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Abstract

The derivation of water quality indicators is of importance, especially in coastal areas, as most
of the economic activities are located here. However, the availability of highspatialresolution
water quality information in coastal zones is limited. Nowadays, highresolution satellite data
is becoming available and can fill in this knowledge gap. This satellite data contains spectral
reflectances, so a model needs to be designed to map these reflectances to water quality in
dicators. In this thesis, a Gaussian process regression (GPR) method will be introduced and
analyzed extensively in terms of covariance functions, hyperparameters and computational
costs. Remote sensing data is collected from the Sentinel2 mission and the insitu data is ob
tained from the ODYSSEA programme. The Matérn 3/2 kernel produces the best results and
these are compared with the current models that rely on machine learning techniques. GPR
shows promising results in terms of estimation accuracy and chlorophylla maps are made for
different areas and depths. Various approximation methods are tested to speed up the com
putation time. Singular value decomposition shows promising results for doing predictions to
reduce the computation time. Moreover, GPR can handle limited availability of insitu data
well and uncertainty quantification is induced by the Bayesian framework.

Keywords: Gaussian process regression (GPR); chlorophylla; highresolution satellite data;
multispectral; covariance functions
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1
Introduction

Since the Soviet Union launched Sputnik1 on 4 October 1957, about 10,490 satellites have
been put into Earth orbit (European Space Agency, 2020). Several applications of today’s
satellites are astrophysics, communication, navigation and Earth observation (EO). A few hun
dred Earth remote sensing satellites (developed for EO) are currently in Earth orbit and are
collecting over 150 terabytes of data every day (European Space Agency, 2019). The informa
tion obtained by Earth remote sensing satellites has widely been used to estimate ecological
indicators in both terrestrial and marine ecosystems (Mishra and Mishra, 2012; Sishodia et al.,
2020). However, despite recent improvements, the availability of highspatialresolution wa
ter quality information in coastal zones is limited (Almeida et al., 2019; Kabbara et al., 2008).
According to Liew et al. (2011), it is of importance to study the water quality of (non)coastal wa
ters using highresolution satellite sensors, since most of the economic activities are located
in coastal areas. Therefore, to satisfy the data requirements for highresolution information
on coastal zones, the derivation of water quality indicators is needed. The newly available
highresolution optical data can fill this knowledge gap. However, these datasets often con
tain spectral reflectances only (wavelengths of the reflected light in various bands). For that
reason, a model needs to be designed to map these reflectances to water indicators.

A large number of models is already available (Hooker et al., 2000; O’Reilly et al., 1998;
O’Reilly and Werdell, 2019), however, these models are designed for specific sensors, so for
new satellites (i.e. new sensors) the models need to be recalibrated. Furthermore, the majority
of these models are designed in such a way that they are fast in computational time as there is
a lot of data to handle. More complex models, e.g. neural networks (Brockmann et al., 2016;
Lee et al., 1998), are used for the Copernicus Sentinel 2 and 3 missions. However, the specific
information about these models is not available and they require finetuning for the particular
sensors.

This research was carried out at Deltares, which is an independent research institute that
mainly focuses on applied research in water, subsurface and infrastructure. Deltares de
signs, develops, manages andmaintains both software and facilities to simulate naturerelated
events, such as the Delta Flume and Delft3D. Working together with governments, universi
ties, businesses and other research institutes makes Deltares an expert in describing chemical
and ecological processes. This research is part of the HiSea project, which is funded by the
European Union as part of the Horizon Europe program (under grant agreement ID: 821934).
The HiSea project aims to develop, test and demonstrate information services that provide
highresolution data of water quality at sea. The vision of the project is to build a platform
that creates the opportunity for better efficiency and productivity in marinerelated businesses,
while at the same time the marine and coastal environment are preserved and able to thrive.

1
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The goal of the HiSea project is to supply meaningful data to gain a better understanding of
the marine environment and to better predict future events. Finally, the ODYSSEA project is
consulted for their available datasets. ODYSSEA is also a Horizon 2020 project funded by the
European Union.

1.1. Problem Description
In this research, the water quality indicator that is focused on will be chlorophylla. Chloro
phyll originates from the Greek language and literally translated means “green leaf” (χλωρός
which means green and φύλλον which means leaf). The pigment chlorophyll is present in all
green plants and gives them their green color. It is also responsible for the absorption of light
to create energy for photosynthesis (Petruzzello, 2020). Chlorophylla (C55H72O5N4Mg) is a
specific form of chlorophyll and is found in all photosynthesizing plants, algae and phytoplank
ton. Usually, a high concentration of chlorophylla indicates poor water quality, conversely
a low concentration suggests good conditions. This can be explained by considering a high
concentration of chlorophylla which indicates, for example, a high concentration of algae. A
rapid increase or accumulation of algae can result in algal blooms that cause shade and rapid
changes in dissolved oxygen which causes a reduction in fish populations and plant diver
sity. This process is called eutrophication (ευτροφία in greek means wellnourished) which is
a worldwide problem nowadays. The recent example for this is the ‘seasnot’ that plagues the
Turkish coasts and endangers the fishery in the Marmara sea (cover image by Akgul (2021))
(Uğurtaş, 2021). Chlorophylla has a ‘natural’ cause to change in concentration which is sea
sonality, see Figure 1.1. Due to the rise in temperature and more availability of sunlight in
summer, the chlorophylla concentration is able to increase. Note that the average concentra
tion in summer can sometimes change quickly, where there are periods where algae bloom
and die in rapid succession. For example, in April there is a high concentration of chlorophylla
in the North Sea, which then suddenly drops due to a lack of nutrients. However, when the con
centration drops so drastically, a lot of nutrients are available again and thus the concentration
can rise.

Figure 1.1: Chlorophylla concentration observations in the North Sea in 2006 including the daily average (red).
Data obtained from the MEdium Resolution Imaging Spectrometer (MERIS).

Another cause of algae blooms and therefore eutrophication is the excessive human activi
ties such as overdevelopment of watersheds and agricultural irrigation (Anderson et al., 2002).
Moreover, nutrients are added to waters as a result of domestic and industrial wastewater that
is partially treated. This has not only an impact on the marinelife and plant diversity, but also
on the fishery and tourism (Ho et al., 2019). As a consequence, it is interesting to study the
chlorophylla concentration to be able to prevent events such as in the Marmara sea and to
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improve the water quality. Furthermore, the impact of nutrients that flush into the sea by rivers
can be studied and the source can be detected (especially using highresolution satellite data).

Using remotesensing by satellites, it is possible to cover the complete Earth and obtain
data using the sensors onboard. The color of water appears to be (dark) blue to the naked
eye since most of the other wavelengths are absorbed significantly more, whereas the blue
wavelength is scattered more by the water molecules. The distinction between clear water and
water containing chlorophylla is the strong absorption of the blue and red wavelength and the
lower absorption of the green wavelength in water containing chlorophylla. This suggests that
it is possible to estimate the chlorophylla concentration using satellite imagery.

Figure 1.2: Percent reflectance of clear (blue) and algaeladen (green) water (Han, 1997; Klose et al., n.d.).

Some problems arise with satellite imagery, as the radiance recorded by the sensor on
board of the satellite will typically not be the true radiance from the water. First of all, the
measurements can be disturbed by the presence of clouds, not to mention the day and night
cycle which causes the observations to not be useful. Secondly, when the circumstances are
good (i.e. no clouds), the radiance is still disturbed by the atmosphere, components in the
water and radiance that reach the bottom of the water (typically in coastal waters). Finally, the
angle of the sunlight and the wind that causes waves influence the radiance. Hence, before
any analysis can be done, the data needs to be preprocessed to obtain the ‘correct’ radiance
reflected by the water. Some part of this preprocessing is done manually in this thesis, though
some of the preprocessing has been done by using a higher level dataproduct.

The remotesensing data will be in the form of a grid, where the insitu data will be available
only in very specific locations. Ideally, these locations match, though this will not be possible in
reality. This creates the problem of having the dependent and explanatory variables on differ
ent locations, so some sort of interpolation or kriging is necessary to do regression. Moreover,
these algorithms are often evaluated on individual or small population of lakes and coastal
waters where insitu measurements are available. Therefore, these algorithms can fail in pre
dicting water quality estimators globally due to the different optical properties of the water
columns. Finally, the model needs to incorporate time as well as the location, so a spatio
temporal model will be constructed. Since the availability of highresolution satellite data, the
amount of data has increased significantly. For that reason, any model needs to be able to
process a large amount of data in a reasonable time.
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1.2. Research questions
The main research question for this project is: What spatiotemporal model, that provides
uncertainty quantification, can be used to estimate the chlorophylla concentration using high
resolution optical remote sensing data? I will try to find an answer to this question by answering
the following subquestions:

• How can we obtain and preprocess spectral reflectance data?
• How are the spectral reflectances related to the chlorophylla concentration?
• What are the current models to estimate the chlorophylla concentration?
• How does the time of year influence the chlorophylla concentration?
• How can we incorporate the spatial correlation in our model?
• What is the influence of depth in relation with the chlorophylla concentration?
• How does our proposed model compare to the stateoftheart models?
• What approximation method is best for fast computation?

1.3. Methodology
To be able to answer the subquestions and the main research question, this study will use
remote sensing data as well as insitu data to train, test and validate the models that are
applied. The remotesensing and insitu data are obtained from the corresponding platforms,
though, some have been obtained from Deltares. For the satellite data, a tool called the
Sentinel Application Platform (SNAP) is used to import, edit and export data (SNAP, 2020).
Converting the data into a netCDF (network common data form) format makes it possible to
import the satellite data into Python (Van Rossum and Drake Jr, 1995). Then, an explanatory
analysis can be applied in order to attempt to answer the raised questions. Furthermore, a
spatiotemporal model will be introduced and investigated thoroughly to be able to answer the
main question. The produced code can be found on GitHub1.

Figure 1.3: Schematic overview of the steps necessary to obtain chlorophylla estimations. First, the raw
satellite data needs to preprocessed by an atmospheric correction algorithm. An interpolation method can be
applied to retrieve the reflectances at insitu locations. In combination with the chlorophylla measurements, a
model can be trained with the insitu data. Finally, an estimation and uncertainty quantification can be computed

at for every satellite observation.

A schematic view of the steps in this thesis are shown in Figure 1.3. First, the raw satellite
data needs to be corrected by an atmospheric correction algorithm (manually or by using
higher level products). With the obtained reflectances and using the coordinates from the

1https://github.com/tobimoli/MScThesis

https://github.com/tobimoli/MSc-Thesis
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insitu data, the reflectances at the insitu locations can be computed with an interpolation
method. Then, in combination with the obtained chlorophylla measurements in the insitu
data, a model can be trained to learn/find relationships between the reflectances and the
chlorophylla concentration. Once trained, the model can be applied to the reflectances of
the satellite data and an estimation including an uncertainty quantification can be computed
at every (satellite) observation.

1.4. Outline
In this thesis, a literature review will be done in chapter 2, where background knowledge of
satellite imagery is given and the state of the art models are introduced and explained in
detail. Then, the process of data collection is described in chapter 3. Both insitu data and
satellite data will be discussed and the data will be preprocessed. Thereafter, the different
approaches of spatiotemporal statistics are explained in chapter 4. Here, a Gaussian process
regression is introduced and constructed with mathematical detail. This model is then used to
analyze different kernels, parameters and variables in chapter 5. For computational purposes,
approximation techniques are introduced and applied in chapter 6. In chapter 7 the results of
the analysis are summed up and finally, in chapter 8 an answer is given to the main research
question as well as the subquestions. Additionally, the results will be discussed and some
recommendations are given for future research.





2
Literature Review

Before diving into the spatiotemporal model that will be introduced in chapter 4, the models
that are currently used will be explained and their benefits and drawbacks will be discussed in
this chapter. First, some background information on satellite imagery and notation will be given.
Then, some of the straightforward methods such as some polynomial models will be reviewed.
These methods were introduced a few decades ago. Still, they are relevant as their strength
lies in the simplicity and, as a consequence, the computational speed (O’Reilly and Werdell,
2019). Thereafter, the state of the art models are described. Due to the increase in use and
interest in machine learning, algorithms such as neural networks and supportvector machines
are studied and implemented to retrieve the chlorophylla concentration using satellite imagery
(Li et al., 2018).

2.1. Satellite Imagery
Satellite imagery refers to images of the Earth, obtained by sensors on board of satellites.
There are numerous commercial satellites and satellites owned by governments and therefore
several sensors are used to obtain the images. Each of these sensors is specialized in its own
way corresponding to its application. The usefulness of the imagery can be described in terms
of resolution. Campbell and Wynne (2011) state that there are four different types of resolution
to consider.

The most obvious resolution is the spatial resolution. This is, simply said, the size of the
pixels of the image that is taken and is usually defined in meters. It is not to be confused with
the number of pixels, as an image can have more pixels but have a worse spatial resolution.
This is a result of having dependent pixels; though, spatial resolution increases when having
more independent pixels. It is sometimes referred to as the geometric resolution which can be
written in terms of ground sample distance (GSD), meaning the distance between two centers
of pixels next to each other.

The capability to observe and record many levels of brightness is described as the radio
metric resolution. When only a few levels of brightness are used, i.e. coarse radiometric
resolution, the image will be of high contrast. With a fine radiometric resolution, the image will
contain multiple levels of brightness and can better distinguish the difference of intensity.

The spectral resolution can be defined as the ability to capture the image using multiple
bandwidths that covers the spectrum of colors. An ordinary camera uses three bandwidths
(blue, green and red); however, sensors used for satellite imagery can contain hundreds of
fine bandwidths which capture not only the visible spectrum but the nonvisible spectrum as
well (e.g. infrared). Based on the spectral resolution, satellite imagering can be subdivided
into three categories.

7
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• Panchromatic (Pan) imaging is a way of acquiring data using a single bandwidth that
contains multiple hundreds of nanometers, e.g. the spectral range for WorldView2 is
450800nm. All information reflected from each pixel is summarized into one value which
is the intensity of the reflected solar radiation. As it is just one value, the information from
panchromatic images is visualized using black and white images.

• Multispectral (MS) sensors, on the other hand, acquire the information using multiple
smaller bandwidths. These sensors provide their data in 2 to 15 bands (Fletcher, 2012).
For example, the multispectral sensor from the WorldView2 mission provides 8 bands,
each with a bandwidth of approximately 50nm. As the amount of light energy is rela
tively small per band in comparison to the panchromatic band, the spatial resolution of
multispectral images is worse than the spatial resolution of a panchromatic image. For
the WorldView2 mission, the spatial resolution (at nadir) is 0.46m GSD (Pan) and 1.8m
GSD (MS).

• Hyperspectral (HS) imaging, as the name suggests, is a way of acquiring the data using
tens or even hundreds of bands with a very small bandwidth (around 15nm). As an
example, the PRISMA (PRecursore IperSpettrale della Missione Applicativa) mission of
ASI (Agenzia Spaziale Italiana) is launched for making mediumresolution hyperspectral
images. It uses 66 bands in the VNIR channel and 171 bands in the SWIR channel each
with bandwidths smaller than 12nm (Pignatti et al., 2013). For the spectral ranges of
these channels, see Figure 2.1 (Fang et al., 2018).

Figure 2.1: The electromagnetic spectrum of wavelength λ ranging from 102 to 106 nm. From left to right the
classified classes are UltraViolet (UV), Visible and NearInfrared (VNIR), ShortWave Infrared (SWIR), Mid

Infrared (MIR) and Far Infrared (FIR) (Fang et al., 2018).

The fourth resolution is the temporal resolution, which is the precision in time. For video
cameras, this is usually measured in frames per second (FPS), e.g. the iPhone 8 can shoot
in 240 FPS for slowmotion videos. For satellite imagery, it is very complicated to shoot in this
temporal resolution considering two reasons: the satellite moves with a high velocity and due
to the rotation of the Earth, the satellite has to complete multiple orbits before it reaches the
same position again. For high spatial resolution images, a small distance is desired between
the satellite and the Earth. Therefore, most of these satellites are placed in a sunsynchronous
orbit which is located in the low Earth orbit (LEO) (Boain, 2004; Sellers et al., 2000). The
altitude of sunsynchronous satellites is approximately between 150 and 900 kilometers above
the surface of the Earth. Furthermore, the orbits are polar orbits whichmeans that the satellites
cross the equator multiple times per day. Because the orbit is sunsynchronous, the angle with
respect to the sun remains the same which is very useful for capturing images of the Earth’s
surface. The period of one orbit is around 90 minutes (considering a LEO), however, the
temporal resolution will be around one day because of the rotation of the Earth. Also, the
swath width must be taken into account for the temporal resolution, as this is the width that
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can be observed from the sensor. Furthermore, the weather conditions need to be taken into
account so for places where it is regularly cloudy, the effective temporal resolution will very
likely be more than one day.

The tradeoff between these resolutions has to be made for each different application. For
example, satellite imagery used for studying the weather can have a relatively low spatial res
olution, though a high temporal resolution is desired. Therefore, these satellites are orbiting
in the geostationary orbit so the satellite is facing the same part of the Earth at any time. Gen
erally, improving one of the resolutions leads to a decrease of one of the other resolutions
(Campbell and Wynne, 2011). In our case where multispectral as well as hyperspectral sen
sors are possible to use, improving the spectral resolution by including more bands principally
means that the spatial resolution will deteriorate (Campbell and Wynne, 2011).

The sensors measure the spectral radiance emitted from the top of the atmosphere (TOA)
for different wavelengths. An atmospheric correction (AC) algorithm is applied to remove
the influence of the atmosphere. Then, the remote sensing reflectances can be written as
Rrs(λ)[sr

−1]. This is the light exiting the water (waterleaving radiance) normalized to the
downwelling solar irradiance (Cannizzaro and Carder, 2006; O’Reilly and Werdell, 2019).

Rrs(λ) =
Lw(λ)

Ed(λ)
.

The SIunit steradian [sr] is the dimensionless unit of a solid angle (Ω). Similar to a radian
that is related to the circumference of a circle, a steradian is related to the surface of a sphere.
Equivalent to the angle that is made of the radius around a circle which is exactly one radian,
the solid angle that is made of an area equal to the radius squared around a sphere, is exactly
one steradian. As the complete surface of a sphere is equal to 4πr2 the maximum solid angle
is 4π steradian.

Although a large number of models use remote sensing reflectances to estimate the chlorophyll
a concentration and other water quality estimators, inherent optical properties (IOPs) are pro
posed to be used as well (Gons et al., 2008; Gons et al., 2002). An IOP is an optical property
that is fixed, so it is not dependent on the changes in light fields within the water and the atmo
sphere. These properties, such as the absorption coefficient of water and the backscattering
coefficient can be estimated using the remote sensing reflectances (Liew et al., 2011; Woźniak
et al., 2019). Insitu measurements of IOPs are also used to estimate the remote sensing re
flectances and therefore water quality estimators such as chlorophylla and colored dissolved
organic matter (CDOM) (Cannizzaro and Carder, 2006; Dall’Olmo and Gitelson, 2005).

In the next section, the simple regression methods are introduced and discussed together
with the different choices for ratios of remote sensing reflectances (Rrs(λ)) to estimate the
chlorophylla concentration.

2.2. Simple Regression
Numerous models have been designed to model the chlorophylla concentration using the
reflectances (O’Reilly and Werdell, 2019). The majority of the models are a modified cubic
polynomial function and can be written as:

log(Chla) = a+ bR+ cR2 + dR3 + eR4. (2.1)

The logarithm is used to avoid negative values for the chlorophylla concentration. Here, R is
usually the logarithm of the ratio of two bandwidths and a, b, c, d and e are coefficients to fit the
model. The most simple models set c, d, e equal to zero (a linear model) (Mishra and Mishra,
2012; Moses et al., 2009; Zhang et al., 2009). All these simple regression methods have the
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advantage that they can handle large datasets easily, which is practical as the remote sensing
datasets contain usually a large number of observations.

R = log
(
Rrs(λ1)

Rrs(λ2)

)
.

The reason why the ratio of remote sensing reflectances is often used is that there is a high cor
relation between the ratio and the chlorophylla concentration, when the optimal wavelengths
are used (Cannizzaro and Carder, 2006; Kabbara et al., 2008; Moses et al., 2009; O’Reilly
and Werdell, 2019; Tzortziou et al., 2007). The choice of λ1 and λ2 can be based on the
type of water (i.e. oligotrophic, mesotrophic or eutrophic waters), but also heavily relies on
the spectral resolution of the sensor. The maximum band ratio (MBR), introduced by O’Reilly
et al. (1998), uses the maximum value of Rrs(λ1) where λ1 is the wavelength of violetblue
(∼400510nm) and λ2 is the green wavelength (∼ 550nm). This is done because it has been
observed that the chlorophylla concentration decreases when the ratio increases (Hooker et
al., 2000). In Figure 1.2, it can be seen that the percent of reflectance of the green wavelength
is considerably higher for algaeladen water in comparison with clear water and vice versa for
the violetblue wavelength.

Other ratio’s of remote sensing reflectances have been used as well, such as a bluered
ratio (Cannizzaro and Carder, 2006; Kabbara et al., 2008), NIRred ratio (Moses et al., 2009),
redgreen ratio (Tzortziou et al., 2007) and more complex ratio’s (Dall’Olmo and Gitelson,
2005; Mishra and Mishra, 2012; O’Reilly and Werdell, 2019; Zhang et al., 2009). One of these
complex ratio’s is the normalized difference vegetation index (NDVI):

R = log(NDV I) = log
(
Rrs(λNIR)−Rrs(λred)

Rrs(λNIR) +Rrs(λred)

)
.

As Rrs(λ) is a ratio on itself, it takes values between 0 and 1, and thus NDVI takes values be
tween 1 and 1. NDVI is often used to detect vegetation on land however it is shown by Mishra
and Mishra (2012) that this ratio can be used to estimate the chlorophylla concentration. The
threebanded ratio’s proposed by Dall’Olmo and Gitelson (2005):

R = log
(
Rrs(759)

Rrs(690)
− Rrs(759)

Rrs(703)

)
,

and Zhang et al. (2009):

R = log
(
Rrs(753)

Rrs(665)
− Rrs(753)

Rrs(708)

)
,

have a similar shape, although the specific wavelengths that are used differ because of the
available data. Finally, O’Reilly and Werdell (2019) derived 65 algorithms for 25 different
satellite sensors of which the majority (62) use a MBR where the wavelengths are specifi
cally chosen based on the satellite sensor. When available, six bands are used to create the
MBR where the denominator is the mean of the remote sensing reflectances for the red and
green wavelength. For example, for the MEdium Resolution Imaging Spectrometer (MERIS)
on board of the Envisat (Environmental satellite) prior to the Sentinel satellites of ESA, the
following ratio is proposed:

R = log

(
max{Rrs(412), Rrs(442), Rrs(490), Rrs(510)}

1
2(Rrs(560) +Rrs(665))

)
.

As said before, the main advantage of these kind of models is that the computational
complexity is low. Computing the coefficients in Equation 2.1 can be done using insitu data of
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chlorophylla concentration and reflectances. Consider the polynomial regression model y =
Xβββ+εεε, where y is the response vector, X ∈ R(n×p) the design matrix, βββ the vector containing
the coefficients and εεε are the (independent) random errors. The number of coefficients is p and
n is the number of observations. Then, using ordinary least squares, the coefficient vector that
minimizes the sum of the squared errors, β̂ββ = (XTX)−1XTy. The number of flops (floating
point operations) needed to compute β̂ββ is of the order: O(p3 + np2). So, it scales linearly with
n and we have 5 coefficients in Equation 2.1, so p = 5. To compute predictions, Xnewβ̂ββ needs
to be computed, which takes another n(2p− 1) flops.

Further advantages are the simplicity of the model (i.e. coefficients are easy to interpret)
and when the relationship is known to be polynomial, the model is presumed to perform well.
However, the choice for the polynomial degree is ambiguous and will be based on the bias
variance tradeoff. Furthermore, outliers are able to influence the model heavily and thus re
quires some outlierhandling.

In the next section, the state of the art models will be discussed as well as their advantages
and disadvantages.

2.3. State of the Art Models
More complexmodels nowadays are usingmachine learning algorithms to retrieve the chlorophyll
a concentration from the observed reflectances. The supportvector machine (SVM) is used
(Sun et al., 2009; Wang et al., 2018) and Neural Networks (NN) as well (Lee et al., 1998; Li et
al., 2018). Again, the ratio of two reflectances is used as a variable in these models. Further
more, algorithms have been designed specifically for MERIS data (Doerffer, 2015; Doerffer
and Schiller, 2007) and is redesigned and renamed into C2RCC (Case2 Regional Coast
Colour) such that it is applicable to other sensors as well (Brockmann et al., 2016). This al
gorithm uses multiple neural networks and individual reflectances as input variables. Another
complex model, however not a state of the art model, is a spatiotemporal model represented
by a Gaussian process regression (GPR). This model is validated to estimate the chlorophylla
concentration (Bazi et al., 2014; Pasolli et al., 2010; Verrelst et al., 2012).

Here, the SVM and NN algorithms, as well as the GPR model, will be explained briefly and
discussed combined with relevant research.

2.3.1. SupportVector Machine
Supportvector machine (SVM) is being used for classification problems and regression anal
ysis (Smola and Schölkopf, 2004; Vapnik, 1995) and has been applied extensively for remote
sensing research (Wang et al., 2018). Using SVM for regression analysis is also known as
supportvector regression (SVR). The basic idea of SVR is to map the input vector into a
highdimensional feature space through a nonlinear mapping whereafter a linear regression
problem can be solved in this feature space (Sun et al., 2009). Instead of minimizing the er
rors, SVR gives the possibility to specify the allowed error and has the objective to minimize
the coefficients.

Consider training data {(xi, yi)}ni=1 ⊂ Rd × R, for weights w ∈ Rd and bias b ∈ R we write
the function f : Rd → R as:

f(x) = xT ·w+ b.

Now, the objective is to minimize 1
2 ||w||2 subject to |yi − f(xi)| ≤ ε where ε > 0 is the allowed

error (||w||2 = wT · w). The constraint of having approximations close to yi with a maximum
error of ε is not always feasible. Therefore, slack variables are introduced to manage approx
imations having a large error. We denote the deviation from the allowed error by ξ so the
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optimization problem becomes:

min
w,b,ξξξ

1

2
||w||2 + c

n∑
i=1

|ξi| (2.2)

subject to |yi − f(xi)| ≤ ε+ |ξi| (2.3)

The constant c > 0 can be considered to be a hyperparameter and can be chosen to be small
(i.e. |ξi| is allowed to be large) or large (i.e. |ξi| needs to be small). According to Smola
and Schölkopf (2004), this problem turns out to be solved easier when considering the dual
problem which ultimately leads to including kernels to make the SVR algorithm nonlinear. For
more details about the SVR algorithm, please refer to the tutorial on support vector regression
(Smola and Schölkopf, 2004).

With the SVR algorithm, it is possible to consider different ratios of waterleaving radiance
reflectances as input values and the chlorophylla concentration as an output value. Sun et al.
(2009) compared the SVR algorithm with simple linear regression and polynomial regression
techniques as described in the previous section. The area of interest is Lake Taihu (China),
which is an inland turbid lake and only 47 samples are used. Despite the low number of
observations, the SVR model performed better than the other regression techniques in terms
of rootmeansquare error. Wang et al. (2018) showed similar results, though the sample size
was small, containing only 39 observations. They state that SVR has high accuracy but depend
more on the observed data than the linear/polynomial regression models. Furthermore, “SVR
has the advantage to solve small sample, nonlinear and highdimensional pattern recognition
problems” (Wang et al., 2018). Another advantage is that an SVRmodel can handle outliers by
tuning the hyperparameter c. A disadvantage is that an SVRmodel is harder to interpret than a
simple linear regression model. Most noteworthy, the computational and storage requirements
scale cubic and quadratic with the number of observations, respectively. However, multiple
methods exist to cope with this problem such as sampling, matrix decomposition, chunking
and the use of core vector machines that showed linear time complexity and constant space
complexity (Tsang et al., 2005).

2.3.2. Artificial Neural Network
An artificial neural network (ANN) is a system based on the biological neural network to solve
artificial intelligence problems. ANN is using neurons and their connections between them to
solve problems. An input layer and an output layer of neurons is used and if desired, multiple
hidden layers are applied. Every layer consists of multiple neurons and every neuron is con
nected to each neuron in the layer before and after it. The input neurons can be interpreted
as the explanatory variables and the output neurons as the response variables. In Figure 2.2
a simple example of an ANN with one hidden layer can be observed. As soon as the input
values are known (a(0)0 , a

(0)
1 , a

(0)
2 ), the neurons in the first hidden layer can be computed by the

following formula:

a
(1)
i = σ(w

(1)
i,0 a

(0)
0 + w

(1)
i,1 a

(0)
1 + w

(1)
i,2 a

(0)
2 + b

(1)
i ) = σ(z

(1)
i ).

Here, the superscript refers to the layer and the subscripts to the neuron in this particular layer.
So a

(1)
i is the value for neuron i in layer 1 (first hidden layer), w(1)

i,1 is the weight assigned to
the connection between neuron i in layer 1 and neuron 1 in the input layer. The bias b

(1)
i is

included for the occurrence that all input values are equal to zero. Finally σ(·) is a function,
often the sigmoid function, such that all values are transformed into a [0, 1] domain. In matrix
notation we get for the first layer:

a(1) = σ
(
W (1)a(0) + b(1)

)
.
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Figure 2.2: Schematic example of an artificial neural network.

For random chosen initial weights and biases, the output variables can be computed given
some input values. Since the output will differ from the desired output, a cost will be assigned
to this choice of weights and biases. So, learning in neural networks means updating the
weights and biases such that the cost minimizes.

Define y as the desired output and a(L) as the output of the model, then the cost for one trial
can be defined by: C =

∑
i(a

(L)
i − yi)

2 (quadratic loss). Now, the change to the weights can
be determined by finding the gradient ∇C(w), therefore the following needs to be computed:

δC

δw(L)
=

δz(L)
δw(L)

δa(L)
δz(L)

δC

δa(L)
,

= a(L−1) · σ′(z(L)) · 2(a(L) − y).
δC

δb(L)
=

δz(L)
δb(L)

δa(L)
δz(L)

δC

δa(L)
,

= 1 · σ′(z(L)) · 2(a(L) − y).

The costs will be averaged over multiple trials and the weights and biases will be updated,
whereafter the procedure repeats itself. For the sigmoid function σ(x) = 1

1+e−x , the derivative
is: σ′(x) = σ(x)(1 − σ(x)). Similar formula’s apply for all weights and biases, w(i) and b(i).
This procedure is called backpropagation.

The choice for the number of hidden layers and the number of neurons in the hidden layers
may be arbitrary and is often based on some trial and error. Furthermore, the batch size, the
number of samples to work through before updating the internal model parameters, needs to
be estimated. Then the number of epochs, which is the number of times that the algorithm will
work through the entire training dataset, needs to be specified as well. Finally, the procedure
needs to be done a few times and averaged because the initial random weights will influence
the outcome.

An obvious disadvantage of an ANN is that this model is hard to interpret and that it is
close to a socalled ‘black box’ algorithm. The output is based on the initial weights, therefore
different simulations will result in different models. Again, the hyperparameters need to be
optimised which is done by trial and error. Furthermore, the training time of an ANN is time
consuming and increases by the number of neurons and hidden layers, though its production
time is quite fast once trained (Doerffer and Schiller, 2007). Another advantage is that neu
ral networks are able to detect nonlinear and complex relationships between variables. It is
not straightforward to estimate the uncertainty of a prediction from a neural network, however,
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some techniques have been proposed to compute the uncertainty such as the dropout algo
rithm (Gal and Ghahramani, 2016). Lastly, to train a neural network, a relatively large dataset
of training data is desired which may be hard to obtain.

The algorithm designed by Doerffer and Schiller (2007) uses two neural networks, a so
called inverse NN and a forward NN. The inverse NN has eight reflectances combined with
some geometry information as input and three IOPs as output. The forward NN uses the
IOPs as input with the same geometry information and eight reflectances as output. The three
IOPs are (1) scattering of all particles (2) absorption of phytoplankton pigments (apig) and (3)
absorption of gelbstoff and the bleached fraction of suspended matter (Doerffer and Schiller,
2007). Using the following formula:

CHLa = a · abpig,

the chlorophylla concentration can be computed, where a and b are two variables that depend
on the location/type of water. The development of the neural networks is based on 550,000
simulated observations. The algorithm available through ESA’s Sentinel toolbox SNAP is an
improved version of the algorithm designed by Doerffer and Schiller (2007) (Brockmann et al.,
2016; SNAP, 2020). It is enhanced by additional neural networks and neural networks that are
specifically designed to cover extreme ranges of input parameters. The original algorithm used
four hidden layers with 8, 12, 16 and 45 neurons, respectively. Unfortunately, for the modified
algorithm no such details can be found, except that approximately 5 million generated obser
vations are used to train the model. Another modification is that the reflectances in the original
algorithm are the waterleaving radiance reflectances (after atmospheric correction), while the
algorithm in SNAP requires data before atmospheric correction (e.g. top of atmosphere data
from Sentinel 2, level 1C). To determine the uncertainty of the IOPs, again a neural network is
used. This NN is trained with the errors of the NN that computes the IOPs using reflectances
as input. Consequently, the error is the absolute difference between the estimated IOP and
the simulated IOP. To train the uncertainty NN, the estimated IOP is used as input and error as
output. Using these uncertainties for the IOPs an uncertainty for the estimated chlorophylla
concentration can be computed. Finally, when using the C2RCC algorithm in SNAP, multiple
parameters such as salinity and temperature of the water are used as input variables. The
exact use of these variables as for the reflectances in the neural networks is unclear.

To conclude, the C2RCC algorithm can be used to estimate chlorophylla concentrations
using reflectances, although, the use of neural networks makes it hard to interpret. To train
these types of models a large number of observations is required. This is often a problem
in EO as insitu data is needed, which leads to the use of simulated data. The uncertainty
quantification is done using a neural network as well, though this can be done more elegantly
by using a Gaussian process regression.

2.3.3. Gaussian Process Regression
“A Gaussian process is a generalization of the Gaussian probability distribution” (Rasmussen
and Williams, 2006). While a (univariate) probability distribution tells us something about a
random variable (which is a scalar), stochastic processes tell us something about functions.
Consider a regression problem with a 1dimensional input and output. In Figure 2.3 (left) a
simple example is shown, where 10 samples are drawn from a prior distribution. This prior is
a distribution over functions described by a Gaussian process. In this example, there is no
knowledge about the true process, so the prior mean function is equal to zero which means
that at each input value, the average value over the sample functions is zero. When two data
points are observed, it is possible to force the Gaussian process to draw functions that pass
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these observations (no noise assumed). This can be seen in Figure 2.3 (right). The prior
variance was assumed to be independent of the input value, however, the posterior variance
clearly is not. One can see that the certainty is increased near the observations and decreased
the further you are away from them.

Figure 2.3: A simple example of 10 samples (blue lines) drawn from a prior distribution (left) and a posterior
distribution (right). The prior mean and posterior mean are shown as a black line and the shaded region

represents twice the standard deviation at each input value. The observed data points are shown as red dots.

A tacit assumption is made about the shape of the functions. This is specified by a chosen
covariance function, through which smoothness and stationarity can be adjusted. A more in
depth and mathematical explanation about Gaussian process regression is given in chapter
4.

Pasolli et al. (2010) compared theGaussian process regressionmodel with the stateofthe
art regression methods discussed before. They did this using measurements of chlorophylla
concentrations in both open and coastal waters and reflectances from theMERIS and SeaBAM
datasets. The GPR method performed best in terms of meansquarederror for both experi
ments and they conclude that “it [GPR] is a valid alternative to stateoftheart regression meth
ods” (Pasolli et al., 2010). Reasons for this statements are that the solution will be analytical
using a GPR and that the estimation accuracies are in general better in complex chlorophyll
a concentration problems. Furthermore, the machine learning techniques described before,
require a large number of observations whereas a GPR is able to perform well with limited
sample availability. Finally, they state that a disadvantage of GPR is that a matrix inversion
is needed which can be a problem when the number of observations increases. Verrelst et al.
(2012) add that a GPR provides a confidence interval for prediction and that the hyperparam
eters can be interpreted better in comparison with neural networks.

Verrelst et al. (2012) and Pasolli et al. (2010) studied the estimation of the chlorophyll con
centration on land and in water, respectively, using reflectances with a GPR model. However,
both did not study the choice of covariance function (both used a squared exponential kernel)
as well as the influence of the hyperparameters. Additionally, the matrix inversion problem is
not solved and only the theoretical suggestion of applying a Cholesky decomposition is done.
For these reasons, the GPR model will be analyzed extensively in this research. The perfor
mance for different kernels is tested and the influence of hyperparameters is analyzed. Finally,
approximation techniques for the matrix inversion are evaluated. To do so, first insitu as well
as satellite data need to be collected carefully.





3
Data Collection

Before starting with spatiotemporal statistics and the analysis, data from the commercial satel
lites and insitu data has to be collected. Commercial satellites often do not share their data
for free as this is part of their business model. Deltares and therefore the HiSea project makes
it possible to obtain highresolution data, though there are multiple possibilities. The way of
observing the data is different for every satellite/mission as their sensors are diverse and the
goal of the commercial business may be different.

The insitu data has to satisfy a few requirements as well. Multiple observations spatially
as well as temporally are desired for doing spatiotemporal statistics. Furthermore, it has
to contain the chlorophylla concentration including the coordinates and time of observation.
Additionally, the measurements need to be recent, because the highresolution satellite data
is only available from the past few years. Therefore, various platforms have been obtained
and evaluated whether it is useful for our purpose.

Finally, the insitu data and (very)highresolution data need to be available in the same
domain, spatially as well as temporally. This means that an insitu dataset of cloudy days is
unusable, while having only one measurement per day on one location is unusable as well.
Therefore, the insitu data as well as the highresolution reflectance data need to be selected
carefully.

3.1. InSitu Data
First, a variety of insitu data will be listed, whereafter the datasets will be evaluated and
checked for usability.

3.1.1. MONGOOS
The Mediterranean Oceanography Network for the Global Ocean Observing System (MON
GOOS) is a platform that is part of the GOOS (Global Ocean Observing System) which is
administrated by the IOC (Intergovernmental Oceanographic Commission) which in turn is
part of UNESCO (Sofianos et al., 2018). Concerning the Mediterranean Sea, the summarized
objective of MONGOOS is to maintain and obtain oceanographical products and services. To
gether with improving the scientific understanding and creating awareness of the products and
services.

To view the available datasets, the datacenter service via their website is used. However,
only a few datasets containing chlorophylla concentrations are available (two fixed platforms
in the Aegean sea). Moreover, there was no clear way of downloading the available datasets
so this service does not seem to be useful for this project.

17
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3.1.2. CMEMS
The Copernicus Marine Environment Monitoring Service (CMEMS) is part of the EU funded
Copernicus programme which is in partnership with ESA (Le Traon et al., 2019). The purpose
of the CMEMS is to provide data and services for the benefit of the safety of marine life, the
environment of coastal and marine waters and for climate and weather forecasting.

Using their data archive of ocean products made it convenient to search for data. Both
insitu data and satellite data can be obtained here, however, it is not possible to filter be
tween the two which makes it a little unstructured. Only one insitu product with data from the
past 7 years containing chlorophylla concentration is available. Unfortunately, when down
loading this dataset, four files are available and none of them contains information about the
chlorophylla concentration.

3.1.3. PANGAEA
“The information system PANGAEA is operated as an Open Access library aimed at archiv
ing, publishing and distributing georeferenced data from earth system research” (Grobe et al.,
2006). This system is hosted by the Alfred Wegener Institute, Helmholtz Center for Polar and
Marine Research (AWI) and the Center for Marine Environmental Sciences, University of Bre
men (MARUM). The data library, which is supported by the European Commission and the
German Federal Ministry of Education and Research (BMBF), is deliberately an open library
to promote research which makes it very accessible to retrieve data.

A dataset from global insitu measurements of chlorophylla concentration can be obtained
(Soppa et al., 2017) and is visualized in Figure 3.1. The data ranges from 1988 until 2012,
which makes it an unpractical source. Zooming in on the Mediterranean Sea, data is only
available up to 2008 and for the Aegean Sea, the data ranges from 1995 until 1999. Further
more, the number of observations is limited, there are only 84 observations in the Aegean Sea
in five years. Again, this makes it an impractical data source to use.

Figure 3.1: Visualization of the measurements obtained from PANGAEA (Soppa et al., 2017).

3.1.4. EMODnet
“The European Marine Observation and Data Network (EMODnet) is a network of organisa
tions set up in 2007 by the European Commission in the framework of EU’s Integrated Mar
itime policy to address the fragmented marine data collection, storage and access in Europe”
(Calewaert et al., 2016).



3.1. InSitu Data 19

Data ranging from 2014 to 2017 can be obtained containing information about the chlorophyll
a concentration. 172 stations in the Mediterranean Sea are available, see Figure 3.2. For
temporal regression, this data can be useful as multiple stations measure the concentration
every two weeks. For spatial statistics, however, this data is less suitable as there are not
many stations in a small region collecting data on the same day.

Figure 3.2: Available stations that collect information about the chlorophylla concentration in the Mediterranean
Sea. Retrieved from EMODnet.

3.1.5. SeaDataNet
SeaDataNet is an Integrated research Infrastructure Initiative (I3), a European Commission
sponsored infrastructure that provides access to marinerelated data. It is doing so by using
the 40 interconnected Trans National Data Access Platforms (TAP) (Schaap and Lowry, 2010).
The datasets are provided by 45 different National Data Centers of 35 countries that share a
coast along the European waters.

The service contains many datasets and it is easy to search for the desired region, parame
ter and time, see Figure 3.3. SeaDataNet provides data in NetCDF format and although it was
indicated that datasets contain the chlorophylla concentration, no chlorophylla information is
encountered when opening these files.

Figure 3.3: The available datasets that are indicated containing data about the chlorophylla concentration using
the SeaDataNet service. However, for none of these datasets, information about chlorophylla has not been

encountered.
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3.1.6. ODYSSEA
ODYSSEA is a Horizon 2020 research and innovation programme of the European Commis
sion. Horizon 2020 is one of the Framework Programmes (FP8) funded by the European
Union (Spanoudaki et al., 2020). The project aims to make marinerelated data available for
a wide range of consumers.

The service it provides is very userfriendly and it is clear how to access the datasets.
However, the dataset stated here is obtained via Deltares and is not available on their platform
yet. The datasets contains chlorophylla concentration and is situated in the Aegean Seawithin
the time range: 2972019 to 2182019, see Figure 3.4. The measurements are taken by a
glider that dives underwater and measures the depth, chlorophylla concentration, time and
location twice every minute. Therefore, this dataset makes it possible to do spatiotemporal
statistics as it contains multiple observations on the same day of different locations and doing
so for multiple days.

Figure 3.4: Measurements of the glider containing information about the depth and chlorophylla concentration.
This visualization covers 24 days of measurements, containing approximately 2800 observations per day. The
dataset is from the ODYSSEA programme and is located in the Thracian Sea which is the northern part of the

Aegean Sea.

After some extensive search for insitu data, the ODYSSEA data seems ideal for this study.
Containing both in space as well as in timemultiple observations makes it possible to do spatio
temporal statistics and thus will be used throughout this research.

3.2. HighResolution Reflectance Data
For the highresolution data which contains the reflectances, multiple options are available,
see Table 3.1. These commercial missions/sensors have a very high spatial resolution of
approximately 2 meters and provide the obtained data in several bandwidths. These band
widths are the explanatory variables in the regression analysis and usually, a higher number
of explanatory variables is desired to find a relationship with the response variable. Therefore,
Worldview2 from DigitalGlobe (USA) will be the first commercial satellite to evaluate. It is not
necessary to use the data from all these satellites, as the idea of the problem remains similar.
The only constraint is that the data needs to match with the insitu data in terms of time and
location, the satellite data needs to be from the same day and of the same location as the
insitu data.

In Table 3.2 the available spectral ranges of each mission can be seen. The bandwidth
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Mission/Sensor Agency Year of Launch # Bands Spatial Resolution
Pleiades CNES, France 2012 4 2.8 m
Superview1 Beijing Space View Tech Co Ltd. 2016 4 2.0 m
WorldView2 DigitalGlobe, USA 2009 8 1.8 m
TripleSat 21AT, China 2015 4 3.2 m
Spot6 CNES, France 2012 4 6.0 m
KOMPSAT3 KARI, SKorea 2012 4 2.8 m

Table 3.1: Information about the 6 commercial missions/sensors for retrieving the highresolution reflectance
data. The spatial resolution is for the multispectral bands at nadir.

is the difference between the two wavelengths and the average of the two wavelengths is
the central wavelength which is denoted by λ in the equations. For example, the Pleiades
satellites use a spectral range of 430550 nm for the blue band. The bandwidth is 80 nm and
the central wavelength is 490 nm. The spectral ranges can be overlapping with each other
and sometimes leave gaps. Using more bands usually indicate that the spectral ranges are
smaller (i.e. the bandwidth is smaller). A sensor is then able to measure the radiance more
specifically which can lead to a lower spatial resolution. All bands are measured with the same
spatial resolution for each sensor, see Table 3.1 for this spatial resolution.

Mission/Sensor Coastal Blue Green Yellow Red Red Edge NIR1 NIR2
Pleiades 430550 490610 600720 750950
SuperView1 450520 520590 630690 770890
WorldView2 400450 450580 510580 585625 630690 705745 770895 8601040
TripleSat 440510 510590 600670 760910
SPOT6 450525 530590 625695 760890
KOMPSAT3 450520 520600 630690 760900

Table 3.2: The spectral ranges for the 6 commercial missions/sensors. All in nanometers.

3.2.1. WorldView2
WorldView2 is a highresolution commercial imaging satellite and was launched on October 8,
2009 (DigitalGlobe, 2010). The satellite is in a sunsynchronous orbit at an altitude of 770km
and thus has an orbit period of around 100 minutes. The time before it returns at the same
location can take up to 1.1 days (the temporal resolution). The instrument onboard is called
the WorlView110 camera (WV110) and can obtain the images using a Panchromatic mode
and a Multispectral mode, where 8 bands can be used (the spectral resolution). The spatial
resolution is different per area, e.g. for European cities, the resolution is 40cm (Pan and Pan
sharpened) and 1.8m (MS).

Two data products can be obtained using the ESA website, a full archive and European
cities. Access to the full archive is only possible by submission of a project proposal. For the
European cities product, only selected regions can be chosen to obtain data from that area,
see Figure 3.5. As one can see, mostly land data is available and for this study data on the sea
is desired. For cities in the coastal area, some images do contain the sea as well, however,
the images are very close to the coast and the ODYSSEA insitu data does not overlap with
these images. Also, the temporal resolution is very low as only four images are available for
the Greek city Kavala all from April 2011. Therefore, this data product does not seem practical
for this study.
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Figure 3.5: Coverage of large urban zones (LUZ) of the European cities product of the WorldView2 mission.

3.2.2. Pleiades
The Pleiades constellation consists of two veryhighresolution satellites: PleiadesHR 1A and
B, launched on December 17, 2011 and December 2, 2011 respectively. The satellites are in
a sunsynchronous orbit at an altitude of 695km at opposite sides of the earth which makes
it possible to access any place of the Earth each day and rapid imaging for applications as
civil security and defense missions. The sensor can obtain images in 4 bands with a spatial
resolution of 2.8 meters (Lebègue et al., 2012).

By using the ESA data service, data collected by the Pleiades mission can be found. By
setting the timeframe equal to the timeframe of the insitu data by ODYSSEA there are only
10 datasets available scattered over the Earth. By selecting the datasets individually it be
comes clear that the areas of interest are very specific. For example, three of the ten available
datasets are images of glaciers in Iceland. Therefore, this data product can only be used when
insitu data is found in these areas or when a specific order can be done to create images of
the area of interest.

3.2.3. SuperView1
The SuperView1 or GaoJing1 constellation composed of four EO satellites is a mission by
the Beijing Space View Tech Co Ltd. Again, its objective is defense and security as well
as gathering information concerning land and forestry management. The program started in
2016 with the launch of the first two satellites, followed by the other two satellites in 2018. The
satellites are in a sunsynchronous orbit at an altitude of 530km. The sensors collect images
in four bands with a 2meter spatial resolution and the temporal resolution is about 2 days.

Unfortunately, the data is not freely available and only a few samples can be obtained. Just
as the highresolution data from WorldView2 and Pleiades, the data from SuperView1 can
be bought using the Apollo Mapping service. Using the Image Hunter search engine by Apollo
Mapping, another problem arises, there is not one satellite that creates an image every day of
the same area. A solution to this problem may be to use images from several satellites, how
ever, this creates the problem that sensors obtain their data in different wavelengths. Ideally,
insitu data from a considerable amount of days around a year with matching satellite images
can be gathered to create a model that is as complete as possible.
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3.2.4. TripleSat
TripleSat consists, as the name suggests, of three satellites operating together at an altitude
of 651km in a sunsynchronous orbit. Launched in 2015, the operational time will be approx
imately 7 years and the costs are fully covered by 21AT (TwentyFirst Century Aerospace
Technology) based in China. The sensors onboard the three satellites obtain the images in 4
bands with a spatial resolution of 3.2 meters.

Again, only a few data samples are freely available. Via Apollo Mapping and their search
engine Image Hunter, it is possible to purchase the desired data. Similar to SuperView1, this
data is not used in this research and other satellite data sources are considered.

3.2.5. SPOT6
SPOT (Satellite Pour l’Observation de la Terre) is a space program of the French space agency
CNENS. It contains seven missions, starting in 1986 with the SPOT1 that was able to obtain
images with 20meter spatial resolution. Nowadays, only two satellites are in operation, SPOT
6 and 7, launched in 2012 and 2014 respectively. Both satellites are put in the same orbit as
the Pleiades constellation and have similar sensors that obtain their images in 4 bands with a
spatial resolution of 6 meters.

The data from both satellites can be obtained in a similar way as for the Pleiades con
stellation. Again, the Apollo Mapping service can be used and the ESA data service can be
accessed. The ESA data service does not contain any matching data products with the insitu
data from ODYSSEA. Searching without the constraints of matching the insitu data, showed
that there is limited data available via this service.

3.2.6. KOMPSAT3
KOMPSAT (Korean MultiPurpose Satellite) is a Korean space program that has many pur
poses: military observations, communication and environmental monitoring, just to name a
few. The satellite KOMPSAT3 is in a sunsynchronous orbit at an altitude of 685km. The
sensor onboard uses 4 spectral bands with a spatial resolution of 2.8 meters.

The data obtained by the KOMPSAT satellites can be obtained from the Apollo Mapping
service via the Image Hunter search engine. Again, only a few samples can be obtained freely.

Since all of the highresolution data did notmatch with the insitu data fromODYSSEA,medium
resolution data (that can be obtained freely) will be considered to be used in this research.
The advantage is that it is very likely to find a match between the insitu data and the medium
resolution data in terms of time and place. The disadvantage is that it is mediumresolution
(10 meters), instead of highresolution (approximately 2 meters). The study was to estimate
the chlorophylla concentration using highresolution data, however, doing this with medium
resolution does not alter the essence of the study much. We need to consider the increase
of satellite data, nonetheless. A reasonable option for mediumresolution satellite data is the
Sentinel2 satellite.

3.2.7. Sentinel2
The Sentinel2 constellation consists of two satellites (A and B) which are part of the Coper
nicus space program from ESA. The satellites are launched in a sunsynchronous orbit at an
altitude of 786km in 2015 and 2017. The sensors onboard both satellites obtains images in
13 spectral bands with different spatial resolutions. The blue, green, red and NIR bands are
available in 10meter resolution, other bands such as SWIR and Vegetation red edge are avail
able in either 20 or 60 meters resolution. Some of the main application of this mission is to
monitor agriculture, land ecosystems and inland/coastal water quality; management of forests
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and civil security (Drusch et al., 2012). The temporal resolution is 5 days (instead of 10 days
because of two satellites being used).

With the Copernicus Open Access Hub service, the data from both Sentinel2A and B can
be obtained freely. By selecting the area of interest and the sensing period based on the
insitu data, 20 products satisfy the requirements. Four products per available day are ac
cessible because two images cover the area of interest and there are two types of products
available for each image. Firstly, the level1C product consists of the TopOfAtmosphere
(TOA) reflectances and secondly, the level2A product consists of the BottomOfAtmosphere
reflectances. The connection between these products and the algorithm applied will be dis
cussed in the next section. Finally, some of the data products will contain a significant amount
of clouds such that the data is impractical. This can be solved by filtering on the cloud cover
percentage. For example, when we take into account the datasets with a cloud coverage
between 0 and 5%, six data products are available for three different days.

For these reasons, the Sentinel2 satellite will be used to retrieve data from throughout this
research.

3.3. Data Preprocessing
Satellite images have to be preprocessed as several factors will disturb the data. This can be
done manually, but for some higher level data products, preprocessing is already been done.
Also, the insitu data needs to be preprocessed before analyzing as there may be observations
that are impossible (negative concentrations) or outliers (e.g. coordinates out of region).

3.3.1. Atmospheric Correction
Themain part of this is the algorithm that derives the bottom of atmosphere (BOA) reflectances
(or surface reflectances) from the top of atmosphere (TOA) reflectances. Furthermore, the
different product types and classification algorithms will be discussed here. The information in
this section is retrieved from the Sentinel2 technical guide (“Sentinel2 MSI  Technical Guide”,
n.d.).

The first product, which is the basis of the other products, is called ‘Level0’. This is the
compressed raw data obtained by one of the sensors and is then used to create the ‘Level1’
products. This is subdivided into three categories: Level1A, B and C. The Level1A product
contains the uncompressed raw data and a start has been made with registering the spectral
bands and some ancillary data is used to process the data. This additional data consists of
information about the orbit of the satellite. Further processing of the data includes radiometric
processing and defining the geometry of the grid, after which the Level1B product is obtained.
Radiometric processing consists of multiple actions, such as equalizing corrections and dark
signal corrections. For missing values, an interpolation technique is used to fill in the gaps.
Then, the first data product available for consumers is the Level1C product. This is the data
containing orthorectified reflectances from the top of the atmosphere. Furthermore, cloud
masks are included. The incoming solar radiance is accounted for by computing the direction
of the radiance which is defined as the zenith angle. Additionally, the distance from the Earth
to the sun is used, because the irradiance is proportional to the distance squared. This follows
the inversesquare law of irradiance. The cloud mask calculations are done to identify dense
and cirrus clouds and is done using the 60meter resolution spectral bands. The simplified
version of identifying dense clouds is to tag pixels as dense clouds when a high value in the
blue band is observed. A more detailed description of the algorithm will be given later, where
a distinction between snow and clouds is made as well. Cirrus clouds are harder to identify
than dense clouds as they are thin and almost transparent. Again, the simplified algorithm to
detect cirrus clouds is by tagging pixels as cirrus clouds when a low value in the blue band
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and a high value in band 10 is obtained. This band is in the SWIR region and is sometimes
referred to as the cirrus band.

The final product, the Level2A product, contains the BOA reflectances including all sorts
of classification (cloud, cloud shadows, water, snow etc.). Along with the TOA reflectances in
the Level1C product, this Level2A product is also available for consumers. The process of
getting TOA reflectances from BOA reflectances is called atmospheric correction (AC). Sensor
specific information is used to calibrate formulas that explain atmospheric conditions as well
as solar geometries and ground elevations. One can imagine that objects at different heights
reflect differently and thus a map of ground elevations is needed for this process. The aerosol
optical thickness can be calculated using a specific reference area where the behaviour of
reflectances is known. Other atmospheric interferences such as water vapour, haze and cirrus
are dealt with by detecting them and sometimes removing them. The classification is done
using neural networks and thresholds based on single radiances, ratios and slightly more
complex ratios such as the NDVI.

The classification of cloud and snow is done by following multiple steps, where at each
step more cloudfree pixels are tagged and the remaining pixels are classified as cloud or
snow. First, the red band and the normalized difference snow index (NDSI) are used to identify
cloudfree, potential cloud and cloudy pixels. For example, if the reflectance in the red band is
lower than 0.07, the pixel is considered to be cloudfree. If the value exceeds 0.25 the pixel is
considered cloudy. When 0.07 ≤ Rrs(λRed) ≤ 0.25 the pixel is potentially cloudy and a cloud
probability is assigned to these pixels (scaling linearly from 0 to 1).

NDSI =
Rrs(λGreen)−Rrs(λSWIR = 1610)

Rrs(λGreen) +Rrs(λSWIR = 1610)
.

After this first step, more specific thresholds for detecting snow are applied to the pixels with a
probability larger than zero. The pixels having a snow probability larger than a certain threshold
are then combined to create a snow mask. Pixels with a snow probability below this threshold
are passed to the next step where vegetation, soils/desert, water and clouds are classified.
Pixels are classified as water when the ratio of band 2 and band 11 (Rrs(λBlue)/Rrs(λSWIR =
1610)) is higher than a certain threshold and band 12 (Rrs(λSWIR = 2190)) is lower than a
certain threshold. This only applies to pixels that are not classified as snow, vegetation or soil
previously in the process.

Pixels that have not yet been classified are identified as thin cirrus cloud, cloud medium
probability and cloud high probability based on the final probabilities. Finally, the shadow cre
ated by the clouds is classified by using the position of the sun, cloud mask and the cloud
height distribution. By applying a selforganizing map (also known as a Kohonen map) the
‘dark areas’ are classified.

In our area of interest (the Thracian sea) and our study, we are interested in water leaving
reflectances. This means that the Level2A product will be used in this study and as we are
only interested in images of water, pixels containing land and clouds need to be detected.

3.3.2. Land Detection
The classification masks available in the Level2A product from the Sentinel2 satellites makes
it possible to easily create a mask array for pixels containing water. However, when only four
bandwidths are available it is still possible to detect land from water as shown in the following
example.

The satellite images that are used in this study will focus on the Thracian sea where numer
ous islands are located. The models and interpolation techniques that will be used need the
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water leaving reflectances to estimate the chlorophylla concentration. Therefore, the reflected
light that comes from land needs to be removed. The island Limnos (Λήμνος), for example,
is located in the Thracian sea and the reflected data in four different bands (blue, green, red
and NIR) can be seen in Figure 3.6. Because the nearinfrared radiation is caused by heat,
the land is easily detected by the higher nearinfrared radiation. The land will have a higher
temperature than the water, so the nearinfrared wavelength will be used to detect the land
and remove these observations from the dataset when predicting.

To be precise, the data used for these examples are obtained from the Sentinel2B satellite
on 9 August 2019 at 9:05:59 a.m. and has the Level2A product level.

Figure 3.6: Images of Limnos Island in two different bands: red and nearinfrared. It is visually able to see that
the contrast is highest using the nearinfrared image between the land and water. Nearinfrared radiation is

emitted by objects that have a high temperature, therefore the land will radiate more nearinfrared than the water
around it. The high ratios in the east of the island are caused by Aliki Lake, a salt lagoon that has a white color

and thus high ratios of reflectances.

From the histogram (Figure 3.7) containing the nearinfrared reflectances of Figure 3.6,
one can see a peak for a low percentage of NIR reflectance and then a second peak around
22% of reflectance. The scale of the yaxis is logarithmic so one can split the two groups by
selecting a value in the valley between those two peaks. Naturally, the border between land
and water is not perfect in the sense that the pixels from the image contain either water or
land. Therefore, some pixels will contain both land and water and as a result, the reflectance
ratio will be in between those peaks. To verify this, a range of values in the valley is selected,
see the orange colored observations in Figure 3.7. In the figure on the right, one can see
the land detection, wherein orange the coastal observations are highlighted. These coastal
observations are all on the border between land and water. Note that some of the observations
seem to be on land, however, some small lakes causes these observations. Therefore, the
reflectance ratio of 0.1 is set to be the value to split water and land observations. This is in line
with the threshold used in the SNAP tool which is also 0.1 by default.

By comparing this result with the classification file from the Level2A product, some dif
ferences are observed. In Figure 3.8, the classification performed by the AC from Sentinel
can be observed. The pixels classified as water seem to be similar as in Figure 3.7 (right),
with minor differences at the coast and some inland waters. Besides having vegetation and
nonvegetation on the island Limnos, some pixels are classified differently. Along the coast
and in two interesting regions some pixels are classified as clouds, snow or even unclassified.
The region in the middle of the island is the airport of Limnos and two salt lakes are located
on the east coast.

In Figure 3.9 a zoomed plot of the salt lake can be seen. The distinction between land
and water is quite clear, however, the salt lake itself is wrongly classified. Note that this image
does not contain any clouds (visually observed from the constructed RGB image), whilst at
the boundary of the lake medium and high cloud probability is classified. The salt lake itself is
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Figure 3.7: Histogram of NIR reflectances (left) and the visualisation of land detection of Limnos Island (right).
Note the logarithmic scale in the histogram. The coastal area, as confirmation, is set to have a ratio between
0.07 and 0.13. In the visualisation, one can see the corresponding observations and the three classes (water
(blue), coast (orange), land (green)). All orange observations are on the border of water and land as predicted.

Figure 3.8: Classification map of Limnos island which can be retrieved from the Level2A product from both
Sentinel satellites. One can see a clear distinction between land and water, though at the boundary, airport

(center of the island) and salt lakes (east coast) some misclassification is observed.

classified as not vegetated (correct), water (incorrect) and unclassified. The simple method to
classify pixels land for NIR reflectances bigger than 0.1 does not have any problems with the
salt lakes and airport.

Both methods can be used to obtain a mask array for the nonwater pixels, though the
classification method from Sentinel is likely to make some small errors due to special inland
properties.

3.3.3. Cloud Detection
When the pixels containing land are omitted (masked), there is mainly one obstacle that pre
vents us from observing true water leaving reflectances, clouds. The detection of clouds for
satellite imagery is a complete study on its own, as there are numerous kinds of clouds and
the detection is also area related (Mahajan and Fataniya, 2019, Amato et al., 2008, Cutillo
et al., 2004). Therefore, only the classification algorithm from Sentinel will be used to detect
these clouds to prevent outliers in the estimations of the models.

In Figure 3.10, the classification map of the Thracian sea can be seen. Thin cirrus, medium
and high cloud probability are brown colored and present mostly in the topleft part of the
image. Visually, from the RGB image and the plots of the individual bands, only a part of the
identified clouds can be seen. This makes it hard to verify that this algorithm is correct, though
the shapes of the observed clouds seem to be in order. As there is no reason to reject this



28 Chapter 3. Data Collection

Figure 3.9: A zoomed in classification map focused on the salt lake of Limnos. Some pixels are wrongly
identified as clouds or water and some are unclassified.

method, other than the misclassifications near the salt lake, this method will be used to mask
the nonwater pixels.

Figure 3.10: Classification map of the Thracian sea. The presence of dense clouds and especially cirrus clouds
can be seen in the northwestern part of this map.



4
SpatioTemporal Statistics

Nowadays, with remote sensing using satellites, measurements are taken from anywhere on
Earth. As a consequence of the rotation of the satellites around the Earth, measurements are
taken with a regular timestep. This approach to acquire information from Earth is used in
several disciplines, such as ecology, meteorology and geology. However, there are numerous
nonscientific applications for remote sensing, for instance, military and human rights (Parks,
2009). To link remote sensing data with variables on Earth (e.g. type of tree, oxygen etc.)
insitu data is used. Where satellite data contains a large number of spatial observations
every few days, insitu observations are often taken at a single location but more frequently
in time. Taking measurements in this manner, there will be locations and points in time where
there are no measurements. To obtain these measurements in the gaps of time and space,
spatiotemporal statistics is often used (Wikle et al., 2019).

A spatiotemporal model is a model that incorporates the relationship in space and time
simultaneously. Theoretically, one can make a spatiotemporal model to model a physical
process. Statistics is usually applied in these fields, despite of deterministic physical rules that
may apply here. For example, predicting the exact wind speed at every location requires a very
complex, deterministic model. To create such a model, one needs to incorporate atmospheric
circulation, jet streams, temperature, etcetera. Doing this on a large scale, it requires an
immense amount of computational power, which, in combination with the complex physical
behaviour, makes it infeasible to do so. Therefore, randomness and uncertainty are used to
create a statistical spatiotemporal model where the wind speed and direction are predicted for
an area. Another reason to design a statistical spatiotemporal model is that observations will
be made with an error. Some of the challenges of thesemodels are handling the variables both
in time and space, time is onedimensional whereas space is often two and sometimes three
dimensional. Furthermore, do you treat a time difference of size k and a spatial difference of
size k similarly? Spatial data may be assessed by zipcode, state or country. Time, on the
other hand, is often assessed by hour, day, month or year.

Analysis of spatiotemporal data is done for several reasons, one might be interested in
understanding the relationship between two variables. Visualizing the data to understand the
process can be done as well, however, this may be inconvenient when the spatial data is three
dimensional. Furthermore, as shown by Kim et al. (2019), spatiotemporal statistics can be
used to forecast the trajectory of hurricanes. Performing spatiotemporal statistics is broadly
done because of three reasons (Wikle et al., 2019):

• To estimate a certain variable in time and/or space.
• To understand the behaviour of a certain variable.

29
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• To forecast a certain variable in time.

Mainly the first reason applies to this research, estimating the chlorophylla concentration in
space. Also, the relationship between the reflectances and the chlorophylla concentration
will be investigated. To go further into depth, the analysis of this can be done in two different
ways: the descriptive and dynamic approach.

4.1. Dynamic Approach
The dynamic approach, in contrast to the descriptive approach, can use the scientific knowl
edge of the processes more easily. As the name suggests, the dynamic approach uses the
fact that many spatiotemporal problems in nature are some dynamic movements. There are
differential equations that describe these movements, such as the NavierStokes equations,
so it is a waste if these are not used. Naturally, the assumption here is that one has some
scientific knowledge of the problem.

The dynamic approach tries to model the spatial process that changes through time. So,
we try to model the present state of the process conditional on the data of the past. In general,
these models will be a hierarchical model, where the conditional process can be described
with parameters and these parameters are based on scientific knowledge.

Using a mapping that glues the data to the unknown process (Ht), the model can be written
as (Wikle et al., 2019):

Zt(s) = Ht(Yt(s), θd,t, εt(s)),

where Zt(s) is the observed measurement at spatial location s and time t. Similarly for Yt(s)
which is the unknown true process and the error εt(s). Then, the parameters used for this
model are denoted by θd,t. Now, the assumption is that Zt(s) is independent in time when it is
conditioned on the true process and the parameters (Wikle et al., 2019). Using this assump
tion, we can write the joint distribution of the observed measurements conditioned on the true
process and the parameter as:

[{Zt(s)}Tt=1|{Yt(s)}Tt=1, {θd,t}Tt=1] = ΠT
t=1[Zt(s)|Yt(s), θd,t].

The component distributions [Zt(s)|Yt(s), θd,t] can be considered to beGaussian or nonGaussian
depending on the specific problem.

This can be continued by making the Markov assumption that only the recent past is rele
vant for defining the present state of the true process. For a more detailed description of this
approach, the reader is referred to SpatioTemporal Statistics with R (Wikle et al., 2019, Chap
ter 5). In this study, we will use the descriptive approach to design a statistical spatiotemporal
model for the chlorophylla concentration.

4.2. Descriptive Approach
Briefly explained, the descriptive approach uses a mean function and a covariance function to
describe the process. However, the exact functions of variables having nonlinear relationships
can be very complex. So, estimates need to be made of these functions, which is done by
using a kernel. The kernel often assumes that nearby observations tend to be alike and that
observations further away can be more diverse.

To put this into mathematical equations, the observations Z(s, t) at location s and time t
are modelled as (Wikle et al., 2019) :

Z(s, t) = Y (s, t) + ε(s, t).

where s ∈ Ds and t ∈ Dt. Ds and Dt are the spatial and temporal domains respectively and
are usually of the form: Ds ⊆ R2 and Dt ⊆ R. Y (s, t) is the notation for the true process,
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the process that is desired to find a model for. Finally, the stochastic process for the errors,
{ε(s, t)}, is assumed to have mean zero, fixed variance and independently distributed (i.e.
i.i.d.) and independent from the observation Y (·, ·). Then, the true process Y is assumed to
be able to decompose into two processes: a mean process and a mean zero random process
which incorporates the spatial and temporal statistical dependencies.

Y (s, t) = µ(s, t) + η(s, t).

The objective is to make predictions Ŷ (s, t) using a linear predictor such that the mean
squared prediction error is as low as possible. One approach, to give this problem more
structure, is to assume that the true process Y (s, t) is a Gaussian process.

4.3. Gaussian Process Regression
Gaussian process regression (GPR) is a nonparametric Bayesian approach of performing
regression. This means that no assumptions are made about the distribution of the predictor
and no particular form of relationship between the explanatory variables and the dependent
variable is taken. To understand what a GPR is, we first need to define what a Gaussian
process is (Rasmussen and Williams, 2006).

Definition 4.3.1 AGaussian process is a collection of random variables such that any (finite)
subset of these variables follows a joint Gaussian distribution.

A Gaussian process can be fully specified by a mean function and a covariance function.
Take a real process {f(x) : x ∈ S ⊂ Rd} where x can be either a spatial, temporal or spatio
temporal location in S which is a subset of the ddimensional space. Then, the Gaussian
process can be written as:

f(x) ∼ GP(m(x), k(x,x′)), (4.1)

where themean function is denoted bym(x) and the (symmetric) covariance function k(x,x′) =
cov(f(x), f(x′)) for any location {x,x′} ∈ S.

m(x) = E[f(x)],
k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))].

Often, the mean function is set equal to zero (Rasmussen and Williams, 2006), though we will
discuss the general case. The difference between common distributions such as the Gaussian
and exponential distribution is that a sample from the Gaussian Process (Equation 4.1) is a
function instead of a single value. Since the input of the mean and covariance function can
be anything from the subset S, the true process f can be described on the entire subset S. In
practice only a finite number of input variables can be used and by definition 4.3.1, it follows a
multivariate normal distribution. Therefore, sampling from the Gaussian process at a finite set
of points X = {x1, . . . , xn} can be done by drawing from N (m(X), k(X,X)), where m(X) =
[m(x1), . . . ,m(xn)]

T and k(X,X) ∈ Rn×n is the n × n covariance matrix. An element in the
covariance matrix on row i and column j is equal to k(X,X)i,j = k(xi, xj) = cov(f(xi), f(xj))
for 1 ≤ i, j ≤ n.

For doing regression, we can treat the Gaussian process as a prior and condition on the
observed data to find the posterior predictive distribution. First, let us introduce some notation
for the data. Denote the training data by D = (X, y) = {xi, yi}ni=1, where every input xi ∈ RD

is D dimensional and yi ∈ R is one dimensional. As an example, one can think of xi being
a coordinate on Earth (2dimensional) and yi being the temperature (1dimensional). The
unlabeled data or test data can be written as T = X∗ = {xi}n+k

i=n+1 where xi ∈ RD and we
wish to estimate f(xi) for i = n+ 1, . . . , n+ k.
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4.3.1. Noisefree Observations
When we assume the observations to be noisefree we have f(xi) = yi, i.e. there is no error.
For convenience, we denote f ∈ Rn to be the vector of function values f(x1), . . . , f(xn) which
in this case is equal to y. Furthermore, we denote f∗ ∈ Rk to be the vector of function values
f(xn+1), . . . , f(xn+k). Now, we can write the Gaussian process prior to be:

f ∼ N (m(X),Σff ). (4.2)

Here, m(X) = [m(x1), . . . ,m(xn)]T and Σff is the covariance matrix where every (i, j)
element corresponds to k(xi,xj) = cov(f(xi), f(xj)) for 1 ≤ i, j ≤ n. To predict f(xi) for
xi ∈ T , we consider the following joint multivariate Gaussian distribution:[

f
f∗

]
∼ Gau

([
m(X)
m(X∗)

]
,Σ

)
, Σ =

[
Σff Σff∗

Σf∗f Σf∗f∗

]
. (4.3)

Analogous to m(X), we have m(X∗) = [m(xn+1), . . . ,m(xn+k)]
T . The covariance matrix

Σ ∈ R(k+n)×(k+n) is divided into four smaller matrices: Σff ∈ Rn×n, Σff∗ = ΣT
f∗f

∈ Rn×k and
Σf∗f∗ ∈ Rk×k. Similarly toΣff , every element ofΣff∗ corresponds to k(xi,xj) = cov(f(xi), f(xj))
where xi ∈ D and xj ∈ T and likewise for the elements of Σf∗f∗ with xi,xj ∈ T . It is now
possible to derive the distribution of f∗ conditional on f and as a result we get the posterior:

f∗|f ∼ N (m(X∗) + Σf∗fΣ
−1
ff (f−m(X)),Σf∗f∗ − Σf∗fΣ

−1
ffΣff∗). (4.4)

A noteworthy remark is that the computational complexity is dominated by computing the
inverse of the matrix Σff ∈ Rn×n. The number of flops to invert a matrix of size n × n using
GaussJordan elimination scales cubically (O(n3)). n is the number of insitu observations and
remember that, for the ODYSSEA dataset, roughly 67,000 observations are obtained. For the
distribution of f∗|f this inversion needs to be done once, as the result can be used for both the
mean and covariance matrix. Techniques to speed up this inversion will be discussed later on.

4.3.2. Noisy Observations
In practice, observations will contain some noise and will not be perfect. This noise is often
assumed to be modeled by the following equation:

yi = f(xi) + εi, εi ∼ N (0, σ2
noise). (4.5)

Similar notation as before can be used, however, instead of conditioning on f we need to
condition on y = [y1, . . . , yn]

T . Note that it is still possible to find the conditional distribution
of f∗|y which is the true process of interest. The Gaussian process now induces the following
prior on y:

y ∼ N (m(X),Σff + σ2
noiseIn).

Then the joint multivariate Gaussian distribution of y and f∗ is:[
y
f∗

]
∼ Gau

([
m(X)
m(X∗)

]
,Σ

)
, Σ =

[
Σff + σ2

noiseIn Σff∗

Σf∗f Σf∗f∗

]
. (4.6)

Note that the only difference between Equation 4.3 and Equation 4.6 is the added noise in
the covariance matrix and the replacement of y for f. Note that the covariance matrices only
depend on the input variables xi. Again, the conditional distribution can be derived:

f∗|y ∼ N (m(X∗)+Σf∗f (Σff+σ2
noiseIn)

−1(y−m(X)),Σf∗f∗−Σf∗f (Σff+σ2
noise)

−1Σff∗). (4.7)

The computational complexity is oncemore dominated by computing the inverse of amatrix
with size n× n and is of order O(n3).
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4.3.3. Log Marginal Likelihood
Although the GPR is called a nonparametric regression method, there are some parameters in
this model that we will call hyperparameters. Up to now, the standard deviation for the noise,
σnoise, is the only hyperparameter that we have encountered. The remainder of the hyperpa
rameters are present in the covariance function. Later on, the marginal likelihood and also
the log marginal likelihood will become of practice for optimizing these hyperparameters. The
marginal likelihood, or sometimes referred as evidence, p(y|X), can be written in terms of prior
and likelihood (Rasmussen and Williams, 2006). First, the following rule for marginalization is
used. Given two random variables A and B the marginal distribution of A can be written as
the joint distribution function of A and B by integrating over all possible outcomes of B:

pA(a) =

∫
b
pA,B(a, b)db. (4.8)

Now, the marginal likelihood can be written as:

p(y|X) =

∫
f
p(y, f|X)df,

=

∫
f
p(y|f, X) · p(f|X)df.

The first equal sign uses Equation 4.8 and the second equal sign is because of the product
rule in probability. The prior distribution is known and equal to p(f|X) = N (m(X),Σff ), see
Equation 4.2. The likelihood can be written using Equation 4.5, because of independent noise
we get again a Gaussian distribution:

p(y|f, X) = p(y|f) = N (f, σ2
noiseIn).

Then, the marginal likelihood can be written as (Rasmussen and Williams, 2006; Dunson
et al., 2020; Murphy, 2012):

p(y|X) = (2π)−n/2|Σff + σ2
noiseIn|−

1
2 exp

(
−1

2
(y−m(X))T (Σff + σ2

noiseIn)
−1(y−m(X))

)
.

(4.9)
For convenience, the log marginal likelihood is commonly used and can be written as:

log p(y|X) = −n

2
log(2π)−1

2
log
∣∣Σff + σ2

noiseIn
∣∣−1

2
(y−m(X))T (Σff+σ2

noiseIn)
−1(y−m(X)).

(4.10)
This result can also be derived from Equation 4.6 where it can be seen that y ∼ N (m(X),Σff+
σ2
noiseIn). Now, the hyperparameters used in computing the covariance matrix and the noise
can be estimated by maximizing the marginal likelihood (type 2 maximum likelihood). Since
the logarithm is a monotone increasing function, this method is similar to maximizing the log
marginal likelihood in Equation 4.10.

4.3.4. Hyperparameters
The variable for the noise in Equation 4.5 and hyperparameters that are used in computing
Σff are estimated by maximizing the log marginal likelihood. Usually, these parameters are
denoted by θθθ and an algorithm is used to maximise the log marginal likelihood, such as a gra
dient descent/ascent algorithm (Rasmussen and Williams, 2006). Using Σn = Σff + σ2

noiseIn
and Equation 4.10, the partial derivative of the log marginal likelihood with respect to θθθ can be
written as:
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∂

∂θθθ
log p(y|X,θθθ) = −1

2

∂ log |Σn|
∂θθθ

− 1

2
(y−m(X))T

∂Σ−1
n

∂θθθ
(y−m(X)) (4.11)

Σn is said to be differentiable if every element is differentiable with respect to θθθ, therefore the
choice for the covariance function (discussed in section 5.4) takes this into account. Since the
determinant is a polynomial function of all the elements of the matrix Σn, |Σn| is also differen
tiable. Furthermore, Σn is positive definite for all θθθ, so the inverse Σ−1

n is also differentiable.
The partial derivative of an inverse matrix can be computed using the following reasoning.

0 =
∂I

∂θθθ
=

∂Σ−1
n Σn

∂θθθ
= Σ−1

n

∂Σn

∂θθθ
+

∂Σ−1
n

∂θθθ
Σn, ⇒ (4.12)

∂Σ−1
n

∂θθθ
Σn = −Σ−1

n

∂Σn

∂θθθ
, ⇒ (4.13)

∂Σ−1
n

∂θθθ
= −Σ−1

n

∂Σn

∂θθθ
Σ−1
n . (4.14)

And secondly the partial derivative of log |Σn| can be computed using Jacobi’s formula (Bhatia
and Jain, 2009), for any differentiable positive definite matrix Σn:

∂|Σn|
∂θθθ

= tr
(
adj(Σn)

∂Σn

∂θθθ

)
, (4.15)

= |Σn|tr
(
Σ−1
n

∂Σn

∂θθθ

)
. (4.16)

Here adj(Σn) = |Σn|Σ−1
n is used. Using the chain rule combining with Equation 4.16 we get:

∂ log |Σn|
∂θθθ

= tr
(
Σ−1
n

∂Σn

∂θθθ

)
. (4.17)

Substituting Equations 4.14 and 4.17 into Equation 4.11, the partial derivative of the logmarginal
likelihood can be written as:

∂

∂θθθ
log p(y|X,θθθ) = −1

2
tr
(
Σ−1
n

∂Σn

∂θθθ

)
+

1

2
(y−m(X))TΣ−1

n

∂Σn

∂θθθ
Σ−1
n (y−m(X)), (4.18)

=
1

2
tr
(
(ααααααT − Σ−1

n )
∂Σn

∂θθθ

)
, ααα = Σ−1

n (y−m(X)). (4.19)

Using a gradient ascent algorithm, one can find a local maximum by taking the following
steps. Take an initial guess θθθ(0) and compute the gradient∇ log p(y|X,θθθ(0)). Then, the updated
estimate for your hyperparameters (θθθ(1)) is the gradient times a stepsize γ ∈ R+ plus the initial
guess. So in general, the ith iteration is equal to:

θθθ(i) = θθθ(i−1) + γ∇ log p(y|X,θθθ(i−1)), i = 1, 2, . . . . (4.20)

Just as in Equations 4.4 and 4.7, the inverse of the matrix Σn is the most dominant (compu
tationally) in this process. However, using a gradient ascent algorithm, the inverse needs to be
computed several times as the matrix Σn depends on the hyperparameters θθθ. The model will
be trained on n insitu observations and as n increases (more observations are done spatially
and/or temporally), it is preferred to include these observations in training the model. There
fore, it is desired to find a method to speed up this process.

Note that the test data X∗ is only used to compute the conditional distribution f∗|y and not in
updating the hyperparameters. So, when the number of satellite data k increases, the extra
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time complexity depends on simple matrixvector multiplications and matrixmatrix multiplica
tions. The number of flops to compute the posterior mean (depending on k, so ignoring the
inverse) in Equation 4.7 is k(2n− 1) + k = 2kn, which scales linearly with k. Similarly, for the
covariance matrix, the number of flops is equal to 2n2k − nk + 2nk2 = 2nk(n+ k + 1

2), which
scales quadratically with the number of satellite observations. Usually, one is only interested
in the diagonal of the covariance matrix, so roughly 1

k part of the covariance matrix needs to
be computed. The number of flops necessary to compute the diagonal of the covariance ma
trix (depending on k) is equal to k(n+ 1)(2n− 1), which scales linearly with k. Thus, we can
conclude that the time complexity problem relies upon computing the inverse of a matrix size
n×n. To speed up this process a few methods are considered, which are analyzed in chapter
6. In the next chapter the variables, the choice for covariance functions and parameters are
analyzed for the GPR model using the ODYSSEA insitu data and Sentinel2 satellite data.





5
Analysis

In this chapter, an analysis will be carried out concerning the Gaussian process regression
discussed in the previous chapter. It is important to note that our data is incomplete because
no observations are containing the information of all variables. The insitu data records the
chlorophylla concentration, location and depth, but no reflectances. On the other hand, the
satellite data contains the reflectances on multiple locations, though the depth and chlorophyll
a concentration are not recorded. Ideally, we would like to estimate the chlorophylla concen
tration based on the location, reflectances and depth, whilst incorporating the relationship
between these variables and the chlorophylla concentration. So we need to have an expres
sion for the unobserved variables conditioned on the observed variables. The first idea is to
create a GPR model to find estimations for the reflectances at the insitu locations. Then,
for a specific depth, another GPR model can be made to estimate the chlorophylla concen
trations based on the relationship between the reflectances by the first GPR model and the
chlorophylla concentration from the insitu data. The problem is to integrate the uncertainty
of the reflectances in the model. This has been attempted, however, due to impractical distri
butions, this was not feasible. Moreover, as we are dealing with highresolution satellite data
the uncertainty will be small and a reasonable estimate for the reflectances can be obtained.
For simplicity, the GPR model to find estimations for the reflectances will be replaced by an
interpolation method. After this, a GPR model can be constructed to find the chlorophylla
concentration, where the estimation for the reflectances is assumed to be the true value.

First, the interpolation methods to find the reflectances will be explained. Then, based
on these results an exploratory analysis is carried out. An explanatory analysis is done by
discussing and applying different covariance functions and investigating the parameters of
the GPR model.

5.1. Interpolation Reflectances
To find a statistical relationship between the chlorophylla concentration and the explanatory
variables (e.g. the reflectances), data is needed that contains both variables at the same
location and time. As said before, the data is incomplete: the measured reflectances will
not be in the same location as the chlorophylla concentration. Thus, some interpolation is
needed to estimate these reflectances. These estimates will then later be used to train the
model, where it is assumed that the interpolated values are the true values. This assumption
can be substantiated by the fact that the satellite data has a very high resolution.

There are many ways to interpolate this 2dimensional problem, such as with inverse dis
tance weighting (IDW) and bilinear or even bicubic interpolation.

37
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5.1.1. NearestNeighbour Interpolation
The simplest technique which can be used for interpolation is the nearestneighbour interpo
lation (NNI). This method assigns the value of the closest known point value to the unknown
point. Thus a twodimensional piecewiseconstant function. In Figure 5.1, an example is
shown where one can see a grid of 25 known observations and in color the assigned values
to the unknown points in between them.

The nearestneighbour method does not consider values of other neighbouring observa
tions so no averaging or smoothing takes place.

Figure 5.1: Nearestneighbour interpolation by using a 5x5 grid of known observations (black). In color: the
interpolated values can be observed and a check pattern appears because only the nearest observation is used

to interpolate.

5.1.2. Inverse Distance Weighting
Inverse distance weighting (IDW) is a method that follows Tobler’s first law of geography (To
bler, 1970): “Everything is related to everything else, but near things are more related than
distant things” (p. 236). IDW does this, as the name suggests, by giving a higher weight to
observations nearby and a lower weight to observations far away (Wikle et al., 2019).

Suppose the spatial data that is given by:

{Z(s1), Z(s2), . . . , Z(sn)},

where the spatial locations are {si, i = 1, . . . , n}, so Z(si) represents the observation at lo
cation si. To find the value for the unobserved point s0, the weights need to be calculated by
taking the inverse of the distance between the observed locations and the unobserved location,
which is usually done using the Euclidean norm.

w̃i(s0) =
1

d(si, s0)p
, i = 1, . . . , n.

d(·, ·) represents the Euclidean norm since we will be using spatial data, but any norm can
be used here. Furthermore, the parameter p, the power coefficient, is a positive real number
(i.e. p ∈ R+) that controls the smoothness of the method. Higher values for p result in higher
weights for points close to the interpolated point. Low values for p, on the other hand, assign
higher weights to points further away and results in a more smooth interpolation. The weights
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need to be normalized after which they will be combined to compute the estimate for Z(s0).

wi(s0) = w̃i(si)/Σ
n
j=1w̃j(s0), i = 1, . . . , n.

Ẑ(s0) = Σn
i=1wi(s0)Z(si).

In Figure 5.2 the interpolation for p = 1 (left) and p = 4 (right) can be seen, where the same
observations are used as in Figure 5.1. One can indeed observe the smoothness and the
importance of observations increasing for higher values of p. To estimate the power coefficient
p a crossvalidation technique can be used to optimize this parameter.

Figure 5.2: Inverse Distance Weighting (IDW) by using a 5x5 grid of known observations (black). In color the
interpolated values can be observed using power coefficient p = 1 (left) and p = 4 (right). One can see that for
lower values of p the interpolation is more smooth, whilst for higher values of p the importance of observations

that are nearby is increasing.

5.1.3. Bilinear and Bicubic Interpolation
What in one dimension is called linear and cubic interpolation is in two dimensions bilinear
interpolation and bicubic interpolation. Both methods only use a select number of observations
nearby to compute the interpolated value. Furthermore, the data observations that they can
handle must be a regular grid. As this is often the case in images (pixels of a picture are in a
regular grid), the methods are often used in image processing (Hwang and Lee, 2004).

Bilinear interpolation uses the four closest (2x2 grid) observations and applies a linear
interpolation in both dimensions. The order in which direction the interpolation is done does not
influence the outcome. The function f(x, y) in equation 5.1 is fitted in each grid between four
points where the function value is known. Using the four function values, the four coefficients
{aij |i, j ∈ {0, 1}} can be computed.

f(x, y) =

1∑
i=0

1∑
j=0

aijx
iyj . (5.1)

Bicubic interpolation uses the 16 closest (4x4 grid) observations and the problem uses 16
coefficients ( {aij |i, j ∈ {0, 1, 2, 3}}) for each interpolation for matching the function values at
each point. The function f(x, y) in equation 5.2 is fitted in the center 2x2 grid. There are 16
coefficients, therefore the surrounding 12 observations are used to compute these.

f(x, y) =
3∑

i=0

3∑
j=0

aijx
iyj . (5.2)
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At the edge of the domain, no 4x4 grid can be made and a bilinear interpolation is done instead.
In Figure 5.3 the interpolation using both methods can be seen. The same observations

have been used as in Figure 5.2 and 5.1. One can observe that the bicubic interpolation
is more smooth than the bilinear interpolation which is the result of using more pixels. Be
cause the bicubic interpolation is using more pixels, the computation time is longer. For large
datasets, this may become a practical problem and needs to be taken into account.

Figure 5.3: Bilinear (left) and bicubic (right) interpolation by using a 5x5 grid of known observations (black). In
color the interpolated values can be observed. Because the bicubic interpolation is using more pixels than the

bilinear interpolation it is more smooth.

5.1.4. Spline Interpolation
Spline interpolation, as the name suggests uses splines which are piecewise polynomials that
are connected in the nodes in such a way that they ensure smoothness (Vuik et al., 2007). In a
one dimensional example, a polynomial function of a certain degree p will be defined on each
interval such that the function values and the p− 1 derivatives are connected in the nodes.

For two dimensions the method is similar, however, also partial derivatives need to be
computed. To compute these derivatives, finite differences or socalled spectral derivatives
can be used (Enomoto, 2008).

For a cubic spline interpolation (p = 3), the function in equation 5.2 is fitted on a 2x2 grid.
The 16 coefficients are computed by using the function values of the 4 grid points and the
3 partial derivatives in each of those 4 grid points. To compute the partial derivatives, the
surrounding grid points are needed. So a 4x4 grid is used to interpolate in the center 2x2 grid.
In Figure 5.4 the interpolation can be seen using a 5x5 grid of observations. The advantage
of spline interpolation in comparison with bicubic interpolation is that this technique does not
require a (structured) grid. Instead, it will use the adjacent points to compute the coefficients.

5.1.5. Radial Basis Function Interpolation
The technique called radial basis function (RBF) interpolation uses a weighted sum of RBFs
to interpolate. Thus an RBF interpolation can be performed on unstructured data (points need
not lie on a grid).

A radial function is a function ϕ such that the output only depends on the distance between
the input and some certain value (i.e. ϕ(x) = ϕ(||x−c||)). To find the value for the unobserved
point s0, one needs to compute Ẑ(s0) =

∑n
i=1wiϕ(||s0 − si||) where we have n observations

si. w1, . . . , wn are chosen (calculated) such that Ẑ(si) = Z(si) for every observation si, this
is done by solving Φw = Z for w = [w1, . . . , wn]

T . Here, the matrix Φ has on the ith row and
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Figure 5.4: Cubic spline interpolation 5x5 grid of known observations (black). In color the interpolated values
can be observed.

jth column Φi,j = ϕ(||xi − xj ||) and Z = [Z(s1), . . . , Z(sn)]
T . There are a number of common

used functions as radial function such as a Gaussian and the multiquadric function (Harpham
and Dawson, 2006). These functions use a shape parameter ϵ ∈ R+ that we are able to tune.

In Figure 5.5 the interpolation can be seen using the multiquadric function on the left and
the Gaussian function on the right with the shape parameter ϵ = 1. Visually the interpolations
are very similar to the cubic spline interpolation, however, the possibility to modify the shape
parameter and the radial basis function provide the RBF interpolation more freedom.

Figure 5.5: Radial basis function interpolation on a 5x5 grid of known observations (black). The type of radial
basis function is multiquadric (left) and Gaussian (right) with the shape parameter ϵ = 1. In color the interpolated

values can be observed.

5.1.6. Results
To compare the performance of the interpolation methods, crossvalidation will be applied to
all methods and the mean squared error will be computed. First, a large region from the
Sentinel2 image is selected carefully, i.e. without any land and clouds containing the insitu
measurements that will be used later in the project.

Next, Kfold crossvalidation is carried out. The number of groups (or folds) that the dataset
is split into, K, need to be chosen carefully. There is a biasvariance tradeoff related to the
choice ofK. As the number of observations n in satellite imagery gets large quite fast, a leave
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oneout crossvalidation (LOOCV) is ruled out because of the computation time. A common
choice to prevent a high bias or a high variance isK = 10 orK = 5 (James et al., 2013, Wikle
et al., 2019). For this study, K = 10 is chosen as it seems to be able to represent the data
quite well.

Let us use the same notation as before and let Zi be the observations from the satellite
image, where i = 1, . . . , n (n being the number of observations). The interpolation on the
kth fold is denoted by Ẑk

i where k = 1, . . . ,K and i = 1, . . . , nk with nk being the number of
observations in the kth fold. The mean squared error is then computed for the four bandwidths
for every method.

MSEk =
1

nk

nk∑
i=1

(Zi − Ẑk
i )

2.

The total mean squared error for each bandwidth is the average over the number of folds, this
will be denoted by MSE(K).

MSE(K) =
1

K

K∑
k=0

MSEk.

This metric is computed for every method, if possible, and is used to estimate the parameters
of the methods for which the total mean squared error is minimal.

The area used is in the northern part of the Aegean Sea, the Thracian Sea. The number
of observations is only n = 522. Comparing with the number of observations that will be used
later on, this is a small number because of the high computational time for some methods that
we will see later on.

For the inverse distance weighting, the power parameter p needs to be investigated. For
every bandwidth, the total mean squared error is computed using K = 10 and the results can
be obtained from Figure 5.6. Here the mean squared error is computed for different values of
p and it is done for every bandwidth. This suggests that a choice for p = 2.0 will result in the
best performance in terms of mean squared error. Note that the standard deviation (as this is
an average of 10 interpolations) is approximately 4 · 10−7 for every bandwidth.

Figure 5.6: The mean squared error for different values of p doing IDW. In color the four different bandwidths
that are obtained from the Sentinel2 satellite. The subset of the image, taken from the Thracian Sea on August

9th 2019, contains 18330 observations.

For the radial basis function, there are multiple things to choose before comparing with the
other methods. The type of function used and the shape parameter ϵ needs to be determined.
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For different values of ϵ, we perform the crossvalidation method and compute their mean
squared error. This is done for the following functions: multiquadric, inverse and Gaussian.
Other functions that are considered, but do not contain a shape parameter are: linear, cubic,
quintic and thin plate. A first observation was that a relative high choice (ϵ > 1) for ϵ resulted in
unstable solutions because of illconditioned matrices. A good choice for the shape parameter
is close to the minimum distance between the points that are observed (Mongillo, 2011). In
our case that is approximately 7 · 10−4 and 10−5 decimal degrees in the longitude and latitude
direction respectively. In Figure 5.7, one can see themeansquarederror for the three different
basis functions that depend on the shape parameter. Note that the logscale is sometimes
used to visualize the results better. For the multiquadric function, a shape parameter ϵ = 10−5

is suggested, as the mean squared error is approximately constant for lower values. For the
inverse function, the blowup of the mean squared error is visible because of an illconditioned
matrix. Here, a shape parameter ϵ = 4 · 10−4 is chosen. Again, for the Gaussian function, a
blowup of the mean squared error can be seen. The choice ϵ = 8.2 · 10−4 is here suggested.
Note that for all these estimationsMSE(K) is computed, the corresponding standard deviation
is approximately 10−6.

Figure 5.7: The mean squared error for different values of ϵ doing RBF interpolation. The multiquadric function
(left), the inverse function (middle) and the Gaussian function (right) is used. Note the log scaled xaxes and

yaxes (except for the yaxis using the multiquadric function).

In Table 5.1 the mean squared errorMSE(K=10) can be obtained for each radial basis func
tion and each bandwidth. The Gaussian function is performing worst for all four bandwidths,
whereas the linear and multiquadric functions have the lowest total mean squared error.

Function blue green red NIR
Multiquadric 9.53e06 1.04e05 1.16e05 9.90e06

Inverse 1.44e05 1.28e05 1.28e05 1.03e05
Gaussian 6.40e05 4.96e05 4.74e05 2.92e05

Linear 9.50e06 1.03e05 1.16e05 9.85e06
Cubic 1.37e05 1.61e05 1.83e05 1.47e05
Quintic 2.19e05 2.51e05 2.98e05 2.32e05

Thin Plate 1.14e05 1.30e05 1.46e05 1.20e05

Table 5.1: MSE(K=10) for each function and bandwidth using RBF interpolation. The shape parameters used
are: Gaussian ϵ = 8.2e− 4, Inverse ϵ = 4e− 4, Multiquadric ϵ = 1e− 5.

Finally, the results for nearestneighbour interpolation (NNI), IDW, cubic spline and the RBF
interpolation are summarized in Table 5.2. One can see that the total mean squared error is
minimal using IDW for every bandwidth. Note that the simplest interpolation method, NNI, has
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a similar performance as the more advanced interpolation methods. In terms of computational
time, NNI and IDW are significantly faster than the cubic spline and RBF interpolation. Based
on these results, IDW is used to interpolate the reflectances on the insitu locations. It is
now possible to use a Gaussian process regression as observations are containing both the
chlorophylla concentration as well as the (interpolated) reflectances, location, depth and time.

Method blue green red NIR
NNI 1.36e05 1.56e05 1.74e05 1.52e05
IDW 7.70e06 7.90e06 8.80e06 7.90e06

Spline 1.29e05 1.51e05 1.58e05 1.36e05
RBF 9.50e06 1.03e05 1.16e05 9.85e06

Table 5.2: The total mean squared error (MSE(K=10)) for the nearestneighbour interpolation, inverse distance
weighting, cubic spline and radial basis function using the linear function. The power parameter p = 2 is used

doing IDW.

5.2. Exploratory Analysis
The 10meter resolution satellite data obtained by the Sentinel2B satellite is used. The data
product is from 9 August 2019 and the product level is 2A. Using SNAP, a NetCDF file can
be saved containing the four bands (blue, green, red and NIR) and the classification map.
The images contain 10980 by 10980 pixels for each bandwidth. As this is quite a lot of data,
considering the memory capacities, a subset of this data is used in the analysis. The insitu
data from 9 August 2019 contains 2866 observations in the area of the satellite image. Though,
temporally these observations are taken approximately every 30 seconds. In this analysis,
they are assumed to be obtained at the same time as the satellite image is taken. Because of
the result of the last section, IDW is applied to obtain the reflectances at the insitu locations.
In Figure 5.8, the green reflectance ratio is shown (satellite data) as well as the insitu data
(circles). The color represents the value of the reflectance ratio, so visually one can see that
the interpolated values match with the surrounding values. Furthermore, it can be seen that
the location of the insitu observations can be categorized into 7 clusters. For each of these
clusters, observations are done for different depths.

Figure 5.8: Interpolation of the green wavelength using IDW. The color represents the value of the reflectance
ratio. The insitu locations are denoted by circles, for which the color represents the interpolated value. It can be

seen that there are seven clusters of observations that are near each other (location wise).

The clusters have been given a number ranging from 1 to 7 from left to right. Then, the
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number of observations at different depths for each of these clusters is visualized by a his
togram in Figure 5.9. From this histogram, it can be seen that there are many observations
done for depths 020 meters compared to the rest. By making the bins smaller, it becomes
clear that there are approximately 200 observations done in the first two meters. Observations
are quite well spread between a depth of 40 and 500 meters and observations deeper than
500 meters are (almost) only done in cluster 6. By the use of colors, one can see that in every
range, multiple observations are done in every cluster.

Figure 5.9: Histogram of the depth of the 2866 insitu observations. In color the seven clusters are represented
that can be seen in Figure 5.8. Many observations are done close to the surface.

With the interpolated reflectances, Spearman’s rank correlation coefficient can be calcu
lated, see Figure 5.10 (left). The correlation between each variable is visualized by a colored
square: the brighter/larger the color/square the more correlated the variables are (positively
or negatively). It can be seen that the reflectances are positively correlated with each other
and that chlorophylla is only correlated with the depth (negatively). The longitude and lati
tude are negatively correlated with each other and the correlation is close to zero for the other
variables, except for the red wavelength. An interesting thought is: what will happen when
only the observations are used that are close to the surface (say depth is smaller than 2 me
ters)? Light can penetrate the water for only a few meters, so naturally, the reflectance and the
chlorophylla concentration at a depth of 500 meters will not have any significant relationship.

In Figure 5.10 on the right, the correlation between the chlorophylla concentration and the
wavelengths can be seen as a function of increasing depth. For every meter, the observations
above this depth level are used, so at a depth of fifty meters, all observations with a depth
ranging from zero to fifty are used to compute the correlation coefficient. One can see that the
correlation is high (negatively) for observations close to the surface and gets lower (closer to
zero) when deeper observations are included. The red wavelength tends to be the least infor
mative, whilst the green wavelength seems to be the most informative which is in accordance
with Figure 1.2.

Further research into the relationship between the chlorophylla concentration and the re
flectances (and the ratio of reflectances) is done later on when the linear and polynomial mod
els from the literature are compared with the GPR model. Additionally, it is of interest to
investigate the influence of the depth (measured in meters below sea level) on the chlorophyll
a measurement. A scatter plot of the depth versus the chlorophylla concentration has been
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Figure 5.10: The spearman rank correlation coefficient between every two variables (left). The value is
represented by color (blue: positive, red: negative) and size/brightness (larger/brighter: strong correlation,

small/transparent: low correlation). On the right: the correlation between the chlorophylla concentration and the
wavelengths for increasing depth. For a certain depth, the observations with a lower depth are used to compute

the correlation. Clearly, for large depths, low correlation are computed (close to zero). Each color is the
corresponding wavelength, with purple for the NIR wavelength.

made as well as a Locally Weighted Scatter plot Smoothing curve (LOWESS), see Figure 5.11.
LOWESS is a nonparametric regression technique, so no assumptions are made about the
distribution of the data. From this figure, it is clear that there is a relationship between the
chlorophylla concentration and the depth of the measurement. The concentration seems to
increase until a depth of approximately 90 meters. After this, the concentration decreases
until a depth of approximately 250 meters is reached. Once this is reached, the concentration
stays relatively constant and close to zero.

This peak of chlorophylla concentration is also known as the deep chlorophyll maximum
(DCM), which is the region below the surface of the water that contains the most chlorophyll
concentration (Cullen, 1982; Huisman et al., 2006). This is a common feature in oligotrophic
waters where the available nutrients in the surface region are depleted. Therefore, depth is
an important variable in the analysis of this research and has to be taken into account when
doing so.

5.3. Temporal Modelling
GPR was introduced as a spatiotemporal model, so observations from multiple days can be
included to estimate eventually the chlorophylla concentrations at a certain point in time. The
insitu data supports temporal modelling because measurements are taken 24 days, twice
every minute. In chapter 3, we established that only three dataproducts from Sentinel2 are
available in the time range of the ODYSSEA dataset. The insitu data from the correspond
ing days can be included and the reflectances interpolated on the insitu locations. Again, it
is assumed here that the insitu measurements are taken at the same time as the satellite
measures the reflectances.

Ideally, for the analysis of the variable time, the measurements by the glider are done at
similar coordinates for different days. However, in our problem, the glider is in a different area
of the Thracian sea for each of these days. As there is not a lot of time difference between the
observations (maximum a few days), there is not a lot of change in chlorophylla concentration
present (for a similar depth). To capture the structure of seasonal change, at least some data
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Figure 5.11: Nonparametric regression by local averaging of the chlorophylla concentration on the depth. Each
local average is based on approximately 3300 observations (i.e., a span of 0.05). It can be seen that the

concentration of chlorophylla peaks at a depth of 90 meters and stays relatively constant for measurements
taken deeper than 250 meters. All measurements from the insitu data are used here.

from every season is needed. In our problem, three days from midAugust are available which
is clearly not enough to capture this seasonal effect. For these reasons, the focus of this study
is on spatial statistics. Though, in the discussion some ideas and suggestions are done for
future research to include the variable time as well.

5.4. Covariance Functions
In Section 4.3, details of the Gaussian process regression has been discussed. Here, we
glanced at the covariancematrix that is created using a covariance function. The choice for this
function has a crucial impact on the final results (Dunson et al., 2020). Usually, a covariance
function is chosen based on expertise and knowledge about the application, though a clear
answer when specific functions are preferable is unavailable (Kang et al., 2017).

The choice for the covariance function is the main assumption of the Gaussian process
regression that incorporates the idea that observations close to each other will have similar
behaviour. So, a test observation will predominantly use the information from close observa
tions. The word close suggests that a location in two or threedimensional space of some
sort is meant. However, in our case, an observation contains the location as well as the time,
depth and reflectances. So, two observations can be close in time and reflectances but far
apart (spatially) nonetheless.

The function k(x, x′) = cov(f(x), f(x′)) is defined as a covariance function when it solely
depends on the input variables, is symmetric and is positive semidefinite. The first statement
about the input variables is done because one wishes to compute the covariance between
observed and unobserved data. The symmetric property comes by definition from the covari
ance itself (cov(f(x), f(x′) = cov(f(x′), f(x))). Finally, positive semidefiniteness is needed
as the covariance matrix is defined to be positive semidefinite. The covariance matrix of
X = [x1, . . . , xn] ∈ Rn can be written in terms of the covariance function, namely, every i, jth
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element of the matrix is the covariance function evaluated at xi and xj .

K(X,X) :=

k(x1, x1) . . . k(x1, xn)
... . . . ...

k(xn, x1) . . . k(xn, xn)

 . (5.3)

A covariance function k(x, x′) that only depends on r = x − x′ is called stationary. The
evaluation does solely depend on the difference between the observations and does not de
pend on absolute position. Furthermore, if the covariance function depends on r = |x − x′|,
the covariance function is called isotropic. Now, the function depends only on the absolute dif
ference between the two observations. Often, a different norm is used such as the euclidean
norm, however, this will indirectly treat the variables such as time and space the same. Finally,
a covariance function that only depends on x · x′ is called a dot product covariance function.

Another convenient property of covariance function is that it is possible to multiply and sum
covariance functions while the result will still be a covariance function. This way it is possible
to treat variables differently in the covariance function. For example, let x denote the position
in space and t the position in time, a covariance function k of two observations (x, t) and (x′, t′)
can be written as

k((x, t), (x′, t′)) = k(s)(x, x′)k(τ)(t, t′), (5.4)

where k(s) is the covariance function specified for the space and k(τ) for the time.
In the following subsections, several covariance functions will be discussed including their

characteristics and performance.

5.4.1. Squared Exponential Kernel
Probably the most commonly used covariance function is the squared exponential kernel, also
known as radial basis function kernel or Gaussian kernel (Rasmussen and Williams, 2006;
Wikle et al., 2019). The kernel function of two observations x and x′ is given by:

kSE(x, x
′) = σ2

f exp
(
−(x− x′)2

2l2

)
. (5.5)

Here, the hyperparameter σ2
f > 0 denotes the process variance which is used in all covariance

functions and operates as a scale factor. This will influence the variation of the function from
the mean. So, if the process variance is taken too small, the covariance function will be close
to zero, no matter the input, which results in a modelled function very close to the mean.
However, if the process variance is taken too large, it will deviate from the mean easily which
makes it possible to capture outliers.

The hyperparameter l denotes the (characteristic) lengthscale and determines the smooth
ness of the modelled function. When l is small, the covariance functions depends more heavily
on r = (x − x′)2 thus it will be less smooth. Meanwhile, when l is large, the influence of r is
less and as a result, the modelled function will be smoother.

For now, we treated x as a one dimensional variable, however, in our case, there are 7
variables that are considered as input values and we will write them as x = [x1, . . . , x7]

T . Now,
the covariance function can be written as:

k(x,x′) = σ2
f exp(−

1

2
(x− x′)TΛ−1(x− x′)), Λ = diag(l21, . . . , l27).

This way there is a lengthscale parameter for each variable. This is essentially multiplying 7
squared exponential kernels, one for each variable but having one scaling parameter σ2

f .
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5.4.2. Matérn Kernel
A generalization of the squared exponential kernel is the Matérn kernel, named after the
Swedish statistician Bertil Matérn.

kM (x, x′) = σ2
f

21−ν

Γ(ν)

(√
2ν

|x− x′|
l

)ν

Kν

(√
2ν

|x− x′|
l

)
. (5.6)

Where Kν(·) is the modified Bessel function, Γ(·) is the Gamma function and the variables ν
and l are two positive hyperparameters. Again, σ2

f is included as the process variance. The
realisations from the Gaussian process are almost surely ⌈ν⌉−1 times differentiable using the
Matérn kernel (Santner et al., 2003), therefore ν can be referred as the smoothness parameter.
This function can look quite complex at first, though using Formula 10.2.15 from (Abramowitz
and Stegun, 1964) we can rewrite the modified Bessel function using ν = p+ 1

2 for p ∈ N0.

Kν=p+ 1
2
(z) =

√
π

2z
exp(−z)

p∑
k=0

(p+ k)!

k!(p− k)!
(2z)−k, z ∈ R\{0}. (5.7)

To rewrite the complete kernel the following equality is used for the Gamma function:
1

Γ(p+ 1
2)

=
22p√
π

Γ(p+ 1)

Γ(p+ 2)
.

The square root of π cancels out and all exponents of base 2 and z =
√
2ν |x−x′|

l (outside the
sum) end up to be p. Rewriting everything in terms of p gives us:

kν=p+ 1
2
(x, x′) = σ2

f

Γ(p+ 1)

Γ(p+ 2)
exp

(
−
√

2p+ 1
|x− x′|

l

) p∑
k=0

(p+ k)!

k!(p− k)!

(
2
√

2p+ 1
|x− x′|

l

)p−k

.

(5.8)
Though the equation may still look messy, choosing small numbers for p give much simpler
expressions and are often used as kernel (Rasmussen and Williams, 2006). For p = 0, 1 and
2 the Matérn kernel is implemented in the GPy package for Python (GPy, since 2012).

kν= 1
2
(x, x′) = σ2

f exp
(
−|x− x′|

l

)
, (5.9)

kν= 3
2
(x, x′) = σ2

f

(
1 +

√
3
|x− x′|

l

)
exp

(
−
√
3
|x− x′|

l

)
, (5.10)

kν= 5
2
(x, x′) = σ2

f

(
1 +

√
5
|x− x′|

l
+

5(x− x′)2

3l2

)
exp

(
−
√
5
|x− x′|

l

)
, (5.11)

lim
ν→∞

kν(x, x
′) = σ2

f exp
(
−(x− x′)2

2l2

)
. (5.12)

In the last equation, the squared exponential kernel shows up when ν approaches infinity.
This confirms that the Gaussian process is infinitely differentiable using a squared exponential
kernel. According to Stein (2012), an infinitely differentiable Gaussian process is an unrealistic
property for something that models a physical process. Therefore, Stein suggested the Matérn
kernel instead of the squared exponential kernel, to model physical processes such as the
chlorophylla concentration.

In Figure 5.12 (left), the covariance functions in Equations 5.9  5.12 are plotted versus the
absolute distance. Here, the influence of the smoothness parameter ν can be observed, for
higher values of ν the covariance function decreases less rapidly (for small absolute distances).
The process variance is set to σ2

f = 1. On the right, a sample is plotted using the four different
covariance functions using Formula 4.2. The difference is smoothness is well visible, note that
these are random samples from a multivariate normal distribution. So, the exact path of the
samples will differ, however, the shape of the sample will remain similar.
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Figure 5.12: Matérn covariance functions for different values of ν while σ2
f = 1 (left). Samples of the prior using

the different covariance functions (right). Mat12 is the Matérn kernel using ν = 1/2, similar for the other functions.
One can see that the squared exponential (SE) kernel is the most smooth kernel of all Matérn kernels.

5.4.3. Linear Kernel
The simplest example of a dot product kernel is the linear kernel which can be written as:

kLin(x, x
′) = σ2

0 + σ2
f (x · x′). (5.13)

Where σ2
0 functions as a bias, σ2

f operates again as the process variance and the (dot) product
is simply the multiplication of the variables. The idea of this kernel is completely different than
for the Matérn kernels. Before, the kernels depended on the difference between two points,
the smaller the difference the higher the covariance is. For the linear kernel, the covariance
depends on the inner product of two points, so when the inner product is high, the covariance
is high. This also makes it possible to retrieve negative values for the covariance function.
Furthermore, this product makes the linear kernel invariant under rotation around the origin,
despite that it is not invariant under translation. Positive observations close to zero have a
much lower covariance than the observations far away from the origin. Using a linear kernel
boils down to doing Bayesian linear regression, so samples from the prior using a linear kernel
will be linear, hence the name of the kernel.

When the relationship of the variables is expected to be linear, this kernel can be used.
However, often this kernel is used in combination with other kernels (Rasmussen andWilliams,
2006).

5.4.4. Multilayer Perceptron Kernel
The multilayer perceptron kernel (MLP kernel), also called as the neural network kernel, is
another example of a dot product kernel. The covariance function can be written as:

kMLP (x,x′) = σ2
f

2

π
arcsin

(
σ2
vxTx′ + σ2

0√
σ2
vxTx+ σ2

0 + 1
√
σ2
vx′Tx′ + σ2

0

)
. (5.14)

To explain the variables, first the process to derive this kernel is explained. The derivation
of this formula starts by considering a single (hidden) layer neural network. By following the
procedure of Neal (2012) and Williams (1998), we start with an input x, a bias b and weights wi

for each neuron i in the hidden layer to the output neuron and weights vi for the input neuron
to each neuron i in the hidden layer. So, w1 is the weight from the first neuron in the hidden
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layer to the output neuron. Having N ∈ N number of neurons in the hidden layer we obtain
f(x) by computing:

f(x) = b+
N∑
i=1

wih(x, vi). (5.15)

Here, the function h(x, vi) is the transfer function which is assumed to be bounded. The core
idea now, according to Neal (2012), is to let the number of neurons in the hidden layer go to
infinity. As a result, this network can approximate any continuous function arbitrarily closely
assuming a compact domain (Hornik et al., 1989). We set a prior to the bias and weights wi

independently with a zero mean and standard deviations σb and σw respectively. Furthermore,
we let the weights vi be independent and identically distributed. We now wish to compute
cov(f(x), f(x′)) = E(f(x)f(x′))− E(f(x))E(f(x′)).

First, let us compute the expectation of f(x) by computing the expectation of each element
in the sum first.

E(wih(x, vi)) = E(wi)E(h(x, vi)) = 0,

for all i since wi is independent and its expectation is zero by assumption. The variance of
each element in the sum can be calculated by again using independence and the assumptions:

E((wih(x, vi))
2) = E(w2

i h(x, vi)
2) = E(w2

i )E(h(x, vi)2) = σ2
wV (x).

We can write E(h(x, vi)2) = V (x) for all i since vi is iid by assumption and the transfer function
is assumed to be bounded. Then, by the Central Limit Theorem, for large N we can write the
prior for f(x) to be Gaussian with zero mean and variance σ2

b +Nσ2
wV (x). Using σw = ωN−1/2

we can let N → ∞ and the variance of the prior converges to σ2
b + ω2V (x). Finally, for two

different input variables x and x′ we get:

E[f(x)f(x′)] = E
[(
b+ΣN

i=1wih(x, vi)
) (

b+ΣN
i=1wih(x

′, vi)
)]

, (5.16)
= E[b2 + b(ΣN

i=1wih(x
′, vi) + ΣN

i=1wih(x, vi)) (5.17)
+ΣN

i=1wih(x, vi)× ΣN
i=1wih(x

′, vi)], (5.18)
= σ2

b + 0 + ΣN
i=1σ

2
wE(h(x, vi)h(x′, vi)), (5.19)

= σ2
b + ω2C(h(x, vi), h(x

′, vi)). (5.20)

Where in the final equality C(x, x′) = E(h(x, vi)h(x′, vi)) is used (which does not depend on i).
Also, in Equation 5.19 it is used that the expectation of wih(x, vi)wjh(x, vj) for i ̸= j is equal to
zero. We generalize this approach by having n input variables by writing x as a vector x and
weights from the input variables to neuron i, vi, as vector vi. Choosing the error function as
the transfer function, i.e. h(x,vi) = erf(v0 + Σn

j=1vjxj) with erf(z) = 2√
π

∫ z
0 e−t2dt, we obtain

Formula 5.14 (Williams, 1998). Here, the assumption is made that any vi ∼ N (0,Σ) with
Σ = diag(σ2

0/2, σ
2
v/2, . . . , σ

2
v/2).

This procedure of Neal (2012) and Williams (1998) makes it clear how the variables in the
covariance function originate. σ2

v is twice the variance of each weight from the input neurons
to the neurons in the hidden layer. Furthermore, σ2

0 is twice the variance of v0 which operates
as a bias. In Figure 5.13, one can see the effect of changing the variance of the weights,
as this will produce samples that are able to vary more. Moreover, for large values of the
input variable x and −x the samples tend to go to equilibrium. This can be explained by the
covariance matrix, for positive and negative input values the covariance is positive and as the
input values x (−x) gets larger (smaller), the covariance increases with the surrounding input
values.
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Figure 5.13: Covariance matrix (left) using the MLP kernel with parameters σ2
f , σ

2
v, σ

2
0 equal to 1. Samples of the

prior using the different values for σv while σ2
f , σ

2
0 are set equal to 1 (right). One can see that the samples with a

higher variance of weights vary more quickly.

Other options for the choice of the transfer function are possible, such as the modulated
squared exponential (Rasmussen and Williams, 2006). By the constraint of having a positive
definite kernel, the hyperbolic tangent function which can operate as a sigmoid function is
not an option to be a valid kernel. This can be shown by considering two observations, X =
{x1, x2}, and the hyperbolic tangent function as kernel (i.e. k(x, x′) = tanh(a + x · x′)). The
covariance matrix is then constructed in terms of the covariance function:

K(X,X) =

[
k(x1, x1) k(x1, x2)
k(x2, x1) k(x2, x2)

]
. (5.21)

Then the eigenvalues can be calculated by solving the following equation (note that k(x1, x2) =
k(x2, x1) by definition).

λ1,2 =
k(x1, x1) + k(x2, x2)±

√
(k(x1, x1)− k(x2, x2))2 + 4k(x1, x2)2

2
. (5.22)

For a positive definite kernel the eigenvalues of matrix K(X,X) should have strict positive
eigenvalues for any choice of observations x1, x2 and parameter a. Choosing (a, x1, x2) =
(−2, 1, 3) (for example) results in the eigenvalues λ1,2 ≈ (1.28,−1.05). Hence, we can con
clude that the hyperbolic tangent kernel is not a valid kernel.

5.4.5. Results
To decide which kernel will be used to create the covariance matrices, the crossvalidation
technique is used again (Mohammed and Cawley, 2017). The hyperparameters of the GPR
model will be optimized with a certain part of the data and then predicted on the rest of the
data. Then, the predicted value can be compared with the observed value and this is done
for all kernels that are described. One thing to mention is that the part of the data that will be
used to train/test can not be selected randomly as we did before with the interpolation methods.
This is due to the fact that some of the observations in the insitu data are very close in space.
One prefers to know the error that you make at locations where no observations are done.
So targetoriented crossvalidation will be carried out to compute the performance for each of
the kernels. This is done by splitting the data into seven groups (the seven clusters that are
observed in Figure 5.8) and letting the test set be one of those groups.
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With the training data, the optimal hyperparameters are computed by maximizing the log
marginal likelihood. This is done by doing 100 iterations with the LBFGSB algorithm within
the GPy package. The mean squared error and log marginal likelihood including standard
error are computed as well as the coefficient of determination (R2), AIC and BIC (see Table
5.3).

Kernel MSE (s.e.) LML (s.e.) R2 AIC BIC
SE 5.7 · 10−4 (7 · 10−5) −20.43 (9.32) 0.943 21,402 21,348
Mat52 4.5 · 10−4 (3 · 10−5) −13.66 (8.98) 0.955 22,090 22,036
Mat32 4.3 · 10−4 (2 · 10−5)4.3 · 10−4 (2 · 10−5)4.3 · 10−4 (2 · 10−5) −10.79 (8.89)−10.79 (8.89)−10.79 (8.89) 0.957 22,180 22,126
Mat12 4.5 · 10−4 (5 · 10−5) −17.46 (8.75) 0.957 22,073 22,020
MLP 4.4 · 10−4 (3 · 10−5) −90.17 (8.58) 0.956 22,166 22,149
Lin 6.1 · 10−3 (5 · 10−4) −390.9 (34.0) 0.377 14,625 14,614

Table 5.3: Performance for choosing a different kernel. The mean squared error (MSE) and log marginal
likelihood (LML) including the standard deviation are computed as well as the coefficient of determination (R2),

AIC and the BIC.

From this table, we can conclude that the linear model performs worst for each of the
metrics (high MSE, AIC and BIC, low MLL and R2). This was to be expected as the linear
kernel can be used when the relationship between the variables is expected to be linear, which
in this case is not. When focusing on the AIC and BIC values, the MLP and Matérn kernel
with ν = 3

2 are suggested to be the best models as these values are the lowest for all kernels.
However, the log marginal likelihood for the MLP kernel is considerably lower in comparison
to the Matérn kernels. Also, considering R2, the Matérn kernels with ν = 1

2 and ν = 3
2 perform

best, though for the other kernels the values for R2 are very similar.

Looking at the MSE, the Matérn kernel with ν = 3
2 scores best, while the squared exponen

tial has a significant higher MSE. The results for the Matérn kernels with ν = 1
2 ,

3
2 ,

5
2 are very

similar (note the standard error for the MLL) so either one of these kernels can be picked for
further analysis. Based on the results for the MSE, MLL and the slightly lower values for AIC
and BIC, the Matérn kernel with ν = 3

2 is chosen for further analysis.

5.5. Parameter and Variable Analysis
In this section, the parameters of the model (noise) and kernels such as the lengthscale will
be investigated. From the previous section, the Matérn kernel with ν = 3

2 is suggested and
will be used in the parameter analysis. There are several things to analyze here. First, for
different values of hyperparameters, the posterior mean and twice the standard deviation are
shown in Figure 5.14. Data is generated by the sine function and adding some noise to the
observations (red dots). Then, for three different lengthscales, the hyperparameters are set by
optimizing the MLL. For a small lengthscale (l = 0.2), the prediction can be seen in the figure
on the left. Notice that the error bars are small when it is close to an observation and large
when it is away from the data points. The prediction is more flexible in comparison to larger
lengthscales, which explains the lower value for the noise σn. As the lengthscale increases,
there is less flexibility so the noise parameter will increase.

From the figures, it can be seen that for l = 0.2 and l = 1 the predictions tend to go to the
prior mean (0) very quickly. For the larger lengthscale l = 10, the square root of the process
variance is σf = 4.62. So it deviates from the mean easier than for the lower lengthscales.
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Figure 5.14: GPR using the Matérn kernel with ν = 3
2
for different lengthscales. The data is generated by using

the sinus function and adding some noise. For lengthscale equal to 0.2, 1 and 10 the hyperparameters σn and σf

are set by optimizing the MLL. From left to right, the hyperparameters (σn, σf , l) are: (0.12, 0.64, 0.2), (0.22, 0.59,
1) and (0.23, 4.62, 10).

5.5.1. Log Marginal Likelihood versus the Hyperparameters
The log marginal likelihood is often used to analyze the hyperparameters (Rasmussen and
Williams, 2006), because it is the distribution of y given the data and hyperparameters. There
fore, plotting the hyperparameters versus the log marginal likelihood gives an idea of what
value it should take. To do this, all hyperparameters are fixed except for one. First, all the
hyperparameters are determined by maximizing the MLL, then one of the hyperparameters is
altered and a new MLL is computed. Finding the maximum MLL is done with the LBFGSB
algorithm until convergence is met, i.e. the gradient is under a certain threshold.

1 kern = GPy.kern.sde_Matern32(input_dim = 7, variance = sigma_f**2,
lengthscale = l, ARD = True)

2 gpr = GPy.models.GPRegression(X, Y, kern, normalizer = True)
3 gpr.Gaussian_noise.variance = sigma_n**2
4

5 gpr.optimize(messages = True)

Listing 5.1: Python code to maximize the MLL using the Matérn kernel with ν = 3
2
.

In Listing 5.1, the few lines can be seen that are needed to perform the GPR with the
Matérn kernel in Python. First, the kernel is created with seven input dimensions (four bands,
two coordinates, one depth), the process variance and the lengthscales are assigned to initial
values. In line 2, the GPR model is made with insitu data (X,Y ) where X is the input data
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and Y is the output data. In line 3 the noise is added to the model with an initial value and then
the MLL is maximized in line 5. In Table 5.4, the output is returned from the optimization. The
runtime, number of iterations (i), MLL (f) and the length of the gradient vector (|g|). Note that
LBFGSB is minimizing the negative MLL, so the obtained MLL for this optimization is ≈ 14.7.

Running LBFGSB (Scipy implementation) Code:
runtime i f |g|
12s50 0004 3.971185e+02 2.717315e+05
47s43 0015 2.484520e+02 9.843419e+01

01m41s61 0032 4.001635e+01 6.506783e+02
02m06s66 0040 1.151571e+01 9.703510e+03
03m16s78 0062 1.103986e+01 3.764353e+03
04m10s83 0079 1.415438e+01 2.947423e+02
04m54s91 0093 1.473873e+01 1.562309e08

Runtime: 04m54s91
Optimization status: Converged

Table 5.4: Output of the optimization with the LBFGSB algorithm in line 5 of Listings 5.1. The runtime after i
number of iterations along with the negative MLL (f) and the length of the gradient vector (|g|) are shown. After 4

minutes and 54.91 seconds the optimization is converged.

The parameters that give this result are σn = 0.22, σf = 0.67 and

l = [99.96, 100.00, 75.51, 0.009, 0.40, 0.0011, 0.009],

where the first two lengthscales are for the longitude and latitude, the third is for the depth and
the final four are the lengthscales for the blue, green, red and NIR reflectances, respectively.
For each of these 9 hyperparameters, a plot has been made of the log marginal likelihood ver
sus a single hyperparameter. In Figure 5.15, the plots can be seen for σ2

f and the lengthscales
of the variables longitude, depth and the blue wavelength. For all other figures, the reader is
referred to Appendix B. For ldepth, lblue and σ2

f a clear maximum can be seen at the values that
were determined before. For llongitude it seems that the log marginal likelihood is increasing
and converging to the maximum 14.7 as llongitude increases.

To get a better understanding of what these figures mean, the formula in Equation 5.10 for
the Matérn kernel with ν = 3

2 is used. In our model, a lengthscale parameter is included for
each variable and the kernel can be written as:

kν= 3
2
(x,x′) = σ2

f

(
1 +

√
3ϕ(x,x′)

)
exp

(
−
√
3ϕ(x,x′)

)
,

ϕ(x,x′) =
7∑

i=1

|xi − x′i|
li

.

From this equation, it can be derived what happens when li tends to infinity. As li → ∞ for
a certain i, the fraction |xi−x′

i|
li

goes to zero. This means that the difference in value for this
variable does not influence the covariance function. So a type of variable selection can be done
by analyzing these hyperparameters. The value for the MLL when li → ∞ can be interpreted
as the value for the MLL when variable i is removed from the regression. When a clear peak
appears in the log marginal likelihood versus li plot, the variable is of some importance for
the model. The height of the peak and the value for MLL determine the amount of influence
a parameter has. So the figures here and in the appendix show that the variables longitude,
latitude and the green wavelength can be removed from the regression to obtain a similar log
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Figure 5.15: Log marginal likelihood plotted versus four hyperparameters: lengthscale for longitude (topleft),
depth (topright) and blue wavelength (bottomleft) and the process variance σ2

f (bottomright).

marginal likelihood. For σ2
f and σ2

n a similar analysis can be done here as the peak shows you
the value that is suggested to use.

Another way of analyzing the hyperparameters is by considering the change of logmarginal
likelihood as a result of changing the hyperparameters. Remember that log p(y|X) is maxi
mized to derive the hyperparameters. In Figure 5.16 (left) a contour plot is shown for different
values of the lengthscale for the NIR wavelength lNIR and the longitude llongitude. A logarith
mic scale is used for both axes and there is a sort of ridge containing the maximum values
for the log marginal likelihood. For the plot on the right, a clear peak can be seen for lblue the
process variance σ2

f .
From these plots, it is possible to derive the influence of the two hyperparameters. For

example, the choice for lNIR does matter for the log marginal likelihood when a high value
for llongitude (close to 100) is set. Additionally, for lNIR close to 10−2 the lengthscale for the
longitude has little effect on the log marginal likelihood (llongitude in range 100 − 103).

It is possible that there are multiple peaks in the contour plot. Whether the optimization
algorithm ends up in one of those peaks depend on the initial values and the step size. It is
therefore advised to run the optimization algorithm for different initial values and step sizes,
although, there is no guarantee that the maximum log marginal likelihood is achieved. These
plots can help to identify multiple peaks, though only two variables are altered.

5.5.2. Continuous Plots
Instead of computing the log marginal likelihood for different values of hyperparameters, the
posterior mean and twice the standard deviation can be calculated for different values of a
single variable. Consider a location (longitude and latitude) where an observation is made
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Figure 5.16: Contour plot of the log marginal likelihood for different values of the lengthscale for the NIR
wavelength lNIR and the longitude llongitude (left) and lengthscale for the blue wavelength lblue and the process

variance σ2
f (right).

by the glider from the ODYSSEA dataset. It is possible to derive the predictions at different
depths for the same location and reflectances.

CHLa Latitude Longitude Depth Blue Green Red NIR
0.121 25.0915 40.3498 8.402 0.0388 0.0267 0.0228 0.0219

Table 5.5: An example of a single observation containing the chlorophylla concentration [mg.m−3], longitude
and latitude in decimal degrees, depth [m] and the interpolated ratios of reflectances.

First, a dataset is created containing 500 rows of the same observation (see Table 5.5 for
the values). Then, the column containing the values for the depth is changed into 500 evenly
spread values between 0 and 500 meters. This will be the dataset for which the predictions
are made and the result for different Matérn kernels can be seen in Figure 5.17. From left to
right and top to bottom the plots are made with ν = 1

2 , ν = 3
2 , ν = 5

2 and with the squared
exponential kernel. A similar shape can be observed in Figure 5.11, where the depth from
all observations of the ODYSSEA dataset are plotted against the chlorophylla concentration.
From the figures below, a clear DCM can be spotted around 90 meters. Furthermore, the
confidence range is smallest for high values of depth and largest around the DCM. For the
purpose of comparing the kernels, this plot has been made for all Matérn kernels that are
discussed in this research. Interestingly, the plots are qualitatively similar but have differences
in smoothness. As explained previously, the smoothness parameter ν affects the curve of the
estimations, which is now shown in practice.

These kinds of plots can be made for any selection of variables, so for any location and
any combination of reflectances. Moreover, instead of shifting the depth, any variable can be
picked to estimate the chlorophylla concentrations. For example, for the same observation as
before, the longitude is shifted and an estimation is made for the chlorophylla concentration in
Figure 5.18. Here, it is distinctly visible that the error bounds are smallest around the observed
value of longitude (≈ 25) and deviate when the value is further away from the observed value.

5.6. Comparison with stateoftheart models
In this section, the GPR model will be compared with the neural networks that can be used
with the SNAP software and with the polynomial regression techniques described in chapter
2.
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Figure 5.17: Posterior mean and twice the standard deviation for estimating the chlorophylla concentration at
different depths. On top, the Matérn kernel with ν = 3

2
is used. The bottom row from left to right, the Matérn

kernel with ν = 1
2
, ν = 5

2
and the squaredexponential kernel is used.

5.6.1. C2RCC
The GPR model using the Matérn kernel with ν = 3

2 will be compared with the state of the art
algorithm implemented in the SNAP tool. As mentioned in chapter 2, the C2RCC algorithm
computes the absorption of phytoplankton pigments (apig) using neural networks based on
the TOA reflectances. After approximately 45 minutes, the variable apig is calculated on an
1830 by 1830 grid with the same resolution that has been used before (10 meters) and saved
into a netCDF file, which can be imported in Python. Then, apig is computed on the location
of the insitu data using IDW interpolation. A scatter plot of the chlorophylla concentration
against the inherent optical property can bemade, see Figure 5.19. A clear distinction between
observations close to the surface and observations deep in the sea can be observed. In this
example, a threshold of 5 meters is chosen, though the conclusion is similar for a threshold
close to 5 meters. If the threshold is too high, the distinction is less clear and the difference
in performance is smaller. Choosing the threshold too low results in a very small dataset,
e.g. for 1.5 meters there are only 2 observations and no proper analysis can be done. As
there are measurements done by the glider for different depths along a similar coordinate, the
interpolated IOP is approximately the same, which causes these columns of data points.

Using nonlinear least squares the parameters a and b can be computed. Remember that:

CHLa = a · abpig. (5.23)

Then, this formula can be applied to estimate the chlorophylla concentration with the esti
mated values for a and b. In Figure 5.19 the blue line is created by fitting all data (blue and red
datapoints): (a, b) = (0.135, 0.113) and the red line is created by only fitting the red datapoints,
(a, b) = (0.086,−0.069).

In combination with 10Fold crossvalidation, the meansquarederror can be computed
for all observations and the ones close to the surface. Every iteration, the parameters a and b
are estimated, after which the estimations can be done for the test set. The resulting MSE for
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Figure 5.18: Posterior mean and twice the standard deviation for estimating the chlorophylla concentration for
different values of longitude (decimal degrees).

Figure 5.19: Scatter plot of the chlorophylla concentration against the IOP apig. Two groups are distinguished
by color based on their depth and a fitted regression using Equation 5.23 is included. The blue line is created by

using all observations, whilst the red line is created with only the red observations.

using all observations is 9.9 · 10−3 with a standard error of (4 · 10−4). As expected, the MSE
for only the data close to the surface is lower and is equal to 5.9 · 10−4 with a standard error of
5 · 10−5, more details in Table 5.6. The meansquarederror for the Matérn kernel is included
as a comparison and is lower for both the C2RCC method applied to the shallow observations
and for all observations. Moreover, the coefficient of determination is very close to 1 for the
Matérn kernel and close to zero for the C2RCC methods.

Method MSE (s.e.) R2

C2RCC (all) 9.9 · 10−3 (4 · 10−4) 0.001
C2RCC (shallow) 5.9 · 10−4 (5 · 10−5) 0.003
Matérn32 4.3 · 10−4 (2 · 10−5) 0.957

Table 5.6: The meansquarederror (MSE) and coefficient of determination R2 for the C2RCC method using all
observations and only the shallow observations. The MSE and R2 for the Matérn kernel with ν = 3

2
(using all

observations) is included as comparison.

The reason for the low coefficient of determination for the C2RCC algorithm using all ob
servations can be explained by the fact that there is no relationship between reflectances
and observations taken deep in the sea. For the shallow observations only, the coefficient of
determination is still low. This could be explained by having a small sample size (n = 206),
moreover, the computation of apig is unclear. So the relationship between the reflectances and
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the concentration chlorophylla is ambiguous. From Figure 5.20, the observed chlorophylla
concentrations are plotted versus the predicted chlorophylla concentrations for all three meth
ods. Here it can be seen that the Matérn kernel performs better than the C2RCC models.

Figure 5.20: Scatter plot of the observed versus predicted chlorophylla concentration. The C2RCC algorithm is
used with all insitu observations (left) and only the shallow observations (middle). On the right a GPR model is

applied with a Matérn kernel with ν = 3
2
. The corresponding MSE and R2 can be obtained from Table 5.6.

5.6.2. Polynomial Regression
In chapter 2, the polynomial regression techniques that are used were discussed. Here, the
ratio between two reflectances is used as an explanatory variable. Therefore, the correlation
between the ratio of reflectances with the chlorophylla concentration is analyzed first. In
Figure 5.21, the Spearman’s rank correlation coefficient can be seen. Again a threshold of
5 meters is chosen for the distinction between shallow observations and other observations.
Every element of the correlation matrices shows the correlation between the chlorophylla
concentration and the ratio between the row color and column color. On the diagonal, only the
single reflectance values are used to compute the correlation. It is visible that the correlation
increased for only the shallow observations. The ratio with the absolute highest correlation
for all observations is the blueNIR ratio (ρ = 0.05). Also for the shallow observations, the
blueNIR ratio has the highest correlation: ρ = 0.38. The MBR introduced by O’Reilly et al.
(1998) was the ratio of the blue band and green band, for which ρ = 0.27 with the shallow
observations.

For every ratio and single reflectance, a polynomial model of order 4 is created. Using 10
Fold crossvalidation the MSE and R2 are computed and compared with the previous models.
This procedure is done for both the shallow observations and all observations. In Table 5.7
the metrics can be obtained for a few ratios using the shallow or all observations. The blue
NIR ratio stood out in the correlation matrices and is also plotted versus the chlorophylla
concentration in Figure 5.22. As expected, the MSE is relatively high when all observations
are used and drops when only the shallow observations are used. Note that the R2 is very low
both times in comparison with the R2 for the C2RCC algorithm and especially in comparison
with the GPR model.

The MSE for both the polynomial model and C2RCC algorithm are quite low when only us
ing the shallow observations. This is because there is less variation in the observed chlorophyll
a concentrations. Therefore, the R2 metric is included in this analysis. In the left figure below,
it can be seen that no clear relationship is present between the variables. There is some
correlation between the ratio and chlorophylla concentration, but not enough to estimate the
concentration correctly. It is expected to have less performance when all observations are
used as this model is completely based on the reflectances and these are mostly dependent
on the area close to the surface. However, when only the shallow observations are consid



5.6. Comparison with stateoftheart models 61

Figure 5.21: Spearman’s rank correlation coefficient between the ratio of two reflectances and the chlorophylla
concentration for all observations (left) and the shallow observations (right). The ratio of reflectances is the row
divided by column, e.g. the bottom left correlation is for the ratio Rrs(λNIR)/Rrs(λblue). On the diagonal, the
single reflectance is used, so the diagonal values for all observations coincide with the correlation values in

Figure 5.10.

Method MSE (s.e.) R2

blueNIR (all) 1.1 · 10−2 (6 · 10−4) 3234
blueNIR (shallow) 6.6 · 10−4 (5 · 10−5) 222
NIRred (shallow) 6.7 · 10−4 (5 · 10−5) 225
green (shallow) 6.5 · 10−4 (5 · 10−5) 220
Matérn32 4.3 · 10−4 (2 · 10−5) 0.957

Table 5.7: The meansquarederror (MSE) and coefficient of determination R2 for some of the polynomial
methods using all observations and only the shallow observations. The MSE and R2 for the Matérn kernel with

ν = 3
2
(using all observations) is included as comparison.

ered, there is almost no relation visible which results in the low R2.

From the comparison with both the C2RCC algorithm and the polynomial models, it becomes
clear that estimation the concentration for observations with a high value for depth is hard for
these models. For shallow observations there is a higher correlation between the ratios and
the chlorophylla concentration, however, the value for R2 suggests that it is not a very good
method. The MSE is low when only the shallow observations are considered, but this is due
to the fact that there is little variation in the observed concentration. The GPR model using the
Matérn kernel with ν = 3

2 performs better in terms of MSE and R2 when all insitu observations
are used.
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Figure 5.22: Scatter plot of the chlorophylla concentration versus the blueNIR ratio (left) and the observed
versus predicted chlorophylla concentration (middle and right). All observations are used in the middle plot and
only the shallow observations are used in the plot on the right. The corresponding MSE and R2 can be obtained

from Table 5.7.



6
Approximation Methods

In chapter 4 we have determined that GPR scales cubically with the number of insitu observa
tions. In this chapter, we will discuss a few approximation methods to speed up this process.
First, the Cholesky decomposition is explained as this is an exact method that does speed
up the inversion of the matrix and is used in standard packages to invert a matrix. There
after, the approximation methods will be explained and tested for some toy problems and our
chlorophylla problem.

6.1. Cholesky Decomposition
The Choleskydecomposition of a real, symmetric, positive definite matrix A is of the form:
A = LLT where L is a lower triangular matrix. Furthermore, L has only strictly positive values
on the diagonal and as a result, can be inverted. Because of the particular shape of L, the
inverse L−1 can be computed relatively quickly. The inverse for A is equal to:

A−1 = (LLT )−1 = (LT )−1L−1 (6.1)

So instead of directly inverting matrix A, L needs to be calculated after which the inverse L−1

needs to be computed. The computational cost of the Cholesky factorization equals 1
3n

3 +
O(n2), then computing the inverse costs 1

3n
3 +O(n) flops. So in total, the computational cost

to compute L−1 is equal to 2
3n

3 +O(n2). An ordinary matrixmatrix multiplication of two n× n
sized matrices costs 2n3 − n2 flops. As (LT )−1 = (L−1)T and we know that A−1 is symmetric,
the required number of flops reduces. The total number of flops required to compute the
matrixmatrix multiplication is 1

3n
3 + 1

2n
2 + 1

6n. To compute A−1, a total of n3 +O(n2) flops is
required.

In modern packages for Python, NumPy (Harris et al., 2020), the default algorithm to invert
a matrix is based on the LU decomposition. The computational cost of the LUfactorization is
2
3n

3 +O(n2). Then, again, the inverse of L and U need to be computed which costs twice the
computational cost to compute L−1 which is 4

3n
3 + O(n2). The required cost for the matrix

matrix multiplication is similar as before as we are dealing with an upper and lower triangular
matrix resulting in a symmetric matrix. The total amount of flops required to compute A−1 is:
21
3n

3+O(n2). For various values of n, the average computational time is recorded and shown
in Figure 6.1. We can see that indeed the time needed to compute the inverse with a Cholesky
decomposition is less than with a LU decomposition. On average, Cholesky is twice as fast,
however for the two largest matrices, Cholesky is three times faster (n = 2560) and almost
five times faster (n = 5120).

63
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Figure 6.1: Computation time needed to compute the inverse of a matrix of size n× n using a LU decomposition
(blue) and a Cholesky decomposition (red). In green the function y = 10−10n3 is plotted. With a Cholesky

decomposition, the time needed to invert a matrix is less than with a LU decomposition.

6.2. Expectation Propagation
Rasmussen and Williams (2006) showed that expectation propagation (EP) can be used to
approximate analytically intractable integrals for Gaussian process classification (GPC). This
idea of approximating an integral with EP leads to the idea to use EP to approximate the
posterior distribution. In this section, the steps taken in the EP algorithm will be explained.

Approximating a probability distribution can be done using a technique called expectation
propagation (EP) (Minka, 2001). EP uses an iterative scheme to minimize the KullbackLeibler
divergenceDKL(p||q) =

∫
p(x) log p(x)

q(x)dx where q(x) approximates the distribution p(x). Alter
natively, one can minimize DKL(q||p) which is called variational inference (Rasmussen and
Williams, 2006).

When the distribution for q(x) is assumed to be from the exponential family, we can write:

q(x; η) = c(η)h(x)exp

(
k∑

i=1

πi(η)τi(x)

)
, (6.2)

where η are called the natural parameters of the distribution and the function c(η) is the function
such that the integral over all possible values of x is equal to 1 (required to be a probability
density function). Furthermore, πi(η) and τi(x) are measurable functions for i = 1, . . . , k. By
following the steps from Bishop (2006), the KL divergence is minimized when the expected
sufficient statistics are matched. When q(x) is chosen to be Gaussian, the minimization of the
KL divergence is optimal when the mean of q(x) is equal to the mean of the distribution of p(x)
and the variance (covariance matrix) is equal to the variance (covariance matrix) of p(x). This
is called moment matching (Rasmussen and Williams, 2006).

Using Bayes rule, the posterior p(θ|D) for latent parameters θ conditioned on the observed
data D, can be written as the product of the likelihood and the prior distribution divided by the
marginal likelihood (a normalization constant).

p(θ|D) =
p(θ)p(D|θ)∫
p(θ)p(D|θ)dθ

. (6.3)
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By following the steps from Bishop (2006), we assume that the likelihood can be factorized
into n independent observations.

p(θ|D) ∝ p(θ)Πn
i=1p(yi|θ) = p(θ)Πn

i=1pi(θ). (6.4)

Here, we used p(yi|θ) = pi(θ) for convenience in writing the rest of the procedure. Now, the
approximation used in EP is

q(θ) =
1

Z
p(θ)Πn

i=1qi(θ), (6.5)

where Z is the approximation for the marginal likelihood and qi(θ) the approximation for pi(θ)
(Rasmussen and Williams, 2006; Bishop, 2006). Next, the approximations for the likelihood
are initialized and sequentially updated by removing and storing individual factors qi(θ). In
more detail, if we want to update the factor qj(θ), firstly the factor is removed from the product
such that we end up with the socalled cavity distribution. The product can either be obtained
by multiplying each individual term except qj(θ) or by using the approximated likelihood and
dividing by qj(θ).

q−j(θ) ∝ p(θ)Πn
i=1,i ̸=jqi(θ). (6.6)

Subsequently, the factor is updated by minimizing the KullbackLeibler divergence which is
now a tractable problem. While directly minimizing DKL(p(θ|D), q(θ)) leads to an untractable
problem as the unknown posterior needs to be calculated. Instead, using EP, each individual
factor is approximated to find an approximation for the likelihood.

qnewj (θ) = argmin
qj(θ)

DKL

(
pj(θ)q−j(θ)

∣∣∣∣∣∣∣∣qj(θ)q−j(θ)

)
. (6.7)

This minimization can be simplified by choosing convenient distributions for our approxima
tions. As a result of the above, a distribution from the exponential family (e.g. the Gaussian
distribution) can be assigned to the approximations such that the minimization is reduced to
moment matching. The described procedure is done for all factors j = 1, . . . , n which is called
one EP iteration.

More information about momentmatching (derivations of moments) is given by Rasmussen
and Williams (2006) and Bishop (2006) and are not included as they are quite lengthy and
outside the scope of this study. Furthermore, pseudocodes are given for updating the hyper
parameters and predictions. We can then implement these algorithms in Python and compare
them with the exact solution (i.e. update hyperparameters using gradient ascent and invert
ing the covariance matrix), practised on a toy problem. Note that in these algorithms, the
computational complexity is still dominated by an inversion of a matrix and is O(n3).

Let the training data D = (X, y) = {xi, yi}ni=1 where xi =
(i−1)

2 and y ∼ N (0, k(X,X) +
0.3In) and n = 201. For the covariance function k, a squaredexponential kernel is used
with process variance equal to σ2

f = 1 and lengthscale l = 8 (for more information about
these hyperparameters, see Section 5.4.1). In Figure 6.2 the observations can be seen as
well as the posterior mean and twice the standard deviation at each input value x for both
the exact and EP method. For this particular problem, the EP algorithm seems to be able
to approximate the exact solution quite well. For larger n, the approximations get worse and
sometimes no convergence is achieved due to numerical instabilities. Most importantly, the
computation time for this toy problem for the exact method is approximately 0.34 seconds
for optimizing the hyperparameters and 0.06 seconds for computing the posterior mean and
variance. The computation time for the EP method is 3.72 seconds for updating qi(θ) for each
i until convergence and 0.03 seconds for computing the predictions for EP.

So, updating the hyperparameters using gradient descent and inverting the matrix exactly,
is roughly 10 times faster than using the EP approximations. Part of the difference can be
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Figure 6.2: Posterior mean and twice the standard deviation at each input value x for the exact method (green)
and EP method (red). Using 201 observations (black) the EP method seems to be able to approximate the exact

solution, however, the time needed for the EP method is roughly 10 times more than for the exact method.

explained by the fact that the Python code for EP approximations is manually written, whereas
for the exact method the GPy package has been used (GPy, since 2012). Initially, the EP
method was introduced for GPC to approximate analytically intractable integrals. With GPR,
no approximation is required as the posterior can be written as a normal distribution, though it
is still desired to approximate the matrix inversion. For these reasons, the EP method will not
be able to speed up the GPR.

6.3. Sparse Gaussian Processes
Another option is to use a socalled sparse Gaussian Process. The idea is to use only m
observations instead of all n observations (m < n) such that the covariance matrix reduces in
size. To do this with minimum loss of performance, i.e. the log marginal likelihood is close to
the original log marginal likelihood, the observations used need to be optimized. Simply said,
the m observations need to be a good representation of all n observations.

There are a few options in choosing the m observations. The first simple method is to
randomly select m observations of the total n observations. Secondly, the selection can also
be done by some greedy algorithm. For example, an observation is added to the collection
of m observations when it minimizes or maximizes some metric, such as the mean squared
error or the log marginal likelihood (QuinoneroCandela et al., 2007; Rasmussen andWilliams,
2006). Another option is a variational method that optimizes the m inducing input variables,
so they are not a subset from the n observations (Titsias, 2009). For all these methods, the
n observations are summarized by m observations and the resulting matrix that need to be
inverted is now of size m×m which reduces the time complexity from O(n3) to O(m3).

6.3.1. Variational Learning
Suppose we havem inducing variables fm at inputsXm, these variables should ultimately sum
marize the data f at input X. This can be explained more precisely with an onedimensional
input and output problem. The m inducing variables should represent the n observations, so
if the relation between the input and output variable is almost perfectly linear, only a two in
ducing variables are needed as this can explain the complete relationship. For more complex
relationships, more inducing variables are needed. From the experiments below, e.g. Figure
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6.4, the inducing points are often located around the peaks and valleys of the curve. One
can imagine that more inducing points are needed to represent the data when multiple input
variables are used.

To establish the relationship between the two variables fm and f, a multivariate normal
distribution is defined to be the prior:[

f
fm

]
∼ Gau

([
m(X)
m(Xm)

]
,

[
Σff Σffm

Σfmf Σfmfm

])
. (6.8)

For convenience we set m(X) and m(Xm) equal to zero, and the matrices are defined in a
similar way as in Equation 4.2. So Σffm ∈ Rn×m is the covariance matrix where the element
on row i and column j is equal to k(xi,xj), with k a covariance function and xi the ith input
from X and xj the jth input from Xm. Using this prior, the posterior p(f|fm) can be computed
identically as before.

f|fm ∼ N (ΣffmΣ
−1
fmfm

fm,Σff − ΣffmΣ
−1
fmfm

Σfmf ) (6.9)

Now, in variational learning, the socalled augmented posterior p(f, fm|y) will be approx
imated by the augmented variational posterior q(f, fm) (Titsias, 2009). Then it is proposed
to factorize the augmented variational posterior into: q(f, fm) = p(f|fm)q(fm) with the advan
tage that p(f|fm) is known. The distribution q(fm) is defined to be multivariate normal with
mean vector µµµ and covariance matrix A. The disadvantage of this approach is that there are
m+ 1

2m(m+ 1) extra parameters (A is symmetric) that need to be optimized.
The optimization is done by using the log marginal likelihood, where the conditional on X

will be dropped in notation as everything is conditioned on X, so this can be rewritten into:

log p(y) = log
∫ ∫

p(y, f, fm)dfdfm (6.10)

= log
∫ ∫

p(y|f)p(f, fm)dfdfm (6.11)

= log
∫ ∫

p(y|f)p(f, fm)
q(f, fm)

q(f, fm)
dfdfm (6.12)

= logEq(f,fm)

[
p(y|f)p(f, fm)

q(f, fm)

]
(6.13)

≥ Eq(f,fm) log
[
p(y|f)p(f, fm)

q(f, fm)

]
(6.14)

=

∫ ∫
log(p(y|f))q(f, fm)dfdfm −

∫ ∫
log
(
q(f, fm)

p(f, fm)

)
q(f, fm)dfdfm (6.15)

=

∫
log(p(y|f))q(f)df−DKL(q(f, fm)||p(f, fm)) (6.16)

Where we used Jensen’s inequality for the concave function ϕ(x) = log(x) in Equation 6.14
and the definition for the KullbackLeibner divergence in the last step. The KullbackLeibner
divergence can be rewritten into (Hensman et al., 2015):

DKL(q(f, fm)||p(f, fm)) = DKL(q(fm)||p(fm)) (6.17)

=
1

2

[
log
(
detΣfmfm

detA

)
−m+ tr(Σ−1

fmfm
A) + µTΣ−1

fmfm
µ

]
(6.18)

The first term:
∫
log(p(y|f))q(f)df can be approximated by an analytical expression by e.g.

GaussHermite quadrature (Hensman et al., 2015). The computational cost of computing the
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upper bound of the log marginal likelihood is dominated by the inversion of a m × m sized
matrix (O(m3)). Hensman et al. (2015) suggests to use the augmented variational posterior
to make predictions at the test points X∗ which has O(m2) complexity:

p(f∗|y) ≈
∫

p(f∗|fm)q(fm)dfm. (6.19)

This approach has been implemented into the GPy package (GPy, since 2012) and is
demonstrated using a simple example. For a onedimensional problem (one input variable and
one output variable) we use n = 1001 equidistant input values ranging from 0 to 100, where the
output y ∼ N (0, k(X,X)+0.3In). For the covariance function, the squared exponential kernel
is used with lengthscale l = 10 and process variance σ2

f = 1. This is solved exactly using the
n × n sized matrix and it is solved for different values of the inducing inputs m. In Figure 6.3
one can see the log (marginal) likelihood and computation time for different values of m and
for the the complete set of inputs n = 1001. The computation time starts relatively high for
m = 10 and then drops to around half a second for m = 30, . . . , 90. The reason for this is that
for only 10 inducing points, the gradient ascent algorithm needs to do more iterations to find
the optimal µ and A. Form = 30, . . . , 90 the initial µ and A are already sufficient to predict well
(the log marginal likelihood is high), so only a few iterations need to be done for convergence.
Form = 20, . . . , 90 the log marginal likelihood is close to the maximum log marginal likelihood
which is achieved using all input values. So in this example, the predictions can be done by
using only 30 inducing points, achieving a similar loglikelihood and is approximately 25 times
faster.

Figure 6.3: The loglikelihood and computation time for the number of inducing points m. Also for the exact
method, using all input variables, the computation time and loglikelihood is computed m = 1001. The

computation time is low for m ranging from 20 to 90 in comparison with the exact method. The loglikelihood for
these values of m is similar to the exact method so this suggests that predictions can be made with less

computation time.

Plotting the posterior mean and twice the posterior standard deviation, the difference be
tween the predictions can be observed (see Figure 6.4). The prediction using 20 inducing
points and the exact prediction has been plotted and no difference can be observed visually.
The maximum difference in posterior mean and variance is 0.0039 and 0.0017 respectively.

This approach of introducing inducing parameters is then applied to the chlorophylla prob
lemwhere 2866 insitu observations are used as training data. Now, there are 7 input variables
so probably more inducing parameters are needed than for one input variable. After a few test
runs, it seems that no convergence is achieved after 1000 iterations for any choice of m. To
speed up this process without a significant loss of log marginal likelihood, a maximum of 100
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Figure 6.4: Prediction using 20 inducing points (left) and the exact posterior (right).

iterations are done. Similarly, for the exact method, only 20 iterations are done. The result
ing computation time and log (marginal) likelihood can be seen in Figure 6.5. It can be seen
that the computation time and loglikelihood increase as m increases. This is in contrast with
Figure 6.3, where for small m the computation time was relatively high. This difference is
caused by fixing the number of iterations. Another change in results is the visual difference
in loglikelihood for the exact model and the sparse GPR models (SGPR). Finally, the ratio
between the computation time of the exact model and the SGPR models is smaller than in the
simple problem before.

Figure 6.5: The loglikelihood and computation time for the number of inducing points m. Also for the exact
method, using all input variables, the computation time and loglikelihood is computed m = 2866. As m

increases, the computation time and loglikelihood increase. This difference in comparison with Figure 6.3 is
caused by fixing the number of iterations.

Form = 200 the posterior mean (left) and standard deviation (right) are shown in Figure 6.6
(top) as well as for the exact method (bottom). The scale for the chlorophylla concentration is
the same for the posterior means and the standard deviation, so the differences can be seen
visually. The major distinction between the plots is in the bottom right of the map where high
concentrations of chlorophylla are estimated. Using the exact method, the concentrations are
estimated higher than using 200 inducing points and from the posterior standard deviation, it
can be seen that the SGPR model is more certain about this estimation.

To conclude, it is shown that variational learning is a good approximation technique for
a Gaussian process regression with one input variable. For a similar loglikelihood, only a
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twentyfifth of the computation time is needed. For more complex Gaussian process regres
sion models with seven input variables, variational learning is less powerful as more inducing
points are needed to get a good representation of your n observations. In our problem, there
is a significant difference in loglikelihood (and the predictions) and the computation time is
reduced by a third.

Figure 6.6: The posterior mean (left) and standard deviation (right) for m = 200 inducing points (top) and the
exact model (bottom). The computation time and loglikelihood are 53 seconds and 69 (SGPR) and 167

seconds and 194 (GPR).

6.4. Singular Value Decomposition
For image compression, a technique called singular value decomposition (SVD) is frequently
used to reduce the number of data that needs to be stored while the important information is
still saved (Rufai et al., 2014). An image can be represented by a matrix, where each element
contains the intensity value of the corresponding pixel.

Let the matrix A ∈ Rm×n be of rank r. Then there exists an orthogonal matrix U ∈ Rm×m

and V ∈ Rn×n and a diagonal matrix D ∈ Rm×n which contains the singular values sorted in
descending order such that:

A = UDV T .

The singular values σi > 0, i = 1, . . . , r of matrix A are defined by Avi = σiui and ATui = σivi
where vi and ui are the columns of V and U (they are called the right and left singular vectors,
respectively). The relation between the eigenvalues and singular values can be found by
computing AAT and ATA:

AAT = UDV TV DTUT = UDDTUT ,

ATA = V DTUTUDV T = V DTDV T .
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So, the singular values of A are the square root of the eigenvalues of AAT and ATA and in
addition, the eigenvectors of AAT and ATA are the left and right singular vectors of A. To
introduce the EckartYoung theorem, first the Frobenius norm is defined by:

||A||F :=

√√√√ m∑
i=1

n∑
j=1

|a2ij | =
√
tr(ATA) =

√√√√ r∑
i=1

σ2
i .

Now, the EckartYoung theorem tells us that for a matrix A ∈ Rm×n of rank r, the matrix
B ∈ Rm×n of rank k < r that minimizes ||A − B||F is B = UD̂V T where the diagonal of D̂
contains the largest k singular values of A.

In our problem, we have a symmetric matrix Σn = Σff + σ2
noiseIn which we would like to

inverse. Using SVD with a symmetric matrix the inverse can easily be computed by:

A−1 = (UDV T )−1 = (V T )−1D−1U−1 = V D−1UT .

Where in the last step the property U−1 = UT for orthogonal matrices is used. So only a
diagonal matrix D needs to be inverted. Furthermore, since Σn is symmetric, the singular
values are the absolute values of the eigenvalues of Σn and U = V . As an example, the
covariance matrix created with the squared exponential kernel is used as matrix A (rank n =
1000) and for ranks k = 1, 2, . . . 8 the approximationsB are visualized in Figure 6.7, here σn = 1
is used. As the rank increases, the approximations begin to look like the original matrix in the
bottomright corner.

Figure 6.7: Approximations for matrix Σn (bottomright) for different ranks. As the rank increases, more singular
values are incorporated and the approximation gets better.

As a measure of error, the Frobenius norm is used again: ||A−B||F
||A||F . The advantage of

the approximations is that less memory is needed and also less computation time. Though,
for each iteration in updating the hyperparameters, U and D need to be determined which
is done by the Lanczos method. The computational cost of the Lanczos method is O(dn2)
flops, where d is the average number of nonzero elements in the rows of the original matrix
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A. When rank k is known, U does not need to be calculated completely as the matrix D will
contain multiple rows and columns of zeroes so only the first k columns of U are needed. So
n · k numbers are stored for the matrix U and k numbers are stored for D which brings the
total storage to (n+1)k numbers. In Table 6.1 the error, rank, numbers to store, compression
factor and the computation time can be obtained. The computation time is the average time
needed to compute the inverse 1000 times. The error decreases as k increases (this was
observed visually in Figure 6.7) and so is the compression factor: n2

(n+1)k . The computation
time is roughly the same for the approximations and almost six times lower than for computing
the exact inverse. The standard errors are approximately 1.1 · 10−4 and 5.7 × ·10−4 for the
approximations and exact method, respectively. The computation time for the approximations
is close to each other because the number of singular values is close to each other.

Rank Error Storage Factor Time [×10−2 s]
1 0.81 1,001 999 1.60
4 0.31 4,004 250 1.63
8 0.08 8,008 125 1.62

1000 0 1,000,000 1 9.40

Table 6.1: The error, numbers to store, compression factor and computation time for inverting A using different
ranks and the full matrix (rank is 1000).

The choice for rank k is yet to be established and there is no single rule to do this. We want
k to be as small as possible as this requires a few numbers to store and low computation time.
However, the approximation needs to be ‘good enough’ so a large k is perhaps desired. One
desires to take the k singular values (and singular vectors) that contain as much information of
the structure of A. This is done by taking the largest k singular values, thus a clear distinction
between the high singular values and low singular values is desired. The 1000 singular values
ofΣn are shown in Figure 6.8. Note that the scale on the yaxis is logarithmic. Due to the choice
for the variance of the noise (σ2

n = 1), many singular values are close to 1. Furthermore, the
important observation is the clear distinction in high and low singular values. The 11 highest
singular values are higher than 10 while the others are below this threshold. This suggests
that k can be 11 or maybe even lower depending on the specific requirements.

Figure 6.8: Singular values σi sorted in descending order, for i = 1, 2, . . . , 1000 of matrix Σn=1000. Note that the
scale on the y − axis is logarithmic.

So far, we have only looked at the error made by approximating A by B and not the in
verse A−1 approximated by B−1. With the same setup as before (i.e. n = 1000 and σn = 1)
the inverse is computed for different ranks. In Figure 6.9 the inverse of the approximations
can be seen for different ranks. Note that the chosen ranks are different from before as the
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approximations for the inverse are slowly converging to the original inverse. From the inverse
approximation for rank 50, the structure of the original inverse is visible, whereas this is not
visible for ranks 10 and lower. Again, the measure for error can be computed using the Frobe
nius norm: ||A−1−B−1||F

||A−1||F which is 0.95 for using rank 100. So, for approximating the inverse a
high rank is needed for a low error. However, the computation time for computing the rank
100 approximation and inverse is higher than for directly computing the inverse of the original
matrix.

Figure 6.9: The inverse of approximations for matrix Σn (bottomright) for different ranks. As the rank increases,
more singular values are incorporated and the approximation gets better.

Despite the large errors, there may be enough structure in these approximations for the
inverse to perform GPR. Unfortunately, no package in Python has been found that optimizes
the hyperparameters using the approximations by SVD. So this optimization is programmed
manually, though this can lead to inefficient computations. First, the optimization is done by
the exact inverse and only the prediction is done by the approximated inverse, see Figure 6.10.
Here, the exact predictions are visualized in green and the approximations in red for different
ranks. One can see that for rank 1, it is simplifying the data and more information is included
for higher ranks. For rank 10 the approximation is already quite well with some differences in
the tails (where no observations are present).

The next step is to update the hyperparameters by using the approximation of the inverse
in Formula 4.10. The determinant needs also to be computed, luckily this is done easily using
the singular value decomposition of Σn:

det(Σn) = det(UDUT ) = det(U)det(D)det(UT ) = det(D) = Πn
i=1dii = Πn

i=1σi.

This is the result of the fact that the determinant of an orthogonal matrix is −1 or 1 and that
det(UT ) = det(U). For the exact method and the SVD approximations the LBFGSB algo
rithm is used to find the maximum log marginal likelihood where bound constraints for the
hyperparameters can be used.

Unfortunately, no promising results have been found. Updating the parameters resulted in
very general predictions or very specific predictions, but neither are close to the exact solution
computed with Σ−1

n . In Figure 6.11, some of the results of the simulations can be seen where
the hyperparameters are updated with SVD.

The prediction with SVD has been simulated for the chlorophylla problem as well. For a
subset of the satellite dataset containing 26,085 observations and 2866 insitu observations,
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Figure 6.10: Posterior mean and twice the standard deviation at each input value x for the exact method (green)
and with SVD for different ranks (red). The 1000 observations are visualized by the almost transparent black

crosses. The predictions with SVD are approximating the exact predictions better when the rank increases. Note
that the hyperparameters are fixed (optimized with the exact inverse).

the manual derivations (without using the package GPy) of the posterior mean and standard
deviation are computed in approximately 10.3 seconds. Here, a Cholesky decomposition is
used for computing the inverse. For several values of rank k, the posterior mean and standard
deviation is computed and the computation time, mean absolute error of the mean and stan
dard deviation has been noted. As the rank increases the absolute errors generally decreases
and the computation time slowly increases. For the first few ranks (k = 1, . . . , 10) the error
decreases quite fast. When more singular values are taken into account, the mean absolute
errors stay relatively constant. For rank k = 10 the mean absolute error for the posterior mean
is 0.0483 with a standard error of 3 · 10−4, see Table 6.2. Note that the values of the concen
tration chlorophylla range from 0.09 to 1.17. The absolute error of the standard error is 0.0281
with a standard error of 3 · 10−4. Here, the values range from 0.02 to 1.10. The computation
time for k = 10 is 8.5 seconds. So, the computation for the posterior mean and standard de
viation can be done faster with an SVD approximation for the inverse. Unfortunately, the time
is not substantially reduced with multiple factors of 10, though in percentage terms roughly
80% of the computation time is needed for k = 10. When the number of insitu observations
increases, the decrease of computation time will be more present.
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Figure 6.11: Posterior mean and twice the standard deviation at each input value x for the exact method (green)
and with SVD for different ranks (red). The 1000 observations are visualized by the almost transparent black

crosses. Note that the hyperparameters are updated with the corresponding SVD.

Rank MAE mean (s.e.) MAE std. (s.e.) Time [s]
4 0.1666 (4 · 10−4) 0.1515 (6 · 10−4) 7.02
5 0.0976 (4 · 10−4) 0.1081 (5 · 10−4) 7.25
6 0.0804 (3 · 10−4) 0.0866 (4 · 10−4) 7.76
7 0.0916 (5 · 10−4) 0.0957 (5 · 10−4) 8.06
8 0.0637 (3 · 10−4) 0.0687 (4 · 10−4) 9.08
9 0.0776 (5 · 10−4) 0.0772 (4 · 10−4) 8.76
10 0.0483 (3 · 10−4) 0.0557 (3 · 10−4) 8.50

Table 6.2: Mean absolute error (MAE) of the posterior mean and standard deviation including the computation
time for different ranks. The predictions are computed using the SVD approximation of the matrix inversion. The

computation time is the time of computing the posterior mean and standard deviation.





7
Results

In the previous chapter, different approximation techniques were applied to see whether updat
ing the hyperparameters and the prediction could be done faster, i.e. with fewer floatingpoint
operations. As no single method stood out to speed up the inversion, the Cholesky decompo
sition is used here. In this chapter, we will focus on the main result of the GPR model which
is the prediction of chlorophylla concentration on the locations where satellite data is present.
All insitu data from 9 August 2019 (n = 2866) and a subset of the satellite image is used. The
subset contains 423 by 371 pixels which is in total 156,933 data points. With IDW interpolation,
the reflectances at the insitu data are computed. This is done in 40 seconds and depends on
the number of satellite observations used as the distance is measured from every insitu ob
servation to every satellite observation. It is possible to speedup this process by considering
only the k closest data points instead of all satellite observations. We take the logarithm of the
chlorophylla concentration to make sure that all predictions are positive values. This is done
by using the lognormal distribution where the mean and variance for the final concentrations
can be computed from the mean and variance of the logarithmic concentrations (see Appendix
A.2).

The hyperparameters are computed by maximizing the log marginal likelihood using the
LBFGSB optimization algorithm which does 93 iterations in 5 minutes and 34 seconds for
convergence. The log marginal likelihood is maximized at a value of 14.74 (similar to the
optimization in Table 5.4). The hyperparameters that set this log marginal likelihood are the
same as when the hyperparameters were analyzed and are restated here for completeness:
σn = 0.67, σf = 0.22 and lengthscale vector

l = [99.96, 100.00, 75.51, 0.009, 0.40, 0.0011, 0.009].

Then the posterior mean and standard deviation can be computed for the satellite observa
tions, which is done in 2 minutes and 23 seconds. The results can be seen in Figure 7.1. Note
that these observations are for a depth equal to one meter. The insitu observations are visu
alized by the circles in color (left) and red dots (right). As the measurements are done close to
each other, some overlap is present. The average concentration is about 0.11mg ·m−3 and the
average standard deviation is around 0.07mg ·m−3. In the both plots, a line is visible from the
lowerleft corner (25◦E, 40.3◦N) to (25.05◦E, 40.5◦N). This is the remains of the atmospheric
correction (AC). The satellite image is taken at 9 a.m., so the solar zenith angle is large (this
means that the sun is close to the horizon). A lowresolution map is used to compensate for
the difference of sunlight intensities on the area, which causes these unnatural straight lines
visible in the estimations. The individual maps of the reflectances are created to confirm that

77
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the line is not ‘created’ by our model but appears due to the input variables. Another observa
tion is that the standard deviation values are relatively low for the low estimations in the bottom
right corner and high for the higher concentrations. This seems to be a general rule for all the
estimations: a low concentration is estimated with a higher certainty than a high concentration
of chlorophylla.

Figure 7.1: The posterior mean (left) and corresponding standard deviation (right) for the area around the insitu
observations. The color represents the value for each pixel and the circles are the insitu locations/values

(exaggerated in size for the visualization).

As the GPR model is mainly based on the reflectances, it is possible to do predictions at
locations further away from the insitu locations. First, the complete satellite image was tried
to do estimations on, however, a memory error occurs when this is tried. The package GPy
tries to allocate a matrix of size 2866 × 3, 348, 900 which contains almost 10 billion elements.
From the error statement, it is possible to derive that this is the matrix Σff∗ that is used to
compute the posterior mean and variance. This problem can be solved by splitting the remote
sensing dataset in smaller pieces and iteratively computing the posterior mean and standard
deviation. The inverse Σ−1

n needs to be computed only once as this does only depend on the
insitu data.

Figure 7.2: The posterior mean (left) and corresponding standard deviation (right) for the area around Limnos
island.

A smaller subset is thus chosen around the island Limnos, see Figure 7.2. Some areas
close to the coast have low concentrations (close to 0.08mg ·m−3), for example in the western
part. Along the southern part of the coastline, a band of high concentrations of chlorophylla are
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estimated. Likewise in the plot on the right, the standard deviation in these areas is relatively
high which suggests that there is more uncertainty. Again a line is well visible in both plots due
to the position of the sun. The verification of these figures can be done by adding chlorophylla
maps of other sources. From CMEMS, monthly averages as well as daily averages from mul
tiple satellite observations (SeaWIFS, MERIS, MODISAqua, NPP VIIRS, NOAA20VIIRS).
The spatial resolution is 1 kilometer and the corresponding chlorophylla map of 9 August
2019 around Limnos Island can be seen in Figure 7.3. From the left plot (same zoom level as
before) it can be seen that estimations close to the coast are not available, therefore a zoomed
out plot on the right is created. Noteworthy is the reduced resolution, the pixels can easily be
identified and it is impossible to observe the structure along the coast as seen in Figure 7.2.
Moreover, no uncertainty map is available for these plots. The average concentration chloro
phyll is roughly the same in both estimations (around 0.1 mg m−3), however the increase in
concentration on the east coast is not visible in our estimations.

Figure 7.3: Estimation of chlorophylla concentration around Limnos island. Data retrieved from CMEMS.

Instead of a different area, the concentration of chlorophylla can also be estimated at a
certain depth. From Figures 5.11 and 5.17 it is expected to obtain high values of concentrations
for a depth around 90 meters as well as a high standard deviation. In Figure 7.4 the posterior
mean and standard deviation are plotted for the same area as before, but now at a depth of
90 meters. Indeed, the estimations and uncertainties are significantly higher than before.

Figure 7.4: The posterior mean (left) and corresponding standard deviation (right) for the area around the insitu
observations. The color represents the value for each pixel and the circles are the insitu locations/values

(exaggerated in size for the visualization). The top estimations are done at a depth of 90 meters.



80 Chapter 7. Results

For completeness, another estimation is done at a depth of 200 meters, which can be seen
in Figure 7.5. Clearly, the concentrations are very low in comparison with the other figures as
well as the uncertainties. It can also be seen that low concentrations at a depth of 1 meter
tend to stay relatively low at a depth of 200 meters. Similarly, high concentrations at 1 meter
tend to be the high concentrations at 200 meters as well.

Figure 7.5: The posterior mean (left) and corresponding standard deviation (right) for the area around the insitu
observations. The color represents the value for each pixel and the circles are the insitu locations/values

(exaggerated in size for the visualization). The estimations are done at a depth of 200 meters.

From the parameter analysis in section 5.5 it can be concluded that the variables longitude,
latitude, as well as the green reflectance, can be removed from the model. When doing so, for
both Figure 7.1 and 7.2 the estimations are identical. Removing any other variable resulted in
significant changes in the estimations as the log marginal likelihood is reduced. This reduces
the computation time by a little because the matrix that needs to be inverted remains to be the
same size.

Furthermore, for the stateoftheart model, the estimations for the chlorophylla concen
tration are computed. An estimation is computed for the subset around the insitu data and
around Limnos island, see Figure 7.6. The computation time of the IOP variable was approxi
mately 45 minutes, while training and predicting is done in less than 2 seconds. Note that the
data product imported into the SNAP tool is 1C (TOA) and that the C2RCC algorithm does the
AC itself. Comparing these estimations with the left figures of Figure 7.1 and 7.2, it is noticable
that the AC is done better here. Furthermore, there is no classification dataset available so
the clouds in the left plot are included and the island Limnos is manually removed from the
dataset. The estimated concentrations for the C2RCC algorithm are generally a bit lower. The
GPR model indicates that there is an area in the bottomright corner with lower concentrations
(see Figure 7.1). This is not seen in the figure below. For the area around Limnos island, a
narrow band with relatively high chlorophylla concentrations can be seen especially on the
south and east coast of the island. The uncertainty quantification for both plots is not included
as no literature is found that explains how this can be done exactly. Note that the concentra
tions are computed at the surface of the sea. The depth is not incorporated in this method and
no estimations can be done for different depths.

The computation for the parameters is done using all insitu observations, including obser
vations that are taken far below the surface of the sea. When considering only the observations
close to the surface (in this example, observations with a depth smaller than 5 meters), the
estimations are computed and shown in Figure 7.7. The estimated concentrations are a bit
higher than before (average increased by 0.013 mg m−3) and the maximum concentration is
now ≈ 0.18 mg m−3. In contrast with Figure 7.6, low concentrations can be found near the
coastline instead of high concentrations before.
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Figure 7.6: Chlorophylla concentration estimation using the C2RCC algorithm. The subset around the insitu
observations is shown on the left. On the right the area around Limnos island is shown.

Figure 7.7: Chlorophylla concentration estimation using the C2RCC algorithm when considering the shallow
observations only (in this example, depth is smaller than 5 meters). The subset around the insitu observations is

shown on the left. On the right the area around Limnos island is shown.

Finally, the drawback of the GPR model is that a matrix of size n needs to be inverted,
where n is the number of insitu observations. This needs to be done when updating the
hyperparameters (once for every iteration) and when computing the posterior mean and stan
dard deviation. For a single insitu dataset, the models need to be ‘trained’ once to set the
hyperparameters, whereafter the model can be used to do predictions. In this last step the
inverse remains exactly the same, as the matrix only depends on the insitu data, so comput
ing the estimations can be done relatively fast. This last step is dominated by matrixmatrix
multiplications. Multiple approximation techniques have been investigated to speed up the
matrix inversion. With singular value decomposition it seems to be possible to compute accu
rate estimations with the approximated matrix. However, for computing the hyperparameters,
there is not enough structure in the approximation to get accurate results.





8
Conclusion and Discussion

In this chapter, the research and analysis will be summarized and an answer will be given to the
main research question which was stated in the introduction: What spatiotemporal model, that
provides uncertainty quantification, can be used to estimate the chlorophylla concentration
using highresolution optical remote sensing data? Afterwards, the limitations and advantages
of the GPR model are discussed. Finally, some recommendation for future research will be
given.

8.1. Conclusion
In this thesis, we tried to estimate the concentration chlorophylla using the reflectances ob
tained by highresolution satellite sensors. The stateoftheart models are based on machine
learning techniques that require large amount of training data, take a long time to train the
model and give an uncertainty quantification by giving the input variables a small deviation.
Furthermore, the C2RCC algorithm uses neural networks for which the reason of the choice
for the number of hidden layers and neurons is ambiguous. The advantage is, once trained,
that the model should be able to estimate the concentrations quite fast.

A Gaussian process regression method is proposed to estimate the chlorophylla concen
tration using the reflectances. It can be calibrated with limited data access and has an uncer
tainty quantification caused by the Bayesian structure. However, the main limitation is that a
matrix inversion is needed for finding the hyperparameters and to do predictions.

Insitu data from the ODYSSEA project and the remote sensing data from the Sentinel
2 satellite were obtained. For the insitu data, the requirements were that spatial as well as
temporal data was desired and that the acquired observations are measured in the last couple
of years. For the remotesensing data, freely available data from a highresolution sensor was
desired. This was not available, so as alternative, the mediumresolution Sentinel2 satellite
data is utilized.

First the reflectances were interpolated on the insitu locations, whereafter the GPR model
was analyzed extensively, with a focus on the covariance function and the hyperparameters.
The squaredexponential kernel is used most often, though there is no reason why, other than
convenience and simplicity. Therefore, other Matérn kernels, a linear kernel and a multilayer
perceptron kernel were analyzed. Using crossvalidation the Matérn kernel with ν = 3

2 was
suggested based on the meansquarederror as well as the log marginal likelihood. The hy
perparameters were the noise variance σ2

n, lengthscale vector l and the process variance σ2
f .

A graph was made of the log marginal likelihood versus each of the hyperparameters. As a
lengthscale for each variable was used, a variable selection procedure was possible by inves
tigating these graphs. It became clear that the longitude, latitude and green wavelength did
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not improve the log marginal likelihood and could be removed from the model. More analysis
was done by making contour plots of the log marginal likelihood for different values of two
hyperparameters. Finally, continuous plots were created. So the concentration chlorophylla
can be estimated along, for example, the depth at a certain location.

The GPR model was compared with the C2RCC algorithm and the polynomial regression
techniques. For both these models it became clear that having observations close to the
surface is needed to train the models, because the depth is not included. Indeed, the MSE
decreased, however this is mainly caused by having less variation, this was supported by the
value ofR2. For both the shallow observations and all observations, the GPRmodel performed
best in terms of MSE and R2.

Finally, the drawback of GPR is investigated by testing multiple approximation techniques
for computing the inverse of a matrix. Maximizing the log marginal likelihood requires multiple
matrix inversions and computing the posterior mean and standard deviation requires one more
matrix inversion. This only needs to be done once, after which estimating the chlorophylla
concentration can be done relatively fast (dominated by matrixmatrix multiplications). With
a singular value decomposition it seems to be possible to approximate an inverse of a ma
trix to produce accurate estimations. However, maximizing the log marginal likelihood gave
inaccurate results in comparison to using the Cholesky decomposition.

8.2. Assumptions
In this section, we state the assumptions of the GPR model and elaborate on them.

The most important assumption of this model is to assume that the real process follows a
Gaussian process. The chlorophylla concentration can only take positive values, so can never
follow a Gaussian distribution. Despite this fact, previous research has shown that a GPR can
be used to model the chlorophylla concentration and this is established in this research once
again.

Another assumption made along the process is that the interpolated reflectances are the
‘true’ reflectances. As explained in more detail in the analysis, this can be justified by the use
of medium/highresolution satellite data. So, the error made by interpolation will be very small.

The change of spatial support is a relevant issue in the types of variables used in this
research (Gelfand et al., 2001). Satellites observe an average emission along the reflective
path in the water column and this may be changing for each wavelength. The blue light will
penetrate the water more easily in comparison to red light (that is why deepsea animals have
a red color). So, the problem in spatial support lies in the scale of the measurements, as
the glider measures the chlorophylla concentration using a small subset of the water, while
satellite measures in a 10x10m times the penetrated depth. There is almost no variability in
the 10x10 meter grid, however, there is a lot of variability available in the depth as we saw
before. So the satellite is observing an average across the depth, while the chlorophylla con
centration is a point observation. Using an isotropic kernel ensures a low covariance between
two observations when the value for the depth is far apart. Furthermore, the reflectance data
that is obtained from Sentinel2 is preprocessed such that it should represent the radiances
reflected from the water surface.

Finally, it is assumed, doing our estimations, that the insitu data is measured at the same
time as the satellite data. This is not true, as the satellite obtains the data once at a certain time
whilst the glider measures concentrations twice every minute. This is a necessary assumption,
because it is desired to have the reflectances at the insitu locations for which the only source is
the satellite data. When the ‘true’ reflectances are used, problems will arise for measurements
taken at night.
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8.3. Recommendations
In this research, Gaussian process regression is analyzed quite extensively. However, more
analysis can be done and the model can be expanded. In this section, a list of recommenda
tions will be given for future work.

Highresolution satellite data can be used to analyze the performance of the GPR. As the
insitu data remains the same, the hyperparameters will be unaltered. However, for compu
tational requirements, it is interesting to see how the model performs and if anything can be
done to improve the computation time for estimating the concentrations.

The GPR model can be extended by including the time variable. First, it is desired to find
recent insitu data in other seasons (for cloudless days), then the hyperparameters need to
be calibrated and the inclusion of other covariance functions can be analyzed for modelling
the chlorophylla concentration, e.g. a periodic kernel. Covariance functions can be multiplied
and added to each other, so a Matérn kernel for the reflectances and depth, multiplied with a
periodic kernel for the time variable can be tested.

Instead of the chlorophylla concentration, other water quality indicators, such as colored
dissolved organic matter, can be used. It would be interesting to see how accurate the predic
tions are and also how the model performs in other areas than the Thracian sea. The GPR
model can easily be adapted for other variables and areas.

Furthermore, the computational complexity of updating the hyperparameters can be an
alyzed more. There are a number of suggestions to look into, such as stochastic gradient
descent, which is a technique that uses samples of observations to maximize the marginal log
likelihood. Instead of variational learning, other sparse GPR techniques, such as the Nyström
method or using a subset of datapoints instead of the complete dataset, can be investigated.
Another method is to create a sparse covariance matrix by setting elements to zero when the
value is below a certain threshold.

Finally, an interesting extension of a Gaussian process regression model is shown by Dun
son et al. (2020), where a specific kernel is designed such that the geometry of the domain is
respected. Here, an approximation for the covariance is used based on finitelymany eigen
pairs of the Graph Laplacian (GL). With this algorithm, it is possible to incorporate the physical
effects of having a narrow lake or an island between two relatively close waters. In a ‘regu
lar’ Gaussian process model with Euclidean distance, the chlorophylla concentration (or any
other variable) is able to be (inappropriately) smoothed across the land, which is not desirable.
This type of inaccuracies can occur in areas where narrow islands or landmasses split waters
such as the waters around Long Island (New York) and the Gulf of California.
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A
Probability Density Distributions

The probability density functions for the distributions used in this research are added here for
completeness.

A.1. Multivariate Normal Distribution
Let X be a ddimensional random vector with X = (X1, . . . , Xd)

T and multivariate normal
distributed. With the mean vector µµµ = E[X] and covariance matrix Σ the following notation is
used: X ∼ N (µµµ,Σ). The element on row i and column j is equal to: Σi,j = cov(Xi, Xj).

For a symmetric positive definite covariance matrix Σ, the probability density function can
be written as:

fX(x1, . . . , xd) =
exp(−1

2(x−µµµ)TΣ−1(x−µµµ))√
(2π)d|Σ|

. Where x = [x1, . . . , xd]
T is a real column vector.

A.2. LogNormal Distribution
Let X be normally distributed with mean µ and variance σ2 > 0 (i.e. X ∼ N (µ, σ2)). Then
Y = eX is lognormal distributed with the following probability density function:

fY (y) =

{
1

yσ
√
2π
exp(− 1

2σ2 (ln(y)− µ)2) if y > 0,

0 if y ≤ 0.

Moreover, X = ln(Y ) = N (µ, σ2) so the mean of Y : E[Y ] = exp(µ + σ2

2 ) and the vari
ance: V ar(Y ) = exp(2µ + σ2)[exp(σ2) − 1]. This distribution is used for the chlorophylla
concentration, as a concentration is always positive.
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B
Additional Data Analysis

B.1. Log Marginal Likelihood versus Hyperparameters
In this section, all plots of the log marginal likelihood versus each of the hyperparameters is
plotted.

Figure B.1: Log marginal likelihood versus the lengthscale of the variables longitude, latitude and depth (log
scaled xaxis).
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Figure B.2: Log marginal likelihood versus the lengthscale of the four reflectances (log scaled xaxis).

Figure B.3: Log marginal likelihood versus the hyperparameters σn and σf (log scaled xaxis and symlog scaled
yaxis for σn).
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