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Abstract7

Integration of renewable energy sources in microgrids can be achieved via demand response programs,8

which change the electric usage in response to changes in the availability and price of electricity over time.9

This paper presents a novel control algorithm for joint demand response management and thermal comfort10

optimization in microgrids equipped with renewable energy sources and energy storage units. The proposed11

work aims at covering two main gaps in current state-of-the-art demand response programs. The first gap12

is integrating the objective of matching energy generation and consumption with the occupant behavior and13

with the objective of guaranteeing thermal comfort of the occupants. The second gap is developing a scal-14

able and robust demand response program. Large-scale nature of the optimization problem and robustness15

are achieved via a two-level supervisory closed-loop feedback strategy: at the lower level, each building16

of the microgrid employs a local closed-loop feedback controller that processes only local measurements;17

at the upper level, a centralized unit supervises and updates the local controllers with the aim of minimiz-18

ing the aggregate energy cost and thermal discomfort of the microgrid. The effectiveness of the proposed19

method is validated in a microgrid composed of three buildings, a photovoltaic array, a wind turbine, and20

an energy storage unit. Comparisons with alternative demand response strategies reveal that the proposed21

strategy efficiently integrates the renewable sources; energy costs are reduced and at the same time thermal22

comfort of the occupants is guaranteed. Furthermore, robustness is proved via consistent improvements23

achieved under heterogeneous conditions (different occupancy schedules and different weather conditions).24

Keywords: Demand response, Microgrid, Thermal comfort optimization, Occupancy information25

1. Introduction26

Increasing energy demand and stricter environmental regulations are promoting the transition from tra-27

ditional electric grids with centralized power plants to smart electrical microgrids where the existing power28

grid is enhanced by distributed, small-scale, renewable-energy generation systems such as photovoltaic pan-29

els, wind turbines, and energy storage units [1]. Microgrids can be seen as miniature versions of the larger30

utility grid except that, when necessary, they can disconnect from the main grid and can continue to operate31

in ‘islanded mode’ [2]. Despite their potential advantages, a main challenge needs to be overcome: the32
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widespread availability of renewable sources inserts uncertainty into the grid, due to their stochastic out-33

put profile which strongly depends on local weather conditions. Lack of monitoring and control of these34

energy sources might contribute to the instability of the electric grid: this is especially true in grids where35

fluctuating power may be delivered due to the high participation of renewable energy sources [3]. Energy36

storage systems play a central role in the integration of renewable energy sources in microgrids, as they37

provide the necessary flexibility to compensate unbalances between the power supply and the demand. The38

interesting experimental work in [4] assesses how the timing of an electric outage affects the islanding life-39

time of a microgrid, with and without energy storage. For these reasons, one of the pivotal questions in the40

widespread diffusion of microgrids is to deploy a control system which will take the appropriate decisions41

for the energy distribution and consumption, in order to minimize the energy consumption and cost: this42

task goes under the name of ‘demand response’ [5].43

Demand response requires the development of control mechanisms that can autonomously facilitate44

changes in electric usage by end-use customers in response to changes in the price of electricity over time, or45

in response to the availability of renewable energy [6]. The implementation of these mechanisms require the46

presence of loads whose operation can be regulated, i.e. controllable loads. Many studies show that HVAC47

operations account for nearly 50% of the energy consumed by a building [7]: furthermore, good HVAC48

control is one of the most cost-effective option to implement demand response and improve the energy49

efficiency of microgrids. For example, it has been shown that raising summer set point temperature might50

have good and universal energy saving potential as it can be applied to both new and existing buildings [8].51

However, HVAC operation cannot aim exclusively at energy savings without taking into account the effect of52

changing the control strategy on indoor comfort: the ASHRAE55 and EN15251 standards [9, 10] pose strict53

constraints on the end-user (building occupant) thermal comfort, with bounds and constraints that should54

not be violated except for small intervals during the building operation. The literature on demand response55

with thermal comfort optimization is vast: without aiming at being comprehensive, in the following we give56

a brief overview on the topic.57

1.1. State-of-the-art in demand response with thermal comfort58

As a large portion of building energy consumption is used for thermal comfort, optimization of energy59

and comfort calls for delicate trade-offs, which have been studied by many researchers: the simulation tool60

of [11] can predict the effect of changing the control strategy on indoor comfort and energy consumption.61

The authors of [12] develop control strategies for intelligent glazed facades and investigate the influence62

of different control strategies on energy and comfort performance in office buildings. Particle swarm opti-63

mization has been applied in [13] to optimize the set points based on the comfort zone. In [14] the operation64

of variable air volume air conditioning is optimized with respect to comfort and indoor air quality. The65

influence on energy consumption of thermostat operation and thermal comfort requirements is the object of66

the study in [15]. All this approaches show, sometimes also via real-life experiments, that relevant energy67

savings can be achieved without compromising thermal comfort.68

The use of occupancy information plays a major role in decreasing energy costs and improving thermal69

comfort: the potential of using occupancy information in model predictive-based building climate control is70

investigated in [16]. The approach of [17] aligns the distribution of residents’ thermostat preferences with71

the indoor temperature to maximize thermal comfort while reducing energy savings. Using the expected72

room occupancy schedule, the evolutionary algorithm of [18] produces optimized ventilation strategies with73

reduced CO2 concentration and energy costs. The goal of [19] is to use occupancy information to reduce74

energy use while maintaining thermal comfort and indoor air quality.75

Multi-objective optimization of energy consumption and thermal comfort is well established at the76

building level: at the microgrid level, however, most state-of-the-art microgrid energy management systems77
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aiming at improving resilience and enabling islanded mode, consider only matching energy generation78

and consumption [20, 21, 22]: other multi-objective optimization examples include optimize the power79

dispatch of the microgrid according to economy and reliability interests of the power grid [23], decreasing80

the expenses for power purchase or increasing revenues from power selling [24]. Operational results of81

real-life microgrids have also been provided [25, 26, 27]. However, in the aforementioned works and82

experimental evaluations, thermal comfort of the occupants is often neglected, or, when considered, it is83

oversimplified. A typical oversimplification involves considering bounds on the dry-bulb temperature [28]:84

this is a poor comfort-maintaining criterion, since neglecting humidity and radiant temperatures can lead to85

insufficient estimation of actual thermal comfort. The Fanger index [9] or adaptive thermal comfort models86

[29] can yield a realistic estimate of thermal comfort. Summarizing, to the best of the authors’ knowledge87

the following gaps can be identified in the state of the art of demand response in microgrids:88

G1) Thermal and occupancy information in microgrids: a part from some recent contributions by the89

authors [30], there is no demand response program at the microgrid level that can exploit occupancy90

information with the objective of guaranteeing thermal comfort of the occupants. Note that the work91

in [30] do not consider the presence of multiple renewable energy sources (possibly with different92

prices) and of energy storage.93

G2) Scalability to large microgrids: there is no demand response program that can be scalable to large-94

scale microgrids: also the recent work in [19] considers a centralized architecture stemming informa-95

tion from the entire microgrid: this might be impractical in microgrids of large dimension.96

G3) Robustness of solution: there is no real study on robustness of demand response programs in front97

of changing conditions, including changing occupancy patterns and changing weather conditions:98

due to the computational complexity of predictive control strategies, most of the cited state-of-the-art99

demand response are tested over relatively short horizons, and it is not clear whether they can achieve100

consistent improvements over longer ones. Furthermore, their predictive control nature requires the101

optimization task to be continuously active: it is not clear whether it it is possible to develop a demand102

response program that, after optimization over a short horizon, can be used over longer horizons with103

consistent improvements.104

With this work we try to cover the identified gaps in demand response and thermal comfort optimization in105

microgrids, as explained hereafter.106

1.2. Main contributions of the work107

This paper presents a novel control algorithm for joint demand response management and thermal com-108

fort optimization in microgrids equipped with renewable energy sources and energy storage. With respect109

to the three identified gaps, the work provides the following contributions:110

C1) Thermal and occupancy information in microgrids: demand response is achieved by controlling111

the HVAC system of each building: the final objective is not only the reduction of the energy ab-112

sorbed from the traditional electrical grid, but also guaranteeing acceptable thermal comfort con-113

ditions. The Fanger index is used as a realistic measure for thermal comfort. The proposed sys-114

tem uses a simulation-based optimization procedure: together with Model Predictive Control (MPC)115

[31, 32, 33, 34], simulation-based optimization is emerging as a strategy for energy-efficient control116

and smart grids [35, 36, 37, 38]. The proposed demand response program is a parametrized feedback117

control strategy where the parameters are dependent on the thermal state of the buildings, but also118

on the occupancy pattern of the microgrid : this will lead to efficient exploitation of the occupancy119

information stemming from the microgrid.120
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C2) Scalability to large microgrids: from the control perspective, a microgrid is a large-scale dynamic121

system with high complexity and a huge amount of information. Proper combination of the available122

information and effective control of the overall microgrid system turns out to be a big challenge [39].123

In order to address the computational complexity, the proposed control strategy adopt a two-level124

supervisory strategy: at the lower level, each building employs a local controller that processes only125

local measurements; at the upper level, a centralized unit supervises and updates the three controllers126

with the aim of minimizing the aggregate energy cost and thermal discomfort of the microgrid. This127

distributed architecture is supposed to be scalable to microgrids composed of many buildings.128

C3) Robustness of solution: simulation-based optimization allows the use of elaborate microgrid mod-129

els (built via simulation tools like EnergyPlus, TRNSYS, Modelica etc. [40, 41]): an advantage130

is that reliable simulations over long horizons can be conducted in order to address the large-scale131

complexity and the real-time requirements. The parametrized demand response strategy developed132

in this work will be used to test to what extent a demand response program optimized over short133

horizons can be robust when implemented over long horizons: it will be verified that the proposed134

demand response program, due to its feedback nature employing thermal and occupancy information,135

achieves consistent improvements in front of changing conditions, including changing occupancy136

patterns and changing weather conditions. This is a relevant achievement in terms of required com-137

putational complexity, as it shows that optimization does not have to be carried out continuously but,138

after optimization over a short horizon, the proposed demand response program can be used over139

longer horizons with consistent improvements.140

A test case consisting of a microgrid with three buildings connected to a photovoltaic array, a wind turbine,141

an energy storage and to the traditional electrical grid is used to evaluate the effectiveness of the proposed142

algorithm. Comparisons with alternative demand response strategies reveal that the proposed supervisory143

strategy efficiently handles the large-scale of the optimization problem, manages the demand response so144

as to sensibly improve independence of the microgrid with respect to the main grid, and guarantees at the145

same time thermal comfort of the occupants.146

The paper is organized as follows: Section II describes the problem setting, the microgrid and its at-147

tributes. Section III deals with the control objectives and the performance index. In Section IV the su-148

pervisory control architecture is presented, while Section V presents the PCAO algorithm used for the149

optimization problem. Section VI presents the results and Section VII concludes the paper.150

2. Problem description151

In this section we present the setting of the joint demand response management and thermal comfort152

optimization problem. A grid-connected microgrid, shown in Figure 1, is composed of three buildings153

and equipped with renewable energy sources (photovoltaic panels and wind turbines) and a shared energy154

storage unit for electricity. The grid is also connected to the main electricity grid. In order to fulfill their155

energy needs, the buildings of the microgrid share the energy sources and the stored energy in a common156

pool: the renewable energy sources are so-called ‘must-take’ sources, where their output is always used157

when it is available. If the output of the renewable energy sources is not enough, the extra electricity is158

absorbed for the main grid. In the following, more details about the different components of the microgrid159

are given.160
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Figure 1: Supervisory Control Strategy

Table 1: Microgrid description

No. of Thermal Zones Size Use
Building 1 10 thermal zones 500 m2 Industrial
Building 2 10 thermal zones 900 m2 Commercial
Building 3 10 thermal zones 300 m2 Residential

2.1. Controllable and uncontrollable loads161

Table 1 shows the composition of the microgrid: the three buildings cover a surface of 500 m2, 900 m2
162

and 300 m2, respectively. In order to consider a heterogeneous microgrid scenario with different occupancy163

patterns, we assume that the buildings are of commercial, industrial and residential type, respectively. Each164

building has two floors and ten thermal zones. Each thermal zone is equipped with an HVAC unit, where165

every HVAC unit is opportunely dimensioned according to the size of the thermal zone. This results in a166

scenario where each building has different energetic needs. The HVAC are operated via temperature set167

points, one for each unit: by regulating the thirty set points, part of the energy demand of the microgrid168

is controlled. In our setting HVACs are the only controllable loads of the microgrid: this is based on169

the fact that HVAC operation accounts for nearly 50% of the energy consumed by a building and on the170

hypothesis that the other types of loads of the microgrid (lighting, industrial machines, PCs, etc.) are171

not responsive and cannot be curtailed [42]. Uncontrollable loads account for the not responsive part of the172

energy consumption: three load daily profiles, shown in Figure 2 have been created based on typical profiles173

of commercial, industrial and residential consumers [43, 44, 45].174

2.2. Occupancy schedule175

In order to make the joint demand response and thermal comfort optimization tasks more challenging,176

the three buildings are assumed to have different occupancy schedules, which are shown in Table 2. Roughly177

speaking, when the three buildings of the microgrid have a different occupancy schedule, the demand re-178

sponse program should be able to switch off the HVACs of a building when no occupants are there, in order179

to allow the other buildings to use the available renewable energy. The different occupancy schedules arise180

from the different use of each building. In particular, the first building is assumed to host industrial activi-181

ties and the second building is used as an office; the third building exhibits a possible residential occupancy182
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Figure 2: Uncontrollable loads of the three buildings over three days

schedule. The schedule of Table 2 has been designed in such a way that a variety of situations occur. Some-183

times all three buildings are occupied and, other times, only one building is occupied. It is assumed that all184

the thermal zones of a building exhibit the same occupancy pattern.185

Table 2: Occupancy Schedule

Day 1 Day 2 Day 3
Building 1 6am - 12am and 13pm - 18pm 7am - 17pm 6am - 12am and 13pm - 18pm
Building 2 8am - 14pm and 16pm - 21pm 8am - 20pm 9am - 14pm and 15pm - 20pm
Building 3 0am - 24pm 0am - 24pm 0am - 24pm

2.3. Renewable energy sources186

The energy from the renewable sources comes with a different price, as shown in Table 3: the different187

prices account for the fact that producing solar energy costs differently than producing wind energy [46, 47].188

Furthermore, the prices of the electricity generated by renewable energy includes also investment costs and189

maintenance costs of resources [48]. Because of the different prices, the energy is absorbed in the following190

order: wind, solar, storage, main grid. The energy is drained proportionally to the energy demand of each191

building of the microgrid according to the Kirchhoff’s circuit law.192

The amount of photovoltaic generation Ps is calculated via the model described in [49]193

Ps = ηSIa(1−0.005(Tamb−25)) [kWh] (1)

where η is the conversion efficiency of photovoltaic array (%), S is the array area (m2), Ia is the solar194

radiation (kW/m2), Tamb is the outside air temperature (oC). It is assumed that the total radiation is falling195
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Table 3: Energy prices

Grid Energy Solar Energy Wind Energy
Price 0.2 AC/kWh 0.1 AC/kWh 0.05 AC/kWh

on the photovoltaic array, and the angle of incidence is not considered. Conversion efficiency η is equal196

with 20% which is a typical value for solar arrays and the array area S is equal with 200 m2. The wind197

turbine produces energy PM based on the following equation [50]:198

PM = 1/2ρπR2V 3CP(λ ,β ) [kWh] (2)

where V is wind speed in [m/s], ρ is the air density in [kg/m3], R is the blades radius in [m] and CP199

the power coefficient. We assume ρ = 1.1839kg/m3, the air density at sea level and 25oC, R = 20m, and a200

constant CP = 0.4, which are the typical values for wind turbines.201

Finally, the microgrid is equipped with a battery as energy storage: the battery is charged when there is202

excess of energy coming from the renewable resources and discharged when the energy coming from the203

renewable resources is not enough to satisfy the energy demand of the microgrid [51]. The capacity of the204

battery unit is set to 200 kWh. However, only 150 out of 200 kWh are available for use. That is because, we205

want to avoid discharge greater than 10 % and charge greater than 85 % in order to prologue the life of the206

battery. Thus, in Figure 8, the state of charge of the battery for each scenario is between 10 and 85 %. What207

is more, the rate of charge/discharge was also investigated. Using a 1C charger, and taking into account208

that our battery has a capacity of 200 kWh, our system has a capability of charge/discharge rate of 200 kW .209

However, in Figure 8, the mean rate of charge between the scenarios is around 35 kW and the mean rate of210

discharge is around 40 kW . Just once, a peak of 174 kW charge rate is developed, but the battery system is211

able to handle it, without wasting any amount energy.212

The attractiveness of utility-scale energy storage is that it can compensate for the intermittency of wind213

power and solar power. It must be however underlined that in practice large-scale storage technologies other214

than pumped hydro remain in an early stage of development and are expensive [52, 53].215

3. Control objectives216

One objective of the demand response program is to reduce energy costs: this is achieved if the energy217

available from the renewable sources, which indirectly affects also the energy stored in the storage unit,218

is exploited to the maximum extent. The problem is not trivial since the renewable energy is available219

depending on weather conditions. The wind and solar energy over three different days, depending on wind220

speed and solar radiation respectively, are shown in Figure 3. When the sum of renewable energy and stored221

energy is not enough, extra energy can be absorbed from the main grid. On the other hand, if the energy222

that the renewable sources produce is in excess compared to microgrid energetic needs, the energy is stored223

in the battery; if the storage is at its maximum capacity, the excess of energy is wasted. It is crucial to fully224

take advantage of renewable energy when available in order to enable the ‘islanded mode’ of the microgrd225

and minimize the dependence from the main grid. The demand response is regulated by regulating the226

HVAC operation: the HVAC operation has a direct impact not only on energy demand, but also on the227

thermal comfort of the occupants. If one objective of the demand response program is to reduce energy228
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costs, another objective is to manage the HVAC operation so as to satisfy the thermal comfort of the users.229

The two objectives are expressed by a suitable performance index as explained hereafter.230

Figure 3: Solar and wind energy evolution over three days

3.1. Performance Index231

The performance index to be optimized takes into account two terms: the energy cost and the thermal232

comfort of the occupants. At time t the aggregate performance index of the three-building microgrid is233

defined as234

M(t) =
3

∑
i=1

(k ∗Ei(t)+(1− k)∗Ci(t)) (3)

where Ei is the energy score and Ci the thermal comfort score of building #i. The energy and the comfort235

score are, typically scaled, so as to be of the same order of magnitude and contribute fairly to the total236

score. According to the importance that the designer wants to give to a term with respect to the other, the237

summation can be weighted using the scaling factor 0 < k < 1.238

The energy cost includes the price paid for absorbing energy from the main grid, but also the genera-239

tion/maintenance price of renewable energy. The thermal comfort cost we consider is the thermal comfort240

model developed by Fanger [9], which evaluates the Predicted Percentage of Dissatisfied people (PPD) in241

a room. According to the condition of a thermal zone, the thermal comfort is evaluated via a 7-point scale,242

going from -3 (cold) through 0 (neutral) to +3 (hot). Such a scale is called Predictive Mean Vote (PMV).243

The PMV is translated into PPD according to the following formula244

PPD = 100−95e−(0.03353PMV 4+0.2179PMV 2) (4)

According to the ASHRAE 55 standard, the recommended PMV range for thermal comfort is between -245

0.5 and +0.5 for an interior space, which is equivalent to a PPD below 10%. Violation of this bounds are246

accepted but only over short periods of time.247
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3.2. Rule-based demand response programs248

An EnergyPlus model [40, 54] simulates the complex energetic and thermal behavior of each building249

composing the microgrid. The implemented demand response program considers the problem of operating250

the HVAC during summer, in order to cool-climate the rooms in an energy efficient manner to a user comfort251

satisfying level. The operation of the each HVAC unit has one manipulable input that is the temperature set252

point (in oC) with which each unit operates.253

For comparison reasons, two Rule Based Controllers (RBC) implementing simple but common demand254

response programs are adopted. The RBCs employ a simple control strategy, which consists of255

• RBC24oC: keep the HVAC set points of each thermal zone constant to 24oC during occupancy hours;256

• RBC25oC: keep the HVAC set points of each thermal zone constant to 25oC during occupancy hours;257

Such control strategies, yet simple, provide acceptable (but far from optimal) performances in terms of the258

total score (3). Furthermore, in order to exploit natural ventilation and achieve some energy savings, the259

HVAC set point manipulation of RBC24oC and RBC25oC is combined with control of windows. Every time260

that HVAC units operate, windows are closed. When the HVAC unit are switched off, the window control261

is as follows:262 {
open window if Tamb < Tz and Tz > 20oC
close window otherwise

(5)

where Tamb is the outside temperature and Tz the temperature of the thermal zone. Taking into account263

that we want to cool-climate the buildings, the rule in (5) is meant to exploit the natural ventilation effect264

occurring typically at night (the room is cooled using the outside temperature). The bound of 20oC is set in265

order to guarantee a minimum thermal comfort: if the temperature of the room is already below 20oC there266

is no need to open the window.267

On the other hand, in order to guarantee the quality of indoor conditions a third window rule is imple-268

mented when HVAC are operating. If the internal conditions, and especially the quality of air (big amounts269

of humidity) are very low, then windows open, so an external air flow help regulate the conditions inside270

the building. Thus, when the HVAC unit are operating, the window control is as follows :271 {
open window if humidity >=80 %
close window otherwise

(6)

However, it has to be emphasized that the rule in 6 is never activated in our simulations, meaning that the272

HVAC, is never used by the system, as the HVAC manage to keep internal conditions in acceptable levels273

during the whole simulation period.In the setting of this paper interaction between local and aggregate level274

occurs via the occupancy schedule: the demand response program should be able to switch off the HVACs275

of a building with no occupants, in order to allow the other buildings to use the available renewable energy.276

In this section we explained how the emphasis of the work is on joint optimization of energy cost and277

thermal comfort. As the microgrid is composed of three buildings, a distinction should be made between278

the performance achievable at the building level and the performance achievable at the aggregate level. In279

the following section the two levels and their interaction are presented.280

4. Control Strategy281

In this section, we present the control strategy that it is used in the presented microgrid test case. In282

Figure 5, the general form of Supervisory Control Strategy is described. Each buildings, uses its own283
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optimization algorithm (PCAO) and a general node is responsible for the coordination of the different284

buildings.285

4.1. PCAO Algorithm286

The problem consists in finding an optimal strategy for the HVAC set points such that the combined287

performance index defined in (3) is minimized. The problem is thus formulated as an optimal control288

problem aiming at minimizing the index289

J =
∫ Tf

0
Π(x(t))dt (7)

s.t.

ẋ = f (x)+Bu, B = [0 I]′ (8)

where Π(·) is the analytical expression of the performance index (3), where x is an augmented, with state290

and control variables, vector of the transformed system dynamics while u is the time derivative of the actual291

control signals, as demonstrated in 8. The function f (x) represents the microgrid dynamics, which are292

implemented inside the EnergyPlus model, but that are unknown for our purposes. Finally Tf is a control293

horizon over which we have reliable weather forecasts (typically 2-3 days). Using dynamic programming294

arguments, we know that the optimal strategy u∗ satisfies the Hamilton-Jacobi-Bellman (HJB) equation295

∂V ∗

∂x
( f (x)+Bu)+Π(x) (9)

The difficulty in solving the HJB equation in large-scale systems (like our microgrid) was known to Bellman296

itself, which coined the term ‘curse-of-dimensionality’ [55]: in order to overcome such difficulties, the297

PCAO (Parametrized Cognitive Adaptive Optimization) algorithm parametrizes the solution of the HJB298

equation (9) as V ∗(x)= z′(x)Pz(x) and the optimal control strategy via u∗=−1
2 B′ ∂V ∗

∂x , P is a positive definite299

matrix and z(·). More details for the function z(·) can be found in [56, 57]: in our specific microgrid case we300

found that a linear transformation z(x) = x is sufficient to achieve important improvements (as demonstrated301

in Section V). With such parametrization, the problem of solving the HJB equation is recast as the problem302

of finding the matrix P (and thus the strategy u) that better approaches the solution of the HJB equation.303

The PCAO algorithm defines the close-to-optimality index (mutated for the principle of optimality [55])304

ε(x,P) =V (x(k+1))−V (x(k))+
∫ k+1

k
Π(x(t))dt (10)

The solution of the HJB equation (9) brings (10) to zero: the PCAO algorithm, whose steps are presented305

in Figure 4 updates at every time step the strategy parametrized by P̂ in an attempt to minimize the close-306

to-optimality index ε(P̂) and to make P̂ converge as close as possible to the solution of the HJB equation.307

More about PCAO algorithm can be found in [30, 57, 58]308

4.2. Feedback vector and Simulation based optimization309

Each local P-CAO algorithm employs a controller based on a local feedback vectors. The structure of310

each local feedback vector is the following:311

• 3 measurable external weather conditions: outside temperature, outside humidity and solar radiation.312

• 6 forecasts for the mean outside temperature in the next 6 hours.313
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• 6 forecasts for the mean solar radiation over the next 6 hours.314

• The n temperatures of the thermal zones (n is the number of thermal zones).315

• The n humidities of the thermal zones.316

• A constant term (since the equilibrium of the system is not in the origin).317

• The n set points of the HVAC devices in the thermal zones.318

• The n detectors of occupancy in the thermal zones.319

Hereafter we explain with more details the choice of the feedback vector: the zone temperature and320

humidities are a natural choice for the thermal state of the building; outdoor weather conditions both in321

the present and the future help to achieve a pro-active control strategy. Finally, the information about the322

occupancy of a thermal zone is provided as a feedback component to the control strategy. The occupancy323

signals are important also for another reason. A frequent problem in building management is the creation324

of comfortable conditions just before people start using the building. In order to achieve this, many control325

strategy uses a training period to ”learn” the occupancy schedule. Many smart thermostats available in326

the market employ this mechanism: this is a very useful feature, especially for buildings that are used as327

schools, offices and public offices. Knowing the schedule of occupancy we can change the occupancy328

signals to ”on”, one hour before the arrival of users in order to create better thermal comfort conditions for329

the people.330

Using the PCAO algorithm, as presented above, a double feedback loop procedure runs in each build-331

ing (cf. Fig. 4). The primary feedback loop runs in real-time, with actions applied to the actual building332

and measurements collected. In parallel with the primary loop, a secondary simulation-based loop interacts333

with the EnergyPlus model of the building, in order to find better strategies at the next time step. With the334

term ‘simulation-based’ design we refer to a method where the optimization of the cost function involves335

an iterative process of system simulation/controller redesign. At this point is crucial to introduce and ex-336

plain two time metrics. The control horizon and the simulation horizon. By control horizon we refer to337

the time interval of HVAC management. For example in our test case, the HVAC set points are changed by338

the algorithm every 10 minutes. On the other hand, as a simulation horizon we refer to the whole duration339

of the experiment. Usually, as a simulation horizon we refer to one day or more. This two-loop design is340

implemented in each building separately. The secondary loop, which is implemented based on the Ener-341

gyPlus model, operates in order to find a better controller for the real system. Simultaneously, the primary342

loop/system, uses the best so-far controller to manage the HVAC. The above two-loop procedure can be343

investigated better in Figure 4.344

Remark 1. The proposed control strategy differs from the classical rolling (or receding) horizon philoso-345

phy. In particular, the objective is to update at every time step a feedback controller, rather then solving at346

every time step an open loop control problem. After convergence, it was verified via simulations that the347

proposed feedback solution provides robustness to the resulting HVAC controller, also in the presence of348

different weather conditions than the one used for the design (cf. the results in Table 4). As a result, sim-349

ulation results reveal that one can realistically assume keep the same control strategy over long horizons350

(indicatively, one week) without the need of redesign the control and without sensible loss of performance.351
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Figure 4: Local simulation-based optimization

4.3. Supervisory Logic352

The purpose of this work is to provide a control architecture that that be scalable to an arbitrary number353

N of buildings: for this reason, a centralized control architecture was discarded and the following bi-level354

supervisory strategy was implemented for the control and manipulation of each building/HVAC unit of the355

microgrid. The two levels can be identified as: a local building level and an aggregate microgrid level.356

In the simulations presented in this work three controllers, one for each building, operate using only local357

information plus information about weather forecast as we described in the sections above. At the aggre-358

gate level a supervisor takes into account the performance of each building and calculates the total cost, so359

as to optimize the global performance of the microgrid. As compared to a fully centralized strategy, the360

computational and communication requirements of the proposed control architecture are reduced. In Figure361

5 the logic behind the supervisory strategy that we adopt is presented. In each building one local controller362

and one local optimization (PCAO Algorithm) is operated. The goal of each optimization algorithm is to363

optimize the performance of the building by taking into account only local information such as the thermal364

state of the building, occupancy information, and weather conditions. Each local controller communicates365

with the central node and offer information about the cost that the proposed control strategy is achieving and366

achieved in the past. The central node concentrates this information from each different building, calculates367

the total cost and decides if the ‘team’ of controllers achieved the best aggregate performance. The central368

node, informs the local levels with a binary signal, if the the best performance was achieved. Based on369

the Figure 4 the supervisory logic interacts only in the red circle (memorization of the best strategy). As370

a result, the update of the local controller is based on the best global performance rather than on the local371

performance. This simple strategy has been shown to be effective in achieving a good global performance:372

in particular, section V will show that, when a centralized architecture can be implemented, the perfor-373

mance of the centralized and of the proposed supervisory architecture (denoted as Supervisory PCAO) are374

comparable.375
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Figure 5: Supervisory control strategy

5. Simulation Results376

This section describes the simulation results for the presented microgrid test case. The results of the377

optimization of the demand response and of the thermal comfort achieved via the Supervisory PCAO al-378

gorithm will be compared with the rule-based strategies RBC24oC and RBC25oC, explained in section 3.2.379

Figure 6 shows the energy consumption and occupancy schedule under three control strategies (RBC24oC,380

RBC25oC and PCAO). The distribution of solar and wind energy under the PCAO control strategy is also381

shown (the distribution of renewable energy under RBC24oC and RBC25oC is not shown for better readabil-382

ity of the plots). As mentioned, the renewable energy is distributed proportionally to the energy needs of383

each building. It can be noted how the PCAO algorithm is actively and dynamically managing the demand384

response side via HVAC regulation. It is interesting to note that the PCAO algorithm automatically imple-385

ments the logic of the anticipating the use of HVAC devices some time before the arrival of people (the386

so-called pre-cooling effect). This action leads to the following intelligent behavior: in each building, the387

PCAO energy consumption rises about one hour before people arrive. This might look like a useless waste388

of energy, but it is not, because the comfort index in the PCAO case is relevantly improved over the two389

RBC scenarios. Since the control objective is the optimization of a combined criterion of energy pricing390

and thermal comfort, the overall the total cost is greatly reduced, as the following analysis will reveal.391

Table 4: PCAO Improvement (Total Cost) with respect to RBC24oC and RBC25oC (results validated over 7 different sets of 3 days)

Case Improvement wrt RBC24oC Improvement wrt RBC25oC

Building 1 18-22% 12-17%
Building 2 15-19 % 10-15%
Building 3 19-22 % 13-16%
Microgrid 18-22 % 12-16%
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(a) Building 1 (b) Building 2

(c) Building 3
(d) Microgrid

Figure 6: (a)-(b)-(c)-(d): Energy Consumption and Occupancy Schedule during the 3-days, for the three buildings and the whole
microgrid test case

To evaluate the performance of the whole microgrid system and of its components, we calculate the392

total cost during the entire day. As we mentioned, the total cost consists of the energy cost and thermal393

comfort. Table 4 shows the improvement of PCAO with respect to the 2 rule-based controllers. In each case,394

the Supervisory PCAO strategy attains relevant improvements, ranging from 12 to 22% at the aggregate395

level. The variability arises from the different weather conditions: in fact, the results were validated over 7396

different sets of 3 days, so as to show that the PCAO improvements are consistent in different environmental397

conditions (external temperature, humidity, solar radiation, and wind).398

In Figure 7, the performance of each 3-day experiment is plotted with respect to energy cost (objective399

1) and thermal comfort (objective 2). The figure proves that PCAO improvements are consistent in different400

conditions and different cases. Furthermore, the figure reveals that PCAO achieves better scores in both401

objectives: it is indeed remarkable to achieve a better thermal comfort while at the same time saving more402

energy. Mathematically, we say that the demand response strategy implemented by PCAO is Pareto optimal403

with respect to the demand response strategy implemented by the two RBCs. In fact, the solutions that404

PCAO offer are much closer to Utopia point than solutions of the other two demand response strategies.405

The Utopia point represents a solution that scores best in both objectives (Energy Cost and PPD), but that it406
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Figure 7: Energy cost (objective 1) and thermal comfort (objective 2) for 7 different experiments of 3 days: it is possible to notice
that the 6 points on the extreme right represent very hot experiments where extra energy was required. The Utopia point represents
an infeasible performance that cannot be achieved by any demand response strategy.

is impossible to reach.407

To further investigate the PCAO improvements in comparison with the RBC scenarios, three more408

analyzes are presented, which are explained in the following sections.409

5.1. Use of battery410

The first analysis regards the use of battery: in Figure 8 and Table 5 the charging/discharging behavior of411

the battery is presented. Both RBC25oC and PCAO algorithm perform better than RBC24oC. In fact, RBC25oC412

and PCAO manage to charge the battery to a greater extent, so as to exploit this energy in the evening hours413

when no PV energy is available. Furthermore, PCAO outperforms RBC25oC, as it achieves to charge the414

battery a bit more and use for more time the energy. As a result, less energy from the main grid is absorbed,415

and PCAO manages to exploit better renewable energy resources and achieve better energy pricing. Table 5416

shows to which extent the energy of the battery is better exploited: as compared with RBC25oC, it results that417

PCAO can exploit the battery for 2% more time (around half an hour every day), and the state of charge is418

on average 3% higher (around extra 70 kWh every day).419

Table 5: Battery Information

Case RBC24oC RBC25oC PCAO
Percentage of usage time 54% 61% 63%

Mean State of charge through experiment 15% 21% 24%

5.2. Participation of renewables420

The second analysis regards the two histograms presented in Figure 9, which have been obtained from421

a 3-day simulation (one of the seven simulation presented above). The first histogram presents the energy422

cost in AC for each building and the whole microgrid. The second histogram presents the mean percentage423

of people who are dissatisfied. As already revealed by Figure 7, PCAO achieves better scores in both424

histograms. In particular, with respect to RBC24oC, PCAO manages to save more than 50AC in 3 days for the425

whole system, while maintaining the comfort at better levels (2% better PPD score). On the other hand,426
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Figure 8: Battery evolution during the 3-day experiment

PCAO achieves a slightly better energy cost than RBC25oC: the energy cost is slightly better despite the pre-427

cooling effect implemented by PCAO that demands more energy consumption. Together with improving428

energy cost the PCAO strategy achieves a 3% improvement in PPD as compared with RBC25oC.429

Figure 9: Energy Cost in Euros and Percentage of Dissatisfied People during the 3-day experiment.

It is also worth considering how the use of energy is divided among grid and renewable energy under the430

different demand response programs. Figure 10 shows that the percentage of renewable energy is higher in431

the PCAO case. Generally speaking, PCAO strategy achieves to exploit better renewable energy resources432

(and better battery usage), maintain better energy cost levels (even with precooling mode), but without433

sacrificing the comfort levels of users.434

5.3. Robustness of solution-Sensitivity analysis435

The final analysis is on robustness of the proposed solution: it is well known in control theory that436

a crucial requirement for the design of control strategies is their ability to perform in different conditions437

and show a certain level of robustness and tolerance with respect to changes of system conditions. More438
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Figure 10: Percentages of Renewable and Grid Energy

precisely, the above results were obtained from a control strategy that was optimized optimize over a 3-439

day experiment. Thus, the resulting controller is optimized for the specific three days, with the specific440

occupancy schedule, weather conditions and needs: it is not clear how this controller might perform if tested441

in different days than the ones involved in the optimization step. That is why, in order to test the robustness442

of the proposed method, we tested the controller of the 3-day experiment, in a 30-day experiment with443

different weather conditions and different occupancy schedules.444

Table 6: PCAO Improvement (Total Cost) with respect to RBC24oC and RBC25oC in a 30-day experiment

Case Improvement wrt RBC24oC Improvement wrt RBC25oC

Building 1 13-16% 8-11%
Building 2 11-14 % 7-9%
Building 3 16-19 % 10-13%
Microgrid 13-17 % 9-11%

In Table 6, the numerical results of the 30-day experiment are presented. Obviously, the improvements445

of Table 6, are slightly worse than the improvements of Table 4. However, the degradation of performance446

is acceptable, since the overall improvements range from 9 to 17% (as compared with 12-22% of Table 4).447

This means that a controller optimized over three days can be safely used over much longer horizons: the448

explanation for such a robustness lies in the feedback nature of the PCAO strategy: this is a clear advantage449

over, e.g. receding horizon based demand response programs that require the solution of an optimization450

problem at every time step.451

5.4. Comparisons against a centralized architecture452

As a final comparison, the proposed supervisory strategy is compared with a PCAO centralized strategy,453

proposed in [30], using information stemming from the entire microgrid.454

In Table 7 the comparison between the two strategies is presented. The Centralized-PCAO strategy455

offers better performance than Supervisory-PCAO, but at the expense of slower convergence. It is to be456
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Table 7: Comparison (Total Cost) between supervisory and centralized PCAO strategy with respect to RBC2 (results validated over
7 different sets of 3 days)

PCAO-Strategy Improvement wrt RBC2 Iterations
Supervisory 18-22 % ≈ 250
Centralized 22-26 % ≈ 550

expected that, with data stemming from the entire microgrid, the Centralized-PCAO is not scalable to mi-457

crogrids with an increasing number of buildings. Thus, it is natural to raise concerns about its capability to458

used in bigger problems, with more buildings (50-100). Moreover, as we mentioned earlier, in real cases,459

it is difficult to share private information as the energy-consumption or the demand response with a central460

node or with other partners. On the contrary, the proposed Supervisory strategy, minimize the exchange of461

information and rely heavily on the local optimization algorithms.462

6. Conclusions463

This paper presented a novel control algorithm for joint demand response management and thermal464

comfort optimization in a microgrid composed of three buildings, a photovoltaic array, a wind turbine, and465

an energy storage unit. The rationale for considering thermal comfort was that comfort plays a major role466

in dynamic demand response, especially in front of intermittent behavior of the renewable energy sources.467

The proposed control strategy adopted a two-level supervisory strategy: at the lower level, each building468

employed a local controller that processes only local measurements; at the upper level, a centralized unit469

supervised and updated the three controllers with the aim of minimizing the aggregate energy cost and470

thermal discomfort of the microgrid. Comparisons with alternative strategies revealed that the proposed471

supervisory strategy efficiently manages the demand response so as to sensibly improve independence of472

the microgrid with respect to the main grid, and guarantees (and improves) at the same time thermal comfort473

of the occupants. The renewable energy sources are fully exploited and better integrated with the main474

grid. Generally speaking, PCAO strategy achieves to exploit better renewable energy resources (and better475

battery usage), maintain better energy cost levels, but without sacrificing the comfort levels of users. The476

improvement are in the range of 12-22%: furthermore, the solution is robust as a controller optimized over477

3 days can be used over much longer horizons (30 days) with improvements in the range 9-17%. Among478

the intelligent behaviors of the proposed strategy are: a pre-cooling action to avoid peaks of discomfort;479

modulation of the HVAC action to avoid peaks of energy consumption; better exploitation of energy from480

the battery; enhanced participation of renewable sources (and thus improved resilience from the grid and481

possibility to enable the islanded mode).482
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[7] Luis Pérez-Lombard, José Ortiz, and Christine Pout. A review on buildings energy consumption information. Energy and498

buildings, 40(3):394–398, 2008.499

[8] Liu Yang, Haiyan Yan, and Joseph C Lam. Thermal comfort and building energy consumption implications–a review. Applied500

Energy, 115:164–173, 2014.501

[9] ASHRAE. ANSI/ASHRAE standard 55-2004: thermal environmental conditions for human occupancy. American Society of502

Heating, Refrigerating and air-Conditioning Engineers., 2004.503

[10] EU Commission et al. Renewable energy road map-renewable energies in the 21st century: building a more sustainable504

future. COM (2006), 848, 2007.505

[11] EH Mathews, DC Arndt, CB Piani, and E Van Heerden. Developing cost efficient control strategies to ensure optimal energy506

use and sufficient indoor comfort. Applied Energy, 66(2):135–159, 2000.507

[12] Mingzhe Liu, Kim Bjarne Wittchen, and Per Kvols Heiselberg. Control strategies for intelligent glazed façade and their508
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