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01 Background

Change in electricity prices for households consumers, 2022 - 2023

(Eurostat, 2023)
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The last few years have seen a significant 
increase in energy prices across Europe, 
initially due to a rebound in energy demand 
following the relaxation of post-COVID 
lockdown measures, and subsequently after 
the Russian invasion of Ukraine.



01 Background

As power generation in many European 
countries still relies on fossil fuels, such 
as coal and natural gas, the production 
of electricity leads to the release of large 
quantities of carbon dioxide into the 
atmosphere.

(Ministerie van Economische Zaken en Klimaat, 2023)

(European Commission, 2023)
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01 Background

Many homeowners are turning to 
renewable energy sources. Photovoltaic 
panels and battery energy storages have 
become popular solution for generating 
electricity, reducing reliance on the grid, 
and even gaining energy independence 
within the grid-connected residential 
sector.

(Author, 2024)
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01 Background

Yet, estimating the benefits and risks of investing in rooftop PV and BES systems, its type and size, requires is indeed a challenging 
task requiring consideration of various factors for its adoption and maintenance.
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Market  ConditionsSystem and Building Data 

Environmental Data 

Constraints

Electricity Market 
Data
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01 Background
TIME!

Unrealistic assumptions regarding 
time-dependent variables 

They are static - do not accommodate 
modifications to the system throughout 

its lifetime

System installation is considered as 
a one-time now-or-never decision
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01 Background

Allow for time flexibility, adapt and 
update the policy to evolving internal and 

external conditions.

Incorporate a multi-objective 
scope.

Multi-stage strategy with option to 
expand, replace or contract.

There is a need for a new risk-mitigating computational optimisation framework what would be able to 
accommodate for….



01 Background

All decisions are ultimately informed by data. 

(Sutton & Burto, 2020)

Reinforcement learning is a paradigm within ML 
where an agent learns optimal decisions by 
interacting with an environment through trial and 
error, making it well-suited for problems where 
decisions lead to sequences of outcomes over time.

RL can handle high-dimensional state spaces and 
generalize across different scenarios, making itself 
applicable to complex sequential decision-making 
tasks.
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01 Background

A trained model can be integrated into a 
Recommender System.

(Chen et al., 2023)

Trained Agent
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02 
Research 
Question

How can reinforcement learning based recommendation 
workflow be used for long-term planning and design of residential 
grid-connected PV and battery storage systems under the 
uncertainty of future scenarios? 
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03 
Literature 
Review
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04 Workflow Formulation
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04 Workflow

The problem is structured as a 
MDP :

• Agent recieves observation 
regarding the current condition
of the system, along with current
rates of relevant variables

• Based on these observations, the
agent must execute actions
aimed at maximizing the
reward, calculated as the net
balance between costs and
benefits and/or the net carbon
impact.

• The optimization process spans
25 years, divided into equal 
timesteps.
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04 Workflow

(Author, 2024)

Proximal Policy 

Optimisation (PPO)

1. Convergence Speed

2. Robustness and Stability i.e. its 
performance consistency across 
different scenarios

3. Scalability i.e. handling of 
increasing complexity

4. Multi-Objective Optimization
Capability

5. Access to learning resources
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Criteria: Literature Review and 
Experimentation:

Selection:

Advantage Actor 
Critic (A2C)



04 Workflow

Crystalline Technology

Microinverter

No outages
No import limit
Export limit at 4kW

AC-coupled battery system

Lithium Iron 
Phosphate 
Technology
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04 Workflow
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05 
TOY Problem
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06 
PV Optimisation
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06 PV Optimisation
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06 PV Optimisation
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PV Modelling



06 PV Optimisation
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PV Modelling



06 PV Optimisation
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PV Modelling



06 PV Optimisation

Soiling Build-up as % of radiation losses
 (Author, 2024)

Annual output of a single module (Author, 2024)
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PV Modelling



06 PV Optimisation
Degradation

Normal distribution of the annual degradation rate 
(green), fitted  to the data (pink) for the budget 
panel. (Author, 2024)
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06 PV Optimisation

Weibull Distribution for Panel’s Survival Rate (Author, 2024)
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Failure



06 PV Optimisation
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• Decision variables evolve 
unpredictably given the 
inherent volatility influenced 
by market trends, etc

• Precise long-term price 
predictions are very 
challenging

• It is vital to expose RL Model 
to a wide range of possible 
scenarios reflecting variables 
long-term fluctuations. 

Stochastic Variables Modelling
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Electricity Tariff - Geometric Brownian Motion

•  Stochastic
• Always positive
• Non-stationary
• Continuous

𝜎 = 𝑣𝑎𝑟(𝑙𝑜𝑔𝑋𝑡)𝜇 = 𝑚𝑒𝑎𝑛(𝑙𝑜𝑔𝑋𝑡) ×
𝜎2

2

Historical mean annual residential electricity 
prices (Author, 2024) Generated Scenarios for training and evaluation (Author, 2024)



06 PV Optimisation
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Grid Emissions Factor - Ornstein-Uhlenbeck Process

•  Stochastic
• Mean Reversion
• Stationary
• Continuous

Historical mean annual residential electricity 
prices (Author, 2024)

Generated Scenarios for training and evaluation 
(Author, 2024)
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Crystalline Cell Efficiency Improvement - Gamma Process

• Cumulative Process
• Positive Incremental Changes
• Independent Increment
• Continuous

Historical evolution of crystalline PV cell 
efficiency (Author, 2024)

One scenario for training and evaluation 
(Author, 2024)
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PV Module Price - Jump Diffusion Process (GBM with a Poisson process) 

• Stochastic
• Always positive
• Sudden Jumps
• Continuous

Historical CAPEX of PV modules €/kWp 
(Author, 2024)



06 PV Optimisation

(Roser, 2023)
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• Stochastic
• Always positive
• Continuous

PV Module Price - GBM + Learning Rates

Generated Scenarios for training and evaluation (Author, 2024)



06 PV Optimisation

[Box/Multi-Continuous]
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RL Environment – Observation Space

System Performance

+

External Conditions

+

Internal Conditions

+

Panel Type ID’s



06 PV Optimisation

1

35

Environment – Action Space

Simple Action
[Discrete / Multi-discrete)]

Complex Action
[Multi-binary/ Multi-discrete]



06 PV Optimisation
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Environment – Reward
Financial Only

Mixed

Module Cost

Installation Cost

Operational Costs

Balance of System 
Cost

Electricity Tariff

Resale Value Budget

Interest
Energy Export 
Consumption

PV Yield

Self-Consumption 
and Export

System’s Embodied 
Carbon

Grid Emission 
Factor



06 PV Optimisation
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House 1

• Max no of modules: 12
• Annual Load: 3045 kWh
• Azimuth and Tilt: 180 and 40
• Single-Pitched

House 2

• Max no of modules: 24
• Annual Load: 3836 kWh
• Azimuth and Tilt: 180 and 30
• Single-Pitched

House 3

• Max no of modules: 32
• Annual Load: 4678 kWh
• Azimuth and Tilt: 90/270 and 30
• Double-Pitched

Analysed Scenarios – Houses



06 PV Optimisation

High-End Panel
Monocristaline, N-type, IBC
• Carbon Footprint: 

• Efficency:  23.3%

• CAPEX(t=1):  1,583 €/Wp

• Mean Degradation: 0.67%

Budget Panel
Monocristaline, PERC
• Carbon Footprint: 

• Efficiency:  21.3%

• CAPEX (t=1):   0,69 €/Wp

• Mean Degradation: 0.82%

Second-Hand Module
Polycristaline
• Carbon Footprint: None

• Efficiency:  16.2%

• CAPEX(t=1):   0,36 €/Wp

• Mean Degradation: 1.16%

Select Panel
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Analysed Scenarios – Modules

Low 
• Min at t=1: 0 €
• Min at t=1: 750 €

High 
• Min at t=1: 750 €
• Min at t=1: 2000 €



06 PV Optimisation
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Proximal Policy 
Optimisation (PPO)

Hyperparameters Tuning

Advantage Actor 
Critic (A2C)



Net Present Value

Net Carbon Savings
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Evaluation
06 PV Optimisation

Evaluation Metrics

Training : Evaluation

7 : 3

𝑖𝑓 𝜂𝑖 < 0.85 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑝𝑎𝑛𝑒𝑙 𝑖

40x 

Trained Model

Base Policy

Common Practice



06 PV Optimisation
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Results – Key Figures (financial reward only)

Mean NPV Average Efficiency During 
Module’s 

Mean Interest Mean PV production

+6.4%

-18%

Vs Base Policy

Vs Base Policy

Simple Action Space

Complex  Action Space

-4%

-17%

-6 p.p.

-8 p.p.

-9%

+14%
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Results – Overview NPVs

House 1 – 12 modules House 2 – 24 modules House 3 – 32 modules
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Results – House 3 Comparison

Plot of NPVs for each analysed scenario for House 3 Plot of NCSs for each analysed scenario for House 3

Mean

Vs Base Policy
(Simple Action Only)

Financial Reward Only Mixed Reward (Financial + 
Environmental)

+7.4%

+0.9%

-1.3%

+9.8%
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Results – Selected Episode



07 
PV+ BESS 
Optimisation
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07 PV + BESS Optimisation
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07 PV + BESS Optimisation
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System under consideration (Author, 2024)

System Modelling



07 PV + BESS Optimisation

Fluctuating PV Production 
and Consumption

Varying Electricity Tariff

• Peak Shaving
Reducing the consumption of 
electricity from the grid during 
peak demand and high rates

• Battery Health Management 

• Load Shifting
Charging the battery when 
demand and electricity rates are 
low 

• Linear Programming

• Nonlinear programming

• Dynamic Programming

• Rule-Based Control

48

Battery Operation - How to schedule battery’s charge and discharge?



07 PV + BESS Optimisation

• Develop the optimal schedule for 
battery’s charge and discharge

• Generalise Over Different Battery 
sizes, Load Consumptions and PV 
array sizes
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Battery Operation - RL



07 PV + BESS Optimisation

Observation (State) Space
[Box/Multi-Continuous)]

Action Space
[Continuous]

Reward

Episode Time Horizon
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168 hourly timesteps 

Battery Operation – RL Environment



07 PV + BESS Optimisation

Proximal Policy 
Optimisation (PPO)

LSTM

Dense NN
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Battery Operation – RL Models



07 PV + BESS Optimisation

House 1

𝑖𝑓 𝑁 ℎ <  0 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 

𝑖𝑓 𝑁 ℎ >  0 𝑐ℎ𝑎𝑟𝑔𝑒
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Trained Model

Rule-Based Control

Battery Operation – RL Evaluation



07 PV + BESS Optimisation

SoC of the Battery plotted for a Week 

red line - RL operated BESS, 
purple - rule-based operation, 
dashed line - electricity tariff rates, 
red and green fields - electricity shortage or surplus from PV and building load 

No Battery        Rule-based          RL Model
-949.7 EUR  -121.4 EUR     -108.9 EUR
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Battery Operation – RL Results



07 PV + BESS Optimisation

SoC of the Battery plotted for a Week 

red line - RL operated BESS, 
purple - rule-based operation, 
dashed line - electricity tariff rates, 
red and green fields - electricity shortage or surplus from PV and building load 

No Battery        Rule-based          RL Model
-949.7 EUR  -121.4 EUR     -108.9 EUR
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Battery Operation – RL Results



07 PV + BESS Optimisation

Training Time (house 1 – main model)

• No BESS environment - t

• Rule Based BESS operation – t x 6

• RL based BESS operation – t x 25
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Battery Operation – RL Reality Check



A plot of 100 NHGP for the battery degradation paths 
(Author, 2024)

07 PV + BESS Optimisation
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Battery Degradation – Non-linear Gamma Process



07 PV + BESS Optimisation

(Ritchie, 2023)
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Battery Price - GBM + Learning Rates

• Stochastic
• Always positive
• Continuous



07 PV + BESS Optimisation

Observation (State) Space
[Box/Multi-Continuous)]

Action Space
Simple Action

[Multi-discrete]

Complex Action
[Multi-discrete]
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1

Environment

Battery Price
State of Health of 

Each Battery Module



Net Present Value
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Evaluation

Evaluation Metrics

Training : Evaluation

7 : 3

𝑖𝑓 𝜂𝑖 < 0.8 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑝𝑎𝑛𝑒𝑙 𝑖

30x 

Trained Model

Base Policy

Common Practice

07 PV + BESS Optimisation

Reward

𝑖𝑓 𝐵𝑐𝑎𝑝,𝑗 = 0 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑚𝑜𝑑𝑢𝑙𝑒 𝑗



07 PV + BESS Optimisation
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Results – Key Figures

Mean NPV Mean Self-consumption Mean Interest Mean PV production

+16%

-12%

Vs Base Policy

Vs Base Policy

Simple Action Space

Complex  Action Space

-4%

-17%

-12%

-22%

-31%

-1%
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House 1 House 2 House 3

Results – NPVs Overview
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07 PV + BESS Optimisation
Results – Selected Episode



08 
Deployment
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Recommender System Interaction Flowchart (author, 2024)R
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10 Conclusion
Overall, it can be concluded that reinforcement learning is a viable framework for the planning and design of residential grid-
connected PV and BES systems. The deployment of this workflow into practice can have several benefits for stakeholders and 
decision-makers.

Make better decisions that 
both save money and reduce 

carbon emissions

More Informed
Decision-Making

Support multi-stage 
investment with expansion 

or contraction options 

Strategic flexibility 
allowing to modify or 

defer plans in response to 
the arrival of new 

information 

Risk Mitigation - Asses
the value of different strategies 

under uncertainty
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11 Further Research

Benchmark Against Other 
Computational Approaches

Reevaluate Probabilities Evaluate on a separate 
test case

Broaden the Optimisation 
Scope

(other inverter configurations, 
building typologies)

Test Different Algorithms 
and MARL

Generalize over different 
environments



Thank You
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• GBM’s analytic solution under Ito’s interpretation

Expectation of Log Returns

Variance of Log Returns:

• OU’s analytic solution under Ito’s interpretation

• GBM with jump process analytic solution 
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• Total radiation

• AOI between the Sun’s rays and the PV array

• Cell Temperature
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