perplexity wrt. time. (lower is better)
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Figure 4: WikiText2: Perplexity wrt. # updates (lower is bet-
ter)

local updates from clients, and instead store them. Client updates

are then processed when all the server models have arrived and

have been aggregated.

Datasets.We conduct experiments on the MNIST and CIFAR-10

image collections, and on the WikiText2 language modeling dataset.

For a given experiment, a dataset is split into subsets of equal

sizes that are assigned to different clients. To introduce client data

heterogeneity, we assign 𝑙 labels to each client. A smaller 𝑙 indicates

a higher degree of non-independent and identically distributed (IID)

data distribution and thus larger heterogeneity among clients [9].

We set 𝑙 to 2 in non-IID data experiments.

Computation and Network Delays. Our experiments take

into account the computations that clients execute. Time is main-

tained at each client, and is advanced depending on the procedure it

executes during the experiments. Tab. 3 details the average comput-

ing times of the server aggregation procedure of all FL frameworks.

These values were obtained by benchmarking all algorithms us-

ing the Python 𝑡𝑖𝑚𝑒 package. To simulate client heterogeneity, we

sample each client’s training delay from a Gaussian distribution

𝑁 (𝜇, 𝜎2), where 𝜇 = 150 and 𝜎 = 7.5. We use the same training

delays per client across all experiments. Since servers might be

located in different regions of the world (e.g., Amsterdam and Syd-

ney), we set the communication delays among servers according to

the Amazon Web Service network latency [28] as shown in Tab. 4.

We assume that a client and its nearest server are in the same ge-

ographical location and therefore set their communication delay

using the diagonal of Tab. 4. We assume that all network links have

a 100Mbps bandwidth. For each experiment, we detail the number

of servers and clients that we use along with the parameter values.

Model. For MNIST, we use a CNNmodel with two convolutional

and two fully connected layers. For CIFAR-10, we use a CNN model

with three convolutional and two fully connected layers. For Wiki-

Text2, we use the next character Long Short-Term Memory (LSTM)

neural network model, which has been designed for character-level

text generation tasks. The language model consists of an embedding

layer that is used to capture the semantic and syntactic properties

of characters, an LSTM layer that captures dependencies between

characters and generates coherent text, and a fully connected layer

Table 3: Computation time required per procedure (ms).

Local Training 200

Model Aggregation in Sync-Spyker 2

Model Aggregation in Spyker 2

Model Aggregation in FedAVg 15

Model Aggregation in HierFAVG 15

Model Aggregation in FedAsync 2

Table 4: Communication delays between geographical loca-
tions (ms).

Hongkong Paris Sydney California

Hongkong 1.41 194.9 132.28 155.13

Paris 197.91 0.9 278.83 142.25

Sydney 132.06 280.11 2.56 138.47

California 154.96 142.79 138.57 2.14

that transforms the LSTM’s hidden states into a probability distri-

bution over all possible characters in the vocabulary. The initial

local learning rate of clients 𝜂𝑘 is 0.05. In asynchronous settings,

we use 𝛼 = 0.5 for the staleness weighting in FedAsync and a global

learning rate of 𝜂 = 0.6 for the client-server update.

6.2 Accuracy
We now use 100 clients that are equally distributed across 4 servers

located in an AWS region. Fig. 3, Fig. 5 and Fig. 7 show that Spyker

converges faster than the baselines in terms of elapsed time for all

three datasets. Spyker and Sync-Spyker converge as quickly as the

baselines in terms of number of processed client updates.

We also evaluated the ability of the 5 FL frameworks to scale with

the number of clients. We evaluated the time each algorithm needs

to reach 90% accuracy with MNIST and 4 servers using 100, 200 and

300 clients. Tab. 5 reports this time for all algorithms for 200 and

300 clients divided by the time measured with 100 clients. When

the number of clients in the system increases, the convergence time

and required number of updates of the various methods increase
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Figure 7: CIFAR-10: Accuracy wrt. time (higher is better)
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Figure 8: CIFAR-10: Accuracy wrt. # updates (higher is better)

Table 5: Multiplicative factor for the amount of time and
number of updates necessary for algorithms to reach a 90%

accuracy with 200 and 300 clients compared with their own
execution with 100 clients. A low value indicates that an
algorithm scales well with the number of clients.

200 clients 300 clients

Time Updates Time Updates

FedAsync 2.42 3.63 5.99 9.01

FedAvg 1.98 4.05 2.44 7.26

HierFAVG 1.64 3.18 1.75 8.19

Spyker 1.21 2.43 1.43 4.34
Sync-Spyker 1.61 2.68 1.90 4.87

following different trends. Spyker is the method that scales the best.

For example, it requires 21%more time to converge with 200 clients

than with 100 clients while other baselines (excluding Sync-Spyker)

require at least 64% more time. It also requires 2.43 times as many

updates to converge while other baselines require at least 3.18 times

as many. On the other side of the spectrum, FedAsync’s required

time and number of updates to converge increase the most. With

200 clients, its convergence time is multiplied by 2.42, while its

required number of updates is multiplied by 3.63 Spyker not only

exhibits the fastest convergence, but it also scales the best with the

number of clients.

Fig. 4, Fig. 6 and Fig. 8 show the perplexity of all the baselines,

Spyker and Sync-Spyker on WikiText-2, and their accuracy on

MNIST and CIFAR-10 depending on the number of client updates

processed. One can see that Spyker and Sync-Spyker do not always

require the least number of updates to reach a given perplexity

or accuracy. This is not a problem in practice as it makes more

sense to evaluate the evolution of perplexity or accuracy based

on elapsed time during a deployment. However, these figures also

show that Spyker reaches similar perplexity or accuracy levels as

FedAvg, which generally converges the fastest based on the number

of updates (but not based on elapsed time, where it is the worst

performing baseline).

6.3 Impact of Multiple Servers in Asynchronous
FL

In asynchronous FL systems, the server aggregates an update im-

mediately after receiving it. However, a busy server can cause a

queueing of updates that await being processed. To further illustrate
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Figure 9: Number of updates queued at a server with Spyker
and FedAsync
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Figure 10: Density distribution of the number of updates per
client with Spyker and FedAsync

the benefits of introducing a multi-server system to an asynchro-

nous FL framework, we evaluate the update queuing phenomenon

with Spyker (4 servers) and FedAsync (1 server) with 200 clients.

The local training delays of clients are generated using a Gaussian

distribution with a mean of 150ms and a standard deviation of

60ms. Processing delays are set using Tab. 4.

Fig. 9 shows that FedAsync’s queue length increases to nearly 80

updates from 300ms to 600ms and always stays above 20 during the

rest of the experiment. Client updates are processed more efficiently

by the 4 servers that Spyker uses, as server queues never contain

more than 20 updates.

We further evaluated the time needed for FedAsync and Spyker

to reach 90% and 95% accuracy on the MNIST dataset. For these ex-

periments, the time difference observed is only caused by resource

heterogeneity as we set all network latency’s to the same value.

The results are shown in the bottom three rows of Tab. 6. Spyker

reaches a 90% and a 95% accuracy respectively 38% and 25% faster

than FedAsync.

Table 6: Time to reach 90% or 95% accuracy with FedAsync
and Spyker. Lat uses AWS latency [28], and No lat assumes
uniform latency between servers (same mean in both cases).

Network Method Time 90% Time 95%

Lat.

FedAsync 59𝑠 125𝑠

Spyker 22𝑠 51𝑠

Improvement -61% -58%

No lat.

FedAsync 40𝑠 75𝑠

Spyker 25𝑠 56𝑠

Improvement -38% -25%

To demonstrate that Spyker mitigates the impact of high com-

munication delays, we conducted a group of experiments with the

latencies of Tab. 4. The results are shown in the top three rows of

Tab. 6. Compared with the bottom three rows, the top three rows

show a larger difference between Spyker and FedAsync. Spyker

appears 61% faster to reach 90% accuracy, and 58% faster to reach

95% accuracy than FedAsync. This difference can be explained by

the fact that Spyker decreases the distance between servers and

clients compared to FedAsync, which uses a single server.

6.4 Number of Clients per Server
We evaluate the effect of imbalanced number of clients allocated to

each server. We consider four different scenarios. The first one con-

sists of 4 servers with each 25 clients. In the three other scenarios,

one of the servers has more clients (i.e., it has 52, 63, or 70 clients)

while the remaining clients are divided evenly over the remaining

servers. Table 7 show the accuracy of the global model and the

time necessary for it to converge. These results show that slight

imbalance in the client distribution degrades accuracy the most

(-14.5% with the second most balanced scenario) and that increasing

imbalance always increases the convergence time. In comparison,

we observed that HierFAVG’s performance is less impacted by this

kind of imbalance, but its performance nonetheless is always worse

than Spyker’s.

Table 7: Effect of imbalanced number of clients per server
on accuracy.

Spyker

25 clients 52 clients 63 clients 70 clients

Accuracy 96.4% −14.5% −11.9 −7.63%
Duration (s) 120 +17.76 +33.04 +53.08

6.5 Impact of Learning Rate Decay
We ran two experiments to demonstrate the positive impact of

learning rate decay. We first used Spyker and FedAvg each with

100 clients to perform the classification task on the MNIST dataset.

We gathered statistics on the number of updates of every client and

plotted a Kernel Density Estimate (KDE) plot to show its distribu-

tion. The most desirable KDE plot for a FL system should exhibit a

single concentrated peak, which would mean that clients contribute

equally. Fig. 10 shows the KDE plots of Spyker and FedAsync.

FedAsync has a more concentrated distribution of updates with

a steep peak at around 200 updates compared to a gentler peak for
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Figure 11: Accuracy with and without a learning rate decay
on MNIST with 4 servers and 100 clients (25 per server)

0 20 40 60 80 100

Time in Seconds

0

20

40

60

C
om

m
un

ic
at

io
n

ov
er

he
ad

in
M

B

HierFAVG

FedAsync

FedAvg

Sync-Spyker

Spyker

Figure 12: Overall network consumption of Spyker compared
to the baselines

Spyker at around 300 updates. This difference is explained by the

fact that FedAsync uses a single server, whose latency distribution

is wider than the ones Spyker’s servers have with their local clients.

On the other hand, by introducing multiple servers, the range of

possible communication delays with Spyker becomes smaller and

the differences between client training times becomes the major

source of heterogeneity. We also observe a peak at around 1, 400

updates for Spyker and 1, 700 for FedAsync, which comes from

the presence of fast clients near the server, which could cause a

biased global model due to their higher influence on the server’s

model if left unaddressed. This analysis justifies the need for a

client learning rate decay mechanism that customizes the learning

rate of clients according to the number of updates they contribute.

The impact of the updates that the most active clients generate is

therefore dampened to balance the overall contribution of clients.

Interestingly however, the decay functionwould use a smaller decay

ratio if the system as a whole would catch up with the fast clients.

In the second experiment, we evaluated Spyker’s convergence

speed with and without our learning rate decay mechanism. Fig. 11

shows that introducing the learning rate decay mechanism in-

creases Spyker’s convergence speed, and therefore that it reduces

the impact of client data heterogeneity.

6.6 Bandwidth consumption
We evaluated the bandwidth consumption of all FL algorithms over

time. We measured the number of bytes transferred over 110 s dur-

ing server-server and server-client model communications. Fig. 12

details the network consumption of all algorithms with the MNIST

dataset, 4 servers and 100 clients equally distributed over all servers.

FedAvg has the lowest bandwidth consumption with 2.28MB con-

sumed, which can be explained by its synchronous communications

and its use of a single server. Spyker has the highest bandwidth

requirements with 63.4MB transferred because of its asynchronous

server-server and server-client communications. This network con-

sumption is however very reasonable for modern networks. For

each client update, the aggregated global model is relayed back to

the client, which results in higher bandwidth requirements. Simi-

larly, Sync-Spyker is the second most network intensive algorithm

and transmits 32.5MB over the network since it maintains asyn-

chronous client-server interactions. Unlike Spyker’s asynchronous

multi-server aggregation, Sync-Spyker’s synchronous multi-server

aggregation halts the client updates, which results in lower commu-

nication overhead. FedAsync’s asynchronous client updates incur

24.5MB of data transmissions over the network, which is higher

than with FedAVG. HierFAVG’s synchronous client-server com-

munication results in lower communication overhead of 16.35MB

but the hierarchical server aggregation requires relatively higher

bandwidth.

7 CONCLUSION
We described Spyker, the first fully asynchronous multi-server

FL algorithm. Spyker focuses on practical scenarios where clients

are distributed over the world, and it addresses the performance

bottlenecks that naturally appear in presence of weak clients or

heterogeneous networks. Spyker scales better with the number of

clients than previous works. Spyker relies on an aging mechanisms

that servers use to support asynchrony of all exchanges and on a

token-based algorithm that servers rely on to synchronize their

model exchanges. Our experimental results show that Spyker re-

quires less time to converge than three representative algorithms –

FedAsync, HierFAVG, and FedAvg, and is also faster than its par-

tially synchronous variant Sync-Spyker where servers synchronize

themselves using a synchronous algorithm. Spyker also leverages a

learning rate decay method to maintain high accuracy despite client

heterogeneity. Future work includes exploring the possibility of in-

tegrating clustering algorithms in Spyker to enable servers to group

clients based on possible similarities in their data distributions.
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