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SUMMARY

The brain’s white matter mainly consists of (myelinated) axons that connect different
parts of the brain. Diffusion-weighted MRI (DW-MRI) is a technique that is particularly
suited to image this white matter. The MRI signal in DW-MRI is sensitized to diffusion
of water in the microstructure by introducing strong bipolar gradients in the MRI pulse
sequence. By measuring the diffusion in different directions, the local diffusion profile of
water molecules is obtained which reflects microstructural characteristics of the white
matter.

The focus of this thesis is on the analysis of conventional DW-MRI data acquired in
the context of the Rotterdam Scan Study. This is a prospective population-based cohort
study with more than 10.000 participants to investigate causes of neurological disease
in elderly people. Conventional DW-MRI is defined as diffusion data acquired with a
single diffusion-weighting factor and a small number of diffusion-sensitizing gradient
orientations. The objectives of this thesis are (1) to enhance our insight in the relation
between tissue structure and the DW-MRI signal from conventional DW-MRI sequences,
and (2) to develop methods to quantify diffusion properties in the brain as accurately
and precisely as possible based on conventional DW-MRI data.

To gain insight into the relation between tissue structure and the DW-MRI signal,
simulated DW-MRI signals based on Monte Carlo simulations of spins between ran-
domly packed cylinders are compared to experimentally acquired data from a hardware
phantom. The hardware phantom consists of solid fibers and acts as a model for the
extra-axonal diffusion. The simulated DW-MRI signal is in good agreement with the
experimentally acquired data. Furthermore, simulations show that the DW-MRI signal
from spins between randomly packed cylinders is relatively independent of the cylin-
der diameter for b-values up to 1500 s/mm2. For b-values higher than 1500 s/mm2,
substrates with a smaller cylinder diameter yield a larger attenuation of the diffusion-
weighted signal (chapter 2).

Conventional DW-MRI data is commonly analyzed with a technique known as diffu-
sion tensor imaging. Here, the water diffusion profile is modelled by a 3D Gaussian diffu-
sion profile. However, in white matter structures in close proximity to the cerebrospinal
fluid (CSF) the use of the single diffusion tensor model is inappropriate. A novel frame-
work is introduced to analyze white matter structures adjacent to the CSF. In this frame-
work a constrained two-compartment diffusion model is fit to the data in which the CSF
is explicitly modeled with a free water diffusion compartment. The proposed diffusion
statistics are shown to be relatively independent of partial volume effects with CSF and
are applied to study ageing in the fornix, a small white matter structure bordering the
CSF (chapter 3).

A significant part of the white matter constitutes of ‘crossing fibers’, whereby two or
more white matter tracts contribute to the DW-MRI signal in a voxel. The single diffusion
tensor model cannot adequately describe the data in such voxels. To solve this issue a
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x SUMMARY

fiber orientation atlas and a model complexity atlas were used to analyze conventional
DW-MRI data with a simple crossing fibers model, namely the ball-and-sticks model. It
is shown that the application of a fiber orientation atlas and a model complexity atlas
can significantly improve the reproducibility and sensitivity of diffusion statistics in a
voxel-based analysis (chapter 4).

Finally, a framework is proposed that aims to specifically improve the analysis of
longitudinal DW-MRI data. In this framework the ball-and-sticks model is fit simulta-
neously to multiple scans of the same subject. The orientations of the sticks are con-
strained to be the same over different scans, while all other parameters are estimated
separately for each scan. The use of this framework is shown to increase the precision
of estimated ball-and-sticks model parameters in longitudinal DW-MRI studies (chapter
5).

In conclusion, this thesis describes frameworks to enhance the accuracy or precision
of estimated diffusion properties of the white matter by applying sophisticated diffusion
models to conventional DW-MRI data. We anticipate that many diffusion MRI studies
may benefit from the work described in this thesis.



SAMENVATTING

De witte stof in de hersenen bestaat voornamelijk uit (gemyeliniseerde) axonen die de
verschillende delen van de hersenen met elkaar verbinden. Diffusie-gewogen MRI (DW-
MRI) is een techniek die bijzonder geschikt is om deze witte stof te bestuderen. Het
MRI-signaal in DW-MRI is gevoelig voor diffusie van water in de microstructuur door de
introductie van sterke bipolaire gradiënten in de MRI-pulssequentie. Door de diffusie
in verschillende richtingen te meten, kan het lokale diffusieprofiel van watermoleculen
worden bepaald. Dit diffusieprofiel geeft inzicht in de microstructurele kenmerken van
de witte stof.

De focus van dit proefschrift ligt op de analyse van conventionele DW-MRI data die
wordt verkregen in het kader van de Rotterdam Scan Studie. Dit is een langlopend be-
volkingsonderzoek met meer dan 10.000 deelnemers om de oorzaken van neurologi-
sche aandoeningen bij ouderen te onderzoeken. Conventionele DW-MRI data wordt
gedefinieerd als data verkregen met een enkele diffusie-weegfactor en een klein aantal
diffusie-gradiëntoriëntaties. De doelstellingen van dit proefschrift zijn (1) om het inzicht
in de relatie tussen de microstructuur van de witte stof en het DW-MRI signaal uit con-
ventionele DW-MRI-sequenties te vergroten, en (2) om methodes te ontwikkelen om de
diffusie-eigenschappen in de hersenen zo accuraat en precies mogelijk te kwantificeren
op basis van conventionele DW-MRI data.

Om inzicht te krijgen in de relatie tussen de microstructuur van de witte stof en het
DW-MRI signaal, worden gesimuleerde DW-MRI signalen op basis van Monte Carlo-
simulaties van spins tussen willekeurig-gepositioneerde cilinders vergeleken met expe-
rimenteel verkregen data van een hardware fantoom. Het hardware fantoom bestaat
uit solide fibers en fungeert als een model voor de extra-axonale diffusie. Het gesi-
muleerde DW-MRI signaal is in goede overeenstemming met de experimenteel verkre-
gen data. Bovendien laten simulaties zien dat het DW-MRI signaal van spins tussen
willekeurig-gepositioneerde cilinders relatief onafhankelijk is van de cilinderdiameter
voor b-waarden tot 1500 s/mm2. Voor b-waarden hoger dan 1500 s/mm2, geven substra-
ten met een kleinere cilinderdiameter een grotere verzwakking van het DW-MRI signaal
(hoofdstuk 2).

Conventionele DW-MRI data wordt vaak geanalyseerd met een techniek die bekend
staat als diffusie tensor imaging. Deze techniek modelleert het diffusieprofiel van water
met een enkele 3D Gaussische verdeling. In witte stof nabij het hersenvocht, ook wel ce-
rebrospinale vloeistof (CSF) genoemd, is het gebruik van dit enkele diffusietensormodel
echter niet geschikt. Een nieuwe methode wordt geïntroduceerd om witte stofstructuren
naast de CSF te analyseren. Hierbij wordt gebruik gemaakt van een diffusiemodel met
twee compartimenten waarin de bijdrage van de CSF aan het DW-MRI signaal expliciet
gemodelleerd wordt. De voorgestelde diffusiestatistieken blijken relatief onafhankelijk
te zijn van signaalverstoringen door de CSF en worden toegepast om veroudering in de
fornix te bestuderen, een kleine witte stofstructuur die grenst aan de CSF (hoofdstuk 3).
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xii SAMENVATTING

Een aanzienlijk deel van de witte stof bestaat uit ’kruisende fibers’, waarbij twee of
meer witte stofbanen bijdragen aan het DW-MRI signaal in een voxel. Het enkele diffu-
sietensormodel kan het diffusie-gewogen signaal in dergelijke voxels niet adequaat be-
schrijven. Om dit probleem op te lossen worden een fiberoriëntatieatlas en een model-
complexiteitsatlas gebruikt om conventionele DW-MRI data te analyseren met een een-
voudig kruisende fibersmodel, namelijk het ball-and-sticks model. Experimenten laten
zien dat de toepassing van een fiberoriëntatieatlas en een modelcomplexiteitsatlas de
reproduceerbaarheid en gevoeligheid van diffusiestatistieken in een voxel-gebaseerde
analyse aanzienlijk kan verbeteren (hoofdstuk 4).

Ten slotte wordt een methode voorgesteld die specifiek gericht is op het verbeteren
van de analyse van longitudinale DW-MRI data. In dit kader wordt het ball-and-sticks
model simultaan geschat van meerdere scans van dezelfde persoon. De oriëntaties van
de sticks zijn hierbij gelijk over verschillende scans, terwijl alle andere diffusieparameters
voor elke scan afzonderlijk worden geschat. Het gebruik van deze methode verhoogt
de nauwkeurigheid van geschatte ball-and-sticks parameters in longitudinale DW-MRI
onderzoeken (hoofdstuk 5).

Concluderend beschrijft dit proefschrift methodes om de nauwkeurigheid of preci-
sie van geschatte diffusie-eigenschappen van de witte stof te verbeteren door verfijnde
diffusiemodellen toe te passen op conventionele DW-MRI data. We verwachten dat veel
DW-MRI onderzoeken kunnen profiteren van het werk dat in dit proefschrift wordt be-
schreven.
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2 1. INTRODUCTION

The brain consists of 100 billion neurons that communicate through up to 100 trillion
connections [1]. As such it is the most complex organ in the human body.

1.1. THE BRAIN

T HE fundamental building block of the brain are the neurons. Neurons are special-
ized cells in the nervous systems that receive, process and transmit electric signals

to other neurons. A neuron is typically constituted of three parts: a cell body (soma),
dendrites, and an axon (figure 1.1A). Dendrites are short extensions of the cell body that
are stimulated by impulses from other cells. Axons are relatively long threadlike exten-
sions, which conduct electrical impulses away from the cell body. Axons are arranged in
bundles called tracts (in the central nervous system) or nerves (in the peripheral nervous
system), and can be up to 1 meter long. Figure 1.1B shows an anatomical drawing of a
human brain. The wrinkled and folded outer layer of the brain is known as the cerebral
cortex. The cerebral cortex is a thin layer up to 5 mm thick and consists of tightly-packed
neurons and glial cells (non-neuronal cells), also known as grey matter (GM).

The inside of the brain primarily consists of bundles of (myelinated) axons: the white
matter (WM). Typical cross-sectional images of a white matter bundle (a rat’s spinal
cord) are shown in figure 1.2. It can be seen that axon diameters in the white matter
vary widely. For instance, in the human corpus callosum, a white matter structure con-
necting the left and right hemisphere, axon diameters range between 0.1 µm to 2 µm
[2].

Figure 1.1: A) Illustration of a neuron [3]. B) Drawing of the cerebral cortex of a human brain with the white
matter partially exposed [4]

1.2. SHORT HISTORY OF NEURO-IMAGING

U NTIL the 19th century, the brain was primarily studied by dissections. Studies of the
brain became more sophisticated after the invention of the microscope and sub-

sequently the development of staining techniques in the 19th century. Even nowadays,
such ex-vivo approaches are still widely used.

The first non-invasive technique to image the brain was developed by Angelo Mosso
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3

Figure 1.2: Optical microscopy (OM), scanning electron microscopy (SEM) and coherent anti-Stokes Raman
scattering (CARS) microscopy images of the spinal cord of a rat [5].

at the end of the 19th century, known as the ’human circulation balance’ [6]. In the early
20th century, X-rays were first used to image the ventricular systems of the brain us-
ing injections of air to enhance contrast [7]. Computerized axial tomography (CT scan-
ning) was developed in the early 1970s and used to produce cross-sectional images of
the brain.

Later, in the early 1980s, single photon emission computed tomography (SPECT)
and positron emission tomography (PET) were introduced. Both modalities provide
three-dimensional (tomographic) images of the distribution of injected radioactive
tracer molecules, from which brain function and receptor densities can be determined.
Magnetic resonance imaging was introduced clinically in the early 1980s. Since then,
MRI has become a widely used technique in neuroimaging, particularly due to its soft
tissue contrast and zero radiation dose, as opposed to CT, SPECT and PET.

1.3. MAGNETIC RESONANCE IMAGING

M AGNETIC resonance imaging (MRI) is an imaging technique, which exploits the in-
teraction between an applied magnetic field and nuclei that possess a nuclear spin.

In medical imaging applications, the hydrogen nucleus is frequently used because it is
most abundant in the human body and yields a relatively large net magnetic moment.

Hydrogen nuclei, when placed in an external magnetic field, give rise to a net mag-
netization parallel to the applied magnetic field. Application of a radio-frequency (RF)
pulse can flip this magnetization into the orthogonal, transverse plane. After tipping,
the transverse component of the magnetization produces an oscillating magnetic field,
which induces a (detectable) current in a receiver coil. Gradient coils are used to create
approximately linear variations of the external magnetic field to enable spatial localiza-
tion of the measured MRI signal by means of slice-selection, frequency-encoding and
phase-encoding.

A pulse sequence consisting of a configuration of RF and gradient pulses are at the
basis of different types of image contrast. For example, pulse sequences can be designed
to generate contrast based on differences in the density of protons (PD), the decay rate of
the transverse component of the magnetization (T2-relaxation), or the recovery rate of
the parallel component of the magnetization (T1-relaxation). Examples of PD-weighted,
T1-weighted and T2-weighted images are shown in figure 1.3.
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Figure 1.3: Axial slice of A) PD-weighted image, B) T1-weighted image, C) T2-weighted image [8].

1.4. DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAGING

1.4.1. DIFFUSION PROCESSES IN TISSUE
Atoms and molecules in fluids at temperatures above absolute zero are in constant mo-
tion. Due to collisions with other atoms and molecules, each atom or molecule makes
random movements. This is also known as Brownian motion [9]. In case of free diffusion,
a Gaussian distribution describes the random displacements after a time t . The mean
squared displacement is given by Einstein’s equation:〈

x2〉= 2nDt , (1.1)

where n is the number of dimensions, D is the diffusion constant, and t is the diffusion
time. For free water at body temperature, the diffusion coefficient is approximately 3
µm2/ms, so that the root mean squared displacement (in 3D) is 30-42 µm in 50-100 ms.

Diffusion may be hindered or restricted, however, due to presence of diffusion barri-
ers (e.g. cell membranes) (figure 1.4). Effectively, this can result in shorter net displace-
ments compared to free diffusion. In restricted diffusion, water molecules are trapped
within an enclosed compartment such that the net displacement is limited.

The degree of hindrance or restriction by diffusion barriers can be orientationally-
dependent to yield an anisotropic diffusion pattern. For instance, in white matter pri-
marily the diffusion perpendicular to the axon orientation is hindered or restricted by
the myelin sheaths around the axons, whereas diffusion parallel to the axon orientation
is relatively free.

1.4.2. PULSED GRADIENT SPIN ECHO PULSE SEQUENCE
The effect of diffusion on the MRI signal was first observed by Hahn in 1950 [10]. Subse-
quently, Torrey modeled the diffusion through a modification of the Bloch equations in
1956 [11]. Stejskal and Tanner introduced strong bipolar gradients in the pulse sequence
to measure the diffusion in 1965 [12]. Even nowadays, their pulsed gradient spin echo
(PGSE) pulse sequence is still at the basis of most diffusion-weighted MRI techniques.

The PGSE pulse sequence is shown in figure 1.5. It contains a symmetric pair of
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Figure 1.4: Illustration of free diffusion, hindered diffusion and restricted diffusion.

diffusion-sensitizing gradients before and after the 180◦ RF pulse. The first diffusion-
sensitizing gradient will offset the phase of the spins by an amount depending on their
position along the gradient orientation. For stationary spins, the second diffusion-
sensitizing gradient will result in rephasing of the spins. However, for spins that diffuse
along the gradient orientation, no complete rephasing occurs. The larger the diffusion
along the gradient orientation, the less perfect the rephasing and the more attenuation
of the diffusion-weighted signal is observed.

Figure 1.5: The PGSE pulse sequence.

In case of Gaussian diffusion with diffusion constant D , the diffusion-weighted signal
S can be modeled as:

S = S0 exp(−bD), (1.2)

where S0 is the signal obtained without diffusion-sensitizing gradients, and b (also
known as the b-value) is a parameter expressing the amount of diffusion-weighting
computed as:

b = γ2G2δ2(∆− δ

3
), (1.3)

where γ is the gyromagnetic ratio, G is the gradient strength, δ is the gradient duration,
and ∆ the time between the two diffusion-sensitizing gradients.

In figure 1.6 the intensity of the diffusion-weighted MRI signal is shown for different
orientations and different diffusion-weightings of the diffusion-sensitizing gradients. In
certain brain regions the diffusion-weighted MRI signal is relatively independent of the
orientation of the diffusion-sensitizing gradients: particularly in the CSF and the grey
matter. In other brain regions, especially the white matter, the diffusion-weighted MRI
signal depends strongly on the gradient orientation (white arrows in figure 1.6), indicat-
ing an anisotropic diffusion profile.
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Figure 1.6: Axial slices of diffusion-weighted images with diffusion-sensitizing gradients in different orienta-
tions (x, y and z, from left to right) and different diffusion-weighting (b-value = [0, 1000, 2000, 3000] s/mm2).
Images based on DW-MRI data from [13].
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1.4.3. IMAGE QUALITY

A DW-MRI dataset typically contains several images acquired without diffusion-
sensitizing gradients and between ten and several hundred diffusion-weighted images
(DWIs). Each such DWI is acquired with different settings for the orientation and
strength (b-value) of the diffusion-sensitizing gradient. In addition to the number of
DWIs and their b-values, also the spatial resolution, and the signal-to-noise ratio (SNR)
of the DWIs are relevant parameters. Taking into account the study goal and available
scan time, suitable trade-offs are made between these parameters when designing a
DW-MRI protocol.

The strength of the main magnetic field is an important factor affecting image qual-
ity. A stronger magnetic fields increases the SNR of the MRI signal. Furthermore, a
higher SNR allows the application of stronger diffusion-weightings, but can also be used
to increase the spatial resolution or decrease the total scan time. Therefore, acquiring
DW-MRI datasets on a 3T MRI-scanner is generally preferred over acquisitions on a 1.5T
MRI-scanner. The use of stronger magnetic fields for DW-MRI, e.g. 7T MRI-scanners, is
in development [14].

1.4.4. ANALYSIS OF DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAG-
ING

By fitting an appropriate diffusion model to the acquired DWI data, characteristics of the
diffusion profile can be obtained that give insight into the tissue microstructure. A com-
mon technique to analyze DW-MRI data is diffusion tensor imaging (DTI), in which the
water diffusion is modeled by a 3D Gaussian diffusion profile [15]. From the diffusion
tensor, quantitative DTI metrics such as the fractional anisotropy (FA), mean diffusiv-
ity (MD) and axial diffusivity (AxD) can be derived. Examples of axial slices of the FA,
MD and AxD are shown in figure 1.7. These DTI metrics are often used as an imaging
biomarker for white matter tract integrity to study, for example, neurodegenerative dis-
eases or brain ageing [16, 17].

Despite its widespread use, the diffusion tensor model is known to have important
limitations. White matter voxels may contain intra-axonal, extracellular and free wa-
ter diffusion compartments [18], or may contain more than one coherently orientated
fiber tract [19, 20], which renders the use of the single diffusion tensor model inappro-
priate. Therefore, the analysis of conventional DTI metrics can have undesirable effects:
spurious changes may be detected in the radial and axial diffusivity [21], FA may lack
sensitivity to detect changes in the white matter microstructure [22], and FA may seem
to be increased merely due to selective degeneration of a fiber population [23].

Many alternative parametric models have been proposed to provide a more adequate
description of the diffusion. The most popular ones are summarized in Table 1.1. A
common limitation of these approaches is that more complicated DW-MRI protocols are
required. Therefore, conventional DW-MRI datasets, especially datasets with a limited
number of DWIs and acquired with a single diffusion-weighting, may not support the
application of these techniques.
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Table 1.1: Different methods to analyze diffusion-weighted MRI data.

Name Description Ref.

DTI Diffusion tensor imaging (DTI). The water diffu-

sion profile is modeled using a single (3D) Gaus-

sian distribution.

[15]

DSI Diffusion spectrum imaging (DSI). Diffusion data

is acquired on a 3D Cartesian grid in q-space.

An inverse Fourier transform of the q-space data

yields the ensemble average (diffusion) propaga-

tor (EAP).

[24]

Q-ball Imaging Diffusion data is acquired on a single shell in q-

space. A Funk-Radon transform of the q-space

data is applied to obtain the diffusion orientation

distribution function (dODF), i.e. the radial pro-

jection of the EAP.

[25]

Spherical Deconvolution Diffusion data is acquired on a single shell in q-

space. White matter fiber bundles are assumed

to have identical diffusion characteristics, such

that the diffusion-weighted signal can be modeled

as the convolution over the sphere of a response

function with a fiber orientation density function

(fODF).

[26, 27]

Diffusion Kurtosis Imaging Diffusion kurtosis imaging is an extension of DTI.

The diffusion tensor and kurtosis tensor (related

to the fourth standardized moment of the EAP)

are estimated from diffusion data acquired on

multiple shells in q-space.

[28]

Multi-Tensor Models The water diffusion profile is modeled with mul-

tiple Gaussian diffusion compartments. Con-

straints are typically introduced to decrease the

number of free parameter and make estimation

feasible.

[20, 29]

Ball-and-Sticks Model The diffusion-weighted signal is modeled as an in-

finitely anisotropic component for each fiber ori-

entations, and a single isotropic component.

[30]

CHARMED Composite hindered and restricted model of dif-

fusion (CHARMED). The diffusion-weighted sig-

nal modeled with a hindered (Gaussian) diffusion

compartment and one or more compartments

with restricted diffusion within cylinders.

[31, 32]

AxCaliber and ActiveAx Extensions of CHARMED in which the mean (Ac-

tiveAx) or full (AxCaliber) axonal diameter dis-

tribution are also estimated from the diffusion-

weighed signal.

[33, 34]

NODDI Neurite orientation dispersion and density imag-

ing (NODDI). The diffusion-weighted signal is

modeled with three diffusion compartments, i.e.

an intra-axonal, an extra-cellular and a free diffu-

sion compartment.

[18]
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Figure 1.7: Axial slice of A) Fractional anisotropy (FA), B) Mean diffusivity (MD), C) Axial diffusivity (AxD).
Images based on DW-MRI data from [13].

1.5. ROTTERDAM SCAN STUDY

T HE focus of this thesis is on the analysis of the diffusion-weighted data acquired in
the context of the Rotterdam Scan Study [35]. The Rotterdam Scan Study is part

of the Rotterdam Study, a prospective population-based cohort study with more than
10.000 participants to investigate factors that determine the prevalence of various dis-
eases in elderly people. The Rotterdam Scan Study focuses specifically on neurological
diseases by performing neuroimaging. Participants of the Rotterdam Study therefore
undergo brain MRI on a 1.5T MRI scanner as part of the protocol since 2005.

Because of the longitudinal setting of the Rotterdam Scan Study, researchers were
very conservative with introducing changes in the procedures to acquire the data. There-
fore, despite significant advances in hardware and software, there have been limited up-
grades to the MRI scanner and imaging protocols. As a result, the diffusion-weighted
data in the RSS have been (and still are) acquired with a conventional diffusion-weighted
protocol on a 1.5T MRI scanner, i.e. 25 different gradient orientations with a b-value of
1000 s/mm2 and a relatively low spatial resolution of 2.2 mm x 3.3 mm x 3.5 mm.

1.6. THESIS OBJECTIVES

I N neuroimaging population studies, such as the Rotterdam Scan Study (RSS) [35], im-
age features are related to clinical parameters to study disease processes, quantify dis-

ease progression, or identify subjects at risk. An extensive phenotype is typically avail-
able for all of the study subjects, including multi-modality imaging data. These image
features are ideally as accurate, precise and specific as possible, such that unambiguous
conclusions can be drawn.

DW-MRI is an imaging modality used in the RSS to provide diffusion statistics that
represent the local tissue microstructure. This is a challenging task as the relation be-
tween the DW-MRI signal and the local tissue microstructure is not straightforward.

In particular, simple diffusion models (e.g. DTI) do not capture the complexity of the
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tissue microstructure adequately and may therefore provide diffusion statistics that are
heavily biased. More advanced diffusion models provide a more accurate quantification
of the tissue microstructure, but cannot be reliably estimated from a small number of
DWIs acquired with a single non-zero b-value. Furthermore, the low spatial resolution
of conventional DW-MRI data makes estimated diffusion properties very susceptible to
partial-volume effects (mixing of the MRI signal originating from different tissues).

The objectives of this thesis are:

• To enhance our insight in the relation between tissue structure and the DW-MRI
signal from conventional MRI sequences.

• To develop methods to quantify diffusion properties in the brain as accurately and
precisely as possible based on conventional DW-MRI data. Specifically, we aim to:

– Investigate how we can best analyze brain regions susceptible to partial vol-
ume effects with the CSF.

– Explore how we can best analyze brain regions with crossing fiber-regions.

– Investigate how longitudinal DW-MRI can be leveraged to increase the preci-
sion of computed diffusion statistics.

We will show that the developed techniques are also highly relevant to enhance more
advanced DW-MRI studies.

1.7. THESIS OUTLINE
The thesis is organized as follows:

• In chapter 2 the relation between the extra-axonal diffusion compartment and the
DW-MRI signal is investigated. Experimental data from an anisotropic hardware
phantom and Monte Carlo diffusion simulations are applied to determine the sen-
sitivity to substrate parameters (i.e. fiber diameter, fiber packing fraction) and ex-
perimental parameters (i.e. diffusion time, diffusion-sensitizing gradient duration
and strength).

• In chapter 3 a novel framework is described to analyze white matter structures
that are sensitive to partial volume effects with CSF. We explore how a two-
compartment diffusion model can be employed with conventional DW-MRI data
to estimate diffusion parameters that may be more robust to partial volume
effects with CSF than parameters obtained with DTI.

• In chapter 4 and 5 we explore the feasibility of analysing conventional DW-MRI
data with a crossing-fiber model. Specifically, in chapter 4, we explore the use of
orientation priors and consistent model selection to decrease random variations
across subjects. Subsequently, in chapter 5 we introduce a framework to decrease
the within-subject variance of diffusion statistics in longitudinal analyses.

• Finally, in chapter 6 the advantages and limitations of the proposed methods will
be discussed and an outlook to the future is presented.
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2
MONTE CARLO SIMULATION OF

DW-MRI COMPARED TO

MEASUREMENTS IN A HARDWARE

PHANTOM

The main purpose of this chapter is to investigate the accuracy of Monte Carlo simula-
tions of spins subject to hindered diffusion in comparison to measurements of a hardware
phantom with varying fiber packing fractions. The diffusion of water between randomly
packed parallel solid cylinders was modeled using a Monte Carlo diffusion simulator, and
subsequently used to simulate diffusion-weighted signals with b-values between 0 and
5000 s/mm2. Simulated diffusion-weighted signals were compared to experimentally ob-
tained data from a hardware fiber phantom constructed from Dyneema fiber with a vari-
able fiber packing fraction between 0.45 and 0.75 and a diameter of 16 µm. Furthermore,
the dependency of the simulated diffusion-weighted signal on the fiber diameter was stud-
ied by simulating diffusion-weighted signals from substrates with different fiber packing
fractions (0.45 to 0.75) and different diameters (4 to 20 µm). In both the simulated and ex-
perimentally acquired data non-Gaussian diffusion was observed. Furthermore, the sim-
ulated signal was in reasonably good agreement with the experimentally acquired data
up to a packing fraction of 0.65. The simulated diffusion-weighted signals appeared rel-
atively independent of cylinder diameter up to b=1500 s/mm2. Substrates with a smaller
cylinder diameter resulted for b-values higher than 1500 s/mm2 in a larger attenuation of
the diffusion-weighted signal. The Monte Carlo diffusion simulations accurately matches
the experimental data from the hardware phantom. It may allow studying the complex
link between the diffusion-weighted MRI signal and the underlying microstructure.

G.A.M. Arkesteijn, R. Verweij, D.H.J. Poot, E. Farrher, F. Grinberg, M.W.A. Caan, L.J. van Vliet, and F.M. Vos,
manuscript in preparation.
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2. MONTE CARLO SIMULATION OF DW-MRI COMPARED TO MEASUREMENTS IN A

HARDWARE PHANTOM

2.1. INTRODUCTION

D IFFUSION-WEIGHTED magnetic resonance imaging (DW-MRI) is a non-invasive
technique for imaging the diffusion of water molecules [1]. It is frequently used to

assess the brain’s white matter integrity, because it provides insight into the microstruc-
tural organization of neural fibers [2]. A common approach, known as diffusion tensor
imaging (DTI) [3], fits a symmetric, positive-definite tensor to the diffusion data in each
voxel.

DTI assumes that there is a single Gaussian diffusion compartment in a voxel. How-
ever, the microstructure in the brain white matter is known to be much more complex.
Accordingly, sophisticated models of the tissue microstructure take the contribution of
different diffusion compartments into account [4]. Particularly, intra-axonal diffusion is
frequently modeled as diffusion inside parallel impermeable cylinders [5] or as diffusion
inside orientation-dispersed sticks [6]. Extra-axonal diffusion is frequently modeled us-
ing a Gaussian diffusion compartment [5, 6], or as a spherical convolution of a Gaussian
diffusion compartment with a neurite distribution function [7]. Furthermore, a sim-
ple tortuosity model [8] that relates the extra-axonal diffusivity to the axon density, has
been used to reduce the number of free parameters of this extra-axonal Gaussian diffu-
sion compartment [6, 9]. More complex tortuosity models also take cell size distribution
and packing geometry into account [10]. Such sophisticated models may provide new
anatomical insights or biomarkers for diseases.

Diffusion phantoms are powerful tools to study the complex link between the tissue
microstructure and the acquired DW-MRI signal. Biological diffusion phantoms include
plants [11] or animal spinal cords [12]. Synthetic diffusion phantoms exist in the form
of isotropic liquids [13], capillary phantoms [14–17] or fiber phantoms [18–21]. The ge-
ometry of synthetic diffusion phantoms is typically well known, which is convenient for
validation purposes. However, a limitation of synthetic diffusion phantoms is that typi-
cally solid fibers are used, so that there is no representation of the intra-axonal diffusion.
Furthermore, the diameters of these solid fibers (approximately 16 µm) are much larger
than typical axon diameters (0.1 µm to 2 µm) [22].

Numerical diffusion phantoms provide a flexible alternative to hardware diffusion
phantoms. Particularly, Monte Carlo simulations can simulate the diffusion in very com-
plex microstructures that cannot be easily analyzed with analytical models or with the
aid of a hardware phantom. For example, Monte Carlo simulations have been used to
validate theoretical models [8, 23], to validate diffusion phantoms [24, 25], to study cell
swelling [26, 27], or to generate synthetic datasets [28, 29].

The main purpose of this chapter is to compare measurements from a hardware
phantom in structures with varying fiber packing fraction (packing fraction) to Monte
Carlo simulations. The hardware phantom consists of solid fibers, and acts as a model
for extra-axonal diffusion [19]. The influence of relevant Monte Carlo simulation param-
eters (i.e. number of spins, step size, and voxel size), as well as substrate parameters (i.e.
the packing fraction, diameter, and type of packing of the fibers) on the diffusion MRI
signal for various diffusion weightings is investigated. Furthermore, these simulations
are compared to diffusion data from the hardware phantom.
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2.2. METHODS

2.2.1. HARDWARE PHANTOM
The hardware phantom used in this study was constructed by Farrher et al. [19]. A pho-
tograph of the phantom is shown in figure 2.1A and a schematic in figure 2.1B. It consists
of hydrophobic polyethylene (Dyneema DTX70) fibers with a diameter of approximately
16 µm wound in two different orientations around a Perspex support. As such, the hard-
ware phantom contains different regions including a compressed single fiber region, a
(slightly) diverging single fiber region and a crossing-fibers region. This chapter focuses
on the diverging, single fiber region denoted by the red squares in figure 2.1, where a
range of different fiber packing fractions can be observed, as is shown in figure 2.1C.

Figure 2.1: A) Photograph of the hardware phantom. B) Schematic of the hardware phantom. C) Estimated
fiber packing fraction using Proton Density weighted MRI.

2.2.2. HARDWARE PHANTOM MEASUREMENTS AND ANALYSIS
Structural images and diffusion-weighted images of the hardware phantom were ac-
quired on a Philips 3T MRI scanner. To minimize magnetic susceptibility artifacts, the
phantom was positioned such that the main magnetic field and the fiber orientation in
the compressed single fiber region were aligned.

MEASUREMENT OF PROTON DENSITY AND FIBER PACKING FRACTION

We assert that the fiber packing fraction in the region with diverging fibers is reflected in
the local proton density (PD). PD was measured from a multi-echo spin-echo sequence:
inter-echo time spacing (∆TE) = 40 ms, repetition time (TR) = 4835 ms, FOV of 160 mm
x 160 mm, imaging matrix of 80 x 80, 64 slices with slice thickness of 2.2 mm, and voxel
size of 2 mm x 2.2 mm x 2 mm. The intensity bias field was computed from the image
with TE of 40 ms using a nonparametric intensity correction (N4ITK) [30]. Subsequently,
each multi-echo image was divided by the bias field thus obtained, after which T2 and PD
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were estimated by fitting the following model to the data using nonlinear least squares
(Levenberg-Marquardt):

S(∆T E) = PD exp(−∆T E/T2). (2.1)

Similar as in (19), a linear relation between fiber packing fraction and PD was assumed,
and the packing fraction f was estimated as:

f = 1− PD

PDBulk
, (2.2)

where PDBulk was an estimate of the PD in a nearby region outside the hardware phan-
tom that only contained water.

ACQUISITION AND PREPROCESSING OF DIFFUSION-WEIGHTED IMAGES

Diffusion-weighted images were acquired with a single shot, diffusion-weighted spin
echo sequence (repetition time (TR) = 9017 ms, echo time (TE) = 120 ms, FOV of 240
mm x 240 mm, imaging matrix of 94 x 96, 50 slices with slice thickness of 2.5 mm, and
reconstructed voxel size of 2.5 mm x 2.5 mm x 2.5 mm). Furthermore, in the directions
perpendicular to the fibers diffusion-weighted images were acquired with the following
b-values [0 400 700 1200 2000 3500 5000] s/mm2 (gradient pulse length (δ) = 22 ms and
diffusion time (∆) = 80.5 ms). An additional image without diffusion-weighting (b-value
= 0) was acquired with reversed phase-encode blips, such that distortions due to the
susceptibility-induced off-resonance field could be corrected with the topup routine in
FSL [31, 32].

PROCESSING AND ANALYSIS OF DIFFUSION-WEIGHTED IMAGES

To facilitate the comparison between the acquired and simulated data, the diffusion kur-
tosis model was fitted [33]. More specifically, the following equation was fit (Levenberg-
Marquardt) to each voxel of the acquired diffusion-weighted data:

S(b) = S0 exp
(
−bD + 1

6
(bD)2K

)
, (2.3)

where S0 is the diffusion signal without diffusion weighting, b is the ‘b-value’ quantifying
the diffusion-weighting, D the diffusivity parameter, and K the kurtosis parameter.

The fiber packing fraction, determined from the estimated PD using equation 2.2,
was used to cluster the voxels in the region with diverging fibers into bins with a spac-
ing of 0.05. For each bin, the (normalized) diffusion-weighted signal was calculated as
average(S(b)/(S0)). Furthermore, the average diffusivity (D) and the average kurtosis pa-
rameter (K ) were computed and compared to simulated values (see below).

2.2.3. DIFFUSION SIMULATIONS

MONTE CARLO DIFFUSION SIMULATIONS

We used a Monte Carlo simulation of random walkers to generate a three-dimensional
diffusion profile of the water diffusion outside infinitely long parallel solid cylinders. The
simulation was implemented in Matlab as described in [27]. In short, NS spins were
assigned a random position in simulated 3D voxels through drawings from a uniform
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(3D) distribution. Spins that were placed inside a cylinder were repeatedly assigned new
random positions, until every spin had an initial position outside a cylinder. Next, the
position of each spin was iteratively updated by adding a step vector with a fixed length
l and random direction. If this vector overlapped with a cylinder, the spin’s step vector
was reflected elastically at the boundary (multiple times if required).

Periodic boundary conditions were used for all substrates, i.e. the simulated voxel
essentially repeated itself in the radial direction and was constant in the axial direction
(see below). This approach enabled spins to move infinitely far in both the radial and ax-
ial directions. Practically, the spin position modulo the voxel dimensions was computed
each iteration to efficiently check for collision with cylinder boundaries.

To support simulated voxels containing a large number of cylinders, an acceleration
technique similar to [34] was used. Essentially, the simulated voxel was subdivided in
much smaller subvoxels. The number of subvoxels was set to approximately 25% of the
number of cylinders. From each subvoxel, the cylinders overlapping that subvoxel (or
with a distance smaller than the diffusion step length) were identified in advance. Using
the modulo operator, the corresponding subvoxel could be efficiently selected from the
position of each spin. Subsequently, to check whether a spin had hit a cylinder boundary,
only the distance to the few cylinders corresponding to the particular subvoxels needed
to be computed (rather than distances to all cylinders in the complete simulated voxel).

The diffusivity D in the simulation was set to 2.0·10−3 mm2/s reflecting the diffusivity
of water at 20 degrees Celsius. To save disk space and memory space, spin positions were
only stored every 1.0 ms.

SIMULATED SUBSTRATES

Three different simulated substrates were simulated: squarely packed cylinders, hexag-
onally packed cylinders, and randomly packed cylinders (see figure 2.2). The cylinders
had a diameter of 16 µm and were aligned in parallel in each substrate. The packing frac-
tion of a substrate was defined as the ratio of the surface area covered by cylinders and
the total area considered in a perpendicularly oriented plane. Different packing fractions
were simulated by increasing/decreasing the space between the cylinders. For squarely
packed and hexagonally packed cylinders, the packing fraction can be calculated over a
small unit cell around each cylinder due to the periodicity in structure (see figure 2.2A
and B for an example).

For substrates with random packing, cylinders were initially placed in a voxel using
square packing with the desired packing fraction. Subsequently, cylinders were moved
one-by-one in a random order by adding a Gaussian distributed displacement (µ=0,
σ=(cylinder radius)/4) to their initial positions. Updated positions were only accepted
if it did not result in overlapping cylinders. This procedure was repeated 10.000 times
the number of cylinders in the voxel. In figure 2.2C an example of a substrate with a
random packing is shown.

SIMULATION OF THE DIFFUSION-WEIGHTED MRI SIGNAL

The output of the diffusion simulation was used to synthesize the diffusion-weighted
MRI signal. Similar to [27], all spins were initialized with phase φ equal to zero. In each
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Figure 2.2: A) Photograph of the hardware phantom. B) Schematic of the hardware phantom. C) Estimated
fiber packing fraction using Proton Density weighted MRI.

time step the phase of each spin was updated according to:

∆φ= γG(t ) ·x(t )∆t , (2.4)

where γ is the gyromagnetic ratio for protons in water, G(t ) is the gradient vector, x(t ) the
spin position at time t , and ∆t the duration of the time step. As in the hardware phan-
tom, we merely focused on the radial part of the diffusion, i.e. G was oriented perpendic-
ular to the fiber direction. Furthermore, rectangular gradient pulses were assumed with
length (δ = 22 ms) and diffusion time (∆ = 80.5 ms) matching the MRI acquisition pa-
rameters. Since these gradient timings were in general not exactly a multiple of the time
step ∆t (approximately 1 ms), we fractionally updated the phase at the start and end of
the gradient pulses. The gradient strength was varied in steps to generate b-values from
0 to 5000 s/mm2 in steps of 100 s/mm2. The normalized diffusion-weighted MRI signal
(S/S0) was computed by summing up the contributions of all NS spins:

S(G,∆,δ)

S0
= 1

NS

NS∑
j=1

exp(φ j ). (2.5)

2.3. EXPERIMENTS

2.3.1. EVALUATION OF PRECISION
The number of spins NS , the number of simulated cylinders and the step size influence
the precision of the simulated signal and as such needed to be set to appropriate values
[27, 34]. To do so a substrate with random packing of cylinders and a packing fraction
of 0.5 was generated. Other default settings to simulate the diffusion-weighted signal
were: 100.000 spins, a step size of 5% of the cylinder diameter, and 2500 cylinders in a
voxel sized 1x1x1 mm3. The influence of the number of spins was studied by varying it
between 1.000 and 100.000 spins, while keeping the default settings for the other param-
eters. Much the same way, the number of cylinders in the unit cell was varied between
100 cylinders in voxel (0.2x0.2x0.2 mm3) and 2500 cylinders in a voxel (1.0x1.0x1.0 mm3).
Finally, the step size was varied between 0.5% and 10% of the cylinder diameter. At each
setting the normalized diffusion-weighted signal was simulated ten times. The uncer-
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tainty of the simulation was determined by computing the corresponding standard de-
viation. Observe that this is a relative measure since the diffusion-weighted signal was
normalized.

2.3.2. DEPENDENCY OF THE SIMULATED SIGNAL ON PACKING FRACTION

AND CYLINDER DIAMETER

The dependency of the simulated signal on the packing fraction was evaluated by gen-
erating substrates of all three packings with different packing fractions and cylinder di-
ameters. A voxel containing 2500 cylinders was used. Fiber densities ranged from 0.45 to
0.75 in steps of 0.05, while the diameter of the cylinders was varied from 4 µm to 20 µm
in steps of 4 µm. Note that the step size in our simulations is set as a percentage of the
cylinder diameter, by default 5% of the cylinder diameter. The (normalized) diffusion-
weighted signal for each of these substrates was simulated, and diffusivity and kurtosis
parameters were estimated by fitting equation 2.3.

2.3.3. DIFFUSION INSIDE CYLINDERS

For reference purposes, intra-cylinder diffusion was simulated as well. Spins were given
a random initial position inside a cylinder. Similar to the diffusion simulation outside
cylinders, the position of each spin was repeatedly updated by adding a step vector
with a length equaling 5% of the cylinder diameter and random direction. Furthermore,
collisions with the cylinder boundary were also assumed to be elastic. The diffusion-
weighted MRI signal by these spins was computed similar as for spins outside the cylin-
ders. The intra-cylinder diffusion was studied for different cylinder diameters, ranging
from 4 µm to 20 µm in steps of 4 µm.

2.4. RESULTS

T HE estimated fiber packing fraction in the hardware phantom is shown in figure 2.1C.
The red square denotes the region of the phantom with slightly diverging fibers, in

which the fiber packing fraction approximately ranges from 0.45 to 0.75. The estimated
diffusivities and kurtosis parameters are shown in figure 2.3. The average diffusivity in
the bulk (water outside the phantom) was 2.0 ·10-3 mm2/s.

2.4.1. EVALUATION OF PRECISION

The influence of the Monte Carlo simulation parameters on the precision of the simu-
lated diffusion-weighted signal at different b-values is shown in figure 2.4. In the top-left
figure, the standard deviation of the signal is plotted against the number of spins. A de-
crease in the standard deviation can be observed as the number of spins increases. This
decrease is approximately proportional to the square root of the number of spins (i.e. lin-
ear on the logarithmic scale). In the top-right figure, the standard deviation of the signal
versus the number of cylinders in the simulated voxel is shown. The standard deviation
of the simulated diffusion signal also decreases when the simulated voxel contains more
cylinders (approximately proportional to the square root of the number of cylinders).
Observe that the default settings of 100.000 spins and 2500 cylinders in a voxel result in
a standard deviation of approximately 0.003 (= 0.3% of S0). Using these default settings,
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Figure 2.3: Estimated diffusivity and kurtosis parameters. The red box denotes the region of the phantom with
diverging fibers. The unit of the diffusivity is in 10-3m2/s.

the dependency on step size was evaluated. Results are shown in the bottom figure.
The mean difference of approximately 0.002 between the default step size of 5% and the
much smaller 0.5% of the cylinder diameter was comparable to the expected variance.
Accordingly, we retain the applied default settings in the next experiments since they
result in only a very small variation in signal.

2.4.2. DEPENDENCY OF THE SIMULATED SIGNAL ON PACKING FRACTION

AND CYLINDER DIAMETER

In figure 2.5 the experimentally acquired (phantom) and simulated diffusion-weighted
signals versus b-value are shown for different fiber densities and packing types. The fig-
ure demonstrates that the signal from the random packing is in reasonably good agree-
ment with the experimental data (figure 2.5A) up to a packing fraction of 0.65. At pack-
ings larger than 0.65 the simulated signal was systematically smaller than the experimen-
tally obtained signal. The hexagonal packing (figure 2.5B) and square packing (figure
2.5C) yielded diffusion-weighted signals that deviated largely from the experimentally
acquired data.

Figure 2.6 shows the diffusivity and kurtosis parameters estimated from the experi-
mentally acquired and simulated diffusion-weighted signal using random packings. The
radial diffusivity estimated from the experimental data decreased from 1.3 ·10−3 mm2/s
to 0.5 ·10−3 mm2/s while the packing fraction increased from 0.45 to 0.75. Over the same
range of packing fractions, the kurtosis parameter increased from 0.54 to 1.07. Reason-
able agreement was observed between the simulated and acquired data up to a packing
fraction of 0.65.

Simulated diffusion-weighted signals as a function of the b-value for substrates with
different cylinder diameters are visualized in the top row of figure 2.7. The initial slopes
of these plots are rather linear. Simultaneously, the signals appear relatively independent
of cylinder diameter up to b=1500 s/mm2. However, at b-values more than 1500 s/mm2
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substrates with a smaller cylinder diameter yield a larger attenuation of the diffusion-
weighted signal. The estimated diffusivity and kurtosis parameters as a function of pack-
ing fraction are shown in the bottom row of figure 2.7 for different fiber diameters. The
diffusivity parameters appear primarily dependent on the packing fraction and not so
much on the average cylinder radius. The kurtosis parameters, however, are sensitive to
the cylinder diameter: smaller cylinder diameters result in smaller kurtosis parameters.

Figure 2.4: Dependency of Monte Carlo simulation on the number of spins (top-left), the number of cylinders
in voxel (top-right), and the step size (bottom).

2.4.3. DIFFUSION INSIDE CYLINDERS
In figure 2.8 the simulated diffusion-weighted signal for diffusion inside cylinders is
shown. Note that compared to diffusion outside the cylinders, there is much less atten-
uation of the signal. For diffusion inside cylinders with diameters of 8 µm or smaller,
even at a relatively high b-value of 5000 s/mm2 virtually no attenuation is visible.

2.5. DISCUSSION

W E investigated the relation between the normalized diffusion-weighted MRI sig-
nal in Monte Carlo simulations and in experimental acquisitions from a hardware
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Figure 2.5: Experimentally acquired and simulated diffusion signals versus b-value for different fiber densities
and packing types. Individual points represent experimental measurements from the phantom; continuous
lines were obtained through simulations. Color indicates the packing fraction (see sidebar). Errorbars of the
experimental data show the standard deviation of the mean.
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Figure 2.6: Diffusivity and kurtosis estimated from experimental and simulated diffusion data. Errorbars of the
experimental data show the standard deviation of the mean.

phantom. In the Monte Carlo simulation, the influence of relevant simulation param-
eters (i.e. number of spins, step size), as well as substrate parameters (i.e. the packing
fraction, diameter, and type of packing) on the diffusion-weighted MRI signal was in-
vestigated. In agreement with previous research [27, 34], the number of spins, and the
step length were found to have a strong influence on the precision of the simulated sig-
nal. Our default setting yielded a very low variance and as such high precision of the
simulation.

The periodic structure of substrates based on square and hexagonal packings
resulted in unwanted oscillations of the simulated diffusion signal. Previously, such
diffraction-like effects have been confirmed in NMR acquisitions of (periodic) porous
solids [35]. With the random packing of cylinders we did not observe such effects.

For long diffusion times hindered diffusion (as opposed to restricted diffusion where
random walkers are trapped inside cavities or axons) is expected to be adequately de-
scribed by a Gaussian distribution. However, in this chapter an intermediate diffusion
time of 80.5 ms was used, which yields an (unhindered) diffusion length of approxi-
mately 30 µm. Strong non-Gaussian signal-decay is therefore observed for simulated
substrates with relatively large cylinder radii, but as the cylinder diameter decreases the
diffusion decay signal becomes more Gaussian.

The simulations matched the experimental data very well up to packing fractions of
0.65. The relatively lower simulated signal above this threshold could reflect that spins
are more confined in the hardware phantom than in the simulations. In the hardware
phantom, fibers may be pushed against each other at high packing fractions effectively
trapping water between the fibers whereas the simulated random packing always leaves
some space between adjacent cylinders.

The simulation of the radial intra-axonal diffusion shows that it hardly affects the dif-
fusion signal for representative diameters (smaller than or equal to 8 µm). This confirms
the general notion that the radial intra-axonal diffusion cannot be estimated in white
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Figure 2.7: Simulated diffusion-weighted signals, diffusivity and kurtosis parameters for different cylinder di-
ameters. Top-left: Diffusion signal for fiber fraction = 0.5; top-right: Diffusion signal for fiber fraction = 0.7,
both as a function of b-value. Bottom-left: radial diffusivity; bottom-right: radial kurtosis, both as a function
of the packing fraction.

Figure 2.8: Simulated (normalized) diffusion-weighted signals as a function of b-value modeling diffusion in-
side impermeable cylinders with different diameter.
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matter structures.
A limitation of our work is that our phantom consisted of fibers that are slightly

thicker than the axons encountered in the brain’s white matter. For instance, in the
corpus callosum most axon diameters range between 0.1 µm to 2 µm [22]. Axons with
diameters larger than 10 µm also exist, but are rare [22]. Our simulations suggest that
particularly in white matter consisting of axons whose diameters are much smaller than
typical diffusion lengths of 20-30 µm, the extracellular diffusion is adequately modeled
by the Monte Carlo simulation.

Additionally, our experiments focused on the diffusion perpendicular to the fibers.
We found that the axial diffusion both in our hardware phantom as well as in the simu-
lations closely approximates free diffusion due to the highly parallel structure (data not
shown). Although actual white matter has a more complex structure, reported axial dif-
fusivities still approximate free diffusion.

Finally, probably the most important limitation of our work is in that we did not study
crossing fiber structures. Essentially, we targeted to first establish the accuracy and pre-
cision of our simulations in single fiber structures with varying packing fraction. We
consider simulating diffusion signals in complex structures the most important topic for
our future research.

2.6. CONCLUSION

T HE simulated MRI signals based on Monte Carlo simulations of spins subject to hin-
dered diffusion by randomly packed cylinders accurately match the experimentally

acquired data from the fiber phantom. The combined analysis of our Monte Carlo diffu-
sion simulation and experimental data allows a more comprehensive study of the com-
plex link between the diffusion-weighted MRI signal and the underlying microstructure.
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3
CSF CONTAMINATION-INVARIANT

STATISTICS IN CONVENTIONAL

DW-MRI OF THE FORNIX

The goal of this chapter is to develop a method for assessment of microstructural prop-
erties of the fornix in conventional (low resolution, single non-zero b-value) diffusion-
weighted MRI data. For this purpose, a bi-tensor model, comprising of an isotropic and an
anisotropic diffusion compartment, was fitted to the diffusion-weighted images (DWIs).
Two subject-specific constraints were studied to solve the ill-posedness of the parameter
estimation at a single (non-zero) b-value, namely by fixating the mean diffusivity (MD) or
the axial diffusivity (AxD) of the anisotropic compartment. The bi-tensor statistics were
compared to conventional diffusion statistics using simulated fiber bundles with differ-
ent diameters and using fornix segmentations of 577 elderly subjects. Based on simulated
fiber bundles, the FA estimated by the bi-tensor model did not become biased with de-
creasing fiber bundle diameter, unlike conventional diffusion statistics such as FA and
MD estimated by the single tensor model. In the population-based study, the bi-tensor
tissue fraction decreased significantly with age, suggesting an increase of free water. The
FA estimated by the bi-tensor model decreased with age, but this relation was not signif-
icant when the subject-specific values to which MD or AxD were constrained were added
as covariates in the regression analysis. The distinction of an isotropic and an anisotropic
diffusion compartment may allow a more sophisticated analysis of the fornix based on
conventional DW-MRI data.

G.A.M. Arkesteijn, D.H.J Poot, M. de Groot, M.A. Ikram, W.J. Niessen, L.J. van Vliet, M.W. Vernooij, and F.M. Vos,
published in Biomedical Physics & Engineering Express, (2017), 3 067003.
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3.1. INTRODUCTION

D IFFUSION-WEIGHTED magnetic resonance imaging (DW-MRI) is a non-invasive
imaging technique in which image contrast is determined by the (hindered)

molecular diffusion of water [1]. DW-MRI is frequently used to study the brain’s white
matter, because the diffusion behavior of water reflects the orientation and organization
of neural fibers in the white matter [2].

Diffusion tensor imaging (DTI) is a popular application of DW-MRI, in which the dif-
fusion behavior is modeled by a rank-two diffusion tensor [3]. In voxels containing a
single tissue type, DTI provides tissue-specific measures of the microstructure. How-
ever, in voxels containing different tissue classes due to partial volume effects (PVE), the
diffusion tensor is influenced by all these diffusion compartments [4].

PVE complicate the analysis of diffusion-weighted images (DWIs) in two ways.
Firstly, PVE make diffusivity statistics sensitive to random processes such as the po-
sitioning of the image grid. This random process yields a varying voxel composition,
which causes additional noise on all diffusivity statistics, thereby decreasing the sensi-
tivity to detect microstructural change. Secondly, PVE can introduce a bias in diffusivity
statistics that depends on the size, structure and shape of the involved tracts or objects.
DTI metrics such as the mean diffusivity (MD) and fractional anisotropy (FA) of the
diffusion tensor may therefore be modulated by macrostructural properties such as
fiber bundle thickness [5].

Cerebrospinal fluid (CSF) contamination is a partial volume effect that occurs when
both CSF and tissue contribute to the signal of the same voxel. CSF is characterized
by unhindered diffusivity with an apparent in-vivo diffusion coefficient approximately
equal to that of free-water at 37◦C [4]. The increased isotropic diffusion in CSF contam-
inated white matter voxels results in an overestimation of MD and an underestimation
of FA. Therefore, increasing degrees of CSF contamination driven by macrostructural ef-
fects such as white matter atrophy may incorrectly suggest or exaggerate microstructural
change [6]. The fornix, the primary white matter bundle connecting the hippocampus to
the mammillary bodies of the hypothalamus, is particularly prone to CSF contamination
due to its small size and proximity to the third and lateral ventricles [7]. Given its impor-
tance to episodic memory [8, 9] it is a good example of the challenge to disentangle the
macroscopic effect of increasing CSF contamination due to aging from ‘true’ changes in
fornix microstructure.

Different techniques can be used to limit the effects of CSF contamination. CSF con-
tamination can be reduced during acquisition by either using a higher spatial resolu-
tion or suppressing the CSF signal with a fluid-attenuated inversion recovery (FLAIR) se-
quence [7, 10, 11]. However, (obviously) these methods are not be applicable to already
acquired image databases applying conventional diffusion imaging protocols.

Several studies have proposed to include measures of brain atrophy or brain size as
covariates in regression analyses to account for PVE by CSF. Examples are the inclusion of
intracranial volume [12], brain parenchymal fraction [13], or white matter fraction [14].
However, these global measures are not necessarily optimal to correct for local effects
such as CSF contamination in the fornix [15]. Local measures reflecting fornix atrophy,
e.g. fornix volume or cross-sectional area, may be more appropriate to correct for CSF
contamination in the fornix. However, such corrections cannot easily take morphologi-
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cal properties into account, such as fiber bundle shape, orientation or curvature, which
may also modulate DTI metrics [5].

Preferably, CSF contamination is corrected on a voxel-by-voxel basis by explicitly
modeling the contribution of CSF in the DW-MRI signal [15]. A model-based approach
for CSF decontamination using a two-compartment tensor model was proposed in [16].
Ideally, the intra-axonal and extra-cellular water in the tissue microstructure are also
modeled with separate diffusion compartments such that the overall system is modeled
as a three-compartment system (intra-axonal, extra-cellular and CSF) [17]. However, for
a stable fit of these models, the diffusion-weighted images (DWIs) have to be acquired
with multiple diffusion weightings (b-values) [18, 19] at the expense of a longer imag-
ing time. Unfortunately, in many datasets of interest (such as the ADNI data [20] or the
Rotterdam Scan Study [21]) the diffusion data has already been acquired using a conven-
tional single (non-zero) b-value acquisition protocol.

In case of single (non-zero) b-value DWIs, the fit of a simple two-compartment
model is ill-posed. Prior work has attempted to make the estimation problem well-
posed by spatially regularizing the diffusion tensor of the anisotropic compartment [18].
However, recent work has shown that such a spatial regularization does not actually
alleviate the degeneracy of the estimation problem [22]. To make the estimation well-
posed, a later work globally constrained the mean diffusivity (MD) of the anisotropic
compartment [23]. This approach resulted in statistics with a reduced sensitivity to PVE
with CSF. However, a limitation of this work was that a global constraint may not be
appropriate for every subject, which in turn may introduce an estimation bias.

The goal of this chapter is to develop a method for assessment of structural prop-
erties of the fornix in conventional (low resolution, single non-zero b-value) diffusion-
weighted MRI data. In particular, the method targets analysis of diffusion data from a
large population study [24]. Instead of using global (population-averaged) constraints to
make estimation of a two-compartment model feasible as in [23], we use subject-specific
constraints on the AxD or MD of the anisotropic compartment. We provide an extensive
evaluation by investigating the macrostructural dependence of conventional and pro-
posed diffusion statistics using in-silico simulation. Furthermore, the reproducibility of
conventional as well as proposed diffusion statistics is determined on 20 subjects for
whom rescan data was available. Finally, the effects of ageing on both conventional and
proposed diffusion statistics of the fornix are investigated on a large (population) dataset
of 577 subjects.

3.2. METHODS

3.2.1. BI-TENSOR MODEL

We use a bi-tensor representation to model the DW-MRI data [18]. A more advanced ap-
proach using a three-compartment model (intra-axonal water, extra-cellular water and
CSF) as in [17] is not feasible with our data. The bi-tensor representation assumes a CSF-
contaminated voxel to consist of two diffusion compartments: a tissue compartment
and a CSF compartment. The diffusion signal originating from these compartments can
be modeled as a weighted sum of both diffusion signals. The diffusion in the tissue com-
partment is assumed to be Gaussian. The water in the CSF compartment is expected to
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diffuse freely, which at 37◦C can be modeled by an isotropic diffusion tensor with eigen-
values equal to d CSF = 3.0 ·10−3 mm2/s. The bi-tensor signal model is formulated as:

Sb,g = S0

(
f exp

(−bgT Dg
)+ (

1− f
)

exp
(−bd CSF

))
, (3.1)

where b is the experimental parameter that represents the amount of diffusion-
weighting, g is a unit vector that specifies the direction of a diffusion-encoding gradient
pulse, S0 is the volume-weighted average of the non-diffusion weighted signals from the
CSF and tissue compartment, f and (1− f ) are the signal fractions of the tissue and CSF
compartments respectively, and D is the diffusion tensor of the tissue compartment.
When the DWIs have been acquired at two or more different (non-zero) b-values, the
unknown parameters S0, f and D can be estimated by minimizing a distance function
between the model and the measured diffusion signal. However, when the DWIs have
been acquired at a single b-value, different combinations of f and D exist that result in
the same predicted diffusion signal. This makes the inverse problem of estimating the
unknown parameters ill-posed.

3.2.2. CSF CONTAMINATION-INVARIANT STATISTICS

The degenerate ( f ,D) pairs can be found by setting the tissue fraction f to different val-
ues in the interval from 0 to 1, while estimating the remaining unknown parameters by
fitting equation 3.1 to the observed data. Let Ω be the set of all positive-definite diffu-
sion tensors D that are obtained as such. The degenerate set Ω can be visualized by, for
instance, plotting the FA against the MD for all diffusion tensors inΩ (example in figure
1A), or by plotting the FA versus the axial diffusivity (AxD) (example in figure 1B). Figure
3.1A illustrates how the exact same signal profile can be obtained by reducing the FA and
increasing the MD of tensor D; at the same time the volume fraction of the isotropic part
(1− f ) decreases for compensation (not shown in the figure). Alternatively, figure 3.1B
shows how an identical signal profile is obtained by lowering FA and increasing AxD, also
at a simultaneously lower (1− f ). Unfortunately, without additional information, the true
diffusion tensor modeling the tissue compartment cannot be reconstructed.

Figure 3.1: Visualization of a degenerate set of diffusion tensors. A) FA versus the mean diffusivity (MD) of the
diffusion tensor. B) FA versus the axial diffusivity (AxD) of the diffusion tensor. The introduction of a constraint,
e.g. on the MD or the AxD, allows a single diffusion tensor from this degenerate set to be constructed.
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To better characterize the true diffusion tensor D, we will study two different ap-
proaches to select a tensor from a degenerate set. In the first approach, we select a tensor
with a fixed MD; in the second approach, we select a tensor with a fixed AxD. In figure 3.1
it is illustrated how both approaches select a unique diffusion tensor from the degener-
ate set, and hence yield a well-posed estimation problem. It should be noted that these
tensors can be efficiently computed by constraining the diffusion tensor during the fit-
ting of the model. In previous work, a global value (same for all subjects) of 8.0 · 10−3

mm2/s was used as a constraint for the MD [23]. We now propose to compute represen-
tative subject-specific constraints for the MD and the AxD derived from single tensor fits
in the splenium of the corpus callosum of the particular subject.

Clearly, imposing such constraints on the model is generally not preferred as it pre-
cludes the representation of certain variations in diffusion parameters. Even more, the
constraints are not required with data acquired at multiple b-values or may be avoided
with FLAIR DT imaging. However, these solutions are not applicable to conventional
diffusion data collected on a single shell such as ours (see below). A motivation for the
constraints is illustrated in figure 3.2. It displays the AxD (figure 3.2A), radial diffusiv-
ity (figure 3.2B) and MD (figure 3.2C) in a white matter segmentation of the brain of a
65-years old male. The histogram in figure 3.2D demonstrates that the MD shows the
smallest coefficient of variation across the white matter, which suggests that it may be
a suitable constraint. However, assuming a fixed MD in the body of the fornix may not
always be appropriate. We therefore also explore constraining the AxD, such that both
the FA and MD in the bi-tensor model can vary across the fornix.

Summarizing, the first constraint assumes a single, fixed MD that may differ per sub-
ject, without any further restriction on FA. The second constraint assumes a single, fixed
AxD, per subject, without further restrictions on both MD and FA. Subscripts will be
used to discriminate between diffusion statistics obtained with different approaches,
e.g. FAMD refers to the FA of a bi-tensor model with constrained MD and FAAxD refers
to the FA of a bi-tensor model with constrained AxD. Bi-tensor statistics obtained with a
global MD-constraint of 8.0 ·10−3 mm2/s will be denoted with the subscript ’MD,Glob’,
e.g. FAMD,Glob. Conventional single tensor statistics will be denoted with the subscript
‘ST’, e.g. FAST or MDST.

3.2.3. PARAMETERIZATION OF THE BI-TENSOR MODEL

To enforce the constraints, the tissue diffusion tensor D in equation 3.1 is parameter-
ized by a rotation matrix R and an eigenvalue matrix E, i.e. D = RERT . The rotation
matrix R is a concatenation of three rotations about the x-, y- and z-axes, e.g. R =
Rx (α1)Rx (α2)Rx (α3). The MD-constraint is enforced by parameterizing the eigenvalues
of the diagonal matrix E as follows:

λ1 = 3C1C MD (3.2)

λ2 = 3(1−C1)C2C MD (3.3)

λ3 = 3(1−C1)(1−C2)C MD (3.4)
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Figure 3.2: Transversal slices from an asymptomatic 65-years old male brain with contours of a white matter
segmentation in red. The white matter segmentation was obtained using a kNN tissue segmentation method
[25]. A) Axial diffusivity (AxD). B) Radial diffusivity (RD). C) Mean diffusivity (MD) of the diffusion tensor. The
images are scaled between zero and two times the mean value of each diffusivity statistic. The mean values
of AxD, RD and trace are computed from all voxels in the whole-brain white matter segmentation and are
1.1 · 10−3 mm2/s, 0.69/cdot10−3 mm2/s and 0.83 · 10−3 mm2/s respectively. D) Histograms of the AxD, RD
and trace after dividing each statistic by its mean value.

where C MD is the value of the MD constraint and C1 and C2 are unknown parameters
between 0 and 1. In case of the AxD-constraint, the parameterization is as follows:

λ1 =C AxD (3.5)

λ2 =C1C AxD (3.6)

λ3 =C2C AxD (3.7)

where C AxD is the value of the AxD-constraint and C1 and C2 are again unknown param-
eters between 0 and 1. In both parametrizations C1 and C2 can be constrained during
model fitting by an constrained optimization routine.

3.2.4. FIBER BUNDLE SIMULATIONS
Phantom fiber bundles were simulated in order to have a reference standard for assess-
ment of features extracted from the single-tensor model and the proposed bi-tensor
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models. The Numeric Fiber Generator (NFG) v1.1.1 [26] was used to simulate sets
of DWIs. Each set contained a single cylindrically shaped white matter fiber bundle
of approximately 60 mm in length, with an arbitrary orientation. Diameters of the
white matter fiber bundles were varied from 3 mm to 12 mm in steps of 1.5 mm.
Three different microstructures were simulated with respectively FA={0.75,0.80,0.85},
MD={0.85,0.80,0.80} · 10−3 mm2/s and AxD={1.78,1.78,1.89} · 10−3 mm2/s. The white
matter bundles were completely surrounded by CSF, which was modeled as an isotropic
compartment with a diffusivity of 3.0 ·10−3 mm2/s. The b0-intensity of CSF, i.e. imaged
at b-value = 0 s/mm2, was set to three times the b0-intensity of the white matter
compartment. Acquisition parameters were set to approximately match the acquisition
in the Rotterdam Study [21]: 25 gradient directions and a b-value of 1000 s/mm2. PVEs
were introduced in the boundary voxels of the fiber bundles, by first generating the DW-
MRI signal on a fine imaging grid with a resolution of (0.15 mm)3 and then summing the
signal of each subvoxel element into a coarser voxel grid with a resolution of (3 mm)3.
Finally, Rician distributed data with an SNR of 20 (in the white matter in the b0-image)
were created from the simulated noise-free DWIs. Fiber bundle segmentations were
created by including all voxels overlapping the (ground truth) fiber bundle. For each
combination of diameter and microstructure, the simulations were conducted ten
times such that a mean and standard deviation of relevant diffusion statistics could be
computed.

3.2.5. STUDY POPULATION

Imaging data from the population-based Rotterdam Study was also used to evaluate the
proposed framework [24]. The reproducibility of the framework was tested on 20 sub-
jects for whom rescan data (MRI scans acquired on the same scanner) was available (see
also [27]). The mean time between the baseline scan and rescan was 19.5 days (SD 10).
These subjects were on average 76.7 (SD 4.8) years old, 50% was female. The frame-
work was further evaluated on a group of 671 subjects, sampled from a cohort of the
Rotterdam Study, such that an age distribution from 63 to 80 years was obtained. Due
to missing or incorrect fornix segmentations 94 subjects were excluded, as explained be-
low. As such 577 subjects remained: 279 males and 298 females. Ages ranged from 63.9
to 80.0 years, with mean age 69.3 (SD 3.5) years. None of the subjects was diagnosed with
dementia. Written informed consent was obtained from all participants.

3.2.6. DATA ACQUISITION

Subjects were scanned on a 1.5 tesla MRI scanner (GE Signa Excite) using an 8-channel
head coil. DWIs were acquired with a single shot, diffusion-weighted spin echo echo-
planar imaging sequence (repetition time (TR) = 8575 ms, echo time (TE) = 82.6 ms, field
of view (FOV) = 210 mm x 210 mm, imaging matrix = 96x64 (zero-padded to 256x256), 35
contiguous slices of slice thickness 3.5 mm) in 25 non-collinear directions with a maxi-
mum b-value of 1000 s/mm2. Three volumes were acquired without diffusion weighting
(the b0-images). Additionally, structural images were acquired including a T1-weighted
sequence [21].
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3.2.7. DIFFUSION-IMAGE PROCESSING

The acquired DWIs were corrected for motion and eddy current distortion by affine
coregistration to the reference b0-image with Elastix [28]. Together with the affine
transformation, DWIs were upsampled to a 1.0 mm isotropic resolution. Simultane-
ously, upsampling the image data has little additional adverse effects, but does yield
images that are easier to inspect visually for potential artefacts or accurate coregis-
tration. Gradient directions were reoriented according to the rotation component of
the affine transformation to maintain correspondence during registration [29]. Next,
the single-tensor model, bi-tensor model with global MD-constraint, bi-tensor model
with subject-specific MD-constraint and bi-tensor model with subject-specific AxD-
constraint were fitted to the DWIs using the fit_MRI toolbox [30] by maximum likelihood
estimation assuming Rician distributed data [31].

3.2.8. CORPUS CALLOSUM SEGMENTATION

A segmentation of the splenium of the corpus callosum was applied to obtain a region-
of-interest to compute the MD and AxD constraints. For this purpose the Johns Hopkins
University (JHU) DTI atlas was registered to the FA images of each subject using a non-
rigid transformation with fnirt, a non-linear registration tool in FSL. The JHU white
matter labels, including the splenium of the corpus callosum, were then warped to each
subject space using nearest neighbor interpolation. The median MD and AxD of a single
tensor fit in the splenium of the corpus callosum segmentation were used as constraints
in the fitting of the constrained bi-tensor models.

3.2.9. FORNIX SEGMENTATION

Conventional and proposed diffusion statistics of the fornix were compared across sub-
jects. The fornix shows large anatomical variation across different subjects, which hin-
ders accurate registration [32]. As such, a straightforward voxel-based analysis of the
fornix in a common (atlas) space was not possible with our data. We therefore chose a
region-of-interest based approach in subject space, and used FreeSurfer v5.1 software
[33] to segment the fornix based on T1-weighted images combined with a probabilistic
atlas. The FreeSurfer segmentations of the fornix were preferred over tractography seg-
mentations based on the (low-resolution) DWIs, because the higher spatial resolution
of the T1-weighted images enabled a more accurate segmentation. Indeed, tractogra-
phy based segmentations as applied in [34, 35] largely failed for our data, due to the low
resolution of the DWIs. The FreeSurfer segmentation of the fornix typically contains the
body of the fornix (see figure 3.3A and B). However, approximately 15% of the fornix seg-
mentations also erroneously included large parts of the corpus callosum (figure 3.3C).
The corpus callosum was removed from the fornix segmentations using binary morphol-
ogy operations as follows. A mask was created by applying a three-dimensional closing
operation with a spherical structure element (radius of 4 mm) to the third and lateral
ventricles (figure 3.3D). The largest N6-connected structure within this mask was kept
as fornix.

To align the fornix segmentation with the DWIs, a transformation was computed by
rigidly coregistering the T1-weighted scan to the b0-image using flirt, a linear regis-
tration tool in FSL. However, echo-planar imaging (EPI) acquisitions are very sensitive
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Figure 3.3: A) Sagittal slice of a fornix segmentation with T1w background image. B) Three-dimensional view
of a fornix segmentation. Each cube is a (1 mm)3 voxel. C) FreeSurfer segmentations of the fornix sometimes
erroneously included parts of the corpus callosum, D) A three-dimensional closing operation applied to the
third and lateral ventricles provided a mask that was used to exclude the corpus callosum from fornix segmen-
tations.

to static magnetic field inhomogeneities. Variations in the static magnetic field, partic-
ularly at air-tissue interfaces, induce geometric distortions in the b0-image due to the
EPI readout. A straightforward rigid registration tends to slightly misalign the fornix to
correct for geometric distortions elsewhere in the brain. This misalignment was pre-
vented by using a smoothed FreeSurfer segmentation of the third and lateral ventricles as
a weighting image for the cost function in flirt. Essentially, this emphasized accurate
registration of the region around the fornix. All fornix segmentations were inspected and
94 out of 671 subjects with missing or incorrect fornix segmentations were removed from
the study. More specifically; in 17 subjects FreeSurfer crashed, in 61 subjects FreeSurfer
did not label a single voxel as fornix, and in 16 subjects the fornix segmentation con-
tained major defects.

3.3. RESULTS

3.3.1. EXAMPLE OF A TYPICAL SUBJECT

A typical result for a 65-year old brain is displayed in figure 3.4. Figure 3.4A shows a
coronal slice of a T1-weighted scan with the fornix segmentation in red. The small size
of the fornix can be appreciated, e.g. even the body the thickest part of the fornix, is only
4-5 mm in diameter. In figure 3.4B, C, D and E, the FAST, MDST, FAMD and f MD are shown
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respectively. For visualization purposes voxels with tissue fraction f MD smaller than 0.3
have been masked black in figure 3.4D. In these voxels the MRI signal from the tissue
compartment is too small for reliable estimation of FAMD. Furthermore, observe that
the image contrast provided by MDST is approximately the inverse of the image contrast
provided by f MD. Due to the constraint in the bi-tensor model, any increase in the mean
diffusivity in a voxel is explained by a decrease in f MD.

Figure 3.4: Coronal slices from an asymptomatic 65-year old male brain. A) T1w-image with fornix segmenta-
tion in red. B) FAST. C) MDST. D) FAMD (voxels with f MD<0.3 have been masked black). E) f MD.

3.3.2. SIMULATED FIBER BUNDLES

The segmented voxels in the simulated fiber bundle are affected by various degrees of
CSF contamination, e.g. boundary voxels are typically more contaminated than center
voxels. The effects of CSF contamination can be reduced by excluding the most con-
taminated voxels from the analysis. We therefore considered three (arbitrarily chosen)
levels of contamination at which to extract diffusivity statistics from the segmentations,
by computing an average over all voxels, over the 50% least contaminated voxels, and
over the 10% least contaminated voxels. The ground truth degree of CSF contamination
in each voxel was computed from the (noiseless) b0-image.

Using the three exclusion levels, the FA and MD of a single tensor model (FAST and
MDST) as well as the FA and tissue fraction f of the bi-tensor model with constrained
MD (FAMD and f MD) and constrained AxD (FAAxD and f AxD), are plotted against the di-
ameter of the simulated fiber bundles in figure 3.5. The shaded areas along the plotted
curves represent two standard errors around the mean values. The constraints were set
to C MD = 0.8 · 10−3 mm2/s and C AxD = 1.78 · 10−3 mm2/s in respectively the MD con-
strained and AxD constrained bi-tensor model. Note that the ground truth values in the
simulated fiber bundle has an FA of 0.8.

It can be observed that conventional diffusion statistics (FAST and MDST) and the
bi-tensor tissue fractions ( f MD and f AxD) become increasingly biased with decreasing
simulated fiber diameter and with higher percentages of contaminated voxels included.
Obviously, computing the average from the 10% least contaminated voxels yields the
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smallest bias with respect to the simulated ground truth. At this exclusion level, the ex-
tracted FAST and MDST are almost equal to their simulated ground truth in fiber bundles
with diameters larger than 9 mm (i.e. three times the voxel size). This is not the case in
fiber bundles with smaller diameters, or when the average is computed from the more
contaminated voxels in the tract segmentations. Furthermore, the CSF contamination
introduces a relatively large uncertainty in the estimated conventional diffusion statis-
tics (FAST and MDST) and the bi-tensor tissue fractions ( f MD and f AxD).

The mean CSF contamination-invariant statistics FAMD and FAAxD appear indepen-
dent of fiber bundle diameter and the used exclusion level and are approximately equal
to the simulated ground truth. In the smallest fiber bundle the uncertainties in esti-
mated FAMD and FAAxD are a little larger than ten percent of the ground truth. This can
be explained by a smaller region-of-interest over which these statistics are computed,
and (on average) a smaller fraction of the signal that originates from the tissue com-
partment in each voxel. Furthermore, the variation in FAAxD appears larger than the
variation in FAMD. Subsequently, the ability to discriminate between fiber bundle con-
figurations with varying FA was evaluated using the 10% and 50% least contaminated
voxels. For fiber bundles with different simulated FA values (0.75, 0.8 and 0.85), con-
ventional and proposed diffusion statistics are plotted against the diameter in figure 3.6.
The overlapping confidence bounds of FAST for bundles smaller than 9.0 mm as well as
the dependency of FAST on bundle diameter imply that bundles with these differences
in FA cannot be distinguished. In fiber bundles with diameters of 6.0 mm and larger, the
variance in both FAMD and FAAxD is sufficiently small to discriminate between the three
simulated FA’s.

In figure 3.6 the effect of a mismatch between the applied constraints and the ground
truth can be observed. The fiber bundle with true FA = 0.75 has true MD= 0.85 · 10−3

mm2/s, whereas the applied MD-constraint was C MD = 0.80 · 10−3 mm2/s. In the sec-
ond column of figure 3.6 it is shown that in this case the FAMD slightly overestimates the
true FA by approximately 5%. Observe, however, that despite the bias, the mean FAMD

is still independent of fiber diameter. Similarly, the fiber bundle with true FA=0.85 has
true AxD= 1.89 ·10−3 mm2/s, whereas the applied AxD-constraint was C AxD = 1.78 ·10−3

mm2/s. In the third column of figure 3.6 it can be observed that FAAxD slightly overesti-
mates the true FA in this situation by about 5%.

3.3.3. REPRODUCIBILITY STUDY

As demonstrated in the simulations, excluding the most contaminated voxels from the
segmentation is a straightforward method to reduce the effects of CSF contamination.
Unfortunately the ground-truth contamination level is not known for our clinical
datasets. Instead, we selected the 10% and 50% voxels with the highest FAST in the fornix
segmentation of our clinical datasets.

On twenty subjects for whom rescan data was available, we evaluated the repro-
ducibility of parameter estimation. Baseline and follow-up scans were processed us-
ing the described processing pipeline. The mean FAST, MDST, FAMD,Glob, FAMD, FAAxD,
and tissue fractions f MD,Glob, f MD and f AxD in the 10% and 50% highest FAST voxels of
the fornix were computed for both scans of all twenty subjects. For all diffusion statis-
tics, Bland-Altman plots showing the difference between the time point measurements
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Figure 3.5: Effect of selecting the least contaminated voxels within tract segmentations of CSF-contaminated
fiber bundles. Diffusion properties from single fiber bundle configurations with FA=0.8 and different fiber bun-
dle diameters were estimated with the single-tensor model (left column), the bi-tensor model with constrained
mean diffusivity (middle column), and the bi-tensor model with constrained axial diffusivity (right column).
Diffusivity statistics were extracted by taking an average over all voxels (blue), over the 50% least contaminated
voxels (green), and over the 10% least contaminated voxels (red). The shaded areas represent two standard
errors around the mean values; the grey dashed lines represent the simulated ground truth.

Figure 3.6: Impact of CSF contamination on fiber bundle configurations with varying diameters and FA. Dif-
fusion properties from single fiber bundle configurations with different FA and different diameters were es-
timated with the single-tensor model (left column), the bi-tensor model with constrained mean diffusivity
(middle column), and the bi-tensor model with constrained axial diffusivity (right column). Diffusivity statis-
tics were computed by taking an average over the 10% least contaminated voxels (top row), or over the 50%
least contaminated voxels (bottom row). The shaded areas represent two standard errors around the mean
values; the colored dashed lines represent the simulated ground truth.
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as function of the mean are presented in figure 3.7. Diffusion statistics computed from
the 10% highest FAST voxels are displayed in red, diffusion statistics computed from the
50% highest FAST voxels are displayed in blue. The coefficients of repeatability (CR), de-
fined as the 1.96 times the standard deviation of the differences between the two mea-
surements are also reported in figure 3.7. For all diffusion statistics the coefficient of
repeatability (CR) is smallest when the 50% highest FAST voxels are used, but including
more contaminated voxels also decreases the mean FAST and increases MDST, while f MD

and f AxD both decrease.

3.3.4. AGEING STUDY

Figure 3.8 shows scatter plots of the estimated FAST, MDST, FAMD,Glob, FAMD, FAAxD,
f MD,Glob, f MD and f AxD in the body of the fornix versus age. Linear regression lines
with age were computed for all diffusion statistics. Red points and regression lines rep-
resent statistics computed from the 10% highest FAST voxels, blue points and regression
lines represent statistics computed from the 50% highest FAST voxels. The regression-
coefficients of these lines and their p-values are reported in table 3.1. All regression co-
efficients are significantly different from zero, both for the statistics computed from the
10% and 50% highest FAST voxels.

Observe that diffusion statistics FAST, FAMD and FAAxD all decrease with age, whereas
FAMD,Glob increases with age (with a very small slope). Furthermore, MDST increases
with age and the tissue fractions f MD,Glob, f MD and f AxD all decrease with age. For con-
ventional diffusion statistics (i.e. FAST and MDST) and bi-tensor tissue fractions f MD,Glob,
f MD and f AxD, a clear difference can be observed between the statistics computed from
the 10% and 50% highest FAST voxels. A paired sample t-test confirmed these differences
were all significant with p-values smaller than 1·10−10. The diffusion statistics FAMD,Glob,
FAMD and FAAxD provide similar values in the 10% and 50% highest FAST voxels.

The MD and the AxD of the splenium of the corpus callosum were used as constraints
in the bi-tensor model. Scatter plots of MD and AxD in the splenium versus age have
been visualized in figure 3.9. For both statistics the linear regression line with age in-
creases significantly. To investigate whether this increase explains the observed changes
in the fornix, we included the MD of the splenium as a covariate in our regression analy-
sis of FAMD and f MD with age. In a similar fashion the AxD of the splenium was included
in our regression analysis of FAAxD and f AxD with age. The results are reported in table
3.1. Here it can be seen that after correction the bi-tensor tissue fractions f MD and f AxD

still decrease significantly with age. However, both FAMD and FAAxD no longer correlate
significantly with age, except for FAMD that increases with age when computed from the
50% highest FAST voxels (although the slope is rather small).

3.4. DISCUSSION

W E have presented and evaluated a framework that can be used to compute CSF
contamination-invariant statistics in the body of the fornix from conventionally

acquired DWIs.
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Figure 3.7: Bland-Altman plots show the repeatability of estimating the mean FAST, MDST, FAMD,Glob, FAMD,
FAAxD, and tissue fractions f MD,Glob, f MD and f AxD from the 10% highest (in red) or the 50% highest (in blue)
FAST voxels in the fornix. The diffusivity statistics were estimated from baseline and follow-up scans in twenty
subjects of the Rotterdam Study for whom rescan data was available.

Figure 3.8: Scatter plots of diffusion statistics FAST, MDST, FAMD,Glob, FAMD, FAAxD, f MD,Glob, f MD and f AxD
versus age for 577 subjects of the Rotterdam Study. Statistics computed from the 10% highest FAST voxels in the
fornix are shown in red, from the 50% highest FAST voxels in blue. Linear regression lines with age are shown
in each plot.
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Table 3.1: Regression coefficients for diffusion statistics from figure 3.8. Column βage (10%) shows the regres-
sion coefficients of statistics computed from the 10% highest FAST voxels in the fornix, column βage (50%) of
the 50% highest FAST voxels in the fornix. In rows FAMD

∗ and f MD
∗ the regression coefficients were calculated

including the used MD-constraint (i.e. MDSplenium) as a covariate. In rows FAAxD
∗ and f AxD

∗ the regression
coefficients were calculated including the used AxD-constraint (i.e. AxDSplenium) as a covariate. The unit of

β is in year−1, except for MDST, which is in mm2s−1year−1. Regression coefficients with a p-value<0.05 are
denoted in bold.

Variables βage (10%) p-value βage (50%) p-value

FAST −3.6 ·10−3 1.3 ·10−7 −2.7 ·10−3 1.3 ·10−7

MDST 9.6 ·10−6 4.1 ·10−8 9.0 ·10−6 1.2 ·10−10

FAMD,Glob 1.1 ·10−3 4.6 ·10−2 1.3 ·10−3 2.1 ·10−3

f MD,Glob −7.7 ·10−3 5.4 ·10−8 −6.0 ·10−3 1.5 ·10−10

FAMD −1.8 ·10−3 3.9 ·10−3 −1.5 ·10−3 2.8 ·10−3

FAAxD −2.4 ·10−3 1.7 ·10−2 −1.9 ·10−3 6.0 ·10−3

f MD −3.9 ·10−3 2.9 ·10−3 −3.1 ·10−3 3.0 ·10−4

f AxD −3.3 ·10−3 3.3 ·10−2 −2.7 ·10−3 5.3 ·10−3

FAMD
∗ 7.3 ·10−4 2.2 ·10−1 9.0 ·10−4 4.6 ·10−2

FAAxD
∗ 5.2 ·10−4 6.0 ·10−1 4.1 ·10−4 5.6 ·10−1

f MD
∗ −3.9 ·10−3 5.6 ·10−3 −3.1 ·10−3 6.4 ·10−4

f AxD
∗ −3.8 ·10−3 2.0 ·10−2 −3.0 ·10−3 3.4 ·10−3

Figure 3.9: Scatter plots of diffusion statistics of the median FAST (left) and MDST (right) versus age in the
splenium of the corpus callosum. Linear regression lines with age are also shown. All regression lines are
significant.
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3.4.1. DEPENDENCE ON MACROSTRUCTURAL PROPERTIES

The simulation results showed that conventional, single-tensor, DTI metrics such as
FAST and MDST become increasingly biased with decreasing fiber diameter. This con-
firms prior work that investigated the influence of partial volume effects on DTI metrics
[5]. Our simulation experiment also demonstrated that excluding the most contami-
nated voxels from the fiber bundle segmentations was only partially effective in remov-
ing CSF contamination. In fiber bundles with diameters larger than approximately three
times the voxel size, CSF contamination could be removed by restricting the analysis
to the 10% least contaminated voxels. Segmentations of smaller fiber bundles exist (al-
most) exclusively of boundary voxels, for which the employed heuristic of analyzing the
10% least contaminated voxels was less effective. Essentially, this demonstrates that the
conventional FA measurements on the fornix in elderly subjects (having a diameter of
approximately 4 mm) can be particularly affected by CSF contamination when imaged
with a slice thickness or in-plane resolution larger than 3 mm.

The mean FAMD and FAAxD were independent of the fiber diameter even for very
small fiber diameters. However, for small fiber diameters (i.e. smaller than 6 mm) the
variance in the estimated FAMD and FAAxD increased a bit due to a smaller region-of-
interest over which these statistics are computed, and (on average) a smaller fraction of
the signal that originates from the tissue compartment in each voxel.

The macrostructural dependence of diffusion statistics was further evaluated on the
aging study data by comparing the diffusion statistics computed from respectively the
10% and 50% highest FAST voxels. For conventional diffusion statistics such as FAST and
MDST, clear and highly significant differences were observed between the means from
the 10% and 50% highest FAST voxels. Diffusion statistics FAMD and FAAxD appeared rel-
atively robust to the choice of using the 10% or 50% highest FAST voxels, suggesting these
statistics are CSF contamination-invariant.

3.4.2. AGEING

Conventional diffusion statistics FAST and MDST decreased and increased, respectively,
with age. This may reflect changes in the fornix microstructure, but may also reflect
fornix atrophy that yields increased levels of CSF contamination. The bi-tensor statistics
FAMD and FAAxD both decreased significantly with age, suggesting changes in the fornix
microstructure. However, the negative correlation of FAMD and FAAxD with age disap-
peared when the applied subject-specific constraints were added as a covariate in the
regression analysis. This may suggest that the microstructural change in the body of the
fornix is not significantly different from the microstructural change in the splenium of
the corpus callosum.

The bi-tensor tissue fractions f MD and f AxD decreased significantly with age, even
after adding the applied subject-specific constraints as a covariate in the regression anal-
ysis. This may suggest that there is a change in the fornix that appears as if tissue is being
replaced by water. This could be due to fornix atrophy but could also reflect a higher de-
gree of extra-cellular water in the fornix microstructure (see below).
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3.4.3. SUBJECT-SPECIFIC CONSTRAINTS VERSUS A GLOBAL CONSTRAINT

The use of subject-specific constraints has advantages and disadvantages compared to
the use of a global constraint. By computing subject-specific constraints from (noisy)
splenium data, additional uncertainty may be added to the estimated bi-tensor param-
eters compared to a global constraint. However, the results of the reproducibility study
showed that the reproducibility of FAMD,Glob and FAMD is very similar, which suggests
this effect is not large. An advantage of subject-specific constraints is that computing
the constraints from the same subject may yield an increased accuracy of the estimated
bi-tensor parameters. Particularly in a study population with large variations (e.g. due to
a wide age range), the use of a global constraint may not be appropriate for every subject.
This may result in a decreased accuracy compared to using subject-specific constraints.

3.4.4. LIMITATIONS

Inherent limitations of our work are in the constraints that have to be imposed to make
estimation with the bi-tensor well-posed in the fornix. Besides bias and variance due to
noise on the data, also potential differences in the tissue microstructure of the splenium
and fornix (e.g. different degrees of extracellular water) may make the imposed con-
straints less appropriate. The effect of using inappropriate constraints was evaluated in
simulated fiber bundles. The results showed that when these constraints are violated, a
slight bias may be introduced into the estimation of FAMD and FAAxD. However, for real-
istic in-vivo differences between ground truth and constrained value these biases were
small (in the order of 5%). Still, these effects may add scatter to the final data, thereby
decreasing the statistical power of the proposed framework with respect to single-tensor
data.

One type of microstructural change that may not be reflected in the FA of a bi-tensor
model is an increase in extracellular, intra-tract water content. The CSF-compartment
in the bi-tensor model is a free-water compartment. Simultaneously, in loosely packed
white matter bundles, extracellular water in the microstructure could be assumed to
have diffusivity properties close to those of free-water. Under this assumption any in-
crease in extracellular water gives rise to a decrease in the tissue fraction, while leaving
the diffusivities of the tissue diffusion tensor unchanged. As a consequence, the tissue
fractions in the bi-tensor model are not CSF-contamination invariant: it may model the
amount of CSF contamination as well as the amount of extracellular water. Thus, the
interpretation of changes in this parameter is not trivial as it may be driven by both
macrostructural and microstructural changes. To further distinguish between these dif-
ferent kinds of microstructural change an acquisition protocol with multiple b-values is
required. However, such imaging was not performed for our study data.

3.5. CONCLUSION

O UR research showed how conventional (single non-zero b-value) DW-MRI datasets
can be analyzed with an MD-constrained or AxD-constrained bi-tensor model. In

simulations the mean FA estimated by these constrained bi-tensors models did not de-
pend on macrostructural properties, which suggests that our diffusion statistics are in-
deed CSF contamination-invariant. Diffusion parameters such as the bi-tensor tissue



3

48 REFERENCES

fractions or the single tensor FA or MD were not CSF contamination-invariant. The
bias in these diffusion statistics did not only depend on macrostructural properties such
as the diameter of a white matter structure, but also on whether the 10% or 50% least
contaminated voxels in a segmentation were used. Results from the ageing study sug-
gest the occurrence of microstructural change in the body of the fornix with age. How-
ever, this change is not significantly different from the microstructural change occurring
in the splenium of the corpus callosum. In conclusion, the distinction of an isotropic
and an anisotropic diffusion compartment can allow a more sophisticated analysis in
future studies of the fornix, particularly to discriminate between microstructural and
macrostructural changes.
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4
ORIENTATION PRIOR AND

CONSISTENT MODEL SELECTION

INCREASE SENSITIVITY OF

TRACT-BASED SPATIAL STATISTICS

IN CROSSING-FIBER REGIONS

The goal of this chapter is to increase the statistical power of crossing-fiber statistics in
voxelwise analyses of diffusion-weighted magnetic resonance imaging (DW-MRI) data. In
the proposed framework a fiber orientation atlas and a model complexity atlas were used
to fit the ball-and-sticks model to diffusion-weighted images of subjects in a prospective
population-based cohort study. Reproducibility and sensitivity of the partial volume frac-
tions in the ball-and-sticks model were analyzed using TBSS (tract-based spatial statis-
tics), and were compared to a reference framework. The reproducibility was investigated
on two scans of 30 subjects acquired with an interval of approximately three weeks by
studying the intraclass correlation coefficient (ICC). The sensitivity to true biological ef-
fects was evaluated by studying the regression with age on 500 subjects between 65 and 90
years old. Compared to the reference framework, the ICC improved significantly when us-
ing the proposed framework. Higher t-statistics indicated that regression coefficients with
age could be determined more precisely with the proposed framework, and more voxels
correlated significantly with age. The application of a fiber orientation atlas and a model
complexity atlas can significantly improve the reproducibility and sensitivity of crossing-
fiber statistics in TBSS.

G.A.M. Arkesteijn, D.H.J. Poot, M.A. Ikram, W.J. Niessen, L.J. van Vliet, M.W. Vernooij, and F.M. Vos, submitted
to IEEE Transactions on Medical Imaging.
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4.1. INTRODUCTION

D IFFUSION-WEIGHTED magnetic resonance imaging (DW-MRI) is a non-invasive
imaging technique in which image contrast is determined by the (hindered)

molecular diffusion of water [1]. It is frequently used to assess the brain’s white matter
integrity, because it provides insight into the microstructural organization of neural
fibers [2]. A popular application is diffusion tensor imaging (DTI), in which the water
diffusion is modeled by a single Gaussian diffusion profile [3]. From the diffusion tensor,
quantitative DTI metrics such as the fractional anisotropy (FA) and mean diffusivity
(MD) can be derived. These DTI metrics are often used as an imaging biomarker for
white matter tract integrity, to study for example neurodegenerative diseases or brain
ageing [4, 5].

It is well known that the assumption of a single diffusion tensor model to represent
the underlying diffusion within the volume of a single voxel is not always valid, e.g. in
voxels with more than one coherently orientated fiber population [6, 7]. In such voxels,
the analysis of conventional DTI metrics has undesirable effects: spurious changes may
be detected in the radial and axial diffusivity [8], FA may lack sensitivity to detect changes
in the white matter microstructure [9], and FA may seem to be paradoxically increased
merely due to selective degeneration of a fiber population [10].

Several alternative models have been proposed to provide a more adequate descrip-
tion of the diffusion in fiber crossings, e.g. the ball-and-sticks model [11], multi-tensor
models [7, 12], or CHARMED [13]. These models describe the diffusion signal in
crossing-fiber configurations by modeling each fiber population independently, and
enable fiber population-specific characterization and comparison of the underlying
microstructure. However, these models typically require more extensive DW-MRI
protocols, making the image acquisition lengthy. Furthermore, sophisticated routines
are needed to determine the appropriate number of fiber populations by using either
explicit [14] or implicit model selection [11].

Researchers frequently use voxelwise analyses of DW-MRI data to localize changes in
diffusion parameters in group studies. A popular framework for such an analysis is TBSS
(tract-based spatial statistics) [15], which applies an FA-driven registration to establish
spatial correspondence of all subjects in a common space. Subsequently, individual FA
features are projected on a mean ‘tract’ skeleton for subsequent statistical analysis. How-
ever, applying this approach to evaluate statistics in fiber-crossings is not straightfor-
ward. In that case, not only the spatial coordinates but also the fiber population-specific
metrics need to correspond across subjects for a meaningful analysis.

Recently, a framework was proposed to analyze crossing-fiber statistics in TBSS us-
ing a front-evolution algorithm to label the fiber populations based on their estimated
orientations [16]. However, the fiber orientation-based labeling problem does not nec-
essarily have a trivial solution in every voxel. Especially for conventional DW-MRI data
(single non-zero b-value), the estimated fiber orientations and model selection routines
can be imprecise. In effect, inconsistent metrics may be obtained from fiber popula-
tions across subjects, which in turn may cause crossing-fiber statistics to loose statistical
power. This may explain why crossing-fiber statistics were less sensitive to ageing-effects
than conventional metrics from a single diffusion tensor in [16].

The goal of this chapter is to introduce a framework that strengthens the statistical
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power of crossing-fiber statistics in voxelwise analyses of conventional DW-MRI data.
This is achieved by reducing fluctuations in the orientations of the estimated fiber popu-
lations and preventing inconsistencies in the number of fiber populations, through two
additions to the fitting procedure of a crossing-fibers model. The first addition is the
introduction of an ‘orientation prior’ into the estimation of the model parameters. This
prior promotes correspondence of estimated fiber orientations across different subjects.
The second addition is a ‘consistent model selection’, obtained by determining the num-
ber of fiber populations in a common space instead of independently in each subject.

We evaluate the impact of this new approach on the reproducibility and sensitivity of
crossing-fiber statistics. More specifically, the reproducibility is evaluated on two scans
of 30 subjects, acquired with an interval of approximately three weeks. Furthermore, the
sensitivity to detect ageing effects is investigated in a group of 500 community-dwelling
subjects aged 65 to 90 years. In this work we restrict our investigation to the analysis
of partial volume fractions (PVFs) in the well-known ball-and-sticks model using TBSS,
but the proposed changes are straightforward and easy to generalize to other generative
crossing-fiber models and different frameworks for voxelwise analyses. The proposed
framework is compared to standard approaches based on the conventional, single tensor
representation and another approach relying on the ball-and-sticks model.

4.2. METHODS

4.2.1. OVERVIEW OF THE PROPOSED FRAMEWORK

An overview of the proposed framework is provided in figure 4.1. Two versions of the
ball-and-sticks model were fitted to the diffusion-weighted images (DWIs). The first with
one stick compartment and the second with two stick compartments. The ball-and-
two-sticks model was regularized using a fiber orientation atlas to enhance the precision
of the fit. Next, an adjusted TBSS pipeline was used to transform and skeletonize the
estimated PVFs into a common space. In the common space the different skeletonized
datasets were merged according to a model complexity atlas: in two-fiber skeleton voxels
the PVFs originate from the ball-and-two-sticks diffusion model, whereas in single fiber
voxels the first PVF originated from the ball-and-one stick model and the second PVF
was set to zero. As such, consistent model selection was enforced across the subjects of
the study population.

4.2.2. STUDY POPULATION

The proposed framework was evaluated using a subset of brain imaging data from the
Rotterdam Study, a prospective population-based cohort study among middle aged and
elderly subjects in a district of the city of Rotterdam, the Netherlands [17]. The Rotter-
dam Study has been approved by the medical ethics committee according to the Popu-
lation Study Act Rotterdam Study, executed by the Ministry of Health, Welfare and Sports
of the Netherlands. Written informed consent was obtained from all participants. The
reproducibility of extracting crossing-fiber diffusion parameters was evaluated from two
scans of 30 subjects, acquired on the same scanner with an average time interval of 19.5
days (SD 10). We will refer to this dataset as the reproducibility dataset. The subjects in
this dataset were on average 76.7 (SD 4.8) years old, 50% was female. Further evaluation
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Figure 4.1: Overview of the proposed framework. Two diffusion models, i.e. a ball-and-one-stick and a ball-
and-two-sticks model, are fitted to diffusion-weighted images (DWIs) per subject. An orientation prior, warped
from the common space to subject space, is used to initialize the fit of the ball-and-two-sticks model and also
acts as an orientation prior during fitting. The estimated partial volume fractions (PVFs) are warped and skele-
tonized using an adjusted TBSS pipeline. In the common space, the different skeletonized datasets are merged
according to a complexity atlas, such that two skeletonized datasets remain. In single-fiber and crossing-fiber
voxels (according to the model complexity atlas) the two skeletonized datasets contain PVFs from a ball-and-
one-stick and a ball-and-two-sticks model respectively.

of the framework was performed on a group of 500 subjects from the Rotterdam Study,
sampled from the entire population such that their ages were uniformly distributed be-
tween 65 and 90 years old. We will refer to this data as the ageing dataset. The mean
age in this group was 77.3 (SD 7.0) years old, 45% was female. All subjects were free of
dementia at the time of the MRI scans.

4.2.3. DATA ACQUISITION

All subjects were scanned on a 1.5 Tesla MRI scanner (GE Signa Excite) using an
8-channel head coil. No major hardware or software updates were performed on the
scanner throughout the study [18]. DWIs were acquired with a single shot, diffusion-
weighted spin echo echo-planar imaging sequence using a repetition time TR = 8575
ms, an echo time TE = 82.6 ms, a field of view FOV = 210x210 mm2, an imaging matrix =
96x64 (zero-padded to 256x256), 35 contiguous slices with a thickness of 3.5 mm, and
(hence) a native voxel size of 2.2 mm x 3.3 mm x 3.5 mm. DWIs were acquired in 25
non-collinear directions with a maximum b-value of 1000 s/mm2. Three volumes were
acquired without diffusion weighting (the b0-volumes) [18].

4.2.4. DWI PREPROCESSING

The acquired DWIs were corrected for motion and eddy current distortion by affine
coregistration to the second acquired b0-volume with Elastix [19]. The DWIs were
resampled to (2.5 mm)3 cubic resolution while the affine transformations were applied.
After coregistration to the reference b0-volume, the gradient directions were reoriented
according to the rotation component of the transformation [20].
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4.2.5. BALL-AND-STICKS MODEL
In the ball-and-sticks model [11], the diffusion-weighted signal Sθ is modeled according
to:

Sθ,i = S0

((
1−

N∑
j=1

f j

)
exp

(
−bi d

)
+

N∑
j=1

f j exp
(
−bi d

(
V j ·gi

)2
))

, (4.1)

where bi is the diffusion-weighting parameter, gi is a unit vector that specifies the direc-
tion of the diffusion-encoding gradient pulses, S0 is the non-diffusion-weighted signal,
N is the number of stick compartments (0, 1 or 2 in this chapter), d is a diffusivity pa-
rameter, f j is the partial volume fraction (PVFs) and V j the principal eigenvector of the
j th stick compartment. As in [11], the eigenvectors V j are parameterized using spherical
coordinates ψ j and φ j .

4.2.6. AUTOMATIC RELEVANCE DETECTION
The fiber orientation atlas and model complexity atlas were constructed based on auto-
matic relevance determination (ARD). Prior work has used ARD to estimate the unknown
parameters in the ball-and-sticks model [11]. In the ARD framework (available through
the function bedpostx as part of FSL [11]), a Bayesian approach is applied to fit a ball-
and-sticks model with two stick compartments in every voxel. We will refer to the stick
associated with the largest volume fraction as the primary fiber population; the stick
with the smallest volume fraction will be called the secondary fiber population. Overfit-
ting is avoided by using a shrinkage prior that automatically reduces the volume fraction
of the secondary fiber population to zero when it is not supported by the data.

4.2.7. CONSTRUCTION OF THE FIBER ORIENTATION ATLAS
To construct the orientation atlas, first the diffusion tensor parameters were esti-
mated in all 500 subjects using the fit_MRI toolbox by maximum likelihood estimation
[21] assuming Rician distributed data. Additionally, the ball-and-two-stick param-
eters were estimated through ARD. DTI-TK was used to align the diffusion tensor
images to a population-specific common space using the full diffusion tensor in-
formation [22]. Subsequently, the functions deformationScalar3DVolume and
deformationSymTensor3DVolume in DTI-TK were used to warp the PVFs and the
corresponding stick orientations from ARD to this same common space. In the common
space fiber populations with PVFs smaller than 0.05 were discarded [11], such that
voxels could contain zero, one or two fiber populations.

To compute the fiber orientation atlas, in each voxel the remaining primary and sec-
ondary fiber orientations (i.e. with PVFs above 0.05) were clustered into two groups
from which the average orientations were computed. The clustering was achieved us-
ing an adapted K -means clustering routine (K = 2), that effectively minimizes this sum
of squared angular errors (reckoning with 180◦ symmetry):

J =
2∑

k=1

∑
i∈Ck

arccos
(
abs

(
Vi ·Vk,mean

))2
, (4.2)

where Ck is the kth cluster, Vi the i th fiber orientation in Ck , and Vk,mean the average
fiber orientation of all fiber orientations in Ck . Specifically, the K -means clustering rou-
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tine was initialized by assigning all largest stick compartments to the first cluster and all
smallest stick compartments to the second cluster. Next, in the update step, the mean
orientation of each cluster was obtained by first computing the scatter matrices Sk (the
sum of dyadic products of the fiber orientations) [23]:

Sk = ∑
i∈Cl

Vi ·VT
i . (4.3)

Subsequently, the average fiber orientation Vk,mean was computed as the principal
eigenvector of the matrix Sk , i.e. the eigenvector corresponding to the largest eigenvalue.
In the assignment step each fiber orientation was assigned to the ‘nearest’ cluster mean
in terms of angle (reckoning with 180◦ symmetry). The update and assignment step were
iterated until no fibers changed cluster.

4.2.8. CONSTRUCTION OF THE COMPLEXITY ATLAS

In the common space the FA images, derived from the spatially-normalized diffusion
tensor images, were averaged after which a skeleton was generated with the function
tbss_skeleton (in FSL). The mean FA skeleton was thresholded at 0.2 merely to exclude
voxels with large inter-subject variability and/or partial volume effects with grey matter
or cerebrospinal fluid. Subsequently, the warped PVF volumes (see the previous section)
were ‘skeletonized’ by only retaining the voxels overlapping with the mean FA skeleton
mask. Note that for establishing correspondence, DTI-TK performs a high dimensional
registration, similar to previous work [24] instead of a ‘maximum skeleton projection’
step of a standard TBSS analysis [15]. At the end of the procedure, each skeleton voxel
may contain zero, one or two fiber populations. The model complexity atlas was defined
as the average number of fiber populations in each FA skeleton voxel.

4.2.9. MODEL ESTIMATION

The ball-and-one-stick model in the proposed framework was fit by maximum likeli-
hood estimation as in [21]; not using any prior knowledge on the stick’s orientation. The
ball-and-two-sticks model was fit using the fiber orientation atlas in two ways: (1) the at-
las orientation was used to initialize the non-linear fit, and (2) a Gaussian-shaped prior
p(θ) was applied to regularize the fitting of the model:

p(θ) = exp

(
− ε2

1

2σ2
θ

)
exp

(
− ε2

2

2σ2
θ

)
, (4.4)

where ε1 and ε2 represent the angles between the principal eigenvector of both sticks and
their corresponding atlas orientations (reckoning with 180◦ symmetry), and σθ denotes
the width of the Gaussian-shaped orientation prior. The estimate of θ is given by:

θ̂ = argmax
θ

log
(
p(S|θ)p(θ)

)
(4.5)

which was implemented using the fit_MRI toolbox [21].
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4.2.10. PROPOSED TBSS ANALYSIS

The PVFs of the ball-and-one-stick as well as the ball-and-two-sticks model parameters
were warped to the common space using the computed DTI-TK transformations (see
above). Subsequently, the two parameter sets were ‘skeletonized’ by retaining the voxels
coinciding with the FA skeleton mask. Trilinear interpolation was used in warping the
images to the common space. This was possible because the PVFs in the ball-and-two-
sticks model are implicitly sorted in subject space by means of the orientation prior.
Finally, the skeletonized datasets from the two models were merged according to the
model complexity atlas: the two-fiber voxels (according to the model complexity atlas) of
the skeleton received the primary and secondary PVFs from a two-stick diffusion model;
the single fiber skeleton voxels obtained the primary PVF from the one-stick diffusion
model and the secondary PVF was set to zero.

To facilitate comparison with the second reference pipeline (see below), we also
evaluated the effect of using nearest-neighbour interpolation (instead of trilinear
interpolation) to transform the PVFs to the common space. For this purpose two
adapted versions of the proposed framework were considered, either simply using
nearest-neighbour interpolation to warp the PVFs or using 3D Gaussian smoothing
prior to using nearest-neighbour interpolation to warp the PVFs. The standard deviation
of the 3D Gaussian smoothing kernel was set to 0.487 voxels, such that it approximately
matched the smoothing effect of trilinear interpolation.

4.2.11. REFERENCE FRAMEWORKS

The first reference framework essentially performed a modified TBSS analysis of con-
ventional diffusion tensor images. In the common space FA images, computed from the
spatially-normalized diffusion tensor images, were ‘skeletonized’ by only retaining the
voxels coinciding with the mean FA skeleton mask. As such, we (again) did not use the
‘maximum skeleton projection’ step of the standard TBSS analysis [15]. This is relevant
because the projection may favor single fiber voxels since these tend to have a higher FA
than crossing-fiber voxels. Subsequently, FA statistics were evaluated for each skeleton
voxel as in the conventional TBSS analysis.

The second reference framework relied on the primary and secondary PVFs from the
ARD modeling. The FSL routine tbss_x [16] was used to warp these PVFs and their
corresponding stick orientations to the common space, ‘skeletonize’ the transformed
volumes, and subsequently sort the primary and secondary PVFs based on their corre-
sponding orientations. The routine tbss_x was adjusted to make it compatible with the
DTI-TK transformations. Instead of the FSL routines applywarp and vecreg, DTI-TK
functions deformationScalar3DVolume and deformationSymTensor3DVolume were
applied, respectively. In subject space, the PVFs are still unsorted and may correspond
to different fiber populations in adjacent voxels. To prevent interpolation of the PVFs of
different fiber populations, similar to the original tbss_x routine, nearest neighbor in-
terpolation was used to warp the PVFs to the common space. Furthermore, just as above
the warped image volumes were ‘skeletonized’ by only retaining the voxels overlapping
with the mean FA skeleton mask. Finally the skeletonized primary and secondary PVFs
were analyzed.
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4.2.12. STATISTICAL ANALYSIS OF THE REPRODUCIBILITY

To assess the reproducibility of the proposed framework and the reference frameworks,
the intraclass correlation coefficient (ICC) was computed from 30 subjects who were
scanned twice. Both the proposed framework and the reference frameworks were used
to estimate, warp, and skeletonize the model parameters from both scans in the com-
mon space. In the proposed framework both nearest-neighbor and trilinear interpola-
tion were used for transforming the PVFs, and the width (spread) of the orientation prior
σθ was varied between 1 and 90 degrees. The orientation prior may reduce inter-subject
variability while improving consistency and precision (here seen as intra-subject vari-
ability). Hence, the intraclass correlation coefficient (ICC), which balances both, was
computed from 30 subjects who were scanned twice. To compute the ICC for both the
primary and secondary PVFs in each skeleton voxel, a one-way random effects model
was used [25].

4.2.13. STATISTICAL ANALYSIS OF AGEING

The proposed and reference frameworks were applied to a group of 500 subjects from the
population-based Rotterdam Study [17] to study changes in diffusion measures with ag-
ing in crossing-fiber regions and to study the effect of using the proposed methodology
for this study. The relevant diffusion statistics were analyzed using a conventional linear
model analysis using age as the only covariate. Voxelwise statistics in TBSS were carried
out using a permutation-based inference tool for nonparametric statistical thresholding
(randomise, part of FSL). The number of permutations was set to 5000. The significance
threshold was set at p<0.05 (employing Familywise Error Rate (FWE) correction for mul-
tiple comparisons) using the threshold-free cluster enhancement (TFCE) option in the
randomise permutation-testing tool in FSL. The same statistical analysis of ageing was
also applied to a random subset of 100 subjects to assess the performance when fewer
data is available.

4.3. RESULTS

4.3.1. FIBER ORIENTATION ATLAS AND MODEL COMPLEXITY ATLAS

The fiber orientation atlas, constructed from 500 subjects, is visualized in figure 4.2. The
first row shows the orientations of the average primary fiber population. The second row
in figure 4.2 visualizes the orientation of the average secondary fiber population when
present in more than 50% of the population. It can be observed that the estimated av-
erage primary and secondary fiber orientations are approximately left-right symmetric,
relatively smooth, and appear anatomically plausible.

The model complexity atlas, constructed from 500 subjects, is visualized in figure
4.3. For visualization purposes, the average number of fiber populations is binned into
four categories, such that regions in red, light-red, light-blue and blue reflect regions
with a decreasing prevalence of crossing-fibers respectively. To obtain a discrete model
complexity atlas, the average number of fiber populations was thresholded at 1.5. The
blue and light-blue areas in figure 4.3 are thus regarded as single-fiber areas whereas
the red and light-red regions in figure 4.3 are regarded as crossing-fiber areas. Indeed,
white matter structures known to contain a single fiber population, e.g. the corpus cal-
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losum, correspond with single-fiber areas in the complexity atlas. Furthermore, the
crossing-fiber voxels form clusters that are approximately left-right symmetrical. In our
model complexity atlas, approximately 67 percent of the white matter skeleton consists
of crossing-fiber voxels.

Figure 4.2: Mean fiber orientations of the primary fiber tract (top row) and secondary fiber tract, if present
(bottom row). The fiber orientations modulate the background FA image, such that red corresponds with left-
right, green with posterior-anterior and blue with inferior-superior.

Figure 4.3: The average number of fiber populations per voxel in the common space. In the top row skele-
tonized data is visualized with the group-mean FA as background image. The bottom row shows the average
number of fiber populations per voxel in not-skeletonized data. Voxels with (on average) fewer than 1 fiber
tract are masked black.

4.3.2. REPRODUCIBILITY STUDY

The estimated primary and secondary fiber orientations of one subject from the repro-
ducibility dataset are visualized in figure 4.4. The red and blue cylinders represent the
stick orientations estimated from respectively the first and second scan in two regions-
of-interest (ROIs). Only stick compartments with PVFs higher than the threshold of 0.05



4

62
4. ORIENTATION PRIOR AND CONSISTENT MODEL SELECTION INCREASE SENSITIVITY OF

TRACT-BASED SPATIAL STATISTICS IN CROSSING-FIBER REGIONS

are shown. For visualization purposes the proposed method was applied to the entire
dataset (i.e. not only to the voxels on the FA skeleton). With the ARD framework (mid-
dle row of figure 4.4), the estimated stick orientations show large variation (see e.g. the
green circle in ROI1), or the number of stick compartments can be different (green circle
in ROI2). This would decrease the effectiveness of orientation-based labelling of fiber
populations used in the second reference framework. With the proposed framework
(bottom row of figure 4.4), the estimated stick orientations show less variation between
the first and second scan and the number of stick compartments corresponds exactly
(by definition).

Figure 4.4: Estimated stick orientations in two regions-of-interest (ROIs) of a subject from the reproducibility
dataset warped to the common space. The red and blue cylinders represent the stick orientations estimated
from respectively the first scan and second scan. Both automatic relevance detection (ARD) and the proposed
framework with an orientation prior (σθ=25 degrees) and consistent model selection (CMS) were used to esti-
mate the ball-and-sticks model parameters. The single tensor FA is visualized on the background for anatom-
ical reference. When using ARD, the estimated stick orientations do not always correspond (green circle in
ROI1). Furthermore, the number of stick compartments may deviate (green circle in ROI2). In the bottom
row, it can be observed that the application of prior information about the orientation and number of stick
compartments makes estimated stick orientations appear more similar across different datasets.

In figure 4.5 the ICC of the primary and secondary PVFs, obtained with the pro-
posed and second reference framework, are shown. For the primary PVFs, the ICC was
averaged over all skeleton voxels. For the secondary PVFs, the ICC was averaged over
all crossing-fiber skeleton voxels (according to the complexity atlas). For the proposed
framework, the ICC is shown for different types of interpolation and as a function of the
width of the orientation prior σθ. Compared to nearest-neighbour interpolation (blue
line), trilinear interpolation (red line) greatly improves the ICC of both the primary and
secondary PVF. Trilinear interpolation increases the ICC by improved spatial alignment,
but also the smoothing effect (inherent to trilinear interpolation) is partly responsible
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for the increased ICC (green line).

Figure 4.5: Left: average intraclass correlation coefficient (ICC) of f1 on the TBSS skeleton. Right: average ICC
of f2 in crossings-fiber regions on the TBSS skeleton. The black dashed lines denote the ICC of the reference
framework, the colored lines denote the ICC of the proposed framework using nearest-neighbour interpolation
(blue), smoothing and nearest-neighbour interpolation (green) and trilinear interpolation (red).

Figure 4.5 demonstrates that a prior width σθ of 25 degrees is a good trade-off be-
tween improving the ICC without introducing too much prior information on the fiber
orientations. Accordingly, the results in the remainder of this chapter were generated
with this prior width in combination with trilinear interpolation. In figure 4.6 the ICC
of the primary and secondary PVFs, obtained with the reference and proposed frame-
work, are shown on the skeleton. The ICC of both the primary and secondary PVFs is
significantly higher across the whole skeleton.

4.3.3. AGEING CORRELATIONS IN POPULATION DATA

The results of the statistical analysis of ageing are plotted in figure 4.7, figure 4.8 and
figure 4.9. In figure 4.7 the regression coefficients with age and the corresponding
t-statistics of both the proposed framework and the second reference framework are
shown. It can be observed that the effect size is similar, but the regression coefficients
obtained with the proposed framework appear more spatially-smooth (see red arrows).
Furthermore, the t-statistics for the regression coefficient with age are larger when the
proposed framework is used (see red arrows), indicating the regression coefficient can
be determined more precisely.

More results of the statistical analysis of ageing are plotted in figure 4.8. The first two
rows of images show skeleton voxels with significant negative correlations of the primary
and secondary PVFs with age when only 100 subjects are included in the analysis. The
bottom two rows show the results when all 500 subjects are included in the analysis.
For the analysis on 500 subjects, the PVFs obtained with the reference and proposed
frameworks showed very similar patterns with ageing, i.e. uniformly distributed over the
brain large clusters of voxels were found in which the PVFs decreased significantly with
age. Differences in the sensitivity were most apparent in the analysis on 100 subjects,
e.g. see the blue arrows in figure 4.8. In the subset of 100 subjects, the percentages of
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Figure 4.6: Intraclass correlation coefficient (ICC) of the primary partial volume fraction f1 (left) and the sec-
ondary partial volume fraction f2 (right) computed from 30 subjects for whom rescan data was available. Top
row: ICC of the reference framework applying ARD and orientation-based labeling of the PVFs. Bottom row:
the proposed framework applying an atlas orientation prior and CMS. Note that skeleton voxels with a single
fiber population have been masked black for the secondary PVFs obtained with the proposed framework.

skeleton voxels that showed significant decrease in FA with age were 30% ( f1 of reference
framework), 36% ( f1 of proposed framework), 6% ( f2 of reference framework) and 12%
( f2 of proposed framework).

In figure 4.9 correlation with age is shown for the FA generated with the first refer-
ence framework and PVFs obtained with the proposed framework in a coronal slice. FA
showed a very similar pattern with ageing as the primary PVFs, i.e. large clusters of voxels
across the white matter skeleton were found in which the FA decreased significantly with
age. In voxels containing the corticospinal tract, however, both the FA and primary PVF
did not have a significant correlation with age. However, in those voxels the secondary
PVF often did significantly decrease with age.

4.4. DISCUSSION

I N this chapter we presented a framework to improve the analysis of MR diffusion data
with a ball-and-sticks model. Two novelties were introduced. The first novelty was

the application of an atlas orientation prior to guarantee consistent labeling in crossing-
fiber regions. The second novelty was a ‘consistent model selection’, obtained by de-
termination of the number of fiber populations in a common space instead of for each
subject independently. We demonstrated that the reproducibility of measuring PVFs was
improved both in single fiber regions and crossing-fiber regions. Furthermore, a proof-
of-principle analysis of the effect of age on white matter diffusion properties showed
improved statistical power to detect age-related changes in white matter.
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Figure 4.7: The regression coefficient and its t-statistic of the primary and secondary PVFs with age. PVFs were
generated using the proposed and second reference framework. Note that skeleton voxels with a single fiber
population have been masked black for the secondary PVFs obtained with the proposed framework. In the
top two rows, the red arrows point at examples of regions where the proposed framework appears to provide
more spatially-smooth estimates of the regression coefficient. In the bottom two rows, the red arrows point at
examples of regions where the proposed framework where the t-statistic is higher.
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Figure 4.8: Significance of the correlation between the primary and secondary PVFs with age. PVFs were gen-
erated using the proposed and second reference framework. Note that skeleton voxels with a single fiber pop-
ulation have been masked black for the secondary PVF obtained with the proposed framework. The arrows
point at specific regions where the outcomes of the two frameworks differ.



4.4. DISCUSSION

4

67

Figure 4.9: Significance of the correlation between the FA, primary and secondary PVFs with age. FA was
determined by means of the first reference framework, PVFs through the proposed framework. FA and primary
PVF in skeleton voxels containing the corticospinal tract (arrows) show little correlation with age, whereas the
secondary PVF has a significant negative correlation with age in those voxels. From the visualization of the
fiber orientations it can be deduced in that region the primary fiber population reflects the corticospinal tract,
and the secondary fiber population reflects a commissural tract.

4.4.1. FIBER ORIENTATION ATLAS AND MODEL COMPLEXITY ATLAS

The fiber orientation atlas and the model complexity atlas were constructed using the
500 subjects from the Rotterdam Scan study. Alternatively, these atlases could have been
constructed from data acquired with a more advanced DW-MRI protocol, but we delib-
erately did not do this. The possibility to accurately model properties of a secondary
fiber population does not only depend on the anatomical presence of a fiber crossing,
but also on DW-MRI acquisition parameters such as the voxel size, the signal-to-noise
ratio, the number of diffusion-encoding gradient directions and the used b-values [11].
As a result, the constructed atlases should not only reflect the brain anatomy in our sub-
ject group, but also the DW-MRI protocol used in the acquisition. Therefore, ideally, the
model complexity and fiber orientation atlas are constructed from a representative pop-
ulation using a similar DW-MRI protocol as the study population.

The construction of the fiber orientation atlas and model complexity atlas were both
based on the ARD framework. This facilitated a comparison with the second reference
framework [16] that also relies on the ARD framework for the estimation of fiber orien-
tations and (implicit) model selection on a per-subject basis.

The discrete model complexity atlas was obtained by thresholding the average num-
ber of fiber population per voxel. The threshold value should balance between over-
fitting (i.e. using too many stick compartments that are not supported by the data) and
under-fitting (i.e. using too few stick compartments that cannot describe the data ad-
equately). In this chapter a threshold value of 1.5 was used to choose between fitting
a ball-and-one stick model and ball-and-two sticks model. Although the choice for 1.5
was somewhat arbitrary and may be further optimized, it could still show that consistent
model selection can improve the sensitivity of crossing-fiber statistics.

4.4.2. REPRODUCIBILITY STUDY

The first novelty, the application of an orientation prior, promoted a more consistent
labelling of the fiber populations. In the proposed framework the labeling effectively
takes place during estimation in subject space, such that the PVFs can be interpolated
when transformed to the common space. Both the application of an orientation prior
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and the use of (trilinear) interpolation were shown to result in an improved ICC.
The second novelty, the determination of the number of fiber populations in a com-

mon space, was also shown to improve the ICC, particularly for measuring the secondary
PVFs. This improvement might be explained by the sensitivity of ARD (or model selec-
tion in general) to noise. Since the noise realization in the first and second scan is dif-
ferent, this could result in a different (effective) number of anisotropic compartments
in the diffusion model, especially in configurations with unbalanced volume fractions
or a small angular divergence between the two fiber populations. Analyzing the ‘same’
voxel with a different number of anisotropic compartments in the diffusion model would
increase the apparent variation in the estimated parameters. Effectively, it behaves as
noise that is added onto the PVFs, which is avoided in the proposed framework by im-
posing a consistent model selection.

4.4.3. SENSITIVITY

A skeleton-based linear regression analysis between age and the relevant diffusion pa-
rameters was performed, primarily to gain insight into the sensitivity (reflected by higher
t-statistics) of the framework. The proposed framework using both an orientation prior
and consistent model selection appeared to be more sensitive compared to the second
reference framework using ARD and orientation-based labeling of fiber populations in
the common space. Particularly when using a smaller subset of 100 subjects, the num-
ber of voxels that correlated significantly with age was higher when using the proposed
framework. An increased sensitivity will facilitate the detection of smaller effects, or en-
able the use of smaller populations while retaining similar levels of statistical signifi-
cance.

4.4.4. AGEING

Besides gaining insight into the sensitivity of the different frameworks, the ageing study
demonstrated the added value of analyzing the PVFs of ball-and-sticks models over sin-
gle tensor FA. In large clusters throughout the brain it was found that FA as well as the
primary PVFs in the ball-and-sticks model decreased linearly with age. This behavior of
FA and PVFs is in agreement with prior work, where it was reported that FA and primary
PVFs are highly correlated [16]. Even though the pattern with ageing appeared similar,
it should be noted that analyses with FA and with primary PVFs are conceptually differ-
ent. The FA is a scalar measurement and is not specific to a particular fiber population
in a voxel, whereas the primary PVF is an orientation-dependent measurement of the
primary fiber population in a voxel. This enables a population-specific analysis of the
brain, or the testing of tract-specific hypotheses.

The most prominent difference between analyzing FA and PVFs was demonstrated in
crossing fiber areas. We found that the FA in the corticospinal tract did not correlate sig-
nificantly with age. Previous studies also reported insignificant correlations between FA
and age in the corticospinal tract [26], or even reported that the FA in parts of the corti-
cospinal tract paradoxically increased with age in elderly subjects [27]. Our model com-
plexity atlas and fiber orientation atlas demonstrates that the corticospinal tract crosses
(or is in close proximity to) many commissural and association tracts. Analysis with ball-
and-sticks models revealed that the primary PVFs, with an orientation aligned to the
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corticospinal tract, did not correlate significantly with age. However, the secondary PVF,
aligned with various commissural and association tracts, was found to decrease signif-
icantly with age. Such a selective degeneration of the secondary fiber tract may indeed
result in an estimated increase in FA, and may explain the increase in FA with age ob-
served in the corticospinal tract [27]. This underlines the importance of using improved
methods to analyze crossing fiber areas.

4.4.5. LIMITATIONS

Inherent limitations of the proposed framework are in the use of the fiber orientation
and model complexity atlas. The use of an inappropriate orientation prior during may
bias the estimated diffusion statistics. In subjects with pathologies that drastically im-
pact the white matter orientations (e.g. large brain tumors), the use of an orientation
atlas may therefore not be adequate. Normal brain atrophy can be modeled by the non-
rigid transformations during coregistration. Because the orientations of the fiber orien-
tation atlas are rotated accordingly, the use of an orientation prior is still appropriate.
Furthermore, the relatively wide orientation prior width of 25 degrees, also increases the
generalizability of the framework.

Similarly, the use of the complexity atlas has limitations. When the complexity atlas
indicates an incorrect number to be present, this may cause under-fitting or over-fitting
of the data. It should be noted that over-fitting of the data is reduced by the applied
orientation prior, i.e. a stick compartment not supported by the data is expected to point
in the direction of the orientation prior and its estimated stick fractions will be small.

4.5. CONCLUSION

W E have developed a framework, that utilizes an atlas orientation prior and consis-
tent model selection, to improve the analysis of diffusion data with a ball-and-

sticks model. The application of an atlas orientation prior and the use of consistent
model selection was shown to significantly improve the reproducibility and sensitivity
of the ball-and-sticks model parameters in TBSS. Particularly in group studies, the pro-
posed framework may therefore detect more subtle differences and quantify changes
more precisely.
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5
LONGITUDINAL ANALYSIS OF

DW-MRI WITH A

BALL-AND-STICKS MODEL

The purpose of this chapter is to increase the sensitivity in longitudinal analysis of DW-
MRI data with the ball-and-sticks model. Longitudinal DW-MRI data (baseline and two
follow-up scans) of 25 middle-aged subjects (47 to 61 years at base line) were acquired. Af-
ter coregistering all the diffusion-weighted images (DWIs) from the baseline and follow-up
scans to a subject-specific intermediate space, an extended ball-and-sticks model was fit-
ted. Stick orientations were constrained such that they did not change over time. The stick
fractions were warped and projected onto the TBSS (tract-based spatial statistics) skele-
ton, and were compared to a reference framework in which all scans were processed inde-
pendently. Compared to the reference framework, the standard deviation of the apparent
noise on the primary stick fractions on the TBSS skeleton was reduced with approximately
a factor two. The use of the proposed longitudinal DW-MRI pipeline may significantly
increase the precision compared to a default cross-sectional image processing pipeline.

G.A.M. Arkesteijn, D.H.J. Poot, M. Niestijl, M.W. Vernooij, W.J. Niessen, L.J. van Vliet, and F.M. Vos, in Biomedi-
cal Imaging (ISBI), 2015 IEEE 12th International Symposium on, pp. 783-786 (2015).
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5.1. INTRODUCTION

D IFFUSION-WEIGHTED magnetic resonance imaging (DW-MRI) is a non-invasive MRI
technique that enables measurement of diffusion of water [1]. It is frequently used

to assess the brain’s white matter integrity, because the water diffusivity reflects the mi-
crostructural organization of neural fibers [2].

The quantitative nature of DW-MRI makes it especially suitable for longitudinal stud-
ies because it facilitates measurement of subject-specific changes in diffusion behavior.
Longitudinal studies in DW-MRI have for instance been used to quantify small changes
in the white matter after ischemic stroke [3], during development [4], and during normal
ageing [5].

A limitation of many DW-MRI studies (e.g. [3–5]) is in the use of the conventional
single tensor model. It is well known that water diffusion in white matter cannot be
adequately modeled by a Gaussian, particularly in voxels containing more than one fiber
tract. Therefore, diffusion descriptors computed from this model may lack sensitivity [6],
or may suggest spurious change in the white matter microstructure [7, 8].

Several alternative models have been proposed to provide a more adequate descrip-
tion of the diffusion including the ball-and-sticks model [9], multi-tensor models [10], or
CHARMED [11]. However, the number of unknown parameters is larger in these models,
which hinders precise estimation.

Particularly in a longitudinal DW-MRI study it is of interest that a good precision is
achieved, because the effect size is typically small. Simultaneously, however, a longitu-
dinal study offers the opportunity to pool information across different scans of the same
subject. For instance, in many DW-MRI studies it seems reasonable that the orientation
of white matters does not change drastically over the time span of a few years. This would
allow the estimated white matter orientations to be constrained over time. In effect this
reduces the total number of unknown parameters, which could enhance the precision
of parameter estimation.

The goal of this chapter is to increase the sensitivity of longitudinal DW-MRI stud-
ies using the ball-and-sticks model. The key novelty of our approach is that we coreg-
ister the DWIs from the baseline and follow-up scans from the same subject and then
fit a ball-and-sticks model to all DWIs simultaneously. While doing so the stick orien-
tations are constraint to be the same on the different time points. All other unknown
ball-and-sticks parameters are estimated separately for each time point. We evaluate
the proposed method with diffusion data from 25 subjects.

5.2. MATERIALS & METHODS

5.2.1. OVERVIEW OF THE PROPOSED FRAMEWORK

In figure 5.1 an overview of the proposed framework is presented. After basic prepro-
cessing, the DWIs from the baseline and follow-up scans are coregistered to a subject-
specific intermediate space. Next, an extended ball-and-sticks model is fitted to all DWIs
simultaneously. In this extended ball-and-sticks model, the stick orientations are con-
strained across the different scans. All other unknown parameters are still estimated for
each scan. In the following sections, each of these steps will be discussed in more detail.



5.2. MATERIALS & METHODS

5

75

Figure 5.1: Overview of the proposed framework for fitting a diffusion model to the DWIs of a single subject.

5.2.2. STUDY POPULATION

The proposed framework was evaluated on 25 middle-aged subjects (47 to 61 years
at base line) from the Rotterdam Study, a prospective population-based cohort study
among middle-aged and elderly subjects in a district of the city of Rotterdam, the
Netherlands [12]. Ethical approval was granted by the institutional review board, and
written informed consent was obtained from all participants.

5.2.3. DATA ACQUISITION

All subjects were scanned three times on a 1.5 Tesla MRI scanner (GE Signa Excite) using
an 8-channel head coil. The average time between baseline scan and last follow-up scan
was 5.8 years. No major hardware or software updates were performed on the scanner
throughout the study [13]. DWIs were acquired with a single shot, diffusion-weighted
spin echo echo-planar imaging sequence using TR = 8575 ms, TE = 82.6 ms, FOV =
210x210 mm2, imaging matrix = 96x64 (zero-padded to 256x256), yielding 35 contiguous
slices with a thickness of 3.5 mm. DWIs were acquired in 25 non-collinear directions with
a b-value of 1000 s/mm2. Three volumes were acquired without diffusion-weighting (the
b0-volumes) [13].

5.2.4. PREPROCESSING

The DWIs from each baseline and follow-up scan were separately corrected for motion
and eddy current distortion by affine coregistration to the b0-volume using flirt (part
of FSL [14]). After coregistration to the reference b0-volume, the gradient directions were
reoriented according to the rotation component of the transformation [15]. Then, a sin-
gle tensor model was fitted separately to the DWI baseline and follow up-data merely to
facilitate mutual coregistration.

5.2.5. COREGISTRATION OF DWIS

The DWIs from the baseline and both follow-up scans were transformed to a subject-
specific intermediate space. While doing so, it is essential to avoid any asymmetry bias
[16]. We therefore extended the approach in [5] to support three scans. An overview is
presented in figure 5.2.

Let A, B and C refer to the scans at three different time points. First, based on the
FA (fractional anisotropy), all pairwise (nonrigid) transformations (i.e. TAB , TB A , TBC ,
TC B , TAC , TC A) were computed using fnirt (part of FSL). Next, the transformation to
intermediate space M was computed by inverting and adding the displacement fields,
e.g. TAM = inv(TB A)/3+ inv(TC A)/3.

The affine transformations applied during preprocessing (motion end eddy current
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Figure 5.2: Overview of the coregistration of the DWIs from three different scans.

distortion correction) were concatenated with the nonrigid transformations to the
subject-specific intermediate space, such that only a single interpolation of the DWIs
was required. Simultaneously, the DWIs were upsampled to 2.0 mm3 cubic resolu-
tion. After this transformation, the corresponding gradient directions were globally
reoriented [15].

5.2.6. REFERENCE BALL-AND-STICKS MODEL
In the ball-and-sticks model [9], the diffusion-weighted signal in the i th DWI is modeled
as follows:

Sθ,i = S0

((
1−

N∑
j=1

f j

)
exp

(−bi d
)+ N∑

j=1
f j exp

(
−bi d

(
V j ·gT

i

)2
))

, (5.1)

in which b is the diffusion-weighting parameter, g is a unit vector that specifies the direc-
tion of a diffusion-encoding gradient pulse, S0 is the non-diffusion-weighted signal, N
is the number of stick compartments, d is a diffusivity parameter, f j represents a stick’s
volume fraction and V j the principal eigenvector of the j th stick compartment.

The function bedpostx (part of FSL [9]) was used to fit the ball-and-sticks model
with N = 2 stick compartments to each scan in its native space. After estimation, the
stick fractions and orientations were warped to the subject-specific intermediate space,
using the appropriate functions in FSL (i.e. applywarp and vecreg).

5.2.7. LONGITUDINAL BALL-AND-STICKS MODEL
In the longitudinal ball-and-sticks model, the diffusion-weighted signal Sθ in the i th
acquired DWI of the kth scan is modeled according to:

Sθ,i ,k = S0,k

((
1−

N∑
j=1

f j ,k

)
exp

(−bi ,k dk
)+ N∑

j=1
f j ,k exp

(
−bi ,k dk

(
V j ·gT

i ,k

)2
))

. (5.2)
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Here, the eigenvectors V j are parameterized using spherical coordinates ψ j and φ j . In
case of k = 3 scans and N = 2 stick compartments, the unknown parameter vector θ be-
comes [S0,1, f1,1, f2,1,d1,S0,2, f1,2, f2,2,d2,S0,3, f1,3, f2,3,d3,ψ1,φ1,ψ2,φ2]. Notice that now
the stick direction parameters (ψ1,φ1,ψ2,φ2) are the same for each scan k. A maximum
likelihood estimator using a Rician noise distribution was used to estimate the unknown
parameter vector in each voxel of the intermediate space [17].

5.2.8. TBSS ANALYSIS
The stick fractions of both the proposed (longitudinal) and reference framework were
analyzed on a white matter skeleton in atlas space (FMRIB58) using TBSS (tract-based
spatial statistics) [18]. The function tbss_x was used to warp and project the stick frac-
tions onto a skeleton, which takes into account that partial volume fractions are not
scalar measurements of diffusion but have orientations that need to be matched across
subjects [19]. The ICBM-DTI-81 white matter label atlas [20] was warped to FMRIB58
space and used to label skeleton voxels, such that average stick fractions over different
white matter structures could be computed.

5.3. EXPERIMENTS & RESULTS

I N figure 5.3 one example of stick orientations estimated with the reference framework
are visualized. In single fiber regions, e.g. the corpus callosum (red circle), the sticks

are similarly oriented in the three different scans. In crossing-fiber regions, however, the
sticks have inconsistent orientations across the three scans (blue circle).

The between-scan differences of the primary stick fractions of the same subject are
primarily caused by ‘noise’. Therefore we take these between-scan differences as a mea-
sure of estimation variation. For each subject the standard deviation of the primary stick
fractions f1 across the three scans is computed in the TBSS skeleton voxels. In figure 5.4
we show this standard deviation, averaged over the 25 subjects in our study. Observe
that the average standard deviation of the proposed framework is only half that of the
reference framework.

In figure 5.5 the average within-subject standard deviation of the mean primary stick
fractions in each of the 48 white matter structures in the ICBM-DTI-81 atlas is visual-
ized. Again it can be observed that the proposed framework yields smaller between-scan
differences. Finally, as an example, we visualize the average primary stick fractions ob-
tained with the proposed framework in the ‘Superior corona radiata R (label 25)’ in figure
5.6.

5.4. DISCUSSION & CONCLUSION

W E have evaluated a framework to simultaneously fit the ball-and-sticks model to
multiple scans of the same subject. This approach allowed the stick-orientation

to be constrained over different scans, while all other parameters were estimated sep-
arately for each scan. We have limited our evaluation of the longitudinal framework to
the ball-and-sticks model. More complex models of diffusion (e.g. [17] or [11]) were not
supported by our DW-MRI data as they require the DWIs to be acquired with more than
one non-zero b-value.
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Figure 5.3: Example of stick orientations estimated from the baseline (red), the first follow-up (blue) and the
second follow-up (green) scan of the same subject.

Figure 5.4: The average within-subject standard deviation of the primary stick fraction on a white matter skele-
ton.
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Figure 5.5: Average within-subject standard deviation of the primary stick fractions in 48 white matter struc-
tures.

Figure 5.6: Example of primary stick fractions obtained with the proposed framework in the ’Superior corona
radiata R (label 25)’ versus age. Connected points represent the same subject. Lines have random colors to
distinguish between different subjects.

A non-rigid transformation was used to warp the scans to a subject-specific interme-
diate space. We preferred this approach over an affine or rigid transformation such that
shrinkage of the brain and growth of the ventricles could be represented.

The advantage of constraining the orientations across different scans can be appre-
ciated in figure 5.3. The shown variation of the estimated stick orientations across scans
simultaneously results in additional variance in the estimated stick fractions (see figure
5.4 and figure 5.5). Large fluctuations of the stick orientations across different scans may
also affect the (orientation-based) labeling of the stick fractions used in tbss_x which
will add to the variance on the skeletonized stick fractions. These are the primary rea-
sons why the within-subject standard deviations of the stick fractions were much lower
with the proposed framework.

The small within-subject fluctuations of the stick fractions suggest that the proposed
framework may be more sensitive to subtle changes in the white matter, and may there-
fore be a promising tool in future longitudinal DW-MRI studies.
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6
CONCLUSION & FUTURE RESEARCH

6.1. CONCLUSION

T He objectives of this thesis were (1) to enhance our insight in the relation between
the tissue structure and the DW-MRI signal, and (2) to develop methods to quantify

diffusion properties as accurately and precisely as possible based on conventional DW-
MRI data. More specifically, we investigated how to analyze brain regions susceptible
to partial volume effects with the CSF, how to best analyze brain regions with crossing
fiber-regions, and how longitudinal DW-MRI can be leveraged to increase the precision
of computed diffusion statistics.

6.1.1. RELATION BETWEEN TISSUE STRUCTURE AND THE DW-MRI SIGNAL
In chapter 2, the accuracy of Monte Carlo simulations of the DW-MRI signal was investi-
gated in comparison to measurements of a hardware phantom.

The hardware phantom consisted of solid fibers with varying packing density. As
such it acted as a model for the extra-axonal diffusion. In the Monte Carlo experiments,
the DW-MRI signal was computed by simulating diffusion outside randomly packed
cylinders with varying fiber packing density. The Monte Carlo simulations of the DW-
MRI signal were shown to be in good agreement with experimental data from the hard-
ware phantom up to fiber packing fractions of 0.65.

Two limitations of the hardware fiber phantom were studied: the absence of intra-
axonal diffusion and the relatively large diameter of the used fibers.

Simulation of the intra-axonal diffusion showed that there is almost zero attenuation
of the radial DW-MRI signal originating from spins inside axons with diameters smaller
than 8 µm at b-values smaller than 5000 s/mm2. This supports common approaches to
model intra-axonal diffusion with stick compartments, e.g. the ball-and-sticks model [1]
or NODDI [2].

Furthermore, the Monte Carlo simulation experiments showed that the diffusion-
weighted MRI signal from the extra-cylindrical space does not depend on the cylin-
der diameter for b-values smaller than approximately 1500 s/mm2. For b-values larger
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than 1500 s/mm2, particularly in substrates containing cylinders with relatively large di-
ameters, the attenuation of the signal was non-mono-exponential. In substrates with
small cylinder diameters (4 µm or smaller), the attenuation curve appeared to be mono-
exponential. This suggests that in actual white matter with typical axon diameters of 0.1
µm to 2 µm [3], hindered extracellular diffusion is indeed well modeled by a (3D) Gaus-
sian distribution.

In conclusion, the Monte Carlo diffusion simulations accurately match the experi-
mental data from the hardware phantom. Therefore, the combination of Monte Carlo
simulations and a hardware diffusion phantom may allow studying the complex link be-
tween the DW-MRI signal and the underlying microstructure.

6.1.2. PARTIAL VOLUME EFFECTS WITH CSF
In chapter 3, we have investigated the computation of ‘CSF contamination-invariant
statistics’ from conventional DW-MRI data. These statistics were expected to be more
robust to partial volume effects with the CSF than conventional diffusion statistics, and
were obtained by fitting a constrained bi-tensor model to the data.

Particularly, we studied a bi-tensor model in which either the MD or the AxD of the
tensor compartment was constrained to a subject-specific value. These subject-specific
values were computed from the median MD or AxD of a single tensor fit in the splenium
of the corpus callosum. In simulations the mean FA estimated by these bi-tensor models
did not depend on macrostructural properties, which suggested that the proposed dif-
fusion statistics are indeed CSF contamination-invariant. Diffusion parameters such as
the bi-tensor tissue fractions or the single tensor FA or MD were not CSF contamination-
invariant. The bias in these diffusion statistics depended on macrostructural properties
such as the diameter of a white matter structure.

Application of the proposed statistics to the fornix in an ageing study may indicate
microstructural change in the body of the fornix with age. However, this change was not
significantly different from the microstructural change occurring in the splenium of the
corpus callosum.

In conclusion, CSF contamination-invariant statistics can allow a more sophisti-
cated analysis in future studies of white matter structures in close vicinity of the CSF
such as the fornix, particularly when the discrimination between microstructural and
macrostructural changes is of interest. A limitation of the proposed statistics remains in
the constraints that need to be imposed on the bi-tensor model.

6.1.3. ANALYSIS OF CROSSING-FIBER REGIONS
Conventional DW-MRI data consisting of a small number of diffusion-weighted images
at a single non-zero b-value yield a high variance of the estimated parameters when
crossing-fiber models are used.

In chapter 4, we presented a framework containing two novelties to overcome the
aforementioned drawback and improve the analysis of conventional DW-MRI data with
a ball-and-sticks model. The first novelty was the application of an atlas orientation
prior to promote consistent labelling in crossing-fiber regions. The second novelty was
the determination of the number of fiber populations in a common space instead of
subject specific.
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We demonstrated that the reproducibility of measuring partial volume fractions was
improved both in single fiber regions and crossing-fiber regions. Furthermore, a proof-
of-principle analysis of the effect of age on white matter diffusion properties showed
improved statistical power to detect age-related changes in white matter. Particularly in
cross-sectional group studies, this framework has the potential of detecting more subtle
differences and quantify changes more precisely than existing approaches.

6.1.4. LEVERAGING LONGITUDINAL DW-MRI DATA

In chapter 5, we presented an approach to improve the analysis of longitudinal DW-
MRI data with the ball-and-sticks model. We adopted an approach in which simulta-
neously the ball-and-sticks model is fit to multiple scans of the same subject. The stick-
orientation was constrained over different scans, while all other parameters were esti-
mated separately for each scan.

Experiments showed that constraining the orientations across different scans
resulted in a much smaller within-subject fluctuations compared to fitting the ball-and-
sticks model to each scan individually. The small within-subject fluctuations of the stick
fractions suggest that the proposed technique is more sensitive to subtle changes in
the white matter. Therefore, it may be a promising tool in future longitudinal DW-MRI
studies.

6.2. FUTURE RESEARCH

6.2.1. EXTENSIONS OF THE METHODS DEVELOPED IN THIS THESIS

The methods proposed in this thesis were primarily validated by studying the repro-
ducibility of statistics and their correlation with age. In the near future, we plan a more
comprehensive validation by using data of subjects scanned with both conventional
DW-MRI protocols and more advanced DW-MRI protocols. Furthermore, the value of
the proposed methods in the context of pathologies is of interest and left to future re-
search.

The techniques we developed in this thesis to improve the analysis of conventional
DW-MRI with the ball-and-sticks model, can in future research be applied to more ad-
vanced crossing-fiber models and higher quality DW-MRI data. In higher quality DW-
MRI data, the variance of the estimated parameters of more sophisticated crossing-fiber
models may still be problematic because more unknown parameters need to be esti-
mated. The techniques introduced in chapter 4 and 5 (e.g. priors and constraints) can
be used to reduce the variance in respectively cross-sectional and longitudinal DW-MRI
studies.

6.2.2. DIFFUSION IMAGE COREGISTRATION

Even though sophisticated diffusion models are becoming more popular, coregistration
of estimated diffusion statistics in a group study often still relies on single tensor infor-
mation (e.g. the FA or the full tensor information). Future research may focus on coregis-
tration based on the full information of sophisticated diffusion models. For multi-tensor
models, such an approach was shown to yield more accurate coregistration [4]. Accu-
rate coregistration is particularly relevant for analyses of diffusion statistics conducted
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in a common space.

6.2.3. QUANTITATIVE DIFFUSION STATISTICS
Most diffusion statistics are semi-quantitative. This means that on the same scanner
with the same DW-MRI protocol diffusion statistics are reasonably reproducible, but a
bias may be observed when the same subject is scanned on a different scanner or with a
different DW-MRI protocol. Future research may focus on developing truly quantitative
diffusion statistics that are relatively independent of the particular scanner and DW-MRI
protocol, or alternatively investigate how a potential bias between scanners and proto-
cols is best modeled.

To gain insight into the differences of diffusion statistics estimated from data ac-
quired on different MRI scanners with different DW-MRI protocols, we recently acquired
DW-MRI data of the same subjects on different MRI scanners (i.e. 1.5 Tesla, 3.0 Tesla and
7.0 Tesla MRI scanners) using different DW-MRI protocols. The analysis of this dataset is
left to future research, but may provide insight into the dependence of estimated diffu-
sion statistics on magnetic field strength, image resolution, or diffusion gradient strength
and timings. Such insight is relevant in multi-center studies, or when subject data is
compared to reference data acquired on a different scanner or with a different DW-MRI
protocol.
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