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Chapter1
Introduction and Motivation

The main focus of this dissertation is on decision making among multiple parties
according to a particular hierarchical or leader-follower game, the so-called reverse
Stackelberg game, which will be properly defined in Chapter 2. The main concept
around which this game evolves is the so-called leader function that embodies a
mapping of the follower’s decision space into the leader’s decision space. By first
presenting this leader function, the leader’s actual decision follows directly from the
choice of the follower’s decision. Considering the objectives of leader and follower,
mathematical solutions for determining optimal strategies or actions are desired.

Before motivating our interest in this particular game, we first provide a brief
outline of game theory. At the end of this introductory chapter, the structure of this
thesis as well as our contributions will be presented.

1.1 A Brief Introduction to Game Theory

For an intuitive description of a game and of its main concepts, we cite [156, p. 2]:

“A player may be interpreted as an individual or as a group of individuals mak-
ing a decision. A game is a description of strategic interaction that includes
the constraints on the actions that the players can take and the players’ inter-
ests, but does not specify the actions that the players do take. A solution is a
systematic description of the outcomes that may emerge in a family of games.
Game theory suggests reasonable solutions for classes of games and examines
their properties.”

Within game theory, many classes of games can be specified. A game should
first of all be placed in the context of cooperative or noncooperative game theory.
While in noncooperative games players take individual decisions according to their
individual objective functions, in cooperative games players form coalitions and act
according to what is optimal for the coalition, after which some division of the utility
that is achieved may be made amongst the individual players. In both cooperative
and noncooperative games, players can have objective functions that are conflicting.
Whereas zero-sum games assume that the gain for one player implies a loss to an-
other, yielding the sum of objective function values to be zero, in a nonzero-sum
game there are no such constraints on the objective function values of the players.

Another important distinction is between the representation of a game, which
can be either in strategic or explicit or in extensive form. In the former class of

1



2 Chapter 1: Introduction and Motivation

L F

γL(uF) ∈ ΩL

uF ∈ ΩF

γL : ΩF → ΩL

(a)

L F

uF ∈ ΩF

γL : ΩF →{uL}

(b)

Figure 1.1: (a) Schematic representation of the basic reverse Stackelberg game. The

leader function and the decision spaces are denoted by γL and ΩL,ΩF, re-

spectively. (b) The Stackelberg game as a special case.

games, players decide upon their strategy at one time instant and make their deci-
sions simultaneously. In the latter class, however, strategy preparation and decision
making can occur at different stages. While extensive-form games are often de-
picted by a decision tree, a normal form (matrix) game representation summarizes
all strategies of an explicit game in a matrix format. Finally, in a game setting the
players can be perfectly, i.e., fully, or imperfectly informed of each others’ decisions
and characteristics.

For more information on the broad field of game theory, the reader is referred to
[15, 65, 156, 194].

In this dissertation, we focus solely on a noncooperative, nonzero-sum game in
which leader and follower players act sequentially and under the assumption of com-
plete information. The decisions or actions involve the choice of a – we here assume,
real-valued – decision variable that contains a finite number of elements. This game
will be defined in the following chapter, together with a description of what consti-
tutes a solution for this category of games. For clarity, a schematic representation is
provided in Fig. 1.1. Upon the announcement of the leader function γL : ΩF → ΩL,
where ΩL,ΩF represent the decision spaces of respectively the leader (L) and the
follower (F) player, the follower will take a decision, which implies the action of the
leader. The leader function can thus been regarded as a strategy, which will lead to
an action when it is applied.

A Comparison of Game Theory to Optimization and Control Theory

An obvious specification of any game concerns the number of players and the
time-dependency of the actions that are taken.

While, in general, game theory can be perceived as a branch of applied mathe-
matics, one can put game theory in the perspective of other disciplines: in [15], dy-
namic game theory is perceived as a “child of the parents game theory and optimal
control theory” [15, p. 2], where the child is said “to be as old as one of his parents
– optimal control theory” [15, p. 2] when referring to the years in which research in
these areas manifested itself. Table 1.1 summarizes this relationship. To elaborate,
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Table 1.1: The place of game theory [15].

One player Many players

Static
Mathematical (Static) game theory
programming

Dynamic
Optimal Dynamic (and/or

control theory differential) game theory

optimization and mathematical programming are present in many fields, including
optimization-based control theory [7, 64]. Especially during the recent years, game
theory has been considered in relation to control more often, e.g., in applying solu-
tions of noncooperative games in networked control or consensus theory [6, 137].
Other fields in which games have often been applied are, e.g., economics [71, 194],
finance [9, 124, 211], supply-chain management [19, 91, 203], and biology [176].

Here it should be noted that in [15], a game is called dynamic “if the order
in which the decisions are made is important’. We perceive a game as dynamic if
it is multi-stage, in particular in the sense that the action of at least one player is
dependent on some (player’s) action of a previous stage. At the same time, in the
literature the ‘open-loop (dynamic)’ game has also been categorized as a dynamic
game. There, players’ actions are not dependent on actions at previous stages, but
actions are simply made at subsequent time instants, possibly dependent on the
current state of the system; such a game could therefore also be perceived as ‘multi-
stage static’.

We perceive the reverse Stackelberg game as outlined in the beginning of this
chapter and as depicted in Fig. 1.1, as static. The reason is that only the announce-
ment of the leader’s strategy or leader function is made prior to the choice of actions.
Subsequently, the leader and follower actions are basically taken simultaneously,
once the leader is informed of the follower’s decision. More information on static
versus dynamic games can be found in Chapter 2 (Section 2.4.1).

1.2 Motivation and Aim

Now, what do we strive to achieve by using game theory? First of all, we consider
the reverse Stackelberg game as a decision making structure that can be imposed
on a setting in which multiple decision makers operate, where one can distinguish
between:

• interaction between strictly rational controller units that seek the optima of
their objective functions according to a given framework of cost functions and
decision spaces;

• interaction between human parties that have conflicting objectives that can be
translated into a mathematical optimization problem.

In the former setting, introducing reverse Stackelberg game elements can be
perceived as a top-down approach to attempt to structure a (large) optimization
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problem and thereby making it easier to handle. Differently, in the latter setting
a natural hierarchical element can already be detected, making a reverse Stackel-
berg implementation of the problem a natural choice of a solution framework. An
example of such a situation can be found in power or more general transportation
networks in which the control of the physical network occurs at the lower levels with
at the other end of the spectrum a higher-level operator that decides upon set-points
for the lower levels [143, 149]. Moreover, in addition to noise or uncertainties that
can disturb the optimal behavior of the players, bounded rationality plays a role
here, i.e., the fact that players, due to limited abilities, may simply not be able to
arrive at those decisions that are optimal according to a (complex) mathematical
optimization problem [156]. As regards the contents of this dissertation, a noise-
free, deterministic setting is mostly considered, which better connects to the former
framework of fully rational controller units or agents. In this case without uncer-
tainty, a rational decision for a player with a functional f : Ω → R as a preference
relation on the set Ω of actions is simply a decision that is optimal amongst the
feasible actions [156].

Another important facet of the reverse Stackelberg game as compared to the
original Stackelberg game [195, 196] is in the link between the leader and the fol-
lower, represented by the leader function. In the original Stackelberg game this link
is missing and leader and follower players make their decisions sequentially, which
is why the game can be described as hierarchical. A clear reason to adopt reverse
Stackelberg games as opposed to such purely hierarchical games is the fact that in
the original Stackelberg game, the leader cannot control the follower’s decision in
case of a nonunique follower response. This can be circumvented with a leader func-
tion that gives the leader additional capacity to influence the follower.

To summarize, while in general our aim is to apply elements of the reverse Stackelberg

game in order to structure large-scale optimization or control problems as described
above, the focus of the current dissertation is mainly on the reverse Stackelberg
game itself, i.e., to develop a structured, systematic solution approach for the

general reverse Stackelberg game.
In particular, given the initial outline of the game at the beginning of this chapter,

two obvious but relevant questions that will be discussed in this dissertation are:

1. Does a leader function exist such that the leader can influence the follower to
behave as desired?

2. What leader function should the leader adopt to optimize her1 objective func-
tion?

The contributions regarding these questions that are presented in this thesis can
be found in more detail in Section 1.3 below.

1In this dissertation, the leader and follower players are addressed with a feminine respectively
masculine pronoun, for which the author finds support in ‘. . . in adherence to a historical custom, we
refer to the principal with the feminine pronoun ‘she’ and to the agent with the masculine ‘he’. [135,
p. 4]’
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1.3 Scope and Contributions

The main contributions of the work presented in this dissertation can be found in
Chapters 2–5 and in the independent Appendix B and are listed as follows:

Chapter 2: A comprehensive overview is provided of research conducted in
the area of reverse Stackelberg games since the 1970s, categorized in several
topics that are relevant to the game. Second, an elaborate enumeration of
open issues is presented as identified from the available literature.

The contents of Chapter 2 are based on [81, 82].

Chapter 3: As a first step towards a systematic solution approach for the re-
verse Stackelberg game, leader functions of an affine structure are considered,
where the contribution is twofold:

– Necessary and sufficient conditions are provided for the existence of an
optimal affine leader function in the general static, deterministic single
leader-single follower game under mild constraints on convexity of the
decision spaces and connectedness of the follower sublevel set. These
conditions enable the application of easy-to-derive optimal affine leader
functions in games that are not restricted to be of a linear-quadratic type.

– The full set of optimal affine leader functions in an unconstrained deci-
sion space is characterized and an analysis is provided on how to obtain
the subset of optimal affine leader functions in case of a constrained de-
cision space. This set can subsequently be used for further optimization,
e.g., in a sensitivity analysis on the deviation of a follower from his opti-
mal response.

The contents of Chapter 3 can be mainly found in [83] and have been partially
presented in [77, 78] as well as during the 12th Viennese workshop on Dy-
namic Games, Optimal Control and Nonlinear Dynamics, May 30th-June 2nd
2012, Wien, Austria.

Chapter 4: Methods are provided for systematically deriving optimal leader
functions of a nonlinear structure and they are compared with the heuristic
evolutionary approaches that have been suggested in the literature, i.e., the
genetic algorithm as well as neural network approach, w.r.t. computation time
and optimality. More specifically, the following approaches are proposed:

– A continuous multilevel optimization program is considered that leads to
an optimal leader function represented by a linear combination of a set
of basis functions.

– The multilevel optimization program is also considered in a variant where
the follower’s decision space is discretized in grid points. Since optimal-
ity of the leader function cannot be guaranteed, an adaptive gridding
approach is proposed based on this single-level program.
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– Heuristic interpolating spline methods available in the literature can be
adopted, especially in the special case the decision spaces of leader and
follower together are of at most dimension three.

The contents of Chapter 4 can be mainly found in [86] and have been partially
presented in [85].

Chapter 5: New applications of the reverse Stackelberg game are introduced
in the area of route guidance and traffic control. Here, the road authority and
groups of homogeneous drivers are represented by a leader respectively by
follower players. Suggestions for real-life implementation are provided and a
case study on a real-life ringroad network has been conducted. In particular,
the following games have been proposed, where a distinction is made based
on the domain of the leader functions and the type of traffic network, viz.:

– Route choice in freeway networks:
The followers’ expected travel times are mapped to monetary incentives
on the basis of which dynamic routing is applied in the context of free-
way networks in order to reach a system-optimal traffic distribution with
respect to, e.g., the total travel time of the drivers.

– Route choice in freeway networks:
The followers’ route splitting rates are mapped to monetary incentives,
again in order to reach a system-optimal traffic distribution in the context
of freeway networks.

– Single-corridor urban networks:
The followers’ expected travel times are mapped to monetary incentives,
now under the aim to reduce vehicular emissions while taking into ac-
count the urgency and desired travel time of the mainstream drivers in
an urban traffic setting. In this setting, traffic signals for crossing, join-
ing, and mainstream traffic are adopted as the road authority’s control
measure.

The contents of Chapter 5 can be mainly found in [87] and have been partially
presented in [79, 80].

Appendix B: A procedure for approximating a nonlinear function by a piece-
wise affine function is proposed for the nonlinear METANET traffic flow model
and the VT-macro vehicular emissions and fuel consumption model. Subse-
quently, model predictive control (MPC) is applied to the resulting mixed-
logical dynamic model, leading to a mixed-integer linear programming (MILP)
problem instead of an MPC problem that is based on nonconvex optimization.
While both approaches are NP-hard, efficient MILP solvers are available; in
a case study the trade-off between computational requirements and approxi-
mation inaccuracies is studied. This procedure is applied to a freeway traffic
network where the aim is to reduce the total time spent by vehicles in the sys-
tem as well as the vehicular emissions by means of variable speed limits and
on-ramp metering.
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The contents of Appendix B can be mainly found in [84] and have been par-
tially presented in [75, 76].

1.4 Structure of the Thesis

The structure of this dissertation is straightforward: Chapters 3-5 could each be read
independently after the introduction of the reverse Stackelberg game in Chapter 2
(Section 2.1). While the focus of Chapters 3 and 4 is on the theory of reverse Stack-
elberg games, in Chapter 5 possible applications in traffic control are presented. In
Appendix A the model adopted in both Chapter 5 and in the independent Appendix
B is presented. Chapter 6 concludes the thesis with a summary of the findings and
directions for further research.

Fig. 1.2 clarifies the connections between the chapters.

}
Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Appendix A:

Appendix B:

Introduction

Background on the Reverse
Stackelberg Game

Affine Leader Functions

Nonlinear Leader Functions

Applications in

Conclusions
PWA-MPC for

Traffic Control

Traffic Control

The METANET model

Figure 1.2: Schematic representation of the connections between the chapters.





Chapter2
Background on the Reverse

Stackelberg Game
In the current chapter, an overview will be presented to clarify the concept of the
reverse Stackelberg game within several research areas as well as to emphasize its
potential for application, while taking into account the computational complexity
of the game. Further, an overview of the main results in the literature concerning
reverse Stackelberg games will be provided as well as an analysis of open issues for
further research.

In Section 2.1, the background necessary to understand the concept of the re-
verse Stackelberg game is provided. In Section 2.2 the reverse Stackelberg game is
subsequently positioned amongst related fields of research and in Section 2.3 a brief
summary of solution approaches is given. The section thereafter includes a survey
of different topics that have been considered in previously conducted research on re-
verse Stackelberg games. In particular, in Section 2.4 a classification is made of main
results in the current literature along several axes of characteristics that are inher-
ent to the definition of a reverse Stackelberg game, i.e., contributions are considered
that (1) involve either static or dynamic cases; (2) look into continuous-time differ-
ential games; (3) deal with stochastic scenarios; (4) consider partial, nonnested in-
formation; (5) perform a sensitivity analysis; and that (6) consider multilevel games
with multiple players on each layer. Several areas of application are considered in
Section 2.5. The chapter concludes in Section 2.6 with a list of problems that have
not yet been fully considered or solved. As explained in Chapter 1, the research
presented in the following chapters of this dissertation is aimed towards addressing
some of these open issues. A selection of topics for further research will finally be
elaborated upon in Chapter 6.

2.1 Definition of the Reverse Stackelberg Game

2.1.1 The Stackelberg Game

A brief introduction to (noncooperative) game theory has been provided in the pre-
vious Chapter 1. We here define the Stackelberg game and equilibrium, which is
the sequential counterpart of a noncooperative game in which players act simulta-
neously. For the latter game, the well-known Nash equilibrium is adopted as the

9
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solution concept, which we will also define for the sake of clarity.

Definition 2.1 Stackelberg game, Stackelberg equilibrium [156, 195, 196]

A Stackelberg game is described as a two-player extensive game with perfect infor-
mation in which a ‘leader’ chooses an action from a set ΩL and a ‘follower’, informed
of the leader’s choice, subsequently chooses an action from a set ΩF. Some equilibria(
us

L,us
F

)
of a Stackelberg game correspond to the following solutions:

(us
L,us

F) ∈
{

min
(uL,uF)∈ΩL×ΩF

JL(uL,uF) : uF ∈ arg min
u′F∈ΩF

JF(uL,u′F)

}
, (2.1)

where JL : ΩL×ΩF →R, JF : ΩL×ΩF →R denote the leader respectively the follower
cost function and where JL(us

L,us
F) represents an optimal leader cost. Due to possible

nonuniqueness of the optimal follower response to us
L ∈ ΩL, the game can result in

a suboptimal leader cost function value JL(us
L,usub

F ) > JL(us
L,us

F). Therefore, alterna-
tive solutions consist in those where the leader adopts a decision uL 6= us

L that does
not minimize JL(·) as in (2.1) but that yield better objective function values than
JL(us

L,usub
F ). 3

If the decision spaces ΩL,ΩF are closed and bounded (compact), ΩL ⊂ RnL ,ΩF ⊂
RnF and JL,JF are real-valued continuous functionals on ΩL × ΩF, a Stackelberg
equilibrium exists [173].

Since the Stackelberg game was introduced in 1934, multiplayer extensions and
games with incomplete information have been considered too. More information on
Stackelberg games can be found in [15, 91, 174, 175]. An important implication
of adopting a Stackelberg game is that the leader cannot control the decisions of
the follower in case his response is nonunique. This matter is a principal reason for
studying the more general reverse Stackelberg game.

When players act simultaneously rather than sequentially, the following equilib-
rium concept applies:

Definition 2.2 Nash equilibrium [148]

A Nash equilibrium is a set of strategies (decisions) under the application of which
no player can obtain a better objective function value by unilaterally deviating from
these strategies.

Formally, this means that a strategy profile u∗ := (u∗1, . . . ,u
∗
n)∈ S with S := S1×·· ·×

Sn the set of possible profiles is a Nash equilibrium if for every player i ∈ {1, . . . ,n},
the following inequality holds for ui ∈ Si, u∗i 6= ui, where J i denotes the cost function
of player i: J i

(
u∗1, . . .u

∗
i−1,u

∗
i ,u

∗
i+1, . . .u

∗
n

)
≤ J i

(
u∗1, . . .u

∗
i−1,ui,u

∗
i+1, . . .u

∗
n

)
. 3

Considering possible improvements or deterioration in the objective function
value of any player in a cooperative or noncooperative game, the concept of Pareto
efficiency or optimality can be applied:

Definition 2.3 Pareto optimality, Pareto efficiency [65, 156]

No player in a Pareto-optimal or Pareto-efficient equilibrium is able to unilater-
ally deviate from a Pareto-optimal decision without making another player worse
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off, i.e., a strategy profile u∗ := (u∗1, . . . ,u
∗
n) ∈ S with S := S1 × ·· · × Sn the set of

possible profiles is Pareto optimal if for all i ∈ {1, . . . ,n} there does not exist a
ui ∈ Si, u∗i 6= ui, such that for some player j ∈ {1, . . . ,n}: J j

(
u∗1, . . .u

∗
i−1,ui,u

∗
i+1, . . .u

∗
n

)
≤

J j
(
u∗1, . . .u

∗
i−1,u

∗
i ,u

∗
i+1, . . .u

∗
n

)
, where J i denotes the cost function of player i.

In cooperative games, a Pareto-optimal solution corresponds to the case in which,
in addition, no joint decisions of players can lead to an improved performance of
at least one player, without resulting in a deterioration in the other players’ perfor-
mance. 3

2.1.2 The Basic Reverse Stackelberg Game

The basic single leader-single follower, static, deterministic reverse Stackelberg game
[97, 99, 153] can be defined through the leader respectively follower objective (cost)
functions as in Definition 2.1. For the leader and follower decision variables we here
assume uL ∈ ΩL ⊆ RnL , uF ∈ ΩF ⊆ RnF , with nL,nF ∈ N.

The leader player acts first by announcing a leader function γL : ΩF →ΩL, that can
be restricted to belong to a particular class of function structures, denoted by ΓL. In
the so-called direct approach to the game, one simultaneously aims to find a leader
function γL(·) and a corresponding solution point (γL(uF),uF) that is associated with
a leader objective function value that cannot be improved under any leader function,
while taking into account the follower’s response to the given leader function.

This problem can be summarized by the following indirect formulation with com-
posed functions (adapted from [153]):

Direct Reverse Stackelberg Game Formulation

To find: γ∗L ∈ arg min
γL∈ΓL

JL (γL (u∗F (γL (·))) ,u∗F (γL (·))) ,
such that u∗F (γL (·)) ∈ arg min

uF∈ΩF

JF (γ∗L (uF) ,uF) ,
(2.2)

where, in order for the problem to be well-defined, we assume that an optimal1

leader function γ∗L(·) is constructed such that the optimal follower response u∗F(γL(·))
is unique. Further, note that for feasibility of the leader function in the game setting,
(i) it is necessary that all elements of ΩF are mapped to an element of ΩL and (ii) not
all elements of ΩL need to be included in the mapping, while (iii) different elements
of ΩF are allowed to be mapped to the same element of ΩL. Hence, the mapping is
allowed to be non-injective as well as non-surjective.

In order for the leader to be able to solve this game, we make the following
assumption as regards the availability of information:

Assumption 2.4 In the current thesis, we assume the leader to have complete knowl-
edge of the follower’s objective function JF(·), of the decision space ΩF, and of the
follower decision once made. Here, the follower’s objective function can be known
either as an analytical expression, or as a black box. Furthermore, we assume the
follower to behave fully rationally (see Chapter 1, p. 4), unless stated otherwise. 3

1Optimal values or, more general, optimal strategies are often indicated by a superscribed asterisk.
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Pareto
optimum

system

optimum

Nash
equilibrium

Stackelberg
equilibrium

reverse Stackelberg
solution point

Figure 2.1: Venn diagram of several types of equilibria and solutions.

Remark 2.5 In order for the leader function γL : ΩF → ΩL to influence the follower’s
behavior, it is important that the follower’s cost function is indeed a function of
uL. In order for the reverse Stackelberg game to be well-defined it is, however, not
strictly necessary for JF(·) to be directly dependent on uF, nor is it necessary for JL(·)
to be directly dependent on uL. 3

Remark 2.6 [Relations between solutions and equilibria in game theory]
The Venn diagram of Fig. 2.1 shows the relationships between major classes

of game solutions and equilibria. A Stackelberg equilibrium can be obtained as a
special case of the reverse Stackelberg game and therefore consists of a subset of
possible solution points to the reverse Stackelberg game. As shown in [173], a
Stackelberg solution is at least as good for the leader player as a Nash equilibrium,
while the follower may or may not be as least as good off when playing sequentially
instead of simultaneously. In general, existence of a Stackelberg solution does not
imply the existence of a Nash equilibrium, and vice versa [173]. In the Nash equi-
librium and in case of optimal (reverse) Stackelberg solutions, the players cannot
perform better by changing their individual strategies unilaterally. In addition, in a
Pareto-optimal solution, any improvement in the objective function value of a cer-
tain player will result in a deterioration of the objective function value of at least
one player. The concept of system optimality is not a game-theoretical concept; it
is included to distinguish those solutions that cannot be improved for the one par-
ticular player that acts according to the objectives of the system. A system-optimal
solution can thus be equal to a Pareto-optimal solution.

In this thesis we focus in particular on solutions to the reverse Stackelberg game
that correspond to a leader optimum without paying special attention to possible
improvements in the follower’s function value. 3
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2.1.3 Computational Complexity

Even the single leader-single follower static reverse Stackelberg problem is complex
and in general difficult to solve analytically due to the composed functions appear-
ing in the problem formulated in (2.2) as well as due to the possible existence of
multiple global optima that could be selected as desired equilibria for the leader
player, and a nonunique follower response to the corresponding desired decision
variables [13, 153, 154, 180].

Before we analyze the complexity of the general reverse Stackelberg game in
Theorem 2.7, a brief summary of complexity theory is provided next [68].

First of all, in case one can prove that in general no algorithm exists that can
solve an instance of the problem with finite termination, the given problem is said
to be undecidable. Here, a problem can either be a search problem that is solved
in case a solution is found or in case it is concluded that no solution exists, or a
decision problem that can only have the answers ‘yes’ and ‘no’. A problem belongs
to the class P of polynomial-time solvable problems if there exists an algorithm that
can solve the problem within a time that is bounded from above by a polynomial
function of the parameter that indicates the size of a problem instance. If a deci-
sion problem belongs to the class NP of nondeterministic polynomial-time solvable
problems, there exists a (nondeterministic) polynomial-time solvable algorithm that
can verify whether a given certificate or claim on the answer of a decision problem
is correct or not. The class NP includes next to the class P also the subclass of NP-
complete problems. A decision problem NPC is NP-complete if it belongs to the class
NP and if all other decision problems in the class NP can be transformed to the given
problem NPC with a polynomial transformation. In order to prove NP-completeness
of a decision problem, it therefore has to be shown that the problem is in NP and
that a known NP-complete problem can be transformed to the given problem in poly-
nomial time. Further, a problem is strongly NP-complete if the modified problem in
which any numerical (integer) parameter of the original problem is bounded by a
polynomial, is still NP-complete.

A last important complexity category we mention here is the class of NP-hard
problems. A search problem NPH that is NP-hard is ‘at least as hard’ as any NP-
complete problem, i.e., it is NP-hard if there exists an NP-complete problem that
can be (Turing) reduced to the given problem NPH in polynomial time. Such a
polynomial-time reduction of problem Π to problem Π′ is an algorithm A that solves
Π with a hypothetical subroutine or ‘oracle’ for solving Π such that if this subrou-
tine were a polynomial time algorithm for Π′, then A would be a polynomial time
algorithm for Π.

In particular, if a decision problem associated with a search problem is NP-
complete and a polynomial-time algorithm for the search problem could be adopted
to solve the associated decision problem in polynomial time, this implies that the
search problem is NP-hard. Hence, a (search) problem is strongly NP-hard if there
exists a strongly NP-complete problem that can be reduced to it in polynomial time.

Finally, it should be noted that it is generally accepted that P is a proper sub-
class of NP, but this has not yet been proven in a generally accepted manner. If
P=NP would hold, all problems in the class of NP-complete problems, for which
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P

NP

NP-complete

NP-hard

Figure 2.2: Schematic representation of the relation between several computational

complexity classes.

no polynomial-time solvable algorithms have been found thus far, are solvable in
polynomial time.

A scheme of the relation between important computational complexity classes
can be found in Fig. 2.2, where we assume that P 6= NP.

Theorem 2.7 The reverse Stackelberg game as formulated in (2.2) is strongly NP-hard.

Proof : The original Stackelberg game is a special case of (2.2), i.e., for γL : ΩF →{
ud

L

}
, with ud

L ∈ ΩL a free variable, (2.2) can be written as:

(ud
L,ud

F) ∈ arg min
uL∈ΩL,uF∈ΩF

{
JL(uL,uF) : uF ∈ arg min

uF∈ΩF

{JF(uL,uF)}
}

, (2.3)

from which a suitable, explicit value ud
L for the specification of γL(·) follows.

Moreover, the Stackelberg game (2.3) is equivalent [39, 192] to the bilevel pro-
gramming problem that can be written:

min
x∈X

{
F(x, ỹ) : G(x, ỹ) ≤ 0, ỹ ∈ argmin

y∈Y
{ f (x,y) : g(x,y) ≤ 0}

}
, (2.4)

for general cost functions F(·), f (·) and constraint functions G(·),g(·). The linear
bilevel programming problem is proven to be NP-hard [102] and later strongly NP-
hard [89].

Hence, the reverse Stackelberg game can be transformed to the strongly NP-hard
bilevel optimization problem, and therefore belongs at least to this complexity class.

2

2.1.4 An Indirect Game Formulation

A commonly adopted simplifying approach to the reverse Stackelberg problem is
for the leader player to first determine a particular desired optimum (ud

L,ud
F) that
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she seeks to achieve [16, 97, 98]. A natural choice would be a global optimum
of the leader: (ud

L,ud
F) ∈ argminuL∈ΩL,uF∈ΩF

JL(uL,uF). This global optimum is often
referred to as ‘team optimum ’ according to the theory of teams [88, 138] where
it refers to the best the leader can achieve if the other players would support her.
The term team optimum is therefore in a sense misleading as a substitute for the
leader’s, i.e., not the follower’s, global optimum. Here it should be noted that it
may be difficult to compute such a globally optimal equilibrium point in the case of
incomplete information on, e.g., the follower’s decision space. Instead of through
optimization, depending on the problem setting in which a reverse Stackelberg game
is applied, a desired pair of decision variables may also be determined based on past
experience, i.e., on historical data, or it may be a particular outcome measured on
an ordinal scale [45].

Given such a desired point (ud
L,ud

F), the remaining problem can be written as
follows:

Indirect Reverse Stackelberg Game Formulation

To find: γL ∈ ΓL, (2.5)

such that arg min
uF∈ΩF

JF (γL(uF) ,uF) = ud
F, (2.6)

γL(ud
F) = ud

L. (2.7)

Given this indirect formulation of the reverse Stackelberg game, the problem is
reduced to finding a leader function that solves the game to optimality, i.e., that
leads to the desired leader equilibrium point. The constraints (2.6)–(2.7) imply that
the leader should construct her leader function such that it passes through (ud

L,ud
F),

but such that for all uF ∈ ΩF \{ud
F}, (γL(uF),uF) remains outside of the follower sub-

level set:

Sublevel Set

Λd :=
{
(uL,uF) ∈ ΩL ×ΩF : JF (uL,uF) ≤ JF(ud

L,ud
F)

}
, (2.8)

since then, the optimal follower response coincides with the desired decision vari-
able value ud

F. Based on the concept of this set Λd – which we will refer to as ‘the
sublevel set ’ in the remainder of this dissertation, omitting reference to the follower
to whom this set applies – one can adopt a geometric approach for the derivation of
a suitable leader function.

A schematic representation of the indirect versus the direct approach for solving
a reverse Stackelberg game is presented in Fig. 2.3.

We now define the concepts of an equilibrium and of an optimal solution that
will be adopted in this thesis. For clarity, first the general game theoretical definition
of a solution is described, after which the specific use of this concept throughout this
dissertation is clarified.
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Computation of

Computation of

γL : ΩF → ΩL

(ud
L,ud

F) ∈ argminuL∈ΩL
uF∈ΩF

JL (uL,uF)

(a) Indirect Approach

Computation of

γL : ΩF → ΩL

u∗F ∈ argminJF (γL(uF),uF)

JL
(
γL(u∗F),u∗F

)

(b) Direct Approach

Figure 2.3: Schematic representation of the direct and indirect solution approaches.

Definition 2.8 Solution, equilibrium (game theory) [108, 156]

In general game theory, a solution can be described as “a systematic description of
the outcomes that may emerge in a family of games,” [156, p. 2]. In noncooperative
game theory, an equilibrium can be seen as one of those outcomes, which can either
be strategically stable (self-enforcing) or unstable [108], in which case a player is
able to deviate (unilaterally or simultaneously with other players) to a strategy that
is at least as good as the current strategy, or that causes a better strategy for at least
one of the players. 3

Definition 2.9 Optimal solution, equilibrium (this thesis)

In this dissertation,

• a (desired) equilibrium (point) refers to the tuple of decision variables (ud
L,ud

F)
that is desired by the leader player;

• an optimal solution of the reverse Stackelberg game refers to a leader function
γL : ΩF → ΩL that – under the assumption of a fully rational follower player –
leads to the desired equilibrium point that is specified by the leader player. 3

In other words, we adopt the terminology of an equilibrium point, even if a subopti-
mal leader function is applied that leads to an undesired follower response uF 6= ud

F

and the corresponding leader decision, whereas technically, for the point (ud
L,ud

F) to
be an equilibrium in the general game-theoretical sense, both players should adopt
the desired decision variable values.

When assuming a particular parametrized leader function structure, the prob-
lem can be further reduced to finding coefficient values for which the parametrized
leader function is optimal. Different from the direct approach, it is possible that
for a given desired equilibrium point, no leader function exists that can induce the
follower player to act according to the desired decisions. An obvious case is the
situation in which the desired equilibrium is a boundary point of a follower sublevel
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set that intersects with the boundary of the decision space ΩF in more points than
solely (ud

L,ud
F) (see Fig. 2.4(e)). The property of a particular desired leader equi-

librium to be feasible for an instance of the reverse Stackelberg game is known as
incentive controllability in the literature [98, 209]. This term stems from the con-
cept incentive compatibility as adopted in the theory of incentives (refer to Section
2.2.2 below), where it is used to indicate whether a game or strategy is strategy-
proof, i.e., whether the follower can be induced to act truthfully and to reveal his
true information in spite of asymmetric information in which the leader is unable to
observe the follower’s actions [120, 135]. It should thus be noted that this concept
is used differently in the context of reverse Stackelberg games, where it refers to
the existence of an optimal leader function in cases where the leader may have full
information concerning the follower.

Different types of incentive controllability are illustrated in Fig. 2.4 where the
leader’s desired equilibrium point (ud

L,ud
F) is depicted together with one or several

contour lines for the follower or the leader, as denoted by respectively L c (JF) and
L c (JF) for a given value c ∈ R. In Fig. 2.4 the subscript representing the correspond-
ing value is omitted as it is not relevant in this context.

In Fig. 2.4(a) the reverse Stackelberg game reduces to the original Stackelberg
framework: the follower’s optimal response to ud

L is the singleton {ud
F}; in Fig. 2.4(b)

an affine leader function suffices to induce the follower to adopt the desired value
ud

F with the associated ud
L = γL(uF); in Fig. 2.4(c) no affine leader function exists

that intersects with the level curve L JF(ud
L,ud

F) (JF) or more generally with the sublevel

set Λd solely in {(ud
L,ud

F)}; in Fig. 2.4(d) a case is depicted in which no optimal
continuous explicit leader function exists; in Fig. 2.4(e) the follower sublevel set
for (ud

L,ud
F) intersects with both upper and lower bound of the leader’s constrained

decision space, excluding any optimal leader function for which γL(ΩF) ⊆ ΩL.
In general, the computational complexity of this indirect formulation is still NP-

hard, since the minimization of the generally nonlinear, nonconvex functional JF(·)
in the left-hand side of constraint (2.6) is a nonconvex problem, and a similar state-
ment holds for the computation of (ud

L,ud
F) as a global optimum with respect to JL(·).

However, we aim to tackle the general problem by evaluating subclasses of solutions
or function structures of γL(·). Moreover, as will be shown in Chapter 3 and Chapter
4, the focus on the sublevel set Λd according to (2.8) instead of on the optimization
according to (2.6) as applies in the direct formulation (2.2) can ease the compu-
tation of a solution. The research presented in this dissertation is focused on the
indirect variant (2.5)–(2.7) of the reverse Stackelberg game. However, in Chapter 4
the algorithms devised for the indirect version of the game are compared to a direct
solution approach according to the game (2.2).

2.2 The Reverse Stackelberg Game in Different Fields

Since several groups of researchers have considered the reverse Stackelberg game or
a similar concept independently while using different terms, for clarity a summary
is given and differences and similarities are discussed of the branches of general-
ized and more recently of inverse Stackelberg games, viz. the theory of incentives
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Figure 2.4: Incentive controllability: Reachability of the desired equilibrium point.

(economics), incentive strategies (control), and of the related field of bilevel pro-
gramming.

2.2.1 Generalized and Inverse Stackelberg Games

The first step towards the reverse Stackelberg game formulation may be found in
[123] where a generalized strategy is introduced that leads to the best solution the
leader can achieve in case the follower’s response to the original Stackelberg deci-
sion ud

L is nonunique. In the original Stackelberg game, uniqueness of the follower
response is usually assumed at a loss of generality, in order to simplify the problem.
Formally, if for every uL ∈ ΩL it holds that

Ω∗
F(uL) := {u∗F ∈ ΩF |JF(uL,u∗F) ≤ JF(uL,uF),∀uF ∈ ΩF } 6= ∅, (2.9)

and if there exists a u∗Lgen ∈ ΩF such that

sup
uF∈Ω∗

F(u∗Lgen)

JL(u∗Lgen,uF) = min
uL∈ΩL

sup
uF∈Ω∗

F(uL)

JL(uL,uF) = J ∗L , (2.10)

then u∗Lgen is called a generalized Stackelberg strategy for the leader, i.e., it leads to
the least upper bound on JL(·) [123].

It should be noted that this generalized strategy basically results in a reduced set
of possible Stackelberg solutions for the leader that constitute an upper bound to
her objective function value. The generalized strategy thus deals with the problem
of a nonunique follower response by accepting a solution that leads to a reduced
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performance for the leader. In contrast, the reverse Stackelberg game deals with
a nonunique response by substituting the leader strategy uL with a more involved
function γL : ΩF → ΩL.

The term reverse Stackelberg game first appeared2 in [97], where it was chosen
to illustrate the order of first announcing the leader strategy γL(·) (rather than her
action uL ∈ΩL as in the original Stackelberg formulation), followed by the follower’s
actual action or decision uF ∈ΩF, from which uL follows. Instead of approaching only
an upper bound on JL(·) by using the generalized strategy, the leader may then in
fact be able to reach exactly her desired equilibrium value.

As additional reasons for adopting a reverse structure, it is mentioned in [97]
that (i) the leader may infer information on the system state from knowing the fol-
lower’s decision first, especially in a stochastic setting in which the leader does not
possess the follower’s full information, and that (ii) the follower’s decision may di-
rectly affect the leader’s objective function value. However, to the latter argument
it should be added that also in the original Stackelberg game JL(·) is dependent on
uF ∈ ΩF. The reverse structure does provide more ‘power’ to the leader to influence
the follower and enforce her desired solution, as compared to when providing only
a decision uL ∈ ΩL. More formally, in terms of the reaction sets RSG,RRSG of the
follower player for the original Stackelberg and reverse Stackelberg game, respec-
tively:

RSG :=

{
uF : uF ∈ arg min

uF∈ΩF

JF

(
ud

L,uF

)}
, (2.11)

RRSG :=

{
uF : uF ∈ arg min

uF∈ΩF

JF (γL(uF),uF)

}
, (2.12)

it holds that
{
JF

(
ud

L,uF

)}
uF∈ΩF

⊆ {JF (γL(uF),uF)}uF∈ΩF
for γL(·) such that γL(ud

F) = ud
L.

Most recently, the game in which the leader announces a strategy as a mapping
ΩF → ΩL has been studied as the inverse Stackelberg game [153, 154, 178, 180].
There, several problem instances are investigated to show the difficulties in solving
this game, both for the static [153] and the dynamic [154] case, and for cases with
multiple leaders or followers [153]. Nonetheless, over the years several conditions
have been developed for the existence of an optimal solution of a particular (affine)
structure, especially within the research on incentives strategies [132, 209].

2.2.2 Theory of Incentives

Theory of incentives, also known as contract theory, involves so-called principal-
agent problems in which some quantity produced by the agent or follower is ex-
changed for a (monetary) transfer by the principal or leader. A new element of
information is considered here, i.e., the so-called type of an agent that refers to, e.g.,
skills or opportunity cost. The agent may not reveal his type to the principal or he
may even provide false characteristics. Therefore, an aspect of paramount impor-
tance within this area is uncertainty due to a lack of information. The three main

2To be precise, in [97] the term ‘reversed Stackelberg problem’ was adopted.
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types of principle-agent problems are moral hazard, adverse selection, and signal-
ing. Here, the agent has either (i) private information concerning actions that occur
after the signing of a contract, (ii) private information concerning his type before
the composition of the contract, or (iii) the ability to send information to the prin-
cipal during the game [120, 135]. Although controller agents are usually assumed
to provide their available information truthfully, results from the theory of incen-
tives concerning incomplete information can provide useful insight to the reverse
Stackelberg game formulation in control settings [99].

Another important part of the problem definition in incentives theory is the par-
ticipation constraint or bail-out option of the follower, which allows him to withdraw
from participating in the game in case the leader proposes a contract that leaves the
follower with an insufficient performance. This constraint does not directly appear
in the reverse Stackelberg game formulations (2.9)–(2.10) and (2.2) or (2.5)–(2.7)
mentioned in respectively Sections 2.2.1 and 2.1.2, nor in the related problem de-
scriptions of Section 2.2.3 and Section 2.2.4.

2.2.3 Incentive Strategies

From a control-theoretic rather than an economic perspective, the leader strategy is
often referred to as ‘incentive’ [98, 99]; as in Section 2.2.2, the term is chosen to
indicate the problem of how the leader can incentivize the follower to perform as
desired. Different from the leader function as described in Section 2.1.2, the incen-
tive strategy is not always a mapping ΩF → ΩL; some authors define the incentive
strategy more generally as a function of the available information [99], or solely
of the system state variables as will be introduced in Section 2.4.1 [98, 125, 184].
In fact, in [125] the use of state feedback is motivated by the argument that it is
unrealistic to have access to the follower’s decision variables in a real-life dynamic
setting. At the same time, some authors consider such state-dependent leader func-
tion as a regular (feedback or closed-loop) Stackelberg strategy without mentioning
the concept of incentives [16, 44, 175].

The incentives information structure has also been considered as a fourth alter-
native along with the open-loop, closed-loop, and feedback information structure
in a multistage context [55]. Although the last three patterns are indeed only rele-
vant in a dynamic framework (see Section 2.4.1), the reverse Stackelberg game or
incentives structure with uL = γL(uF) can, however, very well occur in a single-stage
context without the presence of a state variable.

A link has also been made between incentives and social choice theory in [98].
In social choice theory, agents need to propose an ordering of preferences (e.g., in
the voting for elections) based on which a final listing (the solution or election out-
come) is developed, depending on a predetermined choice rule [5]. In order to
make people reveal their true preferences, the choice rule should be strategy-proof.
In [98] the equivalence is stated between a leader function of a reverse Stackelberg
game and a social choice rule that allocates a final ordering (solution) to a prefer-
ence ordering that represents the decision variables of the agents in a strategy-proof
manner. However, there is no desired election order as an outcome that the leader
strives after in social choice theory, as opposed to in the reverse Stackelberg game
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where the leader optimizes JL(·), which is directly dependent on the follower de-
cision uF. Therefore, the proposed resemblance with a reverse Stackelberg game
does not completely fit. Finally, also the related field of mechanism design deals
with finding strategies that induce players to convey their true information, which
can be useful to study in the context of reverse Stackelberg games with incomplete
information [65, 121].

In order to put the different terms in perspective, we may conclude that the
incentive problem of determining the leader function γL(·) to induce the follower
to behave as desired can be seen as a part of the overall reverse Stackelberg game,
whereas the design of more general incentive strategies is also present in a broader
class of problems.

2.2.4 Bilevel Programming

Finally, the Stackelberg game can be rewritten as a bilevel programming problem, in
which the follower’s lower-level optimization problem is considered as a constraint
to the higher-level optimization problem [39, 192]. Different from the perspective
of the Stackelberg game, bilevel programming is focused rather on the computation
of a Stackelberg solution, where the sequential nature of the game is translated into
constraints. Whereas cases with incomplete information can apply in the game, in
a translation to a multilevel mathematical program, perfect information is assumed
[54]. While the resemblance with the original Stackelberg game is often mentioned
in the literature on multilevel programming, a link with the reverse game does not
appear. Nonetheless, the reverse game is subject to the same hierarchical structure,
where in addition the relation between uL and uF is captured by γL(·). In other words,
the Stackelberg game is a special case of the reverse game: for a relation γL : ΩF →
{ud

L}, the reverse game reduces to a Stackelberg game. Hence, results on multilevel
programming [39, 52] could prove useful for the analysis of the reverse Stackelberg
game. In general, linear bilevel, hence multilevel, programming is proven NP-hard
[102] and later strongly NP-hard [89]. A more elaborate (complexity) analysis of
multilevel programming can be found in [36, 89].

2.3 Solution Approaches

2.3.1 Analytic Solution Approaches

In order to ease the solvability of the reverse Stackelberg game, an indirect approach
can be adopted as explained in Section 2.1.4 above. If the leader is able to induce
the follower to arrive at the desired equilibrium point (ud

L,ud
F) by the application

of an affine leader function γL(·), the problem can been called linearly incentive
controllable [98, 209]. Except for the derivation of such leader functions that can be
applied in some special linear-quadratic cases of the – in that case linearly incentive
controllable – reverse Stackelberg game [34, 56, 139, 209], by the author’s best
knowledge no analytic approaches have been presented thus far. We will elaborate
and extend results on this analytic solution approach in Chapter 3.
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2.3.2 Numerical Solution Methods

While research on the reverse Stackelberg game from a game-theoretical or even
control-theoretical perspective aims mostly towards obtaining analytical solutions
or leader functions, for available numerical solution methods, inspiration can be
gained from multilevel programming. Available solution methods for such program-
ming problems can be categorized as extreme point algorithms, branch-and-bound
algorithms, complementary pivot algorithms, descent methods, and penalty func-
tion methods [192]. More references to algorithms for multilevel programming can
be found in [131].

Alternatively, evolutionary programming methods have been suggested for solv-
ing Stackelberg games in [186] and [179], as will be mentioned in Section 2.4.4
for applications in which incomplete information applies, and as will be further
elaborated upon in Chapter 4. An overview with references on genetic algorithms
applied to multilevel programming problems can be found in [131]. There, a ge-
netic algorithm was developed for general multilevel Stackelberg games in which
players on a single level play a noncooperative simultaneous game for which the
Nash equilibrium concept is adopted, without assumptions regarding linearity, con-
vexity, continuity, or differentiability. On the other hand, the follower’s response is
assumed to be a singleton or the leader is assumed to be indifferent amongst the
follower’s optimal decisions in case these are nonunique. The relaxation of these
assumptions leads exactly to the need for a reverse Stackelberg formulation as ex-
plained in Section 2.1. Although the method is able to find a global optimum for the
general game, the approach is computationally still rather inefficient.

A more recent development involves using multiparametric programming meth-
ods for multilevel optimization [59], in which each subproblem is stated as a mul-
tiparametric programming problem with parameters linked to other subproblems.
The complexity of the overall problem is thus broken down to the computation of
the reaction set of optimal, parametrized solutions for each subproblem. When
studying the particular linear quadratic case, this approach results in a single-level
convex optimization problem. However, efficient methods for general nonlinear and
nonconvex multilevel problems are far from widespread.

In Chapter 4 we will discuss new solution approaches for the indirect reverse
Stackelberg game formulation and compare these with the evolutionary approaches
devised to solve the direct game variant.

2.4 A Thematic Overview of Results

A reverse Stackelberg game includes with the basic description as provided in Sec-
tion 2.1 a specification of (1) time elements, specifying amongst other aspects the
duration of the game, (2) leveling, and (3) information and uncertainty [98, 99].
In the current section, an overview of contributions in the area of reverse Stackel-
berg games is provided, categorized into these several aspects as is also depicted in
Fig. 2.5, viz.:
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Figure 2.5: Overview of characteristics within the reverse Stackelberg game.

2.4.1 static versus dynamic problems;

2.4.2 continuous-time differential problems;

2.4.3 deterministic versus stochastic problems;

2.4.4 problems with partial, nonnested information;

2.4.5 performance of a sensitivity analysis;

2.4.6 multilevel, multiplayer problems.

2.4.1 Static Versus Dynamic Problems

There are not so many results from a control-theoretic perspective that consider
the static reverse Stackelberg game. As is also mentioned in [154], a legitimate
reason for studying the dynamic case is that it more often occurs in real-life settings.
On the contrary, results within the theory of incentives and especially multilevel
programming are often based on single-stage problems [39, 135].

Nonetheless, an introduction to the static reverse Stackelberg game can be found
in [98], as well as in [167], where a static affine leader function is presented, mo-
tivated by a situation with the regulating government as a leader that strives to
achieve Pareto optimality while multiple followers (firms) play according to their
Nash equilibrium strategies. Since objective functions in [167] are assumed to be
quadratic and strictly convex, an optimal affine strategy can be computed.

When considering a dynamic game, in addition, often a state variable x ∈ X ⊆
Rnx ,nx ∈ N is considered to define the global system with an associated update equa-
tion, i.e., in discrete time:

x(k +1) = AL(k)uL(k)+AF(k)uF(k)+B(k)x(k), (2.13)
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with x0 = x(0) the initial state and with matrices AL,AF,B of appropriate sizes, with
k ∈ {1, . . . ,K} where K denotes the number of stages. The continuous-time equiv-
alent, i.e., the differential game, will be described in Section 2.4.2. One can also
distinguish between the state space of the leader and the follower, i.e., X := XL ×XF.
This state variable can be integrated in the objective function J p : ΩL ×ΩF × X →
R, p ∈ {L,F}.

The general game where the aspects depicted in Fig. 2.5 are specified can now
be denoted by a tuple

(
P ,K,{J i}i∈N ,{(Ωi)

K}i∈N ,X K , f ,x0,(I i)
K}i∈N ,{(Γi)

K}i∈N
)

, (2.14)

where

• P : N →{L,F} indicates the type of player associated with each of the players
i∈N ={1, ...,N}.

• I i ⊆ Rni×N denotes the information space of player i.

• Γi ⊆ {γi|γi : I i → Ωi} denotes the strategy space.

To elaborate, ιi(k) ∈ I i captures the knowledge that is available to player i at
stage k: it can contain information of the other players’ decision space and objective
function, state, etc. In the leader’s case this includes the follower’s decisions. Finally,
the strategy space refers to the permissible mappings γi(k) : I i → Ωi that lead to a
decision ui(k). These mappings can be announced several stages ahead.

Depending on the time indices of the variables on which a leader function is
dependent, a leader strategy in a dynamic game can be:

• an open-loop strategy: these are a function of the time step and of the initial
conditions only, where the leader function in the reverse Stackelberg game is
in addition dependent on the follower’s decision: γL(k) = gol(x0,uF(k),k).

• a closed-loop strategy: here, decisions can be defined to be a function of the
time step and of the current and some α previous-stage state and decision
variables x(k−α), ...,x(k),uF(k−α), ...,uF(k).

• a feedback strategy: state feedback strategies can be seen as a special type
of closed-loop decisions with one-step memory, i.e., the strategies depend on
the previous state and decision variables, with γL(k) = gfb(x(k−1),uF(k−1),k)
(a feedback Stackelberg strategy), or γL(k) = gfb(x(k− 1),uF(k− 1),uF(k),k) (a
feedback reverse Stackelberg strategy with a leader function directly depen-
dent on the current follower decision variable).

Solving a closed-loop or feedback game requires different solution methods from
those applicable to the static game. However, the open-loop game is a straight-
forward extension of the static game. In other words, at the start of the discrete-
time dynamic game the optimal open-loop values (ud

L(k),ud
F(k)) for the leader can

be computed for time steps k ∈ K , taking into account the predicted values of the
state variables. Then, the mappings γk

L : ΩF → ΩL can be computed as is done for
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the static case, now for each k ∈ K . Since we evaluate the performance measures
J k

p (·), p ∈ {L,F} – that can be dependent on k ∈ K in addition to up ∈ Ωp – in open
loop with K = {1,2, ...,K} in discrete time, the game basically results in a series of
static optimization problems, i.e., where the desired equilibrium and the follower
response can be written:

(ud
L(k),ud

F(k)) ∈ arg min
uL∈ΩL
uF∈ΩF

J k
L (uL,uF) ; u∗F(k) ∈ arg min

uF∈ΩF

J k
F

(
γk

L(uF),uF

)
. (2.15)

Note that in this formulation, the objective functions as well as the state and deci-
sion spaces could be considered time-variant without consequences for the results
presented in this dissertation. In order for conciseness, in this dissertation no state
variables will be adopted as arguments of the leader function.

Finally, note that repeated games can be regarded as open-loop dynamic games
without the specification of a state variable and in which the players’ final cost is
a weighted average over the stages [65]. In terms of so-called tit for tat strategies
in repeated games, in which a player is ‘punished’ for a given number of succes-
sive stages if (s)he does not collaborate [65], a leader function in a (static) reverse
Stackelberg game already incorporates one-stage ‘punishment’ by associating leader
decisions that are less desirable for the follower to every follower decision that is
undesirable for the leader. In cases where the follower may behave suboptimally,
the leader however cannot completely control the follower’s decision, which makes
it impossible to adopt such ‘punishment’ for multiple stages in a repeated reverse
Stackelberg game, even if the follower does behave as desired. If the leader wants
to ‘punish’ a follower for an undesired, suboptimal behavior for multiple stages, she
has to adopt suboptimal leader functions that do not result in the leader’s desired
equilibrium.

Although the static leader functions in [98] are of the form γL : ΩF → ΩL, in
the multistage case the follower decision variable is replaced by a state-dependent
leader function, which is only indirectly dependent on the follower input. Also
in [184] derivations of such state-dependent leader strategies that are nonetheless
called incentive strategies can be found. As has just been explained, such strategies
could be seen as closed-loop or feedback strategies of the original Stackelberg game,
i.e., they are different from the leader function as defined in the reverse Stackelberg
game, in which the leader’s decision at stage k is dependent on uF(k).

For the static and dynamic open-loop case, a sufficient condition was derived in
[209] for the existence of an optimal affine leader function

uL = γL(uF) = ud
L +B(uF −ud

F), (2.16)

where the decision spaces are assumed to be Hilbert spaces, with B : ΩF → ΩL a
linear operator, i.e.: B∗∇uL

JF(u
d
L,ud

F) = −∇uF
JF(u

d
L,ud

F), with B∗ : ΩL → ΩF the adjoint
of B. Such an operator B now exists if ∇uL

JF(u
d
L,ud

F) 6= 0. However, these results
are restricted to games where JF(·) is convex and locally strictly convex as well as
twice continuously differentiable. This result will be elaborated upon in Chapter 3
(Section 3.4.1).
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Further, in [132] it is proven that the optimal affine leader function is unique
for linear-quadratic (LQ) dynamic games with quadratic cost functions and linear
state update equations for the case with a scalar follower decision variable. For
nF > 1 a unique affine strategy can still be found if in addition to the conditions of
[209], additional conditions regarding the system matrices are satisfied, for which
the reader is referred to [132].

More recently, in [125] the analysis of the affine incentive structure for a linear-
quadratic discrete-time system has been continued (both for the finite and infinite
horizon case) but instead of using a leader function that is in fact dependent on
uF, also there, state feedback is applied for both players. We therefore do not con-
sider this case as a truly reverse Stackelberg game. Such dynamic state-feedback
strategies in LQ problems have also been studied before in continuous time in, e.g.,
[168].

It should be noted that the dynamic game with a linear state equation and
quadratic cost functions is widely used as an illustrative example, e.g., amongst
several other references stated in this survey section, in [125, 167, 184]. Moreover,
existence results for an optimal (affine) leader function also rely on this specific LQ
case, as in [209].

2.4.2 Continuous-Time Differential Problems

While so far the discrete-time reverse Stackelberg game has been considered in this
survey, the results can also be extended to the continuous-time differential game.
Also in (Stackelberg) differential games, the LQ problem structure is a popular one
[56, 58, 139]; the LQ continuous-time structure of state update equation and objec-
tive functions for a reverse Stackelberg can be written as follows:

ẋ(t) = A(t)x(t)+BL(t)uL(t)+BF(t)uF(t), x(t0) = x0, (2.17)

J i(uL,uF) =
1

2
xT

(
tf)Qi,tfx(tf)+

1

2

Z tf

t0

(xT(t)Qix(t),

+uT
i (t)Riiui(t)+uT

j (t)Ri ju j(t)
)

dt,

(2.18)

i, j ∈ {L,F}, i 6= j, t ∈ [t0, tf], where the matrices are of appropriate dimension, and
Qi,tf ≥ 0,Qi ≥ 0,Ri j ≥ 0,Rii > 0.

In [210] conditions are developed under which the reverse Stackelberg game
with memory from stage τ ∈ [t0, t] at stage t ∈ [t0, tf], has the following optimal solu-
tion:

uL(t) = γL(uF)(t) = ud
L(t)+

Z t

t0

R(t,τ)(uF(τ)−ud
F(τ))dτ, (2.19)

which is the continuous-time equivalent to the affine function (2.16). However,
in order to find a matrix ||R|| < ∞ as required for a leader function, a necessary
condition is that ||∇uF

JF(u
d
L,ud

F)(t)|| < c(tf − t), t → tf, with c a constant [210].
In order to relax this requirement, in [56] the leader strategy with memory is

instead defined by using the Lebesgue-Stieltjes integral:

uL(t) = γL(uF)(t) = ud
L(t)+

Z t

t0

[dθη(t,θ)](uF(θ)−ud
F(θ)), (2.20)
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with θ ∈ [t0, t], t ∈ [t0, tf] and where η : [t0, tf]×R → Rnx+nF represents the vector of
available information. Analytically solvable necessary and sufficient conditions are
obtained for the optimality of this strategy in case of convex cost functions. Differ-
ent representations of η(t,θ) are considered in [56]; however, they are dependent
on the initial state x0 rather than explicitly on uF(t), for which the authors state
that stringent conditions on the game parameters would be needed. Likewise, in
[159] strategies dependent on uF(t) and past values of x are suggested. However,
the dependence on uF(t) is not explicitly adopted in the derivation of (sufficient)
conditions of [159].

In [56] also time-delay strategies are considered in which γL(t) depends linearly
on uF(θ) for t −δ ≤ θ ≤ t −σ,δ ≤ σ , with δ > 0,σ ≥ 0 constants. The necessary and
sufficient existence conditions on optimal leader functions are also shown to extend
to this time-delay case, where a distinction is made for the strategy γL(t) between
the cases t ≤ t0 +δ and t > t +δ.

Also in [139] conditions are developed for the existence of an optimal affine
strategy in a continuous-time LQ game. There, not only the leader function is taken
to be dependent on uF; the same strategy applies to the second player in the game:

γi(u j) = ud
j +D j(ui −ud

i ), i, j = 1,2, i 6= j, (2.21)

with D j : Ωi → Ω j, D j 6= 0, j = 1,2 for scalar variables u1,u2. Although the derivation
of this strategy is useful for the leader in the reverse Stackelberg game, it does
not follow a true Stackelberg setting but rather a cooperative game with equivalent
players.

2.4.3 Deterministic versus Stochastic Problems

As a stochastic reverse Stackelberg game usually the case is considered in which
the state variable of the game includes random components; in general, the state
variable is assumed to have a known distribution, often Gaussian with zero mean
[34, 97].

In [97] the two-player, static reverse Stackelberg case has been analyzed with a
randomly (Gaussian) distributed cost function parameter ξ. The leader’s cost func-
tion is now defined as JL = E[LL(γL,uF,ξ)], with LL : ΩL ×ΩF ×Ξ → R, with E[·] the
expected value operator; JF(·) is defined accordingly.3

In particular, the static LQ-Gaussian (LQG) case is examined and sufficient condi-
tions for the existence of an optimal affine leader function are obtained under several
additional assumptions on the game parameters, for which we refer to [97]. In the
analysis of how the results translate to a multistage version of the game, however,
a state feedback strategy is adopted, i.e., the leader’s strategy is no longer formu-
lated as a function of the follower’s decision as is applicable in a reverse Stackelberg
game.

In [34] a stochastic closed-loop reverse Stackelberg game is considered with a
leader function that is directly dependent on the current or previous-stage value

3It should be noted that ξ is called a state vector in [97], defined to represent some unknown elements
of the game in both the static and the dynamic case. This vector ξ should therefore not be confused with
the system state variable x ∈ X we use in the dynamic, multistage game.
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of the follower decision variable, or on the (partial) information that the follower
conveys to the leader. It is shown that the three problems can be solved in a similar
way, and they lead to an optimal solution in case a LQG problem is considered.

Several results on stochastic cases also consider incomplete information, as will
be briefly discussed in Section 2.4.4 below.

2.4.4 Problems with Partial, Nonnested Information

Another variant of uncertainty is in the lack of complete information; in particular
within the theory of incentives, different types of information asymmetry are stud-
ied.

In [97, 98] both a nested and nonnested stochastic reverse Stackelberg game is
considered, where the random variable ξ as introduced in Section 2.4.3 is assumed
to follow a Gaussian distribution. Whereas in the nested case, a follower’s informa-
tion is a subset of the information that the leader possesses, in the nonnested case,
the leader does not have access to all knowledge relevant to the leader about the
followers. In the latter case, the leader is generally unable to compute her globally
optimal solution. In order to arrive at a feasible desired equilibrium, the restrictive
assumption is made that LL is in fact independent of uL [98]. Assuming that ΩF is
known, the desired leader solution is now defined as a γL : ΩF → ΩL such that

arg min
uF∈ΩF

E[LF(γL(uF),uF,ξ)] = arg min
uF∈ΩF

E[LL(uF,ξ)]. (2.22)

Also in [99] an overview is provided of possible incomplete information struc-
tures in a stochastic setting, both for a static and a dynamic game. There, the leader
strategy is taken to be a function of the available information, which does not in
all cases include uF ∈ ΩF. In other words, the case is analyzed in which the leader
cannot observe the follower’s decision. As in the theory of incentives, the focus of
[99] is on the follower not acting truthfully in the case of incomplete information.

In a setting with multiple followers, a stochastic, random state reverse Stackel-
berg game is considered in [31] where the leader has access to a linear combination
of the followers’ actions. Here, the followers’ cost functions are strictly convex and
continuously differentiable. An affine leader function is computed that is based on
this random linear combination; it is shown that the performance obtained by the
leader is equivalent to the performance that applies in case she would be able to
observe the followers’ individual actions. In [14] this result is expanded to deal with
more than two levels of hierarchy, according to the technique from [98] described
in Section 2.4.6 below.

In case no knowledge is available of JF(·) or of the follower’s reaction curve that
can be directly derived from JF(·), an iterative learning procedure may be adopted to
arrive at a close-to optimal leader decision [187] or a leader function in the reverse
case [186]. For this purpose the use of a genetic algorithm is proposed and compared
with a standard gradient approach for off-line computation of an incentive strategy
in [186]. It should be noted that, when adopting such iterative procedure, the game
would have to be repeated until convergence is reached and the resulting strategy
yields a sufficient performance for the leader. This requires a setting in which a start-
up period with suboptimal policies for the leader would be possible. Alternative to
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performing several off-line iterations of the game in order to make up for the missing
information, methods could be investigated for enforcing the follower to (truthfully)
communicate JF(·) to the leader. Finally, in general when using the genetic approach,
no analytical convergence guarantees or suboptimality bounds can be obtained for
the leader’s neither for the the follower’s performance.

2.4.5 Sensitivity Analysis

Since the set of possible optimal (affine) leader functions is often nonunique, a
minimum sensitivity approach to incentive strategies is developed in [29]. In case
the leader does not have full information on JF(·), i.e., it is assumed that the value
of one or several of the parameters of a known parametrization of JF(·) is unknown
to the leader but the range of the parameter(s) is known, a robust leader function
can be computed based on nominal values of the unknown parameter(s). Here,
robustness of a leader function refers to the degree of sensitivity to deviation of the
parameters from their nominal values. Based on the results of [209], it is known that
for each possible value of the unknown parameters, there exists an optimal affine
leader function under the assumption of strictly convex cost functions and rational
follower behavior. Next to the proposed affine leader function, additional degrees
of freedom in the reduction of sensitivity can be introduced by incorporating also
nonlinear terms in the strategy [29]. The least-sensitive optimal strategy is taken
to belong to the twice continuously differentiable functions with bounded first and
second derivatives with respect to uF ∈ ΩF. However, it should be noted that in [29]
no explicit analysis is provided of the performance of the leader in case the assumed
nominal values characterizing JF(·) are incorrect.

In [30] the work of [29] is extended to include stochastic incentive schemes,
where again some parameters characterizing the unknown part of JF(·) vary around
some nominal value and where in addition the state is a random variable. A smooth
strategy is found that results in the desired leader solution, which solution is again
based on the assumed nominal values under the assumption of strictly convex and
twice continuously differentiable cost functions. Compared to the deterministic case,
in the stochastic setting the follower’s optimal response is proven to be minimally
or even completely insensitive to variations in the unknown parameter values with
respect to the nominal values. It should be noted though that this result is only pos-
sible in case the leader is assumed to have full access to the follower’s information.

2.4.6 Multilevel, Multiplayer Problems

The static reverse Stackelberg game with multiple leaders or followers is considered
in [153], where it is noted that not much theory is available with respect to mul-
tiplayer extensions to the reverse Stackelberg game. Indeed, most cases with mul-
tiple followers assume that these play a noncooperative simultaneous Nash game
amongst themselves and act as one follower group in response to the single leader
[167], where the leader strategy is of the form γL : ΩF,1 ×·· ·×ΩF,n → ΩL for n fol-
lowers [99, 103]. This setting is also considered in [153], where in case of multiple
leaders, also these are assumed to announce their leader function simultaneously
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according to their Nash equilibrium.
In [103] an alternative is presented to multiple followers playing a simultaneous

Nash game. There, it is shown that a single leader function γL : ΩF,1×·· ·×ΩF,n → ΩL

can prove sufficient to reach the leader’s desired equilibrium, since the n follow-
ers’ objective functions become identical except for a constant; the problem then
reduces to a single leader-single follower game. The results are, however, based
on the assumption of continuous differentiability of JF,i on ΩL×i=1,...,nΩF,i for all
i = 1, . . . ,n and on the existence of some k such that ∂JF,i/∂uF,k 6= ∂JF, j/∂uF,k i 6= j,
i, j = 1, . . . ,n, as well as on the convexity of JF,i on ΩL,−k×i=1,...,nΩF,i and strict con-
vexity at (ud

L,−k,uF,1, . . . ,uF,N) with uL,−k = (uL,1, . . . ,uL,k−1,uL,k+1, . . . ,uL,nL
) ∈ ΩL,−k ⊆

RnL−1 [103].
The same idea of realizing similar follower cost functions has been discussed

by means of a specific numerical example in earlier work [98]. There, the leader
adopts one distinct decision variable for each of the n followers, and proposes for
each follower i = 1, . . . ,n a different leader function γL,i : ΩF,1 ×·· ·×ΩF,n → ΩL,i.

True multihierarchy settings in which players perform as a leader and follower
simultaneously with respect to the upper and lower levels, respectively have also
been briefly studied in [98]. Sufficient conditions are stated such that the lower-level
players are induced to perform as desired for the higher-level players, by successively
substituting the leader functions in the order of announcement. For a three-level
system with player 1 being the upper level leader and with γi : ×3

i=1Ωi → R, i = 1,2,3
[98]:

(
u

d,1
1 ,ud,1

2 ,ud,1
3

)
= arg min

(u1,u2,u3)∈Ω1×Ω2×Ω3

J1(u1,u2,u3), (2.23)
[
u

d,2
2 (γ1),u

d,2
3 (γ1)

]
= arg min

(u2,u3)∈Ω2×Ω3

J2(u2,u3;γ1), and (2.24)

u
d,3
3 (γ2;γ1) = arg min

u3∈Ω3

J3(u3;γ2,γ1), (2.25)

where u1 = γ1(u2,u3),u2 = γ2(u3).
However, to the author’s best knowledge, cases with multiple leaders and multi-

ple followers simultaneously where the Nash concept is not adopted, have not been
looked into in the available literature.

2.5 Areas of Application

Hierarchical control can be roughly divided in cases in which a natural division in
multiple levels exists and those where a hierarchical structure is adopted as an alter-
native to strictly distributed optimization in order to facilitate the problem solving
[170]. The latter approach arises in large-scale control problems where information
is not automatically available to all controllers and difficult or costly to communicate.
Hence, the overall problem is decomposed where the higher-level controller acts as
a coordinator. However, in Stackelberg games, usually applications that embody a
natural hierarchy are considered.
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Looking into more specific applications of the reverse Stackelberg game, next
to contracting and pricing problems as studied in the area of incentives and man-
agement science [57] (see also Section 2.2.2), the following application areas have
been considered:

• Network pricing:

In [172] a reverse Stackelberg game is used to model a situation in which
an Internet service provider is considered as a leader that sets a price for the
bandwidth used by followers, where the price is dependent on the actual band-
width used. Both complete and incomplete information on the type of users as
denoted by a constant parameter w ∈ R+

0 in the users’ cost functions is studied.
For both cases, ε-optimal nonlinear strategies are obtained, with ε an arbitrar-
ily small constant. Such strategy will lead to an equilibrium that is arbitrarily
close to the leader’s optimal solution. The ε-optimal solutions are obtained by
making a small deviation in the leader function from the desired but unattain-
able optimum, i.e., by substituting (ud

L,ud
F) by (ud

L,ud
F − ε), which becomes the

new equilibrium point.

For the rather specific instance of the problem with uL,uF scalar and JF =
w log(1+uF)− 1

1−uF
−uL, it is shown in [172] that such approximate solutions

can always be found, e.g., for a function γL(uF) = a1uF + a2u2
F, a1 ∈ R,a2 ∈ R

constants.

• Road tolling:

In [180] a dynamic toll design problem is considered on a three-link highway
network where one of the links is not subject to a toll. In order to minimize
the total travel time and thus to reduce congestion, a toll proportional to the
traffic flow is proposed. It is shown that this Stackelberg game formulation
indeed yields a better performance for the road authority compared to when
adopting a constant or time-varying toll. However, the three links have the
same origin and destination and no overlap of roads applies; hence, the route
choice of the homogeneous traffic considered is solely based on the tolls of
each independent link. In Chapter 5 the use of reverse Stackelberg games in
traffic control settings will be elaborated upon.

• Electricity pricing:

In [134] reverse Stackelberg games are used to model the pricing of electricity
consumption in a stochastic peak load problem where, instead of adopting an
open-loop formulation, a closed-loop ‘load adaptive pricing’ policy is adopted
where the leader proposes an electricity price p consisting of a fixed charge
c and a unit price cvar that is based on the varying demand d that represents
the follower’s decision, i.e., p := uL = γL(uF) = cvaruF + c. This game is played
for n time-periods or cycles of a fixed duration, each consisting of an m-stage
game with a price associated with each stage. The values of cvar

nm and cnm are
computed as functions of the values of d, p, and a randomly distributed state
variable of previous stages in the current cycle, or in the previous cycle. When
the load adaptive pricing strategy is adopted within a dynamic infinite-cycle
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setting, stability of the system to small disturbances in the decision variables
uL and uF as well as the convergence of the coefficients that determine the
price p is proven.

It should be noted that a large number of publications is available that consider
a standard hierarchical game, i.e., that adopt the original Stackelberg structure. An
overview of applications of Stackelberg (differential) games in supply chain man-
agement and marketing settings can be found in [91]. Also the areas enumerated
above of road pricing [119], electricity markets [100, 178], and more general net-
work pricing [188] are considered in an original Stackelberg setting.

Overall, while the use of Stackelberg games in large-scale control systems is
proposed [16, 44], not many results actually consider such problem statements;
applications are rather adopted as a means to illustrate the Stackelberg concept.
Nonetheless, as indicated in [170] hierarchical, multilevel methods can indeed pose
a viable approach to structure large-scale control problems. We therefore see po-
tential in applying the reverse Stackelberg game also in those areas to which the
original Stackelberg game is applied, while real-life application remains a challenge
for both the Stackelberg and the reverse Stackelberg framework.

2.6 Open Problems

In the previous section an overview has been presented to integrate results on re-
verse Stackelberg games from its origin in the 1970s with more recent contributions
to the field. While the reverse Stackelberg game can be adapted with respect to sev-
eral aspects as depicted in Fig. 2.5, which allows it to be flexible in various settings,
there are still many unresolved problems. In general, these problems stem from
the fact that the game is difficult to solve analytically (especially if asymmetric and
imperfect information applies) as well as numerically. In the following, open issues
are enumerated to emphasize the potential of the reverse Stackelberg for further
research and application within the field of control.

• Convexity assumptions:

There is a large body of literature available on dynamic reverse Stackelberg
games with linear state equations and quadratic cost functions, for which a
leader function of an affine structure has been proven to solve the game to
optimality according to Definition 2.9 [34, 56, 139, 209]. Although this re-
sult is said to be applicable to a ‘sufficiently large’ number of cases [209], a
(strictly) convex and differentiable cost function and linear constraints will
not generally be found in possible real-life applications. A relaxation of these
assumptions should therefore be made.

• Computational tractability and optimality bounds:

Another opportunity may be found in the lack of focus on numerical tractability
of reverse Stackelberg problems, which is important especially in the context
of real-life control or optimization applications, given that large-scale control
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or optimization problems are often mentioned as a reason for studying Stack-
elberg strategies [16, 44]. Especially in the largely untouched case of non-
convex cost functions, approximate or suboptimal solutions may be required.
Moreover, there is little focus on establishing bounds on the leader objective
function value associated with suboptimal solutions; similarly, the associated
objective function value for the follower is not taken into account, whereas
bounds on the performance of lower-level controllers would be a relevant ad-
dition.

• Robustness:

Even in case a simple (affine) leader function suffices for attaining the leader’s
desired equilibrium, it would be interesting to investigate how sensitive a given
leader function is to changes in the game parameters. As mentioned in Section
2.4.5, in [29] nonuniqueness of the optimal leader function is used to consider
the minimization of the deviation from an estimated nominal parameter value
as a secondary objective. Similarly, robustness to unintentional deviations of
the follower to the optimal response could be considered, as discussed in [184]
for the closed-loop Stackelberg game. There, the problem is addressed by
adopting discontinuous state-dependent closed-loop strategies that are, how-
ever, developed for very particular numerical problem instances; also, it is
not clear how much worse off the leader is by punishing the follower from a
deviation from his optimal response. Further, the stability of (ε-optimal) Stack-
elberg solutions has been considered in [127]; however, no similar results can
currently be found in the context of reverse Stackelberg games.

• Desired leader solution:

Generally, it is assumed that the leader strives after obtaining a unique global
optimum. Irrespective of whether this solution can be obtained by a particular
leader function, cases could be investigated in which the leader strives after
a broader set of possible solutions. This becomes even more relevant in case
the leader solves a multiobjective problem and thus has to find a trade-off
between several optima. Similarly, instead of cardinal solutions that follow
from optimization of a real-valued objective function, discrete orderings of
preferred solutions could be considered. Such ordinal solutions for regular
Stackelberg games have also been advocated in [45].

• Stability:

A stability analysis has been performed for the continuous-time [168] and
later for the discrete-time [125] LQ Stackelberg game with no-memory state
feedback. In case of time-invariant weighting matrices that occur in the cost
functions and state equation of the Stackelberg game, sufficient conditions are
developed for a leader function that leads to an asymptotically stable system
for the infinite-time game. However, it is not guaranteed that such a leader
function exists, nor is a direct approach available for the computation of this
function due to the complexity of the problem. Moreover, similar guarantees
on the system stability for the dynamic reverse Stackelberg game have not yet
been investigated.
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• Leader-follower role:

In most cases the positions of leader and follower are taken to be known in
advance and fixed. While recent research in Stackelberg games allocates more
flexibility to this role [12, 17, 152, 173], no similar results can currently be
found for the reverse Stackelberg game, to which this flexible role should also
be applicable.

In the original Stackelberg framework, the leader-follower role has been an-
alyzed in [12]. There, it is shown that if two players act sequentially rather
than simultaneously as in a Nash game, both players may obtain better, but
not worse, results. Note that this provides another benefit of adopting a hi-
erarchical design for decision making as opposed to the alternative solution
concept of the Nash equilibrium. Further, in [173] the leader role is said to
be preferred to the follower role for players in a closed-loop Stackelberg game,
which is in general, however, not the case if feedback information applies.

In [152] a discrete-time dynamic Stackelberg game is considered where play-
ers in one of two groups constituting a leader or follower take the position of
the leader in turns. There, players are allocated to one of the two fixed groups
that take a switching position of leader respectively follower at each stage of
the game. Finally, in [17] an open-loop differential Stackelberg game is con-
sidered with mixed leadership, meaning that a player can be both leader and
follower at the same time, depending on the subset of control variables that
are associated with a particular role a priori. After announcement of the leader
decisions, the optimal follower responses are determined simultaneously, i.e.,
here, the Nash equilibrium concept is adopted.

• Nonlinear leader functions:

Whereas several options are given for possible leader function structures in re-
lation to incentive controllability [98], nonlinear function structures are hardly
considered in the reverse Stackelberg game, except from those that occur in
specific numerical examples [153, 154, 172, 180]. In [184], discontinuous
state-dependent closed-loop Stackelberg strategies are considered. In case the
follower played suboptimally during the previous stage, a leader strategy is
adopted that differs from the default affine leader function in the sense that a
leader strategy is adopted under which the follower performs worse. However,
it is not analyzed how much the leader’s performance is reduced in case of
such a ‘punishment’ strategy that follows irrational follower behavior. More-
over, although it is considered an incentive strategy, the leader strategies in
[184] are not directly dependent on the follower’s decisions as is required for
the reverse Stackelberg game.

• Approximate solutions:

Most research is focused on achieving the leader’s desired (global) optimum,
for which often those cases are considered in which an optimal affine leader
function can be derived. On the other hand, the case in which this is not
possible has not much been studied. In particular, suboptimal or ε-optimal
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strategies could be investigated, as is done for specific numerical examples in
[153, 154].

• Applications:

As has been mentioned in Section 2.5 above, several applications have been
considered for the original Stackelberg game. However, similar to the flexible
leader-follower role, it should be no problem to also extend the reverse game
to these problems. Moreover, as has been mentioned in Section 2.2, when
adopting a – more general – reverse Stackelberg approach, the leader player
may be able to achieve a better performance than in the original case.

• Constraints:

Most results on reverse Stackelberg or incentive strategies do not take into
account constraints on decision and state spaces, except for the origin and
nonnegativity constraints γL(·) ≥ 0 and γL(0) = 0 [153]. As this prevents from
considering general applications, more general constraints should therefore be
considered as well. In Chapter 3 it is explained how considering a constrained
leader and follower decision space influences the set of feasible solutions as
composed for the unconstrained case.

In the following chapters, first the convexity and differentiability assumption
will be relaxed in conditions on the existence and in a characterization of an optimal
affine leader function as will be discussed in Chapter 3, where also a constrained
decision space will be considered. Solution methods for deriving optimal nonlinear
leader functions will subsequently be proposed in Chapter 4 and applications will be
considered in Chapter 5.





Chapter3
On Optimal Affine Leader

Functions
In this chapter, a first step is made towards developing a systematic solution ap-
proach that on the one hand eases the solution process of the generally complex
single-leader single-follower reverse Stackelberg game, and that at the same time
deals with a game setting in which assumptions that could restrict the application
to certain problem settings are relaxed as much as possible. In order to solve the
reverse Stackelberg game, an indirect approach will be adopted in which a specific
structure of the leader function is considered, given a desired equilibrium that the
leader strives to achieve. In particular, in this chapter a leader function of the affine
type is analyzed in order to procure a systematic approach for solving the game to
optimality. To this end, necessary and sufficient existence conditions for an opti-
mal affine leader function are developed. Compared to earlier results reported in
the literature, the differentiability requirement of the follower objective functional
is relaxed and locally strict convexity of the follower’s sublevel set at the desired
reverse Stackelberg equilibrium is replaced by the more general property of an ex-
posed point. Moreover, a full characterization of the set of affine leader functions
that solve the game to optimality is derived. The parametrized characterization of
such a set facilitates further optimization, e.g., when considering the sensitivity to
deviations from the optimal follower response, as will be illustrated by a simple
example. Moreover, the characterization can be used to verify the existence of an
optimal affine leader function in a constrained decision space.

The research discussed in this chapter is based on [83], supported by the results
presented in [77, 78].

3.1 Introduction

As has been explained in the literature survey of Chapter 2, much research on the
reverse Stackelberg game is tailored to the specific case of a quadratic, (strictly) con-
vex and differentiable cost functional and, in a dynamic game framework, of a linear
state update equation. Since the aim of the work presented in this thesis is to ex-
pand the available solution methods of the reverse Stackelberg game to form a basis
applicable to general problem structures, a first step is to generalize the analysis to

37
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cover a broader class of problems including problem instances in which nonconvex
sublevel sets for the follower objective function as well as nondifferentiable objective
functions apply.

For this purpose, first the reachability of the leader’s desired equilibrium is ana-
lyzed for a leader function belonging to the affine class of leader function structures,
in the form of necessary and sufficient existence conditions. This is achieved by us-
ing a geometric approach similar to the approach adopted in [209], where sufficient
conditions were developed for the existence of an optimal affine leader function in
the special case of a convex and differentiable leader and follower objective func-
tion.

In addition, we focus on the actual derivation of the set of optimal affine leader
functions by characterizing the parameter values of possible optimal leader func-
tions. Here, the computational complexity of the proposed solution approach is con-
sidered and several illustrative examples are provided. The resulting set of possible
solutions can be used to consider secondary objectives, e.g., related to a sensitivity
analysis [29, 30], which is especially important if the full rationality assumption of
the players is relaxed or dynamic, stochastic settings with uncertainty and noise are
considered. Furthermore, the characterization can be used to verify the existence of
an optimal affine leader function in a constrained decision space, in which case the
derivation of existence conditions is a challenging task.

The remainder of this chapter is structured as follows. Section 3.2 includes a
clarification of notation and assumptions adopted in this chapter. In Section 3.3,
necessary and sufficient conditions are proven for the existence of an optimal affine
leader function for the unconstrained case, considering separately the case of a
scalar leader input and the cases in which the desired equilibrium is either an in-
terior or a boundary point of the nonconvex and nonsmooth sublevel set. Then, in
Section 3.4 we derive the full set of affine leader functions that solve the reverse
Stackelberg game to optimality in the unconstrained case. These results are an-
alyzed under the presence of constraints in Section 3.5 and simple examples are
provided to show the relevance of the full characterization. A secondary objective
like the minimization of the sensitivity of a leader function is considered as a further
motivation of the characterization in Section 3.6. Conclusions are finally presented
in Section 3.7.

3.2 Preliminaries

In the current chapter the indirect reverse Stackelberg game variant is adopted, i.e.,
an optimal leader function is aimed for given the leader’s desired equilibrium point,
as described in Chapter 2 (Section 2.1.4). In the section below we first elaborate on
the particular affine parametrization of the leader function that is considered in this
chapter.
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3.2.1 Affine Incentive Controllability

In order to reduce the complexity of the general reverse Stackelberg game and to
create a systematic approach towards solving the general game, in this chapter we
focus on the affine structure of the leader function, i.e., we assume the set ΓL to
include only functions of the form

uL := γL(uF) = ud
L +B(uF −ud

F), (3.1)

where B denotes a linear operator mapping ΩF → ΩL, represented by an nL × nF

matrix in the finite-dimensional case we will consider according to assumption A.3
in Section 3.2.3 below. The property of a particular desired leader equilibrium to
be feasible for an instance of the reverse Stackelberg game is known as incentive
controllability in the literature [98, 209]. It will now be analyzed under what con-
ditions an optimal affine leader function exists, meaning that the leader is able to
induce the follower to choose the desired input ud

F and thus reach her desired equi-
librium. Here, the follower’s sublevel set will play a crucial part; for clarity we recall
its definition according to 2.8:

Λd :=
{
(uL,uF) ∈ ΩL ×ΩF

∣∣∣JF (uL,uF) ≤ JF(ud
L,ud

F)
}

. (3.2)

From now on, we denote by AL the set of affine relations through (ud
L,ud

F) that
are defined as sets of dimension nF in ΩL ×ΩF and such that for αL ∈ AL, αL ∩Λd =
{(ud

L,ud
F)}. Note that this construction is necessary in order to be able to work with

the function γL : ΩF → ΩL as a set of points {(uL,uF)|uF ∈ ΩF,uL = γL(uF)}:

Remark 3.1 Note that in this chapter the leader function γL is defined as a map-
ping ΩF → ΩL that can also be represented by the set of points {(uL,uF)|uF ∈ ΩF ,
uL = γL(uF)}. In the following, both the mapping and the set representation of γL

are adopted depending on the context. 3

For αL ∈ AL, with αL(ΩL) = ΩF, a candidate leader function can now be character-
ized by γL := (αL)−1. Finally, for a set X , let A X

L := {αL ∈ AL|αL ⊆ X}.

3.2.2 Notation and Definitions

The analysis of this chapter mostly relies on concepts from convex analysis and
geometry, such as hyperplanes and strictly convex functions and sets (see e.g., [10,
164]). In addition, the following notation and definitions are adopted:

• By f (X̃) we denote the image of a function f : X →Y for a subset X̃ ⊆ X , where
the domain is denoted X := dom( f ).

• Let S = X ×Y . The projection of a set P ⊆ S onto the space X or Y is de-
noted by projX×Y→X (P), projX×Y→Y (P), which for ease of notation we shorten
to projX (P) and projY (P) respectively. For an element p ∈ P, p =

[
xT,yT

]T,
with x ∈ X ,y ∈ Y , we have projX (p) := x and similarly, projY (p) := y. Finally,
projX (P) := {projX (p)|p ∈ P} and projY (P) := {projY (p)|p ∈ P}.
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• By {0}nL ×ΩF we denote the (nL +nF)-dimensional decision space in which the
leader components are taken to be zero.

While different definitions are adopted for the concepts of polyhedra and poly-
topes, we refer to [171]:

Definition 3.2 Polyhedron, polytope

A (convex) polyhedron in the Euclidean space Rn is the solution set of a finite system
of linear inequalities, defined by the intersection of finitely many affine halfspaces.
These halfspaces can be closed or open (i.e., {x ∈ Rn : aTx ≤ b} or {x ∈ Rn : aTx <
b},a ∈ Rn,b ∈ R respectively.) A set P is a polytope if and only if P is a bounded
polyhedron. 3

Definition 3.3 Convex hull, (strict) convexity

The convex hull of a set X of vectors is the smallest convex set containing X:

conv(X) := {λ1x1 + · · ·+λtxt |t ≥ 1;x1, . . . ,xt ∈ X ;λ1, . . . ,λt ≥ 0;λ1 + · · ·+λt = 1} .

A set C is convex if it satisfies: if x,y ∈ C and 0 ≤ λ ≤ 1, then λx +(1− λ)y ∈ C.
Further, if S ⊆ Rn, a functional f : S → R is convex if S is convex and if f (λx +(1−
λ)y) ≤ λ f (x)+(1−λ) f (y) whenever x,y ∈ S and 0 ≤ λ ≤ 1. Such a function is strictly
convex if the inequality strictly holds for 0 < λ < 1.

A set X is strictly convex if there do not exist two different points on its boundary
bd(X) for which the line segment connecting the points is part of the boundary:

∀y,z ∈ bd(X),y 6= z,∀λ ∈ (0,1) : (1−λ)y+λz ∈ int(X),

where int(X) denotes the interior of X , i.e., int(X) := {x|∃ε > 0,x+εB ( X}, with B the
Euclidean unit ball in Rn: B := {x

∣∣|x|2 ≤ 1} where |x|2 :=
√

xTx denotes the Euclidean
norm of x.

A function f is locally strictly convex at a point x ∈ int(dom( f )) if there is a neigh-
borhood of x such that the restriction of f to that neighborhood is strictly convex. A
similar definition applies to a set X . 3

Definition 3.4 Affine subspace

A set X is an affine subspace if αy+(1−α)z ∈ X for all y,z ∈ X ,α ∈ R. 3

Definition 3.5 (Polyhedral) cone

A (convex) cone is a nonempty subset C of points in Euclidean space that satisfies: if
x,y ∈C and λ,µ ∈ R+, then λx+µy ∈C. A polyhedral cone is the set of solutions of a
finite system of linear inequalities, i.e., C := {x|Ax ≤ 0} for some matrix A. The cone
generated by the set of vectors x1, . . . ,xm is the smallest convex cone constaining the
set:

cone(x1, . . . ,xm) := {λ1x1 + · · ·+λtxt |λ1, . . . ,λt ≥ 0} .

A convex cone is polyhedral if and only if it is finitely generated. 3
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a
b

c
dX

Figure 3.1: The points a and d of this closed convex set X are exposed; points b and c

are not.

Definition 3.6 Supporting hyperplane

Let the polyhedron P be defined by P := {x ∈ Rn|Ax ≥ b}. If c∈Rn with c 6= 0 and δ =
max

{
cTx|Ax ≥ b

}
, then the hyperplane

{
x|cTx = δ

}
is called a supporting hyperplane

of P , denoted by ΠX . In particular, we denote by ΠX (x) a supporting hyperplane to
the set X at the point x ∈ X .

The hyperplane is said to be strictly supporting if cTx = δ for one single point
x ∈ X . 3

Definition 3.7 Exposed point

An exposed point of a convex set X is defined as a point in its closure
X̄ :=

T{X + εB|ε > 0} – with B the Euclidean unit ball as defined within Definition
3.3 – that intersects with a strictly supporting hyperplane to X .

Similarly, a point x̃ in the closure of a nonconvex set X̃ is an exposed point if there
exists a neighborhood of x̃, N (x̃), such that x̃ intersects with a strictly supporting
hyperplane to N (x̃). 3

Definition 3.8 Generalized gradient, generalized normal

The generalized gradient denoted ∂ f (x) of a locally Lipschitz continuous function
f : Rn → R at x is defined as follows:

∂ f (x) := conv({ lim
m→∞

∇ f (xm)|xm → x,xm ∈ dom( f )\Ω f }),

with Ω f being the set of points where f is nondifferentiable [38]. By V (X ,x) we
denote the generalized normal to the set X at the point x ∈ X̄ , defined as the set of
normal vectors to the possible tangent hyperspaces to X at x. Thus, in case Λd is
smooth at (ud

L,ud
F), V

(
Λd,(u

d
L,ud

F)
)

= ∇JF(u
d
L,ud

F). 3

3.2.3 Assumptions

The following assumptions are adopted in the analysis of this chapter:

[A.1] Let ΩL,ΩF be convex sets.

[A.2] Let Λd be a connected set.

[A.3] Let nL,nF be finite.

[A.4] Let Λd 6= {(ud
L,ud

F)}.
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The first assumption A.1 is taken from the literature on Stackelberg games, e.g.,
[15, 209] and is a necessary condition for convexity of JF(·) and Λd. Assumption A.2
is a less restrictive case of taking JF(·) and therefore also Λd to be strictly convex,
as was done in [209]. Note that A.2 is automatically satisfied if it holds that JF(·)
is a convex or quasiconvex function. Further note that we do not require JF(·) to
be continuous. In the special case that (ud

L,ud
F) ∈ bd(conv(Λd)) assumption A.2 can

even be omitted altogether if Λd is substituted by conv(Λd) in the analysis below.
Assumption A.3 is also accepted in many control applications [7, 64] and moreover
it is necessary in order to be able to adopt the concept of a supporting hyperplane.
Finally, the special case excluded by assumption A.4 presents the trivial situation in
which (ud

L,ud
F) is automatically optimal for the follower as well.

3.3 Necessary and Sufficient Existence Conditions

In the current section, basic necessary and sufficient conditions for the existence of
an optimal affine leader function are proposed for the most general case in which
the sublevel set Λd is allowed to be nonconvex and nonsmooth, in an unconstrained
decision space. These existence conditions form the basis for a characterization
of the set of optimal affine solutions provided in Section 3.4. Here it should be
noted that when relaxing the strict convexity of the follower objective function from
the original results in [209], the desired leader equilibrium is not automatically a
boundary point of the sublevel set. Exclusion of this case prevents the current theory
that adopts such a setting [34, 56, 125, 139, 167, 184, 209] from being generally
applicable.

For the sake of clarity and completeness, an overview of the results presented in
the following sections can be found in the diagram below.

Table 3.1: Overview of Results.

Existence conditions – Section 3.3

Basis
Lem. 3.9

Supporting hyperplane
Lem. 3.10

Lemmata
Lem. 3.11

nL = 1 Prop. 3.12

nL > 1
Prop. 3.13 (ud

L,ud
F) exposed point

Prop. 3.14 (ud
L,ud

F) ∈ conv(Λd)

Special cases
Rem. 3.15 (ud

L,ud
F) not exposed

Rem. 3.16 nL = nF = 1

Characterization – Section 3.4

Basis
Lem. 3.18 Conditions on R

Lem. 3.19 RF = InF

Prop. 3.20 Characterization of γL

Prop. 3.21 Characterization of RL

In this section first some lemmata are provided that form basic elements for the
proofs of the propositions in Section 3.3.2 and 3.3.3.
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3.3.1 Supporting Hyperplane Lemmata

Lemma 3.9 follows straightforwardly from the supporting hyperplane theorem (e.g.,
Theorem 11.6 in [164]) and Definition 3.6 of a strictly supporting hyperplane.

Lemma 3.9 Assume the set Λd defined through (3.2) to be convex. Let ΩL = RnL ,ΩF =
RnF and let αL ∈ AL be any affine function through (ud

L,ud
F) such that αL ∩ Λd =

{(ud
L,ud

F)}. Then αL lies on a supporting hyperplane to Λd at (ud
L,ud

F).

Lemma 3.10 Let Λd be defined through (3.2). A supporting hyperplane ΠΛd
(ud

L,ud
F)

exists at (ud
L,ud

F) if and only if (ud
L,ud

F) 6∈ int(conv(Λd)). Further, for an exposed point

(ud
L,ud

F) of conv(Λd), ΠΛd
(ud

L,ud
F)∩Λd = {(ud

L,ud
F)}.

Proof : By definition of a convex hull, a supporting hyperplane ΠΛd
(ud

L,ud
F) exists

if and only if there exists a supporting hyperplane Πconv(Λd)(u
d
L,ud

F) to conv(Λd) at
(ud

L,ud
F). Further, a supporting hyperplane to conv(Λd) exists at (ud

L,ud
F) if and only if

(ud
L,ud

F) is a boundary point of conv(Λd) and thus also of Λd ([164, Theorem 11.6]).
Clearly, an exposed point of conv(Λd) is such a boundary point. For the intersection
of ΠΛd

(ud
L,ud

F) with Λd solely to occur in the point (ud
L,ud

F), it is required that (ud
L,ud

F)
is an exposed point of conv(Λd). (Note that it is therefore sufficient for conv(Λd) to
be locally strictly convex at (ud

L,ud
F).) 2

Lemma 3.11 Assume that there exists a strictly supporting hyperplane Πconv(Λd)(u
d
L,ud

F) :

Πconv(Λd)(u
d
L,ud

F)∩Λd = {(ud
L,ud

F)}, with Λd defined by (3.2). Then an affine function

α
Πconv(Λd)(u

d
L,ud

F)

L ∈ AL coincides with Πconv(Λd)(u
d
L,ud

F) if and only if uL is scalar (nL = 1).

Proof : Only in case of a scalar uL the dimension of a hyperplane ΠΛd
, i.e., (nL +

nF)− 1, equals the number nF of independent variables of an affine leader func-
tion αL ∈ AL, with uF ∈ ΩF ⊆ RnF . If there exists a strictly supporting hyperplane

Πconv(Λd)(u
d
L,ud

F), it follows that this plane coincides with α
Πconv(Λd)(u

d
L,ud

F)

L . 2

We can now proceed by stating the main propositions.

3.3.2 Case nL = 1

We first need to consider the special case of nL = 1; no optimal affine leader function
then exists if, in addition, (ud

L,ud
F) is not an exposed point of conv(Λd).

Proposition 3.12 Let ΩL = RnL ,ΩF = RnF and assume that nL = 1. Then the de-

sired equilibrium (ud
L,ud

F) can be reached under an affine leader function γL : ΩF → ΩL

if and only if it both holds that (ud
L,ud

F) is an exposed point of conv(Λd) and that

projΩL

(
V

(
conv(Λd) ,(u

d
L,ud

F)
))

6= {0}.

Proof : First note that since nL = 1, if and only if a strictly supporting hyperplane
Πconv(Λd)(u

d
L,ud

F) exists, it coincides with an affine αL ∈ AL, as was shown in Lemma
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3.11. Note that a plane Πconv(Λd)(u
d
L,ud

F) is strictly supporting if and only if (ud
L,ud

F) is
an exposed point of conv(Λd) – implying that (ud

L,ud
F) 6∈ int(conv(Λd)).

It remains to be shown that in addition to (ud
L,ud

F) being exposed, in order for

α
ΠΛd
L (ΩL) = ΩF to hold, it is necessary and sufficient that there exists a vector ν ∈
V

(
Λd,(u

d
L,ud

F)
)

: projΩL
(ν) 6= {0}, from which it follows that the projection

projΩL

(
V

(
conv(Λd) ,(u

d
L,ud

F)
))

should not include only the zero vector. In that case,
no explicit description of a leader function exists. This sufficiency and necessity is
proven next.

(⇒) By contraposition: Suppose that projΩL

(
V

(
conv(Λd) ,(ud

L,ud
F)

))
= {0}. Then

there exists a tangent plane Πconv(Λd)(u
d
L,ud

F) with a normal vector ν for which it
holds that projΩL

(ν) = {0}. It follows that this normal vector defining the hyperplane
Πconv(Λd)(u

d
L,ud

F) is parallel to the decision space ΩF, i.e., this hyperplane is orthog-
onal to {0}nL ×ΩF. Therefore, projΩF

(
ΠΛd

(ud
L,ud

F)
)

( ΩF and ΠΛd
(ud

L,ud
F) will not

include any elements (uL,uF) ∈ ΩL × (ΩF \{ud
F}), which implies that α

ΠΛd
L (ΩL) Ã ΩF.

(⇐) If projΩL

(
V

(
conv(Λd) ,(u

d
L,ud

F)
))

6= {0}, there exists a normal vector ν ∈
V

(
conv(Λd) ,(u

d
L,ud

F)
)

defining a hyperplane Πconv(Λd)(u
d
L,ud

F) that is not orthogo-
nal to the decision space ΩL. It follows that the hyperplane is not orthogonal to
{0}nL ×ΩF, i.e., projΩL

(
V

(
conv(Λd) ,(u

d
L,ud

F)
))

= ΩF.
Hence,

∀uF ∈ ΩF ∃uL ∈ ΩL : (uL,uF) ∈ Πconv(Λd)(u
d
L,ud

F).

Thus, there exists an affine α
ΠΛd
L such that α

ΠΛd
L (ΩL) = ΩF.

Under the use of a leader function γL :=

(
α

Π
conv(Λd)(ud

L
,ud

F
)

L

)−1

, by definition of the

level set (3.2), the minimum of JF(·) will be obtained at (ud
L,ud

F), concluding the
proof. 2

An example of a case in which Λd is nonsmooth and no affine γL(·) exists is
depicted in Fig. 3.2(a) : here, projΩL

(
V

(
Λd,(u

d
L,ud

F)
))

= {0}.

3.3.3 Case nL > 1

Propositions 3.13 and 3.14 below consider respectively the case in which the desired
leader equilibrium (ud

L,ud
F) is an exposed point of conv(Λd) or the case in which it is

in the interior of conv(Λd) for nL ≥ 1 and nL > 1.

Proposition 3.13 Let nL ≥ 1 and assume that (ud
L,ud

F) is an exposed point of conv(Λd).
Allow Λd to be nonsmooth at (ud

L,ud
F) and assume that ΩL = RnL ,ΩF = RnF . Then the

desired equilibrium (ud
L,ud

F) can be reached under an affine γL : ΩF → ΩL if and only if

projΩL

(
V

(
conv(Λd) ,(u

d
L,ud

F)
))

6= {0}.

Proof : The necessity and sufficiency of the condition projΩL

(
V

(
conv(Λd) ,(u

d
L,ud

F)
))

6= {0} is proven in the previous Proposition 3.12 for γL := Πconv(Λd)(u
d
L,ud

F). In case
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Λd

ud
L

uL

uF,2 ud
F,2

uF,1

ud
F,1

V
(

Λd,(u
d
L,ud

F)
)

γL

Λd

uF

uL,2

uL,1

(ud
L,ud

F)

Figure 3.2: (a) Example of a convex set Λd that is nonsmooth at (ud
L,ud

F), for which

no optimal affine leader function exists. (b) Example of an optimal affine

leader function not lying on a supporting hyperplane ΠΛd
(ud

L,ud
F) for nL >

1, (ud
L,ud

F) ∈ int(conv(Λd)).

nL > 1, it holds that γL ( Πconv(Λd)(u
d
L,ud

F). Thus, there exists at least one leader

function on the given hyperplane that satisfies the condition that α
ΠΛd
L (ΩL) = ΩF. 2

Finally, for nL > 1, requiring αL ∈ AL to lie on a supporting hyperplane separating
the full (nF + nL)-dimensional decision space into subspaces is generally too restric-
tive for the existence of an optimal affine leader function. This applies to e.g., the
general nonconvex case under a constrained decision space, and to the the case in
which (ud

L,ud
F) ∈ int(conv(Λd)) as depicted in Fig. 3.2(b). Hence, instead the tangent

hyperplane concept is adopted in Proposition 3.14 below.

Proposition 3.14 Let nL > 1 and assume that (ud
L,ud

F) ∈ int(conv(Λd)). Allow Λd to

be nonsmooth at (ud
L,ud

F) and assume that ΩL = RnL ,ΩF = RnF . Then the desired equi-

librium (ud
L,ud

F) can be reached under an affine γL : ΩF → ΩL if and only if there ex-

ists an nF-dimensional tangent, affine subspace Πt
d(u

d
L,ud

F) to Λd at (ud
L,ud

F) such that

Πt
d(u

d
L,ud

F)∩Λd = {(ud
L,ud

F)},
and such that

projΩL

(
V

(
Λd,(u

d
L,ud

F)
))

6= {0}.

Proof :

Since αL ∈ AL is of the same dimension as a tangent, affine subspace Πt
d(u

d
L,ud

F),

∃αL ∈ AL : αL ∩Λd = {(ud
L,ud

F)}

if and only if
∃Πt

d(u
d
L,ud

F) : Πt
d(u

d
L,ud

F)∩Λd = {(ud
L,ud

F)}.
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γL

Λd

uF

uL,2

uL,1

(ud
L,ud

F)

V

Figure 3.3: Example of an affine leader function lying on a supporting hyperplane

ΠΛd
(ud

L,ud
F) that is not strictly supporting.

In order for αL ∈ A Πt
d(ud

L,ud
F)

L to be a mapping ΩL →ΩF it is necessary and sufficient
that projΩL

(
V

(
Λd,(u

d
L,ud

F)
))

6= {0} as was proven before in Proposition 3.12. 2

It is important to note that an optimal affine leader function should satisfy (2.5)
and (2.6). Constraint (2.7) is easily satisfied, namely for any affine function passing
through the desired equilibrium. The main elements of the necessary and sufficient
conditions with respect to (2.5) and (2.6) are therefore:

• dom(γL) = ΩF, i.e., it is not allowed for the function γL represented by a set
of points to be perpendicular to the follower decision space. This orthogo-
nality requirement is necessary and sufficient for the coverage of ΩF by an
affine function if ΩL = RnL ,ΩF = RnF . Hence, projΩL

(
V

(
Λd,(u

d
L,ud

F)
))

6= {0} or
projΩL

(
V

(
conv(Λd) ,(ud

L,ud
F)

))
6= {0} is used in the above propositions.

• ud
F should be the optimal follower response to γL(·), i.e., the set defined by γL

should not intersect with the sublevel set Λd in any other point than (ud
L,ud

F).
Hence, the concepts of an exposed point and of respectively a tangent hyper-
plane and an affine subspace are adopted in the above propositions.

Remark 3.15 Consider the case with (ud
L,ud

F) ∈ bd(conv(Λd)) but where (ud
L,ud

F) is
not an exposed point, i.e., no supporting hyperplane Πconv(Λd)(u

d
L,ud

F) exists that in-
tersects with conv(Λd) solely in the point (ud

L,ud
F). It follows directly that neither a

hyperplane exists that intersects with Λd solely in (ud
L,ud

F). However, by definition of
the convex hull, there does exist a supporting hyperplane Π̃conv(Λd)(u

d
L,ud

F) for which
it consequently holds that Π̃conv(Λd)(u

d
L,ud

F)∩Λd \{(ud
L,ud

F)} 6= ∅. For this case not cap-
tured by Proposition 3.13 an optimal affine γL may still exist for nL > 1, as depicted
in Fig. 3.3. 3

Remark 3.16 In the special case with (ud
L,ud

F) exposed and with scalar decision
variables (nF = 1,nL = 1), an affine γL : ΩF → ΩL leading to (ud

L,ud
F) automatically
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exists.
Since Λd is nonsmooth at (ud

L,ud
F), a supporting hyperplane to Λd will not be a

unique (tangent) hyperplane. By both the convexity of Λd and by (ud
L,ud

F) being an
exposed point, we know that there does not exist a leader decision uL ∈ ΩL \{ud

L} :

{(uL,ud
F)} ∈ Λd. Therefore, there must exist an alternative normal vector defining

the hyperplane ΠΛd
(ud

L,ud
F) that is not orthogonal to {0}nL ×ΩF. For such a vector,

ΠΛd
(ud

L,ud
F) and therefore α

ΠΛd
(ud

L,ud
F)

L will cover ΩF, i.e., dom(γL) = ΩF. 3

3.4 Characterization of an Optimal Affine Leader Func-

tion

In the remainder of this chapter, the full set of affine leader functions will be derived
under which the leader is able to induce the follower to choose the input ud

F and
thereby to reach the desired solution point. In Section 3.4.1 first the case considered
in the literature is summarized, after which we deal with the more general case in
Section 3.4.2.

3.4.1 Under Differentiability Assumptions

A characterization of an optimal affine leader function (3.1), which reduces to the
computation of an nL ×nF matrix B, was first derived in [209] in case JF(·) is differ-
entiable in (ud

L,ud
F).

In order to make sure that B exists as defined next, it is assumed in [209] that
ΩL,ΩF are Hilbert spaces1 and that JF(·) is Fréchet differentiable2 on ΩL×ΩF. Addi-
tionally, JF(·) is assumed to be strictly convex in ΩL×ΩF. It is known that for ΩL,ΩF

Banach spaces3 there exists a continuous linear operator B such that BuF = uL, uF 6= 0

[209]. Then, for nL,nF finite – a similar analysis is applicable for the infinite case –
B should satisfy

[∇uL
JF(u

d
L,ud

F)]
TB = [∇uF

JF(u
d
L,ud

F)]
T, (3.3)

which holds under the assumption that ∇uL
JF(u

d
L,ud

F) 6= 0 (as follows from the con-
ditions for the existence of an optimal affine leader function) and which can be
verified by taking the inner product of the expression uL = 0 according to (3.1) and
[∇uL
JF(u

d
L,ud

F)]
T. This product

0 = [∇uL
JF(u

d
L,ud

F)]
T[(ud

L −uL)+B(ud
F −uF)] (3.4)

= [∇uL
JF(u

d
L,ud

F)]
T(ud

L −uL)+ [∇uL
JF(u

d
L,ud

F)]
TB(ud

F −uF) (3.5)

= [∇uL
JF(u

d
L,ud

F)]
T(ud

L −uL)+ [∇uF
JF(u

d
L,ud

F)]
T(ud

F −uF) (3.6)

1A Hilbert space H is a vector space with an inner product 〈 f ,g〉 such that the norm ‖ f‖2 =
√

( f , f )
makes H a complete inner product space, i.e, for every Cauchy sequence x j ∈H (‖x j −xk‖→ 0 as j,k →∞)
there is some x ∈ H such that ‖x− x j‖→ 0 as j → ∞ [126].

2A function f : X → Y is Fréchet differentiable at x ∈ X if for each a ∈ X there exists a bounded linear
operator δ f (x;a) ∈ Y linear and continuous with respect to a such that lim‖a‖2→0

‖ f (x+a)− f (x)−δ f (x;a)‖2

‖a‖2
= 0.

In finite-dimensional spaces, it is represented by the Jacobian matrix [133].
3A Banach space is a complete normed linear vector space. A Hilbert space is special case where the

norm ‖ · ‖2 is an inner product [133].
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corresponds exactly to the expression of a tangent hyperplane Πt
Λd

(ud
L,ud

F) to Λd at
(ud

L,ud
F), from which it is concluded that if (3.3) holds, the affine function γL indeed

lies on the hyperplane Πt
Λd

(ud
L,ud

F).
Under the condition ∇uL

JF(u
d
L,ud

F) 6= 0 the following expression is mentioned in
[209]:

B = ∇uL
JF(u

d
L,ud

F)∇
T
uF
JF(u

d
L,ud

F)/||∇T
uL
JF(u

d
L,ud

F)||2. (3.7)

Note that this is only one of many possible expressions for nL > 1. Moreover, in some
constrained cases this expression does not yield an optimal leader function, while
an alternative, optimal affine solution does exist as will be illustrated by Example
3.17 below. A generalized characterization of the optimal affine leader function is
therefore developed in Section 3.4.2 below.

Example 3.17

We now provide a situation in which the specific expression of B proposed in
[209] for JF(·) differentiable at (ud

L,ud
F) does not yield a feasible leader function in

the constrained case, but in which an optimal leader function does exist.
Let

JF(uL,uF) = (uF −6)2 +(uL,1 −1)2 +(uL,2 −5)2,

and let (ud
L,1,u

d
L,2,u

d
F) = (0.5,6,4).

Then, ∇uF
JF(u

d
L,ud

F) = 2uF −12, ∇uL
JF(u

d
L,ud

F) =

[
2uL,1 −2

2uL,2 −10

]
, leading to

B :=
∇uL
JF(u

d
L,ud

F)∇
T
uF
JF(u

d
L,ud

F)

||∇T
uL
JF(u

d
L,ud

F)||2
(3.8)

=

([
−1

2

]
· (−4)

)
/

([
1 2

][
1

2

])
=

[
4/5

−8/5

]
.

As can be seen in Fig. 3.4 a mapping γL as defined through (3.1) with B as
expressed in (3.8) does not return values for all uF ∈ ΩF within the bounding box
imposed by the constraints

uL,1 ∈ [0,16],uL,2 ∈ [0,5],uF ∈ [2,8].

Thus, a parametrization B as defined by (3.7) does not belong to the characterization
of an optimal leader function in this constrained case.

However, there do exist optimal affine mappings ΩF → ΩL through (ud
L,ud

F) that
lie on ΠΛd

(ud
L,ud

F). As also plotted in Fig. 3.4, a suitable leader function that also lies
on the tangent hyperplane defined by the relation

−uL,1 +1/2 ·uL,2 +2 ·uF −9/4 = 0,

would be:

uL = γ̃L(uF) =

[
6

1/2

]
+

[
(−9/4−6)/4

−1/8

]
(4−uF). 3
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Figure 3.4: Situation with a supporting hyperplane ΠΛd
(ud

L,ud
F) that is unique due to

the differentiability of JF(·) at (ud
L,ud

F). The bounds of the decision space

are indicated by a box.

3.4.2 The General Case

As the previously presented result only captures the case in which JF(·) is differen-
tiable and moreover as only one particular solution is specified, we now provide a
characterization of the full set of possible leader functions with an affine structure
that are optimal in an unconstrained decision space for the cases in which JF(·) is
not required to be differentiable. Based on such a characterization one can deal with
constraints on the decision space as well as apply further, secondary selection crite-
ria like the minimization of the sensitivity to deviations from the optimal response
as will be shown in respectively Section 3.5 and Section 3.6 below.

In the following, we characterize γL as a linear combination of the columns of
the matrices R =

[
RT

L RT
F

]T, R ∈ R(nL+nF)×nF ,RL ∈ RnL×nF ,RF ∈ RnF×nF , and an offset[(
ud

L

)T (
ud

F

)T
]T

, i.e.,

γL :

[
uL

uF

]
=

[
ud

L

ud
F

]
+

[
RL

RF

]
· s, (3.9)

where s ∈ RnF represents the free parameters of the affine function. Now, for RF

invertible – which automatically follows from the necessary conditions as will be
proven in Lemma 3.18 below – it follows that:

uF = ud
F +RF · s ⇒ s = R−1

F (uF −ud
F), (3.10)
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uL = ud
L +RLR−1

F︸ ︷︷ ︸
B

(uF −ud
F), (3.11)

i.e., one arrives at the explicit form of leader function (3.1). The problem left in
order to arrive at a full characterization of an optimal affine leader function γL(·) is
to determine the set of possible basis vectors that represent the columns of R.

Lemma 3.18 In order for a leader function γL characterized by (3.9) to be optimal, for

R =
[
RT

L RT
F

]
the following should hold:

1. There exists a vector ν ∈ V (X ,(ud
L,ud

F)) such that νTR = 0T, with V (X ,(ud
L,ud

F))
the generalized normal to X at (ud

L,ud
F) where X = conv(Λd(u

d
L,ud

F)) in case (ud
L,ud

F)
is exposed with respect to conv(Λd) (i.e., Proposition 3.13 applies) or

X = Λd(u
d
L,ud

F) in case (ud
L,ud

F) ∈ int(conv)(Λd(u
d
L,ud

F)) (i.e., Proposition 3.14 ap-

plies).

2. The columns of RF should be a basis for ΩF, i.e., RF should be of full rank nF and

thus invertible.

Proof :

1. By definition of a tangent hyperplane Πd(u
d
L,ud

F) to a set X at (ud
L,ud

F), it holds
that Πd(u

d
L,ud

F) ⊥ ν for some ν ∈ V (X ,(ud
L,ud

F)). Since we require each optimal
leader function γL(·) characterized by (3.9) to lie on Πd(u

d
L,ud

F), it follows that
it is needed that also each column of R is orthogonal to ν, i.e., νTR = 0T.

Note that in case JF(·) is differentiable, i.e., V (X ,(ud
L,ud

F)) =
{

ν =
[
νT

L νT
F

]T

with νL = ∇uL
JF(u

d
L,ud

F) and νF = ∇uF
JF(u

d
L,ud

F)
}

, this condition is equivalent to
the expression of a tangent hyperplane:

Πt
Λd

(ud
L,ud

F) : [∇uL
JF(u

d
L,ud

F)]
T(ud

L −uL)+ [∇uF
JF(u

d
L,ud

F)]
T(ud

F −uF) = 0. (3.12)

2. For an optimal affine leader function γL(·) characterized by (3.9) to satisfy
dom(γF) = ΩF, it is required that the nF columns of RF are independent basis
vectors spanning ΩF. Thus, RF is of full rank and hence invertible. 2

In fact, we can select w.l.o.g. RF := InF
=

[
e1 , . . . , enF

]
as shown in Lemma

3.19.

Lemma 3.19 If there exists an optimal affine γL characterized by (3.9), one can select

w.l.o.g. RF = InF
.
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Proof : Consider

S :=

{
γL

∣∣∣∣ γL :

[
uL

uF

]
=

[
ud

L

ud
F

]
+

[
RL

InF

]
· s, with s ∈ RnF and with RL,RF = InF

satisfying conditions 1) and 2) of Lemma 3.18
}

,

(3.13)

S̃ :=

{
γL

∣∣∣∣ γL :

[
uL

uF

]
=

[
ud

L

ud
F

]
+

[
R̃L

R̃F

]
· s̃, with s̃ ∈ RnF and with R̃L, R̃F (3.14)

satisfying conditions 1) and 2) of Lemma 3.18 with R substituted by R̃

}
.

To prove that S ≡ S̃ we will show that for each possible triple (s, InF
,RL) according

to (3.9) with νT
[
RT

L InF

]T
= 0T that yields some uL,uF, one can find an equivalent

triple (s̃, R̃F, R̃L), with s̃ ∈ RnF for which additionally it holds that νT
[
R̃T

L R̃F

]T
= 0T,

yielding the same values uL,uF.
It can be easily seen that the expression uF = ud

F + InF
· s is equivalent to uF =

ud
F + R̃F · s̃ with s = R̃F · s̃: as shown in Lemma 3.18 it follows from the existence of

an optimal affine γL that RF is invertible. Then, for a given s there exists a unique
s̃ and vice versa. From B = R̃LR̃−1

F according to (3.10) and from the substitution to
B = RLInF

, for equivalence it should hold that RL = R̃LR̃−1
F . Finally, we have that

νT
LRL +νT

F = 0 ⇔ νT
LR̃LR̃−1

F +νT
F = 0 ⇔ νT

LR̃L +νT
FR̃F = 0. (3.15)

Hence, S = S̃ . 2

Now, given RF := InF
we still need to identify the set of matrices RL that satisfy νTR =

0T for some normal vector ν, which reduces to
[
νT

L νT
F

][
RL

InF

]
= 0T or equivalently

νT
LRL = −νT

F . Due to the necessary condition projΩL

(
V

(
conv(Λd) ,(ud

L,ud
F)

))
6= {0}

(Proposition 3.13) or projΩL

(
V

(
Λd,(u

d
L,ud

F)
))

6= {0} (Proposition 3.14), νT
L must con-

tain at least one nonzero entry. Hence, the equations νT
LRL, j = −νF, j, j = 1, ...,nF can

indeed be solved. Proposition 3.21 below provides a parametrized characterization
of this problem that will be needed for further optimization.

From the previous derivations, the following theorem automatically follows.

Theorem 3.20 Let ΩL = RnL ,ΩF = RnF . Assume that the conditions in Proposition 3.13

or 3.14 are satisfied and that therefore an optimal affine leader function of the form

(3.1) exists. Then, the set Γ∗
L := {γL : ΩF → ΩL|γL according to (3.1) satisfying (2.6)-

(2.7), (3.9) } contains optimal affine solutions that can be characterized by B := RLInF
,

with νT
LRL = −νT

F , for some ν ∈ V
(
conv(Λd) ,(u

d
L,ud

F)
)

in case (ud
L,ud

F) is exposed with

respect to conv(Λd) (Proposition 3.13 applies) or for some some ν ∈ V
(
Λd,(u

d
L,ud

F)
)

in

case (ud
L,ud

F) ∈ int
(
conv

(
Λd(u

d
L,ud

F)
))

(Proposition 3.14 applies).

For the sake of conciseness, in the remainder of this section we will assume
(ud

L,ud
F) to be an exposed point of conv(Λd). As a result, we consider the case in
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which Proposition 3.13 is satisfied rather than Proposition 3.14, i.e., we consider
the generalized normal V

(
conv(Λd) ,(u

d
L,ud

F)
)
. For the case in which Proposition

3.14 applies, the generalized normal should be substituted by V
(
Λd,(u

d
L,ud

F)
)

in the
following.

In order to be able to optimize over the set of possible leader functions and
to select a function that is optimal with respect to some criteria, Proposition 3.21
now provides a parametrized characterization of the set of optimal affine leader
functions.

Proposition 3.21 Let

Γ∗
L := {γL : ΩF → ΩL|γL satisfies (2.6)-(2.7), (3.9)} . (3.16)

1. For JF(·) nondifferentiable at (ud
L,ud

F), the possible realizations of RL ∈RnL×nF can

be written:

RL ∈ RL :=
{[

RL,1 ... RL,nF

]∣∣ RL, j ∈ R j, j = 1, ...,nF

}
,

with the set of possible columns of RL characterized by

RL, j :=





Q ·W · p+
j

∣∣∣∣∣∣∣∣∣

p+
j :=




Nf
+, j

∑
i=1

α+
i, jβ

f
i,+, j +

Ne
+, j

∑
i=1

µ+
i, jβ

e
i,+, j


 ,

∑
i

α+
i, j = 1,α+

i, j ∈ R+,µ+
i, j ∈ R+





[





Q · (−W ) · p−j

∣∣∣∣∣∣∣∣∣

p−j :=




Nf
−, j

∑
i=1

α−
i, jβ

f
i,−, j +

Ne
−, j

∑
i=1

µ−i, jβ
e
i,−, j


 ,

∑
i

α−
i, j = 1,α−

i, j ∈ R+,µ−i, j ∈ R+





,

(3.17)

for j = 1, ...,nF, with Q :=
[
InL

0nL×nF

]
and with W =

[
w1 ... wm

]
, where

{wi}m
i=1, m ∈ N ∪ {∞} with wi ∈ RnL+nF is the set of generators of

V̄
(
conv(Λd) ,(ud

L,ud
F)

)
such that

V̄
(

conv(Λd) ,(u
d
L,ud

F)
)

:=

{
m

∑
i=1

βiwi|βi ∈ R+

}
[

{
m

∑
i=1

βi(−wi)|βi ∈ R+

}
.

Further, {βf
i,s, j}

Nf
s, j

i=1 and {βe
i,s, j}

Ne
s, j

i=1 , s ∈ {+,−} are the sets of finite vertices and

extreme rays respectively, of the polyhedra P +
j =

{
β|PWβ = e j,β ∈ (R+)

m}
and

P −j =
{

β|P(−W )β = e j,β ∈ (R+)
m}

.

2. For JF(·) differentiable at (ud
L,ud

F), RL belongs to the affine space of the form

RL :=
{

RL

∣∣∣RL = R0
L +BN ·T,T ∈ Rdim(N)×nF

}
, (3.18)

with R0
L a particular solution of ∇T

uL
JF(u

d
L,ud

F)RL = ∇uF
JF(u

d
L,ud

F) and with BN a

basis of N := null
(

∇T
uL
JF(u

d
L,ud

F)
)

.
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ν2

V
(

Λd,(u
d
L,ud
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)

V̄

V̄

(ud
L,ud

F)

V ∗

V o

ν1

Λd

ν′1

ν′2

V ⊥= 02
νo
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2

Figure 3.5: The finitely generated normal cone V
(
Λd,(u

d
L,ud

F)
)

and the associated

cone V̄
(
Λd,(u

d
L,ud

F)
)

=
(
RnL+nF \

(
V 0 ∪V ∗))∪V ⊥.

Proof :

1. For Λd nonsmooth at (ud
L,ud

F), the generalized normal V
(
conv(Λd) ,(u

d
L,ud

F)
)

is
by definition a convex pointed cone, i.e., a1v1 + a2v2 ∈ V

(
conv(Λd) ,(u

d
L,ud

F)
)

for any a1,a2 ∈R+,ν1,ν2 ∈V
(
conv(Λd) ,(u

d
L,ud

F)
)
. In fact, V

(
conv(Λd) ,(u

d
L,ud

F)
)

is the normal cone [164] defined by the set of normal vectors to Λd at (ud
L,ud

F),
which is generated by n ∈ N∪{∞} generators:

V
(

conv(Λd) ,(u
d
L,ud

F)
)

:=

{
n

∑
i=1

αiνi

∣∣αi ∈ R+,νi ∈ RnL+nF

a generator of V
(

conv(Λd) ,(u
d
L,ud

F)
)}

.

(3.19)

The polar and dual cone of V
(
conv(Λd) ,(ud

L,ud
F)

)
and its orthogonal comple-

ment are denoted respectively by4:

V 0 =
{

r ∈ RnL+nF

∣∣∣rT ·ν ≤ 0 ∀ν ∈ V
(

conv(Λd) ,(ud
L,ud

F)
)}

,

V ∗ =
{

r ∈ RnL+nF

∣∣∣rT ·ν ≥ 0 ∀ν ∈ V
(

conv(Λd) ,(ud
L,ud

F)
)}

,

V ⊥ =
{

r ∈ RnL+nF

∣∣∣rT ·ν = 0 ∀ν ∈ V
(

conv(Λd) ,(ud
L,ud

F)
)}

.

It now follows from condition 1) of Lemma 3.18 that the set of possible columns

4The arguments conv(Λd) and (ud
L,ud

F) are omitted for the sake of conciseness.
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R j, j = 1, ...,nF of R can be represented by:

V̄
(

conv(Λd) ,(u
d
L,ud

F)
)

:=
{

r ∈ RnL+nF

∣∣∣∃ν∈V
(
conv(Λd) ,(u

d
L,ud

F)
)

: rT ·ν = 0
}

=
(
RnL+nF \

(
V 0 ∪V ∗

))
∪V ⊥. (3.20)

This last expression is illustrated in Fig. 3.5 where V̄
(
conv(Λd) ,(u

d
L,ud

F)
)

cor-
responds to the union of the areas between νo

1 and ν′1 and between the vectors
νo

2 and ν′2, where ν′1 and ν′2 are perpendicular to ν1 and ν2. The expression
(3.20) follows from the fact that the (closure of the) complement of a cone
is again a cone [90]; hence, the complement of the double cone V 0 ∪ V ∗

[69] that consists of the union of two apex-to-apex placed pointed cones, i.e.,
RnL+nF \

(
V 0 ∪V ∗), embodies a cone. Finally, the null vector is included again

in order to yield a pointed cone. The set V̄
(
conv(Λd) ,(u

d
L,ud

F)
)

can therefore
be written as a linear combination of generators wi from the set {±wi}m

i=1 as in
(3.19), now also considering the negatives −wi:

V̄
(

conv(Λd) ,(ud
L,ud

F)
)

:=

{
m

∑
i=1

βiwi

∣∣βi ∈ R+,wi ∈ RnL+nF

}

[

{
m

∑
i=1

βi(−wi)
∣∣βi ∈ R+,wi ∈ RnL+nF

}
.

Finally, since R =
[
RT

L InF

]T by Lemma 3.18 and 3.19, we need to select from
V̄

(
conv(Λd) ,(ud

L,ud
F)

)
those vectors r such that for j = 1, ...,nF:

R j :=
{

r ∈ V̄
(

conv(Λd) ,(ud
L,ud

F)
)

: projΩF
(r) = e j

}
,

i.e., approved as a possible j-th column of R are those vectors r = W · β ∈
V̄

(
conv(Λd) ,(ud

L,ud
F)

)
as well as vectors r = −W · β ∈ V̄

(
conv(Λd) ,(u

d
L,ud

F)
)

with W =
[
w1 ... wm

]
, β =

[
β1 ... βm

]T, such that for P :=
[
0nF×nL

InF

]
,

we have

P ·W ·β = e j respectively P · (−W ) ·β = e j.

The solutions to these two equations, where it should be noted that β+ ∈ (R+)
m,

β− ∈ (R+)
m, can be computed using e.g., the double-description method [147]

for the polyhedra P +
j =

{
β+

∣∣PWβ+ =e j,β
+ ≥ 0

}
and P −j =

{
β− ∣∣P(−W )β−=e j,

β− ≥ 0
}

, i.e.,

βs
j =

Nf
s, j

∑
i=1

αs
i, jβ

f
i,s, j +

Ne
s, j

∑
i=1

µs
i, jβ

e
i,s, j,s ∈ {+,−},

with ∑i αs
i, j = 1,αs

i, j ∈ R+,µk
i, j ∈ R+, and with

{
βf

i,s, j

∣∣∣i = 1, ...,Nf
s, j

}
the set of

finite vertices of P s
j , and with

{
βe

i,s, j

∣∣∣i = 1, ...,Ne
k,s

}
the set of extreme rays of

P s
j , for s ∈ {+,−}.
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2. For JF(·) differentiable at (ud
L,ud

F), V
(
conv(Λd) ,(ud

L,ud
F)

)
is uniquely defined

by ν = ∇JF(u
d
L,ud

F) with ∇uL
JF(u

d
L,ud

F) 6= 0 (by Proposition 3.13 and 3.14) and
therefore νT

LRL, j =−νF, j, j = 1, . . . ,nF can be solved as a simple system of equal-
ities. Here, for each zero element νL,i, the corresponding entry RL,0, j of RL is
free. Therefore, the possible solutions can be written as

∇T
uL
JF(u

d
L,ud

F)RL, j = ∇uF, j
JF(u

d
L,ud

F) (3.21)

⇒ RL, j = R0
L, j +B

(
null

(
∇T

uL
JF(u

d
L,ud

F)
))

︸ ︷︷ ︸
BN

·t, t ∈ Rdim(N),

where R0
L, j denotes a particular solution to (3.21) and BN · t, with t ∈ Rdim(N)

is a homogeneous solution to (3.21). Note that a basis of the null space of
∇T

uL
JF(u

d
L,ud

F)), B (null(∇T
uL
JF(u

d
L,ud

F))) as well as a particular solution R0
L, j can

be computed with a singular value decomposition (SVD) or QR decomposition
(see e.g., [74]). 2

Remark 3.22 So far a static, single-stage reverse Stackelberg game has been consid-
ered. Whereas this basic case serves for developing the conditions summarized in
Section 3.3 and the characterization of the present section, real-life control settings
will often have a dynamic, multi-stage nature [154], as has also been elaborated
upon in Chapter 2. As it is also done in e.g., [209], the current static results can be
simply applied to the dynamic case with open-loop information. In other words, at
the start of the game the open-loop values (ud

L(k),ud
F(k)) are computed, for which the

mappings γL(uF(k),k) can be computed as done in the static case, for each (discrete)
time step k ∈ K . 3

3.4.3 Computation and Complexity

While the characterization of this section is aimed to provide a structured method
to solve the reverse Stackelberg game with an affine leader function, the computa-
tional efficiency of testing the several conditions should be kept into account. The
following observations can be made:

• Determining a global optimum to represent the desired leader equilibrium
(ud

L,ud
F) is in general a constrained nonconvex nonlinear programming prob-

lem; this subproblem has to be solved in any solution approach. Alternatively,
a desired equilibrium that is not directly derived from a leader objective func-
tional, or a series of such points, may be provided a priori.

• Determining the convex hull of Λd is only required in case JF(·) is both non-
convex and nondifferentiable at (ud

L,ud
F). The exposed points of Λd can then

be determined if JF(·) is of the particular type of a piecewise affine function.
For a polyhedron [171] with n vertices as input points, computing the convex
hull can be done with a worst-case complexity of O (n log p) for nL + nF ≤ 3

and O (n · fp/p) for nL +nF ≥ 4, where p points are actually on the hull and fp

denotes the maximum number of facets for p vertices [18].
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• Verifying whether the projection of the generalized normal onto the leader’s
decision space is nonzero relies on simple inner vector products that can be
obtained in time O (n) for vectors of dimension n.

• Computing particular and homogeneous solutions to (3.21) with a singular
value decomposition (SVD) leads to a numerically reliable solution due to its
ability to deal with rank-deficient matrices; however, no finite termination can
be guaranteed for the computation of the SVD. The iterative Golub-Reinsch al-
gorithm for determining the SVD of a matrix can however be terminated when
a sufficiently precise solution is obtained, which leads to a practical overall
complexity of O (n3) floating-point operations, for an m×n matrix in case m ≈ n

[74]. The alternative of using the QR decomposition technique does not have
such numerical reliability properties but it does have finite termination; the
complexity of the QR algorithms discussed in [74] are also of the order O (n3)
in case m ≈ n.

In the following numerical example, the computation of optimal affine leader
functions is illustrated.

Example 3.23

The nonconvex Rosenbrock function [165] is often used to illustrate the perfor-
mance of optimization algorithms and it is defined as:

f (x1,x2) = (1− x1)
2 +100(x2 − x2

1)
2, (3.22)

as depicted in Fig. 3.6 together with several level curves. If we adopt this function for
JF(·), it can be inferred from these contour lines that several desired leader equilibria
cannot be obtained under an affine leader function, i.e., those in the valleys of the
upper part of the level curves that are associated with increasing objective function
values when considering increasing values of uL.

In order to illustrate the approach in higher dimensions, we adopt the extended
Rosenbrock function [49], written in general for n dimensions as :

fe(x1, . . . ,xn) =
n−1

∑
i=1

[(1− xi)
2 +100(xi+1 − x2

i )
2]. (3.23)

Let ΩL = R and ΩF = R2. The sublevel set Λd for JF := fe(uL,uF) with the desired
equilibrium arbitrarily chosen to be (ud

L,1,u
d
L,2,u

d
F) = (−0.2,−0.27,0.15). Since

∇uL
JF(u

d
L,ud

F) = ∇uL
[(1−ud

F)
2 +(1−ud

L,1)
2 + . . .

100(ud
L,1 −ud

F

2
)2 +100(ud

L,2 −ud
L,1

2
)2]

=




(
−2+2uL,1 +200uL,1 −200u2

F −400uL,2uL,1 +400u3
L,1

)
(

200uL,2 −200u2
L,1

)



=
[
−56.21 15.42

]T 6=
[
0 0

]T
,

∇uF
JF(u

d
L,ud

F) = −2+2ud
F −400ud

L,1ud
F +400ud

F

3
= −27.20,
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Figure 3.6: The Rosenbrock function and several level curves.

the unique strictly supporting hyperplane at (ud
L,ud

F) can be defined by:

ΠΛd
(ud

L,ud
F) =

[
−56.21 15.42

]([
−0.27

0.15

]
−

[
uL,1

uL,2

])
−27.20(−0.2−uF) = 0.

Now, γL(·) characterized by (3.9) with RF = 1 has associated matrices RL accord-
ing to (3.18), where R0

L =
[
(15.42/−27.20) (−56.21/−27.20)

]T is a particular solu-

tion of ∇T
uL
JF(u

d
L,ud

F)RL = ∇uF
JF(u

d
L,ud

F), and with B
null

(
∇T

uL
JF(ud

L,ud
F)

)=
[
0.2645 0.9644

]T
,

leading to the set of optimal affine solutions characterized by

RL :=

{
RL

∣∣∣∣RL =

[
(15.42/−27.20)

(−56.21/−27.20)

]
+

[
0.2645

0.9644

]
· t, t ∈ R

}
. 3

3.5 Constrained Decision Spaces

So far the situation without constraints has been considered and conditions have
been provided under which an optimal affine leader function exists that leads to
the desired reverse Stackelberg equilibrium point. These conditions form necessary
but not sufficient conditions for the existence of an optimal affine leader function
in the constrained game in which ΩL ( RnL or ΩF ( RnF . In the constrained case,
the complexity arises that additionally the locally defined supporting hyperplane
ΠΛd

(ud
L,ud

F) — or the tangent hyperspace Πt
Λd

(ud
L,ud

F) for the case with nL > 1 and
(ud

L,ud
F) ∈ int(conv(Λd)) — should be within the constrained decision space ΩL ×ΩF,

with ΩL ( RnL or ΩF ( RnF . This implies that the supporting or tangent hyperplane
should contain an nF-dimensional affine subspace γL satisfying (i) γL should cover
ΩF, i.e., dom(γL) = ΩF while (ii) γL(ΩF) ⊆ ΩL. However, since the hyperplanes are
derived locally, it thus still has to be verified whether an optimal leader function γL

exists in the bounded decision space such that the global conditions (i) and (ii) hold.
Hence, given the set of feasible solutions Γ∗

L characterized in Section 3.4 above
that is essentially developed for the unconstrained decision space, constraints can
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0
0

8

10uFud
F

uL

ud
L α′ α

Λdγ1
L

γ1
L

′

γ2
L

γ2
L

′

Figure 3.7: Example of a set Γ∗
L that is reduced under the consideration of constraints

on ΩL,ΩF. Here, α indicates the range of possible values of RL. Note

that the dashed functions γ1
L,γ2

L have an infinitesimal gap with bd(Λd) for

values of uL below or above ud
F, respectively.

simply be incorporated to verify which elements of Γ∗
L are still valid under the con-

strained conditions. Here it should be noted that any constraints on the decision
spaces can obviously affect the desired equilibrium point (ud

L,ud
F) as well as the set

Λd, which elements are both assumed to be given in the conditions and the initial
characterization of Sections 3.3 and 3.4. In order to use these results, applicable
constraints on the decision spaces should therefore naturally be incorporated in the
computation of a desired leader equilibrium (ud

L,ud
F) and in the derivation of the

associated sublevel set Λd at the initial stage.
The following simple example illustrates this approach.

Example 3.24 Consider a reverse Stackelberg game with the desired equilibrium
(ud

L,ud
F) = (5,5) and a nonsmooth, convex sublevel set Λd as depicted in Fig. 3.7.

For ΩL = ΩF = R, Γ∗
L := {γL : ΩF → ΩL|γL satisfies (2.6)-(2.7), (3.9)} is character-

ized by the open interval RL = (−1,1). Note that in this particular case, an optimal
affine mapping ΩF → ΩL through (ud

L,ud
F) coincides with a line ΠΛd

(ud
L,ud

F). This
interval of possible slopes of γL is indicated in Fig. 3.7 by α.

Now, consider the decision space imposed by the constraints ΩL = [0,10],ΩF =
[0,8]. It can be seen that not all mappings γL ∈ Γ∗

L return values for all uF ∈ ΩF.
Using the extrema (0,10), (8,0), and (8,10) one can derive the intersection points of
affine functions through (ud

L,ud
F) with the decision space boundaries bd(ΩL),bd(ΩF),

resulting in a new range α′ for which RL = (−3/5,3/5).
The full set of possible optimal affine leader functions can thus be characterized

as follows:

Γ
∗,con
L = {uL := γL(uF) = 5+B · (uF −5),B ∈ (−3/5,3/5)} . 3

Remark 3.25 For clarification, we here elaborate on how the two examples of con-
strained decision spaces drawn in Fig. 3.4 and Fig. 3.7 compare to one another. Since
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nL = 2 in Fig. 3.4 whereas uL and uF are scalar in Fig. 3.7, in the former figure γL is a
subset of ΠΛd

(ud
L,ud

F) while in the latter figure this function coincides with the hyper-
plane ΠΛd

(ud
L,ud

F). Moreover, Λd(u
d
L,ud

F) is smooth in Fig. 3.4, while it is nonsmooth
in Fig. 3.7. Hence, in the first case the initial set Γ∗

L of optimal solutions for the un-
constrained case consists of possible mappings through (ud

L,ud
F) lying on the unique

plane ΠΛd
(ud

L,ud
F), while it consists of possible supporting hyperplanes ΠΛd

(ud
L,ud

F) in
Fig. 3.7. In both constrained cases, elements γ∗L(·) ∈ Γ∗

L are subsequently removed
for which γ∗L(ΩF) 6⊆ ΩL . The following paragraph shows how such a derivation can
be made. 3

Derivation of the set Γ∗,con
L The possible optimal matrices B of (3.11) computed

in Section 3.4 for the cases with JF(·) differentiable and nondifferentiable respec-
tively can be re-evaluated under the presence of constraints, where we assume the
constrained decision spaces to be convex and closed and bounded, i.e., compact. In
particular, one needs to verify whether γL(ΩF) ⊆ ΩL.

a) In case only ΩF is restricted while ΩL = RnL we have that Γ
∗,con
L = Γ∗

L, which
can be concluded from the fact that Γ∗

L is derived only locally based on Λd,
while ΩL = RnL . Hence, γL(ΩF) ⊆ ΩL still holds for all γL ∈ Γ∗

L.

b) Further, the case with only ΩL restricted while ΩF = RnF is only feasible if
γL,i(ΩF) = {ci} ∈ ΩL,i for some ci ∈ R for every index i such that ΩL,i Ã R,
where ΩL,i is the projection of ΩL on the i-th coordinate and γL,i(·) denotes
the i-th component of the vector-valued function γL(·). Indeed, the realization
of the leader function for each such i-th component of the leader’s decision
space should be constant for any follower decision variable, as for any affine
function γL,i(uF) 6= ci ∈ R, limuF→±∞ γL,i(uF) will not be finite and therefore not
an element of ΩL,i Ã R.

c) In case both decision spaces are restricted by linear constraints, ΩL,ΩF repre-
sent polytopes. By applying the affine mapping γL(·), convexity is preserved,
implying that its image γL (ΩF) is a polytope as well [24]. As a result, it can be
easily checked whether the image of γL(·) for its domain ΩF satisfies the linear
constraints imposed by ΩL: it is sufficient to verify γL(uv

F) ∈ ΩL only for the
vertices uv

F of ΩF.

This result can also be used to obtain the reduced characterization of the set of
optimal affine leader functions in the constrained case. If we denote the linear
constraints on ΩL by

AL ·uL ≤ bL,AL ∈ Rnc×nL ,bL ∈ Rnc ,nc ∈ N,

one should add the following set of linear inequality constraints to the char-
acterizations in (3.17) or (3.18) respectively depending on differentiability of
JF(·) at (ud

L,ud
F), where {uv

F}
nv
v=1 denotes the set of vertices associated with ΩF:

{
AL ·

(
ud

L +RL(uv
F −ud

F)
)
≤ bL

}
v=1,...,nv

. (3.24)
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In the nondifferentiable case this results in the characterization (3.17) in which
the nonnegative parameters αs

i, j,µ
s
i, j are now constrained by (3.24) as well as

by ∑i αs
i, j = 1, j = 1, . . . ,nF and with i = 1, . . . ,Nf

s, j for s ∈ {+,−}. Similarly, in
the differentiable case this will result in the characterization (3.18) in which
T now belongs to the polyhedron Rdim(N)×nF subject to (3.24).

d) Finally, in the case of nonlinear constraints, a similar approach to c) can be
adopted based on a piecewise affine approximation of the constraints. How-
ever, this may in general generate a large number of vertices. Further, in
order to guarantee feasibility of the leader function, (conservative) inner ap-
proximations should be made with respect to the leader decision space and
outer approximations should be made with respect to the follower decision
space. Alternatively, a fully numerical evaluation of the set Γ∗

L := {γL : ΩF →
ΩL|γL satisfies (2.6)-(2.7), (3.9)} for the unconstrained case may be made,
e.g., based on a gridding of the decision spaces.

3.6 Secondary Objectives

Another motivation for determining the complete set Γ∗,con
L of optimal leader func-

tions is the consideration of a secondary objective within the reverse Stackelberg
game. In other words, in case one would consider the risk of suboptimal solutions
due to a suboptimal response of the follower to γL ∈ Γ

∗,con
L due to either bounded

rationality or uncertainty in the follower characteristics, one may look at the sensi-
tivity of this follower response as a criterion for adopting a certain leader function.
Such a secondary objective is relevant when one can expect deviations from the op-
timal decisions; in [29, 30] such a secondary objective is considered for the case the
leader is uncertain regarding the parameter values in JF(·). In this dissertation, a
deterministic setting with fully rational players is considered, where players adopt
those decision variables that are computed to be optimal with respect to their objec-
tive functions. However, due to possible limits in the precision with which a follower
player can derive decisions, e.g., in case these are discrete without the leader know-
ing so, deviations from the computed optimal decision variable are still a relevant
issue.

A graphical example is given in Fig. 3.8, where the optimal leader function γL

is subject to sensitivity to deviations of the follower from argminuF∈ΩF
JF(γL(uF),uF).

The solutions on γL for uF > ud
F,uL > ud

L are close to bd(Λd) and therefore they return
a follower objective function value that is close to JF(ud

L,ud
F). Hence, significantly

sensitive solutions may be removed from the set Γ∗
L according to (3.16), where sen-

sitivity of a solution γL can be defined through its vicinity to bd(conv(Λd)), i.e., by
the angle between γL and the mean normal vector

ν̄ :=
n

∑
i=1

1

n
νi or ν̄ := lim

n→∞

1

n

n

∑
i=1

νi, (3.25)

for the case with n ∈ N or with infinitely many generators of V
(
conv(Λd) ,(u

d
L,ud

F)
)
,

respectively. The alternative solution γ̃L ∈ Γ∗
L such that γ̃L ⊥ ν̃ is the least sensitive to
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Figure 3.8: Situation in which the optimal leader function γL is sensitive to deviations

of the follower from argminuF∈ΩF
JF(γL(uF),uF).

such deviations from argminuF∈ΩF
JF(γL(uF),uF) in Fig. 3.8.

3.7 Discussion

In this chapter, the single-leader single-follower static reverse Stackelberg game is
considered, straightforwardly extendable to the open-loop dynamic game. Here, we
adopt the indirect approach to the reverse Stackelberg game, according to which
the leader player faces the problem of selecting a leader function – mapping her
decision space into the follower’s decision space – that will lead to a specific desired
equilibrium. In order to be able to solve this generally complex game, it pays off to
analyze particular leader function structures. In the literature, many examples and
applications in which this type of game is considered adopt strictly convex follower
objective functions and unconstrained decision spaces, in which case an affine leader
function is sufficient to solve the game to optimality. In order to allow the reverse
Stackelberg game to be more readily applicable as a decision-making structure for
multilevel optimization-based control problems like in traffic tolling, there is a need
to develop a more general solution approach.

In the current chapter, we have therefore first presented necessary and sufficient
existence conditions and a characterization of the set of optimal affine leader func-
tions that can be computed in a systematic manner. The solution approach when
using an affine leader function structure can be summarized as follows. After an
initial set Γ∗

L of optimal affine functions that are locally feasible is derived from the
necessary and sufficient conditions of the existence of an optimal affine leader func-
tion for unconstrained decision spaces, this set can be further reduced to include only
those elements that map the full follower’s decision space into the leader’s decision
space, i.e., that satisfy γL(ΩF)⊆ ΩL, in case these spaces are constrained. Secondary
optimization criteria can be incorporated similarly, e.g., selecting the leader function
that is least sensitive to deviations from the optimum.
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Clearly, an optimal affine leader function does not always exist, nor do the play-
ers behave fully rationally at all times as it is assumed in this thesis. Further steps
therefore include the investigation of more diverse classes of nonlinear leader func-
tions, e.g., piecewise affine and smooth (piecewise) polynomial structures, and an
analysis of the robustness of a leader function in case of uncertain conditions and
bounded rationality. The former is considered in the subsequent Chapter 4, while
we leave the latter for future research. In addition, the development of solution
approaches for the reverse Stackelberg game that are tractable remains a focal point
of continued research.



Chapter4
On Systematic Computation of

Optimal Nonlinear Leader
Functions

In the previous chapter, conditions on the existence of a leader function with an
affine structure have been presented that lead to the leader’s desired equilibrium
point. Furthermore, the set of such optimal leader functions has been delineated
and it has been shown how this set can be reduced to exclude infeasible elements in
case of constrained decision spaces. Under the objective of developing a systematic
solution approach for the reverse Stackelberg game, in the current chapter a broader
class of nonlinear leader functions is considered. In particular, a continuous multi-
level optimization approach as well as a gridding approach are proposed to compute
an optimal leader function based on basis functions; also leader functions derived
by interpolation are discussed and a comparison is made with evolutionary solution
approaches proposed in the literature.

The research discussed in this chapter is based on [86], supported by the results
presented in [85].

4.1 Introduction

As has been pointed out in Chapter 2, many reverse Stackelberg games considered
in the literature involve particular problem instances with quadratic objective func-
tions and linear state update equations [34, 56, 139]. In these games, affine leader
functions prove sufficient to solve the game to optimality [83, 209], explaining the
attention in the literature to leader functions of this type [125]. In case no opti-
mal affine leader functions exist, more advanced nonlinear function structures are
necessary. Moreover, they may embody more desirable properties related to, e.g.,
sensitivity to deviations from the optimal follower response.

To our best knowledge, only few papers consider nonlinear leader functions;
they appear in specific, often numerical, examples [153, 154, 172, 208]. Nonethe-
less, there are few solution approaches for nonlinear leader functions proposed in
the literature. While indirect approaches are suggested to be better able to solve
the generally complex Stackelberg game in theory [16, 98], the suggested solution

63



64 Chapter 4: On Systematic Computation of Optimal Nonlinear Leader Functions

approaches, based on evolutionary learning algorithms, are mostly devised for the
direct game formulation [131, 179, 186, 187]. Recall that in the indirect game
variant (Fig. 2.3(a)), a leader function is derived based on a particular desired equi-
librium that the leader strives to achieve, while in the direct game (Fig. 2.3(b)) a
leader function is computed that results in the best leader objective function value.
Therefore, it can in fact be more efficient to adopt an indirect approach in which
a leader function is determined that exactly yields an a priori decided equilibrium
that is desired by or acceptable for the leader.

We here provide a structured solution approach for the class of nonlinear leader
functions for the indirect variant of the single leader-single follower static, deter-
ministic reverse Stackelberg game in which a specific nonlinear parametrization of
the leader function is considered. Due to the inherent nonlinear and nonconvex
nature of the optimization problems that result from considering nonlinear leader
functions, instead of developing existence conditions for an optimal leader function,
approaches to compute an optimal nonlinear leader function are developed.

The first proposed method is based on determining optimal parameters of a par-
ticular set of basis functions such that the resulting leader function (i) maps the
full follower’s decision space to the leader’s decision space, and such that (ii) the
associated optimal follower response coincides with the value of the decision vari-
able associated with the leader’s desired equilibrium. Constraints in this method
can be based on an analytic expression of the follower objective function, as well as
rely on a grid-based representation of the follower’s sublevel set for a given equilib-
rium point. In a final alternative approach, the leader function is represented by an
interpolating spline through a selection of data points in the decision space.

These indirect solution approaches are illustrated and applied to a worked ex-
ample in which different levels of complexity are considered. The two evolutionary
algorithms from the literature, i.e., a genetic algorithm and a neural network ap-
proach as considered in respectively [186] and [179] are also included in the com-
parison. Next to comparing their performance with respect to required computation
times and the level of suboptimality or deviation from the desired equilibrium, the
advantages and disadvantages of the different methods are analyzed.

This chapter is organized as follows. Several brief additions to the reverse Stack-
elberg game as defined in Chapter 2 are provided in Section 4.2. A summary of
evolutionary algorithms from the literature that are applied to the direct game for-
mulation is provided in Section 4.3. Section 4.4 includes a discussion of the indi-
rect continuous multilevel and the grid-based basis function approaches proposed
to derive an optimal nonlinear leader function. Subsequently, a heuristic interpo-
lation method is considered in Section 4.5. A discussion on the complexity of the
approaches and the choice of basis functions is provided in Section 4.6, after which
the methods are illustrated and their results are compared and discussed in a worked
example in Section 4.7. Finally, conclusions and recommendations are provided in
Section 4.8.
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Table 4.1: Overview of methods to derive leader functions.

Solution Methods

Direct:
Genetic algorithm approach [186]
Neural network approach [179]

Indirect:
Continuous multilevel approach [86]
Grid-based approach [86]
Interpolating spline approach [86]

4.2 Preliminaries

Recall that the reverse Stackelberg game can be formulated according to a direct
(2.2) and an indirect (2.5)–(2.7) approach. In this chapter, we develop methods
focused at solving the latter game variant, and we compare them with methods from
the literature that are devised to solve the game according to the direct formulation.

4.2.1 Nonlinear Incentive Controllability

Given the indirect formulation of the reverse Stackelberg game, the problem is re-
duced to finding a leader function that solves the game to optimality, i.e., that leads
to the desired leader equilibrium1. When assuming a particular parametrized leader
function structure, the problem further reduces to finding parameters for which the
given leader function is optimal. In this chapter, nonlinear leader functions are
determined that satisfy (2.6)–(2.7), where the constraint (2.6) implies that for all
uF ∈ ΩF \{ud

F}, (γL(uF),uF) should remain outside of the sublevel set

Λd :=
{

(uL,uF) ∈ ΩL ×ΩF

∣∣∣JF(uL,uF) ≤ JF(ud
L,ud

F)
}

. (4.1)

Now, optimality and feasibility of a leader function can be properly defined, given
the following conditions:

[C.1] γL(ΩF) ⊆ ΩL;

[C.2] JF (γL(uF),uF) > JF(u
d
L,ud

F), for all uF ∈ ΩF \{ud
F};

[C.3] γL(ud
F) = ud

L.

4.2.2 Definitions

In this chapter, we adopt the following definitions in relation to conditions C.1–C.3:

Definition 4.1 Game feasibility, optimality

A leader function is called game-feasible for an instance of the reverse Stackelberg
game if C.1 holds and game-optimal if C.1, C.2, and C.3 are satisfied. 3

1Recall that the leader’s desired solution point (ud
L,ud

F) is referred to as the (desired) equilibrium
(point), even if a suboptimal leader function is applied that leads to a follower response uF 6= ud

F.
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Definition 4.2 Program feasibility, optimality

A leader function returned as a solution by any of the feasibility programs proposed
in Section 4.4 and Section 4.5 is called program-feasible with respect to that prob-
lem. Similarly, a leader function returned by any of the optimization procedures
proposed in Section 4.3 is called program-optimal. 3

4.2.3 Assumptions

In this chapter, we consider the decision spaces ΩL,ΩF to be compact, hence bounded
Euclidean spaces of a finite dimension as has also been assumed in Chapter 3. In the
following, we also assume (ud

L,ud
F) to be a boundary point of sublevel set Λd; if this

does not hold, no game-optimal leader function exists.

Necessary and sufficient existence conditions for a game-optimal affine leader
function, i.e., a leader function of the form

γL(uF) = ud
L +B(uF −ud

F),B ∈ RnL×nF , (4.2)

with Ωp = Rnp , p ∈ {L,F} have been proposed and discussed in the previous chapter
for the unconstrained case based on which a characterization of the full set of such
optimal functions can be given. This set may be further reduced in the constrained
case Ωp ( Rnp , p ∈ {L,F}. Clearly, in case a game-optimal affine leader function
exists, nonlinear functions can also be considered. This may be preferred in case the
nonlinear alternatives are more robust to deviations of the follower to his optimal
decision.

In Section 4.3 below, the direct approaches proposed in the literature are sum-
marized, after which our indirect methods are discussed in the subsequent Section
4.4.

4.3 Direct Evolutionary Algorithms

In the past decades, evolutionary algorithms have been adopted to solve differ-
ent types of optimization problems that are computationally hard [48, 122, 197].
Amongst the various available algorithms are genetic algorithms and neural network-
based algorithms. A basic schematic representation of both approaches is provided
in Fig. 4.1. In the neural network approach, based on given values of the indepen-
dent or decision variables (the ‘input layer’) and an associated value of the corre-
sponding fitness function (the ‘output layer’), a network of connections and weights
is built (the ‘hidden layer’) that represents the relationship between inputs and out-
puts. In a genetic algorithm, a similar initial set of values of the decision variables
(a population of ‘chromosomes’) is randomly generated. Based on the associated
values of the corresponding fitness function, a new set of decision variable values is
derived based on the evolutionary-based principles of crossover and mutation of the
‘fittest’ chromosomes.

Also in Stackelberg games in which the leader’s strategy is a function of the state
variable rather than a mapping γL : ΩF → ΩL, heuristic search algorithms have been
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Input Layer
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(a) Artificial Neural Net-
work
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Figure 4.1: Schematic representation of an artificial neural network and a genetic

algorithm.

proposed [131, 187]. Specifically, in [187] a genetic algorithm is proposed as it is
said to enable dealing with games in which the players do not know each other’s
cost functions, where it has the additional benefit that it can be implemented in a
distributed fashion.

These approaches to solve the reverse Stackelberg game fall under the direct
methods; instead of first computing the leader’s global optimum and subsequently
trying to derive a leader function that satisfies the intersection constraints as de-
picted in Fig. 2.3(a), possible leader functions are directly computed and the result-
ing equilibrium and associated objective function values are evaluated as depicted
in Fig. 2.3(b). For reverse Stackelberg games, both genetic algorithms [186] and
neural networks [179] have been proposed. In [186] several financial market appli-
cations were used to illustrate the approach, while in [179] a case study involving
traffic tolling was performed.

However, the following drawback should be kept in mind: since neural network
approaches as well as genetic algorithms are heuristic search methods, there are no
performance guarantees or optimality bounds on the objective function value of the
leader player, even if it the follower’s information would be fully disclosed.

A summary of the solution approaches to the reverse Stackelberg game using
either a neural network or a genetic algorithm are given in the following, where
we refer to [122, 197] for a detailed description of the respective algorithms in a
general context.

4.3.1 Neural Network Approach

A neural network is a structure or pattern that models the relation between inputs
and outputs based on training and validation data. In this case, it is used to approx-
imate the relation between leader function coefficients and the associated leader
objective function value.

The main steps in the neural network algorithm of [179] are as follows:

1. Let a chosen leader function structure of γL : ΩF → ΩL be parametrized by
coefficients (ai) j ∈ R, i = 1, . . . ,na, j = 1, . . .nL as in (4.4). A set CNN consisting
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of nc ∈ N+
0 realizations is selected for such coefficient values represented by

tuples of vectors: CNN :=
{(

a
(k)
1 , . . . ,a

(k)
na

)∣∣ai ∈ RnL , i = 1, . . . ,na,k = 1, . . . ,nc

}
.

2. For each coefficient combination c ∈ CN, compute an optimal response of the
follower: uc

F ∈ argminuF∈ΩF
JF(γ

c
L(uF),uF) and evaluate JL(γc

L(uc
F),u

c
F), where

γc
L(·) is parametrized by the coefficients c ∈ CNN.

3. Divide the set of sample points, i.e., the pairs of coefficient values and asso-
ciated leader function values, {(c,JL(γc

L(uc
F),u

c
F))|c ∈ CNN} into a training and

validation set and train the neural network to approximate the relation be-
tween coefficient values and the resulting leader objective function value.

4. Optimize the trained neural network with a solver for nonconvex optimization
to find the coefficients minimizing the associated leader objective function val-
ues. Nonlinear constraints on γL(·), e.g., to satisfy C.1, can be incorporated in
the optimization of the network.

Here, the choice of coefficients, of the number of coefficient pairs to evaluate,
and of the ratio of the division of samples into training and validation pairs that
lead to a good eventual performance, is made on the basis of experience and tuning.

4.3.2 Genetic Algorithm Approach

The main steps in the genetic algorithm are similar to those of the neural network
approach, a main difference being in the choice of coefficients. While in the neural
network approach a set of coefficients is determined by the user and used throughout
the algorithm to approximate the neural network, in the genetic algorithm the coef-
ficients are determined at random at the initial stage. The coefficients are adapted
by probabilistic measures that are based on the fitness, i.e., the leader objective
function value associated with the coefficients. The evolution of coefficients should
lead to the best values and is terminated when a maximum number of iterations is
reached:

1. Let a chosen leader function structure of γL : ΩF → ΩL be parametrized by co-
efficients (ai) j ∈R, i = 1, . . . ,na, j = 1, . . .nL as in (4.4). Randomly select a popu-

lation CGA consisting of nc ∈N+
0 realizations: CGA :=

{(
a

(k)
1 , . . . ,a

(k)
na

)∣∣ai ∈ RnL ,

i = 1, . . . ,na,k = 1, . . . ,nc

}
, where c ∈ CGA represents a chromosome of the algo-

rithm.

2. For each of the nc chromosomes or coefficient combinations c ∈ CGA, compute
an optimal response of the follower: uc

F ∈ argminuF∈ΩF
JF(γ

c
L(uF),uF), where

γc
L(·) is parametrized by the coefficients c ∈ CGA, and evaluate JL(γc

L(uc
F),u

c
F).

3. Based on the fitness JL(γc
L(uc

F),u
c
F) associated with the chromosomes, a new

generation of chromosomes is derived by the mutation, crossover, and repro-
duction procedures of the genetic algorithm. Here, constraints on γL(·), e.g.,
γL(ΩF) ⊆ ΩL, can be incorporated to yield game-feasible chromosomes. For
this selection, the algorithm continues with step (2).
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Finally, it is argued that as an advantage of the evolutionary approaches, the
leader does not need to possess information on JF(·) [186]. However, the algorithms
as just described do require knowledge of the reaction curve of the follower to each
possible leader function for a correct computation of the fitness function values and
for the training of the neural network.

In the worked example of Section 4.7 below our methods for computing a game-
optimal leader function, as will be described in the following sections, will be com-
pared also to the evolutionary algorithm implementations. There, the computation
of the leader’s global optimum (ud

L,ud
F) is taken into account as a subproblem of

the indirect approaches in order to arrive at a fair comparison of the computational
requirements.

4.4 A Basis Function Approach

We first consider γL(·) to take the form of a linear combination of basis functions,
and lateron of a piecewise polynomial (spline).

Leader functions can be represented by a weighted combination of basis func-
tions that can be universal approximators, able to approximate any function with an
arbitrary accuracy [27, 183]. Let the set of selected multidimensional basis functions
bi : RnF → RnL , i = 1, . . . ,n be written as:

B = {bi(·)}n
i=1. (4.3)

We can now choose a leader function of the reverse Stackelberg game to be con-
structed as a linear combination of the chosen basis functions, parametrized by the
coefficients ai ∈ RnL , i = 1, . . . ,na, i.e.:

γL(uF) =
n

∑
i=1

ai ⊙bi(uF), (4.4)

where ⊙ denotes the element-by-element matrix (Schur) product.

4.4.1 A Continuous Approach Based on Basis Functions

In order to find a game-optimal leader function for a particular selection of basis
functions {bi}n

i=1, the following feasibility program can be used:

To find: ai ∈ RnL , i = 1, . . . ,n, (4.5)

such that JF(γL(uF),uF) > JF(u
d
L,ud

F), ∀uF ∈ ΩF \{ud
F}, (4.6)

ud
L = γL(ud

F), (4.7)

γL(uF) ∈ ΩL, ∀uF ∈ ΩF, (4.8)

γL(uF) =
n

∑
i=1

ai ⊙bi(uF). (4.9)
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Figure 4.2: Illustration of the adopted distance measures with respect to the sublevel

set Λd. The symbol x is used to represent the points (uL,uF) indicated by

black dots on the different curves.

Here it should be noted that the constraints (4.6) and (4.8) are complicating the
solution process of the otherwise straightforward problem as they apply to specific
subsets of the variable domains. In order to ease the solvability of the program
(4.5)–(4.9), we therefore propose to substitute the complicating constraints by a
lower-level optimization problem, the main elements of which will be introduced
first.

We now introduce a function d1((uL,uF),Λd) that expresses the signed measure
of distance between a point (uL,uF) and the boundary of the set Λd, i.e., the distance
is assigned a positive sign only if it corresponds to a point belonging to the set
Λd. Similarly, ω((uL,uF),ΩL) refers to the Euclidean distance between the leader
variable uL of a point (uL,uF) and the boundary of the decision space ΩL, where the
positive distances referring to points in ΩL are substituted by zero to simplify the
problem. The distance d2((uL,uF),(u

d
L,ud

F)) denotes the Euclidean distance between
a point (uL,uF) and (ud

L,ud
F). More specifically, we define:

d1((uL,uF),Λd) = JF(u
d
L,ud

F)− JF(uL,uF), (4.10)

d2((uL,uF),(u
d
L,ud

F)) = ‖(ud
L,ud

F)− (uL,uF)‖2, (4.11)

ω((uL,uF),ΩL)) =

{
0, for uL ∈ ΩL,

−minub
L∈bd(ΩL) ‖ub

L −uL‖2, for uL 6∈ ΩL.
(4.12)

Here, bd(Λd) can be characterized by the level set:

{
(uL,uF) ∈ ΩL ×ΩF : JF(uL,uF) = JF(u

d
L,ud

F)
}

. (4.13)

Given the definitions (4.10)–(4.12), the following auxiliary distance expressions
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can be introduced:

d (γL,Λd) = max
uF∈ΩF

(
d1((γL(uF),uF),Λd)+αd2

(
(γL(uF),uF),(u

d
L,ud

F)
))

, (4.14)

ω(γL,ΩL) = min
uF∈ΩF

ω((γL(uF),uF),ΩL) , (4.15)

where 0 < α ≪ 1. Examples of these distance expressions are depicted in Fig. 4.2. If
d (γL,Λd) ≤ 0, there is no intersection of the set {(γ(uF),uF) |uF ∈ ΩF \{ud

F}} with Λd,
while inclusion of the point (ud

L,ud
F) is already guaranteed for any mapping γL(·) due

to the constraint (4.7). In particular, γL does not intersect with bd(Λd) due to the
addition of d2

(
(uL,uF),(u

d
L,ud

F)
)

– multiplied by the small constant α – to the signed
distance d1 ((uL,uF),Λd).

In order to ensure that γL (ΩF) ⊆ ΩL, a similar approach is adopted: if the min-
imum signed shortest distance ω((uL,uF),ΩL) for some point (γL(uF),uF) is nonneg-
ative, all leader elements of the image of γL(·) are within the leader decision space,
satisfying γL(ΩF) ⊆ ΩL.

Now, the original program (4.5)–(4.9) can be replaced by the following program
(4.16)–(4.20):

To find: ai ∈ RnL , i = 1, . . . ,na, (4.16)

such that d (γL,Λd) ≤ 0, (4.17)

ω(γL,ΩL) ≥ 0, (4.18)

ud
L = γL(ud

F), (4.19)

γL(uF) =
na

∑
i=1

ai ⊙bi(uF). (4.20)

Here, the computation of the distances (4.10)–(4.15) required in (4.16)–(4.18) can
be interpreted as lower-level optimization problems.

On program feasibility In order for the multilevel program (4.16)–(4.20) to lead
to a game-optimal nonlinear leader function if such a function exists, α should be
sufficiently small, i.e., in problem instances in which (ud

L,ud
F) is an interior point of

the convex hull of Λd, choosing α too large can create program infeasibility due to
(4.17).

The following assumptions are made for a derivation of an upper bound, as
supported by the illustration in Fig. 4.3:

i) the (positive) difference in function values JF (uL,uF) from
JF(u

d
L,ud

F) increases with a strictly positive factor M ∈R+
0 when the correspond-

ing point (uL,uF) outside Λd moves away from (ud
L,ud

F), i.e.,

JF(uL,uF)− JF(ud
L,ud

F) ≥ M · ‖(uL,uF)− (ud
L,ud

F)‖2

for all (uL,uF) ∈ (ΩL ×ΩF)\Λd;
(4.21)
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Figure 4.3: Illustration of elements necessary for the derivation of an upper bound on

α.

ii) there exists a nondegenerate pointed cone2 C with the apex (ud
L,ud

F) that does
not intersect with Λd \{(ud

L,ud
F)}. Let θ > 0 be the maximum angle of this cone.

W.l.o.g. we can now assume that Λd is the complement of the cone C .
In order for (4.17) to hold, since d2

(
(uL,uF),(u

d
L,ud

F)
)
≥ 0 by definition, it follows

that the following requirement should be satisfied for all uF ∈ ΩF:

|d1 ((γL(uF),uF),Λd)| ≥ α ·d2

(
(γL(uF),uF),(u

d
L,ud

F)
)

. (4.22)

The limit case for this condition to still hold is when the set {(γL(uF),uF) |uF ∈ ΩF}
coincides with the axis AC of the cone C . Consider a point (uCL ,uCF ) ∈ AC . Let
(u

p
L,u

p
F) be the orthogonal projection of (uCL ,uCF ) on bd(C ), denoted in Fig. 4.3 by

proj⊥(uCL ,uCF ). Since the cone has a maximum angle, there exists such a point
(uCL ,uCF ) ∈ AC for which the orthogonal projection on the boundary of the cone ap-
proximates its orthogonal projection on the boundary of the sublevel set, as in the
point (u

p
L,u

p
F), it holds that bd(C )≈ bd(Λd). Note that as a consequence we have that

JF(u
p
L,u

p
F) ≈ JF(ud

L,ud
F) and thus
∣∣∣d1

(
(uCL ,uCF ),Λd

)∣∣∣ = JF(u
C
L ,uCF )− JF(up

L,u
p
F) (4.23)

≥ M · ‖(uCL ,uCF )− (u
p
L,u

p
F)‖2. (4.24)

Moreover,

‖(uCL ,uCF )− (u
p
L,u

p
F)‖2 = sinθ · ‖(uCL ,uCF )− (ud

L,ud
F)‖2 (4.25)

= sinθ ·d2

(
(uCL ,uCF ),(ud

L,ud
F)

)
. (4.26)

2We call a cone nondegenerate if it has a strictly positive aperture, i.e., it does not solely contain a
single half-line.
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Hence,
∣∣∣d1

(
(uCL ,uCF ),Λd

)∣∣∣ ≥ M sinθ ·d2

(
(uCL ,uCF ),(ud

L,ud
F)

)
. (4.27)

In order to satisfy (4.22), it follows that α should be selected such that:

0 < α ≤ M sinθ. (4.28)

Additionally, to satisfy 0 < α ≪ 1, we can write:

0 < α ≤ min(ξ,M sinθ) ,0 < ξ ≪ 1. (4.29)

Here it should be noted that in case (ud
L,ud

F) is the apex of a pointed cone C as
defined above that in addition is not sufficiently symmetric with respect to (ud

L,ud
F)

when projected on ΩF, no explicit leader function is feasible, as is illustrated in Fig.
4.4(a). In such case, an implicit function representation of a leader function may be
adopted instead; this is considered as a topic for future research.

Also in case such a cone has an infinitesimal gap with the boundary of Λd in
the neighborhood of (ud

L,ud
F), no smooth explicit leader function is feasible. This

situation is depicted in Fig. 4.4(b).

4.4.2 A Gridding Approach to Solve for a Basis Function

In general, multilevel optimization problems can consume a significant amount of
computational resources, especially when the size of an instance of the optimization
problem, e.g., influenced by the number of elements nL,nF of the leader and follower
decision variables in our case, increases. In order to prevent this issue, we here
propose a simple, relaxed problem formulation based on the multilevel optimization
approach defined in Section 4.4.1 above.

In particular, instead of solving (4.16)–(4.20) subject to the relations (4.10)–
(4.15), we return to the original feasibility program (4.5)–(4.9) in which the com-
plicating constraints (4.6) and (4.8) are transformed into regular constraints by per-
forming a gridding approximation of the follower decision space. The left-hand side
expressions in (4.6) and (4.8) are then evaluated at each relevant grid point uF ∈ Ω

g
F,

where Ω
g
F ⊆ ΩF and with ud

F ∈ Ω
g
F, i.e., they are replaced by:

JF(γL(uF),uF) > JF(u
d
L,ud

F), for all uF ∈ Ω
g
F \{ud

F}, (4.30)

γL(uF) ∈ ΩL, for all uF ∈ Ω
g
F. (4.31)

The implications of this approach with respect to finding a game-optimal leader
function are analyzed next:

• Uniform grid.

In case ΩF is simply approximated by an equidistant grid with (ud
L,ud

F) as the
basis grid point and with a grid size of precision δ, it can be easily verified that
a point uF ∈ ΩF is separated at most ε :=

√
nF · δ

2
in Euclidean distance from

some grid point uF ∈ Ω
g
F. If the follower’s decision for a given leader function
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(a) Case in which no feasible explicit leader
function exists. The line ab is perpendic-
ular to the follower axis.
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(b) Case in which a nonsmooth optimal leader
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Figure 4.4: Sublevel set Λd and associated cone C : Λd ∩C =
{
(ud

L,ud
F)

}
.

does not coincide with a grid point, there is no guarantee that the algorithm
does not return a leader function that intersects with Λd \{(ud

L,ud
F)} and in fact

the approach could then lead to a pair of decision variables that is far (≫ ε)
from the desired pair (ud

L,ud
F).

• Non-uniform grid.

Instead, one can consider a set of non-equidistant grid points that have a
higher density in the space projΩF

(Λd) then in ΩF and that in particular in-
cludes the follower elements of the vertices of Λd in case it represents a poly-
tope. A program-feasible leader function satisfying (4.30) and (4.31) then
leads more likely to game-optimality.
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Optimality Overall, if there exists a game-optimal nonlinear leader function within
the applicable constraints, the gridding approach should be able to find it with a
‘sufficiently’ dense grid. We therefore consider an adaptive gridding approach in
which the precision δ should be refined in case of the evaluation of a program-
feasible function γL(·) from (4.5), (4.7), (4.9), (4.30), (4.31) it turns out that
minuF∈ΩF

JF(γF(uF),uF) 6= ud
F.

Remark 4.3 Instead of evaluating the leader function at each grid point with re-
spect to the sublevel set (i.e., with respect to JF(·) according to (4.30)), this con-
straint could be tightened to exclude intersection with the convex hull of Λd. This is
however only possible provided that (ud

L,ud
F)∈ bd(conv(Λd)); otherwise the approach

may not result in any game-optimal leader function. While it does not warrant game-
optimality, considering the larger, convex area around Λd can reduce the likelihood
of an undesired intersection of {(γL(uF),uF) |uF ∈ ΩF} with Λd. Further, this can also
lead to the exclusion of any of the available feasible solutions with respect to the
constraint γL(ΩF) ⊆ ΩL in the available space RnL \projΩL

(Λd).
Finally, a hybrid approach may be adopted in which the continuous method is

considered for projΩF
(Λd) while outside this space, a coarse gridding of ΩF can be

adopted to satisfy γL(ΩF) ⊆ ΩL. 3

4.5 A Heuristic Approach: Interpolation

The last alternative indirect nonlinear solution approach we propose is that of mul-
tivariate interpolation also known as curve or (hyper)surface fitting, either by us-
ing piecewise polynomials (splines) or by fitting any given parametrized function
[3, 47]. Although we are interested in any such curve or higher-dimensional man-
ifold that does not intersect with Λd \ {(ud

L,ud
F)} (according to C.2), the resulting

leader function needs to pass through (ud
L,ud

F) (according to C.3) and remain within
ΩL for all uF ∈ ΩF (according to C.1). Therefore a set of data points can be selected
that satisfy C.1–C.3; an interpolation algorithm fits a function through the elements
of this set, which is especially facilitated in case of a function that is piecewise de-
fined.

As it will be illustrated in Section 4.7, interpolation approaches can have signifi-
cant advantages as regards computational efficiency. At the same time, a significant
drawback is the difficulty of interpolation to take care of the requirements C.1 and
C.2 as well as to determine an initial set of data points. Analogously to the gridding
approach, interpolation is therefore an adaptive approach in which an evaluation
of minuF∈ΩF

JF(γL(uF),uF) has to prove whether the leader function is indeed game-
optimal, or whether an adapted set of data points is needed for the derivation of a
new leader function. Another disadvantage of interpolation by fitting an involved
function structure is that an ill-chosen set of data points may result in an infeasible
fit of the specified function. This applies especially in functions involving many pa-
rameters, where the minimum number of data points required for interpolation is
rather large.

A few elements of the interpolation approach are listed in the following:
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Selection of data points One could systematically select data points that are a
chosen measure in Euclidean distance away from bd(Λd), the boundary of Λd. Since
the selection of proper interpolation points is very much dependent on the geometric
shape of Λd and on the location of (ud

L,ud
F), the approach is suggested for application

to small problems in which nL + nF ≤ 3, where graphical representation facilitates
selection.

Smoothness In case smoothness does not exhibit a desired property, a game-
optimal piecewise affine function is easily derived, i.e., by selecting interpolation
points such that a linear interpolating function through these points does not inter-
sect with Λd \{(ud

L,ud
F)}. Piecewise polynomial interpolation functions can however

be subjected to any degree of continuity requirements.
On a high level, the piecewise polynomial (spline) approach can be summarized

as follows3. For the sake of simplicity of the exposition we consider the case nL =
nF = 1; the subscript j for j = 1, . . . ,nL can thus be disregarded in the coefficient
description (ai) j. Note, however, that the approach can also be extended to higher
dimensions.

Here, S denotes the set of selected data points {(u(s)
L ,u

(s)
F )}s∈{1,...,S} including

(ud
L,ud

F) and where (u
(ŝ)
L ,u

(s)
F ) 6= (u

(s̄)
L ,u

(s)
F ) for ŝ 6= s̄. Further, (u

(s)
L ,u

(s)
F ) and

(u
(s+1)
L ,u

(s+1)
F ) are connected by the segment indexed s ∈ {1, . . . ,S− 1} and n

(s)
a de-

notes the degree of the polynomial associated with the segment s ∈ {1, . . . ,S−1}.

To find for s = 1, . . . ,S−1 : (4.32)

a
(s)
i ∈ RnF , i = 1, . . . ,n

(s)
a , (4.33)

suchthat γ
(s)
L (u

(s)
F ) = u

(s)
L , (4.34)

γ
(s)
L (u

(s+1)
F ) = u

(s+1)
L , (4.35)

γ
(s)
L (uF) =

n
(s)
a

∑
i=1




(
((a

(s)
i ))1

)i

(uF)
i−1

...(
((a

(s)
i ))

nL

)i

(uF)
i−1




. (4.36)

In this program, only C0 continuity is guaranteed. Here, no constraints are con-
sidered that can enforce C.1 nor C.2; a new data point should be selected and new
segments should be created if the conditions are violated.

3Matlab’s Curve Fitting toolbox provides several fitting options next to the spline option to solve
(4.33)–(4.36). Depending on the specified function structure, in addition, C1 and C2 continuity can be
incorporated.
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4.6 Discussion on the Complexity and the Selection

of Basis Functions

4.6.1 Complexity

The reverse Stackelberg game, defined in its general direct form (2.2) without the
specification of a desired leader equilibrium, can be proven to be at least NP-hard.
Recall from Chapter 2 that this follows from equivalence of the original Stackelberg
game [196] with the strongly NP-hard linear bilevel programming problem [39],
where the original Stackelberg game can be perceived as a special case of the reverse
Stackelberg game for leader functions γL : ΩF →{ud

L}.

While the selection of a desired leader optimum reduces the number of solutions
(if any exist), without the specification of a particular class ΓL of leader functions,
the search space for possible solutions is still very large. Moreover, the required
computation time of the proposed solution methods depends strongly on the prob-
lem specifications, i.e., on the follower’s objective function JF(·) or the shape of the
sublevel set Λd, and on the choice of the type and the number of basis functions.
The – in general – nonconvex nonlinear programming problems of the indirect basis
function approaches are also NP-hard.

Nonetheless, for the continuous multilevel approach, the construction (4.10)–
(4.12) can be simplified in case the decision space ΩL is subject to simple box con-
straints with the upper and lower bounds for the i-th component of uL ∈ ΩL denoted
by respectively ulow

L,i ,u
upp
L,i , i = 1, . . . ,nL. In that case, (4.18) can be replaced by the

following constraints in which only the following two optimizations are performed
for i = 1, . . .nL:

min
uF∈ΩF

γL,i(uF) ≥ ulow
L,i ,

max
uF∈ΩF

γL,i(uF) ≤ u
upp
L,i .

(4.37)

In case ΩL is a convex polytope, for γL(uF) 6∈ ΩL it is easy to verify that deter-
mining the distance between γL(uF) and the convex polytope ΩL – replacing (4.18)
– involves a quadratic programming problem. In [185] the distance between two
convex polytopes is computed by solving a similar quadratic optimization problem
with linear constraints, while in the specific case of three dimensions, an imple-
mentation that is approximately linear in the total number of vertices is adopted
in [72]. Further, in case JF(·) is piecewise affine or in case it is approximated by
a piecewise affine function, it can be shown using similar methods as in [21, 50],
that the optimization of d1((γL(uF),uF),Λd) in (4.14) reduces to a mixed-integer lin-
ear programming problem. Such an optimization program still belongs to the class
of NP-hard problems [68], but has the advantage that a global optimum is found
at once whereas nonconvex programming approaches require an a priori unknown
number of iterations without the guarantee that a global optimum is reached.
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4.6.2 Discussion on the Selection of Basis Functions

In order to reduce the computational complexity, for all solution approaches de-
scribed in this chapter, a selection of a leader function structure needs to be made,
e.g., a subset of basis functions should be considered, in which case the represen-
tation is no longer a universal function approximator. The choice of a set of basis
functions depends on the requirements of the setting to which a reverse Stackelberg
approach is applied.

First of all, the basis functions should be sufficiently rich to include a game-
optimal leader function for the given problem instance, while it should not lead to a
too large computational burden due to either a large number of coefficients or due
to the existence of many local optima complicating the minimization of JF(γL(·), ·).

Next to the complexity of the leader function, a motivation for studying various
leader function structures is to be able to influence the likelihood of follower players
responding rationally, i.e., considering robustness of the leader function w.r.t. subop-
timal behavior of the follower. Such deviations from the optimal follower response
ud

F as has also been considered in Section 3.6 can occur due to, e.g.,

• the stochastic nature of the follower’s objective function: some parameters
of JF may be uncertain, e.g., in case JF(·) depends on a state variable that is
subject to measurement noise.

• incomplete information of the leader player concerning JF,ΩF, leading to the
necessity to make an estimate, e.g., of the missing parameters. A simple exam-
ple is the case in which there is a limit in the precision with which the follower
can optimize, i.e., when the follower adopts a discretized set of decision vari-
ables that does not include ud

F.

In such cases, deviations can occur if the (game-optimal) leader function passes
close by the boundary of the follower’s sublevel set Λd. This can be influenced by
the choice of basis functions, depending on the geometric shape of Λd and on the
tightness of bounds on ΩL that are relevant for condition C.1 to hold. In other words,
in case polynomial leader functions are considered, high-order polynomials may be
required when Λd is highly nonconvex and if the distance between the boundary
of projΩL

(Λd) and the boundary of ΩL is small in some coordinate directions, while
lower-order polynomials are sufficient in case Λd is convex and C.1 is easily satisfied
due to a large codomain ΩL relative to a much smaller subset projΩL

(Λd). Instead
of adopting a feasibility objective, the basis function coefficients can be determined
based on any desired optimization criterion, e.g., to take into account such robust-
ness and sensitivity criteria.

Here, it could be interesting not only to take into account the sensitivity of
the follower to deviations from ud

F when adopting different leader functions, but
also to consider the associated deterioration of the leader’s objective function value
JL

(
γL(udev

F ),udev
F

)
due to such a deviation udev

F 6= ud
F,udev

F ∈ ΩF. This will be considered
as a next step of research.

Another criterion for the choice of a particular leader function structure is the
smoothness of such a function. For instance, in multilevel control settings with
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γNS
L

γS
L

Λd

̂(ud
L,ud

F)

Figure 4.5: Illustration of the effect of smoothness in case the ‘true’ desired solution

(ud
L,ud

F) lies in an ellipse around the estimated solution ̂(ud
L,ud

F).

precise instruments and an accurate knowledge of the desired equilibrium (ud
L,ud

F),
nonsmooth optimal leader functions can be applied, whereas in settings where the
true equilibrium may be in a neighborhood of (ud

L,ud
F), the control actions may need

to be steered with a smooth leader function in order to prevent from a large deterio-

ration of the objective function value; see Fig. 4.5 for an illustration. There, ̂(ud
L,ud

F)
is the assumed desired leader equilibrium, while the true value is within an ellip-
soidal set. However, such analyses strongly depend on the geometry of the sublevel
set Λd.

For different types of orthonormal basis functions and their properties, please
refer to [96]. In principle, also combinations of basis functions can be considered
and the basis functions can be further parametrized; such extensions are left for
more elaborate analysis of possible leader function structures.

4.7 Worked Example

In this section, the newly proposed multilevel and grid-based basis functions ap-
proaches and the interpolation method as well as the existing methods for com-
puting a leader function with a nonlinear structure are applied to a static reverse
Stackelberg game. The aim of this comparison is to evaluate the computation time
differences as well as the gap from optimality in case one of the heuristic approaches
is used.

4.7.1 Set-up

For both the leader as well as the follower objective functional, the Rosenbrock as
well as the extended Rosenbrock function is adopted. Recall from Chapter 3 (Exam-
ple 3.23) that the nonconvex Rosenbrock function [165] is often used to illustrate
the performance of optimization algorithms. In terms of the decision variables of
the reverse Stackelberg game it can be written as follows:

f (uL,uF) = (1−uL)2 +100(uF −u2
L)2, (4.38)
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with uF,uL scalar, as depicted in Fig. 3.6 together with several level curves. In this
case, we apply (4.38) for JF(·) and with reversed signs for the leader:

JL = (1+uL)2 +100(uF +u2
L)2. (4.39)

In the three-dimensional case, both the cases of ΩL ⊂R2,ΩF ⊂R and of ΩL ⊂R,ΩF ⊂
R2 are considered in order to show possible leader functions as a one-dimensional
curve or as a surface, respectively. For these higher dimensions we adopt variations
of the extended Rosenbrock function (3.23) [49], i.e.:

JF
(
uL,1,uL,2,uF

)
= (1−uL,1)

2+100(uL,2 −u2
L,1)

2+(1−uL,2)
2+100(uF −u2

L,2)
2,

(4.40)

JF
(
uL,uF,1,uF,2

)
= (1−uL)2+100(uF,1 −u2

L)2+(1−uF,1)
2+100(uF,2 −u2

F,1)
2, (4.41)

JL
(
uL,uF,1,uF,2

)
= 100

(
0.5uF,1 +u2

L)2 +(1+2uL

)2

+100
(

0.5uF,2 +u2
F,1)

2 +(1+2uF,1

)2

, (4.42)

JL
(
uL,1,uL,2,uF

)
= 100

(
0.5uL,2 +u2

L,1)
2 +(1+2uL,1

)2

+100
(

0.5uF +u2
L,2)

2 +(1+2uL,2

)2

. (4.43)

We have chosen to adopt a (piecewise) cubic spline interpolator as well as a
special fifth-order polynomial for the basis function cases and the evolutionary ap-
proaches, implying the following leader functions for the 2D (4.44) and 3D (4.45),
(4.46) cases as realizations of (4.9):

γL(uF)=
5

∑
i=0

ai · (uF)
i, uL∈R,uF∈R, (4.44)

γL(uF)=
5

∑
i=0

[
(ai)1 · (uF)

i

(ai)2 · (uF)
i

]
, uL∈R2,uF∈R, (4.45)

γL(uF)=
5

∑
i=0

(ai)1(uF,1)
i +

11

∑
j=6

(a j)2
(uF,2)

j−6, uL ∈ R,uF ∈ R2, (4.46)

where the respective decision spaces in the first two cases are restricted to uF ∈
[−2,2], uL,uL,1,uL,2 ∈ [−5,5] and the coefficient values are constrained to (ai) j ∈
[−5,5], i = 1, . . . ,na, j = 1, . . . ,nL, na ∈ {6,12}. In order to ensure the existence of a
game-optimal leader function, in the last case these bounds are relaxed to uF,1,uF,2 ∈
[−5,5], and coefficient values to ai ∈ [−10,10], i = 1, . . . ,nc.

As discussed in Section 4.4.2, the simple, uniform gridding approach may not
reach the leader’s desired equilibrium for an arbitrary precision. In this example,
the gridding approach is evaluated for the precision δ = 0.01 in the cases nF = 1

and δ = 0.05 in the case nF = 2. These precisions were found to be sufficient, i.e.,
they solved the problem to optimality. For the scenario uL ∈ R,uF ∈ R, the results
for both a sufficient precision and an unnecessarily fine precision are included. An
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evaluation of the computation time and optimality for different degrees of precision
can be found in Table 4.5 and Fig. 4.8 below.

For the evolutionary approaches, the Matlab neural network fitting toolbox and
the genetic algorithm tool of the global optimization toolbox are used. Standard
settings have been adopted. The evolutionary algorithms are only used for the main
optimization runs of these methods as described in Section 4.3. For the purpose of a
comparison of computation times, constrained nonlinear programming of Tomlab’s
SNOPT optimization toolbox is used for all of the following nonconvex optimization
problems4:

(i) the optimization of JF(·) for each combination of coefficients of γL(·) that is
evaluated in the neural network approach;

(ii) the optimization of the neural network to obtain the best leader function coef-
ficient values for the leader;

(iii) the computation of the follower’s response for a population of leader function
coefficient values, needed to obtain the genetic algorithm’s fitness function
value;

(iv) the computation of the follower’s response to the functional γL,i for each leader
decision element i = 1, . . . ,nL, needed in the constraints (4.37) of the indirect
approaches;

(v) the derivation of the auxiliary distance expression (4.14) within the indirect
approaches;

(vi) the computation of (ud
L,ud

F) in the indirect approaches.

To prevent local optima, in these cases, ten iterations with different initial points
were applied that led to a (local) optimum.

4.7.2 Results and Discussion

In Fig. 4.6 and Fig. 4.7 several leader functions computed by the discussed algo-
rithms are plotted for the 2-dimensional case, while leader functions derived using
the indirect methods in the 3-dimensional case are depicted in Fig. 4.9 (curve) and
4.10 (surface). It can be seen that for the indirect methods, the curves indeed re-
main within the constrained decision space ΩL and outside Λd \ {(ud

L,ud
F)}, which

is not the case for the evolutionary approaches. The extent of the deterioration in
the leader objective function values can be found in Table 4.3, where it should be
emphasized that this performance should be regarded in the context of a trade-off
with the computation times. Further, enforcing the leader function to pass through
(ud

L,ud
F) (the ‘desired equilibrium constraint’, refer to Table 4.4) did improve the av-

erage and minimum value of JL(γL(·), ·) for the neural network approach, but not
for the genetic algorithm.

4It should be noted that alternative to using these regular constrained solvers such as SQP-based,
interior-point or active-set methods, also here, evolutionary approaches could be used.
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Figure 4.6: Leader functions resulting from the indirect approaches: Case uF ∈R,uL ∈
R.
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Figure 4.7: Leader functions resulting from the direct approaches: Case uF ∈R,uL ∈R.

In order to give an indication of the computational requirements, Tables 4.2 and
4.3 show the computation time5 for deriving the leader functions. As the computa-
tion time differed for consecutive runs, the average, minimal, and maximal values
of 10 runs are indicated as well as the standard deviation. The proposed methods
for deriving optimal nonlinear leader functions can now be compared to genetic and
neural networks approaches, where the desired optimum is not computed a priori.

As mentioned before, the results of the genetic algorithm are obtained under
the standard settings indicated by the Matlab documentation. This holds also for

5These CPU times were obtained adopting the 64-bit Matlab 8 (R2012b) Tomlab (SNOPT) environ-
ment on a Linux PC with a 3GHz Intel Core Duo processor and 4Gb RAM.

6Under the standard genetic algorithm settings, the 3D surface case did not result in any feasible
solution after 25 runs that each took on average 850 s.
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Table 4.5: CPU times for different gridding precisions.

Dimension Method CPU time

Case 1
2D Gridding δ = 0.1 1.3485 s
2D Gridding δ = 0.01 1.7664 s
2D Gridding δ = 0.001 6.7659 s

Case 2
3D curve Gridding δ = 0.1 1.1548 s
3D curve Gridding δ = 0.01 1.6780 s
3D curve Gridding δ = 0.001 9.5181 s

the training and validation in the neural network approach, where different sizes
of sample sets (i.e., training plus validation samples) of the leader function coeffi-
cients were evaluated. For the neural network approach, it should be noted that the
evaluation of different coefficient combinations takes a significant amount of time,
which proved to be a bottleneck in our example. The inclusion of too few coefficient
values in the samples may however result in a bad performance. In particular, in
the 3D surface case, evaluating only 3 values for each coefficient does not give a suf-
ficient representation of the possible range of coefficient values, while the follower
optimization problem has to be solved already an intractable number (312) of times.
The 3D cases are therefore not included in the comparison.

As it is confirmed in the results for the 2D case, the larger the number of coeffi-
cient value evaluations, the lower the achieved leader objective function value. For
a satisfactory performance of the neural network approach, parallel evaluations are
therefore necessary, which were not performed in any of the approaches of this ex-
ample. Instead, one may revert to leader functions with fewer coefficients. However,
those may not be sufficiently rich to lead to a game-optimal leader function. Further,
it is noteworthy that while the minimum leader objective function values obtained
by the evolutionary algorithms are close to optimal (JL(ud

L,ud
F) = 0), the standard

deviation of both computation time and objective function values is significant.
Furthermore, the interpolating surface methods required significantly less com-

putation time than the other algorithms. In the 3D surface case, both piecewise
cubic interpolation as well as a fitting based on the polynomial (4.46) adopted in
the other methods is used. In order to find a surface satisfying (4.46), at least 12
data points had to be determined; in case of piecewise (cubic) interpolation fewer
points can be specified.

Finally, Table 4.5 gives another indication of computation times for different
gridding precisions for the worked example. Here, a gridding precision of δ = 0.1
turned out to be insufficient, as is also plotted in Fig. 4.8. There it can be seen
that the curves indeed remain within the constrained decision space ΩL and outside
Λd \ {(ud

L,ud
F)}, except in case gridding was applied with δ = 0.1; for that case, the

computed curves intersect with Λd. Further, it can be observed that increasing the
gridding precision to δ = 0.001 leads to a relatively large increase in time, while an
optimal curve is already obtained for δ = 0.01.

Overall, the main difference between the direct evolutionary approaches and
our proposed, indirect methods is that in the latter approaches, the leader function
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Figure 4.8: Nonlinear leader functions for sufficient and insufficient gridding preci-

sions.

is constrained based on the sublevel set Λd for a certain equilibrium (ud
L,ud

F), which
can be derived directly from knowledge of JF(·). This excludes the need inherent in
the direct methods to repetitively solve the nonconvex follower optimization prob-
lem for every set of leader function coefficients, where it should also be noted that
in each of those problems, there is a risk of selecting a local optimum based on
which further optimization is performed. In those direct approaches, the main aim



4.8 Discussion 87

-5

-5

5

5

0

0

0

2

2

-2

-2

4

-3

-1

1

3

4

uF
ud

L,1

ud
L,2

ud
F

uL,1

u
L
,2

Λd

Figure 4.9: Game-optimal nonlinear leader functions from the gridding (solid) and

the continuous (dashed) approach: Case uL ∈ R2,uF ∈ R.

is to approximate the – in general complex – relationship between leader function
coefficients and the resulting leader objective function value, with the follower’s op-
timization problem as an intermediate step. In cases in which many coefficients are
needed for the leader function to be game-optimal, this difference between indirect
and evolutionary approaches shows clearest.

4.8 Discussion

In this chapter, approaches to systematically solve the reverse Stackelberg game
have been proposed, their properties have been analyzed, and their performance
has been compared to existing direct methods based on evolutionary algorithms.
Available solution approaches that derive optimal affine leader functions have thus
been extended to include more diverse, nonlinear function structures under which
the leader’s desired equilibrium can be reached.

In particular, a continuous multilevel optimization problem leading to an optimal
solution for the leader as well as a gridding approach have been developed next to
an interpolating spline approach. In a case study, these indirect approaches in which
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Figure 4.10: Game-optimal nonlinear leader functions: Case uL ∈ R,uF ∈ R2.

the leader’s desired equilibrium is computed a priori have been compared to direct
methods based on the evolutionary neural network and genetic algorithms that have
been proposed in earlier literature. In particular, the required CPU times as well as
the level of optimality of the methods have been compared for a varying number of
decision variables and leader function coefficients.

Examples mostly deal with two- and three-dimensional decision spaces for the
sake of exposition. For these cases that are on the one hand relatively low-
dimensional but on the other hand deal with relatively rich leader functions that
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involve many coefficients, the indirect approaches turned out to consume much less
computational effort, while the direct approaches resulted in significantly less desir-
able solutions for the leader under the standard parameters of the evolutionary algo-
rithms used. This difference could be explained by the fact that in comparison to the
indirect methods, the underlying aim of the latter, direct approaches to approximate
the relationship between leader function coefficients and resulting leader objective
function values is complex, i.e., it involves solving the nonconvex follower optimiza-
tion problem repetitively for different sets of selected leader function coefficients.
While tuning of the evolutionary algorithms used within the direct approaches is
likely to reduce this gap to optimality, in the indirect methods such tuning is not
indispensable in order to yield an optimal leader function, which can prove to be
beneficial especially in situations with frequently changing problem settings.

With respect to the current chapter, in future research, the qualitative as well
as quantitative performance of the different algorithms could be evaluated for vari-
ous leader function parameterizations in more diverse, higher-dimensional problem
settings with varying shapes of the follower’s sublevel set. In particular, attention
could be paid to the scalability of the algorithms, focusing on methods for reducing
the computational requirements of the solution methods, e.g., by performing more
tuning and by applying parallel computations as well as by distributed algorithms.
Finally, the considered approaches can also be combined, e.g., by adopting a neural
network to represent a leader function as a replacement of the basis functions rep-
resentation. The indirect solution approaches could then be applied in order to find
an optimal leader function in the form of a neural network.





Chapter5
Reverse Stackelberg games in

Dynamic Route Guidance
In the previous two chapters, systematic solution methods for the general reverse
Stackelberg game have been considered by characterizing optimal affine leader func-
tions (Chapter 3) and through the computation of optimal leader functions of a non-
linear structure (Chapter 4). In the current chapter, novel schemes for applying the
reverse Stackelberg game are proposed in the context of traffic control. Here, the
previously considered solution methods can be applied to obtain optimal leader func-
tions. In particular, we present methods in which the reverse Stackelberg game is
adopted to close the gap between user-optimal and globally system-optimal behavior.
It is shown how a reverse Stackelberg game approach can enable traffic authorities
to induce drivers to follow routes that are computed to reach a system-optimal dis-
tribution of traffic on the available routes of a freeway, e.g., to minimize the total
time spent (TTS) of traffic in the network, as well as to reduce traffic emissions in
urban traffic networks.

5.1 Introduction

Two significant and correlated problems in everyday traffic are congestion and envi-
ronmental pollution by vehicular emissions. These problems can be said to be caused
by the inability of individual travelers in current traffic systems to communicate with
each other and to reach a consensus on how to behave in order to collectively im-
prove the traffic situation. At the same time it may be impossible to improve the
conditions like the travel time and the vehicular emissions of some individual trav-
elers without creating a worse situation for other drivers, thus reaching an impasse.

Two well-known notions that are relevant in this traffic context and that can
at the same time be placed in a game-theoretical context are stated next, viz., the
Wardrop equilibrium principles and the Braess paradox. These notions involve the
disparity between a user optimum and a (global) system optimum.

Definition 5.1 Wardrop Equilibrium Principles [198]

The following two excerpts summarize the equilibrium traffic state from the perspec-
tive of the individual drivers and a traffic authority, respectively.

(I) “The journey times on all the routes actually used are equal, and less than

91
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Figure 5.1: Illustration of the Braess paradox.

those which would be experienced by a single vehicle on any unused route.”
[198, p. 345]

In this case in which drivers act noncooperatively and adopt their individ-
ual best, i.e., shortest, route the so-called user equilibrium of traffic flow is
achieved.

(II) “The average journey time is a minimum.” [198, p. 345]

This so-called system-optimal equilibrium is achieved in case drivers act ac-
cording to the objective of minimizing the total time that all vehicles together
spend in a given traffic system (TTS [veh·h]). 3

A related game-theoretical notion is described by Braess:

Example 5.2 The Braess Paradox [25]

“ ... an extension of the road network may cause a redistribution of the traffic
which results in longer individual running times.” [25, p. 258]

The following example (depicted in Fig. 5.1) illustrates this paradox: suppose the
average travel times on the links can be described by the following linear functions
of the link flow q (in number of vehicles per time unit): t1(q) = t3(q) = 10q, t2(q) =
t4(q) = 50+q, t5(q) = 10+q. When a total flow demand (denoted by Q) of (i) Q = 2,
(ii) Q = 6, and (iii) Q = 20 is led from o to d, these result in an optimal total travel
time if these are (i) allocated fully to (o,a,b,d) and (ii) and (iii) divided equally
between (o,a,d) and (o,b,d), respectively. It can be verified that in case (i) and
(iii) the resulting travel times for these optimal route(s) from o to d are also the
shortest amongst the times on alternative routes. However, given that each driver
will adopt the shortest path at each node according to Wardrop’s first principle of
the user equilibrium, in case (ii) with Q = 6, traffic will deviate to the shortest route
(o,a,b,d) and disturb the optimality of the route travel time (o,a,d) and (o,b,d).
Since the travel time on these previously fastest routes (o,a,d), (o,b,d) has now been
increased, no individual driver will deviate from the suboptimal route (o,a,b,d),
resulting in a suboptimal equilibrium. 3
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In this chapter we address the disparity as just described between a system-
optimal traffic distribution and the behavior of traffic participants following their
individual, non-aligned interests, while being subject to insufficient information on
the current as well as on the predicted traffic situation in a dynamic setting. We
show how the road authority can in fact control the traffic behavior by collecting the
(urgency) priorities of the drivers and by providing each individual with monetary
incentives in return for a certain restriction in its traffic behavior, e.g., by following
an imposed speed limit or route. In other words, we propose a hierarchical strategy
based on the framework of the reverse Stackelberg game in which the objectives of
travelers as well as of the road authority can be aligned. First we let the traffic au-
thority (the leader) communicate her knowledge of the network to the drivers (the
followers) via the proposition of a leader function that maps the follower’s decision
variables to positive or negative monetary incentives. In order to collect both the
origin-destination information of the drivers and their individual values of travel
time, on-board computers are assumed to be installed. Based on this information
and on information regarding the current traffic state and the predicted future travel
demand, a system-optimal assignment or distribution of traffic over the available
routes can be computed.

In order to assign traffic over the available routes according to this optimal dis-
tribution, a mapping of monetary incentives should be proposed under which the
rational travelers adopt those values of their decision variable – such as the pre-
dicted route travel time or route splitting rate – that is associated with a route that
is desired by the leader. Evidently, the computation of such an optimal leader func-
tion is a crucial element of the reverse Stackelberg game. It can be shown that
in the proposed applications the derivation of an optimal leader function is rela-
tively straightforward, given the desired optimal distribution and the drivers’ value
of travel time.

In particular, three variants of the reverse Stackelberg game in a traffic context
are proposed, where the follower decision variables are taken to be:

(1a) the route splitting rates of a homogeneous group of travelers in a freeway
network;

(1b) the desired travel time for a driver to reach the desired destination in a freeway
network;

(2) the desired travel time for a driver to reach the desired destination in a (single-
corridor) urban traffic network.

Compared to dynamic routing practices based on, e.g., dynamic route informa-
tion panels, our proposed method can bring about a system-optimal distribution of
traffic over the alternative roads in a freeway network by directly assigning drivers
to a route. Moreover, different from methods that assign constant or flow-dependent
tolls to road stretches [4, 105, 180, 191], in the proposed reverse Stackelberg ap-
proaches the tolls are replaced by incentive functions that are directly dependent
on the decision variable of the drivers. In this manner, it may be more practical to
differentiate between types of drivers (e.g., in terms of their desired origin and des-
tination or the value-of-time profile) as compared to when flow-dependent tolls are
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adopted. With respect to the fairness of applying monetary incentives to heteroge-
neous drivers, it will later become clear that the precise amount associated with the
optimal follower decision is not fixed nor is it important for the game, i.e., the leader
may assign a zero incentive to the desired values of the decision variables and still
achieve a system-optimal situation. The shape or geometry of the leader function is
relevant for influencing the decision of the follower, but the road authority is free to
associate any monetary incentives for the heterogeneous driver groups as she deems
appropriate. As in other toll-based approaches, possible revenue yielded from the
monetary incentives in return for a less efficient behavior of the drivers can enable
the road authority to implement additional, e.g., environmental countermeasures.

The remainder of this chapter is organized as follows. After a concise summary of
available literature in the area of road (congestion) pricing in Section 5.2, some rel-
evant aspects of the general reverse Stackelberg game introduced in Section 2.1 are
placed in a traffic context in Section 5.3. The two proposed reverse Stackelberg rout-
ing approaches and the third game variant mainly designed for urban networks are
described in respectively Section 5.4 and 5.5. More specifically, the elements defin-
ing the games are described, after which the dynamic traffic assignment problems
and the derivation of an optimal leader function is discussed. While the applications
are not intended to be readily implementable in real-life, the performance of the
travel time-based reverse Stackelberg approach in a freeway setting is illustrated in
a case study in which overlapping routes apply in Section 5.6 and a discussion on im-
plementability is provided. Finally, conclusions and recommendations are presented
in Section 5.7.

5.2 A Brief Overview of Road Pricing Literature

There is an abundance of literature available on tolling approaches that aim to im-
prove traffic conditions such as by reducing congestion [146, 169]. Often these toll
design approaches [141, 160] are based on the original Stackelberg game [195, 196]
as described in Section 2.1 in which the road authority as a leader acts first by pricing
road stretches. The drivers as follower players are assumed to adapt their behavior,
i.e., their route choice, to this toll. An overview of road or congestion pricing litera-
ture of the 70s and 80s on foundations as well as implementational aspects can be
found in [146, 150].

Different types of toll have been considered since then, e.g., static versus dynamic
tolling, constant, time-varying or traffic flow-based tolls, while either deterministic
or stochastic models of the traffic behavior have been adopted. Another distinction
is in whether all links in a traffic network are tolled (first-best tolling [201]) or
only a subset of links (second-best tolling [191]). Further, also the choice of de-
parture time has been considered as an additional decision variable of the drivers,
leading to time-variant tolls [4, 105]. In [104], multicriteria road pricing is con-
sidered, focusing not only on minimizing the total time spent, but in addition on
the reduction of vehicular emissions and fuel consumption. Case-studies are often
based on conceptual parallel-link networks [51, 193], on the Chen or Beltway net-
work [35, 105, 178], or on real-life ringroads around cities like San Diego [182]
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and Singapore [73, 155]. A higher-level game considering the different (conflicting)
objectives between multiple stakeholders or road authorities of different regions in
road pricing games is considered in [207]. Also in [181, 200, 206], situations are
considered in which multiple players adopt their own road pricing schemes, given
the presence of private toll roads and different ownership regimes.

Finally, in the road pricing methods suggested in [180], instead of adopting the
original Stackelberg game with constant tolls, constant as well as first- and second-
degree polynomial toll functions of traffic flow are considered. As pointed out in
the previous section, the approaches adopted in the current chapter are different
because the incentives – that can be both positive and negative – are functions of the
decision variables of the drivers. Not only does this enable to distinguish between
heterogeneity of drivers as compared to when the flow-dependent and constant toll
approaches are adopted; it can also be used to induce the drivers to adopt a desired
behavior that is associated with their choice of decision variables.

In order to compute traffic flow-dependent leader functions for different cost
functions, e.g., to minimize the TTS or to maximize the toll revenue of the road au-
thority, previously, neural networks have been adopted [179, 180]. There, constant
up to second-degree polynomial leader functions were computed using a direct ap-
proach as was argued to be necessary because of the complexity of computing an
optimal solution for the road authority. In the routing application of this chapter, we
show how such a solution can nonetheless be (efficiently) computed when adopting
an indirect solution method.

5.3 General Framework for Reverse Stackelberg Games

in Traffic Networks

An outline of the basics of the reverse Stackelberg game has been provided in Chap-
ter 2 (Section 2.1). Just as in the previous chapters, we consider the indirect for-
mulation of the game under the assumption that both leader and follower players
behave fully rationally, i.e., they optimize their respective goal functions over the
given decision spaces. However, for the application considered in this chapter, it
does not suffice to consider a static, nor a single leader-single follower game. We
briefly elaborate on the differences with respect to these relevant aspects for the
implementation in a routing context in the following. A discussion on how to deal
with deviations from the rational, optimal behavior can be found in Section 5.6.2.

On the Existence of an Optimal Solution

Different from the direct approach in which no a priori desired equilibrium is
adopted, it is possible that for a particular desired leader equilibrium in the indi-
rect approach, no leader function exists that can induce the follower player to act
according to the desired decisions. This can be the case if due to strict constraints
on the decision spaces ΩL,ΩF, no leader functions exist that map the full space
ΩF to ΩL and that pass through (ud

L,ud
F) while staying outside the sublevel set Λd.

Whereas this has not been an issue in the general setting considered before, in the
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current application, no matter the traffic situation, a feasible leader function should
be provided to the drivers. However, as will be shown in Section 5.4.2, an optimal
leader function does in fact exist under the considered objective functions and the
associated level curves of the drivers.

Multiplayer Game

In the current traffic routing setting, one road authority will be considered together
with multiple classes of homogeneous drivers. In the literature on reverse Stack-
elberg games, some authors that consider settings with one leader and multiple
followers assume the followers to play a noncooperative game amongst themselves
in which they act simultaneously, leading to a Nash equilibrium amongst the fol-
lower players [99, 167]. The leader can then consider the actions of the follow-
ers together as the response of one follower. Alternatively, different leader func-
tions uL,i = γL,i(uF,1, . . . ,uF,N), i = 1, . . . ,N are proposed in [98] with the objective
to align the objective functions of the N different followers. Under assumptions
on continuous differentiability and (strict) convexity of the follower objective func-
tions as summarized in Chapter 2 (Section 2.4.6), even a single leader function
uL = γL(uF,1, . . . ,uF,N) can prove sufficient to reach the leader’s desired equilibrium
[103].

As it will become clear, in this chapter we can consider each game between the
leader and one follower separately, without the need to consider the relation be-
tween the followers themselves. After the leader has computed her desired, system-
optimal solution, an optimal leader function can be computed for each of the ho-
mogeneous driver groups separately. However, as it will also become clear in the
following sections, in the splitting rate-based variant of the game also the followers
have to play a game amongst themselves. In particular, they have to decide how
individual drivers will be distributed according to the accumulated route splitting
rates that hold for the entire group. Since these lower-level problems do not influ-
ence the main game that is of interest in the current chapter, they are left for future
research.

Here, independence of the follower players is only guaranteed for the case in
which players are fully rational, as assumed throughout the largest part of this dis-
sertation. As it will become clear in the remainder, especially the travel time-based
game variant may result in infeasibilities in case followers deviate significantly from
their optimal decisions. In other words, if followers adopt suboptimal travel times
and are therefore associated with a suboptimal route, the (optimal) desired travel
time of other players on overlapping routes will be influenced. While travel times
of drivers are also influenced in case of suboptimal behavior in the splitting rate-
based case, each follower’s (suboptimal) desired splitting rates can be realized in
practice. Here it should be noted that also in case of unpredictable events like ac-
cidents, promised travel times may not be realizable. In such cases, which will not
be considered in this chapter, a new incentive scheme could be proposed. Further,
penalization schemes as discussed in Section 5.6.2 may mitigate the effect of subop-
timal behavior on a longer term.
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Dynamic Game

Recall that in a multi-stage (discrete-time) framework, the system to which the game
is applied is identified by a state variable x(t) ∈ X ⊆ Rnx ,nx ∈ N with a corresponding
update equation, e.g., x(t + 1) = f (x(t),uL(t),uF(t)), t = 1,2, . . . ,T . This variable is
part of the players’ objective function J p : ΩL ×ΩF ×X → R, p ∈ {L,F}.

Next to the static game (2.5)–(2.7), also open-loop [209], state feedback [98,
184], and closed-loop [210] variants of the reverse Stackelberg game have been
considered, in which the leader function can be a mapping of decision variables of
the current time instant as well as of one or of a series of previous time instants and
in addition of the state variable, to the leader’s decision space.

While we do consider a dynamic routing problem in which the evolution of traffic
states over time is taken into account, the leader functions of the game are computed
and proposed once to the incoming traffic at each control time step. Hence, it is
sufficient to adopt the open-loop dynamic variant in which a set of leader functions is
determined at each control time step. For ease of notation, each new leader function
proposed to a certain follower player at a certain control time step is simply denoted
by γL(·). The methods available for solving the static reverse Stackelberg game can
also be applied to the open-loop variant.

At the same time, for an accurate prediction of the traffic flow evolution that
is necessary for the road authority to compute an accurate system-optimal traffic
assignment, considering the traffic dynamics is important. This will be elaborated
upon in the discussion on the computation of an optimal traffic distribution in Sec-
tion 5.4.2(i).

Solution Methods

Recall from Chapter 2 that the general static reverse Stackelberg game (2.2) can be
proven to be NP-hard by reduction to the original Stackelberg game, which is in its
turn equivalent to a bilevel programming problem [39] that is (strongly) NP-hard
[89] already for the case of linear higher- and lower-level optimization objectives.
Nonetheless, different solution methods are available for the static reverse Stackel-
berg game as will be briefly recapitulated next. Please refer back to Chapter 4 for a
more detailed description of the approaches.

For (quasi) convex follower objective functions or for cases in which the desired
equilibrium (ud

L,ud
F) is a boundary point of the convex hull of the sublevel set Λd,

an affine leader function has been proven to lead to the desired leader equilibrium
(see Chapter 3, [83, 209]). For general problems, direct ([179, 186]) and indirect
(Chapter 4, [86]) approaches have been proposed that consider respectively the
game formulation (2.2) and (2.5)–(2.7):

• Direct Approaches

– Evolutionary algorithms [179, 186]: the relationship between the fol-
lower decision variable uF ∈ ΩF and the leader objective function value
JL(γL(uF),uF) for a leader function γL(·) parametrized by coefficients is
approximated. Optimization of this relationship should lead to the best
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leader function coefficients. However, no optimality guarantees can be
given as regards the approximation.

• Indirect Approaches [Chapter 4]

– Continuous basis-function approach: based on a leader function struc-
ture represented by a linear combination of basis functions, a multi-level
optimization problem can be solved to yield optimal leader function coef-
ficients.

– Grid-based basis-function approach: this method is computationally more
efficient than the continuous equivalent for relatively small problem in-
stances, but computation times increase exponentially for an increasing
number of dimensions nL,nF and a more dense grid. In general, a trade-
off between computational efficiency and suboptimality of the leader
function can be made by the choice of the gridding precision.

– Interpolation and spline approach: leader functions passing through a
set of selected data points can be derived efficiently. This heuristic ap-
proach can in general not guarantee the selection of an optimal leader
function, implying an adaptive approach with an a priori unknown num-
ber of iterations. In order to facilitate the selection of proper data points
outside Λd \ {(ud

L,ud
F)}, this approach is best applied to problems where

nL +nF ≤ 3.

In the Section 5.4 below, the details of the game approaches proposed for the
freeway context are described, followed by the urban game formulation in Section
5.5.

5.4 Reverse Stackelberg Approaches for Traffic Rout-

ing in Freeway Networks

5.4.1 Problem Statement

The game-based methods proposed in this section are developed for the purpose
of reaching a system-optimal distribution of traffic over the available routes based
on any desired criterion such as the total time spent of traffic in a network. In
particular, networks with multiple available routes for any origin-destination (OD)
pair are considered, where the reverse Stackelberg approach is adopted to be able
to distribute the traffic by assigning drivers to the available routes.

Here, the traffic network is modeled as a directed graph with a set of origin and
destination nodes O and D respectively. The total number of OD-pairs (o,d)∈ O ×D
is denoted by NOD = |O | · |D |, where |X | represents the cardinality of X . The number
of alternative routes, i.e., paths without cycles, for the i-th OD-pair, i ∈ {1, . . . ,NOD},
is denoted by ni ∈N. Homogeneous freeway stretches are represented by links m∈ L ,
that connect origins, destinations, and internal nodes of the set N of nodes that do
not constitute a source or sink of outgoing and incoming traffic, respectively. Hence,
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we define the node sets such that O ∩N = ∅ and D ∩N = ∅. In addition, w.l.o.g. we
assume that each origin o ∈ O has a single outgoing link mout(o). In case of multiple
outgoing links of a given origin, a single virtual link can be created with zero length,
hence with zero travel time, that connects the given origin to a virtual internal node
from which the multiple outgoing links then depart. Similar applies to a destination
node d ∈ D with multiple incoming links. When adopting a traffic prediction model,
the links can be further divided into road segments of equal length, in order to
achieve an accurate prediction of the traffic behavior. For clarity, only link indices
are adopted throughout the greater part of the chapter.

Further, a receding horizon approach is adopted to take into account not only the
present but also the future traffic conditions. In particular, kc ∈ N indicates the time
instant t = kcTc, with Tc [s] the sample or control time interval of the dynamic routing
approach. Similarly, k ∈ N indicates the time instant t = kTs, with Ts [s] the time
interval for the simulation of the traffic flow behavior based on a prediction model
that will be presented in Section 5.4.2. This yields a time horizon [kTs,(k + Np)Ts]
with the prediction horizon Np and where Tc = MTs,M ∈ N+

0 .
To complete the traffic link flow description, the inflow of origins can be written

q
o,d
in (k) = qmout(o),d(k), (5.1)

with q
o,d
in the effective demand at time step k of vehicles traveling from o ∈ O to

d ∈ D . Then, the total inflow of node n ∈ N at time step k that has a destination d is
denoted by

Qn,d(k) = ∑
m∈I(n)

qm,d(k), (5.2)

with I(n) the set of incoming links of node n. Similarly, O(n) denotes the set of
outgoing links for node n, with a traffic flow

qm,d(k) = βn,m,d(k)Qn,d(k), (5.3)

where βn,m,d(k) ∈ [0,1] represents the splitting rate for link m at node n with the
destination d. We can now write the total flow qm(k) on link m by

qm(k) = ∑
d∈D

qm,d(k). (5.4)

Aggregated link flows are obtained simply by summing up the flows for the possible
destinations.

We now focus on achieving a system-optimal distribution of vehicle flows over a
traffic network with respect to the TTS. In order to optimize the use of the available
routes in a traffic network by the drivers, we will strive for congestion avoidance by
keeping the flow on a route below the bottleneck capacity or capacity flow as long
as possible. The general cost function in case the system-optimal traffic distribution
is defined to minimize the TTS for a given prediction horizon Np that is incorporated
to take into account not only the present but also the future traffic, can be described
by

J (k) = Ts

Np·M

∑
j=1

(

∑
m∈L

qin,m(k + j)tm(k + j)+ ∑
o∈O all

wo(k + j)

)
, (5.5)
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where tm(k) denotes the mean travel time associated with link m ∈ L at time step k.
The value of tm(k) is determined using a traffic prediction model as will be elaborated
upon in paragraph (i) of the dynamic game framework below. In addition, the queue
length wo(k) at origin o ∈ O all is considered to incorporate situations in which the
demand do(k) of the time interval [kTs,(k+1)Ts] (including the current queue length)
exceeds the capacity minus the outflow of the given origin, where O all denotes the
set of indices of all origins. Further, qin,m(k) denotes the effective traffic inflow of
link m ∈ L in the time interval [kTs,(k + 1)Ts], i.e., where qin,mout(o)

(k) ≤ do(k), with
mout(o) ∈ L the (virtual) outgoing link of origin o ∈ O .

5.4.2 The Reverse Stackelberg Approaches

In order to introduce the reverse Stackelberg approach to the dynamic traffic as-
signment problem, we start with a definition of the basic elements of the reverse
Stackelberg game, linked to the traffic control context, where the following game
variants are proposed:

• splitting rate-based: The leader function represents a mapping of route split-
ting rates to monetary incentives.

• travel time-based: The leader function represents a mapping of desired travel
time to monetary incentives.

The scheme of Fig. 5.2 illustrates the game-based framework that leads to a dy-
namic route assignment, using a leader-follower approach in which the road author-
ity associates monetary incentives denoted by θ with a follower’s choice of either the
route splitting rate ζ or the travel time denoted by τ in which a driver or a group of
drivers – represented by a follower player – desires to reach a destination. Based on
the follower’s choice of the pair (θ,ζ) or (θ,τ) according to the relation θ = γL(·) pro-
posed by the leader, the driver is assigned to a route. The leader’s aim is therefore
to compose a leader function γL(·) such that a system-optimal distribution of traffic
can be achieved. The characteristics of the drivers as well as the incentive functions
and travel time choice of the drivers are communicated via an on-board computer.

Before the overall approach is elaborated upon, first the basic elements of the
reverse Stackelberg game are translated to the traffic domain.

The Players and Their Decision Variables

• The single leader player represents the road authority responsible for accom-
plishing an optimal use of a given traffic network.

• In the splitting rate-based reverse Stackelberg approach, a follower player

represents a homogeneous group of vehicles, i.e., drivers characterized by
the same OD-pair and monetary value-of-time class index h ∈ H := {1, . . . ,H},
where the set of classes of drivers with a particular origin and destination index
i∈ {1, . . . ,NOD} is denoted by H i. The differentiation in monetary value-of-time
could be based on, e.g., the urgency of the particular driver given the travel
purpose that could be indicated via the on-board computer, or on the class or
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Figure 5.2: Schematic framework for the splitting rate-based and the travel time-

based reverse Stackelberg approaches to dynamic route assignment.

type of vehicle. Alternatively, this parameter could be determined via an itera-
tive learning process in which the monetary value of time is adapted over time
based on the decision variables selected by the given driver.

The total number of follower players can be written NF,s = ∑
NOD
i=1 |H i| where we

denote the set of followers by

F s :=
{
(h, i)|i ∈

{
1, . . .NOD,h ∈ H i

}}
. (5.6)

In the travel time-based reverse Stackelberg approach, in order for the leader
player to accomplish the desired traffic distribution, drivers in a homogeneous
follower group will have to be distributed over the different available routes.
Therefore, a follower player is assigned another index specifying the route
j ∈{1, . . . ,ni} that the leader desires the drivers of the group to take. The leader
can accomplish this by presenting a different leader function γL : ΩF,t → ΩL to
ni subgroups of the drivers within value-of-time-classes h ∈ {1, . . . ,H} and OD-
pair i ∈ {1, . . . ,NOD}. In the extreme case, each individual driver could be
treated as a separate follower player that gets assigned an individual leader
function.

Here, the total number of follower players is thus denoted by NF,t = ∑
NOD
i=1 ∑

ni
j=1

ni · |H i| where we can represent the set of followers by

F t :=
{
(h, i, j)|i ∈

{
1, . . .NOD, j ∈ {1, . . . ,ni},h ∈ H i

}}
. (5.7)
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For the sake of implementation in a dynamic receding horizon framework, we
consider the traffic that enters (or plans to enter) the system in the time period
Mkc = [kcTc,(kc +1)Tc] as one follower player at the control time step kc.

The associated decision variables represent:

• A monetary incentive θhi
s (kc)∈Ωhi

L ⊆R to be awarded or collected by the leader

player regarding the follower player (h, i) ∈ F s, where Ωhi
L := [θhi

min,θ
hi
max] de-

notes an acceptable range of monetary incentive values.

The same applies to the incentive θ
hi j
t (kc) ∈ Ω

hi j
L ⊆ R for a follower (h, i, j) ∈ F t

in the travel time-based game, with Ω
hi j
L := [θ

hi j
min,θ

hi j
max].

• The follower decision variable is significantly different in the two proposed
methods:

– Splitting rate-based game:
Each homogeneous group of drivers that constitutes the follower player
(h, i) ∈ F s decides upon the vector of route selection variables ζhi(kc) ∈
Ωhi

F,s ∈ Rni , i ∈ {1, . . . ,NOD},h ∈ H that specifies the fractions of this ho-
mogeneous group of drivers that take the different routes associated to
OD-pair index i ∈ {1, . . . ,NOD}, where 0 ≤ ζhi

m(kc)≤ 1,∑
NOD
m=1 ζhi

m(kc) = 1, and
where

ζhi(kc) :=
(

ζhi
1 (kc) , . . . , ζhi

ni
(kc)

)T

. (5.8)

The effective inflow of vehicles associated with route j ∈ {1, . . . ,ni} for the
OD-pair index i ∈ {1, . . . ,NOD} at control time step kc can thus be written
q

i j
in(kc) := ∑h∈H

(
qhi

in(kc)ζ
hi,d(kc)

)
j
.

– Travel time-based game:
Each follower player (h, i, j) ∈ F t decides upon the desired travel time
(including the average time of waiting in the queue at time step kc)
τhi j(kc) ∈ Ω

hi j
F,t ⊆ R+ to reach the associated destination, where Ω

hi j
F,t (kc) :=

[τ
hi j
min(kc),τ

hi j
max(kc)] denotes the range of possible, i.e., realizable travel

times for a specific OD-pair that is provided by the leader at the current
time step kc and given the route length and the predicted velocities.

Leader and Follower Objective Functions

• It is important to note that the proposed reverse Stackelberg game can be
applied to reach system-optimal traffic behavior for many different objectives.
The only requirement for a suitable formulation of the leader’s objective is that
the drivers’ decision variable should be an independent variable in the leader’s
objective function, as is described in a general game context in Remark 2.5.
In both approaches we take the leader player’s aim as the minimization of the
sum of total travel time (including possible waiting time in queues) of traffic
in the system, subject to consistency and capacity constraints.
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– Splitting rate-based game:

JL,s(kc) = Tc ∑
h∈H i

NOD

∑
i=1

(
thi(kc)

)T

·
(

qhi
in(kc)ζ

hi(kc)
)

, (5.9)

where qhi
in(kc) [veh/h] denotes the effective demand or inflow of drivers in

the value-of-time class h ∈ H i for the i-th OD-pair that enters the system
during the time window [kcTc,(kc +1)Tc]. Furthermore,

thi(kc) :=
(

thi
1 (kc) , . . . , thi

ni
(kc)

)T

(5.10)

denotes the vector of associated predicted travel times for reaching the
destination via each of the routes associated with the i-th OD-pair, where
the previous waiting times of the vehicles corresponding to the effective
inflow qhi

in(kc) are incorporated.

– Travel time-based game:

JL,t(kc) = Tc ∑
h∈H i

NOD

∑
i=1

ni

∑
j=1

τhi j(kc)q
ctrl,hi j
in (kc), (5.11)

where q
ctrl,hi j
in (kc) ∈ R+ [veh/h] denotes the part of the effective demand

qhi
in(kc) [veh/h] for the OD-pair i ∈ {1, . . . ,NOD} that involves the vehicles

from one of the h ∈ {1, ..,Hi} classes of drivers with a certain monetary
value of time, that is distributed by the road authority over route j ∈
{1, . . . ,ni}, i.e., ∑

ni
j=1 q

ctrl,hi j
in (kc) = qhi

in(kc) for i = 1, . . . ,NOD, h = 1, . . . ,Hi.

• The followers’ aim is to minimize the travel cost that can be represented by a
function of monetary incentives and the expected travel time. Note that while
the leader player uses a receding-horizon approach, the follower is only inter-
ested in the traffic conditions predicted at the control time step kc of entering
the system and with a horizon until the destination is reached:

– Splitting rate-based game:

J hi
F,s(kc) = αh

F

(
thi(kc)

)T

·
(

qhi
in(kc)ζ

hi(kc)
)

+θhi
s (kc), (5.12)

where the vector of expected route travel times thi(k) including waiting
times follows from the traffic flow distribution ζhi(k) · qhi

in(k) in a manner
explained in paragraph (i) of the dynamic game framework below. Here,
αh

F ∈ R+ is the possibly time-variant monetary value of travel time, also
known as the value of travel time savings that indicates a driver’s willing-
ness to pay for a change of travel time. This value is often taken to be a
constant parameter in the road-pricing literature, implying a linear map-
ping of travel time to monetary value [106]. Nonetheless, for the reverse
Stackelberg methods, αh

F could be replaced by a more involved, nonlinear
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relation as considered in, e.g., [23, 53]. This choice could influence the
function structure required for an optimal leader function γL to exist, as
will be elaborated upon later in this section.

– Travel time-based game:

J
hi j
F,t (kc) = αh

Fτhi j(kc)+θ
hi j
t (kc), (5.13)

where αh
F is as defined above.

The Dynamic Game Framework

The dynamic reverse Stackelberg routing approach consists of the following main
steps:

(i) Given the traffic state at the control time step kc and the demand for the OD-
pairs as indicated by the drivers via on-board computers, a system-optimal

distribution of the new vehicles over the available routes with respect to cri-
terion (5.9) or (5.11) is computed by the road authority, together with the
corresponding predicted mean travel times. For more details on this computa-
tion, refer to the next subsection 5.4.2(i).

(ii) Given the desired, optimal distribution of vehicles q
i j,d
in (kc) for the route index

j for the OD-pair index i and and the associated predicted mean travel times,
optimal leader functions are computed by the leader. This computation is
elaborated upon in Section 5.4.2(ii):

– Splitting rate-based game: An optimal leader function γhi
L,s for each of

the followers (h, i) ∈ F s leads to the choice of a desired route splitting
rate by the drivers of the i-th OD-pair and with a monetary value of time-
class h ∈ H i, where q

i j,d
in (kc) := ∑

Hi

h=1

(
qhi

in(kc)ζ
hi,d(kc)

)
j

for i ∈ {1, . . . ,NOD},
j ∈ {1, . . . ,ni}.

– Travel time-based game: An optimal leader function γ
hi j
L,t for each of the

followers (h, i, j) ∈ F t leads to the choice of a desired predicted travel
time τhi j,d(kc) associated with one of the j ∈ {1, . . . ,ni} routes for a spe-
cific share q

ctrl,hi j
in (kc) of the drivers for the i-th OD-pair and with a mon-

etary value of time-class h ∈ H i, where ∑
ni
j=1 q

i j,d
in (kc) := ∑

Hi

h=1 qhi
in(kc), for

i = 1, . . . ,NOD.

(iii) As a response to the optimal leader functions, a rational follower in the travel
time-based game will choose a combination of monetary incentive and travel
time, which the leader associates with a certain route that the follower should1

follow. In the splitting rate-based game, the optimal splitting rates associated
with an optimal leader function automatically lead to the desired, system-
optimal distribution.

1Penalty schemes could be implemented to mitigate disobedience outside the game context; more
suggestions in this context can be found in the discussion paragraph of Section 5.6.2.
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(i) Computing an Optimal Distribution of Traffic Flow

Several methods exist to determine a desired system-optimal traffic distribution over
the available routes. For an overview on approaches for dynamic traffic assignment,
the reader is referred to [35, 142, 162]; to [37] for integration with departure
time choice, and to [62] for the equilibrium traffic assignment problem. Distributed
routing policies with a specific focus on resilience, viz., robustness to link failures
and disruption in general types of networks are considered in [40, 41]. We here
describe how such methods for computing an optimal assignment can be related to
our game.

Using a prediction model as will be elaborated upon in the following paragraph,
given a driver demand pattern that is communicated via the on-board computer for
the control time window [kcTc,(kc + 1)Tc], i.e., q

i j
in(kc) [veh/h], i ∈ {1, . . . ,NOD}, j ∈

{1, . . . ,ni}, a system-optimal – with respect to the TTS – distribution of traffic flow
q

i j,d
in (kc) over the road network can be computed, as well as the corresponding pre-

dicted mean travel times t i j(kc) for each of the routes j ∈ {1, . . . ,ni}. These travel
times are accumulated from the predicted mean travel time on a link m ∈ L for the
effective flow of vehicles qin,m(k) entering link m in the period [kTs,(k + 1)Ts] and
are denoted by tm(k). This symbol tm is adopted to differentiate between the pre-
dicted travel times thi and the desired route travel time variable τhi j used in the
travel time-based game, where the predicted mean travel times t i j(kc) associated
with the system-optimal traffic distribution for the routes j ∈ {1, . . . ,ni} are denoted
by τi j,d(kc).

The traffic assignment can now be determined by solving a dynamic version of
the minimum cost flow problem, with the objective to minimize (5.5).

Additionally, for j = 1, . . .Np, the following constraints are needed to correctly
represent the flows in the traffic network, where o(i) ∈ O ,d(i) ∈ D represent the
origin and destination associated with the OD-pair i: {(o,d)}i:

∑
h∈H i

qhi
in(k + j) = qmout(o(i)),d(i)(k + j), i = 1, . . . ,NOD, (5.14)

∑
d∈D

∑
m∈I(n)

qm,d(k + j) = ∑
d∈D

∑
m∈O(n)

qm,d(k + j), ∀n ∈ N , (5.15)

∑
d∈D

qm,d(k + j) ≤ qcap,m, ∀m ∈ L , (5.16)

qm,d(k + j) ≥ 0, ∀m ∈ L ,∀d ∈ D , (5.17)

The system-optimal, desired route selection rates ζhi,d that are required for the
game of the homogeneous followers (h, i)∈ F s now follow straightforwardly from the
desired node splitting rates βd

n,m,d that again follow from the optimal flows qm,d(k) for

each link m ∈ L towards the destination d ∈ D , i.e.: βd
n,m,d(k) :=

qm,d(k)

∑m∈O(n) qm,d(k) . Hence,

the distribution of traffic demand over the particular routes, leading to a flow qi j on
route j ∈ {1, ...,ni} for OD-pair index i ∈ {1, ...,NOD} can be written:

qi j(k) := ∑
h∈H i

qhi
in(k) ·ζhi

j (k), with ζhi
j (k) := ∏

n∈P Ni j

m∈O(n)

βn,m,d(i)(k), (5.18)
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where P Ni j ⊆ N denotes the set of nodes on the path j for OD-pair i. Further, for the
flow on a link m ∈ L with destination d ∈ D we have:

qm,d(k) = ∑
i∈Id

∑
h∈H i

∑
j∈Ji,m

qhi
in(k)ζ

hi
j (k), (5.19)

with Id the set of OD-pairs with destination node d and Ji,m the set of routes for the
i-th OD-pair that contains link m.

In order to derive the associated predicted travel time for a route as required
in (5.5), several traffic models as well as prediction approaches of various degrees
of precision can be adopted that predict the travel time tm(k) for vehicles entering
a particular link m ∈ L at time kTs. Here, we take the average travel time to be
tm(k) = Lm/ṽm(k), with ṽm(k) the average space-mean speed in link m at time step k.

It is important to note that this choice of accuracy determines the complexity
of the above problem. If one takes ṽm(k) as a constant, e.g., equal to the currently
measured (space-mean) speed or equal to the maximum or free-flow speed that ap-
plies during uncongested traffic conditions, a linear programming problem results
[2]. Here it should be noted that in order to reduce the complexity of the optimiza-
tion problem leading to a route assignment, one can also select a particular subset
of shortest routes that are together sufficient in capacity for the given demand – but
may not yield a system-optimal distribution as when the complete network were
considered – for the traffic to be distributed amongst.

The following paragraph elaborates on different prediction models as well as on
simulation approaches that can be adopted to obtain the predicted route travel time.

Traffic Flow Prediction In order to capture the behavior of traffic over time, a
traffic prediction model is used to track the traffic states, i.e., to analyze the impact of
a traffic routing assignment on these states and to determine an accurate prediction
of the travel time of drivers. Based on the current and future state of the network
and on an estimation of future demand, the desired traffic flow distribution and the
associated decision variables that can lead to this state can be determined as will be
explained next. In particular, the state of the traffic network can be described by the
following macroscopic variables:

• average traffic density ρm,i(k) [veh/km/lane] in segment i of link m at time
t = kTs;

• average space-mean speed vm,i(k) [km/h] of vehicles in segment i of link m at
time t = kTs;

• traffic flow qm,i(k) [veh/h] leaving segment i of link m in time interval [kTs,(k+
1)Ts].

Instead of the space-mean speed, also the time-mean speed can be adopted, for
which estimation a method is proposed in [189] on the basis of locally measured
vehicle speeds.
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Different traffic flow models can here be adopted in varying degrees of accuracy,
which again influences the complexity of the minimum cost-flow problem. Especially
in case of the integration of the route guidance problem with control measures like
variable speed limits and ramp metering signals, an accurate prediction of traffic
flow is needed. Taking into account the trade-off between accuracy and compu-
tational speed, we chose to adopt the macroscopic METANET traffic flow model
[115, 144]; for completeness the basic METANET equations as well as the modifica-
tions for the route-dependent variant needed for the current setting can be found in
Appendix A. Note that other traffic models can also be adopted, e.g., the cell trans-
mission model (CTM) [46] and link transmission model (LTM) [202]. The reader is
referred to the literature for details; a comparison of the accuracy and complexity of
several of these models can be found in [101].

A less accurate but computationally more efficient alternative for deriving ṽm(k)
is based on the fundamental diagram, e.g., a piecewise affine diagram, together with
the expression qm(k) = ρm(k)vm(k)λm, with λm the number of lanes of link m, i.e.:

ṽm(k) =





vfree,m, if ρm(k) ≤ ρcrit,m,
qcap,m −w(ρm(k)−ρcrit,m)

λmρm(k)
, if ρcrit,m < ρm(k) ≤ ρmax,m,

(5.20)

where vfree,m denotes the free-flow speed on link m, qcap,m the capacity flow, and
ρmax,m, ρcrit,m [veh/km/lane] respectively the maximum and critical density of link
m ∈ L . Instead of the piecewise affine fundamental diagram, the expression

ṽm(k) = vfree,m exp

[
− 1

am

(
ρm(k)

ρcrit,m

)am
]

(5.21)

could be adopted, where am represents a model parameter [140].

The following two paragraphs describe simulation approaches that can be
adopted, next to the different types of prediction models, to obtain an accurate
prediction of link and route travel times.

Backtracking of Vehicles In order to predict an accurate travel time for travers-
ing a link and hence to complete a route to which a vehicle is to be assigned, so-
called backtracking of the individual vehicles2 should be performed. In this back-
tracking procedure, depicted in Fig. 5.3, at each simulation time step in the period[
kcTc,(kc +Np)Tc

]
it is determined whether a vehicle is still predicted to be in a cer-

tain segment of a link or whether it is predicted to have left the segment, updating
the segment travel time according to the dynamic speed profile vm,i(k). Here, as
shown in Fig. 5.3, at the indicated ‘jump points’, the current speed vm,i(k) is updated
to either vm,i(k +1) or vm,i+1(k). The final link costs for the particular vehicle is thus
based on the (predicted) time difference between entering and leaving a link, where
the link travel times are determined based on the updated velocities on the segments
while the vehicle travels through the links during the prediction window.

2In fact, it is sufficient to distinguish between the homogeneous driver groups as each individual
driver within a homogeneous group is assumed to act identically according to the decisions of the associ-
ated follower player.
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Segments of link m

Nm

Nm −1
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2
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kT (k +1)T (k +2)T . . . (k + p)T Simulation time

j = jend

j = 0

Figure 5.3: Backtracking of the position of individual vehicles on a link [42].

A Quasi-Dynamic Approach Instead of performing a computation time-intensive
optimization to determine a system-optimal traffic distribution while adopting an
accurate prediction model, the following quasi-dynamic approach can be adopted
as suggested in [42]. Given a demand profile at a control time step kc and the
current velocities on the different links, these velocities are updated by iteratively
computing a desired (optimal) distribution of traffic over the routes and by simu-
lating the corresponding traffic flows for a chosen simulation horizon. By adopting
a predicted demand profile for the simulation horizon, the situation is taken into
account in which traffic with an overlapping path that entered the network later
than a given vehicle takes over that vehicle and thus influences its course. Here, the
desired (optimal) distribution is computed based on the link costs cm(kc) that do not
simply represent the expected travel time on each segment, but the summation of
all predicted travel times for simulation steps k = Mkc,Mkc +1, . . . ,M

(
kc +Np

)
−1 in

the prediction period
[
kcTc,(kc +Np)Tc

]
:

cm(kc) =
M(kc+Np)−1

∑
k=Mkc

Nm

∑
i=1

Lm/Nm

vm,i(k)
, (5.22)

with Nm the number of segments of link m ∈ L . The current velocities are then
substituted by the predicted velocities, which update is performed for a fixed number
of iterations or until the difference in, e.g., the link flows between two iterations is
below a chosen threshold. In this manner, the predicted behavior of traffic is more
accurately captured than in an approach in which travel times are simply predicted
based on the evolution of the current traffic demand according to the prediction
model.
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(ii) Computing an Optimal Leader Function

Given the desired traffic flow distribution q
hi j,d
in (kc) (travel time-based game) or

ζhi,d(kc) ·qhi
in(kc) (splitting rate-based game) computed at the control time step kc for

all h ∈ H i, i ∈ {1, . . . ,NOD}, j ∈ {1, . . . ,ni}, the leader should associate with each feasi-
ble value of the follower variable a monetary incentive θhi j(kc) ∈ ΩF,t,θ

hi(kc) ∈ ΩF,s,
respectively. Optimal leader functions are those that cause the follower to adopt the
associated desired travel time τhi j,d(kc) or the desired splitting rates ζhi,d(kc).

Possible algorithms to compute optimal leader functions have been recapitulated
in Section 5.3. Recall that in order for conditions C.1-C.3 (see Chapter 4, Section
4.2.1) to be satisfied, the leader function should remain outside the follower’s sub-
level set Λd \ {(ud

L,ud
F)}, with (ud

L,ud
F) the decision variables desired by the road au-

thority, i.e.,
(
θhi j,d(kc),τ

hi j,d(kc)
)

or
(
θhi,d(kc),ζ

hi,d(kc)
)
. If this does not hold, a ratio-

nal follower would adopt a decision variable value other than the leader’s desired,
precomputed value.

For the current application, several level curves of the travel cost function JF,t(·)
according to (5.13) are depicted in Fig. 5.4. Here, a constant value-of-time coeffi-
cient αF ∈ R+ as well as a linear and nonlinear relation αF = 0.5 ·τ,αF = 0.5 · (τ)2 are
considered. For increasing values αF ≥ 0, the slope of the level curves changes from
horizontal lines to steep curves (Fig. 5.4), since the monetary incentive becomes the
more significant decision criterion for the follower player.

It is important to note that the sublevel sets Λd associated with the (here, con-
cave) level curves are convex, i.e., it is relatively easy to find optimal leader functions
for which C1-C3 hold (see Chapter 3). While we refer to Chapter 4 for details on
the available algorithms for computing leader functions, two possible optimal leader
functions are indicated in Fig. 5.4(d), i.e., a quadratic (γ1) and a piecewise affine (γ2)
mapping of desired travel time to a monetary value. In this example, the follower’s
optimal decision variables are τd,1,τd,2, associated with a monetary value θd,1,θd,2.

Remark 5.3 Note that any range of monetary incentives could be adopted as an im-
age of the leader function given a follower’s decision space. Since θhi j(kc) and θhi(kc)
are not included in the leader objective functions (5.11) and (5.9), the selection of
the variable values τhi j,d(kc) or ζhi,d(kc) by the follower is only dependent on the
shape or geometrical specifications of the leader function. In other words, it is im-
portant that the leader function is designed such that τhi j,d(kc) or ζhi,d(kc) is attained
as a global minimum for the follower. Here, any value θhi j,d(kc) ∈ ΩL respectively
θhi,d(kc) ∈ ΩL can therefore be associated with the desired follower response. This
implies that monetary values could be set, e.g., such that all homogeneous drivers
with a given OD-pair and value-of-time, but assigned to different routes, yield the
same objective function value. Differently, all drivers could be assigned a zero mon-
etary value at the desired value of their decision variable. 3
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Figure 5.4: Level curves of the follower player in the travel time-based game for vary-

ing value-of-time parameters αF.

5.5 A Reverse Stackelberg Approach for Emission Re-

duction in Urban Corridors

A third and final application variant of the reverse Stackelberg game in traffic control
is presented next.

5.5.1 Problem Statement

Different from the approaches presented in Section 5.4, the objective of the last
game approach presented in this section is not to assign vehicles over the possible
routes in a traffic network. Instead, the main factor of interest is traffic emissions
and fuel consumption. In urban traffic networks, there is a significant exhaust of
vehicular emissions due to the high frequency of stopping and taking off at intersec-
tions and traffic signals, where it is known that especially in the lower gears when
starting up the motor, larger emission volumes are obtained and more fuel is con-
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sumed [1]. Both in an uncongested state as well as during rush hours, vehicles have
to stop as a simple result of controlling the (crossing) flows of motorized vehicles,
pedestrians, and cyclists. At the same time, both vehicles in the mainstream traffic
flow as well as vehicles on the cross roads like to minimize their total travel time,
of which waiting time constitutes an important factor. This setting is depicted in
Fig. 5.5.

50 80

ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

Origin Destination

Link

Figure 5.5: Illustration of the urban corridor setting with variable speed limits and

traffic signals for mainstream as well as traffic crossing and joining the

mainstream.

Results on integrated control strategies for reducing emissions and travel delays
in a freeway context can be found in, e.g., [204], while an urban context is consid-
ered in [128]. Different from the latter results, we will propose again a hierarchical
game-based approach in which the reverse Stackelberg game framework is adopted
to allow the follower to make a trade-off between travel time and monetary incen-
tives, where the leader can induce the follower to behave according to the desired
or system-optimal speed and stopping profile as achieved by the on-ramp meters. As
control handles to achieve the desired emission levels and total travel times, traf-
fic signal timings for both mainstream and crossing vehicle flows are set, where in
addition, variable speed limits can be considered to influence the travel time.

While the road authority is also interested in achieving a minimum TTS of vehi-
cles in the urban traffic network, it is known that the usual speed allowed in urban
areas under optimal, i.e., uncongested traffic conditions also causes the least emis-
sions, contrary to situations in which the vehicles have to decelerate and accelerate.
Emissions in urban areas are mostly influenced by these two aspects of acceleration
and the average speed. The latter relation between speed and emissions is depicted
in Fig. 5.6. Nonetheless, the TTS can also be incorporated as an optimization cri-
terion of the road authority via, e.g., a soft constraint. Similarly, the emissions of
crossing traffic can also be incorporated in the cost function of the road authority.
Finally, also on-ramp waiting times of the crossing traffic can be considered, either
as a hard constraint or as a term in the objective function of the road authority.

5.5.2 The Reverse Stackelberg Approach

The Players and Their Objectives and Decision Variables

The trade-off between the objectives of the road authority and the drivers is again
modeled as a reverse Stackelberg game in which the road authority is represented
by a leader player and a homogeneous class of drivers from the origin to the desti-
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Figure 5.6: General evolution of emission rates as a function of vehicle speed.

nation by a follower player.
Since we consider a single link or origin-destination pair as depicted in Fig. 5.5

on which several traffic signals are necessary to let traffic of the side streets pass or
join the mainstream road, we assume all mainstream drivers to behave alike and we
thus consider all drivers entering the network between two consecutive control time
steps as one follower player.

Assuming drivers to behave rationally, heterogeneity of drivers w.r.t., e.g., the
value-of-time could be incorporated, thus proposing different leader functions that
however result in the same optimal follower response. However, if drivers adopt
suboptimal decisions, it may be infeasible to realize different speed and waiting
time profiles for different classes of drivers. For the sake of conciseness, we omit
heterogeneity indices in the following.

As in the travel time-based routing game, the associated decision variables rep-
resent:

• The monetary incentive θ(kc) ∈ ΩL ⊆ R to be awarded or collected by the
leader player at control time step kc, where ΩL := [θmin,θmax], θmin ∈ R,θmax ∈
R indicates an acceptable range of monetary incentive values.

• The predicted total time τu(kc) ∈ ΩF ⊆ R+ desired by the follower player for
spending in the (urban) network including possible waiting times in a queue
before entering the system. Again, ΩF(kc) := [τu,min(kc),τu,max(kc)] denotes the
range of possible, i.e., realizable travel times for the incoming traffic, given the
current state of the network.

Leader and Follower Objective Function

• Taking the road authority to be the leader in the game-based framework, we
can write her cost function as follows:

JL(kc) = τu(kc)+αL,γ ∑
g∈Γ

γg(kc), (5.23)
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where γg(kc),g ∈ Γ denotes the emissions or fuel consumption of type g caused
by the mainstream traffic entering the system in the time window [kcTc,(kc +
1)Tc], with Γ := {CO emission,CO2 emission, HC emission, NOxemission,
fuel consumption}. These emissions are a function of the number of vehicles,
acceleration, and velocity, the values of which are influenced by the control
handles of the road authority as will be explained below. Further, αL,γ ∈ R+

represents a weighing coefficient in which also the conversion of units is incor-
porated.

Note that no effective traffic demand (in veh/h) needs to be incorporated at
this stage, as the drivers entering the system are considered as one player. For
the computation of a system-optimal profile of traffic signals and speed limits
as elaborated upon in the following paragraph, this explicit value of traffic
demand as well as the values of predicted traffic demand will be incorporated.

• The objective of the drivers is equivalent to (5.13) as adopted in the travel
time-based reverse Stackelberg game in freeway traffic networks, i.e.,

JF(kc) = αF · τu(kc)+θ(kc), (5.24)

with θ(kc) ∈ ΩL ⊆ R the positive, zero, or negatively-valued monetary incen-
tives that are respectively provided by, neutral, or paid to the leader at control
time step kc. Further, τu(kc)∈ ΩF(kc)⊆R+ denotes the travel time in which the
follower wants to reach his destination, where the follower’s decision space ΩF

is time-variant as it is subject to feasibility bounds that depend on the state of
the traffic network. The factor αF ∈ R+ again represents the drivers’ value-of-
time.

The Dynamic Game Framework

The reverse Stackelberg approach for urban corridors consists of the following main
steps:

(i) Given the traffic state at the control time step kc and the incoming mainstream
traffic demand during the time window [kcTc,(kc +1)Tc] as well as a prediction
of the demand of mainstream as well as of side-street traffic for a horizon
[kcTc,(kc +Np)Tc], a system-optimal profile of speed limits and green phases at
the traffic signals for the traffic entering the mainstream corridor is computed
by the road authority, together with the corresponding desired predicted travel
times τd

u(kc).

In particular, adopting a prediction horizon as in the previous approaches of
Section 5.4, the overall objective based on (5.23) with the effective demand
and queue length before entering the system explicitly incorporated, can be
written as:

min
τwait,ℓ(kc),ℓ∈U
vctrl,ℓ(kc),ℓ∈U

J (kc) = Ts

Np·M

∑
j=1

(
∑
ℓ∈U

(
αL,ττu,ℓ(kc + j)qin,ℓ(kc + j)+

αL,γ ∑g∈Γ γg,ℓ(kc)
)

+w(kc + j)
)
,

(5.25)
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where the urban corridor is divided into links ℓ ∈ U that end with a traffic
signal with the corresponding index ℓ as depicted in Fig. 5.5 (the last link is
allocated a virtual traffic signal for consistency).

Here, the total emissions and travel time are straightforwardly composed ac-
cording to γg(kc) = ∑ℓ∈U γg,ℓ(kc) and τu(kc) = ∑ℓ∈U τu,ℓ(kc)+ w(kc). The travel
time on link ℓ for traffic entering link ℓ during the time interval [kcTc,(kc +1)Tc]
can be written:

τu,ℓ(kc) = τnom,ℓ(kc)+ τwait,ℓ(kc), (5.26)

where τwait,ℓ(kc) ∈ R+ denotes the waiting time for mainstream traffic signal
and where τnom,ℓ(kc) ∈ R+ denotes the nominal or average travel time for a
mainstream driver through link ℓ that entered during [kcTc,(kc + 1)Tc], which
can be derived according to3 τnom,ℓ(kc) = Lℓ/vctrl,ℓ(kc). The variable speed limit
vctrl,ℓ(kc) for link ℓ at control time step kc is adopted as a control handle of the
road authority to influence both emissions and the total travel time. Further,
αL,τ ∈ R+ represents another weighing coefficient.

The waiting time τwait,ℓ(kc) for mainstream traffic during the time interval
[kcTc,(kc +1)Tc] implies an equivalent time window of green time for the traffic
queuing at the side-street traffic signal with index ℓ. While we do not elabo-
rate on the modeling of this queue, the road authority may consider a soft or
hard constraint to limit the waiting time of traffic at the cross roads. Further
note that after each green phase, a fraction of side-street traffic will join the
mainstream. A prediction of this division, e.g., based on historical data, should
be incorporated in the traffic flow model.

Further, the effective traffic demand entering link ℓ during the time interval
[kcTc,(kc + 1)Tc] is denoted by qin,ℓ(kc). In addition, w(kc) denotes the waiting
time for (a part of) the total demand in case the first link of the corridor is
saturated.

Finally, the total emissions and fuel consumption can be derived from the accel-
eration and the velocity of vehicles, as briefly elaborated upon in the paragraph
on prediction models below.

(ii) Given the desired, optimal profile of speed and waiting times and the resulting
predicted mean travel time, an optimal leader function γL(kc) : ΩF(kc) → ΩL

can be computed by the leader.

Since the follower’s objective is equivalent to the cost function (5.13) described
in the travel time-based game in a freeway context, for the derivation of an
optimal leader function, the analysis of Section 5.4.2(ii) also applies here.

(iii) As a response to an optimal leader function, a rational follower will adopt a
pair of monetary incentive and travel time, which the leader associates with
the optimal profile of variable speed limits and traffic signals.

3A more accurate description of the speed as a function of density and variable speed limit is given
in Appendix B, Equation (B.4).
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Prediction Models

In order to be able to make accurate estimations of travel time and emissions that
are necessary to compute a desired, system-optimal traffic behavior according to
(5.23), good prediction models are necessary that at the same time are fast enough
to deal with in dynamic optimization. For urban traffic networks, the BLX model
[128] can be adopted as a possible prediction model. The reader is referred to the
literature for an elaborate description of different traffic models [101, 107].

In the VT-micro model [1], values of the vehicular emissions CO,NOx,HC [g] and
of fuel consumption [l] are determined based on the mean velocity and acceleration
of an individual vehicle in the set I of vehicles at every time step, i.e.,

γℓ(k) = ∑
i∈I

exp
(

v̆T
ℓ,i(k)Pγăℓ,i(k)

)
, (5.27)

with the speed and acceleration vectors v̆T
ℓ,i(k) = [1 vℓ,i(k) v2

ℓ,i(k) v3
ℓ,i(k)] and ăT

ℓ,i(k) =

[1 aℓ,i(k) a2
ℓ,i(k) a3

ℓ,i(k)], and where Pγ denotes the matrix of model parameters for
γ ∈ Γ = {CO emission, HC emission, NOx emission, fuel consumption}, the values of
which can be found in [1].

In addition to adopting an accurate prediction model for the velocities and ac-
celerations needed to determine the emission values and travel times, backtracking
of vehicles may be adopted as has been explained in Section 5.4.2(i) to accurately
predict when vehicles enter and leave a link.

Discussion

It is important to note that the problem is formulated as a single leader-single fol-
lower game in which the driver class for a particular OD-pair is taken to be homo-
geneous. Only in case it would be feasible to consider different traffic signals for
different classes of vehicles, e.g., in case of strictly separated lanes on a homoge-
neous segment of the corridor, a distinction between classes can be made.

Further, the travel time of side street traffic is directly considered in the objective
function of the road authority. Alternatively, the waiting time may be posed as
a constraint, focusing solely on the minimization of vehicular emissions and fuel
consumption.

Finally, different from the approaches discussed in Section 5.4 in which no traffic
signals can bring individual travelers to behave according to the system-optimal
behavior (i.e., adopt a certain route), in the urban game setting described in Section
5.5, traffic signals and variable speed limits can in fact enforce4 the desired speed
and acceleration scheme. In particular, the approach can be adopted in combination
with the travel time-based routing approach in a freeway context in order to simplify
reaching the desired travel times promised by the road authority.

4Under the assumption of fully rational players; for penalty schemes implemented to mitigate disobe-
dience outside the game context, we refer once more to the discussion paragraph in Section 5.6.2.
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Figure 5.7: Ring road network of the city of Singapore.

5.6 Case Study

In this section a simulation study of a real-life multi-route freeway traffic network
is considered in order to give an indication of the performance of the proposed ap-
proach. In order to compare the TTS obtained when using the travel time-based
reverse Stackelberg game, we also simulate the traffic behavior when adopting dy-
namic route information panels (DRIPs).

5.6.1 Set-up

A real-life traffic network based on the Singapore ring road network is considered
in which several road segments are shared by different routes associated with the
same as well as with different origin and destination pairs, as depicted in Fig. 5.7.

It is assumed that leader functions are computed and proposed to new drivers
each control time step corresponding to the control time interval Tc = 1 min with a
simulation time step or sampling time step of Ts = 10 s and a simulation time of two
hours. For online implementation, this is feasible if drivers enter their travel plans
at least a time period consisting of this control time window plus the maximum time
required for the computation of an optimal leader function, before departure. Fur-
ther, the prediction horizon adopted to take into account future traffic conditions is
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Table 5.1: Comparison of TTS for different routing methods.

Scenario TTS (veh·h)

Shortest route 1.089·103

Fastest route 1.109·103

DRIP 1.109·103

RSG 955.6

set to Np = 30, implying a prediction time duration of 5 min. The METANET traffic
model is adopted to simulate the traffic behavior, where we adopt a critical density
ρcrit,m = 27 veh/km/lane, a free-flow speed of vfree,m = 90 km/h, and model parame-
ters am = 2.34,η = 30 km2/h,τ = 10 s,κ = 20 veh/km. Further, we consider a traffic
demand profile at origin o4 to destinations d5 −d8, according to which the inflow of
the network increases from 0 veh/h to 8000 veh/h during the first half hour, stays
at 8000 veh/h for one hour, and then decreases back to 0 veh/h during the last half
hour.

The TTS achievable by application of the travel time-based reverse Stackelberg
approach (‘RSG’) is compared to three scenarios. The ‘shortest route’ scenario rep-
resents the TTS value obtained when travelers entering the system take the route
that they are informed to be the route of shortest distance to their destination. The
TTS for the ‘fastest route’ scenario represents the TTS value obtained when travelers
entering the system take the route that they are informed to be associated with the
shortest travel time to their destination, based on current traffic conditions. Finally,
the TTS is considered that is obtained when DRIPs are adopted. Here, we assume
that the travelers split according to the following simple logit model [43]:

βni
i (k) =

exp
(
−σt i j(k)

)

∑
ni
j=1 exp(−σt i j(k)

, i ∈ {1, . . . ,NOD}, j ∈ {1, . . . ,ni}, (5.28)

where σ ∈ R indicates the sensitivity of a driver to changes in travel time, similar
to the value-of-time, and with t i j ∈ R+ the predicted travel time for the route j ∈
{1, . . . ,ni} available for the OD-pair i ∈ {1, . . . ,NOD}, as derived from the travel time
prediction performed in the fastest route scenario.

The TTS values that resulted from the simulations when adopting the different
approaches can be found in Table 5.1. The equivalent results of the DRIP and the
fastest route-based approach can be explained by the fact that only a few alternative
routes from origins to destinations are available in the given network; the travel
times need to differ significantly in order to use alternative routes. Further, the
worse performance of the fastest-route scenario as compared to the shortest-route
may be explained by the model mismatch of the prediction and the actual simulation
of traffic behavior.

5.6.2 Discussion

The main implications of using different follower decision variables in the travel
time-based and route splitting rate-based approaches are in (i) the realization of
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suboptimal follower decisions and in (ii) the dimension of the leader function do-
main.

While the benefit of the splitting rate-based approach as compared to the travel
time-based approach is in the fact that any (suboptimal) route splitting rates can
be achieved in contrast to suboptimal desired travel times in the travel time-based
approach, there are also computational considerations. Both aspects will be briefly
considered next.

Robustness Considerations So far, we have assumed a perfect situation in which
both the road authority and the drivers behave as fully rational players, optimizing
their respective goal functions for the given decision spaces.

In order to account for deviations from the expected (and promised) travel time
due to unexpected traffic conditions, the following measures could be taken:

• Provide updates of the traffic conditions through an updated leader function
for traffic that is already in the system. Here, drivers may get assigned a new
route or speed profile while the monetary incentives can be re-computed. In
particular, at each node the updated optimal splitting rates could be considered
rather than route-splitting rates. However, the increased computational com-
plexity as well as the increase in online and on-board communication would
have to be evaluated.

• Work with desired travel time windows as the followers’ decision variable in-
stead of a precise value in minutes in the travel time-based approaches.

• In cases where lanes of a homogeneous freeway stretch are strictly separated,
one can allow for different speed limits on these different lanes.

The third, urban game variant can also be integrated with the travel time-based
or splitting rate-based freeway approaches to influence the travel time by variable
speed limits and ramp metering in a freeway context, which we leave for future
research.

Computational Considerations As regards the computational complexity of the
different game variants, it should be noted that the decision space of the follower is
inherently multidimensional in the splitting rate-based game. The leader function
should allocate a monetary incentive to each possible combination of route splitting
rates for a given OD-pair. The derivation of such an nF,s-dimensional optimal leader
function (a hyperplane) in a space of dimension nF +1 as nL = 1 is in general a more
complex problem than the derivation of a curve for nF,t = 1.

At the same time, NF,s ≤ NF,t, implying the need for at least as many one-
dimensional leader functions in the travel time-based game.

5.7 Discussion

In this chapter we have described how the reverse Stackelberg game can be used
for application in traffic control, i.e., as a means for achieving a system-optimal
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evolution of traffic states, with as one of the possible criteria the minimization of the
total time spent by vehicles in a network by influencing the traffic distribution over
the available roads in a network.

In particular, the leader player is taken to represent the road authority, while
homogeneous drivers with the same value-of-time and origin and destination pair
are represented by a follower player. Three reverse Stackelberg game variants have
been proposed, according to which the decision variables to which the leader as-
signs a positive or negative monetary incentive is taken to be either (1a) the desired
travel time or (1b) the route splitting rates of a homogeneous group of vehicles in a
freeway context, or (2) the desired travel time in an urban setting. In the splitting
rate-based case, the distribution of individual drivers within the group is taken to
be a lower-level problem that is not explicitly addressed in this dissertation. Further,
while the system-optimal distribution of traffic amongst possible routes is consid-
ered in a freeway network with overlapping routes, in a single-corridor urban traffic
context, the game is adopted to minimize vehicular emissions.

The proposed game approaches are conceptually different from road tolling ap-
proaches in which tolls are determined for road stretches, as it is easier in the for-
mer case to differentiate between heterogeneous drivers. Moreover, one can rely on
the theory developed on, e.g., the complexity and solution methods for the reverse
Stackelberg game. A simulation study of a real-life ringroad network showed the
possible improvements when adopting the game approach in comparison with cases
in which drivers take the shortest respectively fastest route, or when dynamic route
information panels are considered.

In principle, a system-optimal state with respect to any objective can be achieved,
provided that the drivers’ decision spaces, i.e., the ranges of feasible travel times in
which they can arrive at their destination, are considered in the determination of the
system optimum. In the current setting, we assume that the road authority informs
the drivers of their decision space of feasible travel times.

In future work, real-life implementability concerning unexpected deviations in
an uncertain traffic setting should be considered. Also, an analysis of the possible
leader function structures – ranging from smooth curves to piecewise affine func-
tions – should be made as regards the acceptance and ease of employment by the
drivers in a real-life scenario. Further, the freeway and urban applications can also
be integrated, i.e., by considering route guidance in urban traffic networks or by
adopting the control measures as described in the single-corridor urban setting also
in a freeway network. In such a situation, integrated variable speed limit and ramp
metering control can be adopted, which is discussed as a separate topic in Appendix
B.





Chapter6
Conclusions and

Recommendations
As stated in the introduction to this dissertation, while a broad body of results is
available regarding the original Stackelberg game, this does not apply to the – more
general – reverse Stackelberg game. In this thesis, we have therefore presented ex-
tensions to the available theory, in particular aiming at the development of methods
to systematically obtain solutions to this game. Several applications in the context
of traffic control were further discussed as one of many areas in which the reverse
Stackelberg game can be applied to structure decision making. In this final chapter,
first the main findings from the previous chapters will be summarized, after which
several suggestions and recommendations are discussed on topics that can prove to
be interesting for further research in the area of reverse Stackelberg games.

“A conclusion is the place where you got tired of thinking.” . . .
- Martin H. Fischer -

6.1 Conclusions

The reverse Stackelberg game is considered as a framework for hierarchical or se-
quential decision making that applies, e.g., in multi-level decision or optimization-
based control problems. This game evolves around the so-called leader function or
mapping of a follower’s decision space into the leader’s decision space, which the
leader proposes to a follower player. The well-known Stackelberg game can be per-
ceived as a special case of the reverse Stackelberg game in which the image of the
leader function is a singleton. In case a follower’s response to this leader decision
variable value is nonunique, the leader can no longer control the follower’s decision,
unless she proposes a more involved leader function, i.e., applying a reverse Stack-
elberg game. In spite of these merits, the reverse Stackelberg game has received
much less attention in comparison with the original, purely hierarchical Stackelberg
game. We therefore see much potential in considering the reverse Stackelberg game
at least in those problems to which the original Stackelberg game has been applied.

Having considered the research conducted in the area of reverse Stackelberg
games since the 1970s, a list of open issues resulted, both summarized in Chapter
2. We identified the lack of systematic solution approaches for the indirect formu-

121



122 Chapter 6: Conclusions and Recommendations

lation of the reverse Stackelberg game – in which the leader function is derived
for a given equilibrium point desired by the leader – as the main challenge to be
addressed first, as it prohibits the game from being applicable in general settings
without restrictive assumptions regarding, e.g., smoothness and (strict) convexity of
leader and follower objective functions. In this analysis, affine and nonlinear leader
function structures are distinguished between in Chapter 3 and 4 respectively, where
the leader function in the latter case is represented by a linear combination of ba-
sis functions. Finally, in order to frame the applicability of the reverse Stackelberg
game in a new setting, suggestions for the application of the game in a traffic control
context have been presented in Chapter 5.

The contributions of the conducted research are elaborated upon below, followed
by suggestions for improvements as well as extensions.

Contributions The main contributions of the work presented in this dissertation
can be enumerated as follows and will be summarized in the remainder of this
paragraph.

1. We have developed necessary and sufficient conditions for the existence of an
optimal affine leader function assuming an unconstrained decision space.

2. We have derived a characterization of the set of optimal affine leader functions
for unconstrained decision spaces, and we have explained how this set can be
reduced to obtain the set of optimal affine solutions in case of a constrained
decision space.

3. We have developed three numerical methods to compute optimal nonlinear
leader functions for the indirect formulation of the reverse Stackelberg game.

4. We have proposed three realizations of the reverse Stackelberg game in urban
and freeway traffic networks and showed how implementing such games can
result in system-optimal traffic behavior.

5. We have considered the computational intractability of nonconvex model pre-
dictive traffic and emission control and we have adopted piecewise affine ap-
proximations of the nonlinear model equations, resulting in a mixed-integer
linear programming problem.

Affine solutions:

Before the reverse Stackelberg game is ready to be considered as a viable decision
framework in various settings, first, a solution method to tackle the general reverse
Stackelberg game should be available, which is not yet the case.

As a first step towards obtaining a systematic solution approach, leader functions
of the affine structure have been considered, in particular by providing necessary
and sufficient conditions for the existence of an optimal affine leader function in the
general static, deterministic single leader-single follower game. With these results, it
can thus be first verified whether an – easy to derive – optimal affine leader function
exists, instead of adopting more complex, nonlinear function structures. Here, re-
strictive assumptions on (locally strict) convexity and differentiability of the follower
objective function that are often required in the literature have been relaxed.
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Based on these conditions, a characterization of the full set of optimal affine
leader functions in an unconstrained decision space has been derived. Moreover, it
has been shown how a reduced set of optimal affine leader functions can be obtained
in case of constrained decision spaces. This set can subsequently be used for further
optimization, e.g., as a result of a sensitivity analysis on the deviation of a follower
from his optimal response.

Nonlinear solutions:

As only a subset of possible problems can be covered for which an affine leader
function results in the leader’s desired equilibrium and moreover, as leader functions
of a nonlinear structure can have beneficial characteristics, e.g., regarding sensitivity,
next, nonlinear leader functions have been considered. For this case, instead of
focusing on existence conditions, computational methods have been provided for
systematically deriving an optimal leader function written as a linear combination
of basis functions, i.e.:

• a continuous multi-level optimization program;

• a grid-based variant thereof;

• a heuristic interpolating spline approach.

These methods – devised for the indirect formulation of the reverse Stackelberg
game in which the leader’s desired equilibrium point is computed before the deriva-
tion of a leader function is made – have been compared with heuristic evolutionary
approaches that have been proposed in the literature for the direct game variant, i.e.,
based on either a genetic algorithm or an artificial neural network approach. Regard-
ing the computational complexity of the solution methods, while these are in general
nonconvex optimization problems, in comparison with the evolutionary approaches,
our methods for the indirect game variant proved significantly more time-efficient
in the case studies considered. At the same time, these indirect methods proved to
be able to compute an optimal (polynomial) leader function – that resulted in the
desired leader equilibrium, while the evolutionary approaches resulted in a subopti-
mal solution. Whereas the third direct interpolation approach is most efficient, it is
also mostly restricted to two- and three-dimensional decision spaces due to the lack
of feasibility conditions.

Examples mostly deal with two- and three-dimensional decision spaces for the
sake of exposition. Nonetheless, the characterization as well as the computational
methods involve an arbitrary (finite) number of decision elements of both leader
and follower.

Applications:

Further, in order to contribute to the available applications of the reverse Stackelberg
game, new applications of the game have been introduced in the area of traffic
control and route guidance. There, the leader and follower players represent the
road authority and a group of homogeneous drivers with respect to their origin
and destination and value of travel time, respectively. While the applications are
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not intended to be readily implementable in real-life, it has been shown how the
game approaches can ideally result in a system-optimal traffic behavior, e.g., with
respect to the total time spent by vehicles in a network. Suggestions for real-life
implementation are provided. In particular, the following three games have been
proposed, where the domain of the leader functions and the type of traffic network
are distinguished between:

• a game with a leader function mapping the desired travel time to monetary
incentives, applied to a dynamic routing approach in freeway networks;

• a game with a leader function mapping the route splitting rates to monetary
incentives, applied to a dynamic routing approach in freeway networks;

• a game with a leader function mapping the desired travel time to monetary
incentives, applied to a single-corridor urban network aiming to reduce vehic-
ular emissions.

Model predictive traffic control (Appendix B):

In the context of the applications just discussed, it should be mentioned that in Ap-
pendix B integrated model predictive traffic and emission control has been studied as
a means to reduce the total time spent of vehicles as well as the vehicular emissions
in a freeway network. In particular, the computational intractability was addressed
that applies when the nonlinear METANET and VT-macro traffic flow and emission
prediction models are applied in a model predictive control (MPC) framework.

To this end, we have approximated the nonlinear model equations of the
METANET and the VT-Macro models with piecewise affine functions. Subsequently,
MPC was applied to the resulting mixed-logical dynamic prediction model, leading
to a mixed-integer linear programming problem instead of an MPC controller that
is based on nonconvex optimization. The control procedure including possible ap-
proximation procedures has been described and the approach has been applied to a
freeway traffic network where the aim was to optimize the total time spent of traffic
in the system as well as the vehicular emissions by means of both variable speed
limits and on-ramp metering.

While the method showed an improved computational efficiency for the given
case study, this was achieved at the cost of some deterioration of the control per-
formance. Moreover, since (mixed) integer linear programming still falls within the
complexity class of NP-hard problems, for application to larger networks, methods
to speed up the optimization as well as to improve efficiency regarding the model
predictive control framework should be investigated.
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. . . “Life can only be understood backwards; but it must be lived forwards.”

- Sören Kierkegaard -

6.2 Directions for Future Research

There is still a long road ahead before it can be stated that a systematic solution
approach exists for the general reverse Stackelberg game.

In order to further expand the current theory, several of the open issues that have
been identified from the literature and that have been listed in Chapter 2 (Section
2.6) should be considered. As regards the contributions presented in this thesis,
several extensions of the derivations, solution methods, and applications can be
found in the intermediate discussion sections. Here, a selection of the perhaps most
promising topics is made.

General extensions In the largest part of the current dissertation, the single leader-
single follower, static deterministic reverse Stackelberg game has been considered.
The most obvious extensions are therefore in:

• extension to dynamic problems;

While dynamic discrete-time as well as continuous-time differential Stackel-
berg games have been considered, no methods for deriving more general
leader functions in such dynamic settings have been developed yet.

• extension to multi-player and multi-level problems;

Possible schemes of interaction and cooperative as well as noncooperative
games played amongst multiple players on a level should be investigated.

• extension to stochastic problems;

Both cases in which the follower does not behave fully rationally and in which
the leader lacks information on the follower that is crucial to derive an optimal
strategy should be considered.

More specific suggestions for further research are considered in the following
categories, the first three following the contents of Chapter 3 – Chapter 5 in corre-
sponding order.

Theoretical considerations

• General existence conditions.

No existence conditions have yet been derived for optimal leader functions
of a general (nonlinear) structure. With the current solution methods nonlin-
ear leader functions are computed without knowing whether such an optimal
function in fact exists. While the derivation of such general existence condi-
tions is a challenging task, instead, only necessary conditions for the existence
of a continuous leader function can be derived that could apply, e.g., to cases
where the follower sublevel set for the desired leader equilibrium intersects
with the boundaries of the leader’s decision space.
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• Implicit leader functions.

In case no optimal or even feasible explicit, continuous leader function exists
(see e.g., Chapter 4, Fig. 4.4(a)), an implicit formulation may be considered to
obtain the leader’s desired equilibrium, allowing a follower decision to map to
a nonunique element of the leader’s decision space (i.e., an inverse mapping
γ−1

L that is surjective). Likewise, discontinuous, discrete- and set-valued leader
functions can be considered.

• Set of desired leader equilibria.

Instead of considering a particular selection of the leader’s desired equilibrium
point, a set of desired equilibria could be considered at once, e.g., deriving
leader functions that pass through several desired equilibria that are equiva-
lent in value. The equilibria may be weighted, especially in case also subopti-
mal equilibria are considered.

• Inclusion of the follower perspective.

Instead of solely focusing on the leader’s desired (global) optimum, the asso-
ciated follower objective function value should also be considered in case the
leader can select one of several desired equilibria. Moreover, a cooperative
approach may be adopted in which the leader could incorporate the follower
perspective directly when determining a desired equilibrium that is not solely
based on the leader objective function.

• Sensitivity analysis.

An explicit connection between a given leader function and the likelihood of
deviation from the optimal follower response should be made, e.g., based on
the closeness of a pair of the leader function argument and the image thereof
to the boundary of the applicable follower sublevel set. When considering
such a suboptimal response of the follower, the extent of deterioration that
this would imply for the resulting suboptimal leader objective function value
should be considered too.

• Suboptimal leader functions.

Similarly, in case no optimal leader function exists, the implications of the
selection of a suboptimal leader function for both leader and follower should
be characterized.

Computational methods

• Computational analysis.

Further assessments should be made of the computation time required to ob-
tain optimal parameters for various basis functions. There, the convergence
of the (evolutionary) approaches should also be taken into account. In addi-
tion, the scalability of the computational approaches to derive nonlinear leader
functions should be investigated for high-dimensional decision spaces.
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• Conditions on gridding precision.

A formal optimality result should be obtained regarding the required gridding
precision. Such conditions could be related to the geometry of the boundary
of the follower sublevel set.

Real-life applicability

• Traffic applications.

For the real-life applicability of the reverse Stackelberg game in a traffic con-
text, in particular mechanisms to deal with unexpected changes in the pre-
dicted, promised behavior should be investigated, as well as restrictions in
bandwidth for transferring the information load and uncertainties related to
packet losses and speed for the communication amongst vehicles and between
vehicles and the road authority.

• Leader function structure.

Another crucial aspect to take into account in real-life applications is the type
of leader functions that follower players are able to process. Unless a leader
function is presented as a black box, leader functions for human players may
need to be restricted to simple curves. In case a follower is an artificial agent,
e.g., a controller purely dealing with the optimization problem, or an agent
that has access to a solver for determining his optimal response to a leader
function, only the (machine) precision is relevant. Moreover, in all settings in
which the players are human, a complex leader function covering several deci-
sion spaces may be unreasonable. Here, a lower-level game could be defined
in which the problem can be further decomposed.

Connection with other disciplines

While links between reverse Stackelberg games and the theory of incentives or con-
tract theory as well as with mechanism design have been mentioned in Chapter 2,
the current dissertation does not include an analysis of results within those fields. In
particular, these disciplines could be consulted for insight in cases with incomplete
information for the leader, when aiming to obtain a solution that is as good as pos-
sible for the leader while at the same time trying to induce the followers to convey
their hidden information truthfully.

Final Outlook

Perhaps the main reason for considering the reverse Stackelberg game in multi-level
decision problems rather than adopting the purely hierarchical Stackelberg game, is
the fact that instead of a direct leader decision a leader function is adopted in order
to account for a nonunique follower response. Following this reasoning, in this
dissertation we have pursued the leader’s aim to derive leader functions such that
her desired optimum is achieved, where the leader function can be a very ‘artificial’
function, such as a highly piecewise nonlinear function with many local optima.
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As suggested for future consideration regarding real-life applicability, this seems
reasonable to the extent that an optimization program can in principle deal with
such complex leader functions. Especially if the players embody human participants
rather than artificial entities like controller units, however, such a complex leader
function may be unreasonable. Moreover, the leader’s problem of determining her
global optimum for which the leader function is derived in this thesis, can be a com-
plicated task.

A quite different perspective is to adopt a reverse Stackelberg game as a kind of
feedback mechanism in a multi-stage context. Here, instead of perceiving the leader
function as an incentive – perhaps better called manipulation – device, it enables the
follower to at once decide upon his own decision variable as well as the associated
leader decision. Providing the follower with decision making freedom, the leader
can in turn extract useful hidden information from the follower’s response.

Hence, while in the current thesis our focus has been foremost on achieving the
pair of leader and follower decision variables that is desired by the leader, in future
research, one may focus in addition on adopting a leader function as a mechanism
to obtain feedback from a follower player, analogously to in the area of observers
and estimation.



AppendixA
The METANET Model

For the sake of completeness, in this appendix chapter the basic METANET model for
traffic flow used in Appendix B is provided together with the modifications necessary
to obtain a route-dependent METANET model as is required for implementation of
the reverse Stackelberg routing approaches of Chapter 5.

We first present the equations for the destination-independent mode in the fol-
lowing Section A.1, which is gratefully adopted from [92] with slight modifications.
Subsequently in Section A.2 we give an extension to a route-dependent model as is
used in Chapter 5. For the destination-dependent variant and for extensions with
respect to, e.g., the modeling of dynamic speed limits and mainstream metering, we
refer to [92].

A.1 The Basic METANET Model

The METANET traffic flow model, originally developed by Papageorgiou and Mess-
mer [112, 144] is adopted in the case studies reported in Chapter 5 and Appendix
B. This model was chosen because it provides a good trade-off between simulation
speed and accuracy [114, 151]. The fact that this model is deterministic, discrete-
time, discrete-space, and macroscopic makes it very suitable for model-based traffic
control. Since the simulation time step and the segment length of the discretized
freeway are relatively large, simulations of this model can be executed very fast.

Regarding the validation of the model we refer to [151, 157]. The reported
validation results are in general satisfactory. Furthermore, the small number of pa-
rameters makes it easy to calibrate. An important property for model-based traffic
control is that this model (including extensions) can reproduce the capacity drop at
on-ramps and in shock waves. In the subsequent sections we describe the METANET
model and a few extensions to this model that are relevant for the current thesis.

For the full description of METANET we refer to the literature [112, 115, 158].

A.1.1 Link Equations

The METANET model represents a network as a directed graph with the links (in-
dicated by the index m) corresponding to freeway stretches. Each freeway link has
uniform characteristics, i.e., no on-ramps or off-ramps and no major changes in
geometry. Where major changes occur in the characteristics of the link or in the
road geometry (e.g., at an on-ramp or an off-ramp), a node is placed. Each link

129
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freeway link m

traffic flow

. . .. . .segment 1 segment i segment Nm

Figure A.1: In the METANET model a freeway link is divided into segments.

m is divided into Nm segments (indicated by the index i) of length Lm (typically
500-1000 m); see also Fig. A.1). Each segment i of link m is characterized by three
quantities:

• traffic density ρm,i(k) (veh/km/lane),

• mean speed vm,i(k) (km/h),

• traffic volume or outflow qm,i(k) (veh/h),

where k indicates the time instant t = kTs, and Ts is the time interval used for the
simulation of the traffic flow (typically Ts = 10 s). For stability, the segment length
and the simulation time interval should satisfy:

Lm > vfree,mTs (A.1)

for every link m, where vfree,m is the average speed that drivers assume if traffic is
freely flowing.

The outflow of each segment is equal to the density multiplied by the mean speed
and the number of lanes on that segment (denoted by λm):

qm,i(k) = λmρm,i(k)vm,i(k). (A.2)

The density of a segment equals the previous density plus the inflow from the up-
stream segment, minus the outflow of the segment itself (conservation of vehicles):

ρm,i(k +1) = ρm,i(k)+
Ts

Lmλm

(
qm,i−1(k)−qm,i(k)

)
. (A.3)

While equations (A.2) and (A.3) are based on physical principles and are exact, the
equations that describe the speed dynamics and the relation between density and
the desired speed are heuristic. In the METANET model the mean speed at the
simulation step k + 1 is taken to be the mean speed at time step k plus a relaxation

term that expresses that the drivers try to achieve a desired speed V (ρ), a convection

term that expresses the speed increase (or decrease) caused by the inflow of vehicles,
and an anticipation term that expresses the speed decrease (increase) as drivers
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Figure A.2: An example of the speed-flow relationship (A.5), with am = 1.867, vfree,m =
102 km/h, ρcrit,m = 33.5 veh/km/lane.

experience a density increase (decrease) downstream:

vm,i(k +1) = vm,i(k)+
Ts

τ

(
V

(
ρm,i(k)

)
− vm,i(k)

)

+
Ts

Lm

vm,i(k)
(
vm,i−1(k)− vm,i(k)

)

− ηTs

τLm

ρm,i+1(k)−ρm,i(k)

ρm,i(k)+κ
, (A.4)

where τ, η, and κ are model parameters, and with

V
(
ρm,i(k)

)
= vfree,m exp

[
− 1

am

(
ρm,i(k)

ρcrit,m

)am
]
, (A.5)

with am a model parameter, and where the free-flow speed vfree,m is the average
speed that drivers assume if traffic is freely flowing, and the critical density ρcrit,m

is the density at which the traffic flow is maximal on a homogeneous freeway. In
Fig. A.2 the speed-density relationship V (ρ), also called the fundamental diagram, is
presented.

Mainstream origins and on-ramps are modeled with a simple queue model. The
length wo(k) of the queue at origin o and at the time step k equals the previous queue
length plus the demand1 do(k) (veh/h), minus the outflow qo(k) (veh/h) of origin o:

wo(k +1) = wo(k)+Ts

(
do(k)−qo(k)

)
. (A.6)

The outflow of origin o depends on the traffic conditions on the mainstream and, for
a metered on-ramp, on the ramp metering rate2 ro(k), where ro(k) ∈ [0,1]. The ramp
flow qo(k) is the minimum of three quantities:

1Just as in [112, 113, 157], we assume that the demand is independent of any control actions taken
in the network.

2For an unmetered on-ramp we also can use (A.7) by setting ro(k) ≡ 1.
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replacements
link m−1 link m

vm,1(k)
ρm,1(k)

Figure A.3: When there is an on-ramp connected to the freeway the speed vm,1(k) in

the first segment of link m is reduced by merging phenomena according to

(A.8).

• the available traffic at simulation step k (queue plus demand),

• the maximal flow allowed by the metering rate,

• and the maximal flow that could enter the freeway because of the mainstream
conditions.

So,

qo(k) = min

[
do(k)+

wo(k)

Ts
, Coro(k), Co

(
ρmax,m −ρm,1(k)

ρmax,m −ρcrit,m

)]
, (A.7)

where Co (veh/h) is the capacity of origin o under free-flow conditions, the parame-
ter ρmax,m (veh/km/lane) represents the maximum density of a segment (also called
jam density), which we assume as a global parameter independent of m in the fol-
lowing, and m is the index of the link to which the on-ramp is connected.

Note that in addition to the above formulation of ramp metering (A.7) that can
be found in [111, 112], an alternative variant is discussed in the literature too [113].

In order to account for the speed drop caused by merging phenomena for the
first segment of an outgoing link of an on-ramp or origin, the term

− δTsqo(k)vm,1(k)

Lmλm(ρm,1(k)+κ)
(A.8)

is added to speed equation (A.4), where vm,1(k) and ρm,1(k) are the speed and density
of the segment that the on-ramp is connected to, as shown in Fig. A.3, and where δ

is a model parameter.
When there is a lane drop as shown in Fig. A.4, the speed reduction due to weav-

ing phenomena,

−
φTs∆λmρm,Nm(k)v2

m,Nm
(k)

Lmλmρcrit,m
(A.9)

is added to (A.4), where ∆λm = λm−λm+1 is the number of lanes being dropped, and
φ is a model parameter.
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travel direction

link m, segment Nm −1 link m, segment Nm link m+1, segment 1

Figure A.4: When there is a lane drop the speed vm,Nm(k) in the last segment of link m

is reduced by merging phenomena according to (A.9).

A.1.2 Node Equations

As a final part of the model, coupling equations should be considered that take
into account the existence of multiple ingoing and outgoing links of the nodes and
accordingly the distribution of flow and density. Recall that every time there is a
major change in the link parameters or there is a junction or a bifurcation, a node is
placed between the links. This node provides the incoming links with a downstream
density (or a virtual downstream density when there are two or more leaving links),
and the leaving links with an inflow and an upstream speed (or a virtual upstream
speed when there are two or more entering links). The total flow Qn(k) (veh/h) that
enters node n at simulation step k is distributed according to:

Qn(k) = ∑
µ∈In

qµ,Nµ(k), (A.10)

qm,0(k) = βn,m(k)Qn(k), (A.11)

where In denotes the set of links entering node n, βn,m(k) is the turning rate (the
fraction of the total flow through node n that leaves via link m), and qm,0(k) is the
flow that leaves node n via link m, where link m is one of the links leaving node n.
Recall that Nm is the index of the last segment of a link m that enters node n.

For a node n with multiple outgoing links as shown in Fig. A.5, the virtual down-
stream density ρm,Nm+1(k) (‘virtual’ due to the nonexistence of a segment with the
index Nm +1) of link m entering an origin is modeled as:

ρm,Nm+1(k) =
∑µ∈On

ρ2
µ,1(k)

∑µ∈On
ρµ,1(k)

, (A.12)

where On is the set of links leaving node n.
Similarly, for a node n with multiple ingoing links as shown in Fig. A.6, the virtual

upstream speed vm,0(k) of outgoing link m is modeled as:

vm,0(k) =
∑µ∈In vµ,Nµ(k)qµ,Nµ(k)

∑µ∈In qµ,Nµ(k)
. (A.13)

Note that the virtual downstream density and the virtual upstream speed are
required in the speed update expression (A.4).
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virtual segment Nm +1

Figure A.5: A node with one entering link m and several leaving links. The densi-

ties in the first segments of the leaving links are aggregated in the virtual

downstream density ρm,Nm+1(k) according to (A.12).
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Figure A.6: A node with one leaving link m and several entering links. The speeds

in the last segments of the entering links are aggregated in the virtual

upstream speed vm,0(k) according to (A.13) .

A.1.3 Boundary Conditions

Boundary conditions need to be defined for the entry and exit points of the traffic
network. As in METANET the state of a segment also depends on the upstream
speed, the outflow of the upstream node, and the downstream density, we need to
define the upstream speed and the inflow for the entry points of the network, and the
downstream density for the exit points of the network. These boundary conditions
can be user-specified or a default value can be assumed. We have already presented
the boundary conditions for the traffic demand at on-ramps; now we present the
boundary conditions for the upstream speed and the downstream density.
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Upstream speed

When there is a mainstream origin entering node n, the virtual speed vµ(k) of the
origin can be user-specified, where µ is the index of the origin. If vµ(k) is not specified
then it could be taken to equal the speed of the first segment of the leaving link

vµ(k) = vm,1(k). (A.14)

If there is a second incoming link besides the origin, then the speed of the last
segment of the second incoming link could be taken for vm,0(k).

Downstream density

Similarly, the virtual downstream ρm,Nm+1(k) density for the entering link at a node
that is connected to a destination, is calculated as follows. First, the user can specify
a destination density scenario ρµ(k) where µ is the index of the destination link.
Alternatively, a flow limitation qbound,µ(k) can be defined, and the virtual downstream
density could be calculated according to

ρµ(k +1) =





ρupstream,n(k) if qµ < qbound,µ(k) and ρupstream,n(k) < ρcrit,µ,

ρµ(k)+Cµ

(
qµ(k)−qbound,µ(k)

)
otherwise.

(A.15)

where ρupstream,n(k) is the density of the upstream link, and Cµ is a parameter. If ρµ(k)
nor qbound,µ(k) is predefined then we could take

ρµ(k) = ρm,Nm(k), (A.16)

or if there is a second leaving link at node n, then the density of the first segment of
that link could be taken for ρm,Nm+1.

A.2 A Route-Dependent Model

In this section we present a route-dependent METANET model, which can be ob-
tained through straightforward modifications of the basic model and the destination-
dependent METANET model. For the route-dependent mode the demand at each
origin is further decomposed into demands for the available – possibly overlapping –
routes for a particular OD-pair. The fraction of the demand of traffic entering route
r ∈ R j, j ∈ {1, . . . ,NOD} – with NOD the number of OD-pairs, R j the set of routes avail-
able for OD-pair j ∈ {1, . . . ,NOD}, and with R := ∪ j∈{1,...,NOD}R j – can be expressed
by γ j,r(k), with ∑r∈R j

γ j,r(k) = 1 for all j ∈ {1, . . . ,NOD}, such that the demand at an
origin o, do(k), is now decomposed according to:

do,r(k) = ∑
j∈{1,...,NOD}:o( j)=o

γ j,r(k) ·d j(k), (A.17)

do(k) = ∑
r∈R

do,r(k), (A.18)
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where we assume that the traffic demand is specified for each OD-pair instead of for
each origin as was the case in the basic model. Further, o( j) ∈ O denotes the origin
associated with the OD-pair with the index j ∈ {1, . . . ,NOD}.

Origins are now modeled with a route-dependent queue model. The evolution of
the partial queue length wo,r(k) at origin o associated with route r ∈ R is described
by:

wo,r(k +1) = wo,r(k)+Ts

(
do,r(k)−qo,r(k)

)
, (A.19)

wo(k) = ∑
r∈R

wo,r(k), (A.20)

where qo,r(k) is the outflow of the origin associated with route r ∈ R according to:

qo,r(k) = min

[
qdes

o,r (k), Coro(k)
qdes

o,r (k)

∑
r∈R

qdes
o,r (k)

, Co

(
ρmax −ρm,1(k)

ρmax −ρcrit,m

)
qdes

o,r (k)

∑
r∈R

qdes
o,r (k)

]
, (A.21)

where qdes
o,r (k) = do,r(k)+

wo,r(k)

Ts
.

Here, the flow conservation equations modeling the distribution of flow that
enters a node among the leaving links are simply route-dependent too, i.e., the
previously applicable equations (A.10) and (A.11) are omitted in the new model,
where the incoming and outgoing flows for a node n are linked according to the
consecutive links l,m on the particular route r ∈ R :

qm,0,r(k) = ql,Nl+1,r(k), for all l ∈ In,m ∈ On, (A.22)

where, as explained in Section A.1.2, Nm + 1 represents the index of the virtual last
segment of link m in case of multiple outgoing links, and the virtual segment 0 is
taken to represent the virtual first segment of a link in case of multiple incoming
links.

Further, the total density ρm,i(k) on segment i of link m is now decomposed into
partial densities ρm,i,r(k) for each route r ∈ R , and similarly for the flow on a segment
i of a link m:

ρm,i(k) = ∑
r∈R

ρm,i,r(k), qm,i(k) = ∑
r∈R

qm,i,r(k), (A.23)

with a route-dependent conservation equation:

ρm,i,r(k +1) = ρm,i,r(k)+
Ts

Lmλm

(
qm,i−1,r(k)−qm,i,r(k)

)
, (A.24)

and a route-dependent flow equation:

qm,i,r(k) = λmρm,i,r(k)vm,i(k), (A.25)

while the update equation for vm,i(k) is still according to Equation (A.4).



AppendixB
Integrated Model Predictive
Traffic and Emission Control

Using a Piecewise Affine
Approach

The research presented in this appendix is the result of a separate line of research
conducted in the beginning of the Ph.D. project. The chapter is based on [75],
supported by the results presented in [76, 84].

This chapter addresses the computational intractability of traffic control when
applying the integrated METANET freeway traffic model and the VT-macro emission
model in a model-based predictive control (MPC) framework. In order to facilitate
real-time implementation, a piecewise affine (PWA) approximation of the nonlinear
METANET model is proposed. While a direct MPC approach based on the full PWA
model is intractable for online applications, a conversion to a mixed-logical dynamic
(MLD) model description is made instead. The resulting MLD-MPC problem, written
as a mixed-integer linear program, can be solved much more efficiently as it does not
explicitly state all model equations for each particular region. As a benchmark, the
computational efficiency and accuracy of the MLD-MPC approach is tested on a case
study including variable speed limits and a metered on-ramp while optimizing the
total time spent, as well as while taking into account emissions and fuel consumption
of the vehicles. The performance is evaluated against the original nonlinear and
nonconvex MPC problem and shows an improved computational speed at the cost
of some deviation in the objective function values.

B.1 Introduction

In online model-based control of large-scale traffic networks it is important to adopt
a modeling framework that is both accurate and that yields a fast computation of
solutions when incorporated within the optimization framework. An often used
model for freeways is the second-order macroscopic METANET model [112, 114,
144]. Such a model is commonly used as it has shown to provide good accuracy
while it does not require as much computation time as microscopic traffic models
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that take individual vehicles into account [101]. The main variables considered in
METANET are the average density, flow, and velocity of traffic. This model can be
complemented by the VT-macro model for vehicular emissions and fuel consumption
[204].

As control framework, a well-known method is model-based predictive control
(MPC) [136, 163]. In the application of MPC to traffic systems, based on measure-
ments of the system, optimal control inputs are computed, e.g., on-ramp metering
rates and variable speed limits that yield – as one possible performance criterion
– an optimal traffic throughput based on both the current state and predicted, fu-
ture states. After the implementation of the first set of these optimal control inputs,
the process is repeated, which is referred to as the moving horizon approach of MPC.
MPC has often been adopted in various industries [136, 145] as it easily incorporates
various constraints and adapts well to uncertain systems and structural changes in
the system due to the moving horizon strategy. Additionally, the prediction model
can be adapted during the control process.

When using the METANET traffic flow model complemented by the VT-macro
emission and fuel consumption model in combination with MPC in order to mini-
mize the total time spent (TTS) by traffic in the network as well as to reduce the
vehicular emissions, a nonlinear and nonconvex optimization problem results. Such
a problem can be solved with global or multi-start local optimization [20, 94, 115].
However, this approach is subject to computational issues that prevent the real-time
implementation on realistically-sized traffic networks, and a global optimum can-
not be guaranteed. Hence, the main objective we like to address is to develop an
accurate yet computationally efficient approach for applying MPC based on the in-
tegrated METANET and VT-macro models. One way to address this computational
issue is to approximate the underlying model [205]. Other ways are to address the
optimization approach itself and to reformulate, e.g., to decompose or distribute the
problem solving [70, 129].

In the current appendix, we focus on the underlying model and propose to adopt
a piecewise affine (PWA) approximation of the nonlinear elements within METANET
and VT-macro. Nonlinear functions can be approximated by PWA functions with ar-
bitrary accuracy, partitioning the function domain in a finite number of polyhedra,
each associated with an affine function. Based on the PWA model, an iteration of
the MPC problem can then be more easily solved to optimality when formulated as
a mixed-integer linear program (MILP). However, since the class of MILPs has been
proven to be NP-hard [68], attention should be paid to keeping the number of binary
variables in the PWA model formulation small, as they increase the MILP’s complex-
ity. At the same time, the fewer such variables are allowed in the approximation
and thus the fewer the number of affine pieces, the larger the discrepancy with the
original function. In other words, it is important to find a good trade-off between
accuracy of the approximation and computational complexity. In this appendix, it
will be explained how MPC based on a full PWA model turns out intractable, as it
results in a large number of regions that need to be considered in the integrated
PWA model for the entire traffic network. Instead, applying MPC based on a mixed-
logical dynamic (MLD) description of the PWA system shows encouraging results
towards the real-time application of MPC in traffic control.
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The remainder of this chapter is organized as follows. In Section B.2 a brief reca-
pitulation of the original METANET traffic flow model is presented together with the
VT-macro model for vehicular emissions and fuel consumption. Section B.3 includes
a description of the MPC approach and the optimization objectives we propose for
traffic control. In Section B.4 we describe how the nonlinear model equations can
be approximated in a PWA manner according to one of the selected methods. Subse-
quently, it is shown how the resulting PWA model can be recast as an MLD model in
order to arrive at a feasible MILP (Section B.5). The proposed MLD-MPC approach
is applied to a case study in Section B.6, where its performance with respect to accu-
racy and computational speed is illustrated in the context of integrated speed limit
and ramp metering control, optimizing also the vehicular emissions, and compared
to the original nonlinear MPC. Conclusions and recommendations are presented in
Section B.7.

B.2 The METANET and VT-Macro Models

B.2.1 METANET

Although the METANET model has been described in the previous Appendix A, we
here repeat the main equations that will be referred to in the remainder of this chap-
ter. Recall that the traffic network is described by a graph with links representing
homogeneous parts of a freeway, separated by nodes representing changes like on-
ramps and the increase or decrease of the number of lanes. Links are further divided
into segments of equal distance. As regards the discretization in time, typically a sim-
ulation time step Ts of about 10 s is used, where t = kTs for time instant t and the
corresponding time step counter k. Similarly, a sample or control time interval Tc [s]
will be adopted, where kc ∈N indicates the control time step counter for time instant
t = kcTc, where Tc = MTs,M ∈ N. Commonly used values of the model parameters
defined in Appendix A are provided in Table B.1.

The evolution of traffic flow qm,i (veh/h), density ρm,i (veh/km/lane), and space-
mean speed vm,i (km/h) for segment i of link m for time step k is described by:

qm,i(k) = λmρm,i(k)vm,i(k), (B.1)

ρm,i(k +1) = ρm,i(k)+
Ts

Lmλm

[
qm,i−1(k)−qm,i(k)

]
, (B.2)

vm,i(k +1) = vm,i(k)+
Ts

τ
[V [ρm,i(k)]− vm,i(k)]

+
Tsvm,i(k)

[
vm,i−1(k)− vm,i(k)

]

Lm

− Tsη
[
ρm,i+1(k)−ρm,i(k)

]

τLm

(
ρm,i(k)+κ

) . (B.3)

The desired speed V [ρm,i(k)] (km/h) is represented by:

V [ρm,i(k)] = min

[
vfree,m exp

[
− 1

am

(
ρm,i(k)
ρcrit,m

)am
]
,(1+α)vctrl,m,i(k)

]
, (B.4)
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Table B.1: METANET parameter settings [93, 112]

Ts = 10 s κ = 40 veh/km/lane δ = 0.0122 η = 60 km2/h
τ = 18 s ρmax = 180 veh/km/lane am = 1.867 vfree = 102 km/h
Lm = 1 km ρcrit = 33.5 veh/km/lane α = 0.1

where the first term appeared in (A.5) and the second term applies in case of
variable-speed control on segment i of link m, where the speed limit is denoted by the
speed control variable vc

ctrl,m,i(kc) (km/h) at control time step kc, where vctrl,m,i(k) =
vc

ctrl,m,i(kc) for k = kcM, . . . ,(kc +1)M−1 [92, 93]. Here, α denotes a factor to model
the non-compliance of traffic participants to the speed limit based on whether the
limit is obligatory or recommended, resulting in a lower respectively higher actual
speed. In practice, α ∈ [−0.25,0.25].

As also mentioned in Appendix A, the METANET model can be further comple-
mented to take into account e.g., merges and drops of lanes and the resulting speed
drops, main-stream metering, or it can be adapted to different models for dynamic
speed limits [32, 33, 93, 94, 112].

B.2.2 VT-Macro Emission Model

In order to take into account emissions and fuel consumption of the vehicles, the
METANET model can be extended with the equations of the VT-macro model. For
more detailed information on this model, the reader is referred to [204]. The VT-
macro model estimates traffic emissions and fuel consumption using either the tem-
poral or spatio-temporal accelerations of vehicles. For instance, the spatio-temporal
acceleration and number of vehicles subject to it while moving from segment i to
the next segment i+1 of a link m are given by:

am,i,i+1(k)=
vm,i+1(k)− vm,i(k−1)

Ts
, (B.5)

nm,i,i+1(k)=Tsqm,i(k). (B.6)

Similar expressions apply to e.g., on-ramps, off-ramps, junctions, etc. The tempo-
ral accelerations and number of vehicles subject to it refer to the values of those
variables within a single segment i of a given link m:

am,i(k) =
vm,i(k)− vm,i(k−1)

Ts
, (B.7)

nm,i(k) = Lmλmρm,i(k)−Tsqm,i(k). (B.8)

The (total) vehicular emissions [g] and fuel consumption [l] appear in the cost
function of the traffic control problem where they are minimized over the time pe-
riod [kTs,(k +1)Ts], i.e.:

Jγ,TEFC(k)=Ts ∑
ℓ∈Lall

nℓ(k)exp
(

v̆T
ℓ (k)Pγăℓ(k)

)
, (B.9)
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Figure B.1: Plots of the vehicular emissions and fuel consumption term exp
(
v̆T
ℓ Pγăℓ

)

in (B.9)

with the speed and acceleration vectors v̆T
ℓ (k) = [1 vℓ(k) v2

ℓ(k) v3
ℓ(k)] and

ăT
ℓ (k) = [1 aℓ(k) a2

ℓ(k) a3
ℓ(k)], and with Lall the set of indices of all triples (aℓ,nℓ,vℓ) of

spatio-temporal or temporal accelerations and the corresponding numbers of vehi-
cles and speeds. Moreover, Pγ denotes the model parameter for γ∈Γ = {CO emission,
HC emission, NOx emission, fuel consumption}. The values of the parameter matri-
ces Pγ can be found in [1]. Plots of the different emission components can be found
in Fig. B.1.

B.3 MPC for Traffic Control

Using MPC [28, 67, 136, 163], based on measurements of the current state variables
at the control step kc, future states are predicted for a prediction horizon of Np con-
trol steps, using the prediction model presented in the previous section. By optimiza-
tion of the objective function over this horizon, a sequence of optimal decision vari-
ables is determined. In order to reduce the number of decision variables and there-
fore the computational burden, often a control horizon Nc < Np is defined, and the
control signals are kept constant at the control steps kc +Nc,kc +Nc +1, . . . ,kc +Np−1.
Here it should be noted that the prediction models should at the same time provide
accurate predictions of the evolution of the states of the model, but not lead to a
computation time that – when incorporated within the optimization algorithm – ex-
ceeds the specified time in which the control inputs are required. Implementing only
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Figure B.2: A schematic representation of model predictive control

the first sample of these optimal control inputs, the procedure is repeated for the
next control time step in a moving or rolling horizon fashion for a simulation time
horizon with a simulation time interval Ts and control time interval Tc. A schematic
representation of this control approach is shown in Fig. B.2.

Advantages of using MPC as a control scheme are that it facilitates the evaluation
of combinations of performance criteria, using combinations of control measures,
and it is easyto incorporate (feasibility and safety) constraints on the control signals
and the system states. Moreover, by adopting a prediction horizon, the evolution of
the behavior of the system during a longer time period can be incorporated when
determining the control inputs. Finally, due to the moving horizon approach, it is
easy to update system parameters as well as the model at different time instants;
similarly, unexpected behavior influencing the system is accounted for by updating
the system state by taking new measurements at each iteration.

Amongst the possible optimization goals for traffic networks are the maximiza-
tion of traffic flow, spreading traffic density, and minimizing the variation in control
variables [93]. We chose as our objective function the following linear combination
of terms:

J(kc) = c1

JMPC
TTS (kc)

TTSnom
+∑

γ∈Γ

c2,γ

JMPC
γ,TEFC(kc)

TEFCγ,nom
+c3

JMPC
pen (kc)

pennom
, (B.10)

namely the minimization of the total time vehicles spend in the system (TTS), i.e.,
the time vehicles wait at an on-ramp or mainstream origin before joining the free-
way plus the time spent on the freeway, the traffic emissions and fuel consumption,
and a penalty term on the variations of the decision variables, respectively, weighted
by nonnegative constants c1,c2,γ, and c3. The three respective terms are normalized
with the nominal values TTSnom, TEFCγ,nom, and pennom, which are obtained by con-
sidering the uncontrolled system.

To elaborate, the first objective term of the MPC controller is to reduce the TTS
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over the prediction horizon Np, i.e.,

JMPC
TTS (kc)= Ts ∑

k∈K (kc,kc+Np)


 ∑

(m,i)∈Iall

Lmλmρm,i(k)+∑
o∈Oall

wo(k)


. (B.11)

Here, Iall denotes the set of index pairs (m, i) of all links and segments in the
network, and Oall denotes the set of indices of all origins. Further, K (kc,kc + Np) =
{Mkc,Mkc +1, . . . ,M(kc +Np)−1} where M is such that Tc = MT . Note that the TTS
cost function term is linear in the state variables ρm,i(k) and wo(k).

Further, the total vehicular emissions and fuel consumption introduced in (B.9)
are captured in the expression

JMPC
γ,TEFC(kc) = ∑

k∈K (kc,kc+Np)

Jγ,TEFC(k). (B.12)

Hence, if a linearized expression for (B.9) is found, the emission and fuel consump-
tion factors enter the objective function linearly.

Finally, the penalty term on deviations of the decision variables is defined as:

JMPC
pen (kc) =

Nc−1

∑
j=1

{
∑

o∈Oall

|ro(kc + j)− ro(kc + j−1)|

+aspeed ∑
(m,i)∈Call

|vctrl,m,i(kc + j)− vctrl,m,i(kc + j−1)|
}

,

(B.13)

where aspeed is a nonnegative weighting coefficient and where Call is the set of all
pairs of indices (m, i) of links and segments in which a variable speed limit is ap-
plied. The penalty term (B.13) can be transformed into a linear form, such that the
overall objective function is linear and convex. This transformation, for which some
additional real-valued auxiliary variables need to be introduced, will be explained
in Section B.5. Note that instead of a 1-norm, alternatively a quadratic penalty term
could be adopted.

All in all, given a linear expression for (B.9), the above MPC objective (B.10) is
linear and convex in the control variables, yet the underlying METANET prediction
model is nonlinear and nonconvex. As a result, the optimization problem based on
the original models is intractable for real-life implementation. Hence, in order to re-
duce the computation time, in the following, a PWA approximation of the METANET
model is proposed.

B.4 PWA Approximation

A function f : Ω → Rm is PWA if there exists a polyhedral partition {Ωi}i∈I of Ω ⊆ Rn

such that f is affine on each polyhedron Ωi, i.e.,

f (x) = Aix+bi, for all x ∈ Ωi, i ∈ I , (B.14)

with Ai,bi constants. Here, a polyhedral partition of Ω represents a finite number
of nonempty polyhedra {Ωi}i∈I such that

S

i∈I Ωi = Ω and Ωi ∩Ω j = ∅ for all i 6= j.
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For a continuous PWA function we only require that int(Ωi)∩ int(Ω j) = ∅ for all i 6= j.
For more information on general PWA theory, see [177].

One can approximate a nonlinear function in a PWA manner with arbitrary accu-
racy, i.e., by considering a sufficiently large number of regions. However, as will be
pointed out in Section B.5, this comes at the cost of a larger computational burden
if the approximated model equation is to be applied in the eventual optimization
approach. Therefore, as a main consideration in the PWA approximation, the num-
ber of affine pieces should be kept small, while safeguarding a close match to the
original traffic model. In return for a less accurate model, one then arrives at a PWA
model description that is faster to deal with in optimizations and the solution of
which could alternatively be used as an initial starting point for an MPC optimiza-
tion when using the original nonlinear model.

In the remainder of this section a selection is provided of possible methods to
arrive at a PWA approximation. These methods will subsequently be used for the
approximation of the nonlinear METANET equations in Section B.4.2.

B.4.1 PWA Approximation Methods

Four frequently adopted approaches for PWA approximation of nonlinear functions
are least-squares optimization, PWA identification, (partially) piecewise constant
approximation, and PWA approximation of a multivariate function by reduction to
separable quadratic terms. Here it should be noted that there is a large difference in
complexity between the approximation of single and multi-variable functions, both
of which occur in the METANET setting we consider in this chapter. More infor-
mation on the various available methods for PWA function approximations can be
found in [11] and [61].

Least-squares optimization

A well-known optimization-based approximation approach comprises the minimiza-
tion of the squared error or difference between the original function and the approx-
imation curve. For single-variate nonlinear functions this method is easy to apply
and accurate. After one specifies the desired number of regions or intervals of the
PWA function, both the optimal intervals and parameters of the affine functions are
determined using least-squares optimization. Additionally, one may add positive
weights to parts of the function that in particular require a high accuracy. E.g., the
following PWA problem may be solved in a least-squares manner – here given for
an approximation of a function f defined on an interval [xmin,xmax] by a continuous
PWA function fPWA(x) with three intervals:

min
α,β,γ,δ,ε,ζ

Z xmax

xmin

w(x)( fPWA(x)− f (x))2
dx, (B.15)
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such that

fPWA(x)=





γ+
x− xmin

α− xmin

(δ− γ), for xmin ≤ x < α,

δ+
x−α

β−α
(ε−δ), for α ≤ x < β,

ε+ x−β
xmax−β (ζ− ε), for β ≤ x ≤ xmax,

(B.16)

where w denotes a weighting function. Least-squares optimization can be solved
using e.g., a multi-start Gauss-Newton or Levenberg-Marquardt approach [63].

Piecewise affine identification

An alternative approach is hybrid or piecewise affine identification. Differently from
the previous method, PWA identification is a clustering algorithm that returns a PWA
approximation based on a set of data points. Therefore, this approach is especially
useful for complex, multi-variate functions. In general, the three available methods
described next create local data sets after which the clustering algorithm creates
local affine models of the functions by classifying the points. Similar models are
again grouped into clusters, depending on the number of regions required [61].

Amongst the available methods for identification, the most precise for bivariate
identification is the algorithm Multicategory Robust Linear Programming (MRLP)
[26]. However, this method is computationally expensive and generally works for
the identification of up to three polytopes based on up to 200 data points. This is due
to the fact that one linear program is solved to find boundaries of all regions simulta-
neously. Alternatively, the clustering algorithms Support Vector Classification (SVC)
and Proximal Support Vector Classification (PSVC) can be used, yet for multivariate
estimation the original domain of the variables may then not be completely covered
by the union of computed subregions. In contrast to MRLP the SVC approach [190]
solves several quadratic programs in order to sequentially find boundaries between
two regions or half-spaces at a time. PSVC [66] is the most time-efficient algorithm
of the three and only requires a single system of linear equations. Compared to the
non-proximal version, it assigns data points to the closest of two parallel half-planes
that are maximally separated, leading to a strongly convex objective.

These algorithms are implemented in the Hybrid Identification Toolbox (HIT)
[60], a platform embedded within the Multi-Parametric Toolbox for Matlab [117].

Partially piecewise constant approximation

An approximation approach for bivariate functions that uses relatively few auxiliary
variables consists in segmentation of the domain of one of the variables, where in
each region or subdomain that variable is assigned a constant value. In general, a
bivariate function f (x,y) can be approximated as follows. Assume that based on the
relative ranges xmax−xmin

xmax
and ymax−ymin

ymax
(in case xmax = 0 or ymax = 0, only the numerator

applies) or the magnitude of the partial derivatives, the variable x is selected to be
taken constant in each region. For a selection of N consecutive intervals [xi,xi+1] for
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i = 1, . . . ,N −1 and with x1 = xmin, xN = xmax, we can set e.g.,

f (x,y) ≈ f

(
xi + xi+1

2
,y

)
, for x ∈ [xi,xi+1]. (B.17)

Now, if f is linear in y, as will be the case for several functions of the METANET
model, this approach results in a PWA approximation of f . Alternatively, the least-
squares optimization approach discussed above can be applied for each function
f (

xi+xi+1

2
,y).

Substitution of one of the variables can be seen as a specific case of PWA approx-
imation where instead of an affine piece, a constant value is associated with each
region of the domain. Nonetheless, this piecewise constant approach can deliver
adequate approximation results for some functions. For single-variate functions this
partially piecewise constant approach may also be applied, but in general it is not
very difficult to obtain a more accurate PWA formulation for this class of functions.

PWA approximation by reduction

Finally, as proposed in [118, 199], a bivariate term of the form x · y, with x,y ∈ R
can be recast in the equivalent form 1

4
[z2

+ − z2
−], where two new real variables are

introduced, i.e., z+ := x + y, z− := x− y. The PWA approximation now reduces to
replacing both quadratic terms z2

+,z2
− in a PWA manner, for which any of the previous

methods can be adopted. Since these terms can be approximated independently, this
approach results in a relatively small number of binary variables, also if it would be
extended to factors of higher order.

In the following section each nonlinear METANET equation is considered sepa-
rately and approximated using one of the methods discussed above.

B.4.2 PWA Approximation of METANET and VT-Macro

In this section the nonlinear elements of the METANET model are dealt with. In
general, application-specific knowledge could be applied in the approximation of
model equations, e.g., by weighting areas that require a close match. In addition,
information from other model equations can facilitate the approximation. When
applied to this specific case, it indeed pays off to make use of physical information,
e.g., the fundamental diagram of traffic flow depicted in Fig. B.3 will be used also in
the approximation of other functions of the METANET model.

First, note that (B.2), (A.6), and (A.7) do not need to be approximated as the
first two functions are already linear and the latter equation is PWA. The remaining
nonlinear terms can be divided into the following main groups:

Fundamental diagram

The first nonlinear term of (B.4) corresponds to the right fundamental diagram of
traffic flow depicted in Fig. B.3, which represent the equilibrium relations between
speed, flow, and density in a homogeneous part of a freeway [140]. For this single-
variate nonlinear term, a least-squares approach is adopted as shown in Fig. B.4. An
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Figure B.3: Fundamental diagrams of traffic flow
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Figure B.4: PWA approximation of the fundamental diagram in two pieces

approximation in two affine pieces was applied, as this yielded a good accuracy at a
better efficiency as compared to a more accurate division in three pieces. Since the
second term in (B.4) is a linear expression, a PWA fundamental diagram combined
with a variable speed limit leads to a PWA expression of the desired speed equation.

Speed equation (B.3)

We propose to keep several variables that give rise to the nonlinear terms in (B.3)
constant at a value determined by historical data or equal to the currently measured
value for predictions in receding horizon. The accuracy can be improved by adopting
a sequence of different, predicted values that varies for each simulation step, i.e., by
using the values of the state variables that result from a simulation of the traffic pre-
diction model, in which the optimal control sequence consisting of Nc control inputs
is considered. Alternatively, a more exact approximation could be obtained using
PWA identification or a piecewise constant approach. However, the improvement
in approximation accuracy may not justify the increase in computational complexity
that this causes.

• vm,i(k)[vm,i−1(k)− vm,i(k)]. Here, the first velocity variable vm,i−1(k) is substi-
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Figure B.5: PWA approximation of flow equation (B.1) by hybrid identification using

the Hybrid Identification Toolbox [60]

tuted by a constant value. Note that the absolute approximation error caused
by this method is mitigated in the context of the full model due to the mul-
tiplication of the replaced velocity by the relatively small term Ts/Lm (2.78 ·
10−3 h/km: refer to Table B.1 for typical values of the parameters used).

• ρm,i+1(k)−ρm,i(k)

ρm,i(k)+κ . As in the previous item, the density term in the denominator is
kept constant at a historically-based value, according to measurements, or it
is determined based on a sequence of predictions using the computed control
variables. Note that the multiplication factor ηTs/τLm for this factor in the
numerator of (B.3) is rather large (33.33 km/h), as is the addition of κ =
40 veh/km/lane to the approximated variable in the denominator. Both aspects
again cause a reduction in the effect of the absolute error of the approximated
denominator with respect to the speed variable vm,i(k).

• Subtraction of the term (A.8). Final adaptations are made to this speed-drop
term by substituting the density variable in the denominator by a constant
value, combined with the substitution of q0(k) · vm,1(k) as in the PWA approxi-
mation of the flow equation (B.1) (see below).

Flow equation (B.1)

The bivariate equation modeling traffic outflow can be approximated by PWA iden-
tification, reduction to separable quadratic terms, and by a piecewise constant ap-
proach for one of the variables. When adopting the latter method we choose to
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substitute the velocity variable vm,i(k), having the smallest domain in comparison
with the flow variable, by the mean value of each subdomain, transforming (B.1)
into:

qm,i(k)=λmρm,i(k)
v j + v j+1

2
, for vm,i(k)∈ [v j,v j+1]. (B.18)

Here, the intervals [v j,v j+1] can be chosen individually by taking into consideration
the shape of the approximated function or determined in a more sophisticated way
by using optimization.

In the approximation of (B.1) it is further important to take into account the
shape of the fundamental diagram shown in Fig. B.3(a) and (b). To be more precise,
in order to increase the accuracy of the approximation while keeping the set of
auxiliary variables small one can put additional weight on data points where a small
error is important. Looking at the shape of the fundamental diagram, it can be
inferred that a situation of close-to maximum density and speed simultaneously is
not likely to occur in real life. Therefore, the focus should be on a good match in
the area around the function values as determined by the fundamental diagram.

The final PWA approximation by PWA identification can be seen in Fig. B.5. Here
it should be noted that in both approximation methods, the relative approximation
error of the flow variable qm,i(k) is of the same order as the approximation error in
ρm,i(k)vm,i(k) (PWA identification) or in vm,i(k) (piecewise constant approach). To fur-
ther put the error in perspective, it should be noted that the flow variable occurs in
the density function (B.2), where the difference qm,i−1(k)−qm,i(k) between consecu-
tive segments is multiplied by the relatively small constant Ts/λmLm (1.39 ·10−3 h/km
for λm = 2). Hence, approximation errors of (B.1) are relatively seen reduced when
considering the complete METANET model. On the other hand, it should not be
forgotten that approximations are re-used in different segments of the model and
that by the iterative nature of MPC, approximation errors re-appear also in variables
for later time steps of the prediction horizon.

Finally, note that the on-ramp flow equation (A.7) is already PWA, which means
that together with the originally linear equations (B.2), (A.6), (B.5), and (B.6) we
now have a system of only linear and PWA model equations. However, since the
term Jγ,TEFC(k) from (B.9) causes the optimization objective to become a nonlinear
nonconvex function, a final PWA approximation should be made.

Total emission and fuel consumption (B.9)

In order to arrive at a PWA expression for (B.9), the exponential term
exp

(
v̆T
ℓ (k)Pγăℓ(k)

)
is replaced by a PWA approximation using PWA identification for

each of the emission and fuel consumption elements. In Fig. B.6(a) a filled contour
plot of this term for NOx as it was plotted in Fig. B.1(c) is provided, together with a
division of the domain into regions, each of which is associated with an affine expres-
sion that we obtained by hybrid identification as explained in Section B.4.1. Further,
to reduce the number of additional variables and therefore the computational com-
plexity, in the original VT-macro model it is suggested to substitute the variable nℓ(k)
by a constant value [205]. Hence, nℓ(k) can again be taken as a constant equal to
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exp(v̆TPNOxă) [g/veh/s]

10 20 30

1

2

3

(b) PWA regions

Figure B.6: Domain and proposed regions of the PWA approximation of NOx

the currently measured or predicted values, as explained for the approximation of
(B.3).

Now, in order to obtain a directly implementable optimization problem, some
further adaptations using auxiliary binary variables are needed as will be explained
next.

B.5 The PWA-MPC Problem

We now have gathered all ingredients for an implementation of model predictive
traffic control using the integrated PWA METANET and VT-macro prediction models.
As will be elaborated upon in this section, a full PWA model of the traffic system
still leads to an intractable problem formulation when written as a mixed-integer
linear program (MILP). Therefore we propose a mixed-logical dynamic formulation
instead, which can as well be solved as an MILP when incorporated with MPC, yet
in a more efficient manner.

B.5.1 Using a Full PWA Model

In order to be able to apply MPC to the PWA model, a logical next step would be to
combine the individual linear and PWA model equations of METANET and VT-macro
and to rewrite them into one coherent PWA description of the entire traffic network.
A discrete-time PWA dynamical system in state space notation can be described as
follows:

x(k +1) = Aix(k)+Biu(k)+ fi, (B.19)

y(k) = Cix(k)+Diu(k)+gi, (B.20)
[
xT(k) uT(k)

]T ∈ Ωi, i ∈ I , (B.21)

where x(k)∈Rnx ,u(k)∈Rnu , and y∈Rny denote respectively the state, input, and out-
put vector, and where Ωi is a convex polyhedron with ∪i∈IΩi = Rnx+nu and int(Ωi)∩
int(Ω j) = ∅,∀i 6= j ∈ I . For each region Ωi, Ai ∈ Rnx×nx ,Bi ∈ Rnx×nu ,Ci ∈ Rny×nx ,Di ∈
Rny×nu , and fi ∈ Rnx ,gi ∈ Rny represent constant system matrices and vectors.
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Furthermore, recall that the state variables refer to the mean velocities vm,i(k),
densities ρm,i(k), and flows qm,i(k) of vehicles, together with the flows qo(k) and
queue lengths wo(k) at the origins, and the (spatial)-temporal components of the
space-mean accelerations aℓ(k) and numbers of vehicles nℓ(k), in addition to the
auxiliary variables and constraints due to the PWA approximations. The input vari-
ables refer to the variable speed limits vctrl,m,i(k) and ramp metering rates ro(kc).

To obtain the above PWA system description, the individual PWA model equa-
tions should be combined for each link, segment, node, and origin of the given
traffic network, yielding a cross-product of the PWA regions and therefore an expo-
nential growth of the model. Due to the large total number of regions this results
in, the composition of the full PWA traffic model is already inefficient. Moreover,
when using MPC as explained in Section B.3, this PWA model has to be evalu-
ated over several future time steps, which causes this PWA-MPC approach for the
METANET model (where an MILP is used for optimization [21]) to be computation-
ally intractable already for a small network of only a few segments.

B.5.2 A Tractable Approach Using an MLD Model

In order to do be able to efficiently solve the MPC problem based on a PWA system
description with a large number of regions, we do not compose the fully integrated
PWA model, yet we propose to make a conversion of the individual model equations
to the following equivalent MLD description:

x(k +1) = Ax(k)+B1u(k)+B2δ(k)+B3z(k)+ f , (B.22)

y(k) = Cx(k)+D1u(k)+D2δ(k)+D3z(k)+g, (B.23)

E1x(k)+E2u(k)+E3δ(k)+E4z(k) ≤ h, (B.24)

where δ(k) ∈ {0,1}nb denotes a vector of binary variables and z(k) ∈ Rnz represents
the auxiliary variables resulting from the procedure discussed next (see also [21]).
Similarly, the constraints defined through the system matrices E1,E2,E3, and E4 and
the constant vector h arise along with the composition of the MLD model. As in the
PWA system (B.19)–(B.21) x(k) ∈ Rnx ,u(k) ∈ Rnu , and y(k) ∈ Rny denote respectively
the state, input, and output vector.

In the MLD representation one model applies in which the binary and auxiliary
variables that are needed to define the regions are directly included in the model
through additional constraints. As compared to the full PWA system description, in
this MLD representation one large but tractable model applies, composed simply by
stacking the individual linear and PWA model equations plus the auxiliary equations
that define the PWA regions for the individual equations, resulting in a model size
that grows linearly.

In order to arrive at a directly solvable optimization problem, an iteration of the
MPC method based on the MLD model can be written as an MILP where some of the
decision variables belong to an integer domain (in this case solely binary) and some
to a real domain. The following equivalence statements summarize the conversion
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(adapted from [21, 199]):

[ f (x) ≤ c ⇔ δ = 1] ⇔
{

f (x) ≤ c+(M− c)(1−δ),

f (x) ≥ c(1−δ)+ ε+(m− ε)δ,
(B.25)

δ=δ1δ2 ⇔





−δ1 +δ ≤ 0,

−δ2 +δ ≤ 0,

δ1 +δ2 −δ ≤ 1,

(B.26)

z = δ f (x) ⇔





z ≤ Mδ,

z ≥ mδ,

z ≤ f (x)−m(1−δ),

z ≥ f (x)−M(1−δ).

(B.27)

Here, binary dummy variables (denoted by δ ∈ {0,1}) are introduced to indicate
whether a certain region applies that is associated with one of the affine pieces of
the PWA function. The function f (·) is affine and defined over a set of bounded
variables, where we can assume that x(k),u(k), and y(k) are bounded; hence, the
constants m,M that denote respectively a lower and upper bound of f (·) can be
selected such that they are finite. Finally, c denotes an arbitrary constant and the
constant ε denotes the machine precision (used to turn a strict inequality into a
non-strict inequality that fits the MILP framework).

To briefly illustrate the transformation of a PWA model equation into an MLD
model equation using the above statements, we take an expression of the form (B.4)
or (A.7), i.e.: f = min( f1, f2) that can be replaced by f = f1δ + f2(1− δ) where δ =
1 iff f1 ≤ f2 and δ = 0 otherwise, according to the constraints (B.25). The latter
expression of f can again be written f = z1 + f2 − z2 with auxiliary variables zi = fiδ,
i = 1,2, according to the constraints (B.27). If in addition a third term f3 arises in
the PWA equation f = min( f1, f2, f3), such that f = f1δ1 + f2δ2 + f3(1− δ1)(1− δ2),
where

δ1 = 1 ⇔ ( f1 ≤ f2 and f1 ≤ f3) , (B.28)

δ2 = 1 ⇔ ( f2 ≤ f1 and f2 ≤ f3) , (B.29)

this gives rise to a multiplication of binary variables, δ1δ2, for which the constraints
in (B.26) are needed.

Finally, as mentioned in Section B.3, it is needed to transform the norm ‖s‖1,s ∈
Rn in a similar manner. Here, an optimization objective mins∈Rn ‖s‖1 = ∑n

i=1 |si| can
be substituted by the following linear expressions, as can be easily verified:

min
s,z∈Rn

n

∑
i=1

zi subject to − z ≤ s ≤ z. (B.30)

Likewise, an ∞-norm can be transformed into a linear problem, and alternatively
a 2-norm in the penalty term (B.13) can be substituted by a quadratic objective.

All in all, we now end up with an MILP or MIQP formulation, which still belongs
to the class of NP-hard problems, i.e., it is generally accepted that no polynomial time
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Figure B.7: Set-up of the case study

algorithm exists that solves the problem to optimality [68]. However, for relatively
small problem instances efficient solvers are available that are based on e.g., col-
umn generation techniques, branch and bound, or cutting plane methods [8, 130].
Concerning the implications of this MILP conversion for the ease of computation of
the final MPC problem, it thus remains of interest to keep the number of regions
and therefore the number of additional binary variables small. However, a division
using fewer regions may further increase the approximation error. Therefore, an ap-
propriate balance between computational speed and approximation accuracy has to
be found, which has already been considered in the approximation of the individual
model equations in Section B.4.2 and which will be evaluated next.

B.6 Case Study

In this section, a benchmark from the literature [93] is adopted in order to facili-
tate the comparison of results. Here, simulation results from the original nonlinear
METANET model with emissions are compared with the MLD-MPC approach based
on the PWA models. Both the computation time and the performance with respect
to the optimization objectives are analyzed. In addition to the benchmark just men-
tioned, a second, more diverse demand profile is considered in order to evaluate the
performance of the MLD-MPC approach when experiencing larger variations in the
traffic states.

B.6.1 Set-up

The freeway setting used in the simulations is depicted in Fig. B.7: six segments
are considered of which segments 3 and 4 are subject to variable speed limits and a
metered on-ramp is placed between segments 4 and 5. Additionally, an upper bound
is added constraining the queue length wo2

(k) to 100 veh. The demand profiles are
depicted in Fig. B.8, where the mainstream origin and on-ramp have a capacity
of 4000 and 2000 veh/h respectively. Parameter values can be found in Table B.1.
Further, the temporal aspect of the vehicular emissions and fuel consumption is
considered (see Section B.2.2). Finally, conform to the analysis in [93], a prediction
and control horizon of respectively Np = 7,Nc = 5 is found to lead to the best results
for demand profile 1. We simulate the freeway dynamics for a simulation horizon
corresponding to 2.5 h with the controller sampling time Tc = 1 min.
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Figure B.8: On-ramp and mainstream demand profiles

B.6.2 Results

Table B.2 shows the TTS, total emission values, and mean CPU times obtained for
three scenarios, i.e., minimizing

(S1) TTS only (c1 = 1,c2 = c3 = 0)

(S2) TTS and HC emissions (c1 = 1,c2 = 0.25,c3 = 0)

(S3) TTS and NOx emissions as well as fuel consumption (FC) (c1 =1,c2 =0.4,c3 =
0).

These scenarios were chosen to evaluate our approach for different problem sizes.
Additionally, the standard deviation (σ) and the minimum and maximum CPU times
are provided. The values obtained in the uncontrolled case are used to normalize
the performance criteria. Further, the percentage difference is given between the ob-
jective function values obtained under nonlinear control or while using MLD-MPC.

As can be seen from Table B.2, for scenario S1 one run of the MLD-MPC optimiza-
tion took 6 s on average concerning the in total 150 runs or simulation time steps, as
compared to approximately 47 s, which is the time required for 10 iterations of the
nonlinear solver1. Further, it should be noted that whereas the MILP is solved to op-
timality at once, nonlinear MPC requires an a priori unknown number of iterations
before convergence is reached. Therefore, 10 iterations should be seen as a lower
bound: in scenario S2 and S3 at least 15 runs were required to obtain good results,
where the number of required runs is based on the variance in the solution returned
by consecutive optimization runs for different random, initial starting points [93]. A
certain number of runs may also be required in order to obtain a feasible solution
in case of constraints. Finally, it can be seen that the computational advantage of
applying MLD-MPC is of similar order for all three cases.

As for the deviations of the objective function values when comparing MLD-MPC
to nonlinear MPC, the absolute emission values can be said to differ relatively little.
On the other hand, the values of the TTS have a deviation of roughly 10% when

1The CPU times were obtained adopting the Tomlab CPLEX and fmincon environment within 32-bit
Matlab 7.9.0 (R2009b) on a Linux PC with a 3GHz Intel Core Duo processor and 3.7Gb RAM.



B.6 Case Study 155

(S
1)

T
TS

T
TS

(v
eh

·h
)

TN
O

x
(k

g)
TC

O
(k

g)
TH

C
(k

g)
TF

C
(l

)
C

PU
(s

)
[σ

,m
in

,m
ax

]

U
nc

on
tr

ol
le

d
1.

46
3·

1
0

3
6.

68
3

59
.4

9
4.

10
3

4.
65

4·
1
0

3
–

N
on

lin
ea

r
M

PC
1.

26
8·

1
0

3
6.

98
8

60
.4

5
3.

91
6

4.
34

8·
1
0

3
46

.7
1

(1
0

ru
ns

)
[2

5.
0,

9.
56

,1
31

]

M
LD

-M
PC

(%
di

ff
.)

1.
39

2·
1
0

3
(9

.8
%

)
6.

81
4

(-
2.

5%
)

59
.9

2
(-

0.
9%

)
4.

12
2

(5
.3

%
)

4.
52

6·
1
0

3
(4

.1
%

)
5.

82
9

(-
87

.5
%

)
[1

6.
2,

0.
21

37
,1

86
]

(S
2)

T
TS

+
H

C
T

TS
(v

eh
·h

)
TH

C
(k

g)
C

PU
(s

)
[σ

,m
in

,m
ax

]

U
nc

on
tr

ol
le

d
1.

46
3·

1
0

3
4.

10
3

–
N

on
lin

ea
r

M
PC

1.
28

7·
1
0

3
3.

85
7

62
.0

5
(1

5
ru

ns
)

[2
9.

7,
30

.3
,3

02
]

M
LD

-M
PC

(%
di

ff
.)

1.
40

3·
1
0

3
(9

.1
%

)
4.

04
5

(4
.9

%
)

14
.5

(-
76

.7
%

)
[2

9,
1.

7,
23

1]

(S
3)

T
TS

+
TN

O
x

+
TF

C
T

TS
(v

eh
·h

)
TN

O
x

(k
g)

TF
C

(l
)

C
PU

(s
)

[σ
,m

in
,m

ax
]

U
nc

on
tr

ol
le

d
1.

46
3·

1
0

3
6.

68
3

4.
53

9·
1
0

3
–

N
on

lin
ea

r
M

PC
1.

38
0·

1
0

3
6.

95
9

4.
35

3·
1
0

3
80

.4
4

(1
5

ru
ns

)
[5

6.
5,

24
.2

,2
48

]
M

LD
-M

PC
(%

di
ff

.)
1.

44
1·

1
0

3
(4

.4
%

)
6.

80
5

(-
2.

2%
)

4.
49

8·
1
0

3
(3

.3
%

)
29

.3
4

(-
63

%
)

[2
9.

7,
0.

22
1,

18
3]

Ta
b
le

B
.2

:
C

o
m

p
a
ri

so
n

o
f

th
e

d
if

fe
re

n
t

sc
en

a
ri

o
s

fo
r

d
em

a
n
d

p
ro

fi
le

1
.



156 Appendix B: Integrated MPC for Traffic and Emissions Using a PWA Approach

compared to nonlinear MPC. This reduction in accuracy results from the trade-off
with the improvements in computational efficiency. Further, as expected, the TTS
values increase in both the nonlinear and MLD-MPC approaches when emission con-
trol is applied, where the largest increase occurs in the most comprehensive scenario
S3. For this scenario it should be noted that the total NOx emissions were not re-
duced with respect to the uncontrolled case for both the MLD and the nonlinear
MPC approach. However, this value as well as the value for TFC did get reduced in
comparison to the values that were obtained under the TTS minimization objective
of S1. In order to further decrease the NOx emission, the weights for the NOx factor
in the goal function could be adjusted. Here it should be kept into account that due
to the multi-objective nature of the optimization problem at hand, the minimization
of some terms may have opposing effects on the minimization of other elements in
the objective function. In particular, it should be noted that in scenario S2 and S3,
the approximated emissions are directly incorporated in the objective functions in
case of MLD-MPC.

Further, also under the more diverse, second demand profile depicted in Fig. B.8,
a reduction in computational speed can be observed, while the improvement in TTS
is very close to the reduction in TTS while adopting nonlinear MPC. Here, we only
applied ramp metering for both the MLD-MPC and the nonlinear MPC approach.
When taking into account the behavior of the traffic network while using the PWA
approximated model, as depicted in Fig. B.10, it can be said that the behavior of
the traffic flow, density and speed over the simulation horizon is similar with the
nonlinear case in Fig. B.9. The uncontrolled behavior is plotted in Fig. B.11, where
two large peaks in the queue length at origin 1 can be observed. In the controlled
case, these peaks are reduced to a smaller peak of around 100 vehicles around 45
minutes time, and a larger peak around 2 hours. The queue at origin 2 is at its upper
bound in both cases, while in the MLD-MPC case, more fluctuations in the queue
lengths can be observed. Overall, there is more fluctuation in the different variables
for MLD-MPC, which is smoothened in the nonlinear MPC case. This difference
could be explained by the use of smooth versus nonsmooth, PWA model equations.

Recall that in this chapter a proof-of-concept is presented. To show the perfor-
mance of the presented method in real-life traffic scenarios, it should be applied to
diverse case studies based on real-life situations in which varying demand profiles
could be investigated. There, in order to yield the best overall accuracy, one should
consider fine-tuning the individual function approximations as well as calibrating
the model parameters in the MLD-MPC approach for these real-life scenarios. These
are topics for future research. Finally, it is important to note that instead of tak-
ing the optimal decision variables resulting from MLD-MPC as a final control input,
these results could also be used as a starting point for one single nonlinear opti-
mization run, which would still yield a faster solution compared to the conventional
approach given the gains in computation times while using MLD-MPC.

B.6.3 Computational Efficiency

Concerning the computational efficiency of the MLD method it should be noted that
the specific problem structure could be exploited to speed-up the optimization, i.e.,
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Figure B.9: Simulation results for demand profile 2 - nonlinear MPC
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Figure B.10: Simulation results for demand profile 2 - MLD-MPC
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Table B.3: Comparison of TTS and CPU time and their relative differences for demand

profile 2.

(1) TTS TTS (veh·h) CPU (s) [σ, min, max]

Uncontrolled 1.716·103 –
Nonlinear MPC 1.641·103 8.98 (25 runs) [6.1, 3.4, 43]
MLD-MPC (% diff.) 1.657·103(1.0%) 1.92 (-78.6%) [2.8, 0.15, 14]
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Figure B.11: Uncontrolled behavior under demand profile 2

computational advantages could result from tuning the solver to the particular prob-
lem like by changing the structure of the constraint matrices [166]. An overview
of computational efficiency in the solving of MILPs when using different solvers can
be found in [22]. Also, as an alternative to nonlinear control, the feasible-direction
method proposed in [114] could be used to compare the computational require-
ments. In particular, results of the designated Advanced Motorway Optimal Control
(AMOC) toolbox for the feasible-direction implementation of ramp metering can
be found in [109, 110, 116], while integrated ramp metering and speed control is
considered in [32], where the method is found to be fast enough for real-life im-
plementation. Here, it should be noted that the constraints on the state variables as
considered in our case study for the maximum queue length can result in an increase
in the required computational time when implemented as a hard constraint; in [32],
this constraint is incorporated in the penalty function as a soft constraint. The latter
approach however does not in general yield the same traffic behavior; in instances
where a rather large penalty is required to keep the queue length below the limit,
the effect on the control variables will be substantial. Hence, it would be fruitful to
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perform an analysis on the impact of optimal control actions on the traffic behavior
as well as on computational efficiency of both methods under the same conditions.

B.7 Discussion

A piecewise affine (PWA) approximation of the nonlinear traffic flow model META-
NET integrated with the VT-macro model for vehicular emissions and fuel consump-
tion has been proposed in order to deal with the computational complexity of the
original nonlinear nonconvex model-based traffic control approach, which is cur-
rently hindered from application in real-life traffic networks due to the required
computation time.

Here, a direct MPC implementation of the fully PWA system is still computa-
tionally intractable due to the large number of regions that should be considered.
Instead, a mixed-logical dynamic (MLD) representation of the approximated model
has been adopted, after which MPC can be applied. Compared to the exponential
growth of the full PWA model size, the MLD model grows only linearly by stacking
the individual model equations.

Several methods to approximate the nonlinear functions appearing in the models
have been discussed and the transformation to a ready-to-implement mixed-integer
linear optimization programming (MILP) problem has been provided. This method
has been tested in a case study with hard state constraints comparing the perfor-
mance of the MLD-MPC method with the original nonlinear-programming MPC ap-
proach with respect to the trade-off between computational speed and accuracy,
where the latter is measured by the deviation of objective function values and traffic
dynamics as compared to those based on the original nonlinear-programming MPC
approach. The simulation results when considering two hypothetical demand pro-
files showed that MLD-MPC can indeed be applied at an improved computational
efficiency at the cost of some deterioration of the control performance.

As further steps to bring the MLD-MPC approach to be applicable in real life,
more elaborate case studies could be performed in order to investigate in detail
the trade-off between approximation accuracy (i.e., the number of affine pieces or
regions) and computational efficiency, in a setting that more closely resembles real-
life traffic conditions. Moreover, an extensive analysis of the effect of the MLD-MPC
method on the traffic behavior could be studied under different traffic scenarios,
and compared to the performance to traffic control using e.g., the feasible-direction
approach [32, 114]. Here, an extensive sensitivity analysis of various approxima-
tion methods could be fruitful in order to fine-tune the individual approximations.
Finally, the MLD-MPC approach could also be applied to different traffic models like
higher-order macroscopic models [95], the discretized Payne model [161] and the
cell and link transmission models [46, 202].
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[180] K. Staňková, G.J. Olsder, and M.C.J. Bliemer. Comparison of different toll policies
in the dynamic second-best optimal toll design problem: Case study on a three-link
network. European Journal of Transport and Infrastructure Research, 9(4):331–346,
2009.

[181] A. Sumalee, S. Shepherd, and A. May. Road user charging design: dealing with multi-
objectives and constraints. Transportation, 36(2):167–186, 2009.

[182] J. Supernak, J. Golob, T.F. Golob, , C. Kaschade, C. Kazimi, E. Schreffler, and D. Steffey.
San diego’s interstate 15 congestion pricing project: Traffic-related issues. Transporta-

tion Research Record: Journal of the Transportation Research Board, pages 43–52, 2002.

[183] A.F. Timann. Theory of Approximation of Functions of a Real Variable. Pergamon Press,
Oxford, UK, 1963.

[184] B. Tolwinski. Closed-loop Stackelberg solution to a multistage linear-quadratic game.
Journal of Optimization Theory and Applications, 34(4):485–501, 1981.



Bibliography 173

[185] A.W. Tucker. A least-distance approach to quadratic programming. In Mathematics of

the Decision Sciences, Part 1, volume 11 of Lectures in Applied Mathematics. American
Mathematical Society, Providence, RI, USA., 1968.
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.

Symbols and Abbreviations
List of Symbols

Below follows a list of the most important and frequently used symbols that are also
introduced formally in the thesis.

Chapter 2–5

JL,JF objective functions of leader resp. follower player
ΩL,ΩF decision spaces of leader resp. follower player
(ud

L,ud
F) leader’s desired equilibrium point, ud

L ∈ ΩL,ud
F ∈ ΩF

Λd sublevel set for JF(·) at JF(ud
L,ud

F)
L c( f ) contour of functional f (·) at the value c ∈ R
nL,nF number of leader resp. follower decision elements
γL leader function, by default γL : ΩF → ΩL

ΓL set of admissible leader functions
Γ∗

L set of optimal affine leader functions for ΩL,ΩF unconstrained
Γ∗

L set of optimal affine leader functions for ΩL,ΩF unconstrained
Γ
∗,con
L set of optimal affine leader functions for ΩL,ΩF constrained

ΠX (x) supporting hyperplane to X at x ∈ X

Πt
x tangent nF-dimensional subspace to x ∈ X

AL set of affine relations (sets) through (ud
L,ud

F)
A X

L set of affine relations (sets) through (ud
L,ud

F) that are subsets of X

αL inverse leader function
αX

L inverse leader function that is a subset of X

RL,RF matrices that characterize an affine leader function
RL set of realizations RL that yield an optimal affine leader function
RSG,RRSG follower reaction set for the (reverse) Stackelberg game
V (X ,x) generalized normal to X at x ∈ X

Chapter 4

α ∈ R+
0 small constant required in distance expression d(X ,Y )

δ ∈ R+ gridding precision parameter
CGA selection set of population values for genetic algorithm approach
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CNN selection set of coefficient values for neural network approach
C cone with apex (ud

L,ud
F) and the largest aperture for which

C ∩Λd = {(ud
L,ud

F)}
d1(x,X) signed shortest Euclidean distance between x and bd(X)
d2(x,y) Euclidean distance between x and y

d(X ,Y ) auxiliary expression of distance between the set X and Y

ω(x,X) signed shortest Euclidean distance measure between x∈X and bd(X)
ω(X ,Y ) auxiliary expression of distance between the set X and Y

Chapter 5

F s,F t set of followers in the splitting rate resp. travel time-based game
NF,s,NF,t number of followers in the splitting rate resp. travel time-based game
NOD number of OD-pairs
ni number of routes for OD-pair index i ∈ {1, . . . ,NOD}
τhi j(k) desired travel time [h] for player (h, i, j) ∈ F t

ζhi(k) route splitting rate vector for player (h, i) ∈ F s

tm(k) predicted average travel time [h] on link m at time step k

qm,d(k) flow [veh/h] on link m traveling towards destination d at time step k

q
o,d
in (k) effective demand [veh/h] for origin o destination d at time step k

q
ctrl,o,d
in (k) vector of effective demand [veh/h] distributed by the road authority

over possible routes at time step k

q
o,d,d
in (k) desired, system-optimal vector of effective demand [veh/h]

distributed over possible routes at time step k

τu(k) desired total travel time for an urban corridor network
τnom,ℓ(k) nominal travel time for mainstream link ℓ at time step k

τwait,ℓ(k) waiting time for mainstream traffic signal ℓ at time step k

vctrl,ℓ(k) speed control variable [km/h] for link ℓ at time step k

U set of links in an urban corridor

Chapter 5, APPENDIX A,B

Nc control horizon
Np prediction horizon
Ts ∈ R+ simulation time interval
Tc ∈ R+ control time interval
kc ∈ N+ control time step counter
k ∈ N+ simulation time step counter
M ∈ N+

0 factor relating the simulation and control time interval, Tc = MTs

α ∈ R+ non-compliance factor regarding the speed limit
am ∈ R+ METANET model parameter
η METANET model parameter [km2/h]
κ METANET model parameter [veh/km/lane]
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τ METANET model parameter [h]
O set of origin nodes
D set of destination nodes
N set of internal nodes
L set of links
In set of links entering n

On the set of outgoing links for node n

Nm index of the last segment of a link m that enters node n

λm number of lanes in link m

Lm length of the segments of link m [m]
R set of available routes
R j set of available routes for OD-pair with index j ∈ {1, . . . ,NOD}
Pγ model parameter for γ ∈ Γ = {CO emission, HC emission,

NOx emission, fuel consumption}
Iall set of index pairs (m, i) of all links and segments in the network
qm,i(k) flow [veh/h] on segment i of link m at time step k

ρm,i(k) density [veh/km/lane] for segment i of link m at time step k

ρcrit,m(k) critical density [veh/km/lane] of a link m at time step k

vm,i(k) space-mean speed [km/h] for segment i of link m at time step k

vctrl,m,i(k) speed control variable [km/h] for segment i of link m at time step k

vfree,m free-flow speed [km/h] for link m

V (ρm,i(k)) desired speed [km/h] for segment i of link m at time step k

wo(k) queue length [veh] at origin o at time step k

do(k) traffic demand [veh/h] of origin o at time step k

qo(k) outflow [veh/h] of origin o at time step k

ro(k) ramp-metering rate at origin o at time step k

Co capacity [veh/h] of origin o

wo,r(k) queue length at origin o w.r.t. route r [veh] at time step k

do,r(k) traffic demand [veh/h] of origin o at time step k

qo,r(k) outflow [veh/h] of origin o at time step k

qm,i,r(k) flow [veh/h] on segment i of link m at time step k

ρmax,m maximum density [veh/km/lane] of a link m

Qn(k) total flow [veh/h] entering a node n at time step k

qm,0(k) flow [veh/h] leaving node n via link m at time step k

βn,m(k) fraction of the total flow to node n leaving via link m at time step k

ρm,Nm+1(k) virtual downstream density [veh/km/lane] of link m entering
a node with multiple outgoing links at time step k

vm,0(k) virtual upstream speed [km/h] of outgoing link m for a node
with multiple ingoing links at time step k

am,i,i+1(k) spatio-temporal acceleration [m/s2] from segment i to
segment i+1 of link m at time step k

nm,i,i+1(k) number of vehicles subject to spatio-temporal acceleration at time step k

am,i(k) temporal acceleration [m/s2] within the same segment i of a link m

at time step k

nm,i(k) number of vehicles subject to temporal acceleration within
the same segment i of a link m at time step k
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JMPC
TTS (k) TTS [veh·h] obtained according to the MPC framework at time step k

JMPC
γ,TEFC(k) total emissions and fuel consumption obtained according to the

MPC framework at time step k

JMPC
pen (k) total penalty on control action deviations at time step k

TTSnorm normalization term for TTS
TEFCγ,norm normalization term for emissions and fuel consumption
pennorm normalization term for penalty factor

Finally, the following general mathematical symbols have been adopted:

N set of nonnegative natural numbers N = {0,1,2, . . .}
N0 set of strictly positive natural numbers, excluding {0}
R set of real numbers
R+

0 set of strictly positive real numbers, excluding {0}
R+ set of nonnegative real numbers
null(X) null space of matrix X

B (X) basis of vector space X

∇ gradient
‖x‖2 Euclidean norm, ℓ2-norm
×n

i=1Xi ×n
i=1Xi = X1 × . . .×Xn

List of abbreviations

The following abbreviations are used in this thesis:

LQ linear-quadratic
MLD mixed logical dynamic
MPC model predictive control
PWA piecewise-affine
SVD singular value decomposition
TEFC total emissions [g] and fuel consumption [l]
TTS total time spent [veh·h]



.

Summary
Reverse Stackelberg Games:

Theory and Applications in Traffic Control

In general, the focus of the research presented in this dissertation can be described
as the application of game-theoretical elements in the modeling of communication
and interaction between agents or controllers on different layers of a large-scale
multilevel optimization problem. One of the major challenges in optimization-based
control of large-scale infrastructural networks such as traffic networks is to find
efficient multilevel optimization schemes through which decisions can be made by
controllers of different interacting layers. The hierarchical game on which this thesis
is focused can be used to model this interaction.

In particular, research has been conducted on the so-called reverse Stackelberg

game that can be described as a hierarchical game in which players make decisions
sequentially. Moreover, a leader player in this game proposes a so-called leader func-
tion to the followers, which maps a follower’s decision space to the leader’s decision
space. The leader therefore influences a follower by making her decision dependent
on a follower’s decision, under the aim to obtain her desired – e.g., globally optimal
– pair of leader and follower decision variables. An example of such a relation is
to propose different monetary incentives to be associated with different routes in a
traffic network, under the objective to induce the drivers to adopt those routes that
lead to a system-optimal traffic distribution.

The results of this dissertation can be classified with respect to two main branches:
a more fundamental branch aimed at developing existence conditions and solution
methods for the general reverse Stackelberg game, and a more applied branch aimed
towards application of reverse Stackelberg games in order to mitigate traffic prob-
lems like congestion and vehicular emissions.

The main contributions can be summarized as follows:

Existence conditions and characterization of optimal affine solutions

As a first step towards obtaining a systematic solution methods of the reverse Stack-
elberg game in various settings, which are not yet available in the current literature,
necessary and sufficient existence conditions are considered for optimal leader func-
tions with an affine structure. Here, we adopt an indirect formulation of the reverse
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Stackelberg game, in which the leader’s desired equilibrium point is determined a
priori.

Moreover, we characterize the full set of such optimal affine solutions, which is
useful in case:

(i) the decision spaces are constrained, in which situation it is difficult to derive
existence conditions, and in case:

(ii) secondary optimization criteria are employed, such as considering leader func-
tions that are the least sensitive to deviations from the follower’s rational,
hence optimal, response.

Finally, it is shown how, based on the initial characterization, one can select the
subset of optimal affine solutions in case of constrained decision spaces.

Systematic computation of optimal nonlinear solutions

In case no optimal affine solution exists or in case nonlinear leader functions have
desirable characteristics such as a certain degree of smoothness, nonlinear leader
functions should be derived. The following methods are proposed to systematically
compute an optimal nonlinear solution to the indirect reverse Stackelberg game:

• A continuous multilevel optimization problem is considered that leads to an
optimal leader function written as a linear combination of a given set of basis
functions. In some special cases, the complexity of the problem, which is in
general NP-hard, is reduced to that of convex programming problems that can
be efficiently solved in polynomial time.

• In case the follower’s decision space is discretized in grid points, the above
multilevel optimization problem reduces to a single-level optimization prob-
lem. Since optimality of the leader function cannot be guaranteed, an adaptive
gridding approach is proposed.

• Interpolating spline methods available in the literature can be adopted in the
special case the decision spaces of leader and follower together are of at most
dimension three.

Additionally, results are provided on a case study conducted to compare the com-
putational requirements for computing an optimal leader function when adopting
one of the three indirect methods just mentioned to the direct methods based on
evolutionary algorithms available in the literature on reverse Stackelberg games. In
the latter methods, leader function coefficients are derived based on either the ge-
netic algorithm or on a neural network approach, in which the leader’s performance
is optimized and no a priori determined equilibrium point is adopted. For the case
study at hand, the suggested approaches yield the leader’s globally optimal pair of
decision variables and moreover consume much less computation time, while the
evolutionary approaches for the direct game formulation returned significantly less
desirable leader objective function values.
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Application of reverse Stackelberg games in traffic control

Next to the development of systematic solution methods for the reverse Stackelberg
game, applications are considered that show how this game can be adopted to im-
prove the performance in a traffic system, e.g., by minimizing the total time spent
of vehicles in the network. In particular, the game is reformulated in the context of
route choice, where the road authority can obtain the system-optimal distribution
of traffic in a dynamic setting through the use of leader functions that allocate a
positive or negative monetary incentive to each route choice or desired travel time
of each homogeneous group of drivers. Upon the choice of the pair of either desired
route choice or travel time and the associated monetary incentive that is entered by
the follower in an on-board computer, the driver is allocated to a route desired by
the road authority. In particular, the following game variants are considered:

• Route choice in freeway networks:

The followers’ desired route splitting rates are mapped to monetary incentives
in order to reach a system-optimal traffic distribution.

• Route choice in freeway networks:

The followers’ desired expected travel times are mapped to monetary incen-
tives in order to reach a system-optimal traffic distribution.

• Single-corridor urban networks:

The followers’ desired expected travel times are mapped to monetary incen-
tives, now under the aim to reduce vehicular emissions while taking into ac-
count the urgency and desired travel time of the mainstream drivers. Traffic
signals for mainstream traffic as well as for side-street traffic crossing and join-
ing the mainstream are adopted as the road authority’s control measure.

As regards fairness issues of allocating monetary incentives to different groups
of drivers, it should be noted that the absolute value of the monetary incentives
associated with the desired follower decisions is flexible. That is to say, in order for
a leader function to solve the reverse Stackelberg game to optimality, the geometry
of the leader functions in relation to the followers’ sublevel sets is important, rather
than the absolute values that compose the image of such a function.

Appendix: Solving a nonconvex model-based predictive traffic control problem

through piecewise affine approximation

Finally, a separate topic that is related to traffic control, however not to game theory,
has been considered in the beginning of the research period. The approximation of a
nonlinear macroscopic traffic and emission model has been studied for the purpose
of reducing the computation time of the nonconvex model-based predictive traffic
control problem aimed to minimize the total time spent of traffic in the system as
well as vehicular emissions and fuel consumption. In particular, the nonlinear model
equations are approximated by piecewise affine functions, after which the resulting
mixed-logical dynamic problem can be solved by mixed-integer linear programming.

Noortje Groot
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Samenvatting

Omgekeerde Stackelbergspellen:

Theorie en Toepassingen in Verkeersregeling

Het promotieonderzoek zoals samengevat in dit proefschrift is in brede zin gericht
op het toepassen van speltheoretische elementen in het modelleren van commu-
nicatie en interactie tussen agenten of regelaars van verschillende lagen van een
grootschalig, meerlaags optimalisatieprobleem. Een van de wellicht belangrijkste
uitdagingen in de regeling van grootschalige infrastructuren zoals verkeersnetwer-
ken, is het vinden van efficiënte meerlaagse optimalisatieschema’s waarin beslissin-
gen gemaakt kunnen worden door regelaars van verschillende interagerende lagen.
Het hiërarchische spel waarop deze thesis is gericht, kan worden gebruikt om deze
interactie te modelleren.

In het bijzonder wordt het zogenaamde ‘omgekeerde Stackelbergspel’ (reverse
Stackelberg game) onderzocht, wat samengevat kan worden als een hiërarchisch
spel waarin spelers op sequentiële wijze beslissingen nemen. Daarbij biedt de leider
in dit spel een wiskundige relatie aan de volger aan, de zogenaamde leiderfunctie,
die aan het besluit van de volger een waarde van de beslissingsvariabele van de lei-
der toewijst. Derhalve beïnvloedt de leider de volger door haar besluit afhankelijk
te maken van dat van de volger, waarbij de leider als doel heeft haar gewenste, bij-
voorbeeld haar globaal optimale, koppel van leider en volger beslissingsvariabelen te
behalen. Een voorbeeld van een dergelijke relatie is het aanbieden van verschillende
monetaire aanmoedigingspremies die geassocieerd zijn met verschillende verkeers-
routes, met als doel de verkeersdeelnemers te beïnvloeden om die routes te nemen
die leiden tot een optimale verkeersdistributie.

De resultaten van dit onderzoek kunnen worden opgedeeld in twee hoofdtakken:
een meer fundamentele tak gericht op het ontwikkelen van bestaansvoorwaarden en
oplossingsmethoden voor het algemene omgekeerde Stackelbergspel en een meer
toepassingsgerichte tak die gericht is op het actief beïnvloeden van de routekeuze
van weggebruikers in verkeersnetwerken om problemen zoals verkeersverstoppin-
gen en de uitstoot van uitlaatgassen te verminderen.

De hoofdbijdragen van deze deelonderwerpen worden in de volgende paragrafen
toegelicht.
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Bestaansvoorwaarden en karakterisering van optimale affiene oplossingen

Binnen de fundamentele tak is het belangrijk toe te werken naar een systematische
oplossingsmethode van het omgekeerde Stackelbergspel in diverse situaties, welke
in de huidige literatuur nog niet beschikbaar is. Daartoe zijn eerst bestaansvoor-
waarden onderzocht van optimale leiderfuncties met een affiene structuur. Hierbij
richten we ons op een indirecte formulering van het omgekeerde Stackelbergspel,
waarin het gewenste evenwichtspunt van de leider, bestaande uit een koppel van
beslissingsvariabelen van de leider en de volger, wordt bepaald voorafgaand aan het
opstellen van een leiderfunctie.

Daarbij presenteren we een volledige karakterisering van zulke potentiële opti-
male affiene oplossingen, welke in het bijzonder nuttig is in het geval:

(i) de beslissingsruimten beperkt zijn door randvoorwaarden, in welke situatie
het moeilijk is bestaansvoorwaarden af te leiden, en in het geval:

(ii) secundaire optimalisatiecriteria worden gehanteerd, zoals het beschouwen van
leiderfuncties die het minst gevoelig zijn voor afwijkingen van de rationele,
dus optimale beslissingsreacties van de volgers.

Tenslotte laten we zien hoe men, gebaseerd op de initiële karakterisering van op-
timale affiene leiderfuncties, een deelverzameling van optimale affiene oplossingen
kan selecteren in het geval van begrenzingen op de beslissingsruimte.

Systematische berekening van optimale niet-lineaire oplossingen

In het geval dat een optimale oplossing van de affiene vorm niet bestaat of in het
geval niet-lineaire leiderfuncties gewenste eigenschappen hebben zoals een bepaal-
de graad van gladheid (smoothness), zal het nodig zijn niet-lineaire oplossingen af
te leiden. We stellen de volgende methoden voor om systematisch een niet-lineaire
optimale oplossing te berekenen voor het indirecte omgekeerde Stackelbergspel:

• We beschouwen een meerlaags continu optimalisatieprobleem dat leidt tot een
optimale leiderfunctie welke uitgedrukt wordt als een lineaire combinatie van
een gegeven verzameling van basisfuncties. In enkele speciale gevallen is de
complexiteit van dit probleem, welke in het algemeen NP-hard is, gereduceerd
tot dat van een convex optimalisatieprobleem dat efficiënt, in een rekentijd van
boven begrensd door een polynoom, opgelost kan worden.

• We beschouwen dit optimalisatieprobleem tevens in het geval de beslissings-
ruimte van de volger is gediscretiseerd in roosterpunten. Terwijl dit resulteert
in een éénlaags optimalisatieprobleem, kan de optimaliteit van een leiderfunc-
tie niet gegarandeerd worden, hetgeen leidt tot een aanpak met een adaptief
rooster.

• Spline interpolatoren zoals bekend uit de literatuur kunnen ook worden ge-
bruikt, in het bijzonder voor het speciale geval dat de beslissingsruimten van
leider en volger samen op zijn hoogst drie dimensies behelst.
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Daarnaast worden de resultaten gepresenteerd van een casus waarin de rekentijd
wordt vergeleken wanneer enerzijds de drie zojuist genoemde methoden worden
toegepast en anderzijds de directe methoden uit de literatuur, gebaseerd op twee
evolutionaire algoritmen voor omgekeerde Stackelbergspelen. Bij deze beschouw-
de directe methoden worden leiderfunctiecoefficiënten afgeleid, gebaseerd op ofwel
het genetisch algoritme danwel op een neuraal netwerk methode, waarin de presta-
tie van de leider geoptimaliseerd wordt en waarin geen vooraf bepaald evenwichts-
punt wordt gebruikt. Voor deze casus resulteren de door ons voorgestelde methoden
in het voor de leider gewenste globaal optimale koppel van beslissingsvariabelen
terwijl deze significant minder rekentijd vergen. Tegelijkertijd resulteren de evolu-
tionaire methoden voor de directe formulering van het spel in minder wenselijke
doelfunctiewaarden voor de leider.

Toepassing van omgekeerde Stackelbergspellen in verkeersregeling

Naast het ontwikkelen van systematische oplossingsmethoden voor het omgekeer-
de Stackelbergspel zijn tevens toepassingen beschouwd die laten zien hoe het om-
gekeerde Stackelbergspel de verkeerssituatie kan verbeteren, bijvoorbeeld door de
totale tijd die voertuigen in het netwerk doorbrengen, te minimaliseren. In het bij-
zonder hebben we het spel geformuleerd in de context van routekeuze, waarbij de
beheerder van een verkeersnetwerk de optimale doorstroming van verkeer in een
dynamische setting kan bereiken door middel van het doorgeven van leiderfuncties
die een positief dan wel negatief geldbedrag associëren met de routekeuze van een
homogene groep automobilisten, dan wel die een bedrag associëren met de gewens-
te reistijd van een automobilist. Nadat het gewenste koppel van bedrag en reistijd
of routekeuze in een boordcomputer in het voertuig ingevoerd is, kan de daaruitvol-
gende optimale route aan de weggebruiker medegedeeld worden. In het bijzonder
worden de volgende varianten van het spel beschouwd:

• Routekeuze in snelwegnetwerken:

Aan de gewenste routeverdeelbreuken van de volgers worden monetaire waar-
den gekoppeld met als doel een systeem-optimale verkeersverdeling te verkrij-
gen.

• Routekeuze in snelwegnetwerken:

Aan de gewenste verwachte reistijden van de volgers worden monetaire waar-
den gekoppeld met als doel een systeem-optimale verkeersverdeling te verkrij-
gen.

• Stedelijke netwerken bestaande uit een enkele corridor:

Opnieuw worden aan de gewenste verwachte reistijden van de volgers mo-
netaire waarden gekoppeld, echter nu met als doel de doorstroom te optima-
liseren, emissie van uitlaatgassen te reduceren en tegelijkertijd rekening te
houden met de urgentie en de gewenste reistijd van de wegberijders op de
hoofdroute. In dit verband worden verkeerssignalen voor overstekend danwel
samenvoegend verkeer en voor het verkeer in de hoofdstroom gebruikt als
regelmaatregelen van de wegautoriteit.
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Met het oog op de rechtvaardigheid omtrent het toewijzen van monetaire stimuli
aan verschillende groepen van automobilisten moet worden beseft dat de absolute
waarde van deze monetaire aansporingen zoals geassocieerd met de gewenste be-
slissingen van de volgers, flexibel is. In plaats van absolute waarden die het beeld
(image) van een leiderfunctie opmaken, is juist de geometrie van dergelijke functies
ten opzichte van de deelniveauverzamelingen van de volgers belangrijk voor het tot
in optimaliteit oplossen van het omgekeerde Stackelbergspel.

Appendix: Oplossen van een niet-convex model-gebaseerd voorspellend regel-

probleem in verkeersnetwerken door stuksgewijs affiene benadering

Tenslotte is aan het begin van het promotieonderzoek aandacht besteed aan een
apart onderwerp dat gerelateerd is aan verkeersregeling maar niet aan speltheorie.
De benadering van een niet-lineair macroscopisch verkeers- en emissiemodel is be-
studeerd met oog op het verminderen van de rekentijd voor het oplossen van het
niet-convexe modelgebaseerd voorspellend verkeersregelingsprobleem, gericht op
het gebalanceerd reduceren van de totale tijd die voertuigen doorbrengen in het sys-
teem, de uitstoot en het brandstofverbruik. In het bijzonder worden de niet-linaire
modelvergelijkingen benaderd door stuksgewijs affiene functies, waarna het resulte-
rende gemengd-logisch-dynamische probleem opgelost kan worden door een lineair
programmeerprobleem met variabelen die reële danwel variabelen die gehele getals-
waarden aannemen.

Noortje Groot
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Hofstadter’s Law: It always takes
longer than you expect, even when you

take into account Hofstadter’s Law.



The leader thus influences a follower by making 
her decision dependent on a follower's decision, 
aiming to obtain the desired values of the 
decision variables. An example of such a 
function is by proposing monetary incentives 
associated with different routes in a traffic 
network, under the objective to induce the 
drivers to adopt those routes that lead to a 
system-optimal traffic distribution. 

The contributions described in this dissertation 
can be summarized as the development of 
existence conditions and solution methods for 
the general reverse Stackelberg game and the 
application of the game in order to mitigate 
traffic problems like congestion and vehicular 
emissions. 

One of the major challenges in optimization-
based control of large-scale intelligent 
infrastructural networks such as traffic 
networks is to find efficient multilevel optimi- 
zation schemes through which decisions can be 
made by agents or controllers of different 
interacting layers. 

The hierarchical game on which this 
dissertation is focused can be used to model 
this interaction. In particular, the so-called 
reverse Stackelberg game is considered, in 
which players act sequentially. Moreover, a 
leader player in this game proposes a  leader 
function to the followers, which maps a 
follower's decision space to the leader's decision 
space.
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