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01 Background

Change in electricity prices for households consumers, 2022 - 2023

(Eurostat, 2023)
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The last few years have seen a significant 
increase in energy prices across Europe, 
initially due to a rebound in energy demand 
following the relaxation of post-COVID 
lockdown measures, and subsequently after 
the Russian invasion of Ukraine.



01 Background

As power generation in many European 
countries still relies on fossil fuels, such 
as coal and natural gas, the production 
of electricity leads to the release of large 
quantities of carbon dioxide into the 
atmosphere.

(Ministerie van Economische Zaken en Klimaat, 2023)

(European Commission, 2023)
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01 Background

Many homeowners are turning to 
renewable energy sources. Photovoltaic 
panels and battery energy storages have 
become popular solution for generating 
electricity, reducing reliance on the grid, 
and even gaining energy independence 
within the grid-connected residential 
sector.

(Author, 2024)
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01 Background

Yet, estimating the benefits and risks of investing in rooftop PV and BES systems, its type and size, requires is indeed a challenging 
task requiring consideration of various factors for its adoption and maintenance.
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Market  ConditionsSystem and Building Data 

Environmental Data 

Constraints

Electricity Market 
Data
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01 Background
TIME!

Unrealistic assumptions regarding 
time-dependent variables 

They are static - do not accommodate 
modifications to the system throughout 

its lifetime

System installation is considered as 
a one-time now-or-never decision
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01 Background

Allow for time flexibility, adapt and 
update the policy to evolving internal and 

external conditions.

Incorporate a multi-objective 
scope.

Multi-stage strategy with option to 
expand, replace or contract.

There is a need for a new risk-mitigating computational optimisation framework what would be able to 
accommodate forΧ.



01 Background

All decisions are ultimately informed by data. 

(Sutton & Burto, 2020)

Reinforcement learning is a paradigm within ML 
where an agent learns optimal decisions by 
interacting with an environment through trial and 
error, making it well-suited for problems where 
decisions lead to sequences of outcomes over time.

RL can handle high-dimensional state spaces and 
generalize across different scenarios, making itself 
applicable to complex sequential decision-making 
tasks.
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01 Background

A trained model can be integrated into a 
Recommender System.

(Chen et al., 2023)

Trained Agent
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02 
Research 
Question

How can reinforcement learning based recommendation 
workflow be used for long-term planning and design of residential 
grid-connected PV and battery storage systems under the 
uncertainty of future scenarios? 
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03 
Literature 
Review
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04 Workflow Formulation
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04 Workflow

The problem is structured as a 
MDP :

Å Agent recieves observation 
regarding the current condition
of the system, alongwith current
ratesof relevantvariables

Å Basedon theseobservations,the
agent must execute actions
aimed at maximizing the
reward, calculated as the net
balance between costs and
benefits and/or the net carbon
impact.

Å The optimization processspans
25 years, divided into equal 
timesteps.
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04 Workflow

(Author, 2024)

Proximal Policy 

Optimisation (PPO)

1. Convergence Speed

2. Robustnessand Stability i.e. its 
performance consistency across 
different scenarios

3. Scalability i.e. handling of 
increasing complexity

4. Multi-Objective Optimization
Capability

5. Accessto learningresources

16

Criteria: Literature Review and 
Experimentation:

Selection:

Advantage Actor 
Critic (A2C)



04 Workflow

Crystalline Technology

Microinverter

No outages
No import limit
Export limit at 4kW

AC-coupled battery system

LithiumIron 
Phosphate 
Technology

17



04 Workflow
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05 
TOY Problem
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06 
PV Optimisation
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PV Modelling
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PV Modelling



06 PV Optimisation

Soiling Build-up as % of radiation losses
 (Author, 2024)

Annual output of a single module (Author, 2024)
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PV Modelling



06 PV Optimisation
Degradation

Normal distribution of the annual degradation rate 
(green), fitted  to the data (pink) for the budget 
panel. (Author, 2024)
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06 PV Optimisation

²Ŝƛōǳƭƭ 5ƛǎǘǊƛōǳǘƛƻƴ ŦƻǊ tŀƴŜƭΩǎ {ǳǊǾƛǾŀƭ wŀǘŜ ό!ǳǘƘƻǊ, 2024)
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Failure
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Å Decision variables evolve 
unpredictably given the 
inherent volatility influenced 
by market trends, etc

Å Precise long-term price 
predictions are very 
challenging

Å It is vital to expose RL Model 
to a wide range of possible 
scenarios reflecting variables 
long-term fluctuations. 

Stochastic Variables Modelling
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Electricity Tariff - Geometric Brownian Motion

Å  Stochastic
Å Always positive
Å Non-stationary
Å Continuous

„ ὺὥὶὰέὫὢ‘ άὩὥὲὰέὫὢ
„

ς

Historical mean annual residential electricity 
prices (Author, 2024) Generated Scenarios for training and evaluation (Author, 2024)
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Grid Emissions Factor - Ornstein-Uhlenbeck Process

Å  Stochastic
Å MeanReversion
Å Stationary
Å Continuous

Historical mean annual residential electricity 
prices (Author, 2024)

Generated Scenarios for training and evaluation 
(Author, 2024)
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Crystalline Cell Efficiency Improvement - Gamma Process

Å Cumulative Process
Å Positive Incremental Changes
Å Independent Increment
Å Continuous

Historical evolution of crystalline PV cell 
efficiency (Author, 2024)

One scenario for training and evaluation 
(Author, 2024)
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PV Module Price - Jump Diffusion Process (GBM with a Poisson process) 

Å Stochastic
Å Always positive
Å Sudden Jumps
Å Continuous

Historical CAPEX of PV moduƭŜǎ ϵκkWp 
(Author, 2024)
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(Roser, 2023)
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Å Stochastic
Å Always positive
Å Continuous

PV Module Price - GBM + Learning Rates

Generated Scenarios for training and evaluation (Author, 2024)
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[Box/Multi-Continuous]
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RL Environment ς Observation Space

System Performance

+

External Conditions

+

Internal Conditions

+

tŀƴŜƭ ¢ȅǇŜ L5Ωǎ



06 PV Optimisation

1
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Environment ς Action Space

Simple Action
[Discrete / Multi-discrete)]

Complex Action
[Multi-binary/ Multi-discrete]
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Environment ς Reward
Financial Only

Mixed

Module Cost

Installation Cost

Operational Costs

Balance of System 
Cost

Electricity Tariff

Resale Value Budget

Interest
Energy Export 
Consumption

PV Yield

Self-Consumption 
and Export

{ȅǎǘŜƳΩǎ 9ƳōƻŘƛŜŘ 
Carbon

Grid Emission 
Factor
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House 1

Å Max no of modules: 12
Å Annual Load: 3045 kWh
Å Azimuth and Tilt: 180 and 40
Å Single-Pitched

House 2

Å Max no of modules: 24
Å Annual Load: 3836 kWh
Å Azimuth and Tilt: 180 and 30
Å Single-Pitched

House 3

Å Max no of modules: 32
Å Annual Load: 4678 kWh
Å Azimuth and Tilt: 90/270 and 30
Å Double-Pitched

Analysed Scenarios ς Houses



06 PV Optimisation

High-End Panel
Monocristaline, N-type, IBC
Å Carbon Footprint: 

Å Efficency:  23.3%

Å CAPEXόǘҐмύΥ  мΣруо ϵκWp

Å Mean Degradation: 0.67%

Budget Panel
Monocristaline, PERC
Å Carbon Footprint: 

Å Efficiency:  21.3%

Å CAPEX όǘҐмύΥ   лΣсф ϵκWp

Å Mean Degradation: 0.82%

Second-Hand Module
Polycristaline
Å Carbon Footprint: None

Å Efficiency:  16.2%

Å CAPEXόǘҐмύΥ   лΣос ϵκWp

Å Mean Degradation: 1.16%

Select Panel
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Analysed Scenarios ς Modules

Low 
Å aƛƴ ŀǘ ǘҐмΥ л ϵ
Å aƛƴ ŀǘ ǘҐмΥ трл ϵ

High 
Å aƛƴ ŀǘ ǘҐмΥ трл ϵ
Å aƛƴ ŀǘ ǘҐмΥ нллл ϵ
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Proximal Policy 
Optimisation (PPO)

Hyperparameters Tuning

Advantage Actor 
Critic (A2C)



Net Present Value

Net Carbon Savings
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Evaluation
06 PV Optimisation

Evaluation Metrics

Training : Evaluation

7 : 3

ὭὪ – πȢψυ Ὥὲίὸὥὰὰ ὴὥὲὩὰ Ὥ

40x 

Trained Model

Base Policy

Common Practice
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Results ς Key Figures (financial reward only)

Mean NPV Average Efficiency During 
aƻŘǳƭŜΩǎ 

Mean Interest Mean PV production

+6.4%

-18%

Vs Base Policy

Vs Base Policy

Simple Action Space

Complex  Action Space

-4%

-17%

-6 p.p.

-8 p.p.

-9%

+14%
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Results ς Overview NPVs

House 1 ς 12 modules House 2 ς 24 modules House 3 ς 32 modules
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Results ς House 3 Comparison

Plot of NPVs for each analysed scenario for House 3 Plot of NCSs for each analysed scenario for House 3

Mean

Vs Base Policy
(Simple Action Only)

Financial Reward Only Mixed Reward (Financial + 
Environmental)

+7.4%

+0.9%

-1.3%

+9.8%
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Results ς Selected Episode



07 
PV+ BESS 
Optimisation
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07 PV + BESS Optimisation
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07 PV + BESS Optimisation
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System under consideration (Author, 2024)

System Modelling


