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1. Introduction

The Network or Macroscopic Fundamental Diagram (MFD) for vehicular networks has received a lot of attention 
in the past decade, gradually leading to a comprehensive theory of network dynamics (Daganzo (2007), Daganzo 
and Geroliminis (2008)). Hoogendoorn et al. (2011) has shown that a similar relation exists between the number of 
pedestrians in an area and the average flow in that area (production). Saberi and Mahmassani (2014) builds upon 
Hoogendoorn et al. (2010) and also shows that pedestrian crowds have an area-wide fundamental diagram that is 
similar to a network fundamental diagram of vehicular traffic, using empirical data from experiments. Moreover, 
they show that in a multidirectional area pedestrian traffic exhibits hysteresis behavior similar to that of some other 
many-particle physical systems. The observed hysteresis formed a clockwise loop in which the area wide pedestrian 
flow was higher during the loading period than during the unloading period. 

Pedestrian dynamics are known for its sensitivity to homogeneity of the pedestrian flow composition. Campanella 
et al. (2008) and Yang et al. (2014) show the consequences of heterogeneity on e.g. breakdown probability 
(capacity). Similar effects of the spatial variability of vehicle density on urban capacity are found by a.o. 
Mazloumian et al. (2010) and Daganzo et al. (2011). Homogeneity also plays an important role in the MFD, as the 
condition that the congestion is spread homogeneously over the network is one of the assumptions under which a 
proper shape of the MFD is found. Knoop et al. (2015) shows the effect of inhomogeneity by deriving the so-called 
generalized macroscopic fundamental diagram (GMFD). This effect of inhomogeneity is also found for MFDs for 
pedestrian traffic. Daamen et al. (2015) considers the effects of spatial inhomogeneity of the density and found that 
at the same density, a larger spatial variation in density leads to reduced network flows. 

However, a thorough theoretical underpinning of the MFD and a quantification of the effect of the spatial 
distribution of density does not exist yet. This contribution builds upon the before-mentioned exploration of the 
pedestrian macroscopic fundamental diagram by Hoogendoorn et al. (2011). We explore the concept of the MFD for 
region-wide pedestrian flow operations (referred to as the p-MFD in the ensuing) and derive a relation between flow, 
(average network) density and spatial distribution of density. Next to performing several theoretical analyses, we 
investigate the characteristics of the p-MFD using both experimental and simulation data. 

This contribution starts with an overview of the main definitions, followed by theoretical considerations on the p-
MFD. Then, the properties of the p-MFD are investigated using data from micro-simulation (section 4) and data 
from laboratory experiments (section 5). We end with an overview of applications of the MFD for pedestrian 
networks, and conclusions and recommendations. 

2. Definitions and nomenclature

Pedestrian flows are two (and in some cases even three) dimensional. This implies that common concepts from –
generally one-dimensional – vehicular traffic flow theory, like flows, speeds, and densities, need to be re-considered 
carefully become they can be used in a pedestrian flow context. From a macroscopic (or rather, continuum) 
perspective, concepts like density, flow and average speed are relatively straightforward to interpret. For an 
introduction into the key variables for continuum multi-directional pedestrian flow modeling, we refer to 
Hoogendoorn et al. (2015). 

For microscopic analyses using either simulation data or experimental data, concepts are somewhat more 
ambiguous. Duives et al. (2015) compares nine different definitions of density and shows that the results differ 
considerably when using the same underlying data set. Johansson (2009) and Zhang et al. (2011) show that these 
measures to compute the density might introduce dissimilarities between the resulting fundamental diagrams. 

In this contribution, we use the concept of Voronoi diagrams (Zhang and Seyfried (2013)) to the microscopic data 
from either simulations or from experiments to determine the local density and the spatial density variation. Fig. 1 
shows an example of the Voronoi diagram. In a Voronoi diagram, each cell corresponds to a single pedestrian  and 
includes all points in the area closer to pedestrian  than to any other pedestrian. The crosses indicate the locations 
of the individual pedestrians  at a time instant . The cells are the local regions that reflect the area  that is
available to the pedestrian.  

© 2017 The Authors. Elsevier B.V. All rights reserved. 
Peer review under responsibility of the scientific committee of the 22nd International Symposium on Transportation and Traffic Theory.
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Fig. 1. Example of the Voronoi diagram. 

For the concepts discussed in this paper, we will modify the standard Voronoi approach in such a way that 
, where  is the (two-dimensional) walking area. Having computed the Voronoi diagram, we can define 

a pedestrian specific density :

1
Ωi k

i k

t
t

. (1) 

The average density  for time instant  is then given by averaging the pedestrian specific densities :

1

1 n

k i k
i

t t
n

, (2) 

where  is the amount of pedestrians in the area. As a measure of the spatial density variation , we use the
standard deviation of the local densities, i.e.: 

22

1

1 n

k i k k
i

t t t
n

. (3) 

The region-wide instantaneous mean speed is determined by taking the average speed of all pedestrians present in 
the region at time instant . For a more thorough discussion on the impact of this definition, as well as alternative
definitions, we refer to Duives et al. (2015). 
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3. Theoretical considerations

The focus of this contribution is the analysis of a network or area wide function describing the overall network
operations in terms of flow as a function of some area wide quantities, such as average density. Before investigating 
if such a relation exists using simulation and experimental data, let us first consider area-wide pedestrian flow 
operations from a more theoretical perspective. 

3.1. Upper bound for MFD for concave FDs 

Consider a region  that is divided into disjoint subregions . Let us assume that for each of these subregions,
pedestrian flow operations can be adequately described by a fundamental relation , where  denotes the 
average flow (in ) and  denotes the density (in ). We assume that this function is concave. For the sake of
simplicity, we will for now not consider multi-directional flows. With knowledge of the density  in a subregion

, we can thus determine the flow by applying the fundamental diagram.
Let us now consider the complete region . Assuming that all  subregions have the same area, we get: 

1

1 m

i
im

. (4) 

Since is concave, we have according to Jensen’s inequality: 

1

1 m

i
i

q Q Q
m

. (5) 

This means that the local fundamental diagrams will form the upper bound of an eventual relation between the 
region-average density  and a region-average flow . 

3.2. Analytical derivation of the pedestrian macroscopic fundamental diagram 

More precise approximations can be made assuming specific local fundamental relations. For the sake of 
argument, let us assume that the following local fundamental diagram (suggested by Greenshields (1947)) applies 
for the subregions :

0 1
jam

Q v . (6) 

If we want to determine a relation between  and , again assuming that all subregions have the same area, we 
get: 

0

1 1

1 1 1
m m

i i
i i jam

q Q v
m m

. (7)
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Some straightforward calculations reveal that: 

0 0
0 2 21

jam jam jam

v vq v Q , (8) 

where 

22

1

1 m

i
im

(9) 

is the spatial density variation. Eqn. (8) shows the existence of a function  that relates the region wide
flow to the region wide density and spatial density variation. We can see that the spatial variation has a negative 
impact on the (maximum) network production. The implies that the network capacity is conditional on the spatial 
variation as well. 

As a direct consequence, a function relating the region wide flow to the region wide density will only exist if the 
spatial density variation is a function of the region wide density, i.e. . This will hold if the spatial 
distributions of the pedestrian flows over the areas are the same for a specific network load (average density) in each 
case, and for each moment in time (including when the network is loaded and unloaded), see also Geroliminis and 
Sun (2011). In many cases, this will not be the case due to differences in bottleneck activation during loading and 
unloading of the network, temporal differences in demand patterns for different times of the day, etc. Hence, often, 
the spatial density variation would have to be explicitly considered in the representation of the region wide relation 
between region wide flow parameters. Note that in section 6.3, we briefly revisit this issue. Also note that this whole 
reasoning holds for vehicular traffic as well. 

3.3. Analytical derivation for generic local fundamental diagrams 

The Greenshields fundamental diagram has the nice property that it allows derivation of a p-MFD that only 
depends on the average density and the spatial density variation; it is independent on the specific spatial density 
distribution. In this section, we illustrate how the result can be generalized to other fundamental diagrams if we 
assume a specific distribution of the density across the considered area. 

Let us again consider a region  divided into equally small subareas . We assume that the subareas are small
enough to allow assuming that the distribution of the density in the subarea is homogeneous. Let 
denote the (empirical) probability density function of the distribution that stems from the densities  at the
subareas. Using this representation, the mean density and spatial density variation can be determined by: 

E f d (10) 

and: 

2 22 E f d (11) 

respectively. 
For the p-MFD, we then have: 

q E Q Q f d . (12)
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The expression shows the dependence of the shape of the spatial distribution of the density as reflected by .
Revisiting the p-MFD based on the Greenshields fundamental diagram (6), we note that: 

2 0, 1 / jamq Q v f dQQ . (13) 

For the Greenshields local FD, we can now easily show that: 

0 0
0 2 0 21

jam jam jam

v vq v E E v , (14) 

which is equal to the previously derived expression (8). 
For other specifications of the fundamental diagram, it will not always be possible to derive an analytical 

expression. For some specific combinations of local fundamental diagrams  and distribution functions , we 
may however be able to derive the MFD analytically. Let us consider the following example. 

We assume that the densities are uniformly distributed on the interval . If we, for instance, 
use the fundamental diagram of Underwood (1961): 

0 1b bQ U e , (15) 

where  and  are the parameters of the model. We can, after an involved but straightforward
calculation, derive: 
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q Q b

bb b
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Eq. (16) shows that for this specific case and under these specific assumptions, we can derive the p-MFD as a
function of the mean density  and the spatial density variation . For relative small values of  we can use a
Taylor series approximation and compute: 

2
1 1

5 1
2 2

q Q b U bQ . (17) 

Since , we see that  due to the impact of the spatial variation as long as . This
will be the case for the part of the Underwood fundamental diagram which is convex (i.e. for small enough values of 

). It is left to the reader to show that using the Greenshields fundamental diagram will again result in (8) upon 
assuming a uniform distribution; the derivation for a bi-linear fundamental diagram is given by Knoop et al. (2015); 
note that in this case, the impact of the spatial variation is not described explicitly. 

3.4. Simulation approach for generic local fundamental diagrams 

The approaches presented in the previous sections can only be applied to specific functional forms of the local 
fundamental diagram. For other specifications, an analytical expression can generally not be determined and we 
have to resort to other approaches such as simulation. Nonetheless, we can easily determine how spatial variation in 
the density changes the network flow using a simple sampling approach described below. 
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For the sake of illustration, we will assume a bi-linear local fundamental diagram, specified by: 
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Here,  is the free speed,  is the critical density (density at capacity), and  is the jam density. 
The simulation approach entails drawing the densities  for region  from some distribution function 

 that is characterized by a mean density and variation value. E.g., we could assume that the densities are 
uniformly distributed around the mean density value. We have applied this procedure to the bi-linear fundamental 
diagram to analyze the influence of spatial variation in the density. Fig. 2 shows the result of this analysis, using a 
local fundamental diagram with ,  and . 

The impact of the spatial density variation  is clear, and causes a reduction of the network flow, in particular 
around the critical density. Note that for higher densities, the linear form of the FD causes  not to have an impact. 
This applies equally for low densities, as long as all densities  are smaller than the critical density. This supports 
our earlier finding that the relation between the region-average density and a region-average flow will be bounded 
by the local fundamental diagrams. 

 

 

Fig. 2. Impact of spatial density variation on the p-MFD. 
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Note that similar results are obtained using more common local fundamental diagrams for pedestrian flow. In 
illustration, Fig. 3 shows the resulting p-MFD when we use the fundamental diagram of Weidmann (1993): 

0 1 11 exp 1.913
jam

U v . (20) 

Also for this local fundamental diagram, we clearly see the impact of the spatial variation in the density. 
Note that both examples show how the network maximum production (capacity) will depend on the spatial 

density variation. Note that the average network density under which the capacity is achieved (the network critical 
density) also depends on the spatial variation of the density. This has implications for, for instance, control: while 
decreasing the spatial density variation will increase the capacity, attaining the capacity (e.g. using perimeter 
control) requires knowledge of  to be able to steer the state to the network wide sweet spot. 

 

Fig. 3. Impact of spatial density variation on the p-MFD using the local fundamental diagram of Weidmann (1993). 

3.5. Reflection 

In this section, we have shown how we can derive either analytically or numerically the p-MFD. In doing so, we 
made assumptions on both the shape of the local FD (to allow analytical derivation of the p-MFD), and in some 
occasions on the distribution of the densities (e.g. assuming a uniform distribution). For the numerical approach, 
these assumptions can be relaxed and more generic results can be provided. However, there are still some 
assumptions left that require further testing. One of these is the fact that we assume that for each location in the 
network, the local FD is equal. Although this will not be the case in general (e.g. the FD will depend on the 
composition of the flow), in the remainder we will use the assumption in the remainder and see if the concept of the 
p-MFD is meaningful for more realistic cases where these assumptions may not hold. 
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In the next sections, we will look at p-MFDs derived using data from simulations (section 4) and from 
experiments (section 5). These data analyses should reveal the impact of our findings in more practical settings, in 
particular showing which levels of spatial variation are to be expected for realistic cases and how these affect 
average network production. 

4. Microscopic simulation analyses

To support the theoretical derivations of the p-MFD in the previous section, this section derives p-MFDs using
simulation data. Here, we focus on the relation between the flow and the spatial distribution of the density. We first 
use the microscopic pedestrian simulation tool NOMAD to simulate relatively simple crossing flows (section 4.1) 
and bi-directional flows (section 4.2), while in section 4.3 a dataset from a more complex evacuation of an event 
terrain is applied using PedestrianDynamics. 

4.1. p-MFD for crossing flows using NOMAD 

The first experiment presented in this contribution conveys results from simulations using the NOMAD model 
(Hoogendoorn and Bovy (2002); Hoogendoorn and Bovy (2003)). This microscopic simulation model, bearing 
resemblance to the social forces model by Helbing and Molnar (1995), produces pedestrian trajectories  for
each simulated pedestrian. Using these trajectories, we compute the local densities , the average density 
for each time instant of interest, and the spatial density standard deviation .

The case entails pedestrians coming from four different directions. The flow is gradually increased, in the end 
leading to flow breakdown. For more details, see Hoogendoorn et al. (2011). 

Fig. 4 shows different relations in the data, including the MFD speed-density and flow-density relations  and 
 for a crossing flow simulation experiment. We can observe that the data suggest the existence of an MFD for 

pedestrian flow. In particular for higher average densities, the relation becomes less crisp and a hysteresis loop 
occurs, which in particular is clear for the flow-density curve. A similar hysteresis loop was found by Saberi and 
Mahmassani (2014). 

Fig. 4. Fundamental relations for crossing flow experiment. Top left: speed-density relation; top right: relation between speed and spatial density 
standard deviation; bottom left: flow-density relation; bottom right: relation between flow and spatial density standard deviation. 

10 S.P. Hoogendoorn et al. / Transportation Research Procedia 00 (2016) 000–000

Looking in more detail, Fig. 5 shows the complex dynamics of the area-wide pedestrian operations at higher 
densities. The -path shows that in the buildup phase (around ), the spatial variation is relatively low 
and the flow is relatively high. During the congestion built up phase, both the average density and the spatial 
variation quickly increase to very high levels. Upon recuperation (from say  onward), the spatial variation
of the density remains higher, while the flow stays lower (compared to the buildup phase). 

To gain further insight into the form of the MFD for this specific case, we applied multi-variate regression to the 
high density data, yielding the following relation: 

2, 0.87 0.14 0.19QQ , (21) 

with  for , showing how the spatial variation of the density influences the area-
wide flow at high densities. All parameters are significant at a 95% level of significance. For lower densities 

, we have determined the following relation:

2 2, 1.43 0.62 0.23QQ , (22) 

with . Note that for both free flow and congested conditions, the influence of the spatial density variation
on the area wide flow (and speed) is (statistically) significant (at 95% level of significance). The cut-off value of 

 was determined by looking at the fundamental diagram and judging what a reasonable value for the
critical density was. 

Fig. 5. Flow-density relation at higher densities and -path. On the left hand side the flow-density relation is shown; on the right hand side 
the relation between spatial density standard deviation and density. 
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Note that these results appear to be in line with the theoretical analysis showing that the area-wide flow is 
negatively correlated with the spatial density variation. Since the free-flow branch of a pedestrian FD can be 
reasonably well described by a linear relation between density and speed, i.e.: 

0U v , (23) 

which yields a second-order relation between flow and density, the theoretical result using the Greenshields FD 
described earlier is likely to provide a reasonable approximation. As a result, the form  can
actually be justified to describe the free flow branch of the p-MFD. 

For this specific case (i.e., use of NOMAD simulation model, consideration of a crossing-flow scenario, chosen 
parameter values, etc.), the impact could be described as a linear relation with the spatial density variation , where

. If we compare this result to the theoretical result using the Greenshields fundamental
diagram, where , we can conclude that this result is plausible and that the impact of
the spatial variation  from the experiment is in line with the theoretical result, since 

. 
Based on this, as well as the theoretical result presented earlier, we argue that the spatial variation cannot be 

excluded in an adequate description of the area-wide flow operations. 

4.2. Bi-directional flow experiment 

Using the same approach, we performed a bi-directional flow experiment using the NOMAD microsimulation 
model, using the same parameter set as for the crossing flow experiment. In this case, since self-organization did not 
break down, no severe congestion occurred, although some evidence of hysteresis occurring at near critical density 
was found (not shown). A sensible relation between average network flow, spatial density, and spatial density 
variation could be established: 

2 2, 1.42 0.64 0.15QQ , (24) 

for , with . Again, all parameters turned out to be significant at a 95% level of significance.
Note the similarity between the p-MFD estimate for the crossing flow (under free flow) and the bi-directional flow: 
the free speed  was very similar (  for the bi-directional and  for the crossing flow); the
parameter  describing the reduction of the speed as the density increases was also nearly identical (
vs. ); the most considerable difference was the impact of the spatial density variation, expressed by
the parameter , which is equal to  for the bi-directional case and  for the crossing-flow case.
Although the difference is not huge, at this stage we cannot conclude that a single p-MFD relation could be 
determined from different flow configurations. 

4.3. p-MFD for an evacuation using PedestrianDynamics 

The previous section showed the influence of the spatial density variation on the p-MFD for relatively simple 
crossing flow and bi-directional flow situations. Here, we perform similar analyses for the more complex case of the 
evacuation of an event terrain. Figure 6 shows the visualization of the simulation model, with the event terrain 
configuration and the locations of the pedestrians at the start of the evacuation (left) and during the evacuation 
(right). 
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The results show very limited congestion during the simulation. Using multivariate regression analysis, we fitted 
the following p-MFD relation: 

2 2, 2.01 0.64 0.18QQ , , (25) 

where , with . Again, all parameters are statistically significant. 
Again, we can conclude that a sensible relation between flow, spatial density, and spatial density variation can be 

derived. The free speed value  reflects the fact that pedestrians are moving faster due to the evacuation 
conditions; the other parameters are surprisingly close to the values for the simpler microsimulation case studies. 

 
a b 

Fig. 6. Visualization of the evacuation of an event terrain. (a) At the start of the evacuation; (b) During the evacuation. 

5. Experimental analyses 

To see whether the p-MFD can also be derived for real-life situations (i.e., non-synthetic data), this section 
considers data from walking experiments. We consider a number of different experiments of varying complexity. 
More specifically, we consider two experiments: the crossing flow experiment from Hoogendoorn and Daamen 
(2005), and the merging flow experiment described in Haghani and Sarvi (2016). 

Experimental research entails interfering with natural processes to obtain more insight into the causal relations 
between the independent process variables (stimuli) and the observed phenomena (response). By performing 
experiments we can determine the causes and relations that determine the behavior of pedestrians. Apart from the 
methodological advantages, experiments allow observations of conditions that are not available, or are very difficult 
to observe, in normal conditions. The process variables are both the input and output variables that are deemed 
relevant. 
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5.1. Crossing flow experiment 

In this case, the important primary factors have been determined from expert knowledge and literature surveys; 
for details, see Daamen et al. (2003). In the end, pedestrian trajectories are determined from the video imagery. 
These trajectories are the most elementary and most valuable unit of analysis in traffic flow research and provide all 
information required for analysis of both the microscopic and macroscopic characteristics. 

In total, 10 different walking experiments were performed. In each of these experiments, approximately 60-90
individuals were involved. The participants were divided into eight groups, which were given separate walking tasks 
for each experiment (walk slowly, walk fast, etc.). The groups themselves were heterogeneous, and consisted of men 
and women of different ages. The group participants were indicated by the color of their caps (red or green). The red 
caps convey the ordinarily behaving pedestrians, while the green caps were pedestrians that had to follow specific 
instructions (walk aggressively, walk slowly, etc.). The groups were not used to indicate the walking direction, as 
this could be determined from the video images straightaway. For a detailed description of the experimental setup, 
see Daamen et al. (2003). 

For the sake of illustration and comparison with the microscopic simulation outcomes, we here consider only the 
crossing flow experiment. Using the same approach as described before, we establish the following relation between 
region-wide flow, density and spatial density variation: 

2 2, 1.63 0.41 0.28QQ , (26) 

with , for . Note that the relation resembles the free flow branch of the diagram based on the
simulation experiments presented above. Also note that congestion did not occur in this experiment. Therefore, we 
only derived a single regression line. Moreover, we could not identify any form of hysteresis. 

5.2. Merging flow experiment 

To understand pedestrian behavior negotiating through conflicting geometries a large number of experiments 
under controlled laboratory conditions were performed in which certain factors such as desired speed level, the 
angle between two merging branches and merging design are considered. The experiments were performed in 2015 
in Melbourne, Australia. In order to make the duration of experiment long enough to observe stationary state and 
reproduce high-density conditions, the experiments were performed with up to 150 participants. All experiments 
were recorded by several cameras which were mounted  above the floor. In merging layouts, two streams meet 
each other either symmetrically or asymmetrically and form a single stream. The widths of all three corridors were 
set the same for each of the experimental setups to have uniform streams ( ). The number of participants in the 
right and left branches was nearly equal. Symmetric configurations include merging setups in which two streams 
meet each other symmetrically. In the second type of layouts, a straight branch is joined by a deviated branch (i.e. 
the asymmetric setup). The geometric layouts we examined included symmetric 90°, 180°, 270°, and asymmetric 
45° and 90° branches. At the start of the experiments, participants are held in the waiting area and when the 
experiment begins they were asked to pass a 2 meter passage and enter the merging setup. Two different speed 
regimes were examined, normal walk (as a normal condition with speeds around ) and run (as a proxy of 
escape conditions with speeds around ). The participants were told the speed regime for each run right before 
starting each run of the trials. Each run of the experiments was repeated twice and in total, 20 runs of trials were 
performed. More information on these experiments can be found in Haghani and Sarvi (2016). 

In this case, we consider a normal walk situation where two flows merge at 45°. Because of the high demands 
from both approaches, congestion occurs on either of the incoming approaches. Looking at the speed and flow as a 
function of both  and , we clearly see the dependence on either of the independent variables. We can also clearly 
see the hysteresis effect: in the buildup of congestion, the flows and speeds are substantially higher than in the 
recuperation phase. This is in part explained by the fact that the congestion of the two approaches does not resolve at 
the same pace. As a result, the spatial variation is larger in the recuperation phase than in the buildup phase. 
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We have fitted the p-MFD on the data, and fitted the same polynomial. We find: 

2 2, 1.35 0.60 0.20QQ , . (27) 

Again, we can clearly see the impact of the spatial density variation on the p-MFD; although different from the 
crossing flow experiment, the order of magnitude is similar. Note that although there was some congestion, we had 
too few data points for  to fit the congested branch of the FD. 

In conclusion to this section, we see that the p-MFD concept is also plausible for real data, in this case stemming 
from different pedestrian experiments. This concludes the analysis supporting the existence of the p-MFD and its 
characteristics. Using these results, we briefly explore some of the applications of the p-MFD in the final part of this 
contribution. 

6. Applications of the p-MFD 

Let us in this section briefly consider some applications of the MFD. Specifically we will consider the network-
wide determination of the Level-of-Service, applications to crowd control, modeling the coarse dynamics in 
pedestrian networks, and judging the performance of pedestrian flow models. 

6.1. MFD for Level-of-Service analysis 

Determining the Level-of-Service (LOS) for a walking facility is often done using cross-sectional or small area 
measurements (Daamen et al. (2006)). Using these measurements, the Level-of-Service of that particular cross-
section or small area can be determined. 

The MFD provides the opportunity to determine a global LOS for a larger area in a meaningful and consistent 
way. One of the advantages is that local disturbances will only be picked up when the resulting LOS deterioration is 
considerable. Including the spatial density variation allows for inclusion of those local bottlenecks that have a 
network-wide impact on the production. 

6.2. Crowd control 

In the previous sections, we have seen that the shape of the MFD can be very different from the one area to the 
next, based on the function, design, and use of the area. Some areas show a strong reduction in the performance 
when the accumulation surpasses some critical accumulation, while other areas show a much more constant 
performance even if the accumulation increases. 

For crowd control applications, it is important to keep the overall performance of the area as high as possible. In 
the Schiphol Plaza situation (the landside hub of Amsterdam Airport Schiphol), for instance, we see that crowding 
problems occur in a specific area (the court, see Daamen et al. (2008)). From a crowd-control perspective, it seems 
logical to limit the inflow into that area such that the performance stays at a high level. This has an effect on the 
subarea (the throughput stays high) and on the overall network (the spatial variation in the density is reduced). 

The following control law will keep the performance of the area at the maximum level: 

max max 1 'critq t q t n t n . (28) 

Equation (28) shows that when the accumulation surpasses the critical value , the maximum inflow  
into the area will be reduced. The maximum inflow will be increased again when the accumulation is less than the 
critical accumulation. 

In this contribution, we have seen that the p-MFD is not only a function of the average density, but also of the 
spatial variation in the density. This has implications for crowd control, as was already briefly mentioned. In 
particular, the fact that the network capacity is conditional on the spatial variation, as is the critical density (or 
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5.1. Crossing flow experiment 
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Determining the Level-of-Service (LOS) for a walking facility is often done using cross-sectional or small area 
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section or small area can be determined. 

The MFD provides the opportunity to determine a global LOS for a larger area in a meaningful and consistent 
way. One of the advantages is that local disturbances will only be picked up when the resulting LOS deterioration is 
considerable. Including the spatial density variation allows for inclusion of those local bottlenecks that have a 
network-wide impact on the production. 
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subarea (the throughput stays high) and on the overall network (the spatial variation in the density is reduced). 
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accumulation) determines to a considerable extent how for instance perimeter control described earlier should be 
executed. For the example above, this would mean that we would need to determine and
determine  for a particular situation. However, other measures, such as giving information, could also spread a
crowd better over the area. 

6.3. Coarse dynamics modeling 

As a next application example of the p-MFD, we consider dynamic modeling. The basic concept is that we can 
divide the considered area  which we want to model into disjoint subareas  with . For each of these
subareas, we can establish p-MFDs. 

Suppose that for a specific area , we are only interested in the coarse dynamics. Neglecting the effect of , in
this case, we can use the p-MFD to describe the outflow / number of completed trips. Let  again denote the
outflow of the area as a function of the accumulation  in the area. For the accumulation  we can then
establish the following dynamic equation: 

i
ji i i

j

dn f t F n t
dt

, (29) 

where  denotes the outflow from area  to . Now, we let  denote the share of the outflow from area 
to . We can then write:

ij ij i if t t F n t . (30) 

Taking the influence of  into account is not trivial, and requires more advanced modeling. First of all, we
would have  describing the outflow from the area. This is relatively straightforward
considering the approaches described in this paper. Second of all, we would need to determine an (approximate) 
relation describing the dynamic of the spatial variation. In some cases, this may be a static relation, e.g. where the 
spatial variation is only dependent on the average density in the area. In other cases, more involved relations are to 
be sought for, e.g. where the spatial variation depends on the average density as well as the temporal change in the 
average density, e.g.:  

2 2 , /d dt . (31) 

The dependence on the derivative  reflects the fact that fast changes in the average density due to e.g. high 
inflows / outflows at the boundaries of the area are likely to lead to large spatial variations in the density. In 
illustration, for the NOMAD crossing flow experiment, statistical analyses reveal the following relation: 

2 2, / 0.082 0.049 /d dt d dt . (32) 

6.4. Judging performance of pedestrian flow models 

The final application we will illustrate is the application to model calibration and validation. The p-MFD of a 
specific area  describes the coarse pedestrian flow behavior within this area. It summarizes the main flow 
characteristics of the area. When calibrating or validating a pedestrian flow model, the ability of a model to replicate 
the empirical p-MFD is essential for realistic model outcomes. This holds for pedestrian flow models, but equally 
for vehicular traffic models. 

16 S.P. Hoogendoorn et al. / Transportation Research Procedia 00 (2016) 000–000

7. Conclusions and recommendations

In this contribution, we have provided results showing the existence and characteristics of the pedestrian
Macroscopic Fundamental Diagram (p-MFD). Our theoretical analyses show that the p-MFD is encapsulated by the 
local fundamental diagrams (with appropriate scaling). For specific local fundamental diagrams, more precise 
results could be established showing the relation between the region wide flow, the region wide density and spatial 
density variation. In particular the spatial density variation turns out to be pivotal in accurately describing the p-
MFD. These theoretical analyses form the main contribution of the study. In the future, we could think of including 
the direction in the spatial variation as well. Moreover, as there is still a fundamental discussion on the fundamental 
diagrams and their generalization to different scenarios, further insights into the impact of fundamental diagrams 
other than the ones presented in this paper on the p-MFD will be elaborated upon. 

Furthermore, as a secondary contribution of the study, we show how the p-MFD can be constructed from 
microscopic pedestrian data stemming from either microsimulation or from experimental studies. We have seen that 
the results found are in line with the theoretical results, providing convincing evidence for the validity of the p-MFD 
concept. This holds to the extent that the parameter values found when fitting a relation to the p-MFD data are 
comparable to those values found in the theoretical analyses. This provides evidence that the theoretical results 
established using simple local FDs can be used in practical situations as well, although more thorough analyses 
would be required to make the claim stronger. 

An interesting observation was made when comparing the fitted p-MFD functions for different experiments. 
While it appears that the functions are quite similar – also in terms of the actual parameter values – in particular the 
impact of the spatial density variation on the average network flow levels needs to be investigated further, as the 
impact is likely to be dependent on the flow configuration. 

We also have identified hysteresis phenomena caused by the differences in queue build up and recuperation 
phases. Since the number of scenarios considered in which heavy congestion occurred was limited, more 
investigations are required on this specific topic. 

We also presented some applications of the presented concepts in crowd management, network level-of-service 
determination, and coarse-scale modeling. 
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