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With decision-making becoming increasingly data-driven in early design stages due to global environmental 
challenges, and qualitative metrics remaining crucial in facade design due to their huge architectural impact,
performance-driven design exploration frameworks are emerging as powerful tools to explore vast design 
spaces based on geometry typology and approximated performance. However, those used in facade design
based solely on Self-Organising Maps (SOM), face significant challenges in computational efficiency. While more
advanced frameworks used in the AEC sector combining SOM and Multi-Layer Perceptrons (MLP) address this,
they still face limitations in prediction accuracy, convergence speed, interpretability, reliability, and usability,
reducing their effectiveness in decision-making. This thesis aimed to overcome these limitations, by developing
a novel framework integrating SOM and Kolmogorov-Arnold Networks (KAN), applied in the design process
of an aluminium-based biocomposite curtain wall facade. The results demonstrate that substituting heavy
performance simulations with fast approximations using KAN leads to significant enhancements in computa-
tional efficiency. In addition, comparative analysis revealed that KAN outperforms MLP in prediction accuracy
on highly-complex performance metrics, with much faster convergence and smaller architectures. Furthermore,
KAN proved to be faster and more intuitive to train, as well as more consistent in predictions. Moreover, KAN
enhanced interpretability between geometry and performance, enabling designers to focus on relevant design 
variables and adjust them strategically toward optimal performance, providing an integrated solution with
transparent decision-making and faster processing compared to traditional sensitivity analysis tools. Finally,
a novel approach to design exploration has enabled the integration of less-geometry related design variables,
enhancing optimisation capabilities, as well as proven to balance human-AI interaction more efficiently than
traditional frameworks, making design exploration more interactive, thereby more effective and intuitive.
Ultimately, the SOM-KAN framework has proven to advance the facade design process by facilitating more
efficient decision-making in early design stages, leading to superior architectural and sustainable solutions.

Keywords: Performance-Driven Design Exploration, Facade Design, Biocomposites, Self-Organising Maps
(SOM), Kolmogorov-Arnold Networks (KAN), Multi-Layer Perceptrons (MLP).
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Due to environmental challenges such as climate
change, resource depletion, pollution, and biodi-
versity loss, many industries are strongly encou-
raged to be more sustainable (Leising et al., 2018).
To address these global issues collectively, 196 
countries, including the Netherlands, have signed
an international climate accord in 2016, the Paris
Agreement, to achieve a 100% circular economy
by 2050 (Government of the Netherlands, 2023).
In addition, the Netherlands’ subgoal is to halve
its raw material consumption by 2030. The thrust 
towards a circular economy is a necessary transi-
tion, aiming to reduce eco-impact, waste, and pol-
lution, use environmentally friendly materials and
extend the lifespan of resources by closing mate-
rial loops (Ellen MacArthur Foundation, n.d.), as
illustrated in Figure 1.1.1.

In this circular framework, the construction sec-
tor is key, accounting for approximately 50% of 
raw material consumption, 42% of energy con-
sumption, and 35% of greenhouse gas emissions 
in the EU (Gervasio & Dimova, 2018). 
	 Especially housing corporations, which 
manage around 30% of the residential stock in the
Netherlands - or about 2.4 million homes - play a
huge role in the sustainability transition, despite
their financial limitations. To reach the national 
circular objectives, they need to upgrade 100,000 
dwellings annually towards an energy and CO2-
neutral portfolio by 2050, with an average energy
label B or higher (Dantuma & Van Sante, 2018).

Facade renovations, which traditionally focus on
insulation and infiltration enhancements, are key
in this effort as they significantly affect the port-
folio’s sustainability. Not only because of their im-
pact on energy performance but also due to their
exposure to severe climatic conditions which nega-
tively affect the lifespan of its materials (Overend
et al., 2021). Using sustainable alternatives could
positively impact the environment, by minimising
waste and pollution at production and at the end
of their lifecycle.
	 In the EU, construction and demolition
waste is the largest sector at 37% of total waste 
with 839 million tonnes of waste in 2018. Even 
though recycling rates are high with an average 
of 74%, over 70% of it is downcycled (European 
Circular Economy Stakeholder Platform, 2021). 
Waste wood accounts for approximately 60 mil-
lion tonnes annually, with around 49% going to 
energy-to-waste (ETW) plants and around 51% 
to products like chipboard (Business Waste, 2024),
thus massively underutilised, especially as wood
is considered to be a valuable bio-based and re-
newable resource.
	 In an interview with Hester ten Zijthoff, 
project manager of Ymere, one of the biggest hou-
sing corporations in the Netherlands, challenges 
in utilising waste wood to its fullest potential were
highlighted. Particularly issues of chemical conta-
mination as a result of paints and impregnating 
agents, metal presence, and varying shapes make 
high-quality reuse labor-intensive and complex. 
These issues significantly hinder mass production,
leading to prohibitive costs. Additionally, the lack  
of high-quality reuse examples and an insufficient
budget for innovation obstruct its implementation
in housing corporations’ renovation strategies, 
despite its potential as a valuable bio-based waste 
stream resource (Dantuma & Van Sante, 2018).
	 Wood dust, a byproduct of wood proces-
sing, although, offers huge potential for high-value
facade applications, as discovered during an in-
ternship with “Circular Wood 4 The Neighbour-
hood,” which focuses on reusing waste wood uti-
lising robotic fabrication techniques for furniture
projects. Traditionally, wood dust of housing cor-
porations ends up in ETW plants, yet its small uni-

1.1 Introduction

1
Introduction

01

Figure 1.1.1. Circular economy diagram. From “Ellen MacArthur Foundati-
on”, by Ellen MacArthur Foundation, 2019 (https://www.ellenmacarthur-
foundation.org/circular-economy-diagram).



form nature offers vast possibilities for mass pro-
duction and offers huge amount of design freedom.
When wood dust fibers are mixed with a natural 
matrix, they can transform into a biocomposite 
with excellent insulating properties (Bahar et al.,
2023; Abdallah et al., 2022; Lertwattanaruk & Sun-
tijitto, 2015), which can be of significant value for
housing corporations’ facade renovations.
	 Biocomposites are gaining momentum as 
sustainable alternatives to synthetic composites, 
while insufficient processing methods and high 
fabrication costs previously limited their develop-
ment (Zwawi, 2021). Biocomposites, also known
as Natural Fiber Composites (NFC), consist of bio-
polymer-based matrices intermixed with lignocel-
lulosic fibers (Jawaid & Khalil, 2011) - like wood
dust - and are the main focus for research and de-
velopment due to their renewable, biodegradable, 
and non-toxic nature (Jayamani et al., 2015). Al-
ternatively, synthetic composites, so-called Fiber-
Reinforced Plastics (FRP), consist of synthetic ma-
trices intermixed with inorganic fibers (Jawaid &
Khalil, 2011). Despite their significant mechanical
properties over NFC, there are several drawbacks
associated with synthetic composites; they cause
pollution, emit toxic byproducts, require enormous
amounts of energy for production, have poor re-
cyclability of merely 25%, and negatively impact
the depletion of finite petroleum (Zwawi, 2021).
	 Biocomposites hold the potential to era-
dicate the dependency on synthetic matrices and
fibers, but their inferior mechanical properties and
poor UV/water resistance lead to early degrada-
tion, affecting their long-term durability and possi-
ble applications (Zwawi, 2021). Consequently, the
scientific community has been paying considerable
attention to developing various methods to alter 
the properties of biocomposites to attain proper-
ties similar to those of synthetic composites (Jaya-
mani et al., 2015). 
	 Particularly biocomposite facade panels 
hold the potential not only to address insulation 
and aesthetic shortcomings, as the majority of the
building stock is visually outdated, but also to im-
prove the acoustic performance, thermal perfor-
mance by offering shading, wind conditions, bio-
diversity, psychological well-being, and mitigate 
the urban heat island effect. 
	 This circular approach of utilising waste
wood dust fibers to create insulating biocomposite
facade panels could offer housing corporations an
environmentally-friendly - and potentially finan-
cially-friendly - solution for upgrading their resi-
dential stock to meet their environmental objec-
tives, while simultaneously pushing the construc-
tion sector towards a sustainable future.
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Current literature is widely spread: from exami-
ning the influence of wood dust content on the bio-
composites’ mechanical properties, UV/water re-
sistance, and acoustic performance, to the effect of
various fiber and matrix modification treatments
and different fabrication methods. Many of these
projects repeat similar experiments with minor 
changes in material composition or treatment con-
tent, and share the same objective of enhancing the 
biocomposites’ properties. None of them have yet
considered the bigger picture and combined all the
individual pieces of research, making it hard to ob-
tain insight into the potential properties of wood
dust grafted biocomposite facade panels, especially
because many of these interventions have non-
linear and conflicting impact on its performance.
	 For this reason, this thesis aims to provide
insight into the potential properties of wood dust
crafted biocomposite facade panels by developing
an interactive design tool that guides its user to-
ward optimal performance based on various ma-
terial properties and design options. 
	 In a broader perspective, this research on
wood dust crafted biocomposite facade panels is
rather part of preliminary research than the main
focus of this thesis, which instead focuses on im-
proving the design process of building facades in
general. Within this thesis, biocomposites serve
as a relevant and sustainable case study material, 
where any facade material could have been chosen.

03

1.2 Problem analysis
Aligning with today’s world, where everything is
more data-driven than ever before, designers in-
creasingly rely on quantifiable metrics for decision
making, especially in the early design stage (Turrin
et al., 2020). However, given the immense archi-
tectural impact of building facades, qualitative me-
trics will always remain of great importance. As
an alternative to the traditional design framework
where designers make decisions based on their
knowledge and experience, optimisation frame-
works employ genetic algorithms to search for op-
timal solutions in vast design spaces. Exploring de-
sign alternatives based on both geometry and per-
formance is often challenging. While manual ex-
ploration of the design space is impractical due to
the huge number of design alternatives, optimisa-
tion frameworks overlook a huge part of the qua-
litative aspects that are crucial in facade design.
However, performance-driven design exploration
frameworks are posing a solution, by leveraging 
machine learning techniques, giving designers the
ability to navigate the entire design space accor-
ding to geometry typology and performance (Dan-
haive & Mueller, 2021; Turrin et al., 2020).

Current literature related to the design process of
building facades, generally focuses on multi-objec-
tive optimisation (Brown et al., 2016; Vazquez & 
Walker, 2021), potentially missing out on valuable
design alternatives with high qualitative value. In
some cases (Minaei & Aksamija, 2020; Choo & Jans-
sen, 2015), surrogate models are employed to op-
timise the computational process of multi-objec-
tive optimisation frameworks, by substituting slow 
performance simulations with fast approximation
models. Nevertheless, these frameworks still re-
volve around optimisation, and have the same limi-
tations of overlooking crucial qualitative aspects.
In very rare cases, when performance-driven de-
sign exploration frameworks are used in facade 
design, several critical parts are missing, making
them significantly less effective.
	 As an example, Bertagna et al. (2021) em-
ployed a Self-Organising Map (SOM) in the design 
process of a load-bearing concrete diagrid facade,
as illustrated in Figure 1.2.1, clustering 12,758 de-
sign variants onto a two-dimensional network of
nodes, according to their geometric characteristics.

Figure 1.2.1. Diagrid facade. Adapted from “Holistic Design Explorations of Buil-
ding Envelopes Supported by Machine Learning”, by Bertagna et al., 2021 [17].

After assessing each design alternative’ structural
and thermal performance, the self-organising map
allows for exploration, considering qualitative and
quantitative metrics. However, the absence of a
surrogate model not only makes the design frame-
work computationally intensive, but also limits its
ability to adapt to more complex design problems.
	 Additionally, non-geometry related design
variables are often excluded from the design pro-
cess due to limitations of the self-organising map,
which clusters based solely on geometry features.
This limits design optimisation, as non-geometry 
related design variables, such as facade panel per-
forations, hold the ability to influence quantitative
performance as well, such as affecting the Sound 
Pressure Level (SPL) in front of the facade.
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onto a lower-dimensional one, without losing the topological features of the high-dimensional space. 

That is, the design options are clustered in the low-dimensional space based on the distance of their 

corresponding data points in the high-dimensional space. In this way, it is possible to conveniently 

represent a multi-dimensional design space onto a 2D map, in which each node N
j
 (x

j1
, x

j2
) of the 

map has an associated multi-dimensional vector W
j
 = {w

j,1
,…, w

j,n
} or Best Matching Unit (BMU). 

In fact, each node of the map contains a cluster of design options that are similar with respect to 

the defined clustering criteria. The SOM thus provides the designer with a quick overview of the 

design space. The algorithm used in this work is implemented within the Python environment using 

SOMPY (Moosavi, 2014).

Eventually, in the selection step of the design process, the designer can easily navigate within the 

SOM and select the preferred design options considering both quantitative and qualitative criteria. 

If necessary, design options can be filtered out according to quantitative criteria in order to reduce 

the size of the design space further.

3 CASE STUDY

This section outlines an application of the proposed framework for the design of load-bearing and 

shading façades based on the FAU Building designed in 1964 by the Italian architect Enrico Tedeschi 

(1910-1978) for the campus of the Architecture Faculty of Mendoza, Argentina (Fig. 4). 

FIG. 4 FAU Building (1964), arch. Enrico Tedeschi, Mendoza (Argentina)
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FIG. 9 Selection procedure for Option A (j = 61; k = 16’562). Representative design options (right) for the 14 nodes retained from 
the 40 x 40 SOM (left) after the application of hard filters on the total mass totMass (5th percentile) and the mean value of daylight 
factor DF_mean (90th percentile).

FIG. 10 Axonometric views, structural diagrams, and solar radiation maps for 3 options extracted from the dataset
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Additionally, allowing designers to understand the
complex non-linear relationships between design
variables and performance criteria early on in the
design process, based on just a small representa-
tive dataset of design vectors and their simulated
performance values, would allow for an optimised
stratified sampling logic for training the surrogate
models. This not only reduces the amount of trai-
ning data required, reducing the computational de-
mands, especially for higher-complex design pro-
blems with detailed simulations, but also improves
the surrogate model’s generalisation capabilities
by focusing on the most relevant design vectors. 
	 Furthermore, it would empower designers
with actionable insights to explore the design space
faster and more effectively, allowing them to adjust 
design variables more strategically towards finding
optimal solutions from a qualitative and quantita-
tive perspective, facilitating more informed decision
making in the early design stage, potentially leading
to better architectural and sustainable solutions.
	 Currently, there are 3 main types of per-
formance-driven design exploration frameworks 
which are used in the AEC sector, as illustrated in
Figure 1.2.2. They all commence similarly by em-
ploying a parametric model, controlled by geome-
try-related design variables, creating a vast design
space with numerous design alternatives, and all
have some sort of performance assessment, often
utilising surrogate models to optimise the compu-
tational process. Apart from their similarities, each
design framework has its distinct characteristics
and qualities, and choosing between them fully de-
pends on the specific nature of the design problem.

Figure 1.2.2. Design frameworks scheme. Icons retrieved from Flaticon.com
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Furthermore, the complex relationship between
geometry - driven by design variables - and perfor-
mance lacks interpretability, for both optimisation
frameworks and performance-driven design ex-
ploration frameworks. This is particularly true for 
complex design problems with high-dimensional
design spaces and multiple performance criteria, 
as their relationship is often highly non-linear and
conflicting. While both multi-objective optimisa-
tion’ genetic algorithms and surrogate models are
able to effectively showcase which combinations
of design variables result in well-performing geo-
metries across various performance criteria, they 
are, without employing sensitivity analysis tools, 
unable to inform the designer about how each in-
dividual design variable affects the performance. 
	 An enhanced interpretability between geo-
metry and performance would have a significant
beneficial impact on the design process by offering
the designer the ability to reconsider their initially
selected design variables, as some of them might
not have as big of an impact on the performance as
expected and might predominantly affect the geo-
metry, therefore able to be freely tweaked within
their original domain. Selecting relevant design va-
riables, affecting both geometry and performance,
is crucial as most design problems require high-di-
mensional design spaces and Self-Organising Maps
(SOM) face the curse of dimensionality where the 
number of design variables have to be limited to
prevent sparsity and to ensure it is able to reflect
the design space correctly, potentially selecting de-
sign variables that predominantly affect geometry,
and neglecting those that are highly-relevant, thus
significantly affecting the design process’ efficiency.
	 As an example, Turrin et al. (2020) emplo-
yed a performance-driven design exploration fra-
mework comprising a Self-Organising Map (SOM)
and a Multi-Layer Perceptron (MLP), in the design
process of a long-span roof structure of an indoor 
arena. Partly due to the curse of dimensionality, as
it is asserted that a nine-dimensional design space 
can be effectively reflected by a two-dimensional 
SOM, only 4/30 design variables were considered
without even knowing their effect on performance.
	 By solely focusing on design variables that
are truly significant, designers can mitigate noise
introduced by non-relevant design variables. This
not only makes the design process more efficient, 
but also creates design vectors with stronger un-
derlying patterns, enhancing the surrogate model’s
performance approximation capabilities. This is
particularly beneficial for design problems with 
high-dimensional design spaces, as their high com- 
plexity generally make them more prone to over- 
fitting and a lot harder to generalise.

The first performance-driven design exploration
framework that is utilised in the AEC sector is the
real-time feedback framework. This design frame-
work allows the designer to tweak design variables
freely with real-time changing performance appro-
ximations guiding the design exploration process
towards high performance. Despite empowering
the human designer with control over the design
process and AI assisting - rather than taking over 
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In light of these challenges, this thesis proposes a
novel performance-driven design exploration fra-
mework, inspired by the SOM framework, emplo-
yed in the design process of a biocomposite facade.
Instead of Multi-Layer Perceptrons (MLP), today’s
foundational deep learning models for approxima-
ting non-linear functions, this thesis hitches on re-
cent groundbreaking research by Liu et al. (2024),
from Massachusetts Institute of Technology, intro-
ducing Kolmogorov-Arnold Networks (KAN) as a 
highly-promising surrogate model alternative.
	 Different from MLPs static activation func-
tions on neurons and learnable weights on edges,
KANs have static sum operations on their neurons
and learnable 1D parametrised B-spline univariate
activation functions on their edges between their
neurons, allowing them to fully understand how 
each individual input variable affects the surrogate 
model’s predicted output (Liu et al., 2024). Where
SOM-MLP-based design frameworks are highly in-
efficient at providing insights into the relationship
between geometry and performance, due to their
complex architectures based on weights, and the
addition of sensitivity analysis tools result in over-
engineered frameworks with poor usability, SOM-
KAN-based design frameworks hold the ability to 
overcome these hurdles as an all-in-one solution.
	 Additionally, making the surrogate model’s
decision-making process transparent, unlike sen-
sitivity analysis tools which are only able to offer
output-level insights, fosters trust between human
designers and AI, crucial for AI to be smoothly inte-
grated into current design practices, especially as
many designers remain hesitant to shift from tra-
ditional workflows to AI-driven workflows due to
concerns about AI’s reliability coupled with their
partial loss of control over the design process.
	 Furthermore, Liu et al. (2024), Yang et al.
(2024), Bozorgasl & Chen (2024), and Samadi et al.
(2024) claim that KANs are capable of outperfor-
ming MLPs from an accuracy, convergence, neural
scaling efficiency, and a catastrophic forgetting per-
spective as well, achieving this with much smaller 
model architectures. This not only reduces com-
putational demands significantly, particularly due
to its faster convergence, minimising the amount
of training data required to yield acceptable pre-
diction accuracies - assuming sufficient represen-
tativeness of the dataset - as well as for optimising
the surrogate model’s stratified sampling logic, but
also make them more adaptable to higher-complex
design problems and a lot easier to work with.
	 In addition to providing interpretability be-
tween geometry and performance through the inte-
gration of Kolmogorov-Arnold Networks (KAN) into

1.3 Objectivecontrol completely, enhancing the design frame-
work’s reliability and making it easier to adapt to
from a traditional design framework - it has two 
significant limitations: a huge number of design al-
ternatives will not be explored and it is difficult for
the designer to understand how to adjust the de-
sign variables to achieve higher performance, ma-
king the design framework more suitable for relati-
vely simple and low-dimensional design problems.
	 The second performance-driven design ex-
ploration framework that is utilised in the AEC sec-
tor is called the performance conditioned variatio-
nal autoencoder framework (c-VAE). This design
framework, particularly employed for structural 
design problems (Danhaive & Mueller, 2021; Bal-
mer et al., 2024), is able to compress high-dimen-
sional data into low-dimensional representations,
thereby creating distributions within a so-called 
latent space. Once created, it is able to project back
out of this latent space into high-dimensional data
again. In simple terms, the c-VAE projects design
alternatives, paired with their approximated per-
formance, from a huge design space onto a three-
dimensional surface and focuses on the ones that
perform well, based on an adjustable predefined
threshold, enabling the designer to explore the de-
sign space. Despite offering excellent guidance to-
wards high quantitative performance, the design
framework lacks overview of the design space from
a qualitative perspective, making it highly perfor-
mance-oriented. Although this would be perfectly
fine for most structural design problems, it is less
suitable for most facade design problems due to 
their superior architectural impact.
	 The third performance-driven design ex-
ploration framework that is utilised in the AEC sec-
tor is the Self-Organising Map (SOM) framework.
By clustering design alternatives onto a two-dimen-
sional network of nodes, according to their geome-
tric characteristics, the designer is able to navigate
the entire design space according to geometry ty-
pology and approximated performance. While offe-
ring an excellent overview of the design space from
a qualitative perspective, their design exploration
process, consisting of between-cluster and inside-
cluster exploration, lacks balanced human-AI inter-
action. Particularly, inside-cluster exploration, in-
volving the exploration of hundreds of similar de-
sign alternatives, is overly AI-dominant and lacks 
interactivity with the human designer, making the
design framework less effective and intuitive. 
	 Consequently, the problem statement of
this thesis is: “The implementation of performance-
driven design exploration frameworks in facade de-
sign is in a very early stage, and significant enhance-
ments must be made to make them more effective.”



The main relevance of this thesis lies in its ability
to not only advance the facade design process by
integrating Kolmogorov-Arnold Networks (KAN)
as a surrogate model within a Self-Organising Map 
(SOM) based design framework, which is currently
the most advanced performance-driven design ex-

ploration framework in facade design, overcoming
limitations associated with its computational effi-
ciency and adaptability to higher-complex design
problems, but also to offer a design framework that
can be extended to advance design practices across
the entire AEC sector by offering more accurate per-
formance approximations and more informative in-
teractions between human designers and AI, ultima-
tely making the design process more effective, in-
tuitive, reliable, and less computationally intensive.

In a broader perspective, this thesis contributes to
the research community by demonstrating the po-
tential of Kolmogorov-Arnold Networks as a pro-
mising surrogate model alternative to traditional
Multi-Layer Perceptrons, by systematically com-
paring KANs with identical MLPs, as well as those 
with four, eight, and sixteen times as many nodes, 
across varying levels of performance approxima-
tion complexity, evaluating R²-scores at intervals of
300 samples up to 6,750 samples, offering insights
into KAN’s efficiency in approximating non-linear 
functions as training data and performance appro-
ximation complexity increases, relative to MLPs.
	 Additionally, this thesis advances the body
of knowledge on biocomposites, through the deve-
lopment of an interactive design tool, providing in-
sight into the potential properties and applications
of those crafted from wood dust and polylactic acid.

1.5 Relevance
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Hence, the main research question of this thesis is:
“How can a performance-driven design exploration
framework, integrating Self-Organising Maps (SOM)
and Kolmogorov-Arnold Networks (KAN), advance
the facade design process by enhancing computatio-
nal efficiency, performance approximation accuracy, 
interpretability, reliability, and usability, to facilitate
more efficient decision-making in the early design
stage?”. Following this, the sub-questions are:

1. “How can a parametric model using Rhino 3D and
Grasshopper create a vast design space of biocom-
posite facade design alternatives, controlled by geo-
metry-related design variables?”

2. “How can a Self-Organising Map cluster these bio-
composite facade design alternatives onto a two-di-
mensional network of nodes, according to their geo-
metric characteristics?“

3. “How can a Kolmogorov-Arnold Network predict
the performance of these biocomposite facade de-
sign alternatives, while providing intepretability be-
tween geometry and performance?”

4. “How can interpretability between geometry and
performance enhance the design exploration process
during the fine-tuning phase, guiding the designer
interactively towards optimal performance?”

1.4 Research questions

a SOM-based design framework, this thesis propo-
ses a novel design exploration process, consisting
of an orientation and fine-tuning phase, not only 
aiming to balance human-AI interaction more effi-
ciently, making design exploration more interac-
tive, thereby more effective and intuitive, but also
to include less-geometry related design variables,
enhancing its optimisation capabilities.
	 Consequently, the objective of this thesis is
to develop a novel performance-driven design ex-
ploration framework integrating Self-Organising
Maps (SOM) and Kolmogorov-Arnold Networks
(KAN), that advances the facade design process by
enhancing computational efficiency, performance
approximation accuracy, interpretability, reliability,
and usability, to facilitate more efficient decision-
making in the early design stage.

Figure 1.5.1. Relevance overview scheme. Icons retrieved from Flaticon.com
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In phase I, a parametric model using Rhino 3D and 
GH will be employed to create a vast design space of
biocomposite facade design alternatives, controlled
by 9 out of 19 optional geometry related design va-
riables, creating a nine-dimensional design space.
Aiming to consider 27,000 design alternatives, each
variable will be assigned an own range and interval.
	 In phase II, a SOM will be trained using all 
possible combinations of normalised geometry-re-
lated vectors of 3 out of 9 design variables, identi-
fied as the most influential on geometry, clustering
125 design variants onto a two-dimensional 15x15
hexagonal node network, according to their geo-
metric characteristics. After optimising the SOM’s
clustering performance through a hyperparameter 
tuning process, the 125 node design vectors, toge-
ther with 6,625 vectors sampled during stratifica-
tion to ensure proper generalisation - representing
25% of the entire dataset - will be used to conduct
performance simulations for material use (GH), so-
lar heat gains (Ladybug), and sound pressure level
(PachyDerm), creating representative labeled data-
sets for training three KANs, one for each metric.
	 In phase III, the KAN models will be trained
to approximate the performance of all design alter-
natives with maximum accuracy. After optimising 
their prediction accuracy through a hyperparame-
ter tuning process, they will be systematically com-
pared with various MLP models to evaluate their
prediction accuracy as training data and comlexity
increases. Following this, the KAN models will be
used to create plots showing the percentual impact
of each design variable on performance predictions,
enabling designers to identify and focus on relevant 
design variables that affect both, while also empo-
wering them with actionable insights to adjust de-
sign variables strategically toward optimal perfor-
mance. These plots will be validated through sen-
sitivity analysis results and personal assessment.
	 In phase IV, two design exploration phases
will be employed: an orientation phase allowing de-
signers to navigate the SOM according to geometry
typology and approximated performance, facilita-
ting fast design orientation based on variables with
high influence on geometry, and a fine-tuning phase
focusing on smaller geometric changes within a se-
lected best-performing design from the orientation
phase, allowing designers to adjust design variables
strategically based on real-time performance feed-
back and actionable insights provided by the KAN
models. To validate the design exploration frame-
work’s effectiveness, it will be employed in practise
and compared with traditional SOM-based between
cluster and inside cluster design exploration phases
with feedback obtained through a questionnaire.

1.6 Methodology
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Figure 1.6.1. Methodology scheme. Icons retrieved from Flaticon.com
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This literature review delves into the theory and 
practical implications underlying the proposed de-
sign framework, starting with an overview of the
general principles of Artificial Intelligence (AI), its
subfields Machine Learning (ML) with a particular
focus on Deep Learning (DL), and Neural Networks
(NN), followed by delving into both the theory as
well as the training process of Self-Organising Maps
(SOM), and Kolmogorov-Arnold Networks (KAN),
addressing their theory, training process, neural 
scaling laws, and their enhanced performance com-
pared to traditional Multi-Layer Perceptrons (MLP).
	 Artificial Intelligence (AI), also known as
the science of creating smart machines that imi-
tate human intelligence, has experienced signifi-
cant developments in the last few years thanks
to huge advancements made in GPU performance 
(Rafsanjani & Nabizadeh, 2023). Despite AI’s re-
cent growth, the principle of artificial intelligence
as we know it today, was actually already introdu-
ced in the 1940s; where a lack of sufficient com-
putational power hindered its breakthrough back
then. Nowadays, numerous powerful AI-applica-
tions have already become indispensable in many
people’s daily workflows, by taking over various 
repetitive and time-consuming activities, allow-
ing people to concentrate on the more important
parts of their work. Especially in disciplines such
as computer vision, robotics, and gaming, artificial
intelligence has experienced huge developments
(Rafsanjani & Nabizadeh, 2023). Although not as
extensively, the use of AI has become increasingly
prevalent in the field of architecture, engineering,
and construction (AEC) as well. According to Dar-
ko et al. (2020), AI in the domain of AEC is prim-
arily utilised to enhance the development of inno-
vative and optimised architectural and structural 
designs, improve the construction and operational
safety and expenses, minimise embodied carbon 
and energy consumption, and increase construc-
tion speed. The potential of artificial intelligence
is as huge as ones imagination and capable of offe-
ring the AEC sector novel methods to solve highly
complex problems by utilising extensive data to 
make informed design decisions. Despite the power
of AI, emotion, empathy, and intuition - as part of

human intelligence - can never be substituted com-
pletely, especially in the case of designing tasks 
(Maadi et al., 2021). It is anticipated that artificial
and human intelligence will go hand in hand in the
future, leading to reskilling opportunities rather 
than AI taking over control completely.
	 As a foundational branch of AI, machine 
learning (ML) focuses on leveraging huge amounts
of data to learn underlying patterns, make predic-
tions, and improve decision-making, without ex-
plicitly being programmed (Bastanlar & Ozuysal,
2013). Machine learning can be categorised into
three distinct groups: supervised learning which
utilises labeled data - where both the input and the
desired output are known - to train models to pre-
dict outputs for unseen input data, unsupervised
learning which leverages unlabeled data - where
only the input is known - to train models to iden-
tify their underlying patterns, and reinforcement
learning which learns from an interactive environ-
ment where rewards are maximised and penalties
are minimised. Deep learning (DL) overarches all
three categories, and focuses on mimicking the hu-
man brains’ neural networks, particularly effective
for highly complex tasks such as image and speech
recognition (Bastanlar & Ozuysal, 2013). Over the
years, various machine learning models have been
developed for various tasks such as classification,
prediction, clustering, and dimensionality reduc-
tion. Each of them have their own distinct qualities,
heavily reliant on the quality of the dataset, the ob-
jective, and the time available for computation. The
art lies in understanding their qualities and choo-
sing the right ML model in each situation.
	 Artificial Neural Networks (ANN), part of
DL, focuses on mimicking the human brains’ neu- 
ral networks and are employed for tasks with high
complexity (Bastanlar & Ozuysal, 2013). They con-
sist of interconnected neurons, also known as no-
des, organised in multiple layers. Artificial neural
networks generally consist of an input layer with
multiple nodes, directly related to the number of 
input variables, two or more hidden layers with
adjustable numbers of nodes, and an output layer
with a single node, contingent upon its task. Deep
neural networks employed for classification pur-
poses for example, consist of two or more output
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layer nodes - directly linked to the number of pos-
sible classes, while those used for prediction tasks
only contain one outer layer node - related to the
single normalised prediction value (Samek et al.,
2021). Each hidden layer node has its own activa-
tion function, which allows the neural network to
capture non-linear and complex patterns in the
data. As shown in Figure 2.1.1, all nodes are inter- 
connected, with - initially randomised - weights at
the edges and biases at the nodes, which are added
to the product of features · weights. During trai-
ning, the neural network learns to adjust both the
weights and biases to optimise data approxima-
tion in the outer layer node. This is done by back-
propagation, which consists of calculating the dif-
ference between the predicted output and the de-
sired output, generally measured using the mean
squared error (MSE) based on the Euclidean dis-
tance function (Samek et al., 2021).

Figure 2.1.1. Neural network. From “Medium”, by A. Chow, 2020 (https://miro.
medium.com/v2/resize:fit:720/format:webp/1*lnhJA8vzxdniOTqygcdX2Q.png).

Self-Organising Maps (SOM) are essentially types 
of unsupervised deep topological neural networks
employed for two-dimensional clustering tasks, 
based on the similarity of the data, generally mea-
sured by the Euclidean distance function (Miljko-
vic, 2017). According to Turrin et al. (2020), they
can also be considered as dimensionality reduc-
tion techniques, by projecting high-dimensional 
design spaces onto two-dimensional networks of
nodes, also reffered to as feature maps. In essence,
they work similarly to k-means clustering (KMC),
although more constrained.
	 Adapted from an online lecture from pro-
fessor H.R. Tizhoosh from University of Waterloo,
Self-Organising Maps (SOM) typically include a rec-
tangular or hexagonal lattice of neurons organised
in a topological structure, as illustrated in Figure
2.2.1. Although both are capable of capturing clus-
ters in the dataset, hexagonal grids typically offer
better topological preservation than rectangular 

To prevent Self-Organising Maps from overfitting,
a subset of ~20% of representative input vectors
is generally used during training. To ensure that

2.2 Self-Organising Map
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Each neuron on the SOM grid, acting as cluster cen-
troids representing similar data points, has its own
neighbourhood of adjacent neurons and learns in a
smooth and collaborative manner with other neu-
rons. As illustrated in Figure 2.2.2, each input data
is connected to each neuron on the grid with ran-
domised weights at the start, similar to supervised 
neural networks. During training, each input data
is assigned to the Best Matching Unit (BMU) with
the closest weight factor, generally measured by
the Euclidean distance function. Both the winning
neuron, which shows most similarity to the data,
and its neighbourhood have their weights updated
to move closer to the data. This update works most
strongly on the winning neuron and does not affect
neurons outside the neighbourhood. In the begin-
ning, each neuron competes to represent the input
data, resulting in a relatively flat Gaussian distri-
bution as it tries to collaborate with its neighbour-
hood. Towards the end, each neuron cluster cen-
troid represents a pointier Gaussian distribution.
As more input data is assigned to certain neurons,
a topographical map emerges, showing different 
clusters in the dataset, as illustrated in Figure 2.2.3.

grids because they have a smaller difference in the
number of adjacent neurons between the edges 
and the center (Licen et al., 2023).

MIPRO 2017/CTS   1253 

III. SELF-ORGANIZING MAPS 
Self-organized map (SOM), as a particular neural 

network paradigm has found its inspiration in self-
organizing and biological systems. 

A. Self-Organized Systems 
Self-organizing systems are types of systems that can 

change their internal structure and function in response to 
external circumstances and stimuli, [12-15]. Elements of 
such a system can influence or organize other elements 
within the same system, resulting in a greater stability of 
structure or function of the whole against external 
fluctuations, [12]. The main aspects of self-organizing 
systems are increase of complexity, emergence of new 
phenomena (the whole is more than the sum of its parts) 
and internal regulation by positive and negative feedback 
loops. In 1952 Turing published a paper regarding the 
mathematical theory of pattern formation in biology, and 
found that global order in a system can arise from local 
interactions, [13]. This often produces a system with new, 
emergent properties that differ qualitatively from those of 
components without interactions, [16]. Self-organizing 
systems exist in nature, including non-living as well as 
living world, they exist in man-made systems, but also in 
the world of abstract ideas, [12].  

B. Self-Organizing Map 
Neural networks of neurons with lateral 

communication of neurons topologically organized as 
self-organizing maps are common in neurobiology. 
Various neural functions are mapped onto identifiable 
regions of the brain, Fig. 3, [17]. In such topographic 
maps neighborhood relation is preserved. Brain mostly 
does not have desired input-output pairs available and has 
to learn in unsupervised mode. 

 

 
Figure 3. Maps in brain, [17] 

 
A SOM is a single layer neural network with units set 

along an n-dimensional grid. Most applications use two-
dimensional and rectangular grid, although many 
applications also use hexagonal grids, and some one, 
three, or more dimensional spaces. SOMs produce low-
dimensional projection images of high-dimensional data 
distributions, in which the similarity relations between 
the data items are preserved, [18], 

C. Principles of Self-Organization in SOMs 
Following three processes are common to self-

organization in SOMs, [7,19,20]: 

1. Competitive Process 
For each input pattern vector presented to the map, all 

neurons calculate values of a discriminant function. The 
neuron that is most similar to the input pattern vector is 
the winner (best matching unit, BMU). 
2. Cooperative Process 

The winner neuron (BMU) finds the spatial location 
of a topological neighborhood of excited neurons. 
Neurons from this neighborhood may then cooperate. 
3. Synaptic Adaptation 

Provides that excited neurons can modify their 
values of the discriminant function related to the presented 
input pattern vector by the process of weight adjustments. 
D. Common Topologies 

SOM topologies can be in one, two (most common) 
or even three dimensions, [2-10]. Two most used two 
dimensional grids in SOMs are rectangular and hexagonal 
grid. Three dimensional topologies can be in form of a 
cylinder or toroid shapes. 1-D (linear) and 2-D grids are 
illustrated in Fig. 4, with corresponding SOMs in Fig. 5 
and Fig. 6, according to [19]. 

 

 

 
Figure 4. Most common grids and neuron neighborhoods  

 

 
Figure 5. 1-D SOM network, according to [19]. 

 

 
Figure 6. 2-D SOM network, according to [19]. 

IV. LEARNING ALGORITHM 
In 1982 Professor Kohonen presented his SOM 

algorithm, [1]. Further advancement in a field came with 
the Second edition of his book “Self-Organization and 
Associative Memory” in 1988, [2]. 
A. Measures of Distance and Similarity 

To determined similarity between the input vector and 
neurons measures of distance are used. Some popular 
distances among input pattern and SOM units are, [21]: 

 Euclidian 
 Correlation 
 Direction cosine 
 Block distance 

In a real application most often squared Euclidean 
distance is used, (1): 

  
i

iji wxdj 2   (1) 

Figure 2.2.1. Most commonly used self-organising map grids. Adapted from
“Brief Review of Self-Organizing Maps”, by Miljkovic, 2017 [74].

Figure 2.2.2. SOM structure. From “Medium”, by A. Ali, 2019 (https://miro.me-
dium.com/v2/resize:fit:640/format:webp/1*0PdY0c_2FFZ1-BY-_j0yRA.png).
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Figure 2.2.3. SOM topographical surface. From “Viscovery”, by Viscovery, n.d.
(https://www.viscovery.net/bilder/somine/UnfoldedMap.png).

Finally, self-organising maps can adapt to various
network sizes, determined by the number of neu-
rons in columns and rows. Choosing the appropiate
SOM-network size is essential and heavily reliant
on the number of input data points that need to be
clustered. If the number of nodes on the SOM grid
is too high compared to the number of input data
samples, some nodes may capture no data at all,
indicating that the SOM might be overly complex,
potentially causing overfitting, reduced generalisa-
tion, and poor interpretability. On the other hand,
too little number of nodes could lead in a map that
fails to capture the intricate relationships of the 
data (Licen et al., 2023). Choosing the appropiate
SOM-network size is quite challenging, especially
because the number of input data points is not the
only aspect influencing this decision-making. As a
general guideline, Kohonen (2013) suggests that
the total number of nodes on the SOM grid should
be around 5 · √(number of input samples). How-
ever, it is recommended to increase the size of the
SOM-network if the dimensionality of the input 
vectors is above average.

each variable within these input vectors contribu-
tes equally to the distance calculations during trai-
ning, they are typically normalised (0-1). During
training, the self-organising map learns to cluster
based on the underlying patterns of this subset. 
After finalising training, the weights are set and 
the SOM allows for clustering the remaining data-
set (Licen et al., 2023). During training, one can use
a sequential approach where individual input vec-
tors are presented one after another and weights
are updated right after, or batch training where all
input vectors are presented before any weight ad-
justments are made (Licen et al., 2023). While both
methods have their own advantages, batch training
is usually recommended for its faster convergence
and no need for learning-rate tuning, as all vectors
are presented at the same time (Kohonen, 2013).

To optimise the clustering performance of SOMs,
given that a batch training algorithm (BTA) is used,
one can iterate through different hyperparameter
values for neighbourhood radius and number of 
epochs, and keep the model with the least amount
of error. While the Mean Squared Error (MSE) can 
be used in supervised learning to compare the pre-
dicted output against the desired output to com-
pute the loss, Self-Organising Maps are unable to 
use this error metric due to their unsupervised na-
ture. However, quantisation error (QE) and topo-
graphic error (TE) can be used instead to evaluate
the SOM’s clustering performance. With regard to
these error metrics, QE relates to the average dis-
tance between each input vector and the BMU, and
influences the accuracy of input space representa-
tion, and TE relates to the amount of input vectors
for which the first and second BMU are not adja-
cent on the SOM grid, and affects the quality of to-
pological preservation (Licen et al., 2023). In other
words, QE concerns how close the input vectors
are to the neurons on the SOM grid, while TE con-
cerns how well similar input vectors are close to-
gether on the SOM grid. It is recommended to use a
multi-objective optimisation approach, where both
error metrics are combined into a weighted sum
and minimised during the hyperparameter tuning.

Kolmogorov-Arnold Networks (KAN) are types of
supervised neural networks, also known as fully
connected feedforward neural networks, which 
can be used for both classification and prediction
tasks (Liu et al., 2024). Different from MLPs univer-
sal approximation theorem, which states that any 
continuous function regardless of its complexity 
can be approximated as long as the neural network
has one hidden layer and enough neurons (Xu et 
al., 2022), KANs are, not unsurprisingly, based on 
the Kolmogorov-Arnold representation theorem, 
named after two very prominent mathematicians: 
Andrey Kolmogorov and Vladimir Arnold.
	 This theorem established that: “If f(x) is a
multi-variate continuous function on a bounded 
domain, then f(x) can be written as a finite compo-
sition of continuous functions of a single variable
and the binary operation of addition.” (Liu et al., 
2024, pp. 3-4). In other words, a complex function
depending on multiple variables, can be precisely
rewritten by combining less complicated functions
that depend on just one single variable (Yang et al.,
2024). This theorem can be expressed as follows:

2.3 Kolmogorov-Arnold Network

Where the complex multi-variate continuous func-
tion is expressed as ƒ(x1, . . . , xn), the simple univa- 
riate functions are given by ϕq,p(xp), and where Φq 
combines all univariate functions (Liu et al., 2024).
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Figure 2.3.1. Kolmogorov-Arnold networks (KAN) model overview. Adapted
from “KAN: Kolmogorov-Arnold Networks”, by Liu et al., 2024 [68].

Figure 2.3.2. Training process of Kolmogorov-Arnold network for classification.
From “Daniel-Bethell”, by D. Bethell, 2024 (https://i.imgur.com/v8D90ml.gif).

Different from MLPs static activation functions on
their neurons and learnable weights on their edges,
Kolmogorov-Arnold Networks (KAN) have static 
sum operations on their neurons and learnable 1D
parametrised B-spline univariate activation func-
tions on their edges between their neurons, allo-
wing them to understand how each input variable
affects the output (Liu et al., 2024). Consequently, 
KANs hold the ability to address the black box pro-
blem, providing insights into the decision-making
process within neural networks. Because of their
unique architecture, KANs require significantly less
parameters than MLPs, referring to the number of
hidden layers and neurons, leading to better gene-
ralisation and interpretability capabilities (Chen &
Bozorgasl, 2024). At the foundation of KANs are
the learnable polynomial B-spline activation func-
tions, as illustrated in Figure 2.3.1, which are ex-
cellent for data fitting because of their remarkable
smoothness and accuracy in representing highly-
complex functions (Liu et al., 2024).

The training process of KANs is similar to that of
MLPs, with a specific loss function, optimiser, and
epochs. In training, each B-spline activation func-
tion tweaks its control points through backpropa-
gation, increasing its accuracy (Liu et al., 2024). In
Figure 2.2.9, the training process of a Kolmogorov-
Arnold Network with four input variables, a single
hidden layer with five nodes, and three output var-
iables, as part of a classification task, is illustrated.
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Abstract

Inspired by the Kolmogorov-Arnold representation theorem, we propose Kolmogorov-
Arnold Networks (KANs) as promising alternatives to Multi-Layer Perceptrons (MLPs).
While MLPs have fixed activation functions on nodes (“neurons”), KANs have learnable
activation functions on edges (“weights”). KANs have no linear weights at all – every
weight parameter is replaced by a univariate function parametrized as a spline. We show
that this seemingly simple change makes KANs outperform MLPs in terms of accuracy
and interpretability, on small-scale AI + Science tasks. For accuracy, smaller KANs can
achieve comparable or better accuracy than larger MLPs in function fitting tasks. Theo-
retically and empirically, KANs possess faster neural scaling laws than MLPs. For inter-
pretability, KANs can be intuitively visualized and can easily interact with human users.
Through two examples in mathematics and physics, KANs are shown to be useful “collabo-
rators” helping scientists (re)discover mathematical and physical laws. In summary, KANs
are promising alternatives for MLPs, opening opportunities for further improving today’s
deep learning models which rely heavily on MLPs.
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Figure 2.2: Left: Notations of activations that flow through the network. Right: an activation function is
parameterized as a B-spline, which allows switching between coarse-grained and fine-grained grids.

single variable and the binary operation of addition. More specifically, for a smooth f : [0, 1]n → R,

f(x) = f(x1, · · · , xn) =

2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp)

)
, (2.1)

where ϕq,p : [0, 1] → R and Φq : R → R. In a sense, they showed that the only true multivariate
function is addition, since every other function can be written using univariate functions and sum.
One might naively consider this great news for machine learning: learning a high-dimensional func-
tion boils down to learning a polynomial number of 1D functions. However, these 1D functions
can be non-smooth and even fractal, so they may not be learnable in practice [19]. Because of this
pathological behavior, the Kolmogorov-Arnold representation theorem was basically sentenced to
death in machine learning, regarded as theoretically sound but practically useless [19].

However, we are more optimistic about the usefulness of the Kolmogorov-Arnold theorem for ma-
chine learning. First of all, we need not stick to the original Eq. (2.1) which has only two-layer non-
linearities and a small number of terms (2n+1) in the hidden layer: we will generalize the network
to arbitrary widths and depths. Secondly, most functions in science and daily life are often smooth
and have sparse compositional structures, potentially facilitating smooth Kolmogorov-Arnold rep-
resentations. The philosophy here is close to the mindset of physicists, who often care more about
typical cases rather than worst cases. After all, our physical world and machine learning tasks must
have structures to make physics and machine learning useful or generalizable at all [20].

2.2 KAN architecture

Suppose we have a supervised learning task consisting of input-output pairs {xi, yi}, where we want
to find f such that yi ≈ f(xi) for all data points. Eq. (2.1) implies that we are done if we can find
appropriate univariate functions ϕq,p and Φq . This inspires us to design a neural network which
explicitly parametrizes Eq. (2.1). Since all functions to be learned are univariate functions, we can
parametrize each 1D function as a B-spline curve, with learnable coefficients of local B-spline basis
functions (see Figure 2.2 right). Now we have a prototype of KAN, whose computation graph is
exactly specified by Eq. (2.1) and illustrated in Figure 0.1 (b) (with the input dimension n = 2),
appearing as a two-layer neural network with activation functions placed on edges instead of nodes
(simple summation is performed on nodes), and with width 2n+ 1 in the middle layer.

4

As can be seen, KANs B-spline activation functions
change during training until converging into a par-
ticular shape, capturing the underlying patterns of
the data with maximum accuracy. As shown, the
connections with minimal influence on the predic-
tion are switched off, not only making the model
more efficient, but also giving insights into its de-
cision-making process (Bethell, 2024).
	 In order to adapt to more complex func-
tions, neural scaling laws dictate to increase the 
size of the neural networks’ architecture, by the 
addition of hidden layers or the increment of their
neurons. This is possible for both MLPs and KANs,
however, this type of neural scaling is quite slow.
Furtunately, KANs hold the ability to do this more
effectively. After initialising training with just a 
few parameters, neural scaling can be applied by
increasing the resolution of the B-spline activation
functions’ grid, also referred to as grid extension,
without requiring the larger network to be trained
again (Liu et al., 2024).
	 Additionally, KANs hold the ability to sig-
nificantly reduce catastrophic forgetting, which is
a major concern in machine learning where neural
networks forget previously learned information 
when they are employed for new tasks (Bozorgasl
& Chen, 2024). This is because of the local control 
points of KANs B-spline activation functions, which
create a concept of locality, unlike MLPs global ac-
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Epoch 1/100
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Epoch 100/100
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Supported by Liu et al. (2024), Yang et al. (2024),
Samadi et al. (2024), and Bozorgasl & Chen (2024), 
KANs are able to outperform MLPs from a neural
scaling efficiency perspective as well. In the follo-
wing experiment, carried out by Liu et al. (2024),
KANs and MLPs are compared by examining their
efficiency in representing four mathematical func-
tions through a supervised regression task with 
labeled x and y values. In other words, where ƒ(x)
= y: aiming to find the function that transforms x
into y. As illustrated in Figure 2.3.4, these mathe-
matical functions increase in complexity (from a
to d), therefore requiring varying model dimensio-
nalities. As an example, a KAN [4,4,2,1] with 4 in-
put variables, 2 hidden layers with 4 and 2 nodes
respectively, and 1 output variable, aims to repre-
sent the most complex function d, KAN [2,2,1] aims 

to represent a, KAN [2,1,1] aims to represent b, and
KAN [100,1,1] aims to represent c. For each ma-
thematical function (a-d), four different MLPs with
varying depths, directly related to the number of
layers, are employed with the same task. After trai-
ning, all of the five neural networks are evaluated
on the root mean squared error (RMSE) as a func-
tion of an increasing number of parameters. With
respect to the MLPs, this increment of parameters
relates to an increase in architecture width, directly
related to the number of neurons in the hidden la-
yers. Concerning KANs, it relates to grid extension,
which is considerably faster due to their locality
(Liu et al., 2024). Interpreting the results (a to d), 
it can be confirmed that KANs significantly outper-
form MLPs from a neural scaling efficiency per-
spective. While MLPs have relatively small perfor-
mance improvements as a function of an increasing
number of parameters and plateau quickly, KANs
show incredibly fast neural scaling, indicating they
have a better performance while requiring signifi-
cantly less parameters (Liu et al., 2024).
	 Additionally, an experiment was executed
by Liu et al. (2024) to evaluate KANs training and 
neural scaling efficiency compared to MLPs, when
employed for a partial differential equation task.
Based on graphs a & b from Figure 2.3.5, it can be
concluded that, besides achieving lower losses in
general, KANs converge faster, meaning they are
reaching lower L2/H1 error squared losses faster
during training, and that with much smaller archi-
tectures. Interpreting the results from graphs c & d, 
KANs have much steeper scaling laws than MLPs,
indicating their superior performance with signifi-
cantly fewer parameters required (Liu et al., 2024).

Figure 2.3.3. Comparison of KANs to MLPs based on catastrophic forgetting.
Adapted from “KAN: Kolmogorov-Arnold Networks”, by Liu et al., 2024 [68].
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Figure 3.4: A toy continual learning problem. The dataset is a 1D regression task with 5 Gaussian peaks (top
row). Data around each peak is presented sequentially (instead of all at once) to KANs and MLPs. KANs
(middle row) can perfectly avoid catastrophic forgetting, while MLPs (bottom row) display severe catastrophic
forgetting.

ally distinct modules placed locally in space. When a new task is learned, structure re-organization
only occurs in local regions responsible for relevant skills [40, 41], leaving other regions intact. Most
artificial neural networks, including MLPs, do not have this notion of locality, which is probably the
reason for catastrophic forgetting.

We show that KANs have local plasticity and can avoid catastrophic forgetting by leveraging the
locality of splines. The idea is simple: since spline bases are local, a sample will only affect a
few nearby spline coefficients, leaving far-away coefficients intact (which is desirable since far-
away regions may have already stored information that we want to preserve). By contrast, since
MLPs usually use global activations, e.g., ReLU/Tanh/SiLU etc., any local change may propagate
uncontrollably to regions far away, destroying the information being stored there.

We use a toy example to validate this intuition. The 1D regression task is composed of 5 Gaussian
peaks. Data around each peak is presented sequentially (instead of all at once) to KANs and MLPs,
as shown in Figure 3.4 top row. KAN and MLP predictions after each training phase are shown in
the middle and bottom rows. As expected, KAN only remodels regions where data is present on
in the current phase, leaving previous regions unchanged. By contrast, MLPs remodels the whole
region after seeing new data samples, leading to catastrophic forgetting.

Here we simply present our preliminary results on an extremely simple example, to demonstrate
how one could possibly leverage locality in KANs (thanks to spline parametrizations) to reduce
catastrophic forgetting. However, it remains unclear whether our method can generalize to more
realistic setups, especially in high-dimensional cases where it is unclear how to define “locality”. In
future work, We would also like to study how our method can be connected to and combined with
SOTA methods in continual learning [42, 43].

4 KANs are interpretable

In this section, we show that KANs are interpretable and interactive thanks to the techniques we
developed in Section 2.5. We want to test the use of KANs not only on synthetic tasks (Section 4.1
and 4.2), but also in real-life scientific research. We demonstrate that KANs can (re)discover both
highly non-trivial relations in knot theory (Section 4.3) and phase transition boundaries in condensed

19

Figure 2.3.4. Comparison of KANs to MLPs based on neural scaling efficiency,
with a) KAN [2,2,1], b) KAN [2,1,1], c) KAN [100,1,1], and d) KAN [4,4,2,1]. 
Adapted from “KAN: Kolmogorov-Arnold Networks”, by Liu et al., 2024 [68].
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Figure 3.1: Compare KANs to MLPs on five toy examples. KANs can almost saturate the fastest scaling law
predicted by our theory (α = 4), while MLPs scales slowly and plateau quickly.

3.1 Toy datasets

In Section 2.3, our theory suggested that test RMSE loss ℓ scales as ℓ ∝ N−4 with model parameters
N . However, this relies on the existence of a Kolmogorov-Arnold representation. As a sanity check,
we construct five examples we know have smooth KA representations:

(1) f(x) = J0(20x), which is the Bessel function. Since it is a univariate function, it can be
represented by a spline, which is a [1, 1] KAN.

(2) f(x, y) = exp(sin(πx) + y2). We know that it can be exactly represented by a [2, 1, 1] KAN.

(3) f(x, y) = xy. We know from Figure 4.1 that it can be exactly represented by a [2, 2, 1] KAN.

(4) A high-dimensional example f(x1, · · · , x100) = exp( 1
100

∑100
i=1 sin

2(πxi

2 )) which can be rep-
resented by a [100, 1, 1] KAN.

(5) A four-dimensional example f(x1, x2, x3, x4) = exp( 12 (sin(π(x
2
1 + x2

2)) + sin(π(x2
3 + x2

4))))

which can be represented by a [4, 4, 2, 1] KAN.

We train these KANs by increasing grid points every 200 steps, in total covering G =

{3, 5, 10, 20, 50, 100, 200, 500, 1000}. We train MLPs with different depths and widths as base-
lines. Both MLPs and KANs are trained with LBFGS for 1800 steps in total. We plot test RMSE as
a function of the number of parameters for KANs and MLPs in Figure 3.1, showing that KANs have
better scaling curves than MLPs, especially for the high-dimensional example. For comparison, we
plot the lines predicted from our KAN theory as red dashed (α = k+1 = 4), and the lines predicted
from Sharma & Kaplan [23] as black-dashed (α = (k+1)/d = 4/d). KANs can almost saturate the
steeper red lines, while MLPs struggle to converge even as fast as the slower black lines and plateau
quickly. We also note that for the last example, the 2-Layer KAN [4, 9, 1] behaves much worse than
the 3-Layer KAN (shape [4, 2, 2, 1]). This highlights the greater expressive power of deeper KANs,
which is the same for MLPs: deeper MLPs have more expressive power than shallower ones. Note
that we have adopted the vanilla setup where both KANs and MLPs are trained with LBFGS with-
out advanced techniques, e.g., switching between Adam and LBFGS, or boosting [34]. We leave the
comparison of KANs and MLPs in advanced setups for future work.

3.2 Special functions

One caveat for the above results is that we assume knowledge of the “true” KAN shape. In practice,
we do not know the existence of KA representations. Even when we are promised that such a KA
representation exists, we do not know the KAN shape a priori. Special functions in more than
one variables are such cases, because it would be (mathematically) surprising if multivariate special
functions (e.g., a Bessel function f(ν, x) = Jν(x)) could be written in KA represenations, involving
only univariate functions and sums). We show below that:
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Figure 3.1: Compare KANs to MLPs on five toy examples. KANs can almost saturate the fastest scaling law
predicted by our theory (α = 4), while MLPs scales slowly and plateau quickly.

3.1 Toy datasets

In Section 2.3, our theory suggested that test RMSE loss ℓ scales as ℓ ∝ N−4 with model parameters
N . However, this relies on the existence of a Kolmogorov-Arnold representation. As a sanity check,
we construct five examples we know have smooth KA representations:

(1) f(x) = J0(20x), which is the Bessel function. Since it is a univariate function, it can be
represented by a spline, which is a [1, 1] KAN.

(2) f(x, y) = exp(sin(πx) + y2). We know that it can be exactly represented by a [2, 1, 1] KAN.

(3) f(x, y) = xy. We know from Figure 4.1 that it can be exactly represented by a [2, 2, 1] KAN.

(4) A high-dimensional example f(x1, · · · , x100) = exp( 1
100

∑100
i=1 sin

2(πxi

2 )) which can be rep-
resented by a [100, 1, 1] KAN.

(5) A four-dimensional example f(x1, x2, x3, x4) = exp( 12 (sin(π(x
2
1 + x2

2)) + sin(π(x2
3 + x2

4))))

which can be represented by a [4, 4, 2, 1] KAN.

We train these KANs by increasing grid points every 200 steps, in total covering G =

{3, 5, 10, 20, 50, 100, 200, 500, 1000}. We train MLPs with different depths and widths as base-
lines. Both MLPs and KANs are trained with LBFGS for 1800 steps in total. We plot test RMSE as
a function of the number of parameters for KANs and MLPs in Figure 3.1, showing that KANs have
better scaling curves than MLPs, especially for the high-dimensional example. For comparison, we
plot the lines predicted from our KAN theory as red dashed (α = k+1 = 4), and the lines predicted
from Sharma & Kaplan [23] as black-dashed (α = (k+1)/d = 4/d). KANs can almost saturate the
steeper red lines, while MLPs struggle to converge even as fast as the slower black lines and plateau
quickly. We also note that for the last example, the 2-Layer KAN [4, 9, 1] behaves much worse than
the 3-Layer KAN (shape [4, 2, 2, 1]). This highlights the greater expressive power of deeper KANs,
which is the same for MLPs: deeper MLPs have more expressive power than shallower ones. Note
that we have adopted the vanilla setup where both KANs and MLPs are trained with LBFGS with-
out advanced techniques, e.g., switching between Adam and LBFGS, or boosting [34]. We leave the
comparison of KANs and MLPs in advanced setups for future work.

3.2 Special functions

One caveat for the above results is that we assume knowledge of the “true” KAN shape. In practice,
we do not know the existence of KA representations. Even when we are promised that such a KA
representation exists, we do not know the KAN shape a priori. Special functions in more than
one variables are such cases, because it would be (mathematically) surprising if multivariate special
functions (e.g., a Bessel function f(ν, x) = Jν(x)) could be written in KA represenations, involving
only univariate functions and sums). We show below that:
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Figure 3.1: Compare KANs to MLPs on five toy examples. KANs can almost saturate the fastest scaling law
predicted by our theory (α = 4), while MLPs scales slowly and plateau quickly.

3.1 Toy datasets

In Section 2.3, our theory suggested that test RMSE loss ℓ scales as ℓ ∝ N−4 with model parameters
N . However, this relies on the existence of a Kolmogorov-Arnold representation. As a sanity check,
we construct five examples we know have smooth KA representations:

(1) f(x) = J0(20x), which is the Bessel function. Since it is a univariate function, it can be
represented by a spline, which is a [1, 1] KAN.

(2) f(x, y) = exp(sin(πx) + y2). We know that it can be exactly represented by a [2, 1, 1] KAN.

(3) f(x, y) = xy. We know from Figure 4.1 that it can be exactly represented by a [2, 2, 1] KAN.

(4) A high-dimensional example f(x1, · · · , x100) = exp( 1
100

∑100
i=1 sin

2(πxi

2 )) which can be rep-
resented by a [100, 1, 1] KAN.

(5) A four-dimensional example f(x1, x2, x3, x4) = exp( 12 (sin(π(x
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1 + x2

2)) + sin(π(x2
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4))))

which can be represented by a [4, 4, 2, 1] KAN.

We train these KANs by increasing grid points every 200 steps, in total covering G =

{3, 5, 10, 20, 50, 100, 200, 500, 1000}. We train MLPs with different depths and widths as base-
lines. Both MLPs and KANs are trained with LBFGS for 1800 steps in total. We plot test RMSE as
a function of the number of parameters for KANs and MLPs in Figure 3.1, showing that KANs have
better scaling curves than MLPs, especially for the high-dimensional example. For comparison, we
plot the lines predicted from our KAN theory as red dashed (α = k+1 = 4), and the lines predicted
from Sharma & Kaplan [23] as black-dashed (α = (k+1)/d = 4/d). KANs can almost saturate the
steeper red lines, while MLPs struggle to converge even as fast as the slower black lines and plateau
quickly. We also note that for the last example, the 2-Layer KAN [4, 9, 1] behaves much worse than
the 3-Layer KAN (shape [4, 2, 2, 1]). This highlights the greater expressive power of deeper KANs,
which is the same for MLPs: deeper MLPs have more expressive power than shallower ones. Note
that we have adopted the vanilla setup where both KANs and MLPs are trained with LBFGS with-
out advanced techniques, e.g., switching between Adam and LBFGS, or boosting [34]. We leave the
comparison of KANs and MLPs in advanced setups for future work.

3.2 Special functions

One caveat for the above results is that we assume knowledge of the “true” KAN shape. In practice,
we do not know the existence of KA representations. Even when we are promised that such a KA
representation exists, we do not know the KAN shape a priori. Special functions in more than
one variables are such cases, because it would be (mathematically) surprising if multivariate special
functions (e.g., a Bessel function f(ν, x) = Jν(x)) could be written in KA represenations, involving
only univariate functions and sums). We show below that:
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Figure 3.1: Compare KANs to MLPs on five toy examples. KANs can almost saturate the fastest scaling law
predicted by our theory (α = 4), while MLPs scales slowly and plateau quickly.

3.1 Toy datasets

In Section 2.3, our theory suggested that test RMSE loss ℓ scales as ℓ ∝ N−4 with model parameters
N . However, this relies on the existence of a Kolmogorov-Arnold representation. As a sanity check,
we construct five examples we know have smooth KA representations:

(1) f(x) = J0(20x), which is the Bessel function. Since it is a univariate function, it can be
represented by a spline, which is a [1, 1] KAN.

(2) f(x, y) = exp(sin(πx) + y2). We know that it can be exactly represented by a [2, 1, 1] KAN.

(3) f(x, y) = xy. We know from Figure 4.1 that it can be exactly represented by a [2, 2, 1] KAN.

(4) A high-dimensional example f(x1, · · · , x100) = exp( 1
100

∑100
i=1 sin

2(πxi

2 )) which can be rep-
resented by a [100, 1, 1] KAN.

(5) A four-dimensional example f(x1, x2, x3, x4) = exp( 12 (sin(π(x
2
1 + x2

2)) + sin(π(x2
3 + x2

4))))

which can be represented by a [4, 4, 2, 1] KAN.

We train these KANs by increasing grid points every 200 steps, in total covering G =

{3, 5, 10, 20, 50, 100, 200, 500, 1000}. We train MLPs with different depths and widths as base-
lines. Both MLPs and KANs are trained with LBFGS for 1800 steps in total. We plot test RMSE as
a function of the number of parameters for KANs and MLPs in Figure 3.1, showing that KANs have
better scaling curves than MLPs, especially for the high-dimensional example. For comparison, we
plot the lines predicted from our KAN theory as red dashed (α = k+1 = 4), and the lines predicted
from Sharma & Kaplan [23] as black-dashed (α = (k+1)/d = 4/d). KANs can almost saturate the
steeper red lines, while MLPs struggle to converge even as fast as the slower black lines and plateau
quickly. We also note that for the last example, the 2-Layer KAN [4, 9, 1] behaves much worse than
the 3-Layer KAN (shape [4, 2, 2, 1]). This highlights the greater expressive power of deeper KANs,
which is the same for MLPs: deeper MLPs have more expressive power than shallower ones. Note
that we have adopted the vanilla setup where both KANs and MLPs are trained with LBFGS with-
out advanced techniques, e.g., switching between Adam and LBFGS, or boosting [34]. We leave the
comparison of KANs and MLPs in advanced setups for future work.

3.2 Special functions

One caveat for the above results is that we assume knowledge of the “true” KAN shape. In practice,
we do not know the existence of KA representations. Even when we are promised that such a KA
representation exists, we do not know the KAN shape a priori. Special functions in more than
one variables are such cases, because it would be (mathematically) surprising if multivariate special
functions (e.g., a Bessel function f(ν, x) = Jν(x)) could be written in KA represenations, involving
only univariate functions and sums). We show below that:

14

10

1

10

2

10

3

10

4

10

5

Number of parameters

10

7

10

6

10

5

10

4

10

3

10

2

10

1

t
e
s
t
 
R

M
S
E

N

4

N

4

f(x) = J

0

(20x)

KAN (depth 2)

MLP (depth 2)

MLP (depth 3)

MLP (depth 4)

MLP (depth 5)

Theory (KAN)

Theory (ID)

10

1

10

2

10

3

10

4

10

5

Number of parameters

10

7

10

6

10

5

10

4

10

3

10

2

10

1

N

4

N

2

f(x, y) = exp(sin( x) + y

2

)

KAN (depth 2)

MLP (depth 2)

MLP (depth 3)

MLP (depth 4)

MLP (depth 5)

Theory (KAN)

Theory (ID)

10

1

10

2

10

3

10

4

10

5

Number of parameters

10

8

10

7

10

6

10

5

10

4

10

3

10

2

N

4

N

2

f(x, y) = xy

KAN (depth 2)

MLP (depth 2)

MLP (depth 3)

MLP (depth 4)

MLP (depth 5)

Theory (KAN)

Theory (ID)

10

3

10

4

10

5

Number of parameters

10

5

10

4

10

3

10

2

10

1

N

4

N

0.04

f(x

1

, , x

100

) = exp(

1

100

(

100

i= 1

sin

2

(

x

i

2

)))

KAN (depth 2)

MLP (depth 2)

MLP (depth 3)

MLP (depth 4)

MLP (depth 5)

Theory (KAN)

Theory (ID)

10

2

10

3

10

4

Number of parameters

10

7

10

6

10

5

10

4

10

3

10

2

10

1

N

4

N

1

f(x

1

, x

2

, x

3

, x

4

) = exp(sin(x

2

1

+ x

2

2

) + sin(x

2

3

+ x

2

4

))

KAN (depth 3)

KAN (depth 2)

MLP (depth 2)

MLP (depth 3)

MLP (depth 4)

MLP (depth 5)

Theory (KAN)

Theory (ID)
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predicted by our theory (α = 4), while MLPs scales slowly and plateau quickly.

3.1 Toy datasets

In Section 2.3, our theory suggested that test RMSE loss ℓ scales as ℓ ∝ N−4 with model parameters
N . However, this relies on the existence of a Kolmogorov-Arnold representation. As a sanity check,
we construct five examples we know have smooth KA representations:

(1) f(x) = J0(20x), which is the Bessel function. Since it is a univariate function, it can be
represented by a spline, which is a [1, 1] KAN.

(2) f(x, y) = exp(sin(πx) + y2). We know that it can be exactly represented by a [2, 1, 1] KAN.

(3) f(x, y) = xy. We know from Figure 4.1 that it can be exactly represented by a [2, 2, 1] KAN.

(4) A high-dimensional example f(x1, · · · , x100) = exp( 1
100

∑100
i=1 sin

2(πxi

2 )) which can be rep-
resented by a [100, 1, 1] KAN.

(5) A four-dimensional example f(x1, x2, x3, x4) = exp( 12 (sin(π(x
2
1 + x2

2)) + sin(π(x2
3 + x2

4))))

which can be represented by a [4, 4, 2, 1] KAN.

We train these KANs by increasing grid points every 200 steps, in total covering G =

{3, 5, 10, 20, 50, 100, 200, 500, 1000}. We train MLPs with different depths and widths as base-
lines. Both MLPs and KANs are trained with LBFGS for 1800 steps in total. We plot test RMSE as
a function of the number of parameters for KANs and MLPs in Figure 3.1, showing that KANs have
better scaling curves than MLPs, especially for the high-dimensional example. For comparison, we
plot the lines predicted from our KAN theory as red dashed (α = k+1 = 4), and the lines predicted
from Sharma & Kaplan [23] as black-dashed (α = (k+1)/d = 4/d). KANs can almost saturate the
steeper red lines, while MLPs struggle to converge even as fast as the slower black lines and plateau
quickly. We also note that for the last example, the 2-Layer KAN [4, 9, 1] behaves much worse than
the 3-Layer KAN (shape [4, 2, 2, 1]). This highlights the greater expressive power of deeper KANs,
which is the same for MLPs: deeper MLPs have more expressive power than shallower ones. Note
that we have adopted the vanilla setup where both KANs and MLPs are trained with LBFGS with-
out advanced techniques, e.g., switching between Adam and LBFGS, or boosting [34]. We leave the
comparison of KANs and MLPs in advanced setups for future work.

3.2 Special functions

One caveat for the above results is that we assume knowledge of the “true” KAN shape. In practice,
we do not know the existence of KA representations. Even when we are promised that such a KA
representation exists, we do not know the KAN shape a priori. Special functions in more than
one variables are such cases, because it would be (mathematically) surprising if multivariate special
functions (e.g., a Bessel function f(ν, x) = Jν(x)) could be written in KA represenations, involving
only univariate functions and sums). We show below that:
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Figure 2.3.5. Comparison of KANs to MLPs based on their training accuracy, 
with a) KAN [2,2,1], b) KAN [2,1,1], c) KAN [100,1,1], and d) KAN [4,4,2,1]. 
Adapted from “KAN: Kolmogorov-Arnold Networks”, by Liu et al., 2024 [68].
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Figure 3.3: The PDE example. We plot L2 squared and H1 squared losses between the predicted solution and
ground truth solution. First and second: training dynamics of losses. Third and fourth: scaling laws of losses
against the number of parameters. KANs converge faster, achieve lower losses, and have steeper scaling laws
than MLPs.

3.4 Solving partial differential equations

We consider a Poisson equation with zero Dirichlet boundary data. For Ω = [−1, 1]2, consider the
PDE

uxx + uyy = f in Ω ,

u = 0 on ∂Ω .
(3.2)

We consider the data f = −π2(1 + 4y2) sin(πx) sin(πy2) + 2π sin(πx) cos(πy2) for which u =

sin(πx) sin(πy2) is the true solution. We use the framework of physics-informed neural networks
(PINNs) [37, 38] to solve this PDE, with the loss function given by

losspde = αlossi + lossb := α
1

ni

ni∑
i=1

|uxx(zi) + uyy(zi)− f(zi)|2 +
1

nb

nb∑
i=1

u2 ,

where we use lossi to denote the interior loss, discretized and evaluated by a uniform sampling of ni

points zi = (xi, yi) inside the domain, and similarly we use lossb to denote the boundary loss, dis-
cretized and evaluated by a uniform sampling of nb points on the boundary. α is the hyperparameter
balancing the effect of the two terms.

We compare the KAN architecture with that of MLPs using the same hyperparameters ni = 10000,
nb = 800, and α = 0.01. We measure both the error in the L2 norm and energy (H1) norm
and see that KAN achieves a much better scaling law with a smaller error, using smaller networks
and fewer parameters; see Figure 3.3. A 2-Layer width-10 KAN is 100 times more accurate than
a 4-Layer width-100 MLP (10−7 vs 10−5 MSE) and 100 times more parameter efficient (102 vs
104 parameters). Therefore we speculate that KANs might have the potential of serving as a good
neural network representation for model reduction of PDEs. However, we want to note that our
implementation of KANs are typically 10x slower than MLPs to train. The ground truth being a
symbolic formula might be an unfair comparison for MLPs since KANs are good at representing
symbolic formulas. In general, KANs and MLPs are good at representing different function classes
of PDE solutions, which needs detailed future study to understand their respective boundaries.

3.5 Continual Learning

Catastrophic forgetting is a serious problem in current machine learning [39]. When a human mas-
ters a task and switches to another task, they do not forget how to perform the first task. Unfortu-
nately, this is not the case for neural networks. When a neural network is trained on task 1 and then
shifted to being trained on task 2, the network will soon forget about how to perform task 1. A key
difference between artificial neural networks and human brains is that human brains have function-

6Note that we cannot use the logarithmic construction for division, because u and v here might be negative
numbers.
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Figure 3.3: The PDE example. We plot L2 squared and H1 squared losses between the predicted solution and
ground truth solution. First and second: training dynamics of losses. Third and fourth: scaling laws of losses
against the number of parameters. KANs converge faster, achieve lower losses, and have steeper scaling laws
than MLPs.
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points zi = (xi, yi) inside the domain, and similarly we use lossb to denote the boundary loss, dis-
cretized and evaluated by a uniform sampling of nb points on the boundary. α is the hyperparameter
balancing the effect of the two terms.

We compare the KAN architecture with that of MLPs using the same hyperparameters ni = 10000,
nb = 800, and α = 0.01. We measure both the error in the L2 norm and energy (H1) norm
and see that KAN achieves a much better scaling law with a smaller error, using smaller networks
and fewer parameters; see Figure 3.3. A 2-Layer width-10 KAN is 100 times more accurate than
a 4-Layer width-100 MLP (10−7 vs 10−5 MSE) and 100 times more parameter efficient (102 vs
104 parameters). Therefore we speculate that KANs might have the potential of serving as a good
neural network representation for model reduction of PDEs. However, we want to note that our
implementation of KANs are typically 10x slower than MLPs to train. The ground truth being a
symbolic formula might be an unfair comparison for MLPs since KANs are good at representing
symbolic formulas. In general, KANs and MLPs are good at representing different function classes
of PDE solutions, which needs detailed future study to understand their respective boundaries.

3.5 Continual Learning

Catastrophic forgetting is a serious problem in current machine learning [39]. When a human mas-
ters a task and switches to another task, they do not forget how to perform the first task. Unfortu-
nately, this is not the case for neural networks. When a neural network is trained on task 1 and then
shifted to being trained on task 2, the network will soon forget about how to perform task 1. A key
difference between artificial neural networks and human brains is that human brains have function-
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tivation functions. As a simple proof of concept, Liu
et al. (2024) have employed a MLP and a KAN for
a 1D regression task of five gaussian peaks, pre-
sented sequentially in five different training pha-
ses. As illustrated in Figure 2.3.3, the KAN is able
to avoid catastrophic forgetting perfectly because
of their locality, while the MLP fails significantly.



This chapter aims to provide insights into the po-
tential properties of wood dust crafted biocompo-
site facade panels through the development of an
interactive design tool that guides its user toward
achieving optimal performance based on various
material properties and design options. As afore-
mentioned, this study on biocomposites is part of
preliminary research and not the main focus of this
thesis, which instead focuses on advancing the de-
sign process of building facades in general. Within
this thesis, biocomposites serve as a relevant and
sustainable case study material, where any facade
material could have be chosen, aiming to advance
its body of knowledge. This chapter is optional to
read and starts with an overview of the theory and
vulnerabilities of wood dust crafted biocomposite
facade panels, followed by delving into the effect of 
various fiber modification treatments on its water
repellency, the effect of various nanoparticle treat-
ments on its UV-resistance and mechanical proper-
ties, the effect of annealing time on its mechanical
properties, the effect of two fabrication methods
on its water repellency and mechanical properties,
and the working principle behind the design tool.
	 Wood dust is a byproduct of wood proces-
sing, particularly originating from uncontaminated
soft- and hardwood, with a particle size of around
75-300 μm (Singh et al., 2022). Softwood dust fi-
bers generally consist of 42% cellulose, 27% he-
micellulose, 29% lignin, and 2% extractives, while 
hardwood dust fibers contain 46% cellulose, 28%
hemicellulose, 22% lignin, and 4% extractives (Dai
& Fan, 2014; Bahrami et al., 2020). Where cellulose
determines the mechanical properties of the fiber,
hemicellulose binds the cellulose fibers together,
lignin protects the hemicellulose from exposure to 
moisture, and the additional extractives offer re-
sistance to decay (Thakur, 2014). 
	 While wood dust fibers are mainly used
as reinforcements in biocomposites, bio-matrices
are utilised to bind them together (Zwawi, 2021).
Bio-matrices are mainly derived from agricultural
and byproducts, and are completely hydrophobic,
unlike natural fibers such as wood dust (Jayamani
et al., 2015). The most commonly used matrices
in biocomposites are Polylactic-Acid (PLA), Poly-
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butylene-Succinate (PBS), Poly-Hydroxyalkanotes
(PHA), and Poly-Caprolactone (PCL). Especially 
PLA, a thermoplastic polyester produced from L-
lactic and D-Lactic acid (Fortunati et al., 2012), has
drawn significant attention from the research com-
munity due to its renewable nature, biodegrada-
bility, and low energy demand and carbon emis-
sions for production (Zwawi, 2021).
	 Aiming to replace Fiber Reinforced Plas-
tics, biocomposites’ inferior mechanical properties
and poor UV-/water resistance, lead to early de-
gradation, affecting their long-term durability and
possible applications. Especially building facades,
which have huge climatic exposure levels, require
facade panels which are anti-fungal, UV and moi-
sture resistant, and capable of maintaining their
dimensional stability (Zwawi, 2021).
	 The hemicelluloses in natural fibers are re-
sponsible for the hydrophilic nature of biocompo-
sites, as its hydroxyl groups have a strong tendency
to absorb moisture from the environment (Al-Ma-
harma et al., 2019). Consequently, intermolecular
hydrogen bonds are formed, resulting in swelling
of the fiber. This can cause an inconsistent fiber
dispersion in the matrix, negatively impacting its 
ability for stress transfer at the interfacial regions
(Mohammed et al., 2022). This polarity can lead to
microcracks, mold growth, dimensional instability,
and fiber-matrix debonding, and therefore reduce
the biocomposites’ mechanical properties and ul-
timately lead to its early degradation (Azka et al., 
2024). Lignin in natural fibers are accountable for
the poor UV-resistance of biocomposites, as they
absorb 80-95% of UV-radiation (Gonzalez-Lopez
et al., 2020). This leads to cutting of the covalent 
bonds in natural fibers, resulting in loss of mole-
cular weight and reduced mechanical properties.
	 Polylactic-Acid (PLA), as the bio-matrix in 
wood dust crafted biocomposites, also contributes
to its poor performance, as PLA is very brittle with
low plastic deformation (Dhal et al., 2023), and sus-
ceptible to photo-degradation. Especially UV below
270nm is absorbed and degraded via the Norrish
II reaction in which bonds adjacent to the carbonyl
groups in PLA are split, resulting in a decreased
molecular weight, reduced mechanical properties,
and loss of colour (Wang et al., 2019).

optional reading
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Figure 3.1.1. Effect of accelerated weathering on crystallinity of PLA and 
PLA/30wt.% wood dust. Adapted from “Accelerated weathering of poly(lac-
tic acid) and its biocomposites: A review”, by González-López et al., 2020 [44].

Figure 3.1.2. Effect of accelerated weathering on tensile strength of PLA and 
PLA/30wt.% wood dust. Adapted from “Accelerated weathering of poly(lactic 
acid) and its biocomposites: A review”, by González-López et al., 2020 [44].

To examine the effect of weathering on the per-
formance of neat PLA and PLA/30wt.% wood dust
crafted biocomposites, Gonzalez-Lopez et al (2020)
has subjected both materials to accelerated wea-
thering conditions up to 2000 hours. As illustra-
ted in Figure 3.1.1, crystallinity (stiffness) increa-
ses after accelerated weathering for neat PLA, with
an increase of 232% after 2000h, while the PLA/
30wt.% wood dust biocomposite’ crystallinity re-
mained almost unchanged after 600h, with only a
relative increase of 6% from 10% at 600h to 16%
at 2000h. Figure 3.1.2 shows the effect of acce-
lerated weathering on the tensile strength of the
same two materials up to 1200 hours. As can be
seen, there is a general trend of decreasing ten-
sile strength after accelerated weathering for neat
PLA, with a decrease of 66% after 1200h. For the
PLA/30wt.% wood dust biocomposite however,
only one data point at 1200h was available, show-
casing a slight decrease of 33%.

optional reading

3.2 Modification treatments
Aiming to overcome early degradation, the scienti-
fic community has been paying considerable atten-
tion to creating methods to change the properties
of biocomposite fibers, also known as fiber modi-
fication treatments, to attain properties similar to

synthetic composites (Jayamani et al., 2015). Many
treatments have been developed and can be cate-
gorised into two main groups: physical and chemi-
cal treatments, both with a similar goal of enhan-
sing the water repellency of natural fibers (Moh-
ammed et al., 2022). Both the physical treatments,
such as the corona, plasma, UV, and thermal treat-
ment, and the chemical treatments, such as the al- 
kaline, silane, and acetylation treatment, focus on
enhancing the fiber-matrix bonding at the inter-
facial region (Mohammed et al., 2022). Although
all treatments have shown significant results re-
garding water repellency of natural fibers, only the
most promising ones are highlighted in this study.
	 Thermal treatment involves heating the 
natural fiber to temperatures close to their fiber-
degradation temperature, resulting in changes in
chemical composition (Al-Maharma & Al-Huniti, 
2019). These macromolecular rearrangements of
natural fibers significantly enhance their resist-
ance to moisture, but also reduce their mechanical
properties and make them even more prone to UV-
degradation (Kelleci et al., 2022).
	 Alkaline treatment involves submerging
the natural fiber in a sodium hydroxide (NaOH) so-
lution for a short period of time, altering its mo-
lecular structure significantly. This results in fibril-
lation, leading to higher surface roughness. As a re-
sult, water absorption decreases and the ability of
stress transfer increases, positively influencing its
strength and stiffness (Mohammed et al., 2022). 
The poor UV-resistance of the fiber remains un-
changed, posing a serious danger in outside appli-
cations (Singh et al., 2022).
	 Silane treatment involves covering the mi-
cropores on the surface of the natural fiber with
Silane coupling agents (SiH4). These agents react
with the fibers’ alkoxy and hydroxyl groups, thus
creating covalent bindings to the cell wall of the 
fiber, also known as chemisorption. This closes the
micropores that were previously exposed and re-
duces the number of water-absorbing hydroxyl
groups. Additionally, the formed cross-linked net-
work constricts fiber-swelling, consequently en-
hancing fiber-matrix adhesion and dimensional 
stability (Mohammed et al., 2022). Similar to the
Alkaline treatment, no significant enhancements 
in UV-repellency of the fiber were observed (Ab-
dallah et al., 2022).
	 Acetylation treatment involves substitu-
ting the natural fibers’ hydroxyl groups with acetyl
groups, by treating the fiber with acetic anhydride
(CH3–C(¼O)–O–C(¼O)–CH3). While significantly 
enhancing the water repellency and dimensional
stability of the natural fibers, it also negatively im-
pact its UV-resistance (Mohammed et al., 2023). 
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To overcome UV-degradation of PLA/wood dust 
crafted biocomposites, the scientific community
has been actively focusing on developing new and
hybrid combinations of nanoparticles (NP) to fill
the micropores on the biocomposites’ surface, pre-
venting lignin in the wood dust fibers from absor-
bing UV-radiation and the bonds adjacent to the 
carbonyl groups in PLA from being split (Moham-
med et al., 2022). Additionally, nanoparticles hold
the ability to significantly enhance the mechanical
properties, water-repellency, fire-resistance, and
anti-fungal performance of biocomposites. These
enhancements have led to the implementation of 
nano-biocomposites (NBc) in fields such as aero-
space, automotive, construction, and medical in-
dustry (Mohammed et al., 2022).
	 Various types of nanoparticles have been
developed throughout the years, and can be cate-
gorised into three groups: nanolayers, nanotubes,
and nanofillers. These nanoparticles can originate 
from polymers, metals, metal-oxides, and carbon;
therefore categorised into organic and inorganic
groups (Bahrami et al., 2020). While organic NP
such as cellulose nanocrystals (CNC), lignin nano-
particles (LNP), and their numerous modified va-
riants, are known for their renewability, biode-
gradability, and environmentally-friendly nature 
(Muzata et al., 2023), inorganic NP such as TiO2,
CeO2, Ag, and ZnO, are non-biodegradable and po-
tentially harmful to the environment (Sringam et
al., 2023). Although all the aforementioned nano-
particles have shown significant enhancements in
UV-resistance of biocomposites, inorganic nano-
particles generally outperform their organic alter-
natives. It is because of their unsustainable nature
that they are left out of this study, with an excep-
tion made for ZnO, which is considered to be safe
and non-toxic (Wang et al., 2019; Fortunati et al.,
2015; Yang et al., 2023).
	 Cellulose nanocrystals (CNC) are conside-
red as the most promising organic nanoparticles
on the market due to their sustainability, mecha-
nical properties, UV-resistance, easy processabi-
lity, and low energy demand for production (Ling
et al., 2022). They are generally derived from bac-
terial cellulose, sea life matter, or plant lignocellu-
losic biomass, through controlled acid hydrolysis.
For example, Wang et al. (2019) extracted CNC by
mixed acid hydrolysis of microcrystalline cellulose
(MCC), Fortunati et al. (2015) derived CNC by acid
hydrolysis of Posidonia Oceanica Alga (POA) with
an average length of 180nm and diameter of 5nm,
and Ling et al. (2022) retrieved CNC from softwood 
pulp with an average length of 200nm and diame-
ter of 5nm, employing the same method of extrac-
tion. Despite CNC’s significant performance, resul-

ting in numerous modified variants throughout the
years, their hydrophilic nature limits their compa-
tibility with hydrophobic PLA, resulting in decrea-
sed mechanical properties (Agbakoba et al., 2023).
As a result, many CNC-modified variants aimed to
enhance the fiber-matrix dispersion, by modifying
its hydroxyl groups through covalent functionali-
sation using esters, ethers, carboxylic acids, or SiH4
coupling agents (Sringam et al., 2023).
	 Surfactant-modified cellulose nanocrystals
(s-CNC) are one of these variants which aim to im-
prove the fiber-matrix dispersion by treating CNC
with an acid phosphate ester of ethoxylated nonyl-
phenol in a ¼ (wt/wt) ratio, followed by raising
the pH to 8.5-9.0 using a 0.25wt.% NaOH solution
(Fortunati et al., 2016; Luzi et al., 2016).
	 Lignin-coated cellulose nanocrystals (L-
CNC) are another one of these variants aiming to
enhance the distribution of CNC in PLA, by spray
drying lignin onto its surface (Boruvka & Prusek,
2016). Lignin is generally derived from pulp and
lignocellulosic biomass, and despite it being sig-
nificantly prone to UV-absorption, lignin reduces
agglomeration, which improves fiber-matrix dis-
persion, and therefore actually improves the bio-
composites’ UV-resistance. Additionally, Van der
Waal interactions are formed between lignin and
CNC, leading to water shielding (Ling et al., 2022).
	 Cinnamate-grafted cellulose nanocrystals
(Cin-CNC) are the final CNC-modified variant dis-
cussed in this study. By grafting cinnamate groups
onto the surface of CNC through an esterification 
reaction with cinnamoyl chloride, also known as
acylation, the fiber-matrix dispersion is improved
significantly. As a result, the biocomposites’ me-
chanical properties are enhanced. On top of that,
cinnamates are remarkable UV-shielders, by ab-
sorbing UV and dissipating heat into the environ-
ment (Sringam et al., 2023).

Aiming to find the most optimal-performing bio-
composite from a material properties perspective,
aligning with today’s environmental and building 
standards, this study utilises existing research to
develop an interactive design tool that guides its
user toward optimal performance based on various
material properties and design options, including
wood dust filler content, type/content of fiber mo-
dification treatment, type/content of nanoparticle
treatment, annealing time, and type of fabrication.
	 As the foundation of this interactive design
tool, 43 different research papers have been exa-
mined and utilised to create graphs, providing in-
sight into the effect of the aforementioned aspects
on the performance of neat PLA. As a result, a total 
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of 226 graphs have been created, as illustrated in
Figures A.1-A.130 and A.131-A.226 of appendix A.
While the first set of figures examine each research
results individually, giving insight into exact num-
bers (e.g. MPa, kg/m3, W/m·K, dB/mm), the second
set combines these results to give insights into the
average relative change of performance compared
to PLA. As an example, Figure 3.3.1, also known as
Figure A.183, showcases the effect of CNC content
on the initial tensile strength of neat PLA. As can be
seen, multiple research papers have been utilised,
creating an averaged line graph with error regions
based on outliers. The different colours in the line
graph highlight the various research papers sup-
porting the data. As an examplary interpretation 
of the results, a rapid increase in tensile strength
of PLA up to 30.7% at 1.0wt.% of CNC content is
observed, followed by a gradual decrease with an
ultimate low of -26.2% at 10wt.% of CNC content.

Figure 3.3.1. Combined effect of CNC content in PLA on the tensile strength 
(relative % compared to neat PLA). Adapted from II. Fortunati et al., 2015 [39];
III. Wei et al., 2016 [100]; IV. Agbakoba et al., 2023 [3]; V. Marmol et al., 2020
[72]; VI. Chi & Catchmark, 2017 [25]; VII. Sringam et al., 2023 [88].

optional reading

Before diving into the results, several limitations
of this study will be discussed. First of all, a rela-
tively small number of research papers is used. In-
cluding more data would significantly enhance its
reliability. On top of that, each research paper had
their own starting performance value for neat PLA,
which resulted in unrealistic relative changes in
performance in those with extreme starting values.
Despite already aiming to remove all outliers, this
needs to be done even more carefully. Finally, this
study interpolates the values between known data
points up to the maximum wood or nanoparticle
content value for each source. Because these maxi-
mum content values significantly differ among the
sources, it generally leads to scenarios where high
content values becomes less reliable, as they are
supported by less sources. This undesirable phe-
nomenon, illustrated in Figure 3.3.2, also known 
as Figure A.176, shows increasing error regions as
a result of a decreasing number of sources, up un-
til one source remains. Despite the limitations of

this study, it still has a significant contribution to
the research community by offering a framework
for the design process of optimal-performing bio-
composites from a material properties’ perspec-
tive, with acceptable reliability and the adaptibi-
lity to include more information without the need
of restructuring the framework of the design tool.

Figure 3.3.2. Combined effect of thermally-treated wood dust (WD-T) content in
PLA on the tensile strength (relative % compared to neat PLA). Adapted from I.
Kelleci et al., 2022 [55]; II. Gregorova et al., 2011 [46]; III. Ayrilmis et al., 2021 [8].

As a starting point, this study aims to acquire as
much insights into the effect of (un)treated wood
dust content on the performance of neat PLA, exa-
mining ten options based on eleven research pa-
pers. Option one, illustrated in Figures A.1-A.15, 
A.24-A.33, and A.131-A.139 of appendix A, is adap-
ted from Abdallah et al. (2022), Jasinksi & Szyma-
nowski (2023), Csizmadia et al. (2013), Moham-
madsalih et al. (2023), Narlioglu et al. (2021), and
Kelleci et al. (2022), and covers the effect of un-
treated wood dust content on PLA’s performance.
	 Options two and three, illustrated in Figu-
res A.11-A.12 and A.140-A.143 of appendix A, are
adapted from Csizmadia et al. (2013), and cover
the effect of 1.0wt.% and 3.0wt.% phenolic resin-
treated wood dust content on PLA’s performance.
	 Option four, illustrated in Figures A.1-A.6
and A.144-A.149 of appendix A, option five, illu-
strated in Figures A.3-A.4 and A.150-A.151 of ap-
pendix A, option six, illustrated in Figures A.3-A.4
and A.152-A.153 of appendix A, and option seven,
illustrated in Figures A.1-A.6 and A.154-A.159 of 
appendix A, all originate from the same source (Ab-
dallah et al., 2022), and cover the effect of silane-
treated wood dust content on PLA’s performance. 
With regard to this, option four concerns treating
wood dust with 3.0wt.% SA in a 50:50vo.% ratio of 
acetone:water solvent, while option five, six, and
seven concern treating wood dust with 1.0wt.%, 
2.0wt.%, and 3.0wt.% SE in a 90:10vo.% ratio of 
ethanol:water solvent respectively.
	 Option eight, illustrated in Figures A.16-
A.22, A.40, and A.160-A.167 of appendix A, toge-
ther with option nine, illustrated in Figures A.16-



17

Figure 3.3.3. Combined effect of various PLA fillers (UTWD: untreated wood 
dust {Adapted from Abdallah et al., 2022 [1]; Jasinski & Szymanowski, 2023 
[51]; Csizmadia et al., 2013 [29]; Narlioglu et al., 2021 [79]; Mohammadsalih et 
al., 2023 [77]; and Kelleci et al., 2022 [55]}, WD-R1/WD-R3: 1/3wt.% pheno-
lic resin-treated wood dust {Adapted from Csizmadia et al., 2013 [29]}, WD-
SA3: 3wt.% SA-treated date palm wood fibers in 50:50vo.% acetone:water 
solvent ratio {Adapted from Abdallah et al., 2022 [1]}, WD-SE1/WD-SE2/WD-
SE3: 1/2/3wt.% SE-treated date palm wood fibers in 90:10vo.% ethanol:wa-
ter solvent ratio {Adapted from Abdallah et al., 2022 [1]}, WD-A2: 2wt.% Al-
kaline-treated wood dust {Adapted from Singh et al., 2022 [87]}, WD/RH-A2: 
2wt.% Alkaline-treated wood dust/rice husk in 50:50wt.% ratio {Adapted 
from Singh et al., 2022 [87]}, and WD-T: thermally-treated wood dust {Adap-
ted from Kelleci et al., 2022 [55]; Gregorova et al., 2011 [46]; and Ayrilmis 
et al., 2021 [8]}) on the tensile strength (relative % compared to neat PLA).

optional reading

A.23 and A.168-A.175 of appendix A, are adapted
from Singh et al. (2022), Lendvai et al. (2022), and
Altun et al. (2012), and cover the effect of 2.0wt.%
alkaline-treated wood dust content on PLA’s per-
formance and the effect of 2.0wt.% alkaline-treated
wood dust/rice husk biocomposite (in 50:50wt.% 
ratio) content on PLA’s performance.
	 Finally, option ten, as illustrated in Figures 
A.28-A.39 and A.176-A.182 of appendix A, is adap-
ted from Kelleci et al. (2022), Ayrilmis et al. (2021),
and Gregorova et al. (2011), and covers the effect
of thermally-treated wood dust content on PLA’s
performance.
	 Aiming to provide an overview of the effect
of (un)treated wood dust content on the perfor-
mance of neat PLA, a total of ten plots have been 
created, and illustrated in Figures A.227-A.236 of
appendix A. These plots offer insights into the re-
lative change of performance of tensile strength,
compressive strength, flexural strength, elonga-
tion at break, Young’s modulus, bending modulus, 
flexural modulus, density, thermal conductivity, 
and water absorption, compared to neat PLA, as 
a function of increasing wood dust content. As an
example, Figure 3.3.3 shows the relative change of
tensile strength of all ten options compared to neat
PLA. As illustrated, there is a general trend across
all options of decreasing tensile strength as a func-
tion of increasing wood dust content. This is due
to the poor compatibility between the hydrophilic
wood dust fibers and hydrophobic PLA, leading to 
poor interfacial adhesion and stress concentrations
(Abdallah et al.,2022; Kelleci et al., 2022; Singh et
al., 2022; and Jasinksi & Szymanowski, 2023).

As the second step in preparation of the interactive
design tool, this study aims to acquire as much in-
sights into the effect of various nanoparticle treat-
ments on the performance of neat PLA, examining
nine options based on twenty-six research papers. 
Option one, illustrated in Figures A.41-A.47, A.51-
A.56, A.61, A.98-A.112, and A.183-A.188 of appen-
dix A, is adapted from Marmol et al. (2020), Chi &
Catchmark (2017), Sringam et al. (2023), Wei et al.
(2016), Fortunati et al. (2012, 2013, 2015), Kark-
hanis et al. (2018), and Agbakoba et al. (2023), and
covers the effect of cellulose nanocrystals (CNC) 
content on PLA’s performance. 
	 Option two, as illustrated in Figures A.44-
A.50, A.61, A.108-A.112 and A.189-A.194 of appen-
dix A, is adapted from Luzi et al. (2016), Fortunati
et al. (2012, 2013, 2015), and Chi & Catchmark 
(2017), and covers the effect of surfactant-modi-
fied cellulose nanocrystals (s-CNC) content (with
a phosphate ester of ethoxylated nonylphenol in a 
1:4vo.% ratio) on PLA’s performance.
	 Option three, illustrated in Figures A.57-
A.60, A.113-A.119, and A.195-A.199 of appendix A,
is adapted from Zijia et al. (2023), Wei et al. (2017),
Boruvka & Prusek (2016), and Shojaeiarani et al.
(2022) and covers the effect of lignin-coated cel-
lulose nanocrystals (L-CNC) content on PLA’s per-
formance.
	 Option four, as illustrated in Figures A.51-
A.56 and A.201-A.206 of appendix A, is adapted 
from Sringam et al. (2023), and covers the effect 
of cinnamate-grafted cellulose nanocrystals (Cin-
CNC) content on PLA’s performance. 
	 Option five, as illustrated in Figures A.57-
A.60, A.71-A.83, and A.207-A.212 of appendix A, 
is adapted from Yang et al. (2015), Boarino et al. 
(2022), Daassi et al. (2023), cavallo et al. (2021),
and Shojaeiarani et al. (2022), and covers the effect
of lignin nanoparticles (LNP) content on PLA’s per-
formance.
	 Option six, illustrated in Figures A.63-A.65,
A.84-A.97, and A.213-A.218 of appendix A, is adap-
ted from Luzi et al. (2016), Li et al. (2023), Kim et
al. (2019), Yang et al. (2023), Chong et al. (2023),
Tan et al. (2023), and Jamnongkan et al. (2022), 
and covers the effect of zinc-oxide (ZnO) content
on PLA’s performance. 
	 Option seven, illustrated in Figures A.66-
A.70 and A.219-A.224, is adapted from Wang et al.
(2019) and Luzi et al. (2016), and covers the effect
of CNC-zinc-oxide (CNC-ZnO) content on PLA’s per-
formance.
	 Option eight, as illustrated in Figures A.62
and A.225, is adapted from Fortunati et al. (2012),
and covers the effect of CNC + 1.0wt.% silver nano-
powder (CNC-Ag) content on PLA’s performance.
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Figure 3.3.4. Combined effect of various PLA nanoparticles (CNC: cellulo-
se nanocrystals {Adapted from Karkhanis et al., 2018 [54]; Fortunati et al., 
2015 [39]; Marmol et al., 2020 [72]; Chi & Catchmark, 2017 [25]; and Srin-
gam et al., 2023 [88]}, s-CNC: surfactant-modified cellulose nanocrystals 
with phosphate ester of ethoxylated nonylphenol in 1:4vo.% ratio {Adapted 
from Chi & Catchmark, 2017 [25]; and Fortunati et al., 2015 [39]}, L-CNC: 
lignin-coated cellulose nanocrystals {Adapted from Shojaeiarani et al., 2022 
[85]}, Cin-CNC: cinnamate-grafted cellulose nanocrystals {Adapted from 
Sringam et al., 2023 [88]}, LNP: lignin nanoparticles {Adapted from Shojaeia-
rani et al., 2022 [85]; and Cavallo et al., 2021 [24]}, ZnO: Zinc oxide {Adapted 
from Li et al., 2023 [63]; and Kim et al., 2019 [57]}, and CNC-ZnO: cellulose 
nanocrystals-Zinc oxide {Adapted from Wang et al., 2019 [97]}) on the UV-B 
absorption (relative % compared to neat PLA).

Finally, option nine, illustrated in Figures A.62 and
A.226, adapted from Fortunati et al. (2013), covers
the effect of surfactant-modified cellulose nanocry-
stals (s-CNC-Ag) content (with a phosphate ester
of ethoxylated nonylphenol in a 1:4vo.% ratio and
1.0wt.% Ag nanopowder) on PLA’s performance.
	 Aiming to provide an overview of the effect
of various nanoparticle treatments on the perfor-
mance of neat PLA, a total of six plots have been 
created, and illustrated in Figures A.237-A.242 of
appendix A. These plots offer insights into the re-
lative change of performance of tensile strength,
elongation at break, Young’s modulus, UV-A/UV-B
absorption, and water vapour permeability, com-
pared to neat PLA, as a function of increasing nano-
particle content. As an example, Figure 3.3.4 shows
the relative change of UV-B absorption of all six op-
tions compared to neat PLA. As illustrated, there
is a general trend across all options of increasing
UV-B absorption as a function of increasing nano-
particle content. This is because nanoparticles fill 
the micropores on the biocomposites’ surface, pre-
venting lignin in the wood dust fibers from absor-
bing UV-radiation and the bonds adjacent to the 
carbonyl groups in PLA from being split (Moham-
med et al., 2022).

As the third step in preparation of the interactive
design tool, the effect of annealing on the perfor-
mance of neat PLA was examined. As a result, a to-
tal of six plots have been created, and illustrated
in Figures A.120-A.125 of appendix A, providing
insights into the absolute changes in compressive
strength, elongation at break, Young’s modulus,
thermal conductivity, water absorption, and den-
sity, compared to neat PLA, as a function of time.

As the final step in preparation of the interactive
design tool, the effect of injection molding and 3D-
printing on the performance of neat PLA was exa-
mined. As a result, a total of five plots have been
created, and illustrated in Figures A.126-A.130 of
appendix A, providing insights into the absolute 
changes in tensile strength, elongation at break, 
Young’s modulus, thermal conductivity, and sound
transmission loss, compared to neat PLA. Aiming
to provide an overview, all of the results are com-
bined in Figure 3.3.6, showing the relative change
of performance, compared to neat PLA. As illustra-
ted, 3D-printing significantly outperforms injection
molding with regards to thermal conductivity, but
performs worse in tensile strength, elongation at
break, Young’s modulus and sound absorption.

Aiming to provide an overview, all of the results
are combined in Figure 3.3.5, showing the relative
change of performance, compared to neat PLA. As
illustrated, annealing of PLA significantly enhances
its compressive strength and Young’s modulus, but 
negatively affects its elongation at break, thermal
conductivity and water absorption.

Figure 3.3.5. Effect of PLA annealing time on the compressive strength, elon-
gation at break, Young’s modulus, thermal conductivity, and water absorpti-
on (relative % compared to neat PLA). Adapted from “Thermal Insulation and 
Mechanical Properties of Polylactic Acid (PLA) at Different Processing Conditi-
ons”, by Barkhad et al., 2020 [14].

Figure 3.3.6. Effect of fabrication method of PLA/30wt.% recycled pine-
wood particles on the tensile strength, elongation at break, Young’s modulus, 
thermal conductivity, and sound transmission loss (relative % compared to 
neat PLA). Adapted from “The Thermal and Mechanical Behavior of Wood-
PLA Composites Processed by Additive Manufacturing for Building Insulation”, 
by Bahar et al., 2023 [10].
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In the following section, the working principle be-
hind the interactive design tool, guiding its user to-
ward optimal-performing biocomposites based on
various material properties and design options, is
explained. The design tool, developed in Microsoft
Excel, comprises four main phases (I-IV), addres-
sing the effect of un(treated) wood dust content,
type/content of nanoparticle treatment, annealing
time, and type of fabrication method respectively. 
Each phase consists of four steps (a-d), where a)
provides an overview of the current performance
of the biocomposite compared to various building
materials based on a normalised score, b) provides
insights into the performance criteria that can be
influenced in the current phase based on absolute
values, c) asks the user to assign weights to each 
of these performance criteria based on their need
of performance improvement, and d) showcases
the optimal design option based on these weights.
	 Phase I, illustrated in Figure 3.4.1, covers
the effect of (un)treated wood dust content on the
biocomposites’ (initially neat PLA) tensile strength,
elongation at break, Young’s modulus, water ab-
sorption, and density. After assigning weights to
each of these performance criteria and sustaina-
bility, covering the amount of waste wood that is 
used, a total of six performance score graphs are

created, and illustrated in Figures A.256-A.261 of
appendix A. These normalised graphs utilise the
results from Figures A.227-A.236 to highlight the
most optimal type and content of PLA filler for each
performance criteria. As an example, as illustrated
in Figure 3.4.1 (c), 40wt.% of untreated wood dust 
fibers would be the most optimal PLA filler from a
Young’s modulus perspective. As the final step of
phase I, all six performance score graphs are com-
bined into Figure 3.4.1 (d), and the overall most op- 
timal PLA filler is highlighted, in this case 30wt.%
thermally-treated wood dust. Before moving on, 
the biocomposites’ performance is updated.
	 Phase II, illustrated in Figure 3.4.2, covers
the effect of nanoparticle content on the biocompo-
sites’ tensile strength, elongation at break, Young’s
modulus, water vapour permeability, and UV-resis-
tance, and follows the same steps as phase I, as illu-
strated in Figures A.262-A.268 of appendix A.
	 Phase III, illustrated in Figure 3.4.3, covers
the effect of annealing time on the biocomposites’
compressive strength, elongation at break, Young’s
modulus, water absorption, and thermal conducti-
vity, and follows the same steps as the ones before.
	 Phase IV, illustrated in Figure 3.4.4, covers
the effect of fabrication on the biocomposites’ ten-
sile strength, elongation at break, Young’s modulus,
thermal conductivity, and sound transmission loss.

3.4 Design tool

Figure 3.4.1. a) Performance overview biocomposite vs. building materials (tensile strength, compressive strength, bending strength, elongation at break, Young’s 
modulus, water absorption, water vapour permeability, UV-A absorption, UV-B absorption, thermal conductivity, sound transmission loss, and density). Biocomposite 
(Adapted from [1]; [51]; [29]; [79]; [87]; [35]; [54]; [41]; [40]; [39]; [85]; [88]; [70]; [97]; [14]; [103]; [104]; [30]; [24]; [63]; [26]; [90]; [19]; [50]; [57]; [100]; [99]; 
[72]; [25]; [20]; [3]; [61]; [77]; [55]; [46]; [8]; [6]), polypropylene (Adapted from [2]; [68]; [65]; and Edupack, 2023), aluminium-polyethylene sandwich (Adapted 
from Edupack, 2023), glass fiber-reinforced polymer (Adapted from [86]; [12]; and Edupack, 2023), treated natural fiber-cement (Adapted from [105]; [92]; [98]; 
[59]; [62]; [64]; [84]; and [47]), resol-hardfoam (Adapted from Edupack, 2023), plasterboard (Adapted from [49]; and Edupack, 2023), treated hardwood (Adapted 
from [48]; and Edupack, 2023), and stone wool (Adapted from Edupack, 2023). b) Young’s modulus overview. c) Performance score of various PLA fillers (UTWD 
{Adapted from [1]; [51]; [29]; [79]; [77]; and [55]}, WD-SA3 {Adapted from [1]}, WD-SE3 {Adapted from [1]}, WD-A2 {Adapted from [87]}, WD/RH-A2 {Adapted from 
[87]}, and WD-T {Adapted from [8]; [46]; and [55]}) on the Young’s modulus. d) Weighted overall performance score of various PLA fillers.

a I

b c d
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Figure 3.4.2. a) An updated (1) performance overview biocomposite vs. building materials (tensile strength, compressive strength, bending strength, elongation 
at break, Young’s modulus, water absorption, water vapour permeability, UV-A absorption, UV-B absorption, thermal conductivity, sound transmission loss, and 
density). Biocomposite (Adapted from [1]; [51]; [29]; [79]; [87]; [35]; [54]; [41]; [40]; [39]; [85]; [88]; [70]; [97]; [14]; [103]; [104]; [30]; [24]; [63]; [26]; [90]; [19]; 
[50]; [57]; [100]; [99]; [72]; [25]; [20]; [3]; [61]; [77]; [55]; [46]; [8]; [6]), polypropylene (Adapted from [2]; [68]; [65]; and Edupack, 2023), aluminium-polyethylene 
sandwich (Adapted from Edupack, 2023), glass fiber-reinforced polymer (Adapted from [86]; [12]; and Edupack, 2023), treated natural fiber-cement (Adapted from 
[105]; [92]; [98]; [59]; [62]; [64]; [84]; and [47]), resol-hardfoam (Adapted from Edupack, 2023), plasterboard (Adapted from [49]; and Edupack, 2023), treated 
hardwood (Adapted from [48]; and Edupack, 2023), and stone wool (Adapted from Edupack, 2023). b) Updated (1) tensile strength overview. c) Performance score 
of various PLA nanoparticles (CNC {Adapted from [39]; [100]; [3]; [72]; [25]; [88]}, s-CNC {Adapted from [25]; [70]; [39]}, L-CNC {Adapted from [99]; [20]; [85]}, 
Cin-CNC {Adapted from [88]}, LNP {Adapted from [85]; [19]; [30]; [24]}, ZnO {Adapted from [70]; [104]; [26]; [90]; [50]}, and CNC-ZnO {Adapted from [70]}) on the 
tensile strength. d) Weighted overall performance score of various nanoparticles.

a

b c d

II

Figure 3.4.3. a) An updated (2) performance overview biocomposite vs. building materials (tensile strength, compressive strength, bending strength, elongation 
at break, Young’s modulus, water absorption, water vapour permeability, UV-A absorption, UV-B absorption, thermal conductivity, sound transmission loss, and 
density). Biocomposite (Adapted from [1]; [51]; [29]; [79]; [87]; [35]; [54]; [41]; [40]; [39]; [85]; [88]; [70]; [97]; [14]; [103]; [104]; [30]; [24]; [63]; [26]; [90]; [19]; 
[50]; [57]; [100]; [99]; [72]; [25]; [20]; [3]; [61]; [77]; [55]; [46]; [8]; [6]), polypropylene (Adapted from [2]; [68]; [65]; and Edupack, 2023), aluminium-polyethylene 
sandwich (Adapted from Edupack, 2023), glass fiber-reinforced polymer (Adapted from [86]; [12]; and Edupack, 2023), treated natural fiber-cement (Adapted from 
[105]; [92]; [98]; [59]; [62]; [64]; [84]; and [47]), resol-hardfoam (Adapted from Edupack, 2023), plasterboard (Adapted from [49]; and Edupack, 2023), treated hard-
wood (Adapted from [48]; and Edupack, 2023), and stone wool (Adapted from Edupack, 2023). b) Updated (2) elongation at break overview. c) Performance score 
of various PLA annealing times (0h, 1h, 3h, and 24h {Adapted from [14]}) on the compressive strength, elongation at break, Young’s modulus, thermal conductivity, 
and water absorption. d) Weighted overall performance score of various annealing times.

a III

b c d
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Figure 3.4.4. a) An updated (3) performance overview biocomposite vs. building materials (tensile strength, compressive strength, bending strength, elongation 
at break, Young’s modulus, water absorption, water vapour permeability, UV-A absorption, UV-B absorption, thermal conductivity, sound transmission loss, and 
density). Biocomposite (Adapted from [1]; [51]; [29]; [79]; [87]; [35]; [54]; [41]; [40]; [39]; [85]; [88]; [70]; [97]; [14]; [103]; [104]; [30]; [24]; [63]; [26]; [90]; [19]; 
[50]; [57]; [100]; [99]; [72]; [25]; [20]; [3]; [61]; [77]; [55]; [46]; [8]; [6]), polypropylene (Adapted from [2]; [68]; [65]; and Edupack, 2023), aluminium-polyethylene 
sandwich (Adapted from Edupack, 2023), glass fiber-reinforced polymer (Adapted from [86]; [12]; and Edupack, 2023), treated natural fiber-cement (Adapted from 
[105]; [92]; [98]; [59]; [62]; [64]; [84]; and [47]), resol-hardfoam (Adapted from Edupack, 2023), plasterboard (Adapted from [49]; and Edupack, 2023), treated 
hardwood (Adapted from [48]; and Edupack, 2023), and stone wool (Adapted from Edupack, 2023). b) Updated (1) thermal conductivity overview. c) Performance 
score of two fabrication methods (3D-Printing and injection molding {Adapted from [10]}) on the tensile strength, elongation at break, Young’s modulus, thermal 
conductivity, and sound transmission loss. d) Weighted overall performance score of two fabrication methods.

a IV

b c d
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Figure 3.4.5. a) Final performance overview biocomposite vs. building materials (tensile strength, compressive strength, bending strength, elongation at break, 
Young’s modulus, water absorption, water vapour permeability, UV-A absorption, UV-B absorption, thermal conductivity, sound transmission loss, and density). 
Biocomposite (Adapted from [1]; [51]; [29]; [79]; [87]; [35]; [54]; [41]; [40]; [39]; [85]; [88]; [70]; [97]; [14]; [103]; [104]; [30]; [24]; [63]; [26]; [90]; [19]; [50]; [57]; 
[100]; [99]; [72]; [25]; [20]; [3]; [61]; [77]; [55]; [46]; [8]; [6]), polypropylene (Adapted from [2]; [68]; [65]; and Edupack, 2023), aluminium-polyethylene sandwich 
(Adapted from Edupack, 2023), glass fiber-reinforced polymer (Adapted from [86]; [12]; and Edupack, 2023), treated natural fiber-cement (Adapted from [105]; 
[92]; [98]; [59]; [62]; [64]; [84]; and [47]), resol-hardfoam (Adapted from Edupack, 2023), plasterboard (Adapted from [49]; and Edupack, 2023), treated hardwood 
(Adapted from [48]; and Edupack, 2023), and stone wool (Adapted from Edupack, 2023). b) Final tensile strength overview. c) Final Young’s modulus overview. d) 
Final thermal conductivity overview.

a V

b c d



As aforementioned, this thesis introduces a novel 
performance-driven design exploration framework
integrating Self-Organising Maps (SOM) and Kol-
mogorov-Arnold Networks (KAN), which strives to 
advance the facade design process by enhancing 
computational efficiency, performance approxima-
tion accuracy, interpretability, reliability, and usa-
bility, to facilitate more efficient decision-making in
the early design stage, potentially leading to better
architectural and sustainable solutions.
	 As the foundation of the proposed AI-dri-
ven facade design framework, this chapter delves
into the creation of a parametric model in Rhino 3D
and Grasshopper, which focuses on balancing de-
sign variables with varying influence on geometry -
essential to demonstrating the framework’ design
optimisation capabilities - rather than creating the
most optimal facade design. Additionally, this chap-
ter delves into the performance simulations con-
ducted to generate representative labeled datasets
for training the KAN models, focusing on balancing
varying levels of performance approximation com-
plexity - essential to demonstrating KANs efficiency
in approximating non-linear functions as comple-
xity increases, offering a comparison against MLPs.
	 Although any type of facade system or per-
formance criteria could have been considered, this
thesis focuses on an aluminium-based biocompo-
site curtain wall facade fragment due to its modu-
larity, and total material use, solar heat gains, and
sound pressure level performance simulations due
to their balanced range of varying complexities and
societal relevance in affecting sustainability, energy
demands, and urban noise pollution, respectively.

vided into four vertical sections, with the top and
bottom closed modules each being 0.75 meters in
height, and all single modules containing windows.

As aforementioned, the facade is divided into four
vertical sections, creating three control points that
form design variables, Y1, Y2, and Y3. These points
are able to move either one meter outward, inward,
or remain stationary, in increments of 0.5 meters,
allowing for a wide range of possible facade design
configurations, as illustrated in Figures 4.1.2-4.1.5.

Aiming to create a vast design space of 27,000 bio-
composite facade design alternatives, while ensu-
ring the SOM will be able to reflect the design space
correctly, given the curse of dimensionality, nine
distinct and carefully selected geometry-related de-
sign variables, from a set of nineteen options, are
considered and given a specific range and interval.
Before addressing each of them individually, it is
worth mentioning that the facade, as illustrated in
Figure 4.1.1, is six meters wide, four meters high,
oriented south, positioned on the ground floor, di-

4.1 Parametric model

4
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Figure 4.1.1. Standard facade design configuration without design variables.

Figure 4.1.2. Facade design configuration based on changes in Y1, Y2, and Y3.

Figure 4.1.3. Facade design configuration based on changes in Y1, Y2, and Y3.
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The fourth design variable, X3, influences the same
control point as Y3, but adjusts its movement in a
perpendicular direction, either with 0.5 meters to
the left or 0.5 meters to the right, adding another
layer of design variation, as shown in Figure 4.1.6.

To ensure realistic performance simulations, the fa-
cade is assigned actual material properties in Rhino
3D. While using predefined settings for most mate-
rials, the biocomposite facade panels required cus-
tom settings, followed from the best-performing 
compound identified by the design tool, consisting
of 30wt.% thermally-treated wood dust fibers com-
bined with 1h annealed polylactic acid (PLA), trea-
ted with 5wt.% surfactant-modified cellulose nano-
crystals (s-CNC), using a phosphate ester of etho-
xylated nonylphenol in a 1:4vo.% ratio, and fabri-
cated through 3D-printing. Additionally, to offer
insights into how the facade is constructed, facade
sections were made, as illustrated in Figure 4.1.8.

the bottom panel of the right-hand single module
by attracting material outward from its midpoint.
It can extend by 0.05 or 0.15 meters, primarily for
scattering acoustic rays away from the street. The
nineth variable, SPD1, has the same 0.15-meter out-
ward curvature as BS2, and also affects acoustics,
but moves vertically on the left-hand double mo-
dule, able to be positioned at either 3/4, 1/2, or 1/4
of the facade panel’s height. The design variables
W2, TS1, SCD1, BS2, and SPD1, as shown in Figure 
4.1.7, are considered significantly less-influential
on geometry, therefore guiding the design explora-
tion’s fine-tuning phase later on, together with X3.

The fifth design variable, W2, determines the posi-
tioning of the window in the right-hand side double
module, allowing for placement either on the left or
the right. The sixth and seventh design variables,
TS1 and SCD1, control the curvature of the biocom-
posite facade panels on the left-hand side. While 
TS1 influences the top panel of the single module
by moving material outward horizontally, SCD1 in-
fluences the double module by vertical adjustment.
Both variables can tune between 0.05, 0.10, or 0.15
meters, creating shading for different sun angles.
The eighth variable, BS2, controls the curvature of

Figure 4.1.4. Facade design configuration based on changes in Y1, Y2, and Y3.

Figure 4.1.5. Facade design configuration based on changes in Y1, Y2, and Y3.

Figure 4.1.6. Facade design configuration based on changes in variable X3.

Figure 4.1.7. Facade design configuration based on changes in other variables.

Figure 4.1.8. Biocomposite facade design close-ups for insight into construction.
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4.2 Performance simulations
As aforementioned, performance simulations for
total material use, solar heat gains, and sound pres-
sure level are chosen due to their balanced range
of varying complexities and societal relevance in
affecting sustainability, energy demands, and urban
noise pollution, respectively. The total material use
is simply calculated using the volume component
in Grasshopper, determining the m3 of biocompo-
site facade material, directly influenced by design
variables TS1, SCD1, and BS2. Although the volume
of other materials within the facade are also affec-
ted by design variables Y1, Y2, and Y3, influencing
the width of the vertical facade sections, they are
excluded from the total material use calculation to
specifically focus on the relationship between bio-
composite material usage and its impact on both
solar heat gains, providing shading at different sun
angles, as well as sound pressure level, scattering
acoustic rays away from the street. Different from
the total material use calculation, both solar heat
gains and sound pressure level calculations requi-
red an experimental setup in Grasshopper, as illu-
strated in Figure 4.2.1, featuring a wide street with
a small studio containing the biocomposite facade.

Moving on with the solar heat gains calculation, the
second most complex, and conducted using Lady-
bug in Grasshopper. The simulation consists of cal-
culating kWh/m² for each of the five surfaces inside
the studio, by analysing both direct and diffuse ra-
diation based on Dutch weather conditions over a
full year, as shown in Figures 4.2.2-4.2.3, followed
by dividing the total kWh by the total surface area,
creating an average solar heat gains in kWh/m2.

The final and most complex simulation is the sound
pressure level (SPL) calculation, conducted using
Pachyderm Acoustics in Grasshopper. The simula-
tion consists of three sound sources at 0.5 meters 
height, representing cars, emitting ranging sound 
levels from 60-75dB across octave bands, and three
sound receivers in front of the facade at 1.6 meters
height, capturing direct and reflected sound waves.
The acoustic simulation is based on image sourcing
and raycasting, sending one million rays from each
source towards the facade in an omni-directional 
way, being either absorbed or reflected, as shown
in Figures 4.2.4 and 4.2.5. During simulation, each
absorber calculates the average SPL, based on all 
three sources. These values are then used to calcu-
late the facade’s overall sound pressure level (dB).

Figure 4.2.1. Experimental setup for solar/acoustic performance simulations.

Figure 4.2.2. Solar heat gains performance simulation using Ladybug in GH.

Figure 4.2.3. Solar heat gains performance simulation using Ladybug in GH.

Figure 4.2.4. Sound Pressure Level performance simulation using Pachyderm.

Figure 4.2.5. Sound Pressure Level performance simulation using Pachyderm.



As the second phase of the proposed AI-driven fa-
cade design framework, this chapter delves into the
process of training a Self-Organising Map (SOM), 
which uses all possible geometry-related vectors
of design variables Y1, Y2, and Y3, identified as the
most influential on the facade’s geometry, therefore
leading the design exploration’s orientation phase
later on, to cluster 125 facade design variants onto
a two-dimensional network of nodes based on their 
geometric characteristics, enabling the designer to
navigate the entire design space according to geo-
metry typology. The chapter starts by examining
the training process of the unsupervised deep to-
pological neural network, in other words, the self-
organising map, covering all aspects from prepa-
ring the training vectors and discussing challenges
encountered to initialising the SOM model, hyper-
parameter tuning, and examining clustering per-
formance, followed by delving into the final clus-
tering results and their integration back into Rhino
3D and Grasshopper, and concluding by highligh-
ting the stratified sampling method utilised to ex-
tract representative labeled datasets for training
the Kolmogorov-Arnold Network (KAN) models.

5.1 Training process

5
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design variables, normalisation can skew their ori-
ginal relative influence on geometry, causing some
variables to disproportionately affect the clustering
process. As an example, the normalisation process
of all three original Y-variable ranges, from [-1, -0.5
0, 0.5, 1] to [0, 0.25, 0.5, 0.75, 1], reduced the step
size from 0.5 meter, reflecting actual increments,
to 0.25 meter after normalisation. Because all the
Y-variables share the same number of values (5) in
their range, their relative influence on geometry re-
mained preserved. However, issues arose when de-
sign variable X3 - which was originally intended for
use in the design exploration’s orientation phase as
well, creating four-dimensional SOM training vec-
tors - was given only two values in its range. Origi-
nally, design variable X3 spanned from -0.5 to 0.5 
meter, accurately reflecting its greater influence on
geometry compared to the Y-variables, indicated 
with a step size of 1 meter compared to 0.5 meter.
After the normalisation process, the value range of
X3 became [0, 1], preserving their original 1-meter
step size, making it four times as influential on clus-
tering as the Y-variables, twice as much as inten-
ded. Aiming to overcome this issue, it was attemp-
ted to train the SOM without normalisation, but the
unbalanced absolute values negatively affected the
clustering performance. Therefore, it is crucial to
take the effect of normalisation into account early
on in the design process by carefully setting up the
parametric model, ensuring design variables’ origi-
nal relative geometric influence remain preserved.
	 After preparing the 125 three-dimensional
normalised training vectors, such as [0.25, 1, 0.75],
[0.5, 0, 0.25], and [1, 0.25, 0.5], a pairwise distance
plot was created to assess their diversity. As illu-
strated in Figure 5.1.1, the range of Euclidean dis-
tances between all pairs of training vectors peaks
around 0.55, 0.65, 0.75, and 0.95, and ranges from
0.25 to 1.70, indicating a reasonable spread of vec-
tors within the design space. This is crucial as it di-
rectly affects SOM’s ability to effectively distinguish
between design variants, based on their vectors.
	 The second step in training the Self-Orga-
nising Map (SOM) involved initialising the model
in Python 3.9.13, using MiniSOM 2.3.3. Aiming to
balance the number of vectors to be clustered and
the SOM-network size determined by the number 

Foundational to training the Self-Organising Map
(SOM) effectively, is preparing the training vectors,
focusing solely on those affecting geometry, as in-
cluding non-geometry related vectors disrupts the
clustering process. As aforementioned, these trai-
ning vectors are based on all possible combinations
of values within the ranges of design variables Y1,
Y2, and Y3. In other words, the 125 three-dimen-
sional arrays of values used to train the SOM, are
the exact same values that can be used to generate
their geometries with the parametric model. To en-
sure that each design variable within these vectors
contributes equally to the Euclidean distance calcu-
lations during training, they are normalised (0-1).
	 Consequently, the number of values within
each design variable range plays a significant role 
in SOM clustering, as it directly affects the step size
which influences ED calculations during training, 
thereby determining the amount of impact each de-
sign variable has on clustering. When the number
of values within these ranges is not balanced across
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Figure 5.1.1. Pairwise distances plot to assess the diversity of training vectors.

of nodes in columns and rows, ensuring each de-
sign variant has sufficient space to adapt to a dis-
tinct best matching unit (BMU) on the SOM, various
network sizes were examined. After considering 
grids of 12x12, 15x15, and 20x20, ensuring full 125
node activations with as small as possible grid to
enhance design exploration later on, a 15x15 grid
was selected. Furthermore, a hexagonal grid was
chosen, as they generally offer better topological
preservation than rectangular ones due to a smal-
ler difference in the number of adjacent nodes be-
tween the edges and the center (Licen et al., 2023).
	 Additionally, the SOM was initialised with
an ordering and tuning phase, both using decrea-
sing neighbourhood radius and learning rate over
epochs to allow the SOM to first capture the general
topology and later fine-tune the feature map by fo-
cusing on more localised adjustments.
	 Finally, to assess and optimise SOM’s clus-
tering performance during training, a multi-objec-
tive optimisation approach was used, where both
quantisation error (QE) - which relates to the ave-
rage distance between each training vector and its
best matching unit, influencing input space repre-
sentation accuracy - and topographic error (TE) -
which relates to the number of training vectors for
which the first and second best matching unit are
not adjacent on the SOM grid, affecting topological
preservation - are combined into a weighted sum
and minimised during hyperparameter tuning. 

The third step in training the Self-Organising Map
(SOM), the hyperparameter tuning process, invol-
ved iterating through different values for initial and
final neighbourhood radius and learning rate, and
batch sizes, to find the least loss model. Aiming to
approach SOM’s optimal clustering performance,
the tuning process was carried out in two distinct 
phases: rough-optimisation and fine-optimisation,
with each of them having a fixed number of orde-
ring and tuning epochs set at 900 and 100, respec-

After optimising the SOM’s clustering performance
through a hyperparameter tuning process, several
plots were created to provide visual insights into
the clustering quality. As illustrated in Figure 5.1.3,
the quantisation error (QE) plot provides rough in-
sights into the distribution of facade designs across
the feature map, with the x and y axis relating to the
nodes in columns and rows, respectively. As can be
seen, the quantisation error plot shows a conside-
rably uniform distribution of input space represen-

tively. During rough-optimisation, a total of 1250
iterations were conducted, with the initial neigh-
bourhood radius ranging from 0.5 to 2.5 with in-
crements of 0.5, and 1.0 yielding the best results,
the final neighbourhood radius varying from 0.1
to 0.5 in steps of 0.1, and 0.2 providing the lowest 
losses, the initial learning rate also spanning from
0.1 to 0.5 with intervals of 0.1, and 0.4 producing
the most favorable results, the final learning rate
ranging from 0.01 to 0.05 with increments of 0.01,
and 0.02 being the best-performing value, and fi-
finally the batch size either set to 5 or 10, with 5
yielding most optimum results. During fine-optimi-
sation, another 625 iterations were conducted to
fine-tune the model, with the initial neighbourhood
radius ranging from 0.9 to 1.1 with increments of
0.05, and 0.95 being the best-performing value, the
final neighbourhood radius varying from 0.19 to
0.21 in steps of 0.005, and 0.195 yielding the best
results, the initial learning rate spanning from 0.36
to 0.44 with intervals of 0.02, and 0.42 providing
the lowest losses, the final learning rate ranging 
from 0.016 to 0.024 with steps of 0.002, and 0.020
yielding optimum results, and the batch size being
fixed at 5. These optimal hyperparameter settings
resulted in a quantisation error (QE) of 0.0771 and
a topographic error (TE) of 0 at 691 epochs, both of
which are excellent results, as illustrated in Figure
5.1.2, which shows the training error losses over
epochs of the best-performing SOM model.

Figure 5.1.2. Training errors over epochs plot to assess SOM’s performance.



Figure 5.1.3. Quantization error (QE) plot showing input space representation.

Figure 5.1.5. Variable distribution plot showing the spread of facade designs.

Figure 5.1.4. U-matrix plot showing the cluster boundaries across the map.

tation errors across the nodes, ranging from 0 to 0.3
with an average error of 0.0771, indicating excel-
lent quantisation accuracy across the entire map.

As illustrated in Figure 5.1.4, the U-matrix plot pro-
vides insights into the Euclidean distances between
neighbouring node vectors, aiming to identify clus-
ter boundaries, with red colors representing more
different clusters and blue colors showing closer 
relationships. As can be seen, the U-matrix plot dis-
plays a gradient of colours, with around 15% light
blue nodes within a range of 0.10 to 0.15, 45% light
red nodes within a range of 0.15 to 0.20, 35% red
nodes within a range of 0.20 to 0.25, and 5% dark
red nodes within a range of 0.25 to 0.30, indicating
clear cluster boundaries across the feature map.

As illustrated in Figure 5.1.5, the variable distribu-
tion plot provides clear insights into the spread of
facade designs across the feature map, by plotting
the distribution of normalised training values for
each Y-variable, with red nodes representing high
values and blue nodes illustrating low values. As

can be seen, the variable distribution plot allows
for quick assessment of the SOM’s clustering per-
formance due to its colour-based distribution, sho-
wing smooth and subtle colour transitions locally,
and more significant differences between distant
nodes, indicating meaningful clustering of facade
design alternatives, critical for design exploration.
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Figure 5.2.2. Perspective view of final biocomposite facade design clustering in Grasshopper on 15x15 hexagonal grid using Self-Organising Map (SOM) clustering method.

Following the training of the Self-Organising Map
(SOM), the final clustering results are integrated 
back into Grasshopper by extracting the geometry-
related node design vectors along with their corre-
sponding coordinates on the SOM grid, creating a
hexagonal 15x15 grid in Grasshopper, baking the
facade design geometries based on the extracted
node design vectors using the parametric model,
and positioning them on the SOM grid according 
to their coordinates, as illustrated in Figure 5.2.1. 

As the final step, a total of 6,750 nine-dimensional
geometry-related vectors were extracted through
a stratified sampling method, creating a subset re-
presenting 25% of the entire dataset, to train the
Kolmogorov-Arnold Network (KAN) models using
the vectors as x-input training data. Stratification
was carefully executed to ensure the subset was as
small as possible while maintaining maximum re-
presentativeness of the entire dataset, as the size
of the training data directly affects computational
demands, with larger datasets leading to requiring
more time-consuming performance simulations, 
and as the representativeness of the training data 
influences the surrogate model’s ability to genera-
lise well to unseen data. As a result, the stratified
sampling method first involved randomly selecting
a small number of vectors, followed by obtaining
their y-input training data through performance si-
mulations, and evaluating the prediction accuracy
of all three KAN models, one for each metric. This
process was repeated until the R²-score exceeded
0.80 for all models, which happened at 1200 trai-
ning vectors. These KAN models were used to gene-
rate interpretability plots, showing the percentual
effect of each design variable on the performance
predictions, and the average influence percentages
were then used to ensure stratification was most
representative of changes in influential variables.

As a result, the foundation of the design explora-
tion’s orientation phase is established by effectively
clustering the 125 most geometrically influential 
facade design variants on the SOM based on their
vectors, enabling the designer to navigate the en-
tire design space according to geometry typology.

5.2 Results

Figure 5.2.1. Top view facade design clustering on 15x15 hexagonal SOM grid.

Figure 5.2.3. Zoomed in perspective view facade design clustering on SOM grid.



As the most fundamental phase of the proposed AI-
driven facade design framework, this chapter del-
ves into the process of training three Kolmogorov-
Arnold Networks (KAN), one for each objective, to
approximate the performance of all design alterna-
tives with maximum accuracy, and to allow for in-
teractive human-AI feedback loops, by identifying
how each individual input variable affects the pre-
dicted output. The chapter starts by examining the
training process, covering all aspects from prepa-
ring the training vectors, to initialising the KAN mo-
dels and hyperparameter tuning, followed by del-
ving into the final performance approximation re-
sults and the creation of interpretability plots, and
concluding by systematically comparing KANs with
MLPs, providing insight into KAN’s efficiency in ap-
proximating non-linear functions as both training
vectors and complexity increases, relative to MLP.

As the first step in training the Kolmogorov-Arnold
Network (KAN) models, after extracting the 6,750
nine-dimensional x-input training vectors during
stratification, the corresponding y-inputs are obtai-
ned by conducting performance simulations based
on these nine-dimensional vectors for material use,
solar heat gains, and sound pressure level. Aiming
to manage time efficienty, the process was automa-
ted using a combination of Anemone, a Grasshop-
per extension looping through all 6,750 geometry-
related vectors and activating performance simu-
lations after each change in design, and C# scripts
saving the performance values automatically to csv
format. In total, the process required around 335
hours of processing time on an Intel Core i7 9th Ge-
neration CPU and Nvidia GeForce RTX2070 GPU,
with around 11 hours dedicated to material use, 45
hours to solar heat gains, and 279 hours to sound 
pressure level simulations, highlighting their vary-
ing complexities. The performance values were cal-
culated with six-decimal accuracy, with ranges for
material use from 0.50 to 0.83 m³, solar heat gains 
from 32.47 to 41.07 kWh/m², and sound pressure
level from 54.96 to 56.52 dB, creating 12-dimen-
sional vectors such as: [0.5, -0.5, 1.0, 0.5, 1.0, 0.15,
0.15, 0.05, 2.0, 0.683376, 34.210462, 55.370307],
corresponding to: Y1, Y2, Y3, X3, W2, TS1, SCD1, 
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BS2, SPD1, total material use, solar heat gains, and
sound pressure level, respectively. To ensure the
KAN models are trained effectively, the 9-dimen-
sional x-input training vectors are standardised (z-
score), ensuring they have a mean close to zero and
a variance close to one, optimising KAN’s learning
stability and convergence by mitigating the impact
of varying value range scales among design varia-
bles. As an example, standardisation of the afore-
mentioned twelve-dimensional vector transformed
it into: [0.71, -0.72, 1.43, 1.02, 0.99, 1.24, 1.24, -1.00,
1.23, 0.683376, 34.210462, 55.370307]. Following
this, the 6,750 twelve-dimensional standardised 
training vectors were converted into three sets of
6,750 ten-dimensional vectors, each corresponding
to one of the three KAN models to be trained for 
each performance metric. Next, each ten-dimensio-
nal dataset was split into a 60% training set, 20%
validation set, and 20% testing set, using the same
random seed (42) for all three. This was followed
by splitting each set into x-input (9) and y-input (1)
vectors and transforming them into torch tensors
to enable efficient back-propagation in PyTorch.
	 The next step in training the Kolmogorov-
Arnold Network (KAN) models involved initialising
the models in Python 3.9.13, using pyKAN 0.2.6 and
its prerequisite set of libraries, including numpy
1.24.4, scikitlearn 1.1.3, setuptools 65.5.0, sympy
1.11.1, torch 2.2.2, and tqdm 4.66.2. Aiming to opti-
mise computational efficiency, CUDA 12.4 was inte-
grated for GPU acceleration, enabling parallel com-
puting. Next in initialising the KAN models, the so-
called Limited memory Broyden Fletcher Goldfarb
Shanno (LBFGS) optimiser was chosen to minimise
the Mean Squared Error (MSE) between model pre-
dictions and ground truth during training, by twea-
king control points of all B-spline activation func-
tions through back-propagation. Different from the
Adam optimiser, typically used in Multi-Layer Per-
ceptrons (MLP) because of its effective combination
of adaptive learning rates and momentum - relating
to speeding up the process of finding the minimum
of a function, also known as gradient descent, by
adding a part of the previous weight update to the
current one - leading to fast convergence and stable
weight updates, particularly effective for large mo-
dels like MLP, the LBFGS optimiser uses so-called

6.1 Training process
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second-order approximations - relating to utilising
the 2nd derivative of a function to navigate the loss
landscape - allowing for precise convergence with-
out requiring adaptive learning rates, particularly
effective for small high-accuracy models like KAN.
	 Moving on, the KAN models were initiali-
sed with singularity avoiding and update grid set to
true, preventing extreme values to destabilise trai-
ning and enhance accuracy by dynamically adjus-
ting the B-spline activation functions’ grid points
during training, respectively. Additionally, a lear-
ning rate of one was used, as recommended by Liu
et al. (2024), as well as a lambda of zero, a L1-regu-
larisation term of one, a lambda entropy of two, a 
lambda coefficient of zero, a beta of one hundred,
an output threshold of one thousand, and a k-value
of three, affecting KAN’s speed and stability of con-
vergence during training, efficiency of regularisa-
tion to avoid overfitting by penalising the model 
from becoming too complex or adapting to noise
to improve its generalisation capabilities, transpa-
rency of connections between neurons for visuali-
sation, ability to prevent extreme values from ske-
wing predictions, and ability to represent complex
patterns smoothly by using polynomial cubic spli-
nes (k=3), balancing accuracy and interpretability.
	 As the final step in initialising the KAN mo-
dels, each model architecture was set up with nine
inputs, two hidden layers, and one output, with the
number of nodes in the hidden layers tuned accor-
ding to their varying performance approximation
complexities. As a result, the KAN models for both
material use and solar heat gains have 4-2 nodes
in their hidden layers, while the KAN model em-
ployed for sound pressure level comprises double
the number of nodes in its hidden layers. On top of
that, each model has a fixed number of epochs set
at 100, paired with an early stopping mechanism
that stops training after 10 epochs without impro-
vement, keeping the best-performing model state.
	 The third step in training the Kolmogorov-
Arnold Network (KAN) models, the hyperparame-
ter tuning process, aims to optimise performance
approximation accuracy by iterating through diffe-
rent values for grid size, which affects the granu-
larity of the B-spline activation functions, indica-
ting an exceptionally straightforward training pro-
cess. This is unlike the training process of Multi-
Layer Perceptrons (MLP), which typically require
extensive iterations through multiple hyperpara-
meters such as learning rate, batch size, and drop-
out probability, often leading to over fifteen times
more iterations than are needed for KAN models,
making them significantly more intuitive to train. In
addition to requiring fewer iterations, KAN requi-
res around ten times less number of epochs as well,

due to their faster convergence - achieving lower
losses more quickly during training - making them
considerably faster to train, despite their inability
to leverage batch computation. During hyperpara-
meter tuning, a total of eight iterations were con-
ducted for each KAN model, with the grid size ran-
ging from 3-10 with increments of 1, and 5 yielding
the lowest Mean Squared Errors (MSE) across all
KAN models, assessed on their validation set.

Figure 6.2.1. Prediction accuracy - KAN [9-4-2-1] - material use (R2: 1.00).

Following the training of the Kolmogorov-Arnold
Network (KAN) models, their final performance ap-
proximation accuracy was assessed by examining
how closely each model’s predictions aligned with
the ground truth of the test set, evaluated based on
their R²-values (0-1), indicating how well each mo-
del captures variance within the data, with values
close to one reflecting a better fit. Aiming to provide
insights into each model’s prediction accuracy con-
sistency across different value ranges - potentially
capturing areas with substantially higher errors -
scatter plots were created, illustrating predictions
(y-axis) against ground truth (x-axis) for all data-
points of the test set paired with a red line that fits 
these predictions, and a perfect fit line as reference.
	 As illustrated in Figure 6.2.1, the KAN mo-
del trained to approximate the total material use 
of the facade design alternatives, achieved a near-
perfect R2-value of 1.00, with highly consistent and
low error predictions across the entire value range.

As shown in Figure 6.2.2, the KAN model trained
to approximate solar heat gains, the second-most
complex performance metric, achieved an impres-
sive R2-value of 0.98, with comparably consistent
and low error predictions across the entire value 
range, though with slightly higher variance overall.

6.2 Results



mance is KAN’s ability to offer insight into its deci-
sion-making process by creating plots showing how
each individual input variable influences its pre-
dicted output. As the first step in generating inter-
pretability plots for each trained KAN model, the
model’s plot function is called in Python, followed
by specifying visualisation parameters, including
a beta of one hundred, variable scale of 0.175, tick
and random sampling set to false, and metric set 
to forward_n, affecting the transparency of connec-
tions between nodes, size of input and output va-
riable names, amount of network updates during
plotting - with tick set to false focusing on stable 
representations and reducing computational de-
mands, reproducibility, and the calculation of in-
fluence percentages for each input variable - with
forward_n normalising each of them between 0-1.
	 As illustrated in Figure 6.2.4, the interpre-
tability plot of the KAN model trained to approxi-
mate material use shows the model’s architecture
with nine input variables, two hidden layers with
four and two nodes respectively, and one perfor-
mance output. As can be seen, the network’s con-
nections are visualised with varying transparen-
cies, highlighting their influence on performance 
approximation - thereby making KAN’s decision-
making process transparent, unlike sensitivity ana-
lysis tools which are only able to offer output-level
insights, fostering trust between human designers
and AI, which is crucial for AI to be smoothly inte-
grated into current design practices, especially as
many designers remain hesitant to shift from tra-
ditional workflows to AI-driven workflows due to
concerns about AI’s reliability coupled with their
partial loss of control over the design process. As
shown, KAN’s interpretability is further enhanced
by its integration of B-spline activation functions, 
which tweak their control points during training
through backpropagation, until converging into a
particular shape, capturing the underlying patterns
of the data with maximum accuracy, making KAN’s
architecture exceptionally straightforward, unlike
Multi-Layer Perceptrons (MLP), which generally
require much larger architectures based on less-
interpretable linear weights. As the final layer of
insight into KAN’s decision-making process, the in-
terpretability plot showcases how much each de-
sign variable influences the predicted performance
output, expressed as a percentage. As shown, the
influence percentages logically align with the ex-
pectations, with W2 and SPD1 showing negligible
effects at 0.06% and 0.17%, respectively, with W2
just mirroring certain biocomposite facade panels
and SPD1 only affecting the biocomposite facade
panel curvature position. The design variables di-
rectly controlling total material use show balanced
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Figure 6.2.2. Prediction accuracy - KAN [9-4-2-1] - solar heat gains (R2: 0.98).

Figure 6.2.3. Prediction accuracy - KAN [9-8-4-1] - acoustic SPL (R2: 0.89).

Finally, as illustrated in Figure 6.2.3, the KAN model
trained to approximate the highly-complex sound
pressure level performance metric, achieved an R2-
value of 0.89, which is an impressive result given
its high-complexity and high-dimensionality of x-
input vectors. As can be seen, the KAN model has
relatively consistent and moderately low error pre-
dictions across the entire value range, though with
slightly more underprediction at 55.7 and 55.9 dB.

As aforementioned, this thesis introduces a novel 
performance-driven design exploration framework
integrating Self-Organising Maps (SOM) and Kol-
mogorov-Arnold Networks (KAN), which strives to 
advance the facade design process by enhancing 
computational efficiency, performance approxima-
tion accuracy, interpretability, reliability, and usa-
bility, to facilitate more efficient decision-making in
the early design stage. Foundational to enhancing
the interpretability between geometry and perfor-
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influence percentages as well, according to sensiti-
vity analysis results and personal assessment, with
SCD1 having most influence at 22.20%, followed by
BS2 at 7.57%, and TS1 at 6.03%. Finally, the varia-
bles affecting the shape of the facade are also logi-
cal, with X3 at 7.70%, Y1 at 8.14%, Y2 at 18.97%, 
and Y3 at 29.17%. Although all Y-variables are si-
milar with only their position in the facade being
different, and equally representative in the training
dataset, their influence percentages differ signifi-
cantly. This is mainly due to the fact that Y3 affects
half of the entire facade together with BS2, X3, and
W2, which are summed up responsible for 15.33%
of KAN’s predicted output, while Y1 influences half
of the entire facade together with TS1, SCD1, and
SPD1, responsible for 28.40%, thereby accounting
for Y1’s lower influence percentage than that of Y3.

Moving on with the interpretability plot of the KAN
model trained to approximate solar heat gains, as
illustrated in Figure 6.2.5. Similar to the sensitivity
analysis results and the expectations, BS2 and SPD1
have negligible effect on performance at 0.01% and
0.02%, closely followed by TS1 and SCD1 at 0.07%
and 0.09%, lower than anticipated given these va-
riables roles in creating horizontal and vertical sha-
ding. The remaining design variables show balan-
ced influence percentages, with W2 at 11.95% in-
fluencing the position of the window, X3 at 40.15% 
affecting glass surface orientation the most, Y2 at
27.82% as the most-influential Y-variable due to 
its central position, and variables Y3 and Y1 at only
17.73% and 2.16%, due to being more off-centered.

Figure 6.2.4. Original interpretability plot KAN for material use performance.

Finally, the interpretability plot of the KAN model
trained to approximate the sound pressure level, as 
illustrated in Figure 6.2.6 shows balanced influence
percentages for TS1 at 0.09%, BS2 at 0.15%, SCD1
at 0.34%, and SPD1 at 0.54%. The remaining varia-
bles, with W2 at 5.52%, X3 at 24.58%, Y1 at 7.03%,
Y2 at 31.15%, and Y3 at 30.06%, are too difficult to
validate for most users, even though possible when
the activation functions are investigated carefully,
underscoring the importance of providing the de-
signer with a model which results can be trusted.

Figure 6.2.5. Original interpretability plot KAN for solar heat gains performance.

Figure 6.2.6. Original interpretability plot KAN for acoustic SPL performance.
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As an additional step in enhancing interpretability,
the created plots can be pruned by calling the mo-
del’s prune function in Python, removing the nodes
and edges with minimal influence on the predicted
output, based on a predefined threshold. After ite-
rating through different values and comparing the
plotting results, a minimum threshold of 0.01 for
both node and edge pruning was chosen, simpli-
fying the model’s architecture significantly, thereby
enhancing interpretability, as illustrated in Figu-
res 6.2.7-6.2.9, though with slightly less precision.

Figure 6.2.8. Pruned interpretability plot KAN for solar heat gains performance.

Figure 6.2.7. Pruned interpretability plot KAN for material use performance.

Figure 6.2.9. Pruned interpretability plot KAN for acoustic SPL performance.

Aiming to demonstrate the potential of Kolmogo-
rov-Arnold Networks (KAN) as a promising surro-
gate model alternative to traditional Multi-Layer 
Perceptrons (MLP), the KAN models are systemati-
cally compared with identical MLP models, as well
as those with four, eight, and sixteen times as many
nodes, across varying levels of performance appro-
ximation complexity, evaluating R²-scores at inter-
vals of 300 up to 6,750 samples, offering insights 
into KAN’s performance approximation accuracy
as data and complexity increases, relative to MLP.
	 The first step in training the MLP models,
after preparing the training vectors with almost the
exact same logic as used for the KAN models - with 
the only difference being their final transformation
into numpy arrays instead of torch tensors - invol-
ved initialising the models in Python 3.9.13 using
Tensorflow 2.10.0. Aiming to optimise computa-
tional efficiency, DirectML was integrated for GPU
acceleration, enabling parallel computing. Next in
initialising the MLP models, the so-called Adaptive
Moment Estimation (Adam) optimiser was chosen
to minimise Mean Squared Errors (MSE) between
predictions and ground truth during training, by
adjusting weights and biases through back-propa-
gation. Additionally, the MLP models were initiali-
sed with so-called Rectified Linear Unit (ReLU) acti-
vation functions, aiming to introduce non-linearity
by setting negative inputs to zero and keeping po-
sitive inputs unchanged. As the final step in initiali-
sing the MLP models, each model architecture was
set up with nine inputs, two hidden dense layers

6.3 MLP vs KAN
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with two dropout layers randomly deactivating no-
des during training to prevent overfitting, and one
output, with the number of nodes in the hidden la-
yers carefully selected to allow for thorough com-
parison of performance approximation efficiency
between MLP and KAN. Consequently, a total of six
MLP models were trained: two models for material
use with 4-2 and 16-8 nodes respectively, two for 
solar heat gains with 4-2 and 32-16 nodes, and two
for sound pressure level with 8-4 and 128-64 no-
des. On top of that, each MLP model was initialised
with a fixed number of epochs set at 1000, paired
with an early stopping mechanism with a patience
of 50 epochs, keeping the best-performing state.
	 Following the initialisation of the MLP mo-
dels, an extensive hyperparameter tuning process
was carried out to optimise each model’s perfor-
mance approximation accuracy. This process invol-
ved iterating through various values for learning
rate [0.0001, 0.0005, 0.001, 0.005, 0.01], batch size
[8, 16, 32, 64], and dropout probability [0.00005,
0.0001, 0.0005, 0.001, 0.005, 0.01], with different
optimal hyperparameter settings for each model,
yielding the lowest Mean Squared Errors assessed
on their validation set. After the hyperparameter 
tuning process, their final performance approxi-
mation accuracy was assessed by examining how
closely their predictions aligned with the ground
truth of the test set, evaluated based on their R²-
values. Additionally, aiming to provide insight into
each model’s prediction accuracy consistency ac-
ross different value ranges, scatter plots were crea-
ted, similar to those created for the KAN models.
	 As illustrated in Figure 6.3.1, the MLP mo-
del trained to approximate total material use - with
4 and 2 nodes in its hidden layers respectively, an
optimal learning rate of 0.0005, batch size of 8, and
dropout probability of 0.01 - achieved an impres-
sive R2-value of 0.94, slightly worse than the KAN
model with the same architecture, which yielded
a near-perfect R2-value of 1.00. Although the per-
formance approximation accuracy of the MLP mo-
del is excellent overall, with relatively consistent
and low error predictions for most datapoints, it 
has significant issues with predictions in the value
range 0.50-0.54 m³, predicting all values as 0.54 m³. 
Additionally, it has strong underpredictions in the
value range 0.71-0.83 m³, making the MLP model
significantly less reliable. This underscores the im-
portance of the scatter plots, providing insight into
prediction accuracy consistency, as numeric assess-
ment alone is not everything - a model with a lower
R²-value but more consistent predictions across its
entire value range would be a more effective surro-
gate model, as consistency is crucial for creating re-
liable models, as well as the case for life in general.

Following this, the smallest MLP model architec-
ture that achieved similar results as the KAN model 
required four times as many neurons in its hidden
layers. As illustrated in Figure 6.3.2, this MLP mo-
del, trained to approximate total material use - with
16 and 8 neurons in its hidden layers respectively,
an optimal learning rate of 0.001, batch size of 8,
and dropout probability of 0.005 - yielded a near-
perfect R2-value of 1.00, with highly consistent and
low errors across the entire value range, though 
with slightly more underprediction from 0.71 to 
0.83 m3, thus a bit less reliable than the KAN model.

As shown in Figure 6.3.3, the MLP model trained to
approximate solar heat gains - with 4 and 2 nodes
in its hidden layers respectively, an optimal lear-
ning rate of 0.005, batch size of 8, and dropout pro-
bability of 0.001 - achieved a respectable R2-value 
of 0.85, though notably below the R2-value of 0.98
yielded by the KAN model with the same architec-

Figure 6.3.1. Prediction accuracy - MLP [9-4-2-1] - material use (R2: 0.94).

Figure 6.3.2. Prediction accuracy - MLP [9-16-8-1] - material use (R2: 1.00).
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Figure 6.3.3. Prediction accuracy - MLP [9-4-2-1] - solar heat gains (R2: 0.85).

Figure 6.3.5. Prediction accuracy - MLP [9-8-4-1] - acoustic SPL (R2: 0.26).

Figure 6.3.4. Prediction accuracy - MLP [9-32-16-1] - solar heat gains (R2: 0.98).

ture. As can be seen in the scatter plot, the MLP mo-
del has moderately consistent and moderately low
error predictions, with strong overpredictions from
33.5 to 34.0 kWh/m2, and even stronger underpre-
dictions in the value range 37.2-41.0 kWh/m2, in-
dicating a relatively unreliable surrogate model.

Consequently, the smallest MLP model architecture
ture that achieved similar results as the KAN model 
required eight times as many nodes in its hidden
layers. As shown in Figure 6.3.4, this MLP model,
trained to approximate solar heat gains - with 32
and 16 nodes in its hidden layers respectively, an
optimal learning rate of 0.0005, batch size of 8, and
dropout probability of 0.0001 - yielded an R2-value
of 0.98, with highly consistent and low error pre-
dictions across the entire value range, even slightly
more consistent than the KAN model which has a
bit of overprediction from 32.6-32.8 kWh/m2 and
a bit of underprediction from 39.2-39.7 kWh/m2.

Finally, as illustrated in Figure 6.3.5, the MLP model
trained to approximate sound pressure level - with
8 and 4 nodes in its hidden layers respectively, an
optimal learning rate of 0.001, batch size of 32, and
dropout probability of 0.00005 - achieved a signifi-
cantly poor R2-value of 0.26, with highly inconsis-
tent and high error predictions across the entire
value range, with strong overpredictions from 55.0-
55.5 dB and underpredictions from 55.7-56.5 dB.

Aiming to create an MLP model that achieves simi-
lar results as the KAN model (R2-value of 0.89), the
number of nodes in its hidden layers was increased
sixteen times. As shown in Figure 6.3.6, this MLP
model - with 128-64 nodes in its hidden layers re-
spectively, an optimal learning rate of 0.0005, batch
size of 16, and dropout probability of 0.00005 - still
performed significantly poor with an R2-value of 
0.42, with moderately inconsistent and moderately
high error predictions across the entire value range.

Figure 6.3.6. Prediction accuracy - MLP [9-128-64-1] - acoustic SPL (R2: 0.42).
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Figure 6.3.8. Prediction accuracy MLP vs KAN as a function of training data.

In a final attempt to create an MLP model achieving
similar results as the KAN model, two dense layers
were added. As shown in Figure 6.3.7, this MLP mo-
del - with 128-64-32-16 nodes in its hidden layers
respectively, an optimal learning rate of 0.0005, a
batch size of 8, and dropout probability of 0.0001 - 
yielded a slightly better, but still significantly poor
R2-value of 0.44, with slightly less consistent, but
slightly lower errors across the entire value range.

Aiming to provide insights into KAN’s efficiency in
approximating non-linear functions as both trai-
ning data and performance approximation comple-
xity increases, relative to MLP, the three KAN mo-
dels are systematically compared with the seven 
MLP models, evaluating their R²-scores at intervals
of 300 up to 6,750 training vectors. Before exami-
ning the results, it is essential to note that each sur-
rogate model’s optimal hyperparameter settings,
derived from training on 6,750 vectors, were kept
constant for the smaller datasets. Despite the fact
that these models trained on smaller datasets could
have different optimal hyperparameter settings, the
high number of epochs and early stopping mecha-
nism still allows them to find semi-optimal results.
	 As shown in Figure 6.3.8, KAN significantly
outperform MLP from a performance approxima-
tion accuracy and convergence perspective, with
much smaller and more interpretable model archi-
tectures, which are also faster and more intuitive to
train - requiring fewer iterations through hyperpa-
rameters and fewer epochs - as well as more relia-
ble due to their more consistent error predictions
across value ranges. This not only reduces compu-
tational demands significantly by minimising trai-
ning data required to yield acceptable prediction
accuracies - assuming sufficient representativeness
of the dataset - and for optimising KAN’s stratified 

sampling logic, but also make KANs able to adapt
to highly-complex performance metrics like sound
pressure level, based on high-dimensional x-input
vectors, where MLPs fail significantly.
	 Examining the results, it can be seen that 
the KAN model trained for material use, yields an
R2-value of 0.994 after only 600 training vectors,
while the MLP model with four times as many no-
des, requires 3.5 times as many training vectors to 
yield similar results, highlighting KAN’s fast con-
vergence. This trend extends to solar heat gains, 
where the KAN model yields an R2-value of 0.978
after just 900 training vectors, while the MLP mo-
del with eight times as many nodes, requires three
times as many training vectors to achieve similar
results. The KAN model trained for sound pressure
level, achieves an R2-value of 0.801 after only 1200
training vectors, while the three MLP models fail to
adapt to the high-complexity at all, with fluctuating
R²-values and larger model architectures requiring
more training vectors to yield R2-values above zero.

In conclusion, these findings indicate that Kolmogo-
rov-Arnold Networks (KAN) are highly efficient in
approximating non-linear functions across varying
levels of performance approximation complexity
and dataset sizes, while also reducing computatio-
nal demands due to their fast convergence, making
them a highly promising surrogate model alterna-
tive to traditional Multi-Layer Perceptrons (MLP).

Figure 6.3.7. Prediction accuracy - MLP [9-128-64-32-16-1] - SPL (R2: 0.44).



Following this, the performance of these 125 most
geometrically influential facade design variants are
approximated by the trained Kolmogorov-Arnold 
Network (KAN) models, based on their nine-dimen-
sional geometry-related design vectors, for mate-
rial use, solar heat gains, and sound pressure level.
As each designer prioritises these performance me-
trics differently, the design exploration framework
allows for weight allocations, with default values of
0.50 for material use, 1.00 for solar heat gains, and
0.25 for sound pressure level. These weighted per-
formance approximations are summed up, remap-
ped to a domain of 0 to 10 meters, and used to ge-
nerate a performance surface using Grasshopper’s
delaunay mesh component, which hovers above the
SOM as a visual performance indicator, with higher
elevations indicating better-performing facade de-
sign variants below, as illustrated in Figure 7.1.2.

Furthermore, a horizontal performance threshold
plane and a legend are created to make design ex-
ploration more effective, by enabling the designer
to filter facade design variants based on a perfor-
mance score threshold from one to ten - with one
corresponding to the lowest and ten to the highest
point on the performance surface - or by setting a
percentage of facade design variants that surpass
the threshold plane. Additionally, to facilitate easier
comparison between facade design variants from a
qualitative and quantitative perspective, those sur-
passing the threshold plane are highlighted with
vertical lines indicating their relative positions on 
the SOM, as well as automatically copied above the
performance surface, as illustrated in Figure 7.1.3.

As the foundation of the design exploration process,
the orientation phase allows the designer to navi-
gate the Self-Organising Map (SOM) according to
geometry typology and approximated performance,
facilitating fast design orientation based on design
variables with high influence on geometry. As afore-
mentioned, after training the SOM, the final clus-
tering results were integrated back into Grasshop-
per by extracting the 125 geometry-related node
design vectors along with their corresponding co-
ordinates on the SOM grid, followed by creating a
hexagonal 15x15 grid in Grasshopper, baking the
facade design geometries based on the extracted
node design vectors using the parametric model,
and positioning them on the SOM grid according 
to their coordinates, as illustrated in Figure 7.1.1. 

7.1 Orientation
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As aforementioned, the self-organising map (SOM)  
based design framework, which is the current most
advanced performance-driven design exploration
framework in facade design, lacks balanced human-
AI interaction in its exploration process, consisting
of between-cluster and inside-cluster exploration.
Particularly, inside-cluster exploration, which in-
volves inspecting hundreds of similar design alter-
natives, is overly AI-dominant and lacks interac-
tivity with the human designer, making the design
framework less effective and intuitive.
	 Therefore, as the final phase of the propo-
sed AI-driven facade design framework, this chap-
ter delves into the process of creating a novel de-
sign exploration framework consisting of an orien-
tation and fine-tuning phase, which aim to balance
human-AI interaction more efficiently, making de-
sign exploration more interactive, as well as to in-
clude less-geometry related design variables, en-
hancing the framework’s optimisation capabilities.

Figure 7.1.1. Clustering facade design geometries on 15x15 hexagonal SOM.

Figure 7.1.2. Weighted performance indication surface hovering above SOM.
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During design exploration, designers can adjust the
weights of the performance metrics and the height
of the threshold plane to find the best-performing
facade design variant, balancing architectural and
quantitative performance. As this optimal design
serves as the foundation of the fine-tuning phase,
the facade shown in Figures 7.1.4-7.1.5 is selected.

Figure 7.1.3. Final design exploration interface of the orientation phase with the weighted performance surface hovering above the SOM, threshold plane, and legend.

Figure 7.1.4. Perspective view of the selected best-performing facade design.

Figure 7.1.5. Overhead view of the selected best-performing facade design.

As the final step of the design exploration process,
the fine-tuning phase focuses on smaller geometric
changes within the selected best-performing facade
design from the orientation phase, allowing desig-
ners to adjust design variables strategically, based
on real-time performance feedback and actionable
insights provided by the KAN models, interactively
guiding designers towards optimal performance. 
	 As the first step in creating the fine-tuning
design exploration interface, the three-dimensional
geometry-related design vector of the best-perfor-
ming facade design from the orientation phase, is
extracted from the SOM and converted into a nine-
dimensional vector by adding design variables X3,
W2, TS1, SCD1, BS2, and SPD1 - which are signifi-
cantly less-influential on geometry and therefore
guiding the fine-tuning phase - with default values
set to the first in their ranges, followed by baking
the geometry based on this vector using the para-
metric model, and placing it on a hexagonal base.
	 Next, the top part of the interactive infor-
mation panel is created, displaying the adjustable
weights, names, and absolute performance appro-
ximations of each metric, enabling the designer to
adapt the design exploration framework to their 
own specific priorities and gain insights into the 
current facade design’s quantitative performance.
	 Following this, the weighted performance
approximations are summed up, remapped to a do-
main of one to ten, and used to generate a dynamic
performance indictor, displayed as a horizontal line
with the current facade design’s performance score
marked by a blue dot, paired with the scores of each
individual metric indicated by light grey dots, ena-

7.2 Fine-tuning



lity plots, the specified metric weights are applied,
and the average influence percentage for each de-
sign variable is calculated. These values are then
remapped to a domain of 0 to 0.7 meters, and used
to create a surface using Grasshopper’s interpolate
curve and ruled surface components, with higher
elevations indicating greater influence on perfor-
mance, as illustrated in figure 7.2.1. Additionally,
an influence percentage threshold is created, with
the default percentage set at 5.0%, highlighting de-
sign variables with influence below this threshold
with blue lines underneath their variable names.
	 During design exploration, designers can
tweak design variables based on real-time perfor-
mance feedback and actionable insights provided
by the Kolmogorov-Arnold Network models, ad-
just weights of the performance metrics to adapt
the exploration framework to their own priorities,
set specific performance scores to inspect various
facade designs and learn from their design variable
values, and specify the influence percentage thres-
hold to assist in identifying design variables with
minimal impact on quantitative performance, allo-
wing designers to focus on the most important de-
sign variables more easily and ultimately find the
best-performing facade design variant, balancing
architectural and quantitative performance best.

bling the designer to quickly assess the current fa-
cade design’s quantitative performance overall and
across different metrics. Additionally, the designer
can use the dynamic performance indicator line to 
inspect various facade designs by setting a specific
performance score, indicated with a red cross. This
not only shows the specific facade design, but also
highlights its design variable values with red lines
underneath specific points that indicate the num-
ber of values in each design variable’s value range,
as illustrated in the bottom-right side of the inter-
active information panel in Figure 7.2.1. The design
variable values of the current facade design are also
highlighted by blue dots, while the best-performing
design variable values are marked by green circles.
	 As the final step in creating the fine-tuning
design exploration interface, the design variable
names, their absolute values, and their relative in-
fluence on quantitative performance are displayed,
offering the designer the ability to adjust design va-
riables strategically, as some might not have as big
of an impact on performance as expected and might
predominantly affect geometry, therefore able to
be freely tweaked within their original domain of
values. After extracting the influence percentages
for each performance metric from the Kolmogo-
rov-Arnold Network (KAN) models’ interpretabi-

39

Figure 7.2.1. Final design exploration interface of the fine-tuning phase with the information panel interactively guiding the designer towards optimal performance.



As aforementioned, a novel approach to early-stage
facade design exploration was developed to balance
human-AI interaction more efficiently and integrate
less-geometry related design variables, aiming to
make design exploration more interactive, thereby
more effective and intuitive, while enhancing opti-
misation capabilities. Where design exploration has
proven to be more interactive by the incorporation
of performance metric weights reflecting designer
priorities in the orientation phase, and by empo-
wering designers with control over the design pro-
cess with AI assisting in the fine-tuning phase, the
integration of less-geometry related design varia-
bles has proven successful by operating the fine-
tuning phase independently of geometric variables. 
	 However, whether designers perceive this
increased interactivity as beneficial for design ex-
ploration remains subjective. Therefore, to validate
the novel design exploration framework’s effective-
ness compared to traditional SOM-based between-
cluster and inside-cluster design exploration, six-
teen Building Technology and Architecture master 
students from Delft University of Technology have
engaged in one-on-one design exploration sessions,
with feedback obtained through a questionnaire.
	 This questionnaire, included in its entirety
in Appendix H, consists of 22 multiple-choice ques-
tions categorised into five distinct sections. In the
first section (Q1-Q3), the participant’s background
in using AI-driven design tools, parametric mode-
ling, and facade design is evaluated to place their
feedback into context by enabling the creation of
participant profiles based on experience levels. In
the second section (Q5-Q10), the orientation phase
is assessed on its overall impression, effectiveness
in enabling fast design orientation, intuitiveness,
usefulness of its design tools in narrowing design
options, and satisfaction with the final design out-
come. Building on this, the third section (Q11-Q16),
focuses on assessing the fine-tuning phase, exami-
ning its overall impression, effectiveness in refining
the chosen design, intuitiveness, usefulness of its in-
formation panel in adjusting design variables stra-
tegically, and satisfaction with the final design out-
come. In the fourth section (Q17-Q18), the overall
performance of the novel design exploration frame-
work is evaluated, examining its effectiveness in 
balancing qualitative and quantitative aspects and
overall design exploration. Finally, in the fifth sec-
tion (Q19-Q22), the novel framework is compared
to the traditional approach by evaluating the orien-
tation and fine-tuning phase against the between-
and inside-cluster phase, respectively, in terms of 
visualisation, speed, usability, and effectiveness in
decision-making, as well as by evaluating the effec-

tiveness of design exploration of both frameworks
overall. While most questions (Q1-Q20) are on a 
five-point scale, comparative questions (Q21-Q22)
allow participants to select either the traditional
framework, the novel approach, or remain neutral.
	 Delving into the results of the second, third,
and fourth section of questions (Q5-Q18), as shown
in Figure 7.3.1 and highlighted in blue, orange, and
green, respectively, with the size of the dots reflec-
ting the number of participants, it can be concluded
that most participants are highly positive about the
novel design exploration framework’s effectiveness,
assessing each section with average scores of 4.30,
4.33, and 4.34, respectively. In addition to the small
score differences between each section, the mean
values of each individual question within each sec-
tion are close to the average score for that section
as well, with bounds of [+0.20, -0.30, ±0.50], [+0.17,
-0.20, ±0.37], and [+0.22, -0.21, ±0.43], respectively, 
thereby indicating consistent overall performance.

As aforementioned, to examine potential correla-
tions between experience levels and assessment, 
participants were grouped into three profiles: low,
moderate, and high experience based on the sum-
med total of their responses to Q1-Q3. While two
participants were grouped into the low profile, the
moderate and high profiles included seven partici-
pants. For each question, the average score within
each profile was used, as depicted in Figure 7.3.2.

7.3 Validation
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Figure 7.3.1. Assessment Novel Framework: Raw Data.

Figure 7.3.2. Assessment Novel Framework: Participant Profiles.
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To better understand these results, Figure 7.3.3 was
created, showing the averages for each section and
their bounds across the three participant profiles.
For the orientation phase: low, moderate, and high
experience participants scored 4.50 [+0.50, -0.50,
±1.00], 4.29 [+0.28, -0.43, ±0.71], and 4.26 [+0.31,
-0.40, ±0.71], respectively, showing higher scores
and greater variability for low experience partici-
pants. In the fine-tuning phase, averages were 4.25
[+0.75, -0.75, ±1.50], 4.23 [+0.34, -0.37, ±0.71], and
4.45 [+0.26, -0.31, ±0.57], with the highest scores
and lowest variability for high experience partici-
pants. Lastly, for the overall framework, averages
were 4.50 [+0.50, -0.50, ±1.00], 4.47 [+0.07, -0.07,
±0.14], and 4.14 [+0.28, -0.29, ±0.57], with the lo-
west scores for high experience participants and
greatest variability for low experience participants.
The consistently high variability in the low expe-
rience group is likely due to its underrepresenta-
tiveness with only two participants, compared to
seven, amplifying the impact of individual scores. 

Building on this, Figure 7.3.4 was created, showing
the averages and bounds for all sections combined,
based on the summed total divided by three, across
the three participant profiles. As shown, low, mode-
rate, and high experience participants scored 4.42
[+0.08, -0.17, ±0.25], 4.33 [+0.14, -0.10, ±0.24], and
4.28 [+0.17, -0.14, ±0.31], respectively. Given these
results, a slight trend of decreasing performance 
scores and increasing variability with increasing 
experience levels is observed. However, given the 
small sample size of only sixteen participants, and
the underrepresentativeness in the low experience 
group which could have affected the results signifi-
cantly, these trends should be interpreted carefully.

As aforementioned, in the fifth section of questions
(Q19-Q22), the novel framework is compared to the
traditional approach. As shown in Figure 7.3.5, be-
tween-cluster exploration (left) aligns closely with
the orientation phase, with small differences in vi-
sualisation, insights, and design exploration tools,
while inside-cluster exploration (right) differs sig-
nificantly from the fine-tuning phase, presenting 
designs sequentially with quantitative filter options.

Figure 7.3.3. Assessment Novel Framework: Averages & Bounds.

Figure 7.3.4. Assessment Novel Framework: Overall Averages & Bounds.

Figure 7.3.5. Traditional exploration. Adapted from “Design exploration of quan-
titative performance and geometry typology for indoor arena based on self-organi-
zing map and multi-layered perceptron neural network”, by Turrin et al., 2020 [94].

Figure 7.3.6. Framework Comparison: Raw Data, Profiles, Averages & Bounds.

Delving into the results of Q19-Q22, as shown in
Figure 7.3.6, it can be concluded that most partici-
pants are strongly favouring the novel framework 
over the traditional approach in terms of visualisa-
tion, speed, usability, and effectiveness in decision-
making. As illustrated, low, moderate, and high ex-
perience participants scored 5.00, 4.14, and 4.71, as
well as 5.00, 4.71, and 4.86 in favour of the orien-
tation and fine-tuning phase, with a score of three
equal to remaining neutral. They scored 3.00, 3.00, 
and 2.86, as well as 3.00, 2.71, and 3.00, assessing 
confidence in design choices and overall effective-
ness, with a score of two equal to remaining neutral.

Interpreting the results, no significant correlations
between experience levels and assessment were 
observed, while feedback from the one-on-one de-
sign exploration sessions revealed a strong prefe-
rence for the novel framework due to its interactive
nature and balanced consideration of qualitative 
and quantitative aspects during design exploration.



This thesis aimed to advance the facade design pro-
cess by developing a novel performance-driven de-
sign exploration framework, inspired by the SOM-
MLP framework and applied in the design process
of an aluminium-based biocomposite curtain wall
facade fragment, comprising SOM and KAN.
	 By integrating KAN as a surrogate model 
within an SOM-based design framework, which is
the current most advanced performance-driven de-
sign exploration framework used in facade design, 
it was aimed to enhance computational efficiency, 
substituting heavy performance simulations with
fast approximations. While initial training on 2,700
simulations yielded an R²-score of over 0.88 for all
KAN models with only 134 hours of computation, 
a total of 6,750 simulations, covering 25% of the 
entire dataset, were conducted to ensure proper 
generalisation, requiring 335 hours of computation
and saving over 1,000 hours. This not only allows
for the exploration of a larger design space to find
better-performing designs, but also for the adap-
tation to higher-complex design problems.
	 Furthermore, KAN was systematically com-
pared with various MLP models of different archi-
tectures to evaluate its efficiency in approximating
non-linear functions as training data and perfor-
mance approximation complexity increases. The
results show that KAN significantly outperforms
MLP from a performance approximation accuracy
and convergence perspective, achieving these re-
sults with much smaller architectures. While KAN 
yields R²-values of 0.99 for material use after 600
vectors, 0.98 for solar heat gains after 900 vectors, 
0.80 for sound pressure level after 1,200 vectors,
and 1.00, 0.98, and 0.89 after 6,750 vectors respec-
tively, the MLP models require around 3.5 times as
many vectors to yield similar results for material
use and solar heat gains, and even the deepest MLP
model, with four hidden layers of 128, 64, 32, and
16 nodes, fails to adapt to the high-complexity of
sound pressure level, achieving a poor R²-value of
0.44. Despite KAN’s faster convergence being over-
shadowed by additional training vectors used to
ensure proper generalisation, it still holds the abi-
lity to reduce computational demands significantly
under different conditions, by minimising training 
data required to yield acceptable prediction accu-
racies and for optimising stratified sampling. KAN’s
superior performance approximation accuracy for
sound pressure level shows its potential to adapt
to even more complex design problems, while tra-
ditional MLP models already fall short. This is cru-
cial given the fact that this thesis focuses on only a 
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small facade fragment. Additionally, KAN has pro-
ven to be much faster and more intuitive to train,
requiring around fifteen times fewer hyperpara-
meter iterations and ten times less epochs, as well
as more consistent in its error predictions across
value ranges. This not only makes KAN more com-
putationally efficient and reliable, but also accesible
to those with limited expertise in machine learning.
	 Moreover, introducing KAN as a surrogate
model alternative to MLP, sought to enhance the in-
terpretability between geometry and performance,
enabling designers to identify and focus on relevant
design variables that affect both; crucial as design
spaces are often high-dimensional and SOMs face
the curse of dimensionality, while also empowering
them with actionable insights to adjust design varia-
bles strategically toward optimal performance. This
study confirmed enhanced interpretability through
the creation of plots showing the percentual impact
of each design variable on performance predictions,
validated by personal assessment as well as sensi-
tivity analysis results, which also highlighted KAN’s
advantages as an all-in-one solution with transpa-
rent decision-making and four times faster results.
Thus, KAN not only makes the design process more
efficient, but also enhances usability and reliability,
and reduces computational demands by enabling
stratified sampling and through faster processing.
	 Finally, a novel approach to design explo-
ration was developed to balance human-AI interac-
tion more efficiently than traditional methods, and
integrate less-geometry related design variables, ai-
ming to make design exploration more interactive,
thereby more effective and intuitive, while enhan-
cing optimisation capabilities. Where one-on-one 
design exploration sessions with experts in the field
and feedback obtained through a questionnaire has
validated enhanced effectiveness and intuitiveness, 
less-geometry related design variables have been
successfully integrated by operating part of design
exploration independently of geometric variables.
	 To conclude, the SOM-KAN framework has
proven to advance the facade design process by en-
hancing computational efficiency, performance ap-
proximation accuracy, interpretability, reliability,
usability, and accessibility, facilitating more efficient
decision-making in early design stages, leading to
superior architectural and sustainable solutions.
	 Further research could focus on extending
the SOM-KAN framework to other design practises
within the AEC sector, assessing its effectiveness
on larger and more complex design problems, and
investigating the limits of dimensionality in SOMs.



What is the relation between this project and
the Building Technology master programme?

As aforementioned, this thesis introduces a novel 
performance-driven design exploration framework,
inspired by the SOM-MLP framework and applied
in the design process of an aluminium-based bio-
composite curtain wall facade fragment, integra-
ting Self-Organising Maps (SOM) and Komogorov-
Arnold Networks (KAN), which has proven to ad-
vance the facade design process by enhancing com-
putational efficiency, performance approximation
accuracy, interpretability, reliability, usability, and
accessibility, facilitating more efficient decision-
making in the early design stage, leading to better
architectural and sustainable solutions. At its core, 
this thesis focuses on leveraging computational and
AI-driven tools to advance the approach to early-
stage facade design. This thesis aligns well with the
Building Technology master programme, which fo-
cuses on sustainable and innovative design of buil-
dings and their components, with the role of AI be-
coming increasingly prevalent, as well as the gra-
duation themes: Design Informatics and Facade &
Product Design, and the courses offered throughout
the programme. It also aligns with Climate Design
through the integration of sound pressure level and
solar heat gains performance simulations, and less
with Structural Design, although mechanical pro-
perties of biocomposites were examined. Finally,
this thesis integrates biocomposites as a case study
material to address sustainability, which is a foun-
dational aspect within the master programme, and
uses performance metrics that address sustaina-
bility, energy demands, and urban noise pollution.

Reflection
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How did research and design affect each other?

The research on Self-Organising Maps (SOM) and
Kolmogorov-Arnold Networks (KAN) directly in-
fluenced the design process by providing the theo-
retical foundation for integrating these AI-driven
tools, while the research on biocomposites enabled
realistic performance simulations by using mate-
rial properties derived from the best-performing
compound identified by the design tool. In turn, the
design process influenced the research on KAN by
demonstrating its efficiency in approximating non-
linear functions as training data and performance
approximation complexity increases, relative to
traditional MLP models, while the biocomposite 
facade design showcases a potential application 
of wood dust crafted biocomposite facade panels 
within an aluminium-based curtain wall system.

How do you assess the value of transferability?

The transferability of this thesis is significant due
to its use of Python for coding the SOM, KAN, MLP,
and sensitivity analysis, and its use of Rhino 3D and
Grasshopper for parametric modeling, performance
simulations, and design exploration; ensuring ease
of implementation and accesibility, as Python is a
free open-source programming language with ex-
tensive libraries and active support, and Rhino 3D
and Grasshopper are already widely implemented
into architectural design. Furthermore, the SOM-
KAN framework is fully scalable to higher-complex
design problems and different datasets, making it
adaptable to various applications within the AEC
sector. Finally, the biocomposite design tool, set up
in Excel, is able to adapt to more research as well.

How do you reflect on your mentor feedback?
As aforementioned, I had some difficulties narro-
wing down my thesis up until P2. With regards to
overcoming this issue, a significant role was played
by my mentors, who guided me towards a focused
and relevant direction. Following P2, several feed-
back sessions took place which helped me fine-tune
the SOM and maintain focus on the overall objective
throughout the process, as well as enhance the ap-
plicability and validity of this thesis, by advising me
to add a design exploration phase and validate its 
effectiveness in practise through a questionnaire.

How do you reflect on your way of working?

At the start of this thesis, my strategy was to choose
a topic that would not reinvent the wheel entirely,
as I know I tend to take on too much, but instead 
would allow me to explore a specific area in depth, 
which I believed would be more valuable to the re-
search community as well as more manageable for
myself. Looking back, I believe my thesis balances
innovation while maintaining a focused approach
quite effectively, though I did face some challenges
in narrowing my thesis. Up until P2, I was torn be-
tween focusing on advancing the approach to early-
stage facade design utilising computational and AI-
driven tools and optimising the properties of wood
dust crafted biocomposites at a material level, with
a focus on robotic fabrication and its implementa-
tion into building facades. Initially, I thought these
topics would be more closely related and could be
combined, but I eventually decided to focus on ad-
vancing the facade design process, using biocompo-
sites as a relevant and sustainable case study ma-
terial, aiming to maintain a more focused approach.
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Figure A.1. Effect of wood content (blue: untreated date palm wood fibers {UT-
DPWF}, orange: 3wt.% SA-treated date palm wood fibers in 50:50vo.% aceto-
ne:water solvent ratio, and green: 3wt.% SE-treated date palm wood fibers in 
90:10vo.% ethanol:water solvent ratio) in PLA matrix on the density. Adapted 
from “Improvement of mechanical properties and water resistance of bio-based 
thermal insulation material via silane treatment”, by Abdallah et al., 2022 [1].

Figure A.4. Effect of wood content (blue: untreated date palm wood fibers {UT-
DPWF}, orange: 3wt.% SA-treated date palm wood fibers in 50:50vo.% aceto-
ne:water solvent ratio, and green: 3wt.% SE-treated date palm wood fibers in 
90:10vo.% ethanol:water solvent ratio) in PLA matrix on the thermal conducti-
vity. Adapted from “Improvement of mechanical properties and water resistance 
of bio-based thermal insulation material via silane treatment”, by Abdallah et al., 
2022 [1].

Figure A.2. Effect of wood content (blue: untreated date palm wood fibers 
{UTDPWF}, orange: 3wt.% SA-treated date palm wood fibers in 50:50vo.% ace-
tone:water solvent ratio, and green: 3wt.% SE-treated date palm wood fibers 
in 90:10vo.% ethanol:water solvent ratio) in PLA matrix on the elongation at 
break. Adapted from “Improvement of mechanical properties and water resistan-
ce of bio-based thermal insulation material via silane treatment”, by Abdallah et 
al., 2022 [1].

Figure A.3. Effect of wood content (blue: untreated date palm wood fibers
{UTDPWF}, orange: 3wt.% SA-treated date palm wood fibers in 50:50vo.% ace-
tone:water solvent ratio, and green: 3wt.% SE-treated date palm wood fibers in 
90:10vo.% ethanol:water solvent ratio) in PLA matrix on the tensile strength. 
Adapted from “Improvement of mechanical properties and water resistance of 
bio-based thermal insulation material via silane treatment”, by Abdallah et al., 
2022 [1].

This appendix is optional to read and covers the
results of the research into biocomposites. With
regards to these results, Figures A.1 to A.40, A.41
to A.119, A.120 to A.125, and A.126 to A.130 cover
the effect of (un)treated wood dust content, nano-
particle content, annealing time, and fabrication 
method on neat PLA’s performance respectively,
giving insights into exact values. Figures A.131 to
A.182 and A.183 to A.226 cover the effect of (un)-

treated wood dust content and nanoparticle con-
tent on the performance of neat PLA respectively,
giving insights into the relative change of perfor-
mance. Figures A.227 to A.236 and A.237 to A.242
cover the combined effect of various PLA fillers and
nanoparticles respectively, giving insights into the
relative change of performance. Figures A.243 to
A.268 cover all the performance overview and per-
formance score graphs, as part of the design tool.
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Figure A.5. Effect of wood content (blue: untreated date palm wood fibers {UT-
DPWF}, orange: 3wt.% SA-treated date palm wood fibers in 50:50vo.% aceto-
ne:water solvent ratio, and green: 3wt.% SE-treated date palm wood fibers in 
90:10vo.% ethanol:water solvent ratio) in PLA matrix on the water absorption 
(25oC/24h). Adapted from “Improvement of mechanical properties and water 
resistance of bio-based thermal insulation material via silane treatment”, by Ab-
dallah et al., 2022 [1].

Figure A.6. Effect of wood content (blue: untreated date palm wood fibers {UT-
DPWF}, orange: 3wt.% SA-treated date palm wood fibers in 50:50vo.% aceto-
ne:water solvent ratio, and green: 3wt.% SE-treated date palm wood fibers in 
90:10vo.% ethanol:water solvent ratio) in PLA matrix on the Young’s modulus. 
Adapted from “Improvement of mechanical properties and water resistance of 
bio-based thermal insulation material via silane treatment”, by Abdallah et al., 
2022 [1].

Figure A.7. Effect of untreated waste wood flour (UTWF) content in PLA ma-
trix on the bending modulus. Adapted from “Selected flexural and hygroscopic 
properties of waste wood dust - polyactic acid biocomposite for 3D printing”, by 
Jasinski & Szymanowski, 2023 [51].

Figure A.8. Effect of untreated waste wood flour (UTWF) content in PLA matrix 
on the tensile strength. Adapted from “Selected flexural and hygroscopic proper-
ties of waste wood dust - polyactic acid biocomposite for 3D printing”, by Jasinski 
& Szymanowski, 2023 [51].

Figure A.9. Effect of untreated waste wood flour (UTWF) content in PLA matrix 
on the water absorption (25oC / 24h). Adapted from “Selected flexural and hygro-
scopic properties of waste wood dust - polyactic acid biocomposite for 3D printing”, 
by Jasinski & Szymanowski, 2023 [51].

Figure A.10. Effect of untreated waste wood flour (UTWF) content in PLA ma-
trix on the Young’s modulus. Adapted from “Selected flexural and hygroscopic 
properties of waste wood dust - polyactic acid biocomposite for 3D printing”, by 
Jasinski & Szymanowski, 2023 [51].



Figure A.11. Effect of wood content (blue: untreated wood flour {UTWF}, 
orange: 1wt.% phenolic resin-treated wood flour, and green: 3wt.% phenolic 
resin-treated wood flour) in PLA matrix on the tensile strength. Adapted from 
“PLA/wood biocomposites: Improving composite strength by chemical treatment 
of the fibers”, by Csizmadia et al., 2013 [29].
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Figure A.12. Effect of wood content (blue: untreated wood flour {UTWF}, oran-
ge: 1wt.% phenolic resin-treated wood flour, and green: 3wt.% phenolic re-
sin-treated wood flour) in PLA matrix on the Young’s modulus. Adapted from 
“PLA/wood biocomposites: Improving composite strength by chemical treatment 
of the fibers”, by Csizmadia et al., 2013 [29].

Figure A.13. Effect of untreated waste pine sawdust (UTWF) content in PLA 
matrix on the flexural strength. Adapted from “Properties of 3D-Printed Wood 
Sawdust-Reinforced PLA Composites”, by Narlioglu et al., 2021 [79].

Figure A.14. Effect of untreated waste pine sawdust (UTWF) content in PLA 
matrix on the tensile strength. Adapted from “Properties of 3D-Printed Wood 
Sawdust-Reinforced PLA Composites”, by Narlioglu et al., 2021 [79].

Figure A.16. Effect of fiber content (blue: 2wt.% Alkaline-treated wood flour/
rice husk in 50:50wt.% ratio, and orange: 2wt.% Alkaline-treated wood flour) 
in PLA matrix on the compressive strength. Adapted from “Optimal Design of 
Wood/Rice Husk-Waste-Filled PLA Biocomposites Using Integrated CRITIC-MA-
BAC-Based Decision-Making Algorithm”, by Singh et al., 2022 [87].

Figure A.15. Effect of untreated waste pine sawdust (UTWF) content in PLA 
matrix on the Young’s modulus. Adapted from “Properties of 3D-Printed Wood 
Sawdust-Reinforced PLA Composites”, by Narlioglu et al., 2021 [79].
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Figure A.17. Effect of fiber content (blue: 2wt.% Alkaline-treated wood flour/
rice husk in 50:50wt.% ratio, and orange: 2wt.% Alkaline-treated wood flour) 
in PLA matrix on the density. Adapted from “Optimal Design of Wood/Rice 
Husk-Waste-Filled PLA Biocomposites Using Integrated CRITIC-MABAC-Based De-
cision-Making Algorithm”, by Singh et al., 2022 [87].

Figure A.18. Effect of fiber content (blue: 2wt.% Alkaline-treated wood flour/
rice husk in 50:50wt.% ratio, and orange: 2wt.% Alkaline-treated wood flour) in 
PLA matrix on the flexural modulus. Adapted from “Optimal Design of Wood/Rice 
Husk-Waste-Filled PLA Biocomposites Using Integrated CRITIC-MABAC-Based De-
cision-Making Algorithm”, by Singh et al., 2022 [87].

Figure A.19. Effect of fiber content (blue: 2wt.% Alkaline-treated wood flour/
rice husk in 50:50wt.% ratio, and orange: 2wt.% Alkaline-treated wood flour) in 
PLA matrix on the flexural strength. Adapted from “Optimal Design of Wood/Rice 
Husk-Waste-Filled PLA Biocomposites Using Integrated CRITIC-MABAC-Based De-
cision-Making Algorithm”, by Singh et al., 2022 [87].

Figure A.20. Effect of fiber content (blue: 2wt.% Alkaline-treated wood flour/
rice husk in 50:50wt.% ratio, and orange: 2wt.% Alkaline-treated wood flour) in 
PLA matrix on the tensile strength. Adapted from “Optimal Design of Wood/Rice 
Husk-Waste-Filled PLA Biocomposites Using Integrated CRITIC-MABAC-Based De-
cision-Making Algorithm”, by Singh et al., 2022 [87].

Figure A.21. Effect of fiber content (blue: 2wt.% Alkaline-treated wood flour/
rice husk in 50:50wt.% ratio, and orange: 2wt.% Alkaline-treated wood flour) 
in PLA matrix on the water absorption (23oC / 120h). Adapted from “Optimal 
Design of Wood/Rice Husk-Waste-Filled PLA Biocomposites Using Integrated CRI-
TIC-MABAC-Based Decision-Making Algorithm”, by Singh et al., 2022 [87].

Figure A.22. Effect of fiber content (blue: 2wt.% Alkaline-treated wood flour/
rice husk in 50:50wt.% ratio, and orange: 2wt.% Alkaline-treated wood flour) 
in PLA matrix on the Young’s modulus. Adapted from “Optimal Design of Wood/
Rice Husk-Waste-Filled PLA Biocomposites Using Integrated CRITIC-MABAC-Ba-
sed Decision-Making Algorithm”, by Singh et al., 2022 [87].
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Figure A.23. Effect of 2wt.% Alkaline-treated wood flour/rice husk (in 
50:50wt.% ratio) content in PLA matrix on the elongation at break. Adapted 
from “Valorization of Waste Wood Flour and Rice Husk in Poly(Lactic Acid)-Based 
Hybrid Biocomposites”, by Lendvai et al., 2022 [61].

Figure A.24. Effect of untreated olive wood waste dust (UTWF) content in PLA 
matrix on the flexural modulus. Adapted from “Mechanical Properties of Wood 
Fibre Filled Polylactic Acid (PLA) Composites Using Additive Manufacturing Tech-
niques”, by Mohammadsalih et al., 2023 [77].

Figure A.25. Effect of untreated olive wood waste dust (UTWF) content in PLA 
matrix on the flexural strength. Adapted from “Mechanical Properties of Wood 
Fibre Filled Polylactic Acid (PLA) Composites Using Additive Manufacturing Tech-
niques”, by Mohammadsalih et al., 2023 [77].

Figure A.26. Effect of untreated olive wood waste dust (UTWF) content in PLA 
matrix on the tensile strength. Adapted from “Mechanical Properties of Wood 
Fibre Filled Polylactic Acid (PLA) Composites Using Additive Manufacturing Tech-
niques”, by Mohammadsalih et al., 2023 [77].

Figure A.27. Effect of untreated olive wood waste dust (UTWF) content in PLA 
matrix on the Young’s modulus. Adapted from “Mechanical Properties of Wood 
Fibre Filled Polylactic Acid (PLA) Composites Using Additive Manufacturing Tech-
niques”, by Mohammadsalih et al., 2023 [77].

Figure A.28. Effect of fiber content (blue: untreated pine wood flour {UTWD}, 
and orange: thermally-treated pine wood flour {WD-T}) in PLA matrix on the 
density. Adapted from “Wood Flour-Reinforced Green Composites: Parameter Op-
timization via Multi-criteria Decision-Making Methods”, by Kelleci et al., 2022 [55].
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Figure A.29. Effect of fiber content (blue: untreated pine wood flour {UTWD}, 
and orange: thermally-treated pine wood flour {WD-T}) in PLA matrix on the 
flexural modulus. Adapted from “Wood Flour-Reinforced Green Composites: Pa-
rameter Optimization via Multi-criteria Decision-Making Methods”, by Kelleci et 
al., 2022 [55].

Figure A.30. Effect of fiber content (blue: untreated pine wood flour {UTWD}, 
and orange: thermally-treated pine wood flour {WD-T}) in PLA matrix on the 
flexural strength. Adapted from “Wood Flour-Reinforced Green Composites: Pa-
rameter Optimization via Multi-criteria Decision-Making Methods”, by Kelleci et 
al., 2022 [55].

Figure A.31. Effect of fiber content (blue: untreated pine wood flour {UTWD}, 
and orange: thermally-treated pine wood flour {WD-T}) in PLA matrix on the 
tensile strength. Adapted from “Wood Flour-Reinforced Green Composites: Para-
meter Optimization via Multi-criteria Decision-Making Methods”, by Kelleci et al., 
2022 [55].

Figure A.32. Effect of fiber content (blue: untreated pine wood flour {UTWD}, 
and orange: thermally-treated pine wood flour {WD-T}) in PLA matrix on the 
water absorption (20oC / 480h). Adapted from “Wood Flour-Reinforced Green 
Composites: Parameter Optimization via Multi-criteria Decision-Making Me-
thods”, by Kelleci et al., 2022 [55].

Figure A.33. Effect of fiber content (blue: untreated pine wood flour {UTWD}, 
and orange: thermally-treated pine wood flour {WD-T}) in PLA matrix on the 
Young’s modulus. Adapted from “Wood Flour-Reinforced Green Composites: Pa-
rameter Optimization via Multi-criteria Decision-Making Methods”, by Kelleci et 
al., 2022 [55].

Figure A.34. Effect of thermally-treated spruce wood flour (WD-T) content in 
PLA matrix on the elongation at break. Adapted from “Surface Modification of 
Spruce Wood Flour and Effects on the Dynamic Fragility of PLA/Wood Composi-
tes”, by Gregorova et al., 2011 [46].
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Figure A.35. Effect of thermally-treated spruce wood flour (WD-T) content in 
PLA matrix on the tensile strength. Adapted from “Surface Modification of Spruce 
Wood Flour and Effects on the Dynamic Fragility of PLA/Wood Composites”, by 
Gregorova et al., 2011 [46].

Figure A.36. Effect of thermally-treated spruce wood flour (WD-T) content in 
PLA matrix on the Young’s modulus. Adapted from “Surface Modification of Spru-
ce Wood Flour and Effects on the Dynamic Fragility of PLA/Wood Composites”, by 
Gregorova et al., 2011 [46].

Figure A.37. Effect of thermally-treated wood flour (WD-T) content in PLA ma-
trix on the elongation at break. Adapted from “Properties of Biocomposite Films 
From PLA and Thermally Treated Wood Modified with Silver Nanoparticles Using 
Leaf Extracts of Oriental Sweetgum”, by Ayrilmis et al., 2021 [8].

Figure A.38. Effect of thermally-treated wood flour (WD-T) content in PLA ma-
trix on the tensile strength. Adapted from “Properties of Biocomposite Films From 
PLA and Thermally Treated Wood Modified with Silver Nanoparticles Using Leaf 
Extracts of Oriental Sweetgum”, by Ayrilmis et al., 2021 [8].

Figure A.40. Effect of 2wt.% Alkaline-treated wood flour (WD-A2) content in 
PLA matrix on the elongation at break. Adapted from “Effect of Alkaline Treat-
ment and Pre-impregnation on Mechanical and Water Absorbtion Properties of 
Pine Wood Flour Containing Poly (Lactic Acid) Based Green-Composites”, by Altun 
et al., 2012 [6].

Figure A.39. Effect of thermally-treated wood flour (WD-T) content in PLA ma-
trix on the Young’s modulus. Adapted from “Properties of Biocomposite Films 
From PLA and Thermally Treated Wood Modified with Silver Nanoparticles Using 
Leaf Extracts of Oriental Sweetgum”, by Ayrilmis et al., 2021 [8].



55

Figure A.41. Effect of cellulose nanocrystals (CNC extracted with acid hydrolysis 
from wood pulp) content in PLA matrix on the UV-A absorption. Adapted from 
“Water vapor and oxygen barrier properties of extrusion-blown poly(lactic acid)/
cellulose nanocrystals nanocomposite films”, by Karkhanis et al., 2018 [54].

Figure A.42. Effect of cellulose nanocrystals (CNC extracted with acid hydrolysis 
from wood pulp) content in PLA matrix on the UV-B absorption. Adapted from 
“Water vapor and oxygen barrier properties of extrusion-blown poly(lactic acid)/
cellulose nanocrystals nanocomposite films”, by Karkhanis et al., 2018 [54].

Figure A.43. Effect of cellulose nanocrystals (CNC extracted with acid hydroly-
sis from wood pulp) content in PLA matrix on the water vapour permeability. 
Adapted from “Water vapor and oxygen barrier properties of extrusion-blown 
poly(lactic acid)/cellulose nanocrystals nanocomposite films”, by Karkhanis et al., 
2018 [54].

Figure A.44. Effect of cellulose nanocrystals content (blue: CNC extracted with 
acid hydrolysis from Posidonia Oceanica Alga, and orange: surfactant-modified 
CNC with acid phosphate ester of ethoxylated nonylphenol in 1:4vo.% ratio 
{s-CNC}) in PLA matrix on the tensile strength. Adapted from “Processing of PLA 
nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica 
waste: Innovative reuse of coastal plant”, by Fortunati et al., 2015 [39].

Figure A.45. Effect of cellulose nanocrystals content (blue: CNC extracted with 
acid hydrolysis from Posidonia Oceanica Alga, and orange: surfactant-modified 
CNC with acid phosphate ester of ethoxylated nonylphenol in 1:4vo.% ratio 
{s-CNC}) in PLA matrix on the UV-A absorption. Adapted from “Processing of PLA 
nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica 
waste: Innovative reuse of coastal plant”, by Fortunati et al., 2015 [39].

Figure A.46. Effect of cellulose nanocrystals content (blue: CNC extracted with 
acid hydrolysis from Posidonia Oceanica Alga, and orange: surfactant-modified 
CNC with acid phosphate ester of ethoxylated nonylphenol in 1:4vo.% ratio 
{s-CNC}) in PLA matrix on the UV-B absorption. Adapted from “Processing of PLA 
nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica 
waste: Innovative reuse of coastal plant”, by Fortunati et al., 2015 [39].
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Figure A.47. Effect of cellulose nanocrystals content (blue: CNC extracted with 
acid hydrolysis from Posidonia Oceanica Alga, and orange: surfactant-modified 
CNC with acid phosphate ester of ethoxylated nonylphenol in 1:4vo.% ratio 
{s-CNC}) in PLA matrix on the Young’s modulus. Adapted from “Processing of 
PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceani-
ca waste: Innovative reuse of coastal plant”, by Fortunati et al., 2015 [39].

Figure A.48. Effect of surfactant-modified cellulose nanocrystals (CNC extrac-
ted with acid hydrolysis from Posidonia Oceanica Alga and modified with acid 
phosphate ester of ethoxylated nonylphenol in 1:4vo.% ratio {s-CNC}) content 
in PLA matrix on the tensile strength. Adapted from “PLA Nanocomposites Rein-
forced with Celluose Nanocrystals from Posidonia oceanica and ZnO Nanoparticles 
for Packaging Application”, by Luzi et al., 2016 [70].

Figure A.49. Effect of surfactant-modified cellulose nanocrystals (CNC extrac-
ted with acid hydrolysis from Posidonia Oceanica Alga and modified with acid 
phosphate ester of ethoxylated nonylphenol in 1:4vo.% ratio {s-CNC}) content 
in PLA matrix on the water vapour permeability. Adapted from “PLA Nanocom-
posites Reinforced with Celluose Nanocrystals from Posidonia oceanica and ZnO 
Nanoparticles for Packaging Application”, by Luzi et al., 2016 [70].

Figure A.50. Effect of surfactant-modified cellulose nanocrystals (CNC extrac-
ted with acid hydrolysis from Posidonia Oceanica Alga and modified with acid 
phosphate ester of ethoxylated nonylphenol in 1:4vo.% ratio {s-CNC}) content 
in PLA matrix on the Young’s modulus. Adapted from “PLA Nanocomposites Rein-
forced with Celluose Nanocrystals from Posidonia oceanica and ZnO Nanoparticles 
for Packaging Application”, by Luzi et al., 2016 [70].

Figure A.51. Effect of cellulose nanocrystals content (blue: CNC extracted with 
acid hydrolysis from pineapple leaves, and orange: cinnamate-grafted CNC 
through acylation {Cin-CNC}) in PLA matrix on the elongation at break. Adapted 
from “Functionalization of cellulose nanocrystals extracted from pineapple leaves 
as a UV-absorbing agent in poly(lactic acid)”, by Sringam et al., 2023 [88].

Figure A.52. Effect of cellulose nanocrystals content (blue: CNC extracted with 
acid hydrolysis from pineapple leaves, and orange: cinnamate-grafted CNC 
through acylation {Cin-CNC}) in PLA matrix on the tensile strength. Adapted 
from “Functionalization of cellulose nanocrystals extracted from pineapple leaves 
as a UV-absorbing agent in poly(lactic acid)”, by Sringam et al., 2023 [88].
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Figure A.53. Effect of cellulose nanocrystals content (blue: CNC extracted with 
acid hydrolysis from pineapple leaves, and orange: cinnamate-grafted CNC 
through acylation {Cin-CNC}) in PLA matrix on the UV-A absorption. Adapted 
from “Functionalization of cellulose nanocrystals extracted from pineapple leaves 
as a UV-absorbing agent in poly(lactic acid)”, by Sringam et al., 2023 [88].

Figure A.54. Effect of cellulose nanocrystals content (blue: CNC extracted with 
acid hydrolysis from pineapple leaves, and orange: cinnamate-grafted CNC 
through acylation {Cin-CNC}) in PLA matrix on the UV-B absorption. Adapted 
from “Functionalization of cellulose nanocrystals extracted from pineapple leaves 
as a UV-absorbing agent in poly(lactic acid)”, by Sringam et al., 2023 [88].

Figure A.55. Effect of cellulose nanocrystals content (blue: CNC extracted with 
acid hydrolysis from pineapple leaves, and orange: cinnamate-grafted CNC 
through acylation {Cin-CNC}) in PLA matrix on the water vapour permeability. 
Adapted from “Functionalization of cellulose nanocrystals extracted from pineapple
leaves as a UV-absorbing agent in poly(lactic acid)”, by Sringam et al., 2023 [88].

Figure A.56. Effect of cellulose nanocrystals content (blue: CNC extracted with 
acid hydrolysis from pineapple leaves, and orange: cinnamate-grafted CNC 
through acylation {Cin-CNC}) in PLA matrix on the Young’s modulus. Adapted 
from “Functionalization of cellulose nanocrystals extracted from pineapple leaves 
as a UV-absorbing agent in poly(lactic acid)”, by Sringam et al., 2023 [88].

Figure A.57. Effect of nanoparticle content (blue: lignin-coated cellulose nano-
crystals extracted with acid hydrolysis from wood-based cellulose {L-CNC}, and 
orange: lignin nanoparticles {LNP}) in PLA matrix on the tensile strength. Adap-
ted from “Enhancing UV-shielding and mechanical properties of polylactic acid 
nanocomposites by adding lignin coated cellulose nanocrystals”, by Shojaeiarani 
et al., 2022 [85].

Figure A.58. Effect of nanoparticle content (blue: lignin-coated cellulose nano-
crystals extracted with acid hydrolysis from wood-based cellulose {L-CNC}, 
and orange: lignin nanoparticles {LNP}) in PLA matrix on the UV-A absorption. 
Adapted from “Enhancing UV-shielding and mechanical properties of polylactic 
acid nanocomposites by adding lignin coated cellulose nanocrystals”, by Shojae-
iarani et al., 2022 [85].
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Figure A.59. Effect of nanoparticle content (blue: lignin-coated cellulose nano-
crystals extracted with acid hydrolysis from wood-based cellulose {L-CNC}, 
and orange: lignin nanoparticles {LNP}) in PLA matrix on the UV-B absorption. 
Adapted from “Enhancing UV-shielding and mechanical properties of polylactic 
acid nanocomposites by adding lignin coated cellulose nanocrystals”, by Shojae-
iarani et al., 2022 [85].

Figure A.60. Effect of nanoparticle content (blue: lignin-coated cellulose nano-
crystals extracted with acid hydrolysis from wood-based cellulose {L-CNC}, 
and orange: lignin nanoparticles {LNP}) in PLA matrix on the Young’s modulus. 
Adapted from “Enhancing UV-shielding and mechanical properties of polylactic 
acid nanocomposites by adding lignin coated cellulose nanocrystals”, by Shojae-
iarani et al., 2022 [85].

Figure A.61. Effect of cellulose nanocrystals content (blue: CNC extracted with 
acid hydrolysis from microcrystalline cellulose, and orange: surfactant-modi-
fied CNC with acid phosphate ester of ethoxylated nonylphenol in 1:4vo.% ratio 
{s-CNC}) in PLA matrix on the water vapour permeability. Adapted from “Com-
bined effects of cellulose nanocrystals and silver nanoparticles on the barrier and 
migration properties of PLA nano-biocomposites”, by Fortunati et al., 2013 [40].

Figure A.62. Effect of cellulose nanocrystals content (blue: CNC extracted with 
acid hydrolysis from microcrystalline cellulose + 1wt.% silver nanopowder 
{CNC-Ag}, and orange: surfactant-modified CNC with acid phosphate ester of 
ethoxylated nonylphenol in 1:4vo.% ratio + 1wt.% silver nanopowder {s-CNC-
Ag}) in PLA matrix on the water vapour permeability. Adapted from “Combined 
effects of cellulose nanocrystals and silver nanoparticles on the barrier and migra-
tion properties of PLA nano-biocomposites”, by Fortunati et al., 2013 [40].

Figure A.63. Effect of Zinc oxide (ZnO) content in PLA matrix on the tensile 
strength. Adapted from “PLA Nanocomposites Reinforced with Celluose Nanocrys-
tals from Posidonia oceanica and ZnO Nanoparticles for Packaging Application”, 
by Luzi et al., 2016 [70].

Figure A.64. Effect of Zinc oxide (ZnO) content in PLA matrix on the water 
vapour permeability. Adapted from “PLA Nanocomposites Reinforced with Cel-
luose Nanocrystals from Posidonia oceanica and ZnO Nanoparticles for Packaging 
Application”, by Luzi et al., 2016 [70].
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Figure A.65. Effect of Zinc oxide (ZnO) content in PLA matrix on the Young’s mo-
dulus. Adapted from “PLA Nanocomposites Reinforced with Celluose Nanocrystals 
from Posidonia oceanica and ZnO Nanoparticles for Packaging Application”, by 
Luzi et al., 2016 [70].

Figure A.66. Effect of cellulose nanocrystals-Zinc oxide nanoparticles (1wt.% 
CNC extracted with acid hydrolysis from Posidonia Oceanica Alga) content in 
PLA matrix on the tensile strength. Adapted from “PLA Nanocomposites Reinfor-
ced with Celluose Nanocrystals from Posidonia oceanica and ZnO Nanoparticles 
for Packaging Application”, by Luzi et al., 2016 [70].

Figure A.67. Effect of cellulose nanocrystals-Zinc oxide nanoparticles  (1wt.% 
CNC extracted with acid hydrolysis from Posidonia Oceanica Alga)  content in 
PLA matrix on the water vapour permeability. Adapted from “PLA Nanocom-
posites Reinforced with Celluose Nanocrystals from Posidonia oceanica and ZnO 
Nanoparticles for Packaging Application”, by Luzi et al., 2016 [70].

Figure A.68. Effect of cellulose nanocrystals-Zinc oxide nanoparticles  (1wt.% 
CNC extracted with acid hydrolysis from Posidonia Oceanica Alga)  content in 
PLA matrix on the Young’s modulus. Adapted from “PLA Nanocomposites Rein-
forced with Celluose Nanocrystals from Posidonia oceanica and ZnO Nanoparticles 
for Packaging Application”, by Luzi et al., 2016 [70].

Figure A.69. Effect of cellulose nanocrystals-Zinc oxide nanoparticles (CNC 
extracted with acid hydrolysis from microcrystalline cellulose and 50:50vo.% 
ratio of CNC:ZnO) content in PLA matrix on the UV-A absorption. Adapted from 
“Enhancing long-term biodegradability and UV-shielding performances of trans-
parent polylactic acid nanocomposite films by adding cellulose nanocrystal-zinc 
oxide hybrids”, by Wang et al., 2019 [97].

Figure A.70. Effect of cellulose nanocrystals-Zinc oxide nanoparticles (CNC 
extracted with acid hydrolysis from microcrystalline cellulose and 50:50vo.% 
ratio of CNC:ZnO) content in PLA matrix on the UV-B absorption. Adapted from 
“Enhancing long-term biodegradability and UV-shielding performances of trans-
parent polylactic acid nanocomposite films by adding cellulose nanocrystal-zinc 
oxide hybrids”, by Wang et al., 2019 [97].
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Figure A.71. Effect of lignin nanoparticles (LNP) content in PLA matrix on the 
water absorption contact angle. Adapted from “Effect of processing conditions 
and lignin content on thermal, mechanical and degradative behavior of lignin 
nanoparticles/polylactic(acid) bionanocomposites prepared by melt extrusion 
and solvent casting”, by Yang et al., 2015 [103].

Figure A.72. Effect of lignin nanoparticles (LNP) content in PLA matrix on the 
elongation at break. Adapted from “Uniformly Dispersed Poly(lactic acid)-Grafted 
Lignin Nanoparticles Enhance Antioxidant Activity and UV-Barrier Properties of 
Poly(lactic acid) Packaging Films”, by Boarino et al., 2022 [19].

Figure A.73. Effect of lignin nanoparticles (LNP) content in PLA matrix on the 
tensile strength. Adapted from “Uniformly Dispersed Poly(lactic acid)-Grafted 
Lignin Nanoparticles Enhance Antioxidant Activity and UV-Barrier Properties of 
Poly(lactic acid) Packaging Films”, by Boarino et al., 2022 [19].

Figure A.74. Effect of lignin nanoparticles (LNP) content in PLA matrix on 
the water vapour permeability. Adapted from “Uniformly Dispersed Poly(lactic 
acid)-Grafted Lignin Nanoparticles Enhance Antioxidant Activity and UV-Barrier 
Properties of Poly(lactic acid) Packaging Films”, by Boarino et al., 2022 [19].

Figure A.75. Effect of lignin nanoparticles (LNP) content in PLA matrix on the 
Young’s modulus. Adapted from “Uniformly Dispersed Poly(lactic acid)-Grafted 
Lignin Nanoparticles Enhance Antioxidant Activity and UV-Barrier Properties of 
Poly(lactic acid) Packaging Films”, by Boarino et al., 2022 [19].

Figure A.76. Effect of lignin nanoparticles (LNP) content in PLA matrix on the 
elongation at break. Adapted from “Optimization of the Electrospray Process to 
Produce Lignin Nanoparticles for PLA-based Food Packaging”, by Daassi et al., 
2023 [30].
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Figure A.77. Effect of lignin nanoparticles (LNP) content in PLA matrix on the 
tensile strength. Adapted from “Optimization of the Electrospray Process to Pro-
duce Lignin Nanoparticles for PLA-based Food Packaaging”, by Daassi et al., 2023 
[30].

Figure A.78. Effect of lignin nanoparticles (LNP) content in PLA matrix on the 
Young’s modulus. Adapted from “Optimization of the Electrospray Process to Pro-
duce Lignin Nanoparticles for PLA-based Food Packaging”, by Daassi et al., 2023 
[30].

Figure A.79. Effect of lignin nanoparticles (LNP) content in PLA matrix on 
the elongation at break. Adapted from “UV Protective, Antioxidant, Antibacte-
rial and Compostable Polylactic Acid Composites Containing Pristine and Che-
mically Modified Lignin Nanoparticles”, by Cavallo et al., 2021 [24].

Figure A.80. Effect of lignin nanoparticles (LNP) content in PLA matrix on the 
tensile strength. Adapted from “UV Protective, Antioxidant, Antibacterial and 
Compostable Polylactic Acid Composites Containing Pristine and Chemically Mo-
dified Lignin Nanoparticles”, by Cavallo et al., 2021 [24].

Figure A.81. Effect of lignin nanoparticles (LNP) content in PLA matrix on the 
UV-A absorption. Adapted from “UV Protective, Antioxidant, Antibacterial and 
Compostable Polylactic Acid Composites Containing Pristine and Chemically Mo-
dified Lignin Nanoparticles”, by Cavallo et al., 2021 [24].

Figure A.82. Effect of lignin nanoparticles (LNP) content in PLA matrix on the 
UV-B absorption. Adapted from “UV Protective, Antioxidant, Antibacterial and 
Compostable Polylactic Acid Composites Containing Pristine and Chemically Mo-
dified Lignin Nanoparticles”, by Cavallo et al., 2021 [24].
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Figure A.83. Effect of lignin nanoparticles (LNP) content in PLA matrix on the 
Young’s modulus. Adapted from “UV Protective, Antioxidant, Antibacterial and 
Compostable Polylactic Acid Composites Containing Pristine and Chemically Mo-
dified Lignin Nanoparticles”, by Cavallo et al., 2021 [24].

Figure A.84. Effect of Zinc oxide (ZnO) content in PLA matrix on the UV-A ab-
sorption. Adapted from “Characterization of an eco-friendly active packaging film 
for food with ultraviolet light blocking ability”, by Li et al., 2023 [63].

Figure A.85. Effect of Zinc oxide (ZnO) content in PLA matrix on the UV-B ab-
sorption. Adapted from “Characterization of an eco-friendly active packaging film 
for food with ultraviolet light blocking ability”, by Li et al., 2023 [63].

Figure A.86. Effect of Zinc oxide (ZnO) content in PLA matrix on the elongation 
at break. Adapted from “Advancing the additive manufacturing of PLA-ZnO nano-
composites by fused filament frabrication”, by Chong et al., 2023 [26].

Figure A.87. Effect of Zinc oxide (ZnO) content in PLA matrix on the tensile 
strength. Adapted from “Advancing the additive manufacturing of PLA-ZnO nano-
composites by fused filament frabrication”, by Chong et al., 2023 [26].

Figure A.88. Effect of Zinc oxide (ZnO) content in PLA matrix on the Young’s 
modulus. Adapted from “Advancing the additive manufacturing of PLA-ZnO nano-
composites by fused filament frabrication”, by Chong et al., 2023 [26].
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Figure A.89. Effect of Zinc oxide (ZnO) content in PLA matrix on the tensile 
strength. Adapted from “Effect of zinc oxide suspension on the overall filler content 
of the PLA/ZnO composites and cPLA/ZnO composites”, by Tan et al., 2023 [90].

Figure A.90. Effect of Zinc oxide (ZnO) content in PLA matrix on the Young’’s 
modulus. Adapted from “Effect of zinc oxide suspension on the overall filler con-
tent of the PLA/ZnO composites and cPLA/ZnO composites”, by Tan et al., 2023 
[90].

Figure A.91. Effect of Zinc oxide (ZnO) content in PLA matrix on the elongation 
at break. Adapted from “Polydopamine surface functionalized submicron ZnO for 
broadening the processing window of 3D printable PLA composites”, by Yang et 
al., 2023 [104].

Figure A.92. Effect of Zinc oxide (ZnO) content in PLA matrix on the tensile 
strength. Adapted from “Polydopamine surface functionalized submicron ZnO for 
broadening the processing window of 3D printable PLA composites”, by Yang et 
al., 2023 [104].

Figure A.93. Effect of Zinc oxide (ZnO) content in PLA matrix on the elongation 
at break. Adapted from “A Comprehensive Evaluation of Mechanical, Thermal, and 
Antibacterial Properties of PLA/ZnO Nanoflower Biocomposite Filaments for 3D 
Printing Application”, by Jamnongkan et al., 2022 [50].

Figure A.94. Effect of Zinc oxide (ZnO) content in PLA matrix on the tensile 
strength. Adapted from “A Comprehensive Evaluation of Mechanical, Thermal, 
and Antibacterial Properties of PLA/ZnO Nanoflower Biocomposite Filaments for 
3D Printing Application”, by Jamnongkan et al., 2022 [50].
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Figure A.95. Effect of Zinc oxide (ZnO) content in PLA matrix on the UV-A ab-
sorption. Adapted from “Poly(Lactic Acid)/Zno Bionanocomposite Films with 
Positively Charged Zno as Potential Antimicrobial Food Packaging materials”, by 
Kim et al., 2019 [57].

Figure A.96. Effect of Zinc oxide (ZnO) content in PLA matrix on the UV-B ab-
sorption. Adapted from “Poly(Lactic Acid)/Zno Bionanocomposite Films with 
Positively Charged Zno as Potential Antimicrobial Food Packaging materials”, by 
Kim et al., 2019 [57].

Figure A.97. Effect of Zinc oxide (ZnO) content in PLA matrix on the water 
vapour permeability. Adapted from “Poly(Lactic Acid)/Zno Bionanocomposite 
Films with Positively Charged Zno as Potential Antimicrobial Food Packaging ma-
terials”, by Kim et al., 2019 [57].

Figure A.98. Effect of cellulose nanocrystals (CNC extracted with acid hydroly-
sis from bleached dry lap eucalypyus wood pulp) content in PLA matrix on the 
elongation at break. Adapted from “Modification of Cellulose Nanocrystals (CNCs) 
for use in Poly(lactic acid) (PLA)-CNC Composite Packaging Products”, by Wei et 
al., 2016 [100].

Figure A.99. Effect of cellulose nanocrystals (CNC extracted with acid hydroly-
sis from bleached dry lap eucalypyus wood pulp) content in PLA matrix on the 
tensile strength. Adapted from “Modification of Cellulose Nanocrystals (CNCs) for 
use in Poly(lactic acid) (PLA)-CNC Composite Packaging Products”, by Wei et al., 
2016 [100].

Figure A.100. Effect of cellulose nanocrystals (CNC extracted with acid hydroly-
sis from Eucalyptus grandis sawdust) content in PLA matrix on the elongation 
at break. Adapted from “Preparation of cellulose nanocrystal (CNCs) reinforced 
polylactic acid (PLA) bionanocomposites filaments using biobased additives for 3D 
printing applications”, by Agbakoba et al., 2023 [3].
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Figure A.101. Effect of cellulose nanocrystals (CNC extracted with acid hy-
drolysis from Eucalyptus grandis sawdust) content in PLA matrix on the tensile 
strength. Adapted from “Preparation of cellulose nanocrystal (CNCs) reinforced 
polylactic acid (PLA) bionanocomposites filaments using biobased additives for 3D 
printing applications”, by Agbakoba et al., 2023 [3].

Figure A.102. Effect of cellulose nanocrystals (CNC extracted with acid hydroly-
sis from kraft paper) content in PLA matrix on the elongation at break. Adapted 
from “Potential of Cellulose Microfibers for PHA and PLA Biopolymers Reinforce-
ment”, by Marmol et al., 2020 [72].

Figure A.103. Effect of cellulose nanocrystals (CNC extracted with acid hydroly-
sis from kraft paper) content in PLA matrix on the tensile strength. Adapted from 
“Potential of Cellulose Microfibers for PHA and PLA Biopolymers Reinforcement”, 
by Marmol et al., 2020 [72].

Figure A.104. Effect of cellulose nanocrystals (CNC extracted with acid hydroly-
sis from kraft paper) content in PLA matrix on the UV-A absorption. Adapted 
from “Potential of Cellulose Microfibers for PHA and PLA Biopolymers Reinforce-
ment”, by Marmol et al., 2020 [72].

Figure A.105. Effect of cellulose nanocrystals (CNC extracted with acid hydroly-
sis from kraft paper) content in PLA matrix on the UV-B absorption. Adapted 
from “Potential of Cellulose Microfibers for PHA and PLA Biopolymers Reinforce-
ment”, by Marmol et al., 2020 [72].

Figure A.106. Effect of cellulose nanocrystals (CNC extracted with acid hydroly-
sis from kraft paper) content in PLA matrix on the water absorption contact an-
gle. Adapted from “Potential of Cellulose Microfibers for PHA and PLA Biopolymers 
Reinforcement”, by Marmol et al., 2020 [72].
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Figure A.107. Effect of cellulose nanocrystals (CNC extracted with acid hydroly-
sis from kraft paper) content in PLA matrix on the Young’s modulus. Adapted 
from “Potential of Cellulose Microfibers for PHA and PLA Biopolymers Reinforce-
ment”, by Marmol et al., 2020 [72].

Figure A.108. Effect of cellulose nanocrystals content (blue: CNC extracted with 
acid hydrolysis from microcrystalline cellulose, and orange: surfactant-modi-
fied CNC with acid phosphate ester of ethoxylated nonylphenol in 1:4vo.% ratio 
{s-CNC}) in PLA matrix on the elongation at break. Adapted from “Enhanced dis-
persion and interface compatibilization of crystalline nanocellulose in polylactide 
by surfactant absorption”, by Chi & Catchmark, 2017 [25].

Figure A.109. Effect of cellulose nanocrystals content (blue: CNC extracted with 
acid hydrolysis from microcrystalline cellulose, and orange: surfactant-modi-
fied CNC with acid phosphate ester of ethoxylated nonylphenol in 1:4vo.% ratio 
{s-CNC}) in PLA matrix on the tensile strength. Adapted from “Enhanced disper-
sion and interface compatibilization of crystalline nanocellulose in polylactide by 
surfactant absorption”, by Chi & Catchmark, 2017 [25].

Figure A.110. Effect of cellulose nanocrystals content (blue: CNC extracted with 
acid hydrolysis from microcrystalline cellulose, and orange: surfactant-modi-
fied CNC with acid phosphate ester of ethoxylated nonylphenol in 1:4vo.% ratio 
{s-CNC}) in PLA matrix on the UV-A absorption. Adapted from “Enhanced disper-
sion and interface compatibilization of crystalline nanocellulose in polylactide by 
surfactant absorption”, by Chi & Catchmark, 2017 [25].

Figure A.111. Effect of cellulose nanocrystals content (blue: CNC extracted with 
acid hydrolysis from microcrystalline cellulose, and orange: surfactant-modi-
fied CNC with acid phosphate ester of ethoxylated nonylphenol in 1:4vo.% ratio 
{s-CNC}) in PLA matrix on the UV-B absorption. Adapted from “Enhanced disper-
sion and interface compatibilization of crystalline nanocellulose in polylactide by 
surfactant absorption”, by Chi & Catchmark, 2017 [25].

Figure A.112. Effect of cellulose nanocrystals content (blue: CNC extracted with 
acid hydrolysis from microcrystalline cellulose, and orange: surfactant-modi-
fied CNC with acid phosphate ester of ethoxylated nonylphenol in 1:4vo.% ratio 
{s-CNC}) in PLA matrix on the Young’s modulus. Adapted from “Enhanced disper-
sion and interface compatibilization of crystalline nanocellulose in polylactide by 
surfactant absorption”, by Chi & Catchmark, 2017 [25].
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Figure A.113. Effect of lignin-coated cellulose nanocrystals (CNC extracted 
with acid hydrolysis from wood pulp) content in PLA matrix on the elongati-
on at break. Adapted from “Green nanocomposites based on lignin coated cellu-
lose nanocrystals and poly(lactic acid): crystallization, mechanical and thermal 
properties”, by Boruvka & Prusek, 2016 [20].

Figure A.114. Effect of lignin-coated cellulose nanocrystals (CNC extracted with 
acid hydrolysis from wood pulp) content in PLA matrix on the tensile strength. 
Adapted from “Green nanocomposites based on lignin coated cellulose nanocrys-
tals and poly(lactic acid): crystallization, mechanical and thermal properties”, by 
Boruvka & Prusek, 2016 [20].

Figure A.115. Effect of lignin-coated cellulose nanocrystals (CNC extracted with 
acid hydrolysis from aspen wood fibers) content in PLA matrix on the density. 
Adapted from “Performance of high lignin content cellulose nanocrystals in po-
ly(lactic acid)”, by Wei et al., 2017 [99].

Figure A.116. Effect of lignin-coated cellulose nanocrystals (CNC extracted with 
acid hydrolysis from aspen wood fibers) content in PLA matrix on the elongation 
at break. Adapted from “Performance of high lignin content cellulose nanocrystals 
in poly(lactic acid)”, by Wei et al., 2017 [99].

Figure A.117. Effect of lignin-coated cellulose nanocrystals (CNC extracted with 
acid hydrolysis from aspen wood fibers) content in PLA matrix on the tensile 
strength. Adapted from “Performance of high lignin content cellulose nanocrystals 
in poly(lactic acid)”, by Wei et al., 2017 [99].

Figure A.118. Effect of lignin-coated cellulose nanocrystals (CNC extracted with 
acid hydrolysis from aspen wood fibers) content in PLA matrix on the water ab-
sorption contact angle. Adapted from “Performance of high lignin content cellulo-
se nanocrystals in poly(lactic acid)”, by Wei et al., 2017 [99].
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Figure A.119. Effect of lignin-coated cellulose nanocrystals (CNC extracted with 
acid hydrolysis from aspen wood fibers) content in PLA matrix on the Young’s 
modulus. Adapted from “Performance of high lignin content cellulose nanocrys-
tals in poly(lactic acid)”, by Wei et al., 2017 [99].

Figure A.120. Effect of PLA annealing time (h) on the compressive strain. Adap-
ted from “Thermal Insulation and Mechanical Properties of Polylactic Acid (PLA) 
at Different Processing Conditions”, by Barkhad et al., 2020 [14].

Figure A.121. Effect of PLA annealing time (h) on the compressive strength. 
Adapted from “Thermal Insulation and Mechanical Properties of Polylactic Acid 
(PLA) at Different Processing Conditions”, by Barkhad et al., 2020 [14].

Figure A.122. Effect of PLA annealing time (h) on the density. Adapted from 
“Thermal Insulation and Mechanical Properties of Polylactic Acid (PLA) at Diffe-
rent Processing Conditions”, by Barkhad et al., 2020 [14].

Figure A.123. Effect of PLA annealing time (h) on the thermal conductivity. 
Adapted from “Thermal Insulation and Mechanical Properties of Polylactic Acid 
(PLA) at Different Processing Conditions”, by Barkhad et al., 2020 [14].

Figure A.124. Effect of PLA annealing time (h) on the water absorption (25oC / 
200h). Adapted from “Thermal Insulation and Mechanical Properties of Polylactic 
Acid (PLA) at Different Processing Conditions”, by Barkhad et al., 2020 [14].
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Figure A.125. Effect of PLA annealing time (h) on the compressive strain. Adap-
ted from “Thermal Insulation and Mechanical Properties of Polylactic Acid (PLA) 
at Different Processing Conditions”, by Barkhad et al., 2020 [14].

Figure A.126. Effect of PLA porosity on the sound transmission loss. Adapted 
from “Thermal and acoustic performance evalation of 3D-Printable PLA materi-
als”, by Islam et al., 2023 [49].

Figure A.127. Effect of PLA porosity on the thermal conductivity. Adapted from 
“Thermal and acoustic performance evalation of 3D-Printable PLA materials”, by 
Islam et al., 2023 [49].

Figure A.128. Effect of fabrication method of PLA/30wt.% recycled pinewood 
particles on the elongation at break. Adapted from “The Thermal and Mechanical 
Behavior of Wood-PLA Composites Processed by Additive Manufacturing for Buil-
ding Insulation”, by Bahar et al., 2023 [10].

Figure A.129. Effect of fabrication method of PLA/30wt.% recycled pinewood 
particles on the tensile strength. Adapted from “The Thermal and Mechanical Be-
havior of Wood-PLA Composites Processed by Additive Manufacturing for Building 
Insulation”, by Bahar et al., 2023 [10].

Figure A.130. Effect of fabrication method of PLA/30wt.% recycled pinewood 
particles on the Young’s modulus. Adapted from “The Thermal and Mechanical 
Behavior of Wood-PLA Composites Processed by Additive Manufacturing for Buil-
ding Insulation”, by Bahar et al., 2023 [10].
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Figure A.131. Combined effect of untreated wood dust (UTWD) content in PLA 
matrix on the tensile strength (relative % compared to neat PLA). Adapted from 
I. Abdallah et al., 2022 [1]; II. Jasinski & Szymanowski, 2023 [51]; III. Csizmadia 
et al., 2013 [29]; IV. Narlioglu et al., 2021 [79]; V. Mohammadsalih et al., 2023 
[77]; VI. Kelleci et al., 2022 [55].

Figure A.132. Combined effect of untreated wood dust (UTWD) content in PLA 
matrix on the flexural strength (relative % compared to neat PLA). Adapted from 
IV. Narlioglu et al., 2021 [79]; V. Mohammadsalih et al., 2023 [77]; VI. Kelleci et 
al., 2022 [55].

Figure A.133. Combined effect of untreated wood dust (UTWD) content in PLA 
matrix on the elongation at break (relative % compared to neat PLA). Adapted 
from I. Abdallah et al., 2022 [1].

Figure A.134. Combined effect of untreated wood dust (UTWD) content in PLA 
matrix on the Young’s modulus (relative % compared to neat PLA). Adapted 
from I. Abdallah et al., 2022 [1]; II. Jasinski & Szymanowski, 2023 [51]; III. Csiz-
madia et al., 2013 [29]; IV. Narlioglu et al., 2021 [79]; V. Mohammadsalih et al., 
2023 [77]; VI. Kelleci et al., 2022 [55].

Figure A.135. Combined effect of untreated wood dust (UTWD) content in PLA 
matrix on the bending modulus (relative % compared to neat PLA). Adapted 
from II. Jasinski & Szymanowski, 2023 [51].

Figure A.136. Combined effect of untreated wood dust (UTWD) content in PLA 
matrix on the flexural modulus (relative % compared to neat PLA). Adapted 
from V. Mohammadsalih et al., 2023 [77]; VI. Kelleci et al., 2022 [55].
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Figure A.137. Combined effect of untreated wood dust (UTWD) content in PLA 
matrix on the density (relative % compared to neat PLA). Adapted from I. Abdal-
lah et al., 2022 [1]; VI. Kelleci et al., 2022 [55].

Figure A.138. Combined effect of untreated wood dust (UTWD) content in PLA 
matrix on the thermal conductivity (relative % compared to neat PLA). Adapted 
from I. Abdallah et al., 2022 [1].

Figure A.139. Combined effect of untreated wood dust (UTWD) content in PLA 
matrix on the water absorption (relative % compared to neat PLA). Adapted 
from I. Abdallah et al., 2022 [1]; II. Jasinski & Szymanowski, 2023 [51]; VI. Kelleci 
et al., 2022 [55].

Figure A.140. Combined effect of 1wt.% phenolic resin-treated wood dust (WD-
R1) content in PLA matrix on the tensile strength (relative % compared to neat 
PLA). Adapted from I. Csizmadia et al., 2013 [29].

Figure A.141. Combined effect of 1wt.% phenolic resin-treated wood dust (WD-
R1) content in PLA matrix on the Young’s modulus (relative % compared to neat 
PLA). Adapted from I. Csizmadia et al., 2013 [29].

Figure A.142. Combined effect of 3wt.% phenolic resin-treated wood dust (WD-
R3) content in PLA matrix on the tensile strength (relative % compared to neat 
PLA). Adapted from I. Csizmadia et al., 2013 [29].
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Figure A.143. Combined effect of 3wt.% phenolic resin-treated wood dust (WD-
R3) content in PLA matrix on the Young’s modulus (relative % compared to neat 
PLA). Adapted from I. Csizmadia et al., 2013 [29].

Figure A.144. Combined effect of 3wt.% SA-treated date palm wood fibers in 
50:50vo.% acetone:water solvent ratio (WD-SA3) content in PLA matrix on the 
tensile strength (relative % compared to neat PLA). Adapted from I. Abdallah et 
al., 2022 [1].

Figure A.145. Combined effect of 3wt.% SA-treated date palm wood fibers in 
50:50vo.% acetone:water solvent ratio (WD-SA3) content in PLA matrix on the 
elongation at break (relative % compared to neat PLA). Adapted from I. Abdallah 
et al., 2022 [1].

Figure A.146. Combined effect of 3wt.% SA-treated date palm wood fibers in 
50:50vo.% acetone:water solvent ratio (WD-SA3) content in PLA matrix on the 
Young’s modulus (relative % compared to neat PLA). Adapted from I. Abdallah 
et al., 2022 [1].

Figure A.147. Combined effect of 3wt.% SA-treated date palm wood fibers in 
50:50vo.% acetone:water solvent ratio (WD-SA3) content in PLA matrix on the 
density (relative % compared to neat PLA). Adapted from I. Abdallah et al., 2022 
[1].

Figure A.148. Combined effect of 3wt.% SA-treated date palm wood fibers in 
50:50vo.% acetone:water solvent ratio (WD-SA3) content in PLA matrix on the 
thermal conductivity (relative % compared to neat PLA). Adapted from I. Abdal-
lah et al., 2022 [1].
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Figure A.149. Combined effect of 3wt.% SA-treated date palm wood fibers in 
50:50vo.% acetone:water solvent ratio (WD-SA3) content in PLA matrix on the 
water absorption (relative % compared to neat PLA). Adapted from I. Abdallah 
et al., 2022 [1].

Figure A.150. Combined effect of 1wt.% SE-treated date palm wood fibers in 
90:10vo.% ethanol:water solvent ratio (WD-SE1) content in PLA matrix on the 
tensile strength (relative % compared to neat PLA). Adapted from I. Abdallah et 
al., 2022 [1].

Figure A.151. Combined effect of 1wt.% SE-treated date palm wood fibers in 
90:10vo.% ethanol:water solvent ratio (WD-SE1) content in PLA matrix on the 
thermal conductivity (relative % compared to neat PLA). Adapted from I. Abdal-
lah et al., 2022 [1].

Figure A.152. Combined effect of 2wt.% SE-treated date palm wood fibers in 
90:10vo.% ethanol:water solvent ratio (WD-SE2) content in PLA matrix on the 
tensile strength (relative % compared to neat PLA). Adapted from I. Abdallah et 
al., 2022 [1].

Figure A.153. Combined effect of 2wt.% SE-treated date palm wood fibers in 
90:10vo.% ethanol:water solvent ratio (WD-SE2) content in PLA matrix on the 
thermal conductivity (relative % compared to neat PLA). Adapted from I. Abdal-
lah et al., 2022 [1].

Figure A.154. Combined effect of 3wt.% SE-treated date palm wood fibers in 
90:10vo.% ethanol:water solvent ratio (WD-SE3) content in PLA matrix on the 
tensile strength (relative % compared to neat PLA). Adapted from I. Abdallah et 
al., 2022 [1].
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Figure A.155. Combined effect of 3wt.% SE-treated date palm wood fibers in 
90:10vo.% ethanol:water solvent ratio (WD-SE3) content in PLA matrix on the 
elongation at break (relative % compared to neat PLA). Adapted from I. Abdallah 
et al., 2022 [1].

Figure A.156. Combined effect of 3wt.% SE-treated date palm wood fibers in 
90:10vo.% ethanol:water solvent ratio (WD-SE3) content in PLA matrix on the 
Young’s modulus (relative % compared to neat PLA). Adapted from I. Abdallah 
et al., 2022 [1].

Figure A.157. Combined effect of 3wt.% SE-treated date palm wood fibers in 
90:10vo.% ethanol:water solvent ratio (WD-SE3) content in PLA matrix on the 
density (relative % compared to neat PLA). Adapted from I. Abdallah et al., 2022 
[1].

Figure A.158. Combined effect of 3wt.% SE-treated date palm wood fibers in 
90:10vo.% ethanol:water solvent ratio (WD-SE3) content in PLA matrix on the 
thermal conductivity (relative % compared to neat PLA). Adapted from I. Abdal-
lah et al., 2022 [1].

Figure A.159. Combined effect of 3wt.% SE-treated date palm wood fibers in 
90:10vo.% ethanol:water solvent ratio (WD-SE3) content in PLA matrix on the 
water absorption (relative % compared to neat PLA). Adapted from I. Abdallah 
et al., 2022 [1].

Figure A.160. Combined effect of 2wt.% Alkaline-treated wood dust (WD-A2) 
content in PLA matrix on the tensile strength (relative % compared to neat PLA). 
Adapted from I. Singh et al., 2022 [87].
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Figure A.161. Combined effect of 2wt.% Alkaline-treated wood dust (WD-A2) 
content in PLA matrix on the compressive strength (relative % compared to neat 
PLA). Adapted from I. Singh et al., 2022 [87].

Figure A.162. Combined effect of 2wt.% Alkaline-treated wood dust (WD-A2) 
content in PLA matrix on the flexural strength (relative % compared to neat 
PLA). Adapted from I. Singh et al., 2022 [87].

Figure A.163. Combined effect of 2wt.% Alkaline-treated wood dust (WD-A2) 
content in PLA matrix on the elongation at break (relative % compared to neat 
PLA). Adapted from II. Altun et al., 2012 [87].

Figure A.164. Combined effect of 2wt.% Alkaline-treated wood dust (WD-A2) 
content in PLA matrix on the Young’s modulus (relative % compared to neat 
PLA). Adapted from I. Singh et al., 2022 [87].

Figure A.165. Combined effect of 2wt.% Alkaline-treated wood dust (WD-A2) 
content in PLA matrix on the flexural modulus (relative % compared to neat 
PLA). Adapted from I. Singh et al., 2022 [87].

Figure A.166. Combined effect of 2wt.% Alkaline-treated wood dust (WD-A2) 
content in PLA matrix on the density (relative % compared to neat PLA). Adap-
ted from I. Singh et al., 2022 [87].
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Figure A.167. Combined effect of 2wt.% Alkaline-treated wood dust (WD-A2) 
content in PLA matrix on the water absorption (relative % compared to neat 
PLA). Adapted from I. Singh et al., 2022 [87].

Figure A.168. Combined effect of 2wt.% Alkaline-treated wood dust/rice husk 
in 50:50wt.% ratio (WD/RH-A2) content in PLA matrix on the tensile strength 
(relative % compared to neat PLA). Adapted from I. Singh et al., 2022 [87].

Figure A.169. Combined effect of 2wt.% Alkaline-treated wood dust/rice husk 
in 50:50wt.% ratio (WD/RH-A2) content in PLA matrix on the compressive 
strength (relative % compared to neat PLA). Adapted from I. Singh et al., 2022 
[87].

Figure A.170. Combined effect of 2wt.% Alkaline-treated wood dust/rice husk 
in 50:50wt.% ratio (WD/RH-A2) content in PLA matrix on the flexural strength 
(relative % compared to neat PLA). Adapted from I. Singh et al., 2022 [87].

Figure A.171. Combined effect of 2wt.% Alkaline-treated wood dust/rice husk 
in 50:50wt.% ratio (WD/RH-A2) content in PLA matrix on the elongation at 
break (relative % compared to neat PLA). Adapted from I. Singh et al., 2022 [87].

Figure A.172. Combined effect of 2wt.% Alkaline-treated wood dust/rice husk 
in 50:50wt.% ratio (WD/RH-A2) content in PLA matrix on the Young’s modulus 
(relative % compared to neat PLA). Adapted from I. Singh et al., 2022 [87].
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Figure A.173. Combined effect of 2wt.% Alkaline-treated wood dust/rice husk 
in 50:50wt.% ratio (WD/RH-A2) content in PLA matrix on the flexural modulus 
(relative % compared to neat PLA). Adapted from I. Singh et al., 2022 [87].

Figure A.174. Combined effect of 2wt.% Alkaline-treated wood dust/rice husk 
in 50:50wt.% ratio (WD/RH-A2) content in PLA matrix on the density (relative 
% compared to neat PLA). Adapted from I. Singh et al., 2022 [87].

Figure A.175. Combined effect of 2wt.% Alkaline-treated wood dust/rice husk 
in 50:50wt.% ratio (WD/RH-A2) content in PLA matrix on the water absorption 
(relative % compared to neat PLA). Adapted from I. Singh et al., 2022 [87].

Figure A.176. Combined effect of thermally-treated wood dust (WD-T) content 
in PLA matrix on the tensile strength (relative % compared to neat PLA). Adap-
ted from I. Kelleci et al., 2022 [55]; II. Gregorova et al., 2011 [46]; III. Ayrilmis et 
al., 2021 [8].

Figure A.177. Combined effect of thermally-treated wood dust (WD-T) content 
in PLA matrix on the flexural strength (relative % compared to neat PLA). Adap-
ted from I. Kelleci et al., 2022 [55].

Figure A.178. Combined effect of thermally-treated wood dust (WD-T) content 
in PLA matrix on the elongation at break (relative % compared to neat PLA). 
Adapted from II. Gregorova et al., 2011 [46]; III. Ayrilmis et al., 2021 [8].
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Figure A.179. Combined effect of thermally-treated wood dust (WD-T) content 
in PLA matrix on the Young’s modulus (relative % compared to neat PLA). Adap-
ted from I. Kelleci et al., 2022 [55]; II. Gregorova et al., 2011 [46]; III. Ayrilmis et 
al., 2021 [8].

Figure A.180. Combined effect of thermally-treated wood dust (WD-T) content 
in PLA matrix on the flexural modulus (relative % compared to neat PLA). Adap-
ted from I. Kelleci et al., 2022 [55].

Figure A.181. Combined effect of thermally-treated wood dust (WD-T) content 
in PLA matrix on the density (relative % compared to neat PLA). Adapted from 
I. Kelleci et al., 2022 [55].

Figure A.182. Combined effect of thermally-treated wood dust (WD-T) content 
in PLA matrix on the water absorption (relative % compared to neat PLA). Adap-
ted from I. Kelleci et al., 2022 [55].

Figure A.183. Combined effect of cellulose nanocrystals (CNC) content in PLA 
matrix on the tensile strength (relative % compared to neat PLA). Adapted from 
II. Fortunati et al., 2015 [39]; III. Wei et al., 2016 [100]; IV. Agbakoba et al., 2023 
[3]; V. Marmol et al., 2020 [72]; VI. Chi & Catchmark, 2017 [25]; VII. Sringam et 
al., 2023 [88].

Figure A.184. Combined effect of cellulose nanocrystals (CNC) content in PLA 
matrix on the elongation at break (relative % compared to neat PLA). Adapted 
from III. Wei et al., 2016 [100]; IV. Agbakoba et al., 2023 [3]; V. Marmol et al., 
2020 [72]; VI. Chi & Catchmark, 2017 [25].
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Figure A.185. Combined effect of cellulose nanocrystals (CNC) content in PLA 
matrix on the Young’s modulus (relative % compared to neat PLA). Adapted 
from II. Fortunati et al., 2015 [39]; V. Marmol et al., 2020 [72]; VI. Chi & Catch-
mark, 2017 [25]; VII. Sringam et al., 2023 [88].

Figure A.186. Combined effect of cellulose nanocrystals (CNC) content in PLA 
matrix on the UV-A absorption (relative % compared to neat PLA). Adapted 
from I. Karkhanis et al., 2018 [54]; II. Fortunati et al., 2015 [39]; V. Marmol et al., 
2020 [72]; VI. Chi & Catchmark, 2017 [25]; VII. Sringam et al., 2023 [88].

Figure A.187. Combined effect of cellulose nanocrystals (CNC) content in PLA 
matrix on the UV-B absorption (relative % compared to neat PLA). Adapted from 
I. Karkhanis et al., 2018 [54]; II. Fortunati et al., 2015 [39]; V. Marmol et al., 2020 
[72]; VI. Chi & Catchmark, 2017 [25]; VII. Sringam et al., 2023 [88].

Figure A.188. Combined effect of cellulose nanocrystals (CNC) content in PLA 
matrix on the water vapour permeability (relative % compared to neat PLA). 
Adapted from I. Karkhanis et al., 2018 [54]; V. Marmol et al., 2020 [72]; VI. Chi & 
Catchmark, 2017 [25]; VII. Sringam et al., 2023 [88]; VIII. Fortunati et al., 2012 
[41]; IX. Fortunati et al., 2013 [40].

Figure A.189. Combined effect of surfactant-modified cellulose nanocrystals 
(CNC modified with acid phosphate ester of ethoxylated nonylphenol in 1:4vo.% 
ratio) content in PLA matrix on the tensile strength (relative % compared to neat 
PLA). Adapted from I. Chi & Catchmark, 2017 [25]; II. Luzi et al., 2016 [70]; III. 
Fortunati et al., 2015 [39].

Figure A.190. Combined effect of surfactant-modified cellulose nanocrystals 
(CNC modified with acid phosphate ester of ethoxylated nonylphenol in 1:4vo.% 
ratio) content in PLA matrix on the elongation at break (relative % compared to 
neat PLA). Adapted from I. Chi & Catchmark, 2017 [25].
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Figure A.191. Combined effect of surfactant-modified cellulose nanocrystals 
(CNC modified with acid phosphate ester of ethoxylated nonylphenol in 1:4vo.% 
ratio) content in PLA matrix on the Young’s modulus (relative % compared to 
neat PLA). Adapted from I. Chi & Catchmark, 2017 [25]; II. Luzi et al., 2016 [70]; 
III. Fortunati et al., 2015 [39].

Figure A.192. Combined effect of surfactant-modified cellulose nanocrystals 
(CNC modified with acid phosphate ester of ethoxylated nonylphenol in 1:4vo.% 
ratio) content in PLA matrix on the UV-A absorption (relative % compared to 
neat PLA). Adapted from I. Chi & Catchmark, 2017 [25]; III. Fortunati et al., 2015 
[39].

Figure A.193. Combined effect of surfactant-modified cellulose nanocrystals 
(CNC modified with acid phosphate ester of ethoxylated nonylphenol in 1:4vo.% 
ratio) content in PLA matrix on the UV-B absorption (relative % compared to 
neat PLA). Adapted from I. Chi & Catchmark, 2017 [25]; III. Fortunati et al., 2015 
[39].

Figure A.194. Combined effect of surfactant-modified cellulose nanocrystals 
(CNC modified with acid phosphate ester of ethoxylated nonylphenol in 1:4vo.% 
ratio) content in PLA matrix on the water vapour permeability (relative % com-
pared to neat PLA). Adapted from II. Luzi et al., 2016 [70]; IV. Fortunati et al., 
2012 [41]; V. Fortunati et al., 2013 [40].

Figure A.195. Combined effect of lignin-coated cellulose nanocrystals (L-CNC) 
content in PLA matrix on the tensile strength (relative % compared to neat PLA). 
Adapted from I. Wei et al., 2017 [99]; II. Boruvka & Prusek, 2016 [20]; III. Sho-
jaeiarani et al., 2022 [85].

Figure A.196. Combined effect of lignin-coated cellulose nanocrystals (L-CNC) 
content in PLA matrix on the elongation at break (relative % compared to neat 
PLA). Adapted from I. Wei et al., 2017 [99]; II. Boruvka & Prusek, 2016 [20].
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Figure A.197. Combined effect of lignin-coated cellulose nanocrystals (L-CNC) 
content in PLA matrix on the Young’s modulus (relative % compared to neat 
PLA). Adapted from I. Wei et al., 2017 [99]; III. Shojaeiarani et al., 2022 [85].

Figure A.198. Combined effect of lignin-coated cellulose nanocrystals (L-CNC) 
content in PLA matrix on the UV-A absorption (relative % compared to neat 
PLA). Adapted from III. Shojaeiarani et al., 2022 [85].

Figure A.199. Combined effect of lignin-coated cellulose nanocrystals (L-CNC) 
content in PLA matrix on the UV-B absorption (relative % compared to neat 
PLA). Adapted from III. Shojaeiarani et al., 2022 [85].

Figure A.200. Combined effect of lignin-coated cellulose nanocrystals (L-CNC) 
content in PLA matrix on the water vapour permeability (relative % compared 
to neat PLA). Adapted from IV. Sun et al., 2023 [89].

Figure A.201. Combined effect of cinnamate-grafted cellulose nanocrystals 
(Cin-CNC) content in PLA matrix on the tensile strength (relative % compared 
to neat PLA). Adapted from I. Sringam et al., 2023 [88].

Figure A.202. Combined effect of cinnamate-grafted cellulose nanocrystals 
(Cin-CNC) content in PLA matrix on the elongation at break (relative % compa-
red to neat PLA). Adapted from I. Sringam et al., 2023 [88].
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Figure A.203. Combined effect of cinnamate-grafted cellulose nanocrystals 
(Cin-CNC) content in PLA matrix on the Young’s modulus (relative % compared 
to neat PLA). Adapted from I. Sringam et al., 2023 [88].

Figure A.204. Combined effect of cinnamate-grafted cellulose nanocrystals 
(Cin-CNC) content in PLA matrix on the UV-A absorption (relative % compared 
to neat PLA). Adapted from I. Sringam et al., 2023 [88].

Figure A.205. Combined effect of cinnamate-grafted cellulose nanocrystals 
(Cin-CNC) content in PLA matrix on the UV-B absorption (relative % compared 
to neat PLA). Adapted from I. Sringam et al., 2023 [88].

Figure A.206. Combined effect of cinnamate-grafted cellulose nanocrystals 
(Cin-CNC) content in PLA matrix on the water vapour permeability (relative % 
compared to neat PLA). Adapted from I. Sringam et al., 2023 [88].

Figure A.207. Combined effect of lignin nanoparticles (LNP) content in PLA ma-
trix on the tensile strength (relative % compared to neat PLA). Adapted from I. 
Shojaeiarani et al., 2022 [85]; III. Boarino et al., 2022 [19]; IV. Daassi et al., 2023 
[30]; V. Cavallo et al., 2021 [24].

Figure A.208. Combined effect of lignin nanoparticles (LNP) content in PLA ma-
trix on the elongation at break (relative % compared to neat PLA). Adapted from 
III. Boarino et al., 2022 [19]; IV. Daassi et al., 2023 [30]; V. Cavallo et al., 2021 [24].
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Figure A.209. Combined effect of lignin nanoparticles (LNP) content in PLA ma-
trix on the Young’s modulus (relative % compared to neat PLA). Adapted from I. 
Shojaeiarani et al., 2022 [85]; III. Boarino et al., 2022 [19]; IV. Daassi et al., 2023 
[30]; V. Cavallo et al., 2021 [24].

Figure A.210. Combined effect of lignin nanoparticles (LNP) content in PLA ma-
trix on the UV-A absorption (relative % compared to neat PLA). Adapted from I. 
Shojaeiarani et al., 2022 [85]; V. Cavallo et al., 2021 [24].

Figure A.211. Combined effect of lignin nanoparticles (LNP) content in PLA ma-
trix on the UV-B absorption (relative % compared to neat PLA). Adapted from I. 
Shojaeiarani et al., 2022 [85]; V. Cavallo et al., 2021 [24].

Figure A.212. Combined effect of lignin nanoparticles (LNP) content in PLA 
matrix on the water vapour permeability (relative % compared to neat PLA). 
Adapted from II. Yang et al., 2015 [103]; III. Boarino et al., 2022 [19].

Figure A.213. Combined effect of Zinc oxide (ZnO) content in PLA matrix on the 
tensile strength (relative % compared to neat PLA). Adapted from II. Luzi et al., 
2016 [70]; III. Yang et al., 2023 [104]; IV. Chong et al., 2023 [26]; V. Tan et al., 
2023 [90]; VI. Jamnongkan et al., 2022 [50].

Figure A.214. Combined effect of Zinc oxide (ZnO) content in PLA matrix on the 
elongation at break (relative % compared to neat PLA). Adapted from III. Yang 
et al., 2023 [104]; IV. Chong et al., 2023 [26]; VI. Jamnongkan et al., 2022 [50].
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Figure A.215. Combined effect of Zinc oxide (ZnO) content in PLA matrix on the 
Young’s modulus (relative % compared to neat PLA). Adapted from II. Luzi et al., 
2016 [70]; IV. Chong et al., 2023 [26]; V. Tan et al., 2023 [90].

Figure A.216. Combined effect of Zinc oxide (ZnO) content in PLA matrix on the 
UV-A absorption (relative % compared to neat PLA). Adapted from I. Li et al., 
2023 [63]; VII. Kim et al., 2019 [57].

Figure A.217. Combined effect of Zinc oxide (ZnO) content in PLA matrix on the 
UV-B absorption (relative % compared to neat PLA). Adapted from I. Li et al., 
2023 [63]; VII. Kim et al., 2019 [57].

Figure A.218. Combined effect of Zinc oxide (ZnO) content in PLA matrix on the 
water vapour permeability (relative % compared to neat PLA). Adapted from II. 
Luzi et al., 2016 [70]; VII. Kim et al., 2019 [57].

Figure A.219. Combined effect of cellulose nanocrystals-Zinc oxide (CNC-ZnO) 
content in PLA matrix on the tensile strength (relative % compared to neat PLA). 
Adapted from I. Luzi et al., 2016 [70].

Figure A.220. Combined effect of cellulose nanocrystals-Zinc oxide (CNC-ZnO) 
content in PLA matrix on the elongation at break (relative % compared to neat 
PLA). Adapted from I. Luzi et al., 2016 [70].
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Figure A.221. Combined effect of cellulose nanocrystals-Zinc oxide (CNC-ZnO) 
content in PLA matrix on the Young’s modulus (relative % compared to neat 
PLA). Adapted from I. Luzi et al., 2016 [70].

Figure A.222. Combined effect of cellulose nanocrystals-Zinc oxide (CNC-ZnO) 
content in PLA matrix on the UV-A absorption (relative % compared to neat 
PLA). Adapted from II. Wang et al., 2019 [97].

Figure A.223. Combined effect of cellulose nanocrystals-Zinc oxide (CNC-ZnO) 
content in PLA matrix on the UV-B absorption (relative % compared to neat 
PLA). Adapted from II. Wang et al., 2019 [97].

Figure A.224. Combined effect of cellulose nanocrystals-Zinc oxide (CNC-ZnO) 
content in PLA matrix on the water vapour permeability (relative % compared 
to neat PLA). Adapted from I. Luzi et al., 2016 [70].

Figure A.225. Combined effect of cellulose nanocrystals + 1wt.% silver nano-
powder (CNC-Ag) content in PLA matrix on the water vapour permeability (rela-
tive % compared to neat PLA). Adapted from I. Fortunati et al., 2012 [41].

Figure A.226. Combined effect of surfactant-modified cellulose nanocrystals 
(CNC modified with acid phosphate ester of ethoxylated nonylphenol in 1:4vo.% 
ratio) + 1wt.% silver nanopowder (s-CNC-Ag) content in PLA matrix on the 
water vapour permeability (relative % compared to neat PLA). Adapted from I. 
Fortunati et al., 2013 [40].
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Figure A.227. Combined effect of various PLA fillers (UTWD: untreated wood 
dust {[1]; [51]; [29]; [79]; [77]; and [55]}, WD-R1/WD-R3: 1/3wt.% phenolic 
resin-treated wood dust {[29]}, WD-SA3: 3wt.% SA-treated date palm wood 
fibers in 50:50vo.% acetone:water solvent ratio {[1]}, WD-SE1/WD-SE2/WD-
SE3: 1/2/3wt.% SE-treated date palm wood fibers in 90:10vo.% ethanol:water 
solvent ratio {[1]}, WD-A2: 2wt.% Alkaline-treated wood dust {[87]}, WD/RH-
A2: 2wt.% Alkaline-treated wood dust/rice husk in 50:50wt.% ratio {[87]}, and 
WD-T: thermally-treated wood dust {[55]; [46]; and [8]}) on the tensile strength 
(relative % compared to neat PLA).

Figure A.229. Combined effect of various PLA fillers (UTWD: untreated wood 
dust {[79]; [77]; and [55]}, WD-A2: 2wt.% Alkaline-treated wood dust {[87]}, 
WD/RH-A2: 2wt.% Alkaline-treated wood dust/rice husk in 50:50wt.% ratio 
{[87]}, and WD-T: thermally-treated wood dust {[55]}) on the flexural strength 
(relative % compared to neat PLA). 

Figure A.228. Combined effect of various PLA fillers (WD-A2: 2wt.% Alkali-
ne-treated wood dust {[87]}, and WD/RH-A2: 2wt.% Alkaline-treated wood 
dust/rice husk in 50:50wt.% ratio {[87]}) on the compressive strength (relative 
% compared to neat PLA).

Figure A.230. Combined effect of various PLA fillers (UTWD: untreated wood 
dust {[1]}, WD-SA3: 3wt.% SA-treated date palm wood fibers in 50:50vo.% ace-
tone:water solvent ratio {[1]}, WD-SE3: 3wt.% SE-treated date palm wood fibers 
in 90:10vo.% ethanol:water solvent ratio {[1]}, WD/RH-A2: 2wt.% Alkaline-tre-
ated wood dust/rice husk in 50:50wt.% ratio {[87]}, WD-T: thermally-treated 
wood dust {[55]; [46]; and [8]}, and WD-A2: 2wt.% Alkaline-treated wood dust 
{[6]}) on the elongation at break (relative % compared to neat PLA).

Figure A.232. Combined effect of PLA filler (UTWD: untreated wood dust 
{[51]}) on the bending modulus (relative % compared to neat PLA).

Figure A.231. Combined effect of various PLA fillers (UTWD: untreated wood 
dust {[1]; [51]; [29]; [79]; [77]; and [55]}, WD-R1/WD-R3: 1/3wt.% phenolic re-
sin-treated wood dust {[29]}, WD-SA3: 3wt.% SA-treated date palm wood fibers 
in 50:50vo.% acetone:water solvent ratio {[1]}, WD-SE1/WD-SE2/WD-SE3: 
1/2/3wt.% SE-treated date palm wood fibers in 90:10vo.% ethanol:water sol-
vent ratio {[1]}, WD-A2: 2wt.% Alkaline-treated wood dust {[87]}, WD/RH-A2: 
2wt.% Alkaline-treated wood dust/rice husk in 50:50wt.% ratio {[87]}, and WD-
T: thermally-treated wood dust {[55]; [46]; and [8]}) on the Young’s modulus 
(relative % compared to neat PLA).
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Figure A.233. Combined effect of various PLA fillers (UTWD: untreated wood 
dust {[77]; and [55]}, WD-A2: 2wt.% Alkaline-treated wood dust {[87]}, WD/
RH-A2: 2wt.% Alkaline-treated wood dust/rice husk in 50:50wt.% ratio {[87]}, 
and WD-T: thermally-treated wood dust {[55]}) on the flexural modulus (rela-
tive % compared to neat PLA).

Figure A.234. Combined effect of various PLA fillers (UTWD: untreated wood 
dust {[1]; and [55]}, WD-SA3: 3wt.% SA-treated date palm wood fibers in 
50:50vo.% acetone:water solvent ratio {[1]}, WD-SE3: 3wt.% SE-treated date 
palm wood fibers in 90:10vo.% ethanol:water solvent ratio {[1]}, WD-A2: 2wt.% 
Alkaline-treated wood dust {[87]}, WD/RH-A2: 2wt.% Alkaline-treated wood 
dust/rice husk in 50:50wt.% ratio {[87]}, and WD-T: thermally-treated wood 
dust {[55]}) on the density (relative % compared to neat PLA).

Figure A.235. Combined effect of various PLA fillers (UTWD: untreated wood 
dust {[1]}, WD-SA3: 3wt.% SA-treated date palm wood fibers in 50:50vo.% 
acetone:water solvent ratio {[1]}, and WD-SE1/WD-SE2/WD-SE3: 1/2/3wt.% 
SE-treated date palm wood fibers in 90:10vo.% ethanol:water solvent ratio 
{[1]}) on the thermal conductivity (relative % compared to neat PLA).

Figure A.236. Combined effect of various PLA fillers (UTWD: untreated wood 
dust {[1]; [51]; and [55]}, WD-SA3: 3wt.% SA-treated date palm wood fibers in 
50:50vo.% acetone:water solvent ratio {[1]}, WD-SE3: 3wt.% SE-treated date 
palm wood fibers in 90:10vo.% ethanol:water solvent ratio {[1]}, WD-A2: 2wt.% 
Alkaline-treated wood dust {[87]}, WD/RH-A2: 2wt.% Alkaline-treated wood 
dust/rice husk in 50:50wt.% ratio {[87]}, and WD-T: thermally-treated wood 
dust {[55]}) on the water absorption (relative % compared to neat PLA).

Figure A.238. Combined effect of various PLA nanoparticles (CNC: cellulose 
nanocrystals {[100]; [3]; [72]; and [25]}, s-CNC: surfactant-modified cellulose 
nanocrystals with phosphate ester of ethoxylated nonylphenol in 1:4vo.% ra-
tio {[25]}, L-CNC: lignin-coated cellulose nanocrystals {[99]; and [20]}, Cin-CNC: 
cinnamate-grafted cellulose nanocrystals {[88]}, LNP: lignin nanoparticles {[19]; 
[30]; and [24]}, ZnO: Zinc oxide {[104]; [26]; and [50]}, and CNC-ZnO: cellulose 
nanocrystals-Zinc oxide {[70]}) on the elongation at break (relative % compared 
to neat PLA).

Figure A.237. Combined effect of various PLA nanoparticles (CNC: cellulose 
nanocrystals {[39]; [100]; [3]; [72]; [25]; and [88]}, s-CNC: surfactant-modi-
fied cellulose nanocrystals with phosphate ester of ethoxylated nonylphenol in 
1:4vo.% ratio {[25]; [70]; and [39]}, L-CNC: lignin-coated cellulose nanocrystals 
{[99]; [20]; and [85]}, Cin-CNC: cinnamate-grafted cellulose nanocrystals {[88]}, 
LNP: lignin nanoparticles {[85]; [19]; [30]; and [24]}, ZnO: Zinc oxide {[70]; 
[104]; [26]; [90]; and [50]}, and CNC-ZnO: cellulose nanocrystals-Zinc oxide 
{[70]}) on the tensile strength (relative % compared to neat PLA).
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Figure A.239. Combined effect of various PLA nanoparticles (CNC: cellulose 
nanocrystals {[39]; [72]; [25]; and [88]}, s-CNC: surfactant-modified cellulose 
nanocrystals with phosphate ester of ethoxylated nonylphenol in 1:4vo.% ra-
tio {[25]; [70]; and [39]}, L-CNC: lignin-coated cellulose nanocrystals {[99]; and 
[85]}, Cin-CNC: cinnamate-grafted cellulose nanocrystals {[88]}, LNP: lignin 
nanoparticles {[85]; [19]; [30]; and [24]}, ZnO: Zinc oxide {[70]; [26]; and [90]}, 
and CNC-ZnO: cellulose nanocrystals-Zinc oxide {[70]}) on the Young’s modulus 
(relative % compared to neat PLA). 

Figure A.240. Combined effect of various PLA nanoparticles (CNC: cellulose 
nanocrystals {[54]; [39]; [72]; [25]; and [88]}, s-CNC: surfactant-modified cellu-
lose nanocrystals with phosphate ester of ethoxylated nonylphenol in 1:4vo.% 
ratio {[25]; and [39]}, L-CNC: lignin-coated cellulose nanocrystals {[85]}, Cin-
CNC: cinnamate-grafted cellulose nanocrystals {[88]}, LNP: lignin nanoparticles 
{[85]; and [24]}, ZnO: Zinc oxide {[63]; and [57]}, and CNC-ZnO: cellulose nano-
crystals-Zinc oxide {[97]}) on the UV-A absorption (relative % compared to neat 
PLA).

Figure A.241. Combined effect of various PLA nanoparticles (CNC: cellulose 
nanocrystals {[54]; [39]; [72]; [25]; and [88]}, s-CNC: surfactant-modified cellu-
lose nanocrystals with phosphate ester of ethoxylated nonylphenol in 1:4vo.% 
ratio {[25]; and [39]}, L-CNC: lignin-coated cellulose nanocrystals {[85]}, Cin-
CNC: cinnamate-grafted cellulose nanocrystals {[88]}, LNP: lignin nanoparticles 
{[85]; and [24]}, ZnO: Zinc oxide {[63]; and [57]}, and CNC-ZnO: cellulose nano-
crystals-Zinc oxide {[97]}) on the UV-B absorption (relative % compared to neat 
PLA).

Figure A.242. Combined effect of various PLA nanoparticles (CNC: cellulose 
nanocrystals {[54]; [72]; [25]; [88]; [41]; and [40]}, s-CNC: surfactant-modi-
fied cellulose nanocrystals {[70]; [41]; and [40]}, L-CNC: lignin-coated cellulose 
nanocrystals {[99]}, Cin-CNC: cinnamate-grafted cellulose nanocrystals {[88]}, 
LNP: lignin nanoparticles {[103]; and [19]}, ZnO: Zinc oxide {[70]; and [57]}, 
CNC-ZnO: cellulose nanocrystals-Zinc oxide {[70]}, CNC-Ag: cellulose nano-
crystals + 1wt.% silver nanopowder {[41]}, and s-CNC-Ag: surfactant-modified 
cellulose nanocrystals + 1wt.% silver nanopowder {[40]}) on the water vapour 
permeability (relative % compared to neat PLA).

Figure A.243. Effect of PLA porosity on the thermal conductivity, and sound 
transmission loss (relative % compared to neat PLA). Adapted from “Thermal 
and acoustic performance evalation of 3D-Printable PLA materials”, by Islam et 
al., 2023 [49].

Figure A.244. Tensile strength overview biocomposite vs. building materials 
(biocomposite {Adapted from [1]; [3]; [6]; [8]; [14]; [19]; [20]; [24]; [25]; [26]; 
[29]; [30]; [35]; [39]; [40]; [41]; [46]; [50]; [51]; [54]; [55]; [57]; [61]; [63]; [70]; 
[72]; [77]; [79]; [85]; [87]; [88]; [90]; [97]; [99]; [100]; [103]; and [104]}, PP 
{Adapted from [2]; [65]; [68]; and Edupack, 2023}, Ag-PE sandwich {Adapted 
from Edupack, 2023}, GFRP {Adapted from [12]; [86]; and Edupack, 2023}, fi-
ber-cement {Adapted from [47]; [59]; [62]; [64]; [84]; [92]; [98]; and [105]}, re-
sol-hardfoam {Adapted from Edupack, 2023}, plasterboard {Adapted from [49]; 
and Edupack, 2023}, and hardwood {Adapted from [48]; and Edupack, 2023}). 



Figure A.246. Elongation at break overview biocomposite vs. building materials 
(biocomposite {Adapted from [1]; [3]; [6]; [8]; [14]; [19]; [20]; [24]; [25]; [26]; 
[29]; [30]; [35]; [39]; [40]; [41]; [46]; [50]; [51]; [54]; [55]; [57]; [61]; [63]; [70]; 
[72]; [77]; [79]; [85]; [87]; [88]; [90]; [97]; [99]; [100]; [103]; and [104]}, PP 
{Adapted from [2]; [65]; [68]; and Edupack, 2023}, Ag-PE sandwich {Adapted 
from Edupack, 2023}, GFRP {Adapted from [12]; [86]; and Edupack, 2023}, re-
sol-hardfoam {Adapted from Edupack, 2023}, plasterboard {Adapted from [49]; 
and Edupack, 2023}, and hardwood {Adapted from [48]; and Edupack, 2023}). 

Figure A.247. Young’s modulus overview biocomposite vs. building materials 
(biocomposite {Adapted from [1]; [3]; [6]; [8]; [14]; [19]; [20]; [24]; [25]; [26]; 
[29]; [30]; [35]; [39]; [40]; [41]; [46]; [50]; [51]; [54]; [55]; [57]; [61]; [63]; [70]; 
[72]; [77]; [79]; [85]; [87]; [88]; [90]; [97]; [99]; [100]; [103]; and [104]}, PP 
{Adapted from [2]; [65]; [68]; and Edupack, 2023}, Ag-PE sandwich {Adapted 
from Edupack, 2023}, GFRP {Adapted from [12]; [86]; and Edupack, 2023}, fi-
ber-cement {Adapted from [47]; [59]; [62]; [64]; [84]; [92]; [98]; and [105]}, re-
sol-hardfoam {Adapted from Edupack, 2023}, plasterboard {Adapted from [49]; 
and Edupack, 2023}, and hardwood {Adapted from [48]; and Edupack, 2023}).

Figure A.248. Water absorption overview biocomposite vs. building materials 
(biocomposite {Adapted from [1]; [3]; [6]; [8]; [14]; [19]; [20]; [24]; [25]; [26]; 
[29]; [30]; [35]; [39]; [40]; [41]; [46]; [50]; [51]; [54]; [55]; [57]; [61]; [63]; [70]; 
[72]; [77]; [79]; [85]; [87]; [88]; [90]; [97]; [99]; [100]; [103]; and [104]}, PP 
{Adapted from [2]; [65]; [68]; and Edupack, 2023}, Ag-PE sandwich {Adapted 
from Edupack, 2023}, GFRP {Adapted from [12]; [86]; and Edupack, 2023}, fi-
ber-cement {Adapted from [47]; [59]; [62]; [64]; [84]; [92]; [98]; and [105]}, and 
hardwood {Adapted from [48]; and Edupack, 2023}). 

Figure A.245. Compressive strength overview biocomposite vs. building mate-
rials (biocomposite {Adapted from [1]; [3]; [6]; [8]; [14]; [19]; [20]; [24]; [25]; 
[26]; [29]; [30]; [35]; [39]; [40]; [41]; [46]; [50]; [51]; [54]; [55]; [57]; [61]; [63]; 
[70]; [72]; [77]; [79]; [85]; [87]; [88]; [90]; [97]; [99]; [100]; [103]; and [104]}, 
PP {Adapted from [2]; [65]; [68]; and Edupack, 2023}, Ag-PE sandwich {Adap-
ted from Edupack, 2023}, GFRP {Adapted from [12]; [86]; and Edupack, 2023}, 
fiber-cement {Adapted from [47]; [59]; [62]; [64]; [84]; [92]; [98]; and [105]}, re-
sol-hardfoam {Adapted from Edupack, 2023}, plasterboard {Adapted from [49]; 
and Edupack, 2023}, and hardwood {Adapted from [48]; and Edupack, 2023}).

Figure A.249. Water vapour permeability overview biocomposite vs. building 
materials (biocomposite {Adapted from [1]; [3]; [6]; [8]; [14]; [19]; [20]; [24]; 
[25]; [26]; [29]; [30]; [35]; [39]; [40]; [41]; [46]; [50]; [51]; [54]; [55]; [57]; [61]; 
[63]; [70]; [72]; [77]; [79]; [85]; [87]; [88]; [90]; [97]; [99]; [100]; [103]; and 
[104]}, PP {Adapted from [2]; [65]; [68]; and Edupack, 2023}, Ag-PE sandwich 
{Adapted from Edupack, 2023}, and resol-hardfoam {Adapted from Edupack, 
2023}). 

Figure A.250. UV-A absorption overview biocomposite vs. building materials 
(biocomposite {Adapted from [1]; [3]; [6]; [8]; [14]; [19]; [20]; [24]; [25]; [26]; 
[29]; [30]; [35]; [39]; [40]; [41]; [46]; [50]; [51]; [54]; [55]; [57]; [61]; [63]; [70]; 
[72]; [77]; [79]; [85]; [87]; [88]; [90]; [97]; [99]; [100]; [103]; and [104]}, PP 
{Adapted from [2]; [65]; [68]; and Edupack, 2023}, Ag-PE sandwich {Adapted 
from Edupack, 2023}, and hardwood {Adapted from [48]; and Edupack, 2023}). 
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Figure A.251. UV-B absorption overview biocomposite vs. building materials 
(biocomposite {Adapted from [1]; [3]; [6]; [8]; [14]; [19]; [20]; [24]; [25]; [26]; 
[29]; [30]; [35]; [39]; [40]; [41]; [46]; [50]; [51]; [54]; [55]; [57]; [61]; [63]; [70]; 
[72]; [77]; [79]; [85]; [87]; [88]; [90]; [97]; [99]; [100]; [103]; and [104]}, PP 
{Adapted from [2]; [65]; [68]; and Edupack, 2023}, Ag-PE sandwich {Adapted 
from Edupack, 2023}, and hardwood {Adapted from [48]; and Edupack, 2023}). 

Figure A.252. Thermal conductivity overview biocomposite vs. building mate-
rials (biocomposite {Adapted from [1]; [3]; [6]; [8]; [14]; [19]; [20]; [24]; [25]; 
[26]; [29]; [30]; [35]; [39]; [40]; [41]; [46]; [50]; [51]; [54]; [55]; [57]; [61]; [63]; 
[70]; [72]; [77]; [79]; [85]; [87]; [88]; [90]; [97]; [99]; [100]; [103]; and [104]}, 
PP {Adapted from [2]; [65]; [68]; and Edupack, 2023}, Ag-PE sandwich {Adap-
ted from Edupack, 2023}, GFRP {Adapted from [12]; [86]; and Edupack, 2023}, 
fiber-cement {Adapted from [47]; [59]; [62]; [64]; [84]; [92]; [98]; and [105]}, 
resol-hardfoam {Adapted from Edupack, 2023}, hardwood {Adapted from [48]; 
and Edupack, 2023}; and stone wool {Adapted from Edupack, 2023}). 

Figure A.253. Density overview biocomposite vs. building materials (biocom-
posite {Adapted from [1]; [3]; [6]; [8]; [14]; [19]; [20]; [24]; [25]; [26]; [29]; [30]; 
[35]; [39]; [40]; [41]; [46]; [50]; [51]; [54]; [55]; [57]; [61]; [63]; [70]; [72]; [77]; 
[79]; [85]; [87]; [88]; [90]; [97]; [99]; [100]; [103]; and [104]}, PP {Adapted 
from [2]; [65]; [68]; and Edupack, 2023}, Ag-PE sandwich {Adapted from Edu-
pack, 2023}, GFRP {Adapted from [12]; [86]; and Edupack, 2023}, fiber-cement 
{Adapted from [47]; [59]; [62]; [64]; [84]; [92]; [98]; and [105]}, resol-hardfoam 
{Adapted from Edupack, 2023}, plasterboard {Adapted from [49]; and Edupack, 
2023}, and hardwood {Adapted from [48]; and Edupack, 2023}).
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Figure A.256. Performance score of various PLA fillers (UTWD: untreated wood 
dust {Adapted from [1]; [51]; [29]; [79]; [77]; and [55]}, WD-SA3: 3wt.% SA-tre-
ated date palm wood fibers in 50:50vo.% acetone:water solvent ratio {Adap-
ted from [1]}, WD-SE3: 3wt.% SE-treated date palm wood fibers in 90:10vo.% 
ethanol:water solvent ratio {Adapted from [1]}, WD-A2: 2wt.% Alkaline-treated 
wood dust {Adapted from [87]}, WD/RH-A2: 2wt.% Alkaline-treated wood 
dust/rice husk in 50:50wt.% ratio {Adapted from [87]}, and WD-T: thermal-
ly-treated wood dust {Adapted from [8]; [46]; and [55]}) on the tensile strength.

Figure A.254. Sound transmission loss overview biocomposite vs. building ma-
terials (biocomposite {Adapted from [1]; [3]; [6]; [8]; [14]; [19]; [20]; [24]; [25]; 
[26]; [29]; [30]; [35]; [39]; [40]; [41]; [46]; [50]; [51]; [54]; [55]; [57]; [61]; [63]; 
[70]; [72]; [77]; [79]; [85]; [87]; [88]; [90]; [97]; [99]; [100]; [103]; and [104]}, 
PP {Adapted from [2]; [65]; [68]; and Edupack, 2023}, GFRP {Adapted from [12]; 
[86]; and Edupack, 2023}, and plasterboard {Adapted from [49]; and Edupack, 
2023}). 

Figure A.255. Effect of PLA porosity on the thermal conductivity, and sound 
transmission loss (Adapted from Islam et al., 2023 [49]).



Figure A.261. Performance score of various PLA fillers (UTWD: untreated wood 
dust, WD-SA3: 3wt.% SA-treated date palm wood fibers in 50:50vo.% aceto-
ne:water solvent ratio, WD-SE3: 3wt.% SE-treated date palm wood fibers in 
90:10vo.% ethanol:water solvent ratio, WD-A2: 2wt.% Alkaline-treated wood 
dust, WD/RH-A2: 2wt.% Alkaline-treated wood dust/rice husk in 50:50wt.% 
ratio, and WD-T: thermally-treated wood dust) on the sustainability (% fiber 
content).

Figure A.259. Performance score of various PLA fillers (UTWD: untreated wood 
dust {Adapted from [1]; and [55]}, WD-SA3: 3wt.% SA-treated date palm wood 
fibers in 50:50vo.% acetone:water solvent ratio {Adapted from [1]}, WD-SE3: 
3wt.% SE-treated date palm wood fibers in 90:10vo.% ethanol:water solvent 
ratio {Adapted from [1]}, WD-A2: 2wt.% Alkaline-treated wood dust {Adap-
ted from [87]}, WD/RH-A2: 2wt.% Alkaline-treated wood dust/rice husk in 
50:50wt.% ratio {Adapted from [87]}, and WD-T: thermally-treated wood dust 
{Adapted from [55]) on the density.

Figure A.260. Performance score of various PLA fillers (UTWD: untreated 
wood dust {Adapted from [1]; [51]; and [55]}, WD-SA3: 3wt.% SA-treated date 
palm wood fibers in 50:50vo.% acetone:water solvent ratio {Adapted from [1]}, 
WD-SE3: 3wt.% SE-treated date palm wood fibers in 90:10vo.% ethanol:water 
solvent ratio {Adapted from [1]}, WD-A2: 2wt.% Alkaline-treated wood dust 
{Adapted from [87]}, WD/RH-A2: 2wt.% Alkaline-treated wood dust/rice husk 
in 50:50wt.% ratio {Adapted from [87]}, and WD-T: thermally-treated wood 
dust {Adapted from [55]) on the water absorption.

Figure A.262. Step 20: Performance score of various PLA nanoparticles (CNC: 
cellulose nanocrystals {Adapted from [39]; [100]; [3]; [72]; [25]; and [88]}, 
s-CNC: surfactant-modified cellulose nanocrystals with phosphate ester of 
ethoxylated nonylphenol in 1:4vo.% ratio {Adapted from [25]; [70]; and [39]}, 
L-CNC: lignin-coated cellulose nanocrystals {Adapted from [99]; [20]; and [85]}, 
Cin-CNC: cinnamate-grafted cellulose nanocrystals {Adapted from [88]}, LNP: 
lignin nanoparticles {Adapted from [85]; [19]; [30]; and [24]}, ZnO: Zinc oxide 
{Adapted from [70]; [104]; [26]; [90]; and [50]}, and CNC-ZnO: cellulose nano-
crystals-Zinc oxide {Adapted from [70]}) on the tensile strength.
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Figure A.257. Performance score of various PLA fillers (UTWD: untreated wood 
dust {Adapted from [1]}, WD-SA3: 3wt.% SA-treated date palm wood fibers in 
50:50vo.% acetone:water solvent ratio {Adapted from [1]}, WD-SE3: 3wt.% 
SE-treated date palm wood fibers in 90:10vo.% ethanol:water solvent ratio 
{Adapted from [1]}, WD-A2: 2wt.% Alkaline-treated wood dust {Adapted from 
[6]}, WD/RH-A2: 2wt.% Alkaline-treated wood dust/rice husk in 50:50wt.% ra-
tio {Adapted from [87]}, and WD-T: thermally-treated wood dust {Adapted from 
[8]; [46]; and [55]) on the elongation at break.

Figure A.258. Performance score of various PLA fillers (UTWD: untreated wood 
dust {Adapted from [1]; [51]; [29]; [79]; [77]; and [55]}, WD-SA3: 3wt.% SA-tre-
ated date palm wood fibers in 50:50vo.% acetone:water solvent ratio {Adap-
ted from [1]}, WD-SE3: 3wt.% SE-treated date palm wood fibers in 90:10vo.% 
ethanol:water solvent ratio {Adapted from [1]}, WD-A2: 2wt.% Alkaline-treated 
wood dust {Adapted from [87]}, WD/RH-A2: 2wt.% Alkaline-treated wood dust/
rice husk in 50:50wt.% ratio {Adapted from [87]}, and WD-T: thermally-treated 
wood dust {Adapted from [8]; [46]; and [55]}) on the Young’s modulus.



Figure A.268. Performance score of various PLA nanoparticles (CNC: cellulose 
nanocrystals, s-CNC: surfactant-modified cellulose nanocrystals with phosphate 
ester of ethoxylated nonylphenol in 1:4vo.% ratio, L-CNC: lignin-coated cellulo-
se nanocrystals, Cin-CNC: cinnamate-grafted cellulose nanocrystals, LNP: lignin 
nanoparticles, ZnO: Zinc oxide, CNC-ZnO: cellulose nanocrystals-Zinc oxide) on 
the sustainability (organic/inorganic). 

Figure A.266. Performance score of various PLA nanoparticles (CNC: cellu-
lose nanocrystals {Adapted from [54]; [39]; [72]; [25]; and [88]}, s-CNC: sur-
factant-modified cellulose nanocrystals with phosphate ester of ethoxylated no-
nylphenol in 1:4vo.% ratio {Adapted from [25]; and [39]}, L-CNC: lignin-coated 
cellulose nanocrystals {Adapted from [85]}, Cin-CNC: cinnamate-grafted cellulo-
se nanocrystals {Adapted from [88]}, LNP: lignin nanoparticles {Adapted from 
[85]; and [24]}, ZnO: Zinc oxide {Adapted from [63]; and [57]}, and CNC-ZnO: 
cellulose nanocrystals-Zinc oxide {Adapted from [97]}) on the UV-B absorption.

Figure A.267. Performance score of various PLA nanoparticles (CNC: cellu-
lose nanocrystals {Adapted from [54]; [72]; [25]; [88]; [41]; and [40]}, s-CNC: 
surfactant-modified cellulose nanocrystals with phosphate ester of ethoxyla-
ted nonylphenol in 1:4vo.% ratio {Adapted from [70]; [41]; and [40]}, L-CNC: 
lignin-coated cellulose nanocrystals {Adapted from [99]}, Cin-CNC: cinnama-
te-grafted cellulose nanocrystals {Adapted from [88]}, LNP: lignin nanoparticles 
{Adapted from [103]; and [19]}, ZnO: Zinc oxide {Adapted from [70]; and [57]}, 
CNC-ZnO: cellulose nanocrystals-Zinc oxide {Adapted from [70]) on the water 
vapour permeability.

Figure A.265. Performance score of various PLA nanoparticles (CNC: cellu-
lose nanocrystals {Adapted from [54]; [39]; [72]; [25]; and [88]}, s-CNC: sur-
factant-modified cellulose nanocrystals with phosphate ester of ethoxylated no-
nylphenol in 1:4vo.% ratio {Adapted from [25]; and [39]}, L-CNC: lignin-coated 
cellulose nanocrystals {Adapted from [85]}, Cin-CNC: cinnamate-grafted cellulo-
se nanocrystals {Adapted from [88]}, LNP: lignin nanoparticles {Adapted from 
[85]; and [24]}, ZnO: Zinc oxide {Adapted from [63]; and [57]}, and CNC-ZnO: 
cellulose nanocrystals-Zinc oxide {Adapted from [97]}) on the UV-A absorption.
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Figure A.263. Performance score of various PLA nanoparticles (CNC: cellulose 
nanocrystals {Adapted from [100]; [3]; [72]; and [25]}, s-CNC: surfactant-modi-
fied cellulose nanocrystals with phosphate ester of ethoxylated nonylphenol in 
1:4vo.% ratio {Adapted from [25]}, L-CNC: lignin-coated cellulose nanocrystals 
{Adapted from [99]; and [20]}, Cin-CNC: cinnamate-grafted cellulose nanocrys-
tals {Adapted from [88]}, LNP: lignin nanoparticles {Adapted from [19]; [30]; and 
[24]}, ZnO: Zinc oxide {Adapted from [104]; [26]; and [50]}, and CNC-ZnO: cel-
lulose nanocrystals-Zinc oxide {Adapted from [70]}) on the elongation at break.

Figure A.264. Performance score of various PLA nanoparticles (CNC: cellulose 
nanocrystals {Adapted from [39]; [72]; [25]; and [88]}, s-CNC: surfactant-mo-
dified cellulose nanocrystals with phosphate ester of ethoxylated nonylphenol 
in 1:4vo.% ratio {Adapted from [25]; [70]; and [39]}, L-CNC: lignin-coated cel-
lulose nanocrystals {Adapted from [99]; and [85]}, Cin-CNC: cinnamate-grafted 
cellulose nanocrystals {Adapted from [88]}, LNP: lignin nanoparticles {Adapted 
from [85]; [19]; [30]; and [24]}, ZnO: Zinc oxide {Adapted from [70]; [26]; and 
[90]}, and CNC-ZnO: cellulose nanocrystals-Zinc oxide {Adapted from [70]}) on 
the Young’s modulus.



B
Facade design
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Figure B.1. Overview of the entire parametric facade design script with the creation of design variables, grid, columns, beams, windows, facade panels, and simulations.

Figure B.2. Design variables script as input for the parametric model with automatic loops (using Ademone) through design vectors extracted during stratified sampling.
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Figure B.3. The foundation of the parametric facade design: the creation of a vertical and horizontal grid of points, which is then used create the columns and beams.

Figure B.4. The creation of the first column (from left to right) using the rectangle, offset curve, ruled surface, and extrude component to create a rectangular hollow section.
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Figure B.5. The creation of the fifth column using the same method as that of the first column, though with additional rotations to ensure proper alignment with the facade.

Figure B.6. Overview of the script with the creation of two of the middle columns, and the creation of insulated aluminium profiles that connect the vertical facade sections.

Figure B.7. Setting up two points at each intersection of two facade sections to ensure that the RHS-columns don’t overlap each other when the facade changes shape.
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Figure B.8. The creation of two of the middle columns using same method as that of the first and fifth column, using rectangle, offset curve, ruled surface, and extrude.

Figure B.9. Extruding one of the middle columns using ruled surface and extrude, and then using orient and rotate to move it to the coordinate for the adjacent column.

Figure B.10. Setting up points for beams using deconstruct brep on column rectangle, using dispatch pattern based on distance to ensure proper selection and move unit-z.

Figure B.11. The creation of the bottom and top aluminium caps for closing off the rectangular hollow columns using curves, surface, extrusion, and move with unit-z.
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Figure B.12. The creation of the u-shaped aluminum profiles that connect the vertical facade sections - based on an angle threshold - and the placement of insulation in it.

Figure B.13. The creation of the same u-shaped aluminium profiles that connect the vertical facade sections and the insulation in it, but on the side with the smallest angle.

Figure B.14. The creation of the RHS-beams using the same method as employed for the first and fifth column, with copying (move) one of them to different heights.

Figure B.15. The creation of the windows of the double modules, by creating a column as a vertical divider and creating the window on the right side as the initial position.

Figure B.16. The creation of the windows of the single modules, using the midpoints of the horizontal beams at 0.75 meter height, followed by extruding the window.
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Figure B.17. The creation of insulating aluminium sandwich panels for the single modules, using the same method as the connections between vertical facade sections.

Figure B.18. The creation of insulating aluminium sandwich panels for the double modules, using the same method as the creation of the panels for the single modules.

Figure B.19. The creation of the vertical biocomposite facade panels, and the creation of attraction points that can change their shape by moving material out vertically.

Figure B.20. The creation of the top biocomposite facade panels, and the creation of attraction points that can change their shape by moving material out horizontally.



Figure B.21. The creation of the bottom biocomposite facade panels, and the creation of an attractor point at its midpoint that moves material out in a bell-shaped way.

Figure B.22. The total material use performance calculation using the volume and addition component, a data recorder, and an automatic csv file saver using a C# script.

Figure B.24. The creation of the floor and roof, as part of the experimental studio setup, using the endpoints of the facade columns to create an outline which is then extruded.

Figure B.25. The creation of the two side walls, as part of the experimental studio setup, using the top and bottom endpoints of the end columns which are then extruded.

Figure B.23. Overview of the solar heat gains performance simulation, with experimental setup, solar settings, incident radiation analysis, data recorder, and csv file saver.
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Figure B.26. The creation of the back wall, as part of the experimental studio setup, extracting the end points of both side walls, followed by using 4pt surface and extrude.

Figure B.27. Setting up the incident radiation analysis (analysing both direct and diffuse radiation) using Ladybug, based on Dutch weather conditions over a full year.

Figure B.28. Calculating the solar radiation for each of the five surfaces inside the studio, followed by dividing the total radiation by the total surface area, and csv file saver.

Figure B.29. Overview of the sound pressure level performance simulation, with experimental setup, material properties, acoustic simulation, data recorder, and csv saver.
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Figure B.30. The creation of a wide street, as part of the experimental setup, using the endpoints of the facade columns to create an outline which is then extruded.

Figure B.31. The creation of two straight facades next to the biocomposite facade, using its endpoints, 4pt surface, and extrude, and the creation of the facade across the street.

Figure B.33. Setting up the points for the sound sources in the car lanes at 0.5 meters height, and creating a panel with the ranging sound levels across octave bands.

Figure B.32. Setting up the points of the sound receivers in front of the facade at 1.6 meters height, using divide curve based on the endpoints of the facade columns.



Figure B.34. Allocating materials inside Rhino3D to the facade surfaces - using merge breps and repeating material layer indices - and creating a stationary receiver model.

Figure B.36. Setting up a visual raytracing simulation to inspect the ray reflections on the curved surfaces of the facade, using the visualise PachyDerm rays component.

Figure B.35. Setting up a polygon scene based on geometries, a raytracing and image source component based on sound sources and receivers, and computing the SPL.

Figure B.37. Calculating the average SPL at each absorber and then calculating the average SPL of the facade, and a data recorder paired with an automatic csv saver.
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SOM.py

1 # --------------------------------------------------------------------------------------------------------------#
2 # Importing libraries
3 # --------------------------------------------------------------------------------------------------------------#
4 import numpy as np
5 import pandas as pd
6 from sklearn.preprocessing import MinMaxScaler
7 from sklearn.model_selection import train_test_split
8 import matplotlib.pyplot as plt
9 from minisom import MiniSom
10 import pickle
11 from scipy.interpolate import griddata
12 import os
13 import seaborn as sns
14 from sklearn.metrics.pairwise import euclidean_distances
15 from itertools import combinations
16 from scipy.spatial.distance import pdist, squareform
17 # --------------------------------------------------------------------------------------------------------------#
18
19
20
21
22
23 # --------------------------------------------------------------------------------------------------------------#
24 # Preparing training vectors
25 # --------------------------------------------------------------------------------------------------------------#
26 np.random.seed(42)
27 Y1 = Y2 = Y3 = np.array([-2, -1, 0, 1, 2]) 
28 def prepare_input_vector s(): 
29     np_input_vectors = np.array(np.meshgrid(Y1, Y2, Y3)).T.reshape(-1, 3)
30     df_input_vectors = pd.DataFrame(np_input_vectors, columns=['Y1', 'Y2', 'Y3'])
31     scaler = MinMaxScaler()
32     normalized_vectors = scaler.fit_transform(df_input_vectors)
33     df_normalized_vector s = pd.DataFrame(normalized_vectors, columns=['Y1', 'Y2', 'Y3'])
34     print("\n1. Original input vectors:\n", df_input_vectors.describe())
35     print("\n2. Normalized input vectors:\n", df_normalized_vector s.describe())
36     return df_normalized_vector s
37 input_vectors = prepare_input_vector s()
38 # --------------------------------------------------------------------------------------------------------------#
39
40
41
42
43
44 # --------------------------------------------------------------------------------------------------------------#
45 # Testing data preparation
46 # --------------------------------------------------------------------------------------------------------------#
47 def variance_contributio n(input_vectors):
48     df = pd.DataFrame(input_vectors, columns=['Y1', 'Y2', 'Y3'])
49     variance = df.var()
50     print("\nVariance contribution plot:\n", variance)
51 variance_contributio n(input_vectors)
52
53 def plot_pairwise_distan ces(input_vectors):
54     distances = pdist(input_vectors, metric='euclidean')
55     plt.hist(distances, bins=50, alpha=0.7)
56     plt.xlabel('Pairwise Distance')
57     plt.ylabel('Frequency')
58     plt.title('Pairwise distances plot')
59     plt.show()
60 plot_pairwise_distan ces(input_vectors)
61
62 def plot_correlation_hea tmap(input_vectors):
63     df = pd.DataFrame(input_vectors, columns=['Y1', 'Y2', 'Y3'])
64     corr = df.corr()
65     sns.heatmap(corr, annot=True, cmap='coolwarm')

SOM.py

1 # --------------------------------------------------------------------------------------------------------------#
2 # Importing libraries
3 # --------------------------------------------------------------------------------------------------------------#
4 import numpy as np
5 import pandas as pd
6 from sklearn.preprocessing import MinMaxScaler
7 from sklearn.model_selection import train_test_split
8 import matplotlib.pyplot as plt
9 from minisom import MiniSom
10 import pickle
11 from scipy.interpolate import griddata
12 import os
13 import seaborn as sns
14 from sklearn.metrics.pairwise import euclidean_distances
15 from itertools import combinations
16 from scipy.spatial.distance import pdist, squareform
17 # --------------------------------------------------------------------------------------------------------------#
18
19
20
21
22
23 # --------------------------------------------------------------------------------------------------------------#
24 # Preparing training vectors
25 # --------------------------------------------------------------------------------------------------------------#
26 np.random.seed(42)
27 Y1 = Y2 = Y3 = np.array([-2, -1, 0, 1, 2]) 
28 def prepare_input_vector s(): 
29     np_input_vectors = np.array(np.meshgrid(Y1, Y2, Y3)).T.reshape(-1, 3)
30     df_input_vectors = pd.DataFrame(np_input_vectors, columns=['Y1', 'Y2', 'Y3'])
31     scaler = MinMaxScaler()
32     normalized_vectors = scaler.fit_transform(df_input_vectors)
33     df_normalized_vector s = pd.DataFrame(normalized_vectors, columns=['Y1', 'Y2', 'Y3'])
34     print("\n1. Original input vectors:\n", df_input_vectors.describe())
35     print("\n2. Normalized input vectors:\n", df_normalized_vector s.describe())
36     return df_normalized_vector s
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39
40
41
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45 # Testing data preparation
46 # --------------------------------------------------------------------------------------------------------------#
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48     df = pd.DataFrame(input_vectors, columns=['Y1', 'Y2', 'Y3'])
49     variance = df.var()
50     print("\nVariance contribution plot:\n", variance)
51 variance_contributio n(input_vectors)
52
53 def plot_pairwise_distan ces(input_vectors):
54     distances = pdist(input_vectors, metric='euclidean')
55     plt.hist(distances, bins=50, alpha=0.7)
56     plt.xlabel('Distances')
57     plt.ylabel('Number of pairs')
58     plt.title('Pairwise plot')
59     plt.show()
60 plot_pairwise_distan ces(input_vectors)
61
62 def plot_correlation(input_vectors):
63     df = pd.DataFrame(input_vectors, columns=['Y1', 'Y2', 'Y3'])
64     corr = df.corr()
65     sns.heatmap(corr, annot=True, cmap='coolwarm')
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14 from sklearn.metrics.pairwise import euclidean_distances
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16 from scipy.spatial.distance import pdist, squareform
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24 # Preparing training vectors
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26 np.random.seed(42)
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28 def prepare_input_vector s(): 
29     np_input_vectors = np.array(np.meshgrid(Y1, Y2, Y3)).T.reshape(-1, 3)
30     df_input_vectors = pd.DataFrame(np_input_vectors, columns=['Y1', 'Y2', 'Y3'])
31     scaler = MinMaxScaler()
32     normalized_vectors = scaler.fit_transform(df_input_vectors)
33     df_normalized_vector s = pd.DataFrame(normalized_vectors, columns=['Y1', 'Y2', 'Y3'])
34     print("\n1. Original input vectors:\n", df_input_vectors.describe())
35     print("\n2. Normalized input vectors:\n", df_normalized_vector s.describe())
36     return df_normalized_vector s
37 input_vectors = prepare_input_vector s()
38 # --------------------------------------------------------------------------------------------------------------#
39
40
41
42
43
44 # --------------------------------------------------------------------------------------------------------------#
45 # Testing data preparation
46 # --------------------------------------------------------------------------------------------------------------#
47 def variance_contributio n(input_vectors):
48     df = pd.DataFrame(input_vectors, columns=['Y1', 'Y2', 'Y3'])
49     variance = df.var()
50     print("\nVariance contribution plot:\n", variance)
51 variance_contributio n(input_vectors)
52
53 def plot_pairwise_distan ces(input_vectors):
54     distances = pdist(input_vectors, metric='euclidean')
55     plt.hist(distances, bins=50, alpha=0.7)
56     plt.xlabel('Distances')
57     plt.ylabel('Number of pairs')
58     plt.title('Pairwise plot')
59     plt.show()
60 plot_pairwise_distan ces(input_vectors)
61
62 def plot_correlation(input_vectors):
63     df = pd.DataFrame(input_vectors, columns=['Y1', 'Y2', 'Y3'])
64     corr = df.corr()
65     sns.heatmap(corr, annot=True, cmap='coolwarm')
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27 Y1 = Y2 = Y3 = np.array([-2, -1, 0, 1, 2]) 
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29     np_input_vectors = np.array(np.meshgrid(Y1, Y2, Y3)).T.reshape(-1, 3)
30     df_input_vectors = pd.DataFrame(np_input_vectors, columns=['Y1', 'Y2', 'Y3'])
31     scaler = MinMaxScaler()
32     normalized_vectors = scaler.fit_transform(df_input_vectors)
33     df_normalized_vector s = pd.DataFrame(normalized_vectors, columns=['Y1', 'Y2', 'Y3'])
34     print("\n1. Original input vectors:\n", df_input_vectors.describe())
35     print("\n2. Normalized input vectors:\n", df_normalized_vector s.describe())
36     return df_normalized_vector s
37 input_vectors = prepare_input_vector s()
38 # --------------------------------------------------------------------------------------------------------------#
39
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44 # --------------------------------------------------------------------------------------------------------------#
45 # Testing data preparation
46 # --------------------------------------------------------------------------------------------------------------#
47 def variance_contributio n(input_vectors):
48     df = pd.DataFrame(input_vectors, columns=['Y1', 'Y2', 'Y3'])
49     variance = df.var()
50     print("\nVariance contribution plot:\n", variance)
51 variance_contributio n(input_vectors)
52
53 def plot_pairwise_distan ces(input_vectors):
54     distances = pdist(input_vectors, metric='euclidean')
55     plt.hist(distances, bins=50, alpha=0.7)
56     plt.xlabel('Pairwise Distance')
57     plt.ylabel('Frequency')
58     plt.title('Pairwise distances plot')
59     plt.show()
60 plot_pairwise_distan ces(input_vectors)
61
62 def plot_correlation_hea tmap(input_vectors):
63     df = pd.DataFrame(input_vectors, columns=['Y1', 'Y2', 'Y3'])
64     corr = df.corr()
65     sns.heatmap(corr, annot=True, cmap='coolwarm')

Inspired by:
- freeCodeCamp (2022, June 15). Machine learning for everybody – Full course [Video]. YouTube. https://www.youtube.com/watch?v=i_LwzRVP7bg
- JustGlowing (n.d.). MiniSOM. GitHub. https://github.com/JustGlowing/minisom/blob/master/minisom.py
- Topil, L. (2024, March 26). Understanding Linear Regression: Building and Evaluating Simple and Multiple Linear Regression Models with Python. Medium.
  https://medium.com/@lekhatopil/understanding-linear-regression-building-and-evaluating-simple-and-multiple-linear-regression-7cc07068e6d0
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66     plt.title('Correlation plot')
67     plt.show()
68 plot_correlation(input_vectors)
69 # --------------------------------------------------------------------------------------------------------------#
70
71
72
73
74
75 # --------------------------------------------------------------------------------------------------------------#
76 # Training SOM
77 # --------------------------------------------------------------------------------------------------------------#
78 def train_som(training_data, grid_size=(15, 15), ordering_epochs=900, tuning_epochs=100, initial_radius=0.945, 

final_radius=0.195, initial_lr=0.425, final_lr=0.02, batch_size=5, run_number=1):
79     som = MiniSom(grid_size[0], grid_size[1], training_data.shape[1], sigma=initial_radius, 

learning_rate=initial_lr, topology='hexagonal', random_seed=42)
80     som.random_weights_init(training_data)
81     error_tracking = []
82     total_epochs = ordering_epochs + tuning_epochs
83     fig, ax = plt.subplots()
84     plt.ion()
85     for epoch in range(total_epochs):
86         radius = initial_radius * ((final_radius / initial_radius) ** (epoch / total_epochs))
87         lr = initial_lr * ((final_lr / initial_lr) ** (epoch / total_epochs))
88         som.sigma = radius
89         som.learning_rate = lr
90         np.random.shuffle(training_data)
91         for i in range(0, len(training_data), batch_size):
92             batch_data = training_data[i:i + batch_size]
93             som.train_batch(batch_data, num_iteration=batch_data.shape[0])
94         QE = som.quantization_error(training_data)
95         TE = som.topographic_error(training_data)
96         combined_error = (QE + TE) / 2
97         error_tracking.append((epoch + 1, QE, TE, combined_error))
98         ax.clear()
99         plot_training_errors _live(error_tracking, ax)
100         plt.pause(0.01)
101     plt.savefig(f'som_training_errors_ {run_number}.png', dpi=300, bbox_inches='tight')
102     plt.ioff()
103     plt.close(fig)
104     best_entry = min(error_tracking, key=lambda x: x[3])
105     best_quantization_er ror = best_entry[1]
106     best_topographic_err or = best_entry[2]
107     best_combined_error = best_entry[3]
108     print(f"Best Combined Error: {best_combined_error:.4f}")
109     print(f"Best Quantization Error (QE): {best_quantization_er ror:.4f}")
110     print(f"Best Topographic Error (TE): {best_topographic_err or:.4f}")
111     return som, error_tracking
112
113 def plot_training_errors _live(error_tracking, ax):
114     epochs = [entry[0] for entry in error_tracking]
115     QE = [entry[1] for entry in error_tracking]
116     TE = [entry[2] for entry in error_tracking]
117     combined_errors = [entry[3] for entry in error_tracking]
118     ax.plot(epochs, QE, label='Quantization Error (QE)')
119     ax.plot(epochs, TE, label='Topographic Error (TE)')
120     ax.plot(epochs, combined_errors, label='Combined Error', linestyle='--')
121     ax.set_xlabel('Epochs')
122     ax.set_ylabel('Error')
123     ax.set_ylim(0, 1)
124     ax.set_title('Live SOM Training Errors Over Epochs')
125     ax.legend()
126     ax.grid(True, linestyle='--', linewidth=0.5, color='grey', which='both')
127
128 def hyperparameter_optim ization(training_data, hyperparams_list):
129     best_error = float('inf')
130     best_hyperparams = None

66     plt.title('Correlation plot')
67     plt.show()
68 plot_correlation(input_vectors)
69 # --------------------------------------------------------------------------------------------------------------#
70
71
72
73
74
75 # --------------------------------------------------------------------------------------------------------------#
76 # Training SOM
77 # --------------------------------------------------------------------------------------------------------------#
78 def train_som(training_data, grid_size=(15, 15), ordering_epochs=900, tuning_epochs=100, initial_radius=0.945, 

final_radius=0.195, initial_lr=0.425, final_lr=0.02, batch_size=5, run_number=1):
79     som = MiniSom(grid_size[0], grid_size[1], training_data.shape[1], sigma=initial_radius, 

learning_rate=initial_lr, topology='hexagonal', random_seed=42)
80     som.random_weights_init(training_data)
81     error_tracking = []
82     total_epochs = ordering_epochs + tuning_epochs
83     fig, ax = plt.subplots()
84     plt.ion()
85     for epoch in range(total_epochs):
86         radius = initial_radius * ((final_radius / initial_radius) ** (epoch / total_epochs))
87         lr = initial_lr * ((final_lr / initial_lr) ** (epoch / total_epochs))
88         som.sigma = radius
89         som.learning_rate = lr
90         np.random.shuffle(training_data)
91         for i in range(0, len(training_data), batch_size):
92             batch_data = training_data[i:i + batch_size]
93             som.train_batch(batch_data, num_iteration=batch_data.shape[0])
94         QE = som.quantization_error(training_data)
95         TE = som.topographic_error(training_data)
96         combined_error = (QE + TE) / 2
97         error_tracking.append((epoch + 1, QE, TE, combined_error))
98         ax.clear()
99         plot_training_errors _live(error_tracking, ax)

100         plt.pause(0.01)
101     plt.savefig(f'som_training_errors_ {run_number}.png', dpi=300, bbox_inches='tight')
102     plt.ioff()
103     plt.close(fig)
104     best_entry = min(error_tracking, key=lambda x: x[3])
105     best_quantization_er ror = best_entry[1]
106     best_topographic_err or = best_entry[2]
107     best_combined_error = best_entry[3]
108     print(f"Best Combined Error: {best_combined_error:.4f}")
109     print(f"Best Quantization Error (QE): {best_quantization_er ror:.4f}")
110     print(f"Best Topographic Error (TE): {best_topographic_err or:.4f}")
111     return som, error_tracking
112
113 def plot_training_errors _live(error_tracking, ax):
114     epochs = [entry[0] for entry in error_tracking]
115     QE = [entry[1] for entry in error_tracking]
116     TE = [entry[2] for entry in error_tracking]
117     combined_errors = [entry[3] for entry in error_tracking]
118     ax.plot(epochs, QE, label='Quantization Error (QE)')
119     ax.plot(epochs, TE, label='Topographic Error (TE)')
120     ax.plot(epochs, combined_errors, label='Combined Error', linestyle='--')
121     ax.set_xlabel('Epochs')
122     ax.set_ylabel('Error')
123     ax.set_ylim(0, 1)
124     ax.set_title('Live SOM Training Errors Over Epochs')
125     ax.legend()
126     ax.grid(True, linestyle='--', linewidth=0.5, color='grey', which='both')
127
128 def hyperparameter_optim ization(training_data, hyperparams_list):
129     best_error = float('inf')
130     best_hyperparams = None
131     best_error_tracking = None
132     best_som = None
133     for idx, params in enumerate(hyperparams_list):
134         print(f"Running optimization for hyperparameter set {idx + 1}/{len(hyperparams_list)}: {params}")
135         som, error_tracking = train_som(
136             training_data=training_data,
137             grid_size=(15, 15),
138             ordering_epochs=900,
139             tuning_epochs=100,
140             initial_radius=params['initial_radius'],
141             final_radius=params['final_radius'],
142             initial_lr=params['initial_lr'],
143             final_lr=params['final_lr'],
144             run_number=idx + 1)
145         combined_errors = [entry[3] for entry in error_tracking]
146         min_combined_error = min(combined_errors)
147         if min_combined_error < best_error:
148             best_error = min_combined_error
149             best_hyperparams = params
150             best_error_tracking = error_tracking
151             best_som = som
152             with open('best_overall_som_mod el.p', 'wb') as outfile:
153                 pickle.dump(som, outfile)
154     print(f"\nBest hyperparameters found: {best_hyperparams}")
155     print(f"Best combined error: {best_error:.4f}")
156     return best_hyperparams, best_error, best_error_tracking, best_som
157 hyperparameter_setti ngs = [{'initial_radius': 0.945, 'final_radius': 0.195, 'initial_lr': 0.425, 'final_lr': 

0.02}]
158 input_vectors = input_vectors.to_numpy() if isinstance(input_vectors, pd.DataFrame) else input_vectors
159 best_params, best_error, error_tracking, best_som = hyperparameter_optim ization(input_vectors, 

hyperparameter_setti ngs)
160 # --------------------------------------------------------------------------------------------------------------#
161
162
163
164
165
166 # --------------------------------------------------------------------------------------------------------------#
167 # Training visualization SOM
168 # --------------------------------------------------------------------------------------------------------------#
169 def load_best_som(filename='best_overall_som_mod el.p'):
170     with open(filename, 'rb') as infile:
171         som = pickle.load(infile)
172     return som
173 best_som = load_best_som()
174
175 def count_activated_node s_training(som, data):
176     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
177     activation_map = np.zeros((grid_rows, grid_cols))
178     for vector in data.values:
179         bmu = som.winner(vector)
180         activation_map[bmu] += 1
181     num_activated_nodes = np.sum(activation_map > 0)
182     total_nodes = grid_rows * grid_cols
183     activation_percentag e = (num_activated_nodes / total_nodes) * 100
184     print(f'Activated Nodes: {num_activated_nodes}/{total_nodes} ({activation_percentag e:.2f}%)')
185     return activation_map > 0
186 activated_nodes_mask  = count_activated_node s_training(best_som, input_vectors)
187
188 def plot_umatrix(som):
189     weights = som.get_weights()
190     grid_rows, grid_cols = weights.shape[0], weights.shape[1]
191     umatrix = np.zeros((grid_rows, grid_cols))
192     for i in range(grid_rows):
193         for j in range(grid_cols):
194             neighbors = [(i + dr, j + dc) for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]
195                          if 0 <= i + dr < grid_rows and 0 <= j + dc < grid_cols]
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131     best_error_tracking = None
132     best_som = None
133     for idx, params in enumerate(hyperparams_list):
134         print(f"Running optimization for hyperparameter set {idx + 1}/{len(hyperparams_list)}: {params}")
135         som, error_tracking = train_som(
136             training_data=training_data,
137             grid_size=(15, 15),
138             ordering_epochs=900,
139             tuning_epochs=100,
140             initial_radius=params['initial_radius'],
141             final_radius=params['final_radius'],
142             initial_lr=params['initial_lr'],
143             final_lr=params['final_lr'],
144             run_number=idx + 1)
145         combined_errors = [entry[3] for entry in error_tracking]
146         min_combined_error = min(combined_errors)
147         if min_combined_error < best_error:
148             best_error = min_combined_error
149             best_hyperparams = params
150             best_error_tracking = error_tracking
151             best_som = som
152             with open('best_overall_som_mod el.p', 'wb') as outfile:
153                 pickle.dump(som, outfile)
154     print(f"\nBest hyperparameters found: {best_hyperparams}")
155     print(f"Best combined error: {best_error:.4f}")
156     return best_hyperparams, best_error, best_error_tracking, best_som
157 hyperparameter_setti ngs = [{'initial_radius': 0.945, 'final_radius': 0.195, 'initial_lr': 0.425, 'final_lr': 

0.02}]
158 input_vectors = input_vectors.to_numpy() if isinstance(input_vectors, pd.DataFrame) else input_vectors
159 best_params, best_error, error_tracking, best_som = hyperparameter_optim ization(input_vectors, 

hyperparameter_setti ngs)
160 # --------------------------------------------------------------------------------------------------------------#
161
162
163
164
165
166 # --------------------------------------------------------------------------------------------------------------#
167 # Training visualization SOM
168 # --------------------------------------------------------------------------------------------------------------#
169 def load_best_som(filename='best_overall_som_mod el.p'):
170     with open(filename, 'rb') as infile:
171         som = pickle.load(infile)
172     return som
173 best_som = load_best_som()
174
175 def count_activated_node s_training(som, data):
176     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
177     activation_map = np.zeros((grid_rows, grid_cols))
178     for vector in data.values:
179         bmu = som.winner(vector)
180         activation_map[bmu] += 1
181     num_activated_nodes = np.sum(activation_map > 0)
182     total_nodes = grid_rows * grid_cols
183     activation_percentag e = (num_activated_nodes / total_nodes) * 100
184     print(f'Activated Nodes: {num_activated_nodes}/{total_nodes} ({activation_percentag e:.2f}%)')
185     return activation_map > 0
186 activated_nodes_mask  = count_activated_node s_training(best_som, input_vectors)
187
188 def plot_umatrix(som):
189     weights = som.get_weights()
190     grid_rows, grid_cols = weights.shape[0], weights.shape[1]
191     umatrix = np.zeros((grid_rows, grid_cols))
192     for i in range(grid_rows):
193         for j in range(grid_cols):
194             neighbors = [(i + dr, j + dc) for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]
195                          if 0 <= i + dr < grid_rows and 0 <= j + dc < grid_cols]

131     best_error_tracking = None
132     best_som = None
133     for idx, params in enumerate(hyperparams_list):
134         print(f"Running optimization for hyperparameter set {idx + 1}/{len(hyperparams_list)}: {params}")
135         som, error_tracking = train_som(
136             training_data=training_data,
137             grid_size=(15, 15),
138             ordering_epochs=900,
139             tuning_epochs=100,
140             initial_radius=params['initial_radius'],
141             final_radius=params['final_radius'],
142             initial_lr=params['initial_lr'],
143             final_lr=params['final_lr'],
144             run_number=idx + 1)
145         combined_errors = [entry[3] for entry in error_tracking]
146         min_combined_error = min(combined_errors)
147         if min_combined_error < best_error:
148             best_error = min_combined_error
149             best_hyperparams = params
150             best_error_tracking = error_tracking
151             best_som = som
152             with open('best_overall_som_mod el.p', 'wb') as outfile:
153                 pickle.dump(som, outfile)
154     print(f"\nBest hyperparameters found: {best_hyperparams}")
155     print(f"Best combined error: {best_error:.4f}")
156     return best_hyperparams, best_error, best_error_tracking, best_som
157 hyperparameter_setti ngs = [{'initial_radius': 0.945, 'final_radius': 0.195, 'initial_lr': 0.425, 'final_lr': 

0.02}]
158 input_vectors = input_vectors.to_numpy() if isinstance(input_vectors, pd.DataFrame) else input_vectors
159 best_params, best_error, error_tracking, best_som = hyperparameter_optim ization(input_vectors, 

hyperparameter_setti ngs)
160 # --------------------------------------------------------------------------------------------------------------#
161
162
163
164
165
166 # --------------------------------------------------------------------------------------------------------------#
167 # Training visualization SOM
168 # --------------------------------------------------------------------------------------------------------------#
169 def load_best_som(filename='best_overall_som_mod el.p'):
170     with open(filename, 'rb') as infile:
171         som = pickle.load(infile)
172     return som
173 best_som = load_best_som()
174
175 def count_activated_node s_training(som, data):
176     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
177     activation_map = np.zeros((grid_rows, grid_cols))
178     for vector in data.values:
179         bmu = som.winner(vector)
180         activation_map[bmu] += 1
181     num_activated_nodes = np.sum(activation_map > 0)
182     total_nodes = grid_rows * grid_cols
183     activation_percentag e = (num_activated_nodes / total_nodes) * 100
184     print(f'Activated Nodes: {num_activated_nodes}/{total_nodes} ({activation_percentag e:.2f}%)')
185     return activation_map > 0
186 activated_nodes_mask  = count_activated_node s_training(best_som, input_vectors)
187
188 def plot_umatrix(som):
189     weights = som.get_weights()
190     grid_rows, grid_cols = weights.shape[0], weights.shape[1]
191     umatrix = np.zeros((grid_rows, grid_cols))
192     for i in range(grid_rows):
193         for j in range(grid_cols):
194             neighbors = [(i + dr, j + dc) for dr, dc in [(-1, 0), (1, 0), (0, -1), (0, 1)]
195                          if 0 <= i + dr < grid_rows and 0 <= j + dc < grid_cols]
196             dist_sum = sum(np.linalg.norm(weights[i, j] - weights[n[0], n[1]]) for n in neighbors)
197             umatrix[i, j] = dist_sum / len(neighbors)
198     plt.imshow(umatrix, cmap='coolwarm', interpolation='nearest', vmin=0)
199     plt.colorbar()
200     plt.xticks(np.arange(0, grid_cols, 1))
201     plt.yticks(np.arange(0, grid_rows, 1))
202     plt.title('U-matrix plot')
203     plt.show()
204 plot_umatrix(best_som)
205
206 def plot_QE_errors(som, data):
207     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
208     errors = np.zeros((grid_rows, grid_cols))
209     bmus = [som.winner(d) for d in data.values]
210     for i in range(grid_rows):
211         for j in range(grid_cols):
212             weights = som.get_weights()[i, j]
213             bmu_data_points = [data.values[i] for i, bmu in enumerate(bmus) if bmu == (i, j)]
214             if bmu_data_points:
215                 quantization_error = np.mean([np.linalg.norm(weights - d) for d in bmu_data_points])
216                 errors[i, j] = quantization_error
217             else:
218                 errors[i, j] = np.nan
219     plt.imshow(errors, cmap='coolwarm', interpolation='nearest', vmin=0, vmax=1)
220     plt.colorbar()
221     plt.xticks(np.arange(0, grid_cols, 1))
222     plt.yticks(np.arange(0, grid_rows, 1))
223     plt.title('Quantization error plot', fontsize=14)
224     plt.show()
225 plot_QE_errors(best_som, input_vectors)
226
227 def plot_variables(som, num_features, feature_names):
228     weights = som.get_weights()
229     fig, axs = plt.subplots(1, num_features, figsize=(4 * num_features, 4))
230     for i in range(num_features):
231         ax = axs[i]
232         weight_plane = weights[:, :, i]
233         im = ax.imshow(weight_plane, cmap='coolwarm', aspect='equal', vmin=0, vmax=1)
234         ax.set_title(feature_names[i])
235         fig.colorbar(im, ax=ax, fraction=0.05, pad=0.05)
236         ax.set_xticks(np.arange(0, weights.shape[1], 1))
237         ax.set_yticks(np.arange(0, weights.shape[0], 1))
238     plt.tight_layout()
239     plt.show()
240 feature_names = ['Y1', 'Y2', 'Y3']
241 plot_variables(best_som, len(feature_names), feature_names)
242 # --------------------------------------------------------------------------------------------------------------#
243
244
245
246
247
248 # --------------------------------------------------------------------------------------------------------------#
249 # Clustering visualization SOM
250 # --------------------------------------------------------------------------------------------------------------#
251 def count_activated_node s_clustering(som, data):
252     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
253     activation_map = np.zeros((grid_rows, grid_cols))
254     for x in data.values:
255         bmu = som.winner(x)
256         activation_map[bmu] += 1
257     num_activated_nodes = np.sum(activation_map > 0)
258     total_nodes = grid_rows * grid_cols
259     activation_percentag e = (num_activated_nodes / total_nodes) * 100
260     print(f'Activated Nodes: {num_activated_nodes}/{total_nodes} ({activation_percentag e:.2f}%)')
261 count_activated_node s_clustering(best_som, input_vectors)
262
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196             dist_sum = sum(np.linalg.norm(weights[i, j] - weights[n[0], n[1]]) for n in neighbors)
197             umatrix[i, j] = dist_sum / len(neighbors)
198     plt.imshow(umatrix, cmap='coolwarm', interpolation='nearest', vmin=0)
199     plt.colorbar()
200     plt.xticks(np.arange(0, grid_cols, 1))
201     plt.yticks(np.arange(0, grid_rows, 1))
202     plt.title('U-matrix plot')
203     plt.show()
204 plot_umatrix(best_som)
205
206 def plot_QE_errors(som, data):
207     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
208     errors = np.zeros((grid_rows, grid_cols))
209     bmus = [som.winner(d) for d in data.values]
210     for i in range(grid_rows):
211         for j in range(grid_cols):
212             weights = som.get_weights()[i, j]
213             bmu_data_points = [data.values[i] for i, bmu in enumerate(bmus) if bmu == (i, j)]
214             if bmu_data_points:
215                 quantization_error = np.mean([np.linalg.norm(weights - d) for d in bmu_data_points])
216                 errors[i, j] = quantization_error
217             else:
218                 errors[i, j] = np.nan
219     plt.imshow(errors, cmap='coolwarm', interpolation='nearest', vmin=0, vmax=1)
220     plt.colorbar()
221     plt.xticks(np.arange(0, grid_cols, 1))
222     plt.yticks(np.arange(0, grid_rows, 1))
223     plt.title('Quantization error plot', fontsize=14)
224     plt.show()
225 plot_QE_errors(best_som, input_vectors)
226
227 def plot_variables(som, num_features, feature_names):
228     weights = som.get_weights()
229     fig, axs = plt.subplots(1, num_features, figsize=(4 * num_features, 4))
230     for i in range(num_features):
231         ax = axs[i]
232         weight_plane = weights[:, :, i]
233         im = ax.imshow(weight_plane, cmap='coolwarm', aspect='equal', vmin=0, vmax=1)
234         ax.set_title(feature_names[i])
235         fig.colorbar(im, ax=ax, fraction=0.05, pad=0.05)
236         ax.set_xticks(np.arange(0, weights.shape[1], 1))
237         ax.set_yticks(np.arange(0, weights.shape[0], 1))
238     plt.tight_layout()
239     plt.show()
240 feature_names = ['Y1', 'Y2', 'Y3']
241 plot_variables(best_som, len(feature_names), feature_names)
242 # --------------------------------------------------------------------------------------------------------------#
243
244
245
246
247
248 # --------------------------------------------------------------------------------------------------------------#
249 # Clustering visualization SOM
250 # --------------------------------------------------------------------------------------------------------------#
251 def count_activated_node s_clustering(som, data):
252     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
253     activation_map = np.zeros((grid_rows, grid_cols))
254     for x in data.values:
255         bmu = som.winner(x)
256         activation_map[bmu] += 1
257     num_activated_nodes = np.sum(activation_map > 0)
258     total_nodes = grid_rows * grid_cols
259     activation_percentag e = (num_activated_nodes / total_nodes) * 100
260     print(f'Activated Nodes: {num_activated_nodes}/{total_nodes} ({activation_percentag e:.2f}%)')
261 count_activated_node s_clustering(best_som, input_vectors)
262

196             dist_sum = sum(np.linalg.norm(weights[i, j] - weights[n[0], n[1]]) for n in neighbors)
197             umatrix[i, j] = dist_sum / len(neighbors)
198     plt.imshow(umatrix, cmap='coolwarm', interpolation='nearest', vmin=0)
199     plt.colorbar()
200     plt.xticks(np.arange(0, grid_cols, 1))
201     plt.yticks(np.arange(0, grid_rows, 1))
202     plt.title('U-matrix plot')
203     plt.show()
204 plot_umatrix(best_som)
205
206 def plot_QE_errors(som, data):
207     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
208     errors = np.zeros((grid_rows, grid_cols))
209     bmus = [som.winner(d) for d in data.values]
210     for i in range(grid_rows):
211         for j in range(grid_cols):
212             weights = som.get_weights()[i, j]
213             bmu_data_points = [data.values[i] for i, bmu in enumerate(bmus) if bmu == (i, j)]
214             if bmu_data_points:
215                 quantization_error = np.mean([np.linalg.norm(weights - d) for d in bmu_data_points])
216                 errors[i, j] = quantization_error
217             else:
218                 errors[i, j] = np.nan
219     plt.imshow(errors, cmap='coolwarm', interpolation='nearest', vmin=0, vmax=1)
220     plt.colorbar()
221     plt.xticks(np.arange(0, grid_cols, 1))
222     plt.yticks(np.arange(0, grid_rows, 1))
223     plt.title('Quantization error plot', fontsize=14)
224     plt.show()
225 plot_QE_errors(best_som, input_vectors)
226
227 def plot_variables(som, num_features, feature_names):
228     weights = som.get_weights()
229     fig, axs = plt.subplots(1, num_features, figsize=(4 * num_features, 4))
230     for i in range(num_features):
231         ax = axs[i]
232         weight_plane = weights[:, :, i]
233         im = ax.imshow(weight_plane, cmap='coolwarm', aspect='equal', vmin=0, vmax=1)
234         ax.set_title(feature_names[i])
235         fig.colorbar(im, ax=ax, fraction=0.05, pad=0.05)
236         ax.set_xticks(np.arange(0, weights.shape[1], 1))
237         ax.set_yticks(np.arange(0, weights.shape[0], 1))
238     plt.tight_layout()
239     plt.show()
240 feature_names = ['Y1', 'Y2', 'Y3']
241 plot_variables(best_som, len(feature_names), feature_names)
242 # --------------------------------------------------------------------------------------------------------------#
243
244
245
246
247
248 # --------------------------------------------------------------------------------------------------------------#
249 # Clustering visualization SOM
250 # --------------------------------------------------------------------------------------------------------------#
251 def count_activated_node s_clustering(som, data):
252     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
253     activation_map = np.zeros((grid_rows, grid_cols))
254     for x in data.values:
255         bmu = som.winner(x)
256         activation_map[bmu] += 1
257     num_activated_nodes = np.sum(activation_map > 0)
258     total_nodes = grid_rows * grid_cols
259     activation_percentag e = (num_activated_nodes / total_nodes) * 100
260     print(f'Activated Nodes: {num_activated_nodes}/{total_nodes} ({activation_percentag e:.2f}%)')
261 count_activated_node s_clustering(best_som, input_vectors)
262
263 def plot_2D_activation_s urface(som, data):
264     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
265     activation_map = np.zeros((grid_rows, grid_cols))
266     for x in data.values:
267         bmu = som.winner(x)
268         activation_map[bmu] += 1
269     activation_map_norma lized = activation_map / np.max(activation_map)
270     plt.figure(figsize=(6, 6))
271     for row in range(grid_rows):
272         for column in range(grid_cols):
273             if activation_map[row, column] > 0:
274                 plt.scatter(column, row, s=activation_map_norma lized[row, column] * 100, color='grey', alpha=0.6)
275             else:
276                 plt.scatter(column, row, s=10, color='lightgrey', alpha=0.3)
277     plt.xticks(np.arange(0, grid_cols, 1))
278     plt.yticks(np.arange(0, grid_rows, 1))
279     plt.title('2D SOM Network plot', fontsize=14)
280     plt.gca().invert_yaxis()
281     plt.show()
282 plot_2D_activation_s urface(best_som, input_vectors)
283
284 def plot_3D_activation_s urface(som, data):
285     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
286     activation_map = np.zeros((grid_rows, grid_cols))
287     for x in data.values:
288         bmu = som.winner(x)
289         activation_map[bmu] += 1
290     activation_map_norma lized = activation_map / np.max(activation_map)
291     high_res_factor = 100
292     x_high_res = np.linspace(0, grid_rows - 1, grid_rows * high_res_factor)
293     y_high_res = np.linspace(0, grid_cols - 1, grid_cols * high_res_factor)
294     X_high_res, Y_high_res = np.meshgrid(x_high_res, y_high_res)
295     X, Y = np.meshgrid(np.arange(grid_rows), np.arange(grid_cols))
296     activation_map_high_ res = griddata((X.flatten(), Y.flatten()), activation_map_norma lized.flatten(), 

(X_high_res, Y_high_res), method='cubic')
297     fig = plt.figure(figsize=(10, 8))
298     ax = fig.add_subplot(111, projection='3d')
299     ax.plot_surface(X_high_res, Y_high_res, activation_map_high_ res, cmap='plasma', edgecolor='none', 

linewidth=0, antialiased=True)
300     ax.set_title('3D SOM Network')
301     ax.set_zlim(0, 1)
302     ax.set_xticks(np.arange(0, grid_rows, 1))
303     ax.set_yticks(np.arange(0, grid_cols, 1))
304     plt.show()
305 plot_3D_activation_s urface(best_som, input_vectors)
306 # --------------------------------------------------------------------------------------------------------------#
307
308
309
310
311
312 # --------------------------------------------------------------------------------------------------------------#
313 # Extracting node design vectors and checks
314 # --------------------------------------------------------------------------------------------------------------#
315 def load_best_som(filename='best_overall_som_mod el.p'):
316     with open(filename, 'rb') as infile:
317         som = pickle.load(infile)
318     return som
319 best_som = load_best_som()
320 def get_node_assignments (som, input_data):
321     node_assignments = {}
322     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
323     for row in range(grid_rows):
324         for column in range(grid_cols):
325             node_assignments[(row, column)] = []
326     for _, vector in input_data.iterrows():
327         bmu = som.winner(vector.values)
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263 def plot_2D_activation_s urface(som, data):
264     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
265     activation_map = np.zeros((grid_rows, grid_cols))
266     for x in data.values:
267         bmu = som.winner(x)
268         activation_map[bmu] += 1
269     activation_map_norma lized = activation_map / np.max(activation_map)
270     plt.figure(figsize=(6, 6))
271     for row in range(grid_rows):
272         for column in range(grid_cols):
273             if activation_map[row, column] > 0:
274                 plt.scatter(column, row, s=activation_map_norma lized[row, column] * 100, color='grey', alpha=0.6)
275             else:
276                 plt.scatter(column, row, s=10, color='lightgrey', alpha=0.3)
277     plt.xticks(np.arange(0, grid_cols, 1))
278     plt.yticks(np.arange(0, grid_rows, 1))
279     plt.title('2D SOM Network plot', fontsize=14)
280     plt.gca().invert_yaxis()
281     plt.show()
282 plot_2D_activation_s urface(best_som, input_vectors)
283
284 def plot_3D_activation_s urface(som, data):
285     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
286     activation_map = np.zeros((grid_rows, grid_cols))
287     for x in data.values:
288         bmu = som.winner(x)
289         activation_map[bmu] += 1
290     activation_map_norma lized = activation_map / np.max(activation_map)
291     high_res_factor = 100
292     x_high_res = np.linspace(0, grid_rows - 1, grid_rows * high_res_factor)
293     y_high_res = np.linspace(0, grid_cols - 1, grid_cols * high_res_factor)
294     X_high_res, Y_high_res = np.meshgrid(x_high_res, y_high_res)
295     X, Y = np.meshgrid(np.arange(grid_rows), np.arange(grid_cols))
296     activation_map_high_ res = griddata((X.flatten(), Y.flatten()), activation_map_norma lized.flatten(), 

(X_high_res, Y_high_res), method='cubic')
297     fig = plt.figure(figsize=(10, 8))
298     ax = fig.add_subplot(111, projection='3d')
299     ax.plot_surface(X_high_res, Y_high_res, activation_map_high_ res, cmap='plasma', edgecolor='none', 

linewidth=0, antialiased=True)
300     ax.set_title('3D SOM Network')
301     ax.set_zlim(0, 1)
302     ax.set_xticks(np.arange(0, grid_rows, 1))
303     ax.set_yticks(np.arange(0, grid_cols, 1))
304     plt.show()
305 plot_3D_activation_s urface(best_som, input_vectors)
306 # --------------------------------------------------------------------------------------------------------------#
307
308
309
310
311
312 # --------------------------------------------------------------------------------------------------------------#
313 # Extracting node design vectors and checks
314 # --------------------------------------------------------------------------------------------------------------#
315 def load_best_som(filename='best_overall_som_mod el.p'):
316     with open(filename, 'rb') as infile:
317         som = pickle.load(infile)
318     return som
319 best_som = load_best_som()
320 def get_node_assignments (som, input_data):
321     node_assignments = {}
322     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
323     for row in range(grid_rows):
324         for column in range(grid_cols):
325             node_assignments[(row, column)] = []
326     for _, vector in input_data.iterrows():
327         bmu = som.winner(vector.values)

263 def plot_2D_activation_s urface(som, data):
264     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
265     activation_map = np.zeros((grid_rows, grid_cols))
266     for x in data.values:
267         bmu = som.winner(x)
268         activation_map[bmu] += 1
269     activation_map_norma lized = activation_map / np.max(activation_map)
270     plt.figure(figsize=(6, 6))
271     for row in range(grid_rows):
272         for column in range(grid_cols):
273             if activation_map[row, column] > 0:
274                 plt.scatter(column, row, s=activation_map_norma lized[row, column] * 100, color='grey', alpha=0.6)
275             else:
276                 plt.scatter(column, row, s=10, color='lightgrey', alpha=0.3)
277     plt.xticks(np.arange(0, grid_cols, 1))
278     plt.yticks(np.arange(0, grid_rows, 1))
279     plt.title('2D SOM Network plot', fontsize=14)
280     plt.gca().invert_yaxis()
281     plt.show()
282 plot_2D_activation_s urface(best_som, input_vectors)
283
284 def plot_3D_activation_s urface(som, data):
285     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
286     activation_map = np.zeros((grid_rows, grid_cols))
287     for x in data.values:
288         bmu = som.winner(x)
289         activation_map[bmu] += 1
290     activation_map_norma lized = activation_map / np.max(activation_map)
291     high_res_factor = 100
292     x_high_res = np.linspace(0, grid_rows - 1, grid_rows * high_res_factor)
293     y_high_res = np.linspace(0, grid_cols - 1, grid_cols * high_res_factor)
294     X_high_res, Y_high_res = np.meshgrid(x_high_res, y_high_res)
295     X, Y = np.meshgrid(np.arange(grid_rows), np.arange(grid_cols))
296     activation_map_high_ res = griddata((X.flatten(), Y.flatten()), activation_map_norma lized.flatten(), 

(X_high_res, Y_high_res), method='cubic')
297     fig = plt.figure(figsize=(10, 8))
298     ax = fig.add_subplot(111, projection='3d')
299     ax.plot_surface(X_high_res, Y_high_res, activation_map_high_ res, cmap='plasma', edgecolor='none', 

linewidth=0, antialiased=True)
300     ax.set_title('3D SOM Network')
301     ax.set_zlim(0, 1)
302     ax.set_xticks(np.arange(0, grid_rows, 1))
303     ax.set_yticks(np.arange(0, grid_cols, 1))
304     plt.show()
305 plot_3D_activation_s urface(best_som, input_vectors)
306 # --------------------------------------------------------------------------------------------------------------#
307
308
309
310
311
312 # --------------------------------------------------------------------------------------------------------------#
313 # Extracting node design vectors and checks
314 # --------------------------------------------------------------------------------------------------------------#
315 def load_best_som(filename='best_overall_som_mod el.p'):
316     with open(filename, 'rb') as infile:
317         som = pickle.load(infile)
318     return som
319 best_som = load_best_som()
320 def get_node_assignments (som, input_data):
321     node_assignments = {}
322     grid_rows, grid_cols = som.get_weights().shape[0], som.get_weights().shape[1]
323     for row in range(grid_rows):
324         for column in range(grid_cols):
325             node_assignments[(row, column)] = []
326     for _, vector in input_data.iterrows():
327         bmu = som.winner(vector.values)
328         node_assignments[bmu].append(vector.values)
329     return node_assignments
330 def save_node_assignment s(node_assignments, filename='node_assignments.csv'):
331     data_to_save = []
332     for node, vectors in node_assignments.items():
333         for vector in vectors:
334             row = [node[0], node[1]] + vector.tolist()
335             data_to_save.append(row)
336     columns = ['row', 'col'] + [f'Y{i+1}' for i in range(input_vectors.shape[1])]
337     df = pd.DataFrame(data_to_save, columns=columns)
338     df.to_csv(filename, index=False)
339 node_assignments = get_node_assignments (best_som, input_vectors)
340 save_node_assignment s(node_assignments, 'node_assignments.csv')
341 node_data = pd.read_csv('node_assignments.csv')
342 def map_y_values(y_value):
343     mapping = {0: -1, 0.25: -0.5, 0.5: 0, 0.75: 0.5, 1: 1}
344     return mapping[y_value]
345 node_data['Y1'] = node_data['Y1'].map(map_y_values)
346 node_data['Y2'] = node_data['Y2'].map(map_y_values)
347 node_data['Y3'] = node_data['Y3'].map(map_y_values)
348 extra_columns = pd.DataFrame(np.tile([-0.5, 0.0, 0.05, 0.05, 0.05, 1], (node_data.shape[0], 1)), columns=['X2', 

'W2', 'TS1', 'SCD1', 'BS2', 'SPD1'])
349 altered_node_data = pd.concat([node_data, extra_columns], axis=1)
350 altered_node_data.to_csv('altered_node_assignm ents.csv', index=False)
351 node_design_vectors_ additional = altered_node_data.iloc[:, 2:]
352 node_design_vectors_ additional.to_csv('node_design_vectors.csv', index=False, header=False)
353
354 def check_duplicates(node_data):
355     duplicates = node_data.duplicated(subset=['Y1', 'Y2', 'Y3'], keep=False)
356     dup_count = duplicates.sum()
357     print(f"Total duplicates found: {dup_count}")
358     print("Duplicate vectors:", node_data[duplicates])
359 def check_value_represen tation(node_data, values=[-0.5, 0.5]):
360     for value in values:
361         count = (node_data[['Y1', 'Y2', 'Y3']] == value).sum().sum()
362         print(f"Total occurrences of {value}: {count}")
363 def prepare_original_com binations():
364     Y1 = Y2 = Y3 = np.array([-2, -1, 0, 1, 2]) 
365     np_input_vectors = np.array(np.meshgrid(Y1, Y2, Y3)).T.reshape(-1, 3)
366     df_input_vectors = pd.DataFrame(np_input_vectors, columns=['Y1', 'Y2', 'Y3'])
367     scaler = MinMaxScaler()
368     normalized_vectors = scaler.fit_transform(df_input_vectors)
369     return pd.DataFrame(normalized_vectors, columns=['Y1', 'Y2', 'Y3'])
370 def check_unique_combina tions(original_data, node_data):
371     missing_combinations  = original_data[~original_data.isin(node_data[['Y1', 'Y2', 

'Y3']].to_dict(orient='list')).all(axis=1)]
372     print(f"Missing combinations not mapped to any BMU: {len(missing_combinations )}", missing_combinations )
373 def check_proximity(node_data):
374     grouped_nodes = node_data.groupby(['row', 'col'])
375     for node, vectors in grouped_nodes:
376         if len(vectors) > 1:
377             vector_values = vectors[['Y1', 'Y2', 'Y3']].values
378             ed_matrix = euclidean_distances(vector_values)
379             print(f"Node {node} has {len(vectors)} vectors with pairwise ED:")
380             print(pd.DataFrame(ed_matrix, index=vectors.index, columns=vectors.index))
381
382 check_duplicates(node_data)
383 check_value_represen tation(node_data)
384 original_combination s = prepare_original_com binations()
385 node_data = pd.read_csv('node_assignments.csv')
386 check_unique_combina tions(original_combination s, node_data)
387 check_proximity(node_data)
388 # --------------------------------------------------------------------------------------------------------------#
389
390
391
392
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328         node_assignments[bmu].append(vector.values)
329     return node_assignments
330 def save_node_assignment s(node_assignments, filename='node_assignments.csv'):
331     data_to_save = []
332     for node, vectors in node_assignments.items():
333         for vector in vectors:
334             row = [node[0], node[1]] + vector.tolist()
335             data_to_save.append(row)
336     columns = ['row', 'col'] + [f'Y{i+1}' for i in range(input_vectors.shape[1])]
337     df = pd.DataFrame(data_to_save, columns=columns)
338     df.to_csv(filename, index=False)
339 node_assignments = get_node_assignments (best_som, input_vectors)
340 save_node_assignment s(node_assignments, 'node_assignments.csv')
341 node_data = pd.read_csv('node_assignments.csv')
342 def map_y_values(y_value):
343     mapping = {0: -1, 0.25: -0.5, 0.5: 0, 0.75: 0.5, 1: 1}
344     return mapping[y_value]
345 node_data['Y1'] = node_data['Y1'].map(map_y_values)
346 node_data['Y2'] = node_data['Y2'].map(map_y_values)
347 node_data['Y3'] = node_data['Y3'].map(map_y_values)
348 extra_columns = pd.DataFrame(np.tile([-0.5, 0.0, 0.05, 0.05, 0.05, 1], (node_data.shape[0], 1)), columns=['X2', 

'W2', 'TS1', 'SCD1', 'BS2', 'SPD1'])
349 altered_node_data = pd.concat([node_data, extra_columns], axis=1)
350 altered_node_data.to_csv('altered_node_assignm ents.csv', index=False)
351 node_design_vectors_ additional = altered_node_data.iloc[:, 2:]
352 node_design_vectors_ additional.to_csv('node_design_vectors.csv', index=False, header=False)
353
354 def check_duplicates(node_data):
355     duplicates = node_data.duplicated(subset=['Y1', 'Y2', 'Y3'], keep=False)
356     dup_count = duplicates.sum()
357     print(f"Total duplicates found: {dup_count}")
358     print("Duplicate vectors:", node_data[duplicates])
359 def check_value_represen tation(node_data, values=[-0.5, 0.5]):
360     for value in values:
361         count = (node_data[['Y1', 'Y2', 'Y3']] == value).sum().sum()
362         print(f"Total occurrences of {value}: {count}")
363 def prepare_original_com binations():
364     Y1 = Y2 = Y3 = np.array([-2, -1, 0, 1, 2]) 
365     np_input_vectors = np.array(np.meshgrid(Y1, Y2, Y3)).T.reshape(-1, 3)
366     df_input_vectors = pd.DataFrame(np_input_vectors, columns=['Y1', 'Y2', 'Y3'])
367     scaler = MinMaxScaler()
368     normalized_vectors = scaler.fit_transform(df_input_vectors)
369     return pd.DataFrame(normalized_vectors, columns=['Y1', 'Y2', 'Y3'])
370 def check_unique_combina tions(original_data, node_data):
371     missing_combinations  = original_data[~original_data.isin(node_data[['Y1', 'Y2', 

'Y3']].to_dict(orient='list')).all(axis=1)]
372     print(f"Missing combinations not mapped to any BMU: {len(missing_combinations )}", missing_combinations )
373 def check_proximity(node_data):
374     grouped_nodes = node_data.groupby(['row', 'col'])
375     for node, vectors in grouped_nodes:
376         if len(vectors) > 1:
377             vector_values = vectors[['Y1', 'Y2', 'Y3']].values
378             ed_matrix = euclidean_distances(vector_values)
379             print(f"Node {node} has {len(vectors)} vectors with pairwise ED:")
380             print(pd.DataFrame(ed_matrix, index=vectors.index, columns=vectors.index))
381
382 check_duplicates(node_data)
383 check_value_represen tation(node_data)
384 original_combination s = prepare_original_com binations()
385 node_data = pd.read_csv('node_assignments.csv')
386 check_unique_combina tions(original_combination s, node_data)
387 check_proximity(node_data)
388 # --------------------------------------------------------------------------------------------------------------#
389
390
391
392

393
394 # --------------------------------------------------------------------------------------------------------------#
395 # Extracting design vectors for KAN
396 # --------------------------------------------------------------------------------------------------------------#
397 Y1 = Y2 = Y3 = np.array([-1, -0.5, 0, 0.5, 1])
398 X2 = np.array([-0.5, 0.5])
399 W2 = np.array([0.0, 1.0])
400 TS1 = SCD1 = np.array([0.05, 0.10, 0.15])
401 BS2 = np.array([0.05, 0.15])
402 SPD1 = np.array([0.0, 1.0, 2.0])
403 additional_vectors = pd.DataFrame()
404 needed_vectors_count  = 4050
405 initial_vectors_df = pd.read_csv('KAN_training_vectors _1-2700.csv', header=None, decimal=',')
406 initial_vectors_df.columns = ['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 'BS2', 'SPD1']
407 initial_vectors_df = initial_vectors_df.astype(float)
408 all_possible_combina tions = np.array(np.meshgrid(Y1, Y2, Y3, X2, W2, TS1, SCD1, BS2, SPD1)).T.reshape(-1, 9)
409 all_vectors_df = pd.DataFrame(all_possible_combina tions, columns=['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 

'BS2', 'SPD1'])
410 print(all_vectors_df)
411 remaining_vectors_df  = pd.merge(all_vectors_df, initial_vectors_df, on=['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 

'SCD1', 'BS2', 'SPD1'], how='outer', indicator=True)
412 remaining_vectors_df  = remaining_vectors_df [remaining_vectors_df ['_merge'] == 'left_only'].drop(columns=

['_merge'])
413 remaining_vectors_df  = remaining_vectors_df .reset_index(drop=True)
414 remaining_vectors_np  = remaining_vectors_df .to_numpy()
415 print(remaining_vectors_df )
416 combination_variable s = ['Y1', 'Y2', 'Y3', 'X2', 'W2', 'SCD1', 'BS2']
417 combination_mesh = np.array(np.meshgrid(Y1, Y2, Y3, X2, W2, SCD1, BS2)).T.reshape(-1, len(combination_variable s))
418 all_combinations_df = pd.DataFrame(combination_mesh, columns=combination_variable s)
419 all_combinations_df['TS1'] = np.random.choice(TS1, size=len(all_combinations_df))
420 all_combinations_df['SPD1'] = np.random.choice(SPD1, size=len(all_combinations_df))
421 final_combinations_d f = all_combinations_df[['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 'BS2', 'SPD1']]
422 print(final_combinations_d f)
423 sampled_01_df = pd.merge(final_combinations_d f, initial_vectors_df, on=['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 

'SCD1', 'BS2', 'SPD1'], how='left', indicator=True)
424 sampled_01_df = sampled_01_df[sampled_01_df['_merge'] == 'left_only'].drop(columns=['_merge'])
425 sampled_01_df = sampled_01_df.reset_index(drop=True)
426 print(sampled_01_df)
427 needed_vectors_count  = 4050 - len(sampled_01_df)
428 print(f"{needed_vectors_count } vectors needed to reach 4050")
429 sampling_df = pd.merge(remaining_vectors_df , sampled_01_df, on=['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 

'BS2', 'SPD1'], how='left', indicator=True)
430 sampling_df = sampling_df[sampling_df['_merge'] == 'left_only'].drop(columns=['_merge'])
431 sampling_df = sampling_df.reset_index(drop=True)
432 print(sampling_df)
433 sampled_02_df = sampling_df.sample(n=needed_vectors_count , random_state=42)
434 sampled_02_df = sampled_02_df.reset_index(drop=True)
435 print(sampled_02_df)
436 final_sampled_df = pd.concat([sampled_01_df, sampled_02_df], ignore_index=True)
437 print(final_sampled_df)
438 final_sampled_df.to_csv('KAN_training_vectors _2701-6750.csv', index=False)
439 num_chunks = (len(final_sampled_df) // 300) + 1
440 chunk_size = 300
441 chunks = [final_sampled_df.iloc[i * chunk_size:(i + 1) * chunk_size] for i in range(num_chunks)]
442 for idx, chunk in enumerate(chunks):
443     start_idx = 2701 + idx * chunk_size
444     end_idx = start_idx + len(chunk) - 1
445     filename = f'KAN_training_vectors _{start_idx}-{end_idx}.csv'
446     chunk.to_csv(filename, index=False)
447 final_sampled_df_upd ated = final_sampled_df.copy()
448 final_sampled_df_upd ated['W2'] = final_sampled_df_upd ated['W2'].replace({0: -0.475, 1: 0.475})
449 final_sampled_df_upd ated['SPD1'] = final_sampled_df_upd ated['SPD1'].replace({0.0: -0.11, 1.0: 0, 2.0: 0.11})
450 final_sampled_df_upd ated.to_csv('KAN_training_vectors _2701-6750_updated_ranges.csv', index=False)
451 # --------------------------------------------------------------------------------------------------------------#
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393
394 # --------------------------------------------------------------------------------------------------------------#
395 # Extracting design vectors for KAN
396 # --------------------------------------------------------------------------------------------------------------#
397 Y1 = Y2 = Y3 = np.array([-1, -0.5, 0, 0.5, 1])
398 X2 = np.array([-0.5, 0.5])
399 W2 = np.array([0.0, 1.0])
400 TS1 = SCD1 = np.array([0.05, 0.10, 0.15])
401 BS2 = np.array([0.05, 0.15])
402 SPD1 = np.array([0.0, 1.0, 2.0])
403 additional_vectors = pd.DataFrame()
404 needed_vectors_count  = 4050
405 initial_vectors_df = pd.read_csv('KAN_training_vectors _1-2700.csv', header=None, decimal=',')
406 initial_vectors_df.columns = ['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 'BS2', 'SPD1']
407 initial_vectors_df = initial_vectors_df.astype(float)
408 all_possible_combina tions = np.array(np.meshgrid(Y1, Y2, Y3, X2, W2, TS1, SCD1, BS2, SPD1)).T.reshape(-1, 9)
409 all_vectors_df = pd.DataFrame(all_possible_combina tions, columns=['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 

'BS2', 'SPD1'])
410 print(all_vectors_df)
411 remaining_vectors_df  = pd.merge(all_vectors_df, initial_vectors_df, on=['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 

'SCD1', 'BS2', 'SPD1'], how='outer', indicator=True)
412 remaining_vectors_df  = remaining_vectors_df [remaining_vectors_df ['_merge'] == 'left_only'].drop(columns=

['_merge'])
413 remaining_vectors_df  = remaining_vectors_df .reset_index(drop=True)
414 remaining_vectors_np  = remaining_vectors_df .to_numpy()
415 print(remaining_vectors_df )
416 combination_variable s = ['Y1', 'Y2', 'Y3', 'X2', 'W2', 'SCD1', 'BS2']
417 combination_mesh = np.array(np.meshgrid(Y1, Y2, Y3, X2, W2, SCD1, BS2)).T.reshape(-1, len(combination_variable s))
418 all_combinations_df = pd.DataFrame(combination_mesh, columns=combination_variable s)
419 all_combinations_df['TS1'] = np.random.choice(TS1, size=len(all_combinations_df))
420 all_combinations_df['SPD1'] = np.random.choice(SPD1, size=len(all_combinations_df))
421 final_combinations_d f = all_combinations_df[['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 'BS2', 'SPD1']]
422 print(final_combinations_d f)
423 sampled_01_df = pd.merge(final_combinations_d f, initial_vectors_df, on=['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 

'SCD1', 'BS2', 'SPD1'], how='left', indicator=True)
424 sampled_01_df = sampled_01_df[sampled_01_df['_merge'] == 'left_only'].drop(columns=['_merge'])
425 sampled_01_df = sampled_01_df.reset_index(drop=True)
426 print(sampled_01_df)
427 needed_vectors_count  = 4050 - len(sampled_01_df)
428 print(f"{needed_vectors_count } vectors needed to reach 4050")
429 sampling_df = pd.merge(remaining_vectors_df , sampled_01_df, on=['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 

'BS2', 'SPD1'], how='left', indicator=True)
430 sampling_df = sampling_df[sampling_df['_merge'] == 'left_only'].drop(columns=['_merge'])
431 sampling_df = sampling_df.reset_index(drop=True)
432 print(sampling_df)
433 sampled_02_df = sampling_df.sample(n=needed_vectors_count , random_state=42)
434 sampled_02_df = sampled_02_df.reset_index(drop=True)
435 print(sampled_02_df)
436 final_sampled_df = pd.concat([sampled_01_df, sampled_02_df], ignore_index=True)
437 print(final_sampled_df)
438 final_sampled_df.to_csv('KAN_training_vectors _2701-6750.csv', index=False)
439 num_chunks = (len(final_sampled_df) // 300) + 1
440 chunk_size = 300
441 chunks = [final_sampled_df.iloc[i * chunk_size:(i + 1) * chunk_size] for i in range(num_chunks)]
442 for idx, chunk in enumerate(chunks):
443     start_idx = 2701 + idx * chunk_size
444     end_idx = start_idx + len(chunk) - 1
445     filename = f'KAN_training_vectors _{start_idx}-{end_idx}.csv'
446     chunk.to_csv(filename, index=False)
447 final_sampled_df_upd ated = final_sampled_df.copy()
448 final_sampled_df_upd ated['W2'] = final_sampled_df_upd ated['W2'].replace({0: -0.475, 1: 0.475})
449 final_sampled_df_upd ated['SPD1'] = final_sampled_df_upd ated['SPD1'].replace({0.0: -0.11, 1.0: 0, 2.0: 0.11})
450 final_sampled_df_upd ated.to_csv('KAN_training_vectors _2701-6750_updated_ranges.csv', index=False)
451 # --------------------------------------------------------------------------------------------------------------#



D
Kolmogorov-Arnold Network

110

KAN.py

1 # --------------------------------------------------------------------------------------------------------------#
2 # Importing libraries
3 # --------------------------------------------------------------------------------------------------------------#
4 import numpy as np
5 import pandas as pd
6 from sklearn.preprocessing import StandardScaler
7 from sklearn.metrics import mean_squared_error, r2_score
8 import matplotlib.pyplot as plt
9 import os
10 import torch
11 from kan import KAN
12 from kan.utils import create_dataset_from_ data, ex_round
13 import random
14 import shutil
15 # --------------------------------------------------------------------------------------------------------------#
16
17
18
19
20
21 # --------------------------------------------------------------------------------------------------------------#
22 # Preprocessing data
23 # --------------------------------------------------------------------------------------------------------------#
24 def set_seed(seed_value=42):
25     np.random.seed(seed_value)
26     torch.manual_seed(seed_value)
27     random.seed(seed_value) 
28     if torch.cuda.is_available():
29         torch.cuda.manual_seed_all(seed_value)
30 set_seed(42)
31 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
32 geometry_vectors = pd.read_csv('KAN_training_vectors _1-2700.csv', header=None, decimal=',').rename(columns={i: 

col for i, col in enumerate(['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 'BS2', 'SPD1'])})
33 material_use, solar_performance, acoustic_performance  = [pd.read_csv(f'1{suffix} (1-2700).txt', header=0) for 

suffix in ['A material use', 'B solar performance', 'C acoustic performance']]
34 min_length = min(len(geometry_vectors), len(material_use), len(solar_performance), len(acoustic_performance ))
35 geometry_vectors, material_use, solar_performance, acoustic_performance  = 

[df.iloc[:min_length].reset_index(drop=True) for df in [geometry_vectors, material_use, solar_performance, 
acoustic_performance ]]

36 material_use.columns, solar_performance.columns, acoustic_performance .columns = ['Material'], ['Solar'], 
['Acoustic']

37 performance_metrics = pd.concat([material_use, solar_performance, acoustic_performance ], axis=1)
38 data = pd.concat([geometry_vectors, performance_metrics], axis=1)
39 print("\nOriginal Data:\n", data)
40 input_features = ['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 'BS2', 'SPD1']; scaler = StandardScaler(); 

data_standardized = pd.DataFrame(scaler.fit_transform(data[input_features]), columns=input_features)
41 print("\nStandardized Data (Z-score):\n", data_standardized)
42 data_standardized[['Material', 'Solar', 'Acoustic']] = data[['Material', 'Solar', 'Acoustic']]
43 x_input, y_material, y_solar, y_acoustic = [torch.tensor(data_standardized[[col]].values, dtype=torch.float32, 

device=device) for col in input_features + ['Material', 'Solar', 'Acoustic']]
44 dataset_material, dataset_solar, dataset_acoustic = [create_dataset_from_ data(x_input, y, train_ratio=0.8, 

device=device) for y in [y_material, y_solar, y_acoustic]]
45 Y1 = Y2 = Y3 = np.array([-1, -0.5, 0, 0.5, 1]); X2 = np.array([-0.5, 0.5]); W2 = np.array([0, 1]); TS1 = SCD1 = 

np.array([0.05, 0.10, 0.15]); BS2 = np.array([0.05, 0.15]); SPD1 = np.array([0, 1, 2])
46 total_input_vectors = np.array(np.meshgrid(Y1, Y2, Y3, X2, W2, TS1, SCD1, BS2, SPD1)).T.reshape(-1, 9)
47 print("\nTotal input vectors:\n", pd.DataFrame(total_input_vectors, columns=['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 

'SCD1', 'BS2', 'SPD1']))
48 total_data_standardi zed = pd.DataFrame(scaler.transform(total_input_vectors), columns=input_features)
49 print("\nStandardized Total Input Vectors (Z-score):\n", total_data_standardi zed)
50
51 def plot_live_validation _loss(val_losses):
52     plt.ion()
53     fig, ax = plt.subplots()
54     ax.set(title='Live Validation Loss Over Steps', xlabel='Steps', ylabel='Validation Loss')
55     ax.grid(True, linestyle='--', linewidth=0.5, color='grey', which='both')
56     line, = ax.plot([], [], label='Validation Loss')

KAN.py

1 # --------------------------------------------------------------------------------------------------------------#
2 # Importing libraries
3 # --------------------------------------------------------------------------------------------------------------#
4 import numpy as np
5 import pandas as pd
6 from sklearn.preprocessing import StandardScaler
7 from sklearn.metrics import mean_squared_error, r2_score
8 import matplotlib.pyplot as plt
9 import os
10 import torch
11 from kan import KAN
12 from kan.utils import create_dataset_from_ data, ex_round
13 import random
14 import shutil
15 # --------------------------------------------------------------------------------------------------------------#
16
17
18
19
20
21 # --------------------------------------------------------------------------------------------------------------#
22 # Preprocessing data
23 # --------------------------------------------------------------------------------------------------------------#
24 random.seed(42)
25 device = torch.device('succeeded' if torch.cuda.is_available() else 'failed')
26 geometry_vectors = pd.read_csv('Dataset/KAN_training_vectors _1-6750.csv', header=None, decimal=',')
27 geometry_vectors.columns = ['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 'BS2', 'SPD1']
28 material_use = pd.read_csv('Dataset/1A material use (1-6750).txt', header=0)
29 solar_performance = pd.read_csv('Dataset/1B solar performance (1-6750).txt', header=0)
30 acoustic_performance  = pd.read_csv('Dataset/1C acoustic performance (1-6750).txt', header=0)
31 min_length = min(len(geometry_vectors), len(material_use), len(solar_performance), len(acoustic_performance ))
32 geometry_vectors = geometry_vectors.iloc[:min_length].reset_index(drop=True)
33 material_use = material_use.iloc[:min_length].reset_index(drop=True)
34 solar_performance = solar_performance.iloc[:min_length].reset_index(drop=True)
35 acoustic_performance  = acoustic_performance .iloc[:min_length].reset_index(drop=True)
36 material_use.columns, solar_performance.columns, acoustic_performance .columns = ['Material'], ['Solar'], 

['Acoustic']
37 performance_metrics = pd.concat([material_use, solar_performance, acoustic_performance ], axis=1)
38 data = pd.concat([geometry_vectors, performance_metrics], axis=1)
39 input_features = ['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 'BS2', 'SPD1']
40 scaler = StandardScaler()
41 data_standardized = pd.DataFrame(scaler.fit_transform(data[input_features]), columns=input_features)
42 data_standardized[['Material', 'Solar', 'Acoustic']] = data[['Material', 'Solar', 'Acoustic']]
43 x_input = torch.tensor(data_standardized[input_features].values, dtype=torch.float32, device=device)
44 y_material = torch.tensor(data_standardized[['Material']].values, dtype=torch.float32, device=device)
45 y_solar = torch.tensor(data_standardized[['Solar']].values, dtype=torch.float32, device=device)
46 y_acoustic = torch.tensor(data_standardized[['Acoustic']].values, dtype=torch.float32, device=device)
47 dataset_material = create_dataset_from_ data(x_input, y_material, train_ratio=0.8, device=device)
48 dataset_solar = create_dataset_from_ data(x_input, y_solar, train_ratio=0.8, device=device)
49 dataset_acoustic = create_dataset_from_ data(x_input, y_acoustic, train_ratio=0.8, device=device)
50
51 Y1 = Y2 = Y3 = np.array([-1, -0.5, 0, 0.5, 1]); X2 = np.array([-0.5, 0.5]); W2 = np.array([0, 1]); TS1 = SCD1 = 

np.array([0.05, 0.10, 0.15]); BS2 = np.array([0.05, 0.15]); SPD1 = np.array([0, 1, 2])
52 total_input_vectors = np.array(np.meshgrid(Y1, Y2, Y3, X2, W2, TS1, SCD1, BS2, SPD1)).T.reshape(-1, 9)
53 total_data_standardi zed = pd.DataFrame(scaler.transform(total_input_vectors), columns=input_features)
54
55 def plot_live_validation _loss(val_losses):
56     plt.ion()
57     fig, ax = plt.subplots()
58     ax.set_title('Live Validation Loss Over Steps')
59     ax.set_xlabel('Steps')
60     ax.set_ylabel('Validation Loss')
61     ax.grid(True, linestyle='--', linewidth=0.5, color='grey', which='both')
62     line, = ax.plot([], [], label='Validation Loss')
63     ax.legend()

Inspired by:
- freeCodeCamp (2022, June 15). Machine learning for everybody – Full course [Video]. YouTube. https://www.youtube.com/watch?v=i_LwzRVP7bg
- Xiaoming, K. (2024). PyKAN: Tutorials. GitHub. https://github.com/KindXiaoming/pykan/tree/master/tutorials
- Daniel (2024). Implementation of a KAN for regression. GitHub. https://github.com/team-daniel/KAN/blob/master/KAN_regression.ipynb
- Bethell, D. (2024, May 13). Demystifying Kolmogorov-Arnold Networks: A Beginner-Friendly Guide with Code. https://daniel-bethell.co.uk/posts/kan/
- DataScienceByExample (2023, June 24). How to evaluate and visualize regression. DataScienceByExample. https://www.datasciencebyexample.com/
  2023/06/24/how-to-evaluate-and-visualize-regression/
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64     for step in range(len(val_losses)):
65         line.set_xdata(range(step + 1))
66         line.set_ydata(val_losses[:step + 1])
67         ax.relim()
68         ax.autoscale_view()
69         plt.pause(0.1)
70     plt.pause(10)
71     plt.close(fig)
72 # --------------------------------------------------------------------------------------------------------------#
73
74
75
76
77
78 # --------------------------------------------------------------------------------------------------------------#
79 # Training and evaluating KAN Models
80 # --------------------------------------------------------------------------------------------------------------#
81 def train_kan_model(training_data, testing_data, name, hyperparameter_optio ns, img_folder='training_imgs'):
82     if os.path.exists(img_folder):
83         shutil.rmtree(img_folder)
84     os.makedirs(img_folder, exist_ok=True)
85     best_hyperparameters  = None
86     best_model = None
87     best_checkpoint_vers ion = None
88     r2 = None
89     for hyperparameters in hyperparameter_optio ns:
90         num_nodes = hyperparameters['num_nodes']
91         grid = hyperparameters['grid']
92         k = hyperparameters['k']
93         steps = hyperparameters['steps']
94         lamb = hyperparameters['lamb']
95         lamb_l1 = hyperparameters['lamb_l1']
96         lamb_entropy = hyperparameters['lamb_entropy']
97         lamb_coef = hyperparameters['lamb_coef']
98         lamb_coefdiff = hyperparameters['lamb_coefdiff']
99         beta = hyperparameters['beta']
100         y_th = hyperparameters['y_th']
101         lr = hyperparameters['lr']
102         model = KAN(width=[9] + num_nodes + [1], grid=grid, k=k, seed=42, device=device)
103         val_losses = []
104         fit_results = model.fit(
105             training_data,
106             opt="LBFGS",
107             steps=steps,
108             lamb=lamb,  
109             lamb_l1=lamb_l1,  
110             lamb_entropy=lamb_entropy, 
111             lamb_coef=lamb_coef,  
112             lamb_coefdiff=lamb_coefdiff,
113             lr=lr, 
114             save_fig=False,  
115             beta=beta, 
116             in_vars=[f'${var}$' for var in input_features], 
117             out_vars=[f'{name}'], 
118             singularity_avoiding =True,  
119             y_th=y_th,  
120             update_grid=True,  
121             grid_update_num=1, 
122             start_grid_update_st ep=1,  
123             stop_grid_update_ste p=steps - 1)
124         if fit_results and isinstance(fit_results, dict):
125             val_losses = fit_results.get('test_loss', [])
126             plot_live_validation _loss(val_losses)
127         feature_scores = model.feature_score.cpu().detach().numpy()
128         feature_scores_perce ntage = 100 * feature_scores / feature_scores.sum()
129         feature_scores_perce ntage_rounded = [f"{score:.2f}" for score in feature_scores_perce ntage]

64     for step in range(len(val_losses)):
65         line.set_xdata(range(step + 1))
66         line.set_ydata(val_losses[:step + 1])
67         ax.relim()
68         ax.autoscale_view()
69         plt.pause(0.1)
70     plt.pause(10)
71     plt.close(fig)
72 # --------------------------------------------------------------------------------------------------------------#
73
74
75
76
77
78 # --------------------------------------------------------------------------------------------------------------#
79 # Training and evaluating KAN Models
80 # --------------------------------------------------------------------------------------------------------------#
81 def train_kan_model(training_data, testing_data, name, hyperparameter_optio ns, img_folder='training_imgs'):
82     if os.path.exists(img_folder):
83         shutil.rmtree(img_folder)
84     os.makedirs(img_folder, exist_ok=True)
85     best_hyperparameters  = None
86     best_model = None
87     best_checkpoint_vers ion = None
88     r2 = None
89     for hyperparameters in hyperparameter_optio ns:
90         num_nodes = hyperparameters['num_nodes']
91         grid = hyperparameters['grid']
92         k = hyperparameters['k']
93         steps = hyperparameters['steps']
94         lamb = hyperparameters['lamb']
95         lamb_l1 = hyperparameters['lamb_l1']
96         lamb_entropy = hyperparameters['lamb_entropy']
97         lamb_coef = hyperparameters['lamb_coef']
98         lamb_coefdiff = hyperparameters['lamb_coefdiff']
99         beta = hyperparameters['beta']

100         y_th = hyperparameters['y_th']
101         lr = hyperparameters['lr']
102         model = KAN(width=[9] + num_nodes + [1], grid=grid, k=k, seed=42, device=device)
103         val_losses = []
104         fit_results = model.fit(
105             training_data,
106             opt="LBFGS",
107             steps=steps,
108             lamb=lamb,  
109             lamb_l1=lamb_l1,  
110             lamb_entropy=lamb_entropy, 
111             lamb_coef=lamb_coef,  
112             lamb_coefdiff=lamb_coefdiff,
113             lr=lr, 
114             save_fig=False,  
115             beta=beta, 
116             in_vars=[f'${var}$' for var in input_features], 
117             out_vars=[f'{name}'], 
118             singularity_avoiding =True,  
119             y_th=y_th,  
120             update_grid=True,  
121             grid_update_num=1, 
122             start_grid_update_st ep=1,  
123             stop_grid_update_ste p=steps - 1)
124         if fit_results and isinstance(fit_results, dict):
125             val_losses = fit_results.get('test_loss', [])
126             plot_live_validation _loss(val_losses)
127         feature_scores = model.feature_score.cpu().detach().numpy()
128         feature_scores_perce ntage = 100 * feature_scores / feature_scores.sum()
129         feature_scores_perce ntage_rounded = [f"{score:.2f}" for score in feature_scores_perce ntage]

KAN.py

1 # --------------------------------------------------------------------------------------------------------------#
2 # Importing libraries
3 # --------------------------------------------------------------------------------------------------------------#
4 import numpy as np
5 import pandas as pd
6 from sklearn.preprocessing import StandardScaler
7 from sklearn.metrics import mean_squared_error, r2_score
8 import matplotlib.pyplot as plt
9 import os
10 import torch
11 from kan import KAN
12 from kan.utils import create_dataset_from_ data, ex_round
13 import random
14 import shutil
15 # --------------------------------------------------------------------------------------------------------------#
16
17
18
19
20
21 # --------------------------------------------------------------------------------------------------------------#
22 # Preprocessing data
23 # --------------------------------------------------------------------------------------------------------------#
24 random.seed(42)
25 device = torch.device('succeeded' if torch.cuda.is_available() else 'failed')
26 geometry_vectors = pd.read_csv('Dataset/KAN_training_vectors _1-6750.csv', header=None, decimal=',')
27 geometry_vectors.columns = ['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 'BS2', 'SPD1']
28 material_use = pd.read_csv('Dataset/1A material use (1-6750).txt', header=0)
29 solar_performance = pd.read_csv('Dataset/1B solar performance (1-6750).txt', header=0)
30 acoustic_performance  = pd.read_csv('Dataset/1C acoustic performance (1-6750).txt', header=0)
31 min_length = min(len(geometry_vectors), len(material_use), len(solar_performance), len(acoustic_performance ))
32 geometry_vectors = geometry_vectors.iloc[:min_length].reset_index(drop=True)
33 material_use = material_use.iloc[:min_length].reset_index(drop=True)
34 solar_performance = solar_performance.iloc[:min_length].reset_index(drop=True)
35 acoustic_performance  = acoustic_performance .iloc[:min_length].reset_index(drop=True)
36 material_use.columns, solar_performance.columns, acoustic_performance .columns = ['Material'], ['Solar'], 

['Acoustic']
37 performance_metrics = pd.concat([material_use, solar_performance, acoustic_performance ], axis=1)
38 data = pd.concat([geometry_vectors, performance_metrics], axis=1)
39 input_features = ['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 'BS2', 'SPD1']
40 scaler = StandardScaler()
41 data_standardized = pd.DataFrame(scaler.fit_transform(data[input_features]), columns=input_features)
42 data_standardized[['Material', 'Solar', 'Acoustic']] = data[['Material', 'Solar', 'Acoustic']]
43 x_input = torch.tensor(data_standardized[input_features].values, dtype=torch.float32, device=device)
44 y_material = torch.tensor(data_standardized[['Material']].values, dtype=torch.float32, device=device)
45 y_solar = torch.tensor(data_standardized[['Solar']].values, dtype=torch.float32, device=device)
46 y_acoustic = torch.tensor(data_standardized[['Acoustic']].values, dtype=torch.float32, device=device)
47 dataset_material = create_dataset_from_ data(x_input, y_material, train_ratio=0.8, device=device)
48 dataset_solar = create_dataset_from_ data(x_input, y_solar, train_ratio=0.8, device=device)
49 dataset_acoustic = create_dataset_from_ data(x_input, y_acoustic, train_ratio=0.8, device=device)
50
51 Y1 = Y2 = Y3 = np.array([-1, -0.5, 0, 0.5, 1]); X2 = np.array([-0.5, 0.5]); W2 = np.array([0, 1]); TS1 = SCD1 = 

np.array([0.05, 0.10, 0.15]); BS2 = np.array([0.05, 0.15]); SPD1 = np.array([0, 1, 2])
52 total_input_vectors = np.array(np.meshgrid(Y1, Y2, Y3, X2, W2, TS1, SCD1, BS2, SPD1)).T.reshape(-1, 9)
53 total_data_standardi zed = pd.DataFrame(scaler.transform(total_input_vectors), columns=input_features)
54
55 def plot_live_validation _loss(val_losses):
56     plt.ion()
57     fig, ax = plt.subplots()
58     ax.set_title('Live Validation Loss Over Steps')
59     ax.set_xlabel('Steps')
60     ax.set_ylabel('Validation Loss')
61     ax.grid(True, linestyle='--', linewidth=0.5, color='grey', which='both')
62     line, = ax.plot([], [], label='Validation Loss')
63     ax.legend()

130         influence_data = pd.DataFrame({'Variable': input_features, 'Influence Percentage': [round(score, 2) for 
score in feature_scores_perce ntage]})

131         csv_filename = f'{name}_influence_percentag es.csv'
132         influence_data.to_csv(csv_filename, index=False)
133         in_vars_with_percent age = [f'{var} ({score}%)' for var, score in zip(input_features, 

feature_scores_perce ntage_rounded)]
134         x_test_input = testing_data['test_input']
135         y_test_ground_truth = testing_data['test_label']
136         y_test_predictions = model(x_test_input).cpu().detach().numpy()
137         y_test_ground_truth = y_test_ground_truth.cpu().detach().numpy()
138         mse = mean_squared_error(y_test_ground_truth, y_test_predictions)
139         r2 = r2_score(y_test_ground_truth, y_test_predictions)       
140         out_vars_with_r2 = [f'{name} (R²: {r2:.2f})']
141         final_img_path = f'final_{name}_plot.jpg'
142         model.plot(
143             beta=beta,
144             metric='forward_n',
145             scale=2, 
146             tick=False,
147             sample=False,
148             in_vars=in_vars_with_percent age,
149             out_vars=out_vars_with_r2,
150             varscale=0.175)
151         plt.savefig(final_img_path, bbox_inches='tight', dpi=300)
152         plt.close()
153         node_th = hyperparameters['node_th']
154         edge_th = hyperparameters['edge_th']
155         model = model.prune(node_th=node_th, edge_th=edge_th)
156         pruned_img_path = f'pruned_{name}_plot.jpg'
157         model.plot(
158             beta=beta, 
159             metric='forward_n',
160             scale=2, 
161             tick=False, 
162             sample=False, 
163             in_vars=in_vars_with_percent age,
164             out_vars=out_vars_with_r2,
165             varscale=0.175)
166         plt.savefig(pruned_img_path, bbox_inches='tight', dpi=300)
167         plt.close()
168         if fit_results and isinstance(fit_results, dict):
169             train_loss = fit_results.get('train_loss', float('inf'))[-1] ** 2
170             test_loss = fit_results.get('test_loss', float('inf'))[-1] ** 2
171         else:
172             train_loss = float('inf')
173             test_loss = float('inf')
174         checkpoint_version = f'epoch_1_{name}_grid{grid}_k{k}'
175         model.saveckpt(f'./model/{checkpoint_version}')
176         best_model = model
177         best_checkpoint_vers ion = checkpoint_version
178         best_hyperparameters  = hyperparameters
179     return best_checkpoint_vers ion, best_model, r2
180 material_hyperparame ter_options = [{'num_nodes': [4, 2], 'grid': 5, 'k': 3, 'steps': 100, 'lr': 1, 'lamb': 0, 

'lamb_l1': 1, 'lamb_entropy': 2, 'lamb_coef': 0, 'lamb_coefdiff': 0, 'beta': 100, 'y_th': 1000, 'node_th': 0.01, 
'edge_th': 0.01}]

181 solar_hyperparameter _options = [{'num_nodes': [4, 2], 'grid': 5, 'k': 3, 'steps': 300, 'lr': 1, 'lamb': 0, 
'lamb_l1': 1, 'lamb_entropy':2, 'lamb_coef': 0, 'lamb_coefdiff': 0, 'beta': 100, 'y_th': 1000, 'node_th': 0.01, 
'edge_th': 0.01}]

182 acoustic_hyperparame ter_options = [{'num_nodes': [8, 4], 'grid': 5, 'k': 3, 'steps': 250, 'lr': 1, 'lamb': 0, 
'lamb_l1': 1, 'lamb_entropy': 2, 'lamb_coef': 0, 'lamb_coefdiff': 0, 'beta': 100, 'y_th': 1000, 'node_th': 0.01, 
'edge_th': 0.1}]

183 best_checkpoint_mate rial, model_material, r2_material = train_kan_model(dataset_material, dataset_material, 
'Material Use', material_hyperparame ter_options)

184 best_checkpoint_sola r, model_solar, r2_solar = train_kan_model(dataset_solar, dataset_solar, 'Solar Performance', 
solar_hyperparameter _options)

185 best_checkpoint_acou stic, model_acoustic, r2_acoustic = train_kan_model(dataset_acoustic, dataset_acoustic, 
'Acoustic Performance', acoustic_hyperparame ter_options)

186
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130         influence_data = pd.DataFrame({'Variable': input_features, 'Influence Percentage': [round(score, 2) for 
score in feature_scores_perce ntage]})

131         csv_filename = f'{name}_influence_percentag es.csv'
132         influence_data.to_csv(csv_filename, index=False)
133         in_vars_with_percent age = [f'{var} ({score}%)' for var, score in zip(input_features, 

feature_scores_perce ntage_rounded)]
134         x_test_input = testing_data['test_input']
135         y_test_ground_truth = testing_data['test_label']
136         y_test_predictions = model(x_test_input).cpu().detach().numpy()
137         y_test_ground_truth = y_test_ground_truth.cpu().detach().numpy()
138         mse = mean_squared_error(y_test_ground_truth, y_test_predictions)
139         r2 = r2_score(y_test_ground_truth, y_test_predictions)       
140         out_vars_with_r2 = [f'{name} (R²: {r2:.2f})']
141         final_img_path = f'final_{name}_plot.jpg'
142         model.plot(
143             beta=beta,
144             metric='forward_n',
145             scale=2, 
146             tick=False,
147             sample=False,
148             in_vars=in_vars_with_percent age,
149             out_vars=out_vars_with_r2,
150             varscale=0.175)
151         plt.savefig(final_img_path, bbox_inches='tight', dpi=300)
152         plt.close()
153         node_th = hyperparameters['node_th']
154         edge_th = hyperparameters['edge_th']
155         model = model.prune(node_th=node_th, edge_th=edge_th)
156         pruned_img_path = f'pruned_{name}_plot.jpg'
157         model.plot(
158             beta=beta, 
159             metric='forward_n',
160             scale=2, 
161             tick=False, 
162             sample=False, 
163             in_vars=in_vars_with_percent age,
164             out_vars=out_vars_with_r2,
165             varscale=0.175)
166         plt.savefig(pruned_img_path, bbox_inches='tight', dpi=300)
167         plt.close()
168         if fit_results and isinstance(fit_results, dict):
169             train_loss = fit_results.get('train_loss', float('inf'))[-1] ** 2
170             test_loss = fit_results.get('test_loss', float('inf'))[-1] ** 2
171         else:
172             train_loss = float('inf')
173             test_loss = float('inf')
174         checkpoint_version = f'epoch_1_{name}_grid{grid}_k{k}'
175         model.saveckpt(f'./model/{checkpoint_version}')
176         best_model = model
177         best_checkpoint_vers ion = checkpoint_version
178         best_hyperparameters  = hyperparameters
179     return best_checkpoint_vers ion, best_model, r2
180 material_hyperparame ter_options = [{'num_nodes': [4, 2], 'grid': 5, 'k': 3, 'steps': 100, 'lr': 1, 'lamb': 0, 

'lamb_l1': 1, 'lamb_entropy': 2, 'lamb_coef': 0, 'lamb_coefdiff': 0, 'beta': 100, 'y_th': 1000, 'node_th': 0.01, 
'edge_th': 0.01}]

181 solar_hyperparameter _options = [{'num_nodes': [4, 2], 'grid': 5, 'k': 3, 'steps': 300, 'lr': 1, 'lamb': 0, 
'lamb_l1': 1, 'lamb_entropy':2, 'lamb_coef': 0, 'lamb_coefdiff': 0, 'beta': 100, 'y_th': 1000, 'node_th': 0.01, 
'edge_th': 0.01}]

182 acoustic_hyperparame ter_options = [{'num_nodes': [8, 4], 'grid': 5, 'k': 3, 'steps': 250, 'lr': 1, 'lamb': 0, 
'lamb_l1': 1, 'lamb_entropy': 2, 'lamb_coef': 0, 'lamb_coefdiff': 0, 'beta': 100, 'y_th': 1000, 'node_th': 0.01, 
'edge_th': 0.1}]

183 best_checkpoint_mate rial, model_material, r2_material = train_kan_model(dataset_material, dataset_material, 
'Material Use', material_hyperparame ter_options)

184 best_checkpoint_sola r, model_solar, r2_solar = train_kan_model(dataset_solar, dataset_solar, 'Solar Performance', 
solar_hyperparameter _options)

185 best_checkpoint_acou stic, model_acoustic, r2_acoustic = train_kan_model(dataset_acoustic, dataset_acoustic, 
'Acoustic Performance', acoustic_hyperparame ter_options)

186
187 def plot_actual_vs_predi cted_with_enhancemen ts(y_testing, y_predictions, feature, r2, num_training, num_total, 

unit):
188     y_testing = y_testing.flatten()
189     y_predictions = y_predictions.flatten()
190     a, b = np.polyfit(y_testing, y_predictions, 1)
191     fit_line = a * np.array(y_testing) + b
192     computed_r2 = r2_score(y_testing, y_predictions)
193     fig = plt.figure(figsize=(6, 6))
194     min_validation = min(min(y_testing), min(y_predictions))
195     max_validation = max(max(y_testing), max(y_predictions))
196     plt.xlim(min_validation, max_validation)
197     plt.ylim(min_validation, max_validation)
198     scatter_color = 'gray'
199     plt.scatter(y_testing, y_predictions, color=scatter_color, alpha=0.65, label='Datapoints', zorder=1)
200     plt.plot([min_validation, max_validation], [min_validation, max_validation], color='darkblue', linestyle='--

', label='Best Fit', zorder=1)
201     plt.plot(y_testing, fit_line, color='red', linestyle='-', label='Actual Fit', zorder=2)
202     plt.xlabel(f'Actual {feature} ({unit})')
203     plt.ylabel(f'Predicted {feature} ({unit})')
204     title = f'KAN (8-4) - Accuracy Plot - {feature} (R²: {r2:.2f})'
205     plt.title(title)
206     percent_training = round((num_training / num_total) * 100)
207     plt.text(0.97, 0.03, f'Training data: {num_training}\nDesign space: {num_total}\nTraining ratio: 

{percent_training:.2f}%', 
208              fontsize=10, bbox=dict(facecolor='white', edgecolor='lightgray', alpha=1), 

verticalalignment='bottom', horizontalalignment='right', transform=plt.gca().transAxes)
209     plt.legend(loc='upper left', framealpha=1, edgecolor='lightgray', fancybox=False)
210     plt.grid(True)
211     save_filename = f'KAN_{feature.replace(" ", "_").lower()}_accuracy_plot.png'
212     plt.savefig(save_filename, bbox_inches='tight', dpi=300)
213     plt.show()
214 def get_predictions_and_ plot(model, dataset, target_feature, r2_value, num_training, num_total, unit):
215     x_testing_tensor = dataset['test_input']
216     y_testing_tensor = dataset['test_label']
217     with torch.no_grad():
218         y_prediction_tensor = model(x_testing_tensor)
219     y_testing = y_testing_tensor.cpu().numpy()
220     y_pred = y_prediction_tensor.cpu().numpy()
221     plot_actual_vs_predi cted_with_enhancemen ts(y_testing, y_pred, target_feature, r2_value, num_training, 

num_total, unit)
222 get_predictions_and_ plot(model_material, dataset_material, 'Material Use', r2_material, num_training=6750, 

num_total=27000, unit='m³')
223 get_predictions_and_ plot(model_solar, dataset_solar, 'Solar Performance', r2_solar, num_training=6750, 

num_total=27000, unit='kWh/m²')
224 get_predictions_and_ plot(model_acoustic, dataset_acoustic, 'Acoustic Performance', r2_acoustic, 

num_training=6750, num_total=27000, unit='dB')
225
226 def training_process(training_data, target_name, hyperparameter_optio ns, image='training_imgs'):
227     if os.path.exists(image):
228         shutil.rmtree(image)
229     os.makedirs(image, exist_ok=True)
230     for hyperparameters in hyperparameter_optio ns:
231         num_nodes = hyperparameters['num_nodes']
232         grid = hyperparameters['grid']
233         k = hyperparameters['k']
234         steps = hyperparameters['steps']
235         lamb = hyperparameters['lamb']
236         lamb_l1 = hyperparameters['lamb_l1']
237         lamb_entropy = hyperparameters['lamb_entropy']
238         lamb_coef = hyperparameters['lamb_coef']
239         lamb_coefdiff = hyperparameters['lamb_coefdiff']
240         beta = hyperparameters['beta']
241         y_th = hyperparameters['y_th']
242         lr = hyperparameters['lr']
243         model = KAN(width=[9] + num_nodes + [1], grid=grid, k=k, seed=42, device=device)
244         for step in range(1, steps+1):
245             fit_results = model.fit(
246                 training_data,
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187 def plot_actual_vs_predi cted_with_enhancemen ts(y_testing, y_predictions, feature, r2, num_training, num_total, 
unit):

188     y_testing = y_testing.flatten()
189     y_predictions = y_predictions.flatten()
190     a, b = np.polyfit(y_testing, y_predictions, 1)
191     fit_line = a * np.array(y_testing) + b
192     computed_r2 = r2_score(y_testing, y_predictions)
193     fig = plt.figure(figsize=(6, 6))
194     min_validation = min(min(y_testing), min(y_predictions))
195     max_validation = max(max(y_testing), max(y_predictions))
196     plt.xlim(min_validation, max_validation)
197     plt.ylim(min_validation, max_validation)
198     scatter_color = 'gray'
199     plt.scatter(y_testing, y_predictions, color=scatter_color, alpha=0.65, label='Datapoints', zorder=1)
200     plt.plot([min_validation, max_validation], [min_validation, max_validation], color='darkblue', linestyle='--

', label='Best Fit', zorder=1)
201     plt.plot(y_testing, fit_line, color='red', linestyle='-', label='Actual Fit', zorder=2)
202     plt.xlabel(f'Actual {feature} ({unit})')
203     plt.ylabel(f'Predicted {feature} ({unit})')
204     title = f'KAN (8-4) - Accuracy Plot - {feature} (R²: {r2:.2f})'
205     plt.title(title)
206     percent_training = round((num_training / num_total) * 100)
207     plt.text(0.97, 0.03, f'Training data: {num_training}\nDesign space: {num_total}\nTraining ratio: 

{percent_training:.2f}%', 
208              fontsize=10, bbox=dict(facecolor='white', edgecolor='lightgray', alpha=1), 

verticalalignment='bottom', horizontalalignment='right', transform=plt.gca().transAxes)
209     plt.legend(loc='upper left', framealpha=1, edgecolor='lightgray', fancybox=False)
210     plt.grid(True)
211     save_filename = f'KAN_{feature.replace(" ", "_").lower()}_accuracy_plot.png'
212     plt.savefig(save_filename, bbox_inches='tight', dpi=300)
213     plt.show()
214 def get_predictions_and_ plot(model, dataset, target_feature, r2_value, num_training, num_total, unit):
215     x_testing_tensor = dataset['test_input']
216     y_testing_tensor = dataset['test_label']
217     with torch.no_grad():
218         y_prediction_tensor = model(x_testing_tensor)
219     y_testing = y_testing_tensor.cpu().numpy()
220     y_pred = y_prediction_tensor.cpu().numpy()
221     plot_actual_vs_predi cted_with_enhancemen ts(y_testing, y_pred, target_feature, r2_value, num_training, 

num_total, unit)
222 get_predictions_and_ plot(model_material, dataset_material, 'Material Use', r2_material, num_training=6750, 

num_total=27000, unit='m³')
223 get_predictions_and_ plot(model_solar, dataset_solar, 'Solar Performance', r2_solar, num_training=6750, 

num_total=27000, unit='kWh/m²')
224 get_predictions_and_ plot(model_acoustic, dataset_acoustic, 'Acoustic Performance', r2_acoustic, 

num_training=6750, num_total=27000, unit='dB')
225
226 def training_process(training_data, target_name, hyperparameter_optio ns, image='training_imgs'):
227     if os.path.exists(image):
228         shutil.rmtree(image)
229     os.makedirs(image, exist_ok=True)
230     for hyperparameters in hyperparameter_optio ns:
231         num_nodes = hyperparameters['num_nodes']
232         grid = hyperparameters['grid']
233         k = hyperparameters['k']
234         steps = hyperparameters['steps']
235         lamb = hyperparameters['lamb']
236         lamb_l1 = hyperparameters['lamb_l1']
237         lamb_entropy = hyperparameters['lamb_entropy']
238         lamb_coef = hyperparameters['lamb_coef']
239         lamb_coefdiff = hyperparameters['lamb_coefdiff']
240         beta = hyperparameters['beta']
241         y_th = hyperparameters['y_th']
242         lr = hyperparameters['lr']
243         model = KAN(width=[9] + num_nodes + [1], grid=grid, k=k, seed=42, device=device)
244         for step in range(1, steps+1):
245             fit_results = model.fit(
246                 training_data,
247                 opt="LBFGS",
248                 steps=step,
249                 lamb=lamb,
250                 lamb_l1=lamb_l1,
251                 lamb_entropy=lamb_entropy,
252                 lamb_coef=lamb_coef,
253                 lamb_coefdiff=lamb_coefdiff,
254                 lr=lr,
255                 save_fig=False,
256                 beta=beta,
257                 in_vars=None,
258                 out_vars=None,
259                 singularity_avoiding =True,
260                 y_th=y_th,
261                 update_grid=True,
262                 grid_update_num=1,
263                 start_grid_update_st ep=1,
264                 stop_grid_update_ste p=steps)
265             img_path = os.path.join(image, f'{target_name}_step_{step:03d}.jpg')
266             model.plot(
267                 beta=beta,
268                 metric='forward_n',
269                 scale=2, 
270                 tick=False,
271                 sample=False,
272                 in_vars=None,
273                 out_vars=None)
274             plt.savefig(img_path, bbox_inches='tight', dpi=300)
275             plt.close()
276 material_hyperparame ter_options = [{'num_nodes': [4, 2], 'grid': 5, 'k': 3, 'steps': 10, 'lr': 1, 'lamb': 0, 

'lamb_l1': 1, 'lamb_entropy': 2, 'lamb_coef': 0, 'lamb_coefdiff': 0, 'beta': 100, 'y_th': 1000}]
277 solar_hyperparameter _options = [{'num_nodes': [4, 2], 'grid': 5, 'k': 3, 'steps': 10, 'lr': 1, 'lamb': 0, 

'lamb_l1': 1, 'lamb_entropy':2, 'lamb_coef': 0, 'lamb_coefdiff': 0, 'beta': 100, 'y_th': 1000}]
278 acoustic_hyperparame ter_options = [{'num_nodes': [8, 4], 'grid': 5, 'k': 3, 'steps': 10, 'lr': 1, 'lamb': 0, 

'lamb_l1': 1, 'lamb_entropy': 2, 'lamb_coef': 0, 'lamb_coefdiff': 0, 'beta': 100, 'y_th': 1000}]
279 training_process(dataset_material, 'Material Use', material_hyperparame ter_options, image='training_video_frame ↩

s_Material')
280 training_process(dataset_solar, 'Solar Performance', solar_hyperparameter _options, image='training_video_frame ↩

s_Solar')
281 training_process(dataset_acoustic, 'Acoustic Performance', acoustic_hyperparame ter_options, 

image='training_video_frame s_Acoustic')
282 # --------------------------------------------------------------------------------------------------------------#
283
284 # --------------------------------------------------------------------------------------------------------------#
285 # Predicting with KAN Models
286 # --------------------------------------------------------------------------------------------------------------#
287 def predict_and_save_ful l_data(model, standardized_input_d ata, original_input_data, input_features, 

output_filename):
288     model.eval()
289     with torch.no_grad():
290         y_prediction_tensor = model(standardized_input_d ata)
291     y_prediction = y_prediction_tensor.cpu().numpy().flatten().round(2)
292     df_predictions = pd.DataFrame(original_input_data, columns=input_features)
293     prediction_column_na me = output_filename.replace('_Predictions.csv', ' Predicted')
294     df_predictions[prediction_column_na me] = y_prediction
295     df_predictions.to_csv(output_filename, index=False)
296 full_input_data_stan dardized = torch.tensor(scaler.transform(total_input_vectors), dtype=torch.float32, 

device=device)
297 predict_and_save_ful l_data(model_material, full_input_data_stan dardized, total_input_vectors, input_features, 

'Material_Predictions .csv')
298 predict_and_save_ful l_data(model_solar, full_input_data_stan dardized, total_input_vectors, input_features, 

'Solar_Predictions.csv')
299 predict_and_save_ful l_data(model_acoustic, full_input_data_stan dardized, total_input_vectors, input_features, 

'Acoustic_Predictions .csv')
300 # --------------------------------------------------------------------------------------------------------------#
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247                 opt="LBFGS",
248                 steps=step,
249                 lamb=lamb,
250                 lamb_l1=lamb_l1,
251                 lamb_entropy=lamb_entropy,
252                 lamb_coef=lamb_coef,
253                 lamb_coefdiff=lamb_coefdiff,
254                 lr=lr,
255                 save_fig=False,
256                 beta=beta,
257                 in_vars=None,
258                 out_vars=None,
259                 singularity_avoiding =True,
260                 y_th=y_th,
261                 update_grid=True,
262                 grid_update_num=1,
263                 start_grid_update_st ep=1,
264                 stop_grid_update_ste p=steps)
265             img_path = os.path.join(image, f'{target_name}_step_{step:03d}.jpg')
266             model.plot(
267                 beta=beta,
268                 metric='forward_n',
269                 scale=2, 
270                 tick=False,
271                 sample=False,
272                 in_vars=None,
273                 out_vars=None)
274             plt.savefig(img_path, bbox_inches='tight', dpi=300)
275             plt.close()
276 material_hyperparame ter_options = [{'num_nodes': [4, 2], 'grid': 5, 'k': 3, 'steps': 10, 'lr': 1, 'lamb': 0, 

'lamb_l1': 1, 'lamb_entropy': 2, 'lamb_coef': 0, 'lamb_coefdiff': 0, 'beta': 100, 'y_th': 1000}]
277 solar_hyperparameter _options = [{'num_nodes': [4, 2], 'grid': 5, 'k': 3, 'steps': 10, 'lr': 1, 'lamb': 0, 

'lamb_l1': 1, 'lamb_entropy':2, 'lamb_coef': 0, 'lamb_coefdiff': 0, 'beta': 100, 'y_th': 1000}]
278 acoustic_hyperparame ter_options = [{'num_nodes': [8, 4], 'grid': 5, 'k': 3, 'steps': 10, 'lr': 1, 'lamb': 0, 

'lamb_l1': 1, 'lamb_entropy': 2, 'lamb_coef': 0, 'lamb_coefdiff': 0, 'beta': 100, 'y_th': 1000}]
279 training_process(dataset_material, 'Material Use', material_hyperparame ter_options, image='training_video_frame ↩

s_Material')
280 training_process(dataset_solar, 'Solar Performance', solar_hyperparameter _options, image='training_video_frame ↩

s_Solar')
281 training_process(dataset_acoustic, 'Acoustic Performance', acoustic_hyperparame ter_options, 

image='training_video_frame s_Acoustic')
282 # --------------------------------------------------------------------------------------------------------------#
283
284 # --------------------------------------------------------------------------------------------------------------#
285 # Predicting with KAN Models
286 # --------------------------------------------------------------------------------------------------------------#
287 def predict_and_save_ful l_data(model, standardized_input_d ata, original_input_data, input_features, 

output_filename):
288     model.eval()
289     with torch.no_grad():
290         y_prediction_tensor = model(standardized_input_d ata)
291     y_prediction = y_prediction_tensor.cpu().numpy().flatten().round(2)
292     df_predictions = pd.DataFrame(original_input_data, columns=input_features)
293     prediction_column_na me = output_filename.replace('_Predictions.csv', ' Predicted')
294     df_predictions[prediction_column_na me] = y_prediction
295     df_predictions.to_csv(output_filename, index=False)
296 full_input_data_stan dardized = torch.tensor(scaler.transform(total_input_vectors), dtype=torch.float32, 

device=device)
297 predict_and_save_ful l_data(model_material, full_input_data_stan dardized, total_input_vectors, input_features, 

'Material_Predictions .csv')
298 predict_and_save_ful l_data(model_solar, full_input_data_stan dardized, total_input_vectors, input_features, 

'Solar_Predictions.csv')
299 predict_and_save_ful l_data(model_acoustic, full_input_data_stan dardized, total_input_vectors, input_features, 

'Acoustic_Predictions .csv')
300 # --------------------------------------------------------------------------------------------------------------#
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MLP.py

1 # --------------------------------------------------------------------------------------------------------------#
2 # Importing libraries
3 # --------------------------------------------------------------------------------------------------------------#
4 import numpy as np 
5 import pandas as pd  
6 import matplotlib.pyplot as plt 
7 from sklearn.preprocessing import StandardScaler 
8 from sklearn.metrics import mean_squared_error, r2_score 
9 import tensorflow as tf  
10 import random
11 # --------------------------------------------------------------------------------------------------------------#
12
13 # --------------------------------------------------------------------------------------------------------------#
14 # Preprocessing data
15 # --------------------------------------------------------------------------------------------------------------#
16 random.seed(42)
17 geometry_vectors = pd.read_csv('Dataset/KAN_training_vectors _1-1500.csv', header=None, decimal=',')
18 geometry_vectors.columns = ['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 'BS2', 'SPD1']
19 material_use = pd.read_csv('Dataset/1A material use (1-1500).txt', header=0)
20 solar_performance = pd.read_csv('Dataset/1B solar performance (1-1500).txt', header=0)
21 acoustic_performance  = pd.read_csv('Dataset/1C acoustic performance (1-1500).txt', header=0)
22 min_length = min(len(geometry_vectors), len(material_use), len(solar_performance), len(acoustic_performance ))
23 geometry_vectors = geometry_vectors.iloc[:min_length].reset_index(drop=True)
24 material_use = material_use.iloc[:min_length].reset_index(drop=True)
25 solar_performance = solar_performance.iloc[:min_length].reset_index(drop=True)
26 acoustic_performance  = acoustic_performance .iloc[:min_length].reset_index(drop=True)
27 material_use.columns, solar_performance.columns, acoustic_performance .columns = ['Material'], ['Solar'], 

['Acoustic']
28 performance_metrics = pd.concat([material_use, solar_performance, acoustic_performance ], axis=1)
29 data = pd.concat([geometry_vectors, performance_metrics], axis=1)
30 input_features = ['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 'BS2', 'SPD1']
31 standardscaler = StandardScaler()
32 scaled = pd.DataFrame(standardscaler.fit_transform(data[input_features]), columns=input_features)
33 scaled[['Material', 'Solar', 'Acoustic']] = data[['Material', 'Solar', 'Acoustic']]
34 data_array = scaled.to_numpy()
35 train, val, test = np.split(data_array[np.random.permutation(len(data_array))], [int(0.7 * len(data_array)), 

int(0.85 * len(data_array))])
36 train = pd.DataFrame(train, columns=scaled.columns)
37 val = pd.DataFrame(val, columns=scaled.columns)
38 test = pd.DataFrame(test, columns=scaled.columns)
39 x_train, x_val, x_test = train[input_features].values, val[input_features].values, test[input_features].values
40 y_train_material, y_val_material, y_test_material = train['Material'].values, val['Material'].values, 

test['Material'].values
41 y_train_solar, y_val_solar, y_test_solar = train['Solar'].values, val['Solar'].values, test['Solar'].values
42 y_train_acoustic, y_val_acoustic, y_test_acoustic = train['Acoustic'].values, val['Acoustic'].values, 

test['Acoustic'].values
43
44 def plot_live_training_e rrors(history):
45     plt.ion()
46     fig, ax = plt.subplots()
47     ax.set_title('Live Training Loss Over Epochs')
48     ax.set_xlabel('Epochs')
49     ax.set_ylabel('Loss')
50     ax.grid(True, linestyle='--', linewidth=0.5, color='grey', which='both')
51     line1, = ax.plot([], [], label='Training Loss')
52     line2, = ax.plot([], [], label='Validation Loss')
53     ax.legend()
54     for epoch in range(len(history.history['loss'])):
55         line1.set_xdata(range(epoch + 1))
56         line1.set_ydata(history.history['loss'][:epoch + 1])
57         line2.set_xdata(range(epoch + 1))
58         line2.set_ydata(history.history['val_loss'][:epoch + 1])
59         ax.relim()
60         ax.autoscale_view()
61         plt.pause(0.1) 

E
Multi-Layer Perceptron

Inspired by:
- freeCodeCamp (2022, June 15). Machine learning for everybody – Full course [Video]. YouTube. https://www.youtube.com/watch?v=i_LwzRVP7bg
- TensorFlow (n.d.). Multilayer perceptrons for digit recognition with Core APIs. TensorFlow. https://www.tensorflow.org/guide/core/mlp_core
- DataScienceByExample (2023, June 24). How to evaluate and visualize regression. DataScienceByExample. https://www.datasciencebyexample.com/
  2023/06/24/how-to-evaluate-and-visualize-regression/
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MLP.py

1 # --------------------------------------------------------------------------------------------------------------#
2 # Importing libraries
3 # --------------------------------------------------------------------------------------------------------------#
4 import numpy as np 
5 import pandas as pd  
6 import matplotlib.pyplot as plt 
7 from sklearn.preprocessing import StandardScaler 
8 from sklearn.metrics import mean_squared_error, r2_score 
9 import tensorflow as tf  
10 import random
11 # --------------------------------------------------------------------------------------------------------------#
12
13 # --------------------------------------------------------------------------------------------------------------#
14 # Preprocessing data
15 # --------------------------------------------------------------------------------------------------------------#
16 random.seed(42)
17 geometry_vectors = pd.read_csv('Dataset/KAN_training_vectors _1-1500.csv', header=None, decimal=',')
18 geometry_vectors.columns = ['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 'BS2', 'SPD1']
19 material_use = pd.read_csv('Dataset/1A material use (1-1500).txt', header=0)
20 solar_performance = pd.read_csv('Dataset/1B solar performance (1-1500).txt', header=0)
21 acoustic_performance  = pd.read_csv('Dataset/1C acoustic performance (1-1500).txt', header=0)
22 min_length = min(len(geometry_vectors), len(material_use), len(solar_performance), len(acoustic_performance ))
23 geometry_vectors = geometry_vectors.iloc[:min_length].reset_index(drop=True)
24 material_use = material_use.iloc[:min_length].reset_index(drop=True)
25 solar_performance = solar_performance.iloc[:min_length].reset_index(drop=True)
26 acoustic_performance  = acoustic_performance .iloc[:min_length].reset_index(drop=True)
27 material_use.columns, solar_performance.columns, acoustic_performance .columns = ['Material'], ['Solar'], 

['Acoustic']
28 performance_metrics = pd.concat([material_use, solar_performance, acoustic_performance ], axis=1)
29 data = pd.concat([geometry_vectors, performance_metrics], axis=1)
30 input_features = ['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 'BS2', 'SPD1']
31 standardscaler = StandardScaler()
32 scaled = pd.DataFrame(standardscaler.fit_transform(data[input_features]), columns=input_features)
33 scaled[['Material', 'Solar', 'Acoustic']] = data[['Material', 'Solar', 'Acoustic']]
34 data_array = scaled.to_numpy()
35 train, val, test = np.split(data_array[np.random.permutation(len(data_array))], [int(0.7 * len(data_array)), 

int(0.85 * len(data_array))])
36 train = pd.DataFrame(train, columns=scaled.columns)
37 val = pd.DataFrame(val, columns=scaled.columns)
38 test = pd.DataFrame(test, columns=scaled.columns)
39 x_train, x_val, x_test = train[input_features].values, val[input_features].values, test[input_features].values
40 y_train_material, y_val_material, y_test_material = train['Material'].values, val['Material'].values, 

test['Material'].values
41 y_train_solar, y_val_solar, y_test_solar = train['Solar'].values, val['Solar'].values, test['Solar'].values
42 y_train_acoustic, y_val_acoustic, y_test_acoustic = train['Acoustic'].values, val['Acoustic'].values, 

test['Acoustic'].values
43
44 def plot_live_training_e rrors(history):
45     plt.ion()
46     fig, ax = plt.subplots()
47     ax.set_title('Live Training Loss Over Epochs')
48     ax.set_xlabel('Epochs')
49     ax.set_ylabel('Loss')
50     ax.grid(True, linestyle='--', linewidth=0.5, color='grey', which='both')
51     line1, = ax.plot([], [], label='Training Loss')
52     line2, = ax.plot([], [], label='Validation Loss')
53     ax.legend()
54     for epoch in range(len(history.history['loss'])):
55         line1.set_xdata(range(epoch + 1))
56         line1.set_ydata(history.history['loss'][:epoch + 1])
57         line2.set_xdata(range(epoch + 1))
58         line2.set_ydata(history.history['val_loss'][:epoch + 1])
59         ax.relim()
60         ax.autoscale_view()
61         plt.pause(0.1) 
62     plt.pause(1)
63     plt.close(fig)
64 # --------------------------------------------------------------------------------------------------------------#
65  
66 # --------------------------------------------------------------------------------------------------------------#
67 # Training Material MLP 01
68 # --------------------------------------------------------------------------------------------------------------#
69 callbacks_list = [
70     tf.keras.callbacks.ModelCheckpoint("Acoustic_MLP_model", save_best_only=True, save_format="tf"),
71     tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=50, verbose=1, restore_best_weights =True)]
72 def train_model_material (x_train, y_train, x_val, y_val, nodes_1, nodes_2, dropout_probability, learning_rate, 

batch_size, epochs):
73     model = tf.keras.Sequential([
74         tf.keras.layers.Dense(nodes_1, activation='relu', input_shape=(len(input_features),)),
75         tf.keras.layers.Dropout(dropout_probability),
76         tf.keras.layers.Dense(nodes_2, activation='relu'),
77         tf.keras.layers.Dropout(dropout_probability),
78         tf.keras.layers.Dense(1, activation='linear')])
79     model.compile(optimizer=tf.optimizers.Adam(learning_rate=learning_rate), loss='MSE')
80     history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, verbose=0, validation_data=

(x_val, y_val), callbacks=callbacks_list)
81     return model, history
82 least_validation_los s_material = float('inf')
83 best_model_material = None
84 best_hyperparameters _material = None
85 nodes_1 = 4
86 nodes_2 = 2
87 epochs = 500
88 for dropout_probability in [0.01]:
89     for learning_rate in [0.0005]:
90         for batch_size in [8]:
91             model_material, history_material = train_model_material (x_train, y_train_material, x_val, 

y_val_material, nodes_1, nodes_2, dropout_probability, learning_rate, batch_size, epochs)
92             plot_live_training_e rrors(history_material)
93             validation_loss_mate rial = model_material.evaluate(x_val, y_val_material, verbose=0)
94             if validation_loss_mate rial < least_validation_los s_material:
95                 least_validation_los s_material = validation_loss_mate rial
96                 best_model_material = model_material
97                 best_hyperparameters _material = (dropout_probability, learning_rate, batch_size, epochs)
98 y_predictions_materi al = best_model_material.predict(x_test)
99 recomputed_MSE_mater ial = mean_squared_error(y_test_material, y_predictions_materi al.flatten())

100 recomputed_R2_materi al = r2_score(y_test_material, y_predictions_materi al.flatten())
101 # --------------------------------------------------------------------------------------------------------------#
102
103 # --------------------------------------------------------------------------------------------------------------#
104 # Training Solar MLP 01
105 # --------------------------------------------------------------------------------------------------------------#
106 callbacks_list = [
107     tf.keras.callbacks.ModelCheckpoint("Acoustic_MLP_model", save_best_only=True, save_format="tf"),
108     tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=50, verbose=1, restore_best_weights =True)]
109 def train_model_solar(x_train, y_train, x_val, y_val, nodes_1, nodes_2, dropout_probability, learning_rate, 

batch_size, epochs):
110     model = tf.keras.Sequential([
111         tf.keras.layers.Dense(nodes_1, activation='relu', input_shape=(len(input_features),)),
112         tf.keras.layers.Dropout(dropout_probability),
113         tf.keras.layers.Dense(nodes_2, activation='relu'),
114         tf.keras.layers.Dropout(dropout_probability),
115         tf.keras.layers.Dense(1, activation='linear')])
116     model.compile(optimizer=tf.optimizers.Adam(learning_rate=learning_rate), loss='MSE')
117     history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, verbose=0, validation_data=

(x_val, y_val), callbacks=callbacks_list)
118     return model, history
119 least_validation_los s_solar = float('inf')
120 best_model_solar = None
121 best_hyperparameters _solar = None
122 nodes_1 = 4
123 nodes_2 = 2
124 epochs = 1000
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62     plt.pause(1)
63     plt.close(fig)
64 # --------------------------------------------------------------------------------------------------------------#
65  
66 # --------------------------------------------------------------------------------------------------------------#
67 # Training Material MLP 01
68 # --------------------------------------------------------------------------------------------------------------#
69 callbacks_list = [
70     tf.keras.callbacks.ModelCheckpoint("Acoustic_MLP_model", save_best_only=True, save_format="tf"),
71     tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=50, verbose=1, restore_best_weights =True)]
72 def train_model_material (x_train, y_train, x_val, y_val, nodes_1, nodes_2, dropout_probability, learning_rate, 

batch_size, epochs):
73     model = tf.keras.Sequential([
74         tf.keras.layers.Dense(nodes_1, activation='relu', input_shape=(len(input_features),)),
75         tf.keras.layers.Dropout(dropout_probability),
76         tf.keras.layers.Dense(nodes_2, activation='relu'),
77         tf.keras.layers.Dropout(dropout_probability),
78         tf.keras.layers.Dense(1, activation='linear')])
79     model.compile(optimizer=tf.optimizers.Adam(learning_rate=learning_rate), loss='MSE')
80     history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, verbose=0, validation_data=

(x_val, y_val), callbacks=callbacks_list)
81     return model, history
82 least_validation_los s_material = float('inf')
83 best_model_material = None
84 best_hyperparameters _material = None
85 nodes_1 = 4
86 nodes_2 = 2
87 epochs = 500
88 for dropout_probability in [0.01]:
89     for learning_rate in [0.0005]:
90         for batch_size in [8]:
91             model_material, history_material = train_model_material (x_train, y_train_material, x_val, 

y_val_material, nodes_1, nodes_2, dropout_probability, learning_rate, batch_size, epochs)
92             plot_live_training_e rrors(history_material)
93             validation_loss_mate rial = model_material.evaluate(x_val, y_val_material, verbose=0)
94             if validation_loss_mate rial < least_validation_los s_material:
95                 least_validation_los s_material = validation_loss_mate rial
96                 best_model_material = model_material
97                 best_hyperparameters _material = (dropout_probability, learning_rate, batch_size, epochs)
98 y_predictions_materi al = best_model_material.predict(x_test)
99 recomputed_MSE_mater ial = mean_squared_error(y_test_material, y_predictions_materi al.flatten())

100 recomputed_R2_materi al = r2_score(y_test_material, y_predictions_materi al.flatten())
101 # --------------------------------------------------------------------------------------------------------------#
102
103 # --------------------------------------------------------------------------------------------------------------#
104 # Training Solar MLP 01
105 # --------------------------------------------------------------------------------------------------------------#
106 callbacks_list = [
107     tf.keras.callbacks.ModelCheckpoint("Acoustic_MLP_model", save_best_only=True, save_format="tf"),
108     tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=50, verbose=1, restore_best_weights =True)]
109 def train_model_solar(x_train, y_train, x_val, y_val, nodes_1, nodes_2, dropout_probability, learning_rate, 

batch_size, epochs):
110     model = tf.keras.Sequential([
111         tf.keras.layers.Dense(nodes_1, activation='relu', input_shape=(len(input_features),)),
112         tf.keras.layers.Dropout(dropout_probability),
113         tf.keras.layers.Dense(nodes_2, activation='relu'),
114         tf.keras.layers.Dropout(dropout_probability),
115         tf.keras.layers.Dense(1, activation='linear')])
116     model.compile(optimizer=tf.optimizers.Adam(learning_rate=learning_rate), loss='MSE')
117     history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, verbose=0, validation_data=

(x_val, y_val), callbacks=callbacks_list)
118     return model, history
119 least_validation_los s_solar = float('inf')
120 best_model_solar = None
121 best_hyperparameters _solar = None
122 nodes_1 = 4
123 nodes_2 = 2
124 epochs = 1000
125 for dropout_probability in [0.001]:
126     for learning_rate in [0.005]:
127         for batch_size in [8]:
128             model_solar, history_solar = train_model_solar(x_train, y_train_solar, x_val, y_val_solar, nodes_1, 

nodes_2, dropout_probability, learning_rate, batch_size, epochs)
129             plot_live_training_e rrors(history_solar)
130             validation_loss_sola r = model_solar.evaluate(x_val, y_val_solar, verbose=0)
131             if validation_loss_sola r < least_validation_los s_solar:
132                 least_validation_los s_solar = validation_loss_sola r
133                 best_model_solar = model_solar
134                 best_hyperparameters _solar = (dropout_probability, learning_rate, batch_size, epochs)
135 y_predictions_solar = best_model_solar.predict(x_test)
136 recomputed_MSE_solar  = mean_squared_error(y_test_solar, y_predictions_solar.flatten())
137 recomputed_R2_solar = r2_score(y_test_solar, y_predictions_solar.flatten())
138 # --------------------------------------------------------------------------------------------------------------#
139
140 # --------------------------------------------------------------------------------------------------------------#
141 # Training Acoustic MLP 01
142 # --------------------------------------------------------------------------------------------------------------#
143 callbacks_list = [
144     tf.keras.callbacks.ModelCheckpoint("Acoustic_MLP_model", save_best_only=True, save_format="tf"),
145     tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=50, verbose=1, restore_best_weights =True)]
146 def train_model_acoustic (x_train, y_train, x_val, y_val, nodes_1, nodes_2, dropout_probability, learning_rate, 

batch_size, epochs):
147     model = tf.keras.Sequential([
148         tf.keras.layers.Dense(nodes_1, activation='relu', input_shape=(len(input_features),)),
149         tf.keras.layers.Dropout(dropout_probability),
150         tf.keras.layers.Dense(nodes_2, activation='relu'),
151         tf.keras.layers.Dropout(dropout_probability),
152         tf.keras.layers.Dense(1, activation='linear')])
153     model.compile(optimizer=tf.optimizers.Adam(learning_rate=learning_rate), loss='MSE')
154     history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, verbose=0, validation_data=

(x_val, y_val), callbacks=callbacks_list)
155     return model, history
156 least_validation_los s_acoustic = float('inf')
157 best_model_acoustic = None
158 best_hyperparameters _acoustic = None
159 nodes_1 = 8
160 nodes_2 = 4
161 epochs = 1000 
162 for dropout_probability in [0.00005]:
163     for learning_rate in [0.001]:
164         for batch_size in [32]:
165             model_acoustic, history_acoustic = train_model_acoustic (x_train, y_train_acoustic, x_val, 

y_val_acoustic, nodes_1, nodes_2, dropout_probability, learning_rate, batch_size, epochs)
166             plot_live_training_e rrors(history_acoustic)
167             validation_loss_acou stic = model_acoustic.evaluate(x_val, y_val_acoustic, verbose=0)
168             if validation_loss_acou stic < least_validation_los s_acoustic:
169                 least_validation_los s_acoustic = validation_loss_acou stic
170                 best_model_acoustic = model_acoustic
171                 best_hyperparameters _acoustic = (dropout_probability, learning_rate, batch_size, epochs)
172 y_predictions_acoust ic = best_model_acoustic.predict(x_test)
173 recomputed_MSE_acous tic = mean_squared_error(y_test_acoustic, y_predictions_acoust ic.flatten())
174 recomputed_R2_acoust ic = r2_score(y_test_acoustic, y_predictions_acoust ic.flatten())
175 # --------------------------------------------------------------------------------------------------------------#
176
177 # --------------------------------------------------------------------------------------------------------------#
178 # Accuracy plots
179 # --------------------------------------------------------------------------------------------------------------#
180 def plot_actual_vs_predi cted_with_enhancemen ts(y_testing, y_prediction, feature, accuracy, num_training, 

num_total, unit):
181     y_testing = y_testing.flatten()
182     y_prediction = y_prediction.flatten()
183     a, b = np.polyfit(y_testing, y_prediction, 1)
184     fit_line = a * np.array(y_testing) + b
185     computed_r2 = r2_score(y_testing, y_prediction)
186     fig = plt.figure(figsize=(6, 6))
187     min_validation = min(min(y_testing), min(y_prediction))
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125 for dropout_probability in [0.001]:
126     for learning_rate in [0.005]:
127         for batch_size in [8]:
128             model_solar, history_solar = train_model_solar(x_train, y_train_solar, x_val, y_val_solar, nodes_1, 

nodes_2, dropout_probability, learning_rate, batch_size, epochs)
129             plot_live_training_e rrors(history_solar)
130             validation_loss_sola r = model_solar.evaluate(x_val, y_val_solar, verbose=0)
131             if validation_loss_sola r < least_validation_los s_solar:
132                 least_validation_los s_solar = validation_loss_sola r
133                 best_model_solar = model_solar
134                 best_hyperparameters _solar = (dropout_probability, learning_rate, batch_size, epochs)
135 y_predictions_solar = best_model_solar.predict(x_test)
136 recomputed_MSE_solar  = mean_squared_error(y_test_solar, y_predictions_solar.flatten())
137 recomputed_R2_solar = r2_score(y_test_solar, y_predictions_solar.flatten())
138 # --------------------------------------------------------------------------------------------------------------#
139
140 # --------------------------------------------------------------------------------------------------------------#
141 # Training Acoustic MLP 01
142 # --------------------------------------------------------------------------------------------------------------#
143 callbacks_list = [
144     tf.keras.callbacks.ModelCheckpoint("Acoustic_MLP_model", save_best_only=True, save_format="tf"),
145     tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=50, verbose=1, restore_best_weights =True)]
146 def train_model_acoustic (x_train, y_train, x_val, y_val, nodes_1, nodes_2, dropout_probability, learning_rate, 

batch_size, epochs):
147     model = tf.keras.Sequential([
148         tf.keras.layers.Dense(nodes_1, activation='relu', input_shape=(len(input_features),)),
149         tf.keras.layers.Dropout(dropout_probability),
150         tf.keras.layers.Dense(nodes_2, activation='relu'),
151         tf.keras.layers.Dropout(dropout_probability),
152         tf.keras.layers.Dense(1, activation='linear')])
153     model.compile(optimizer=tf.optimizers.Adam(learning_rate=learning_rate), loss='MSE')
154     history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, verbose=0, validation_data=

(x_val, y_val), callbacks=callbacks_list)
155     return model, history
156 least_validation_los s_acoustic = float('inf')
157 best_model_acoustic = None
158 best_hyperparameters _acoustic = None
159 nodes_1 = 8
160 nodes_2 = 4
161 epochs = 1000 
162 for dropout_probability in [0.00005]:
163     for learning_rate in [0.001]:
164         for batch_size in [32]:
165             model_acoustic, history_acoustic = train_model_acoustic (x_train, y_train_acoustic, x_val, 

y_val_acoustic, nodes_1, nodes_2, dropout_probability, learning_rate, batch_size, epochs)
166             plot_live_training_e rrors(history_acoustic)
167             validation_loss_acou stic = model_acoustic.evaluate(x_val, y_val_acoustic, verbose=0)
168             if validation_loss_acou stic < least_validation_los s_acoustic:
169                 least_validation_los s_acoustic = validation_loss_acou stic
170                 best_model_acoustic = model_acoustic
171                 best_hyperparameters _acoustic = (dropout_probability, learning_rate, batch_size, epochs)
172 y_predictions_acoust ic = best_model_acoustic.predict(x_test)
173 recomputed_MSE_acous tic = mean_squared_error(y_test_acoustic, y_predictions_acoust ic.flatten())
174 recomputed_R2_acoust ic = r2_score(y_test_acoustic, y_predictions_acoust ic.flatten())
175 # --------------------------------------------------------------------------------------------------------------#
176
177 # --------------------------------------------------------------------------------------------------------------#
178 # Accuracy plots
179 # --------------------------------------------------------------------------------------------------------------#
180 def plot_actual_vs_predi cted_with_enhancemen ts(y_testing, y_prediction, feature, accuracy, num_training, 

num_total, unit):
181     y_testing = y_testing.flatten()
182     y_prediction = y_prediction.flatten()
183     a, b = np.polyfit(y_testing, y_prediction, 1)
184     fit_line = a * np.array(y_testing) + b
185     computed_r2 = r2_score(y_testing, y_prediction)
186     fig = plt.figure(figsize=(6, 6))
187     min_validation = min(min(y_testing), min(y_prediction))
188     max_validation = max(max(y_testing), max(y_prediction))
189     plt.xlim(min_validation, max_validation)
190     plt.ylim(min_validation, max_validation)
191     scatter_color = 'gray'
192     plt.scatter(y_testing, y_prediction, color=scatter_color, alpha=0.65, label='Datapoints', zorder=1)
193     plt.plot([min_validation, max_validation], [min_validation, max_validation], color='darkblue', linestyle='--

', label='Best Fit', zorder=1)
194     plt.plot(y_testing, fit_line, color='red', linestyle='-', label='Actual Fit', zorder=2)
195     plt.xlabel(f'Actual {feature} ({unit})')
196     plt.ylabel(f'Predicted {feature} ({unit})')
197     title = f'MLP (128-64-32-16) - Accuracy Plot - {feature} (R²: {accuracy:.2f})'
198     plt.title(title)
199     percent_training = round((num_training / num_total) * 100)
200     plt.text(0.97, 0.03, f'Training data: {num_training}\nDesign space: {num_total}\nTraining ratio: 

{percent_training:.2f}%', 
201              fontsize=10, bbox=dict(facecolor='white', edgecolor='lightgray', alpha=1), 

verticalalignment='bottom', horizontalalignment='right', transform=plt.gca().transAxes)
202     plt.legend(loc='upper left', framealpha=1, edgecolor='lightgray', fancybox=False)
203     plt.grid(True)
204     save_filename = f'MLP_{feature.replace(" ", "_").lower()}_accuracy_plot.png'
205     plt.savefig(save_filename, bbox_inches='tight', dpi=300)
206     plt.show()
207 def get_predictions_and_ plot(model, x_testing, y_testing, feature, num_training, num_total, unit):
208     y_prediction = model.predict(x_testing).flatten()
209     accuracy = r2_score(y_testing, y_prediction)
210     plot_actual_vs_predi cted_with_enhancemen ts(y_testing, y_prediction, feature, accuracy, num_training, 

num_total, unit)
211 get_predictions_and_ plot(best_model_material, x_test, y_test_material, 'Material Use', num_training=6750, 

num_total=27000, unit='m³')
212 get_predictions_and_ plot(best_model_solar, x_test, y_test_solar, 'Solar Performance', num_training=6750, 

num_total=27000, unit='kWh/m²')
213 get_predictions_and_ plot(best_model_acoustic, x_test, y_test_acoustic, 'Acoustic', num_training=6750, 

num_total=27000, unit='dB')
214 # --------------------------------------------------------------------------------------------------------------#
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Sensitivity analysis

sensitivity analysis.py

1 import numpy as np
2 import pandas as pd
3 from sklearn.preprocessing import StandardScaler
4 import torch
5 import random
6
7 random.seed(42)
8 device = torch.device('succeeded' if torch.cuda.is_available() else 'failed')
9 geometry_vectors = pd.read_csv('fine-tuning/Fine-tuning_vectors_test.csv', header=None, decimal=',')

10 geometry_vectors.columns = ['Y1', 'Y2', 'Y3', 'X2', 'W2', 'TS1', 'SCD1', 'BS2', 'SPD1']
11 material_use = pd.read_csv('fine-tuning/Material use (216)_test.txt', header=0, decimal='.', names=['Material'])
12 solar_performance = pd.read_csv('fine-tuning/Solar performance (216)_test.txt', header=0, decimal='.', names=

['Solar'])
13 acoustic_performance  = pd.read_csv('fine-tuning/Acoustic performance (216)_test.txt', header=0, decimal='.', 

names=['Acoustic'])
14 performance_metrics = pd.concat([material_use, solar_performance, acoustic_performance ], axis=1)
15 input_features = ['X2', 'W2', 'TS1', 'SCD1', 'BS2', 'SPD1']
16 data = pd.concat([geometry_vectors[input_features], performance_metrics], axis=1)
17 print("\nData without Y1, Y2, Y3:\n", data)
18 standardscaler = StandardScaler()
19 standardised = pd.DataFrame(standardscaler.fit_transform(data[input_features]), columns=input_features)
20 standardised[['Material', 'Solar', 'Acoustic']] = data[['Material', 'Solar', 'Acoustic']]
21 performance_metrics_ names = ['Material', 'Solar', 'Acoustic']
22 print("\nStandardized Data with Performance Metrics:\n", standardised)
23
24 def sensitivity_analysis (metric_name):
25     influence_percentage s = {}
26     performance_range = data[metric_name].max() - data[metric_name].min()
27     for variable in input_features:
28         influences = []
29         for row in range(len(standardised)):
30             for column in range(row + 1, len(standardised)):
31                 if (standardised.iloc[row][input_features].drop(variable) == standardised.iloc[column]

[input_features].drop(variable)).all() and standardised.iloc[row][variable] != standardised.iloc[column]
[variable]:

32                     perf_change = data.iloc[column][metric_name] - data.iloc[row][metric_name]
33                     influence = (perf_change / performance_range) * 100
34                     influences.append(abs(influence))
35         avg_influence = np.mean(influences) if influences else 0
36         influence_percentage s[variable] = avg_influence
37     total_influence = sum(influence_percentage s.values())
38     for variable in influence_percentage s:
39         influence_percentage s[variable] = (influence_percentage s[variable] / total_influence * 100) if 

total_influence != 0 else 0
40     return pd.DataFrame.from_dict(influence_percentage s, orient='index', columns=

[f'Influence_{metric_name}']).round(2)
41 for metric in performance_metrics_ names:
42     influence_df = sensitivity_analysis (metric)
43     print(f"\nInfluence Percentages for {metric}:\n", influence_df)
44     influence_df.to_csv(f'sensitivity_analysis _{metric}.csv')
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Inspired by:
- freeCodeCamp (2022, June 15). Machine learning for everybody – Full course [Video]. YouTube. https://www.youtube.com/watch?v=i_LwzRVP7bg
- Javatpoint (n.d.). Sensitivity Analysis to Optimize Process Quality in Python. Javatpoint. https://www.javatpoint.com/sensitivity-analysis-to-optimize-
  process-quality-in-python?utm_source
- Kundu, D. (2023, July 30). Identifying important features using Python. Medium. https://medium.com/@kundu.deepanjan/a-practical-guide-for-
  identifying-important-features-using-python-5448f7f99edd
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Design exploration
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Figure G.1. The creation of the hexagonal grid, using the hexagonal, scale, and extrude component, with a different thickness for hexagons that contain facade designs.

Figure G.2. Automatic baking and material allocation of node design geometries using the object bake component, and the design variables that are not used in exploration.
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Figure G.3. The creation of a weighted performance surface using remap numbers and Delaunay mesh, a performance threshold plane, a legend, and lines to indicate designs.

Figure G.4. Creating a slider that controls the height of the performance threshold plane, using the remap numbers component and the height of the performance surface.

Figure G.5. The start of the design exploration’s fine-tuning phase, with the creation of a single hexagonal base with the selected facade design, and the control panel. 

Figure G.6. Creating the top part of the three-dimensional information box, with the weights for each performance metric, their names, and their absolute performance values. 
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Figure G.8. Creating the last part of the information box, with the design variables’ influence percentages using an interpolated curve which is filled with ruled surface.

Figure G.7. Creating the middle part of the information box, with the performance score from 1 to 10 using remap numbers on the original domain of the performance values.

Figure G.9. Creating the design variable names and their absolute values using the text tag 3D component, and the influence threshold percentage below their names.
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Figure G.12. Using the best-performing facade design to extract its design variable settings, and using these values to highlight these optimal settings in the information box.

Figure G.11. Calculating the weighted performance score of the facade design, using the read csv file, remap numbers, mass addition, and multiplication components.

Figure G.10. Creating the design variables value range lines with points indicating the number of values in each range, and points indicating the current facade’s setting.



H
Questionnaire

124

Dear participant, please take 5 to 10 minutes to complete this questionnaire. Your feedback will remain 
fully anonymous. Please focus on both frameworks as they were applied specifically for facade design.

If you have any questions left, please feel free to contact corresponding researcher Djani Cerneus at D.R.
Cerneus@student.tudelft.nl or responsible researcher Alessandra Luna Navarro at A.LunaNavarro@tudelft.nl.

Thank you for your participation!

1. How familiar are you with AI-driven tools or Machine Learning?

5. How would you assess the overall impression of the orientation phase interface?

6. How effective was the orientation phase in enabling fast design orientation?

9. Did the orientation phase help you confidently identify the best design option?

7. How intuitive was design exploration during the orientation phase?

8. How useful were the tools provided during the orientation phase (e.g. performance metric weights,
performance threshold plane, and performance score line) in narrowing down design options?

2. How familiar are you with Rhino 3D or Grasshopper?

3. How experienced are you with facade design?

4. How comfortable are you with using novel design frameworks?

Not familiar

Not familiar

No experience

Uncomfortable

Very poor

Very ineffective

Strongly disagree

Not intuitive

Not useful

Slightly familiar

Slightly familiar

Limited experience

Slightly comfortable

Poor

Ineffective

Disagree

Slightly intuitive

Slightly useful

Neutral

Neutral

Neutral

Neutral

Neutral

Neutral

Neutral

Neutral

Neutral

Familiar

Familiar

Experienced

Comfortable

Good

Effective

Agree

Intuitive

Useful

Very familiar

Very familiar

Very experienced

Very comfortable

Excellent

Very effective

Strongly agree

Very intuitive

Very useful

A. Participant Background

B. Orientation Phase
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13. How intuitive was design exploration during the fine-tuning phase?

15. Did the fine-tuning phase help you confidently identify the best design option?

16. How satisfied are you with the final design chosen during the fine-tuning phase?

Strongly disagree Disagree Neutral Agree Strongly agree

Very dissatisfied Dissatisfied Neutral Satisfied Very satisfied

17. Did the overall framework provide a good balance between qualitative and quantitative performance?

18. How effective was the overall framework in exploring the design space?

21. Which framework made you feel more confident in the final design choices?

22. Which framework did you find more effective for facade design exploration overall?

D. Overall Design Exploration

Strongly disagree

Traditional framework

Traditional framework

Disagree Neutral

Neutral

Neutral

Agree Strongly agree

Novel framework

Novel framework

E. Comparison With Traditional Methods

19. How would you compare the orientation phase of the novel framework with the traditional between-
cluster exploration phase in terms of visualisation, speed, usability, and effectiveness in decision-making?

20. How would you compare the fine-tuning phase of the novel framework with the traditional inside-
cluster exploration phase in terms of visualisation, speed, usability, and effectiveness in decision-making?

Much worse

Much worse

Worse

Worse

Neutral

Neutral

Better

Better

Much better

Much better

14. How useful was the information panel for adjusting variables stratigically toward optimal performance?

12. How effective was the fine-tuning phase in refining your chosen design?
Very ineffective

Very ineffective

Ineffective

Ineffective

Neutral

Neutral

Effective

Effective

Very effective

Very effective

11. How would you assess the overall impression of the fine-tuning phase interface?
Very poor Poor Neutral Good Excellent

C. Fine-Tuning Phase

Not intuitive Slightly intuitive Neutral Intuitive Very intuitive

Not useful Slightly useful Neutral Useful Very useful

10. How satisfied are you with the final design chosen during the orientation phase?
Very dissatisfied Dissatisfied Neutral Satisfied Very satisfied


