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Abstract

‘I think the next 21st century will be the century of complexity’, as Stephen Hawking predicted at
the beginning of 2000, this prediction is coming true gradually with the technology development.
The development of science is going through a dramatical and historical change because of the
Internet, computer, and all other technologies. There are more and more complex systems exist-
ing in nature and the human society, attracting attention of researchers, naming: the economic
system, the social organizations, and the human brain. The study of complex systems is to under-
stand the relationship between the system structure and functions. In order to characterize the
behavior of a system and to infer its topology features, mathematical models of the network are
derived and techniques are applied to represent a wide variety of complex systems. Therefore, this
method based on graph theory and statistical physics, committing to properties of the complex
system and specific features is the so-called network science.

This master thesis focuses on the particular problem about the cut-size property of different net-
works. The scope of networks is from trivial network models (e.g., random graph) to real networks
(e.g., Power grid network and Facebook network). The Susceptible-Infected-Susceptible (SIS) epi-
demic model can describe the spreading processes of information or diseases on networks. Within
this thesis, we explore the cut-size property of networks and seek the relations between the cut-size
property and the spreading behaviors. Our result deduces the cut-size property and the relevant
physical meanings of the real networks. In such a way, a deeper understanding of the cut-size
would help researchers to obtain insights of real networks. Our results may also contribute to the
study of control of dynamic processes on networks.

Keywords: Network science, the cut-size property, epidemic process, real networks
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ỹ Estimated metastable prevalence



Chapter 1

Introduction

1.1 Background

Nowadays, network science is gradually playing a central role in different disciplines such as:

computer science, finance, biology, and sociology [1]. The key challenge of network science

is to understand the relationship between the system structure and functions. To characterize

system behavior and to infer topology functions, the networks are applied to represent a wide

variety of complex systems. The elements of a system are represented as the network nodes, and

the interactions are represented as the network links [2]. Most of the networks which represent

systems neglect lots of information of the system and only leave the primary connections to reduce

the complexity. This network approach provides an abstract and simplified structure. In addition,

the advantages of the simple network representation are the ease to obtain meaningful results and

efficiency to analyze complex problems.

Graph theory is a powerful mathematical technique for measuring and analyzing the properties of

the networks [3]. The history of graph theory started in 1736 from the Königsberg seven-bridge

problem which is solved by Leonhard Euler [4]. This pace-tracing problem is to find the way

traveling through the Königsberg city by crossing each of the seven bridges once and only once.

Euler proved that it is impossible to find the way, that satisfies the conditions, by drawing the

abstract graph which only consists of the city as nodes and the bridges as links. This example is

the beginning of the graph theory which shows the potential of the reduction approaches in the

network science. Many practical problems can be represented by graphs only containing nodes

1



CHAPTER 1. INTRODUCTION 2

and links then can be analyzed and solved by the graph theory.

Along with the rapid development of the network science in 21 century, there are lots of interesting

properties of networks, like degree distribution, shortest path, and cluster coefficient, etc., which

are studied to present insights of networks [11]. In 1959, Paul Erdős and Alfréd Rényi firstly

introduced the Erdős–Rényi model as the basic network model for generating the random graph.

In 1998, Duncan Watts and Steven Strogatz identified that most real networks have a small shortest

path and a large clustering coefficient, which is the so-called small-world network [6]. After that,

Albert-László Barabási firstly used the scale-free network to describe the variety of networks with

a power-law degree distribution in 1999 [7]. All these impressive results indicate that most of the

real networks have the similar structures and provide a solid support to study other interesting

properties of real networks.

If a graph partitions into two sets, the number of the links between two partitions is the cut-size

of this graph. Different partition methods and the size of the partition have the influence on

the cut-size. Moreover, the cut-size can describe the interaction between these two partitions,

which we think is meaningful to gain the insight of networks. Based on the strong interest on the

cut-size of the networks, we explore the cut-size property of real networks in this thesis. Also, we

intensively discuss the physical meaning of the cut-size and the relation between the cut-size and

the epidemic process on networks. The networks in this thesis include real networks, for example,

the Europe Internet road, Facebook, power grid network, etc., and also includes basic network

models, for instance, Erdős–Rényi random network [5] and Barabási–Albert scale-free network [7]

as mentioned above.

The epidemic process as a special example is critical to understand the dynamic process on net-

works [9], like computing virus, information propagation on the Internet and other diffusion pro-

cesses. The spreading of the virus can be modeled by the epidemic processes on networks. The

susceptible-Infected-susceptible (SIS) epidemic model is a basic model of Epidemiology [10]. In

the SIS model, each node has two states: healthy (susceptible) state and infected state. The

infected nodes can infect its healthy neighbors with the infection rate β and the infected node can

be cured with the curing rate δ. There is an epidemic threshold τc which separates two phases of

the epidemic process on networks. When the effective infection rate τ=β
δ is above the epidemic
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threshold τc, the virus spreads and the prevalence will keep stable after a long period of time.

The prevalence is the average fraction of the infected nodes. When the effective infection rate

τ is lower than τc, the virus dies out and extinct almost exponentially fast. The analysis of the

relations between epidemic behaviors and the interaction plays a significant role in the study of

the epidemic process. Through the whole epidemic process, different time stages have the variable

cut-size and the key to understand the virus spreading process lies in the cut-size property of the

networks, which might provide a way to control the epidemic spread on networks [12].

1.2 Research Goals

The research goals for this thesis is intending to studying the property of the cut-size and find its

the relation with other properties of the networks. The cut-size property of the networks is related

to the epidemic process, and if we know the cut-size distribution, then we can approximate the cut-

size at this time. The cut-size can represent the spreading ability of the networks. In addition, we

can estimate the prevalence by using the cut-size property and compare the estimated prevalences

with the simulated prevalence in the metastable states. How the degree affects the cut-size property

is also a significant problem we would like to understand. The physical meaning of the cut-size of

the real networks is another goal of this thesis. From the macro and micro perspective, the study

of the cut-size can not only be applied to the epidemic process but can also be applied to other

dynamic processes.

1.3 Thesis Organization

The thesis contains five main chapters.

Chapter 2 introduces the background knowledge of networks models and graph theory used in

this thesis.

Chapter 3 studies the property of the cut-size, like the cut-size distribution, and the normalized

cut-size, etc., by using different partition methods. We deduce the bounds of the cut-size and the

normalized cut-size by the isoperimetric inequality and the isoperimetric constant. By using the
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partition method based on the degree, we discuss how the degree affects the cut-size property. Fi-

nally, all these derivations and calculation results are combined to make a conclusion of the cut-size

property of real networks. Real networks data are collected from the KONECT network collection,

which is a project to collect large network datasets of all types, compiled by the Institute for Web

Science and Technologies at the University of Koblenz–Landau [22]. We use the network data of

Facebook, Internet European road connection, email communication data [28] and other networks.

Chapter 4 presents the relationship between the cut-size and the Susceptible-Infected-Susceptible

epidemic process, deriving the estimated prevalence via the cut-size property. Also, by comparing

the difference between the simulated metastable prevalence and the estimated metastable preva-

lence, we can discuss the factors which influence the accuracy of the estimation.

Finally, Chapter 5 concludes this thesis. We also discuss the future work and relevant topics.



Chapter 2

General Network Theory

In this chapter, we introduce the basic mathematical notation used throughout this thesis, includ-

ing relevant metrics and networks.

2.1 Graph theory and notations

To study the networks, the graph theory is playing the critical role to solve problems of inter-

disciplines. Many practical problems can be represented by graphs that only contain nodes and

links. A graph consists of links and nodes, showing the relations between the elements without

additional information. Within this thesis, graph theory is the base for studying the networks and

for analyzing the cut-size property.

A network is a graph G(N,L) where N is the number of nodes in graph G, L is the set of links, and

l is the number of the links. In this thesis, the graph is undirected, unweighted and connected.

There are several basic notations represent the graph G(N,L) as follows.

The adjacency matrix A is a N×N matrix containing the graph structure information. The

element ai j denotes the link between node i and node j. An element ai j is the binary number

ai j =

 1 if (i, j) ∈ L

0 if (i, j) ̸∈ L
(2.1.1)

5



CHAPTER 2. GENERAL NETWORK THEORY 6

Therefore, A is real and symmetric matrix, and the eigenvalue of the adjacency matrix A are λ1

≥ λ2 ≥ ...≥ λN .

The degree of node i is the number of neighbors of node i which is given by

di =
N

∑
j=1

ai j (2.1.2)

Another essential matrix of a graph is the Laplacian matrix Q

Q =∆−A (2.1.3)

where ∆=diag(d1,d2,...,dN) is the diagonal matrix computed from the degree of each node di . Both

diagonal matrix and adjacency matrix are real and symmetric, therefore the Laplacian matrix Q

is also symmetric and real with all eigenvalues nonnegative and satisfying the order σ1 ≥ σ2 ≥ ...≥

σN=0. Here the number of zero eigenvalues is the number of connected components of the graph.

A connected graph only has one component and σN=0. The second smallest non-zero eigenvalue

σN−1 of Q is also known as the algebraic connectivity of the graph.

2.2 Basic network models

With the rapid evolvement of real networks, the complexity of networks topology is growing a lot,

and the computation is infeasible because of the huge network size. These complex networks can

not be presented as simple network models, for example, a random graph. Therefore, in order to

analyze the problems on real complex networks, other essential network models, that are found in

complex networks, are applied to analyze real networks. This section introduces the basic network

models concerned in this thesis, including Erdős-Rényi random graph, small-world network, and

the scale-free network.

Erdős-Rényi random graph

In 1959, Paul Erdős and Alfréd Rényi firstly introduced the Erdős Rényi network [5]. This network

is commonly used to study the property of random graph [5, 20]. The ER random graph has N

nodes, and each node pair is connected independently with the probability p. With the increasing
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of link probability p, the graph has more links. The ER graph is a complete graph when the

probability p equals to 1. The average links number of the ER graph is E[l] = N(N−1)p
2 and the

average degree is dav = (N −1)p. The degree distribution is,

Pr(di = m) =

(
N −1

m

)
pm(1− p)N−1−m (2.2.1)

If N → ∞ and Np is a constant, then the degree distribution of random graph is a Poisson

distribution with a bell shape

Pr(di = m) =
(N p)mem

m!
(2.2.2)

Figure 2.2.1: Example of random graph, scale-free network, small-world network [21].

Normally, the ER graph model is generated randomly. Any other properties observed in real

networks cannot be reproduced by this model. Figure 2.2.1 illustrates different types of networks

models, including the ER random graph, the scale-free network, and the small-world network.

The first subgraph of the Figure 2.2.1 is the example of the ER random graph.

Small-world network

The small-worlds network illustrates the interesting phenomenon in real life that, for any two

strangers, only six steps are needed to find their connection, which is the so-called six degrees of

separation [16]. Since the first research by Watts–Strogatz [6], more and more real networks are

found to have the small world properties. The small-world networks have a small average short-

est path but a larger clustering coefficient, which makes small-world networks have the higher

robustness to resist change and the shorter distance to relay information. The properties of the

small-world network are between a random graph and a regular graph, whose each node has a
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constant degree due to the generating method. The third subgraph of Figure 2.2.1 shows an ex-

ample of the small-world network.

Scale-free network

The scale-free network has a power-law degree distribution. In the scale-free network, most nodes

have a very small degree and a few hubs have a very large degree. The degree distribution follows

p(k)∼ k−γ (2< γ < 3) (2.2.3)

The interests on scale-free networks started at the end of the 20 century. Albert-László Barabási

defines the scale-free network to describe a series of networks follow a power-law distribution[17],

and then the Barabási-Albert (BA) model becomes the most commonly used model to generate

scale-free networks [18]. Before BA model, the heavy tail distribution is already found by Derek

in citation networks [19]. Lots of real networks are also found following the power law degree

distribution. The scale-free network model used in this thesis is generated via BA model. The

generation of BA model starts from a few initial nodes and follows the degree-biased rule during

each step. New nodes will be connected to existing nodes based on the degree. The nodes with a

larger degree have a larger probability of connecting new nodes. The second subgraph of Figure

2.2.1 shows an example of the small-world network.

Except the network models mentioned above, some simple networks are also considered in this

thesis as examples, including star graph, complete graph, and cycle graph. The star network

with N nodes has one single central hub which is connected with N −1 leaf nodes. In a complete

graph, all nodes are connected. The complete graph consists of N(N − 1)/2 links and N nodes,

and all nodes have the same degree N −1. The cycle network with N nodes only contain a single

cycle, and every node has the degree 2. The above networks, especially the scale-free network and

small-world network, can be seen as the bridge to promote the study of the cut-size property of

real networks.



Chapter 3

The cut-size property of real

networks

3.1 Overview

This chapter introduces the thesis contribution to the cut-size property of real networks, the

bounds of the normalized cut-size and its average, the effect of degree on the normalized cut-size,

and the physical meaning of the cut-size on specific real networks. This chapter firstly introduces

the network datasets that are used in this thesis. In section 3.3, the definition and the mathematical

properties of the cut-size are given and derived. Section 3.4 presents the result of the real networks

by randomly partition methods. The physical meanings of the cut-size properties of the specific

real network is analyzed and explained. The influence of the degree on the cut-size property by

degree-based partition method is discussed in section 3.5. Section 3.6 concludes this chapter.

3.2 Dataset of real networks

Within this thesis, seven real networks are analyzed for studying the cut-size property. This

section introduces these real networks. All these networks are collected from KONECT [22]. In

addition, all selected networks are undirected and unweighted networks.

9
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• US power grid network: This network is the power grid of the western United States, includ-

ing N=4941 nodes and l=6594 links. The nodes represent power generators, transformers,

and substations, and the links represent the voltage transmission lines between these power

support stations [24]. Based on the paper by Duncan J. Watt [6], this network is a small-

world network which has a large clustering coefficient and a small shortest path length. Table

3.2.1 shows the data of US power grid network.

• European E-road network: This network is the international road of the European cities,

including N=1147 nodes that represent the cities, and l=1417 links represent the E-road

within these cities. This network is neither a scale-free network nor a small-world network.

This network has lots of communities based on different regions [28]. Figure 3.2.1 illustrates

the structure of the European E-road network.

Figure 3.2.1: The European E-road network Community structure [28]

• Facebook network: This network is the Facebook user-to-user friendship network, consisting

of N=2888 nodes that represent the users, and l=2981 links representing the friendship

connection between users [25]. This network is an ego network which consists of the ego

nodes and the directly neighborhoods. The Ego nodes have a larger degree and can be

represented persons, groups, and organizations.

• Chicago network: This network is the transportation network of Chicago region with N=1467

transporting spots and l=1298 road connections between spots [26]. Although, in this net-

work, the links are related to the traffic flow. Simplify the analysis, we assume this network
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is undirected and unweighted.

• Email communication network: This network is the email communication network at the

University Rovira I Virgili in southern Spain. This network shows the evolution of social

activities. This network contains N=1133 nodes and l=5451 links that represent the users

and their communication, respectively [28]. Similar to the Facebook network, this network

can reflect the human communication behaviors.

• Zachary karate club network: This network contains the N=34 nodes and l= 78 links that

represent the members of the club and their relationships. This network has two communities

because of the conflict between two teachers. Half of the members form a new club around

one teacher, and members of another group find a new instructor or quit karate [29].

• Jazz musicians network: This network is the US Jazz musicians network at the beginning

of 20th century. The network consists of 198 nodes and 2742 links, which denote the jazz

musicians and the cooperation between musicians [30].

Network Nodes Links Network density Cluster coefficient Algebraic connectivity Largest eigenvalue λ1

US power 4941 6594 0.00054030 0.103 0.00075921 7.4831
European E-road 1174 1471 0.0020579 0.0339 0.0011603 4.0104

Face-book 2888 2981 0.00071507 0.000359 0.0023771 27.803
Chicago transportation 1467 1298 0.0012071 0 0.0030897 4.9110
Email communication 1133 5451 0.0085002 0.166 0.33256 20.747
Zachary karate club 34 78 0.13904 0.256 0.46853 6.7257

Jazz Musician 198 2742 0.14059 0.52 0.57199 40.027
Table 3.2.1: Parameters of the real network involved

Table 3.2.1 presents the relevant properties. These datasets involve different types of real networks,

like the social network, the human communication network, the infrastructure. All these network

datasets are chosen because of the significant representatives of real complex networks. Therefore,

the study of the cut-size property of these networks is meaningful.

3.3 Mathematical properties of the cut-size

In this section, we give the definition of the cut-size and mathematical properties.

A graph G(N,L) partitions into two node subsets, K and S. The cut-set is the set of links between
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two subsets. The cut-size is the number of links in the cut-set, which equals to

C = wT Qw (3.3.1)

where Q is the Laplacian matrix of graph G. The states vector as w=[W1,W2,...,WN ] and Wi ∈ {0,1}

is the Bernoulli random variable which represents the node partition that: if Wi =1, then node i

belongs to the subset K, while if Wi =0, then node i belongs to the subset S. In this thesis, we

define the nodes v ∈ K as the selected nodes. The equation (3.3.1) gives a computable formula as

the base to calculate the cut-size.

Figure 3.3.1 shows a particular example of a toy network which presents the relations between the

cut-size and the epidemic process. The black nodes represent the infected nodes and the white

nodes represent the healthy nodes. The cut-set is the set of red links connecting two subsets [12].

Figure 3.3.1: The epidemic state at moment t which shows three states part: a) the set of infected
nodes at time t N(t)=7 as the black nodes, b) the set of susceptible nodes at time t N(t)=14 as the white
nodes c) the cut-set, set of links with one end node in infected set d) the cut-size equals to C=6 [12].

3.3.1 The cut-size of simple networks

The star network consists of N nodes that only one central node is connected with N-1 leaf nodes.

To study the cut-size distribution, we randomly partition the graph into two sets. Set K con-

tains k nodes while another set S contains N − k nodes. Each node has the same chance to be

randomly selected into the set K with the probability 1
k . The cut-size of each k has two different
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values according to the central node. If only leaf nodes are included within the selected set K, the

cut-size equals to C = k for each k ∈ {1,...N-1} with the probability N−k
N . If the central node is

included in the selected set k, the cut-size equals to N − k for each k ∈ {1,...N} with probability
k
N . The probability is related to the network size N and the selected nodes number k if we know

the selecting probability of the nodes.

A complete graph consists of N(N−1)
2 links and N nodes. All nodes are connected by links with

the same degree N-1. For the complex graph, the cut-size is a function of the size of the selected

set |K| = k. The cut-size is calculated as (N − k)k. Hence, for complete graph, the cut-size is

determined when the number of the selected nodes k is known. Let us consider the cut-size of the

cycle graph. The cycle graph consists of N nodes to conduct a single cycle. Every node of the

cycle graph has the same degree 2. The cut-size distribution of a cycle graph is more complex than

other that of a star graph or a complete graph, so it is hard to give the exact cut-size equation

and probability for the cycle graph.

3.3.2 The normalized cut-size and its average

In this section, we discuss the average normalized cut-size derived by the average interconnection

constant [38].

To derive the average normalized cut-size, we adopt the average interconnection constant which

is introduced by Jasmina [38]

η(G,k) =
1(N
k

) ∑
K⊂{1,...,N},|K|=k

e(K,S)
|K|

, (3.3.2)

where e(K,S) denotes the number of links between the set S and the set K. The ratio e(K,S)
|k| measures

the connectivity between the set K and the set S. For each k, there exists
(N

k

)
combinations that lead

to a very complex computation. Therefore, by averaging the ratio e(K,S)
|k| over all

(N
k

)
combinations

of the set with k nodes, we can obtain the average interconnection constant as

η(G,k) = dav

(
1− k−1

N −1

)
= dav

(
N − k
N −1

)
(3.3.3)
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where the dav is the average degree of the graph. The average interconnection constant is deter-

mined for each k. The proof of the average interconnection constant (3.3.3), is given in Appendix A.

Recalling the definition of the cut-size C in previous section, the cut-size C varies with each k. To

fairly compare the cut-size when k is from 1 to N/2, we define the normalized cut-size

Ncut =
C

|K||S|
, K ⊂ {1, ...,N} 0< k ≤ N

2
(3.3.4)

If randomly select k nodes to formulate the set K, there are
(N

k

)
combinations leads to the varying

cut-size and the varying normalized cut-size. Hence, we average the cut-size C over all combinations

to obtain the average cut-size with k nodes as

E[C] =
∑K⊂{1,...,N},|K|=k C(N

k

) , K ⊂ {1, ...,N} (3.3.5)

where the average cut-size E[C] is a constant for each k. Then, we calculate the average normalized

cut-size for each k as

Ncut =
E[C]

|K||S|
, K ⊂ {1, ...,N} 0< k ≤ N

2
(3.3.6)

the average normalized cut-size is also a constant for each k. Because C=e(K,S), the average

interconnection constant is from (3.3.2)

η(G,k) =
1(N
k

) ∑
K⊂{1,...,N},|K|=k

C
|K|

(3.3.7)

by substituting equation (3.3.5) into (3.3.7), we have

η(G,k) =
E[C]

|K|
(3.3.8)

by substituting equation (3.3.8) into (3.3.6), the average normalized cut-size is

Ncut =
η(G,k)
|S|

=
dav

N −1
(3.3.9)

where |S| equals N − k and the ratio dav
N−1 is the network density, which is the ratio between the

number of links and the maximum possible number of links, i.e. 2l
N(N−1) , where l is the number of
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the links of the graph.

As a result, the average normalized cut-size is derived, which is invariant for different value of

k. For a graph, no matter how many nodes k are randomly selected to formulate the set K, the

average normalized cut-size Ncut is fixed.

3.3.3 Bounds of the normalized cut-size

In this section, the bounds of the normalized cut-size is derived from the isoperimetric inequality

[36, 37].

As introduced by Ganesh in [36], the so-called generalized isoperimetric constant of the graph

G(N,L) is

η(G,k) = inf
k⊂{1,...,N},|K|≤k

e(K,S)
|K|

, 0≤ k ≤ N
2

(3.3.10)

when k=N
2 , the generalized isoperimetric constant η(G,k) corresponds to the standard isoperi-

metric constant η(G). For any graph G(N,L), this standard isoperimetric constant follows the

inequality

η(G)≥ σN−1

2
(3.3.11)

where σN−1 is the algebraic connectivity, i.e. the smallest non-zero eigenvalue of the Laplacian

matrix Q of the graph G. We replace the e(K,S) in equation (3.3.10) by the cut-size C and then

obtain

η(G,k) = inf
K⊂{1,...,N},|K|≤k

C
|K|

, 0≤ k ≤ N
2

(3.3.12)

by combining the equation (3.3.4) with equation (3.3.12), we can obtain

η(G,k) = inf
K⊂{1,...,N},|K|≤k

Ncut |S|, 0< k ≤ N
2

(3.3.13)
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when k=N
2 , we can derive a lower bound of the normalized cut-size

Ncut >
σN−1

2N
(3.3.14)

this low bound of the normalized cut-size is only determined by the eigenvalue σN−1.

Another lower bound and an upper bound can be derived by the isoperimetric inequality [37]. For

a graph G(N,L) partitions into two sets K and S, the cut-size C between two sets satisfies:

∣∣∣∣C− dav|K||S|
N −1

∣∣∣∣≤ θ
N −1

√
|K|(N −|K|)|S|(N −|S|) (3.3.15)

where θ ≥ max(|dav−σi|) for i ̸= N and σi is the eigenvalue of Laplacian matrix Q of graph G that

satisfies σ1 ≥ ... ≥ σN−1 ≥ σN=0. For a connected graph, σN−1 is the smallest nonzero eigenvalue.

The inequality is simplified for a 2-partition by dividing |K| and |S| on both sides:

∣∣∣∣ C
|K||S|

− dav

N −1

∣∣∣∣≤ θ
N −1

(3.3.16)

and then the first term in the left-hand side is the normalized cut-size and the second term is the

average normalized cut-size. By substituting equation (3.3.4), we obtain bounds of the normalized

cut-size

∣∣∣∣Ncut −
dav

N −1

∣∣∣∣≤ θ
N −1

, (3.3.17)

The parameter θ in (3.3.17) determines the upper bound and lower bound. For the Laplacian

matrix Q, the diagonal element is degree of each nodes and the sum of the eigenvalues equals to

the trace of Q. Thus, the average degree dav is the average of all eigenvalues σi, and dav is between

σ1 and σN−1. Therefore, max(|dav −σi|) equals to max(|dav −σ1|, |dav −σN−1|). The parameter θ is

only related to the smallest nonzero eigenvalue σN−1 and the largest eigenvalue σ1, we have

dav −θ
N −1

≤ Ncut ≤
θ+dav

N −1
(3.3.18)

where θ=max(|dav−σ1|, |dav−σN−1|) determines bounds. Because Ncut > 0, a more precise inequal-
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ity is derived as

max(dav −max(|dav −σ1|, |dav −σN−1|),0)
N −1

≤ Ncut ≤
dav +max(|dav −σ1|, |dav −σN−1|)

N −1
(3.3.19)

This inequality provides a different lower bound of the normalized cut-size Ncut comparing to

equation (3.3.14). If |dav −σ1|> |dav −σN−1|, then the lower bound from (3.3.19) is zero and the

bound (3.3.14) is tighter. If |dav −σN−1|> |dav −σ1|, then the lower bound from (3.3.19) is tighter

comparing to (3.3.14). Both bounds are related to the eigenvalue σ1 or σN−1 of the Laplacian

matrix Q of graph G.

This section focuses on the mathematical property of the cut-size. The average normalized cut-size

is derived, which is a constant determined by the network density or average degree. Meanwhile,

the upper and lower bounds of the normalized cut-size are obtained by the isoperimetric inequality

(3.3.19). The above knowledge about the cut-size provide the solid theoretical base for studying

the cut-size property in real networks.

3.4 The cut-size of real networks

In this section, we discuss the cut-size property of several real networks which are introduced in

section 3.2. The cut-size distribution and the theoretical bounds of the normalized cut-size are

discussed in this section. The physical meaning of the cut-size for the specific real network is

explained. In addition, the result of the random graph and the scale-free network are given in

Appendix B as the supplement.

In order to obtain the cut-size and related properties, we calculate the cut-size by randomly

partitioning the graph into two sets K with k nodes and S with N − k node. If Wi = 1, then node

i belongs to set K, otherwise, node i belongs to S. Based on the state of the network nodes, we

formulate the state vector as w=[W1,W2, ...,WN ]. Then, by using equation (3.3.1), we calculate the

cut-size of the set K. For each k, the random partition process is repeated for m = 105 times. By

using equation (3.3.4), we can gain the maximum normalized cut-size, the minimum normalized

cut-size as well as the average normalized cut-size, respectively. With k increase from 1 to N, the

normalized cut-size of the whole graph is obtained.
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3.4.1 Results of real networks

In this section, we present our results of real networks. The result of three real networks are shown

in the following part of the section. There are some common properties observed from all the real

networks. Results of the rest networks are given in Appendix B.

Figure 3.4.1: The normalized cut-size of the European E-road network

Figure 3.4.1 shows the result of the Europe E-road network. The red curve is the average normal-

ized cut-size constant Ncut of this network and the black dash line is the network density of the

E-road network. From equation (3.3.9), the average normalized cut-size is a constant related to

the average degree and the network size. The average normalized cut-size equals to Ncut = 0.002.

The network density of the European E-road network is p = 0.0020579 which is shown in table

3.2.1. No matter how you many nodes are selected in set K, the average normalized cut-size is

always a fixed number which equals to the network density. For each exact k value, the average

cut-size can be derived based on this property. The green curve is the maximum normalized cut-

size. When k=1, the maximum normalized cut-size has a large value because the distribution of

the cut-size with only one node selected is actually the degree distribution. Moreover, with the

increase of k, the maximum normalized cut-size approaches to the average normalized cut-size.

However, the change slows down when approaching the average normalized cut-size.

For an increasing k, the number of new links added into the cut-size declines. The purple curve

is the minimum normalized cut-size shown in Figure 3.4.1. The minimum normalized cut-size has
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an opposite changing trend in which the minimum cut-size continuously increases until approxi-

mately to the average normalized cut-size. When k is close to 1, the minimum normalized cut-size

increases fast. Then the increasing speed decreases with k. Both the minimum and maximum

normalized cut-size are close to the average normalized cut-size, indicating a centric phenomenon

that the minimum and maximum cut-size near the mean cut-set size with the small variance. In

addition, the changing rate of both the maximum and minimum normalized cut-size decreases.

The two black curves as shown in Figure 3.4.1 represent the upper bound and lower bound for the

normalized cut-size, which calculated by equation (3.3.19), respectively. These bounds are fairly

loose comparing to the green and purple curves. However, the range of the normalized cut-size in

the real network is much smaller as shown in Figure 3.4.1. Therefore, the theoretical bounds are

inaccurate and can not represent the distribution of the normalized cut-size well since the value

of the normalized cut-size concentrates to the average normalized cut-size.

Figure 3.4.2: The normalized cut-size of the Facebook network

Figure 3.4.2 shows the result of the Facebook network. Facebook network contains different com-

munities based on the users age, interests, gender or other user behaviors. The hub nodes present

the nodes with lots of connections in a community, and the edge node present the nodes with few
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connections in a community. Comparing to the result of the Europe E-road network, the property

of the normalized cut-size is entirely different. As shown in Figure 3.4.2, the red curve is the max-

imum normalized cut-size of the Facebook network. With a small number of the selected nodes,

the maximum normalized cut-size rapidly reduces, which indicates that the Facebook network

only contains a few nodes with a large degree. With the increase of k, the maximum normalized

cut-size slowly approaches to the average normalized cut-size, which equals to Ncut = 0.00071. The

variation of the maximum normalized cut-size is huge, while the minimum normalized cut-size

almost equals to the average normalized cut-size. The minimum normalized cut-size is small due

to plenty of 1-degree nodes, and the connections between different subsets are weak. The real nor-

malized cut-size has a smaller variation comparing with the theoretical upper and lower bounds

derived by (3.3.19). From our result, relocating a high-degree node from one node subset to another

one leads to a large change on the normalized cut-size comparing to relocating a small-degree node.

Figure 3.4.3: The normalized cut-size of the Chicago transportation network

Figure 3.4.3 illustrates the result of the transportation network of Chicago. The clustering coef-

ficient of the Chicago network equals to 0, which means this network does not contain triangles.

Similar to previous results, the pink curve presents the average normalized cut-size approximates

to the network density where Ncut ≈ p = 0.0012071. The purple curve is the maximum normalized

cut-size, which shows a fast decrease after more nodes selected, and then gradually approaches to
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the average normalized cut-size. The minimum normalized cut-size as shown as the green curve

increases approximately to the average normalized cut-size. The maximum and minimum normal-

ized cut-size have a centric trend that both of them converge to the average normalized cut-size.

The black dash curves are theoretical upper and lower bounds based on the isoperimetric inequal-

ity. The difference between the maximum and minimum normalized cut-size is much smaller than

the theoretical bounds.

The influence of the property of the cut-size can be explained with an example of Chicago trans-

portation. Let us consider the traffic congestion problem on this network. If a congestion happens

on a station, the congestion only influences the links which connect itself and stations with no

congestion, since the buses can only drive to the station without congestion. If the traffic conges-

tion happens randomly on the stations of the transportation network, the number of congested

stations is small in the beginning. Then, the number of congested links can be very large if there

are high-degree stations congested. The variation of the number of normalized congested links

can be large. However, with the number of congested stations becomes large, for example, N/2,

the change of the number of links with only one congested station is in a lower order, comparing

to the product of the number of congested and non-congested stations. Then, the variation of the

congestion is less influenced by the high-degree stations.

In this section, we present the results of real networks. There are some common properties observed

from all real networks. According to these results, there are some general conclusions about

the cut-size property for different real networks. 1) The normalized cut-size Ncut have a centric

phenomenon that the range between the maximum and minimum normalized cut-size shrinks when

randomly partition the network. The smallest variance achieves when th number of nodes in either

partition approaches k=N
2 . 2) With k approaching N/2 , the value of the maximum and minimum

normalized cut-size get closer to the average normalized cut-size Ncut which approximately equals

to the network density. 3) The variation between the maximum and minimum normalized cut-size

is much smaller than the theoretical bounds obtained by the isoperimetric inequality (3.3.18). But

the bounds of the isoperimetric inequality cannot represent the properties of real networks. 4) By

combing the average normalized cut-size and the set size k, the cut-size between two subsets in

the graph can be approximated. All these results have a specific physical meaning for each real

network.
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3.4.2 The distribution of the cut-size

As discussed in the previous section, the normalized cut-size shows a con phenomenon, meaning

that the range between the maximum and minimum normalized cut-size decrease with the number

of nodes in each partition approaches to N
2 . The maximum and minimum cut-size get closer to the

average cut-size when K near N
2 . The maximum normalized cut-size decrease approximately to

the average normalized cut-size. The changing rate of the maximum normalized cut-size is related

to the node degree in subset K. If a real network contains m hubs, then the maximum normalized

cut-size decreases before k=m. If a real network has a lot of nodes with the similar degree, then

the maximum normalized cut-size continuously decreases until k=N
2 .

For a small k value nearby k=1, the cut-size distribution follows the original degree distribution.

For instance, the cut-size distribution of a scale-free network follows a power-law distribution when

k=1. The cut-size distribution approximately to the Gaussian distribution when k → N
2 . Because

of the centric phenomenon, the maximum and minimum cut-size gradually change to the mean

cut-size with a small variance. When k=N
2 , the difference of the cut-size is minimal and the cut-

size distribution resembles a Gaussian distribution. Figure 3.4.4 , Figure 3.4.5, Figure 3.4.6 and

Figure 3.4.7 show the cut-size distribution with different k values of the European E-road network

and the Facebook network.

Figures 3.4.4 and Figure 3.4.5 show the cut-size distribution of the Europe E-road network when

choosing k = 200 and k = N
2 . The blue dots represent the value of the cut-size and the red curve

is a Gaussian distribution fitting curve. The parameters of the Gaussian fitting curve for Fig-

ure 3.4.4 are µ = 400.5 and σ = 20.83, and for Figure 3.4.5 are µ = 709, σ = 26.52 when k=N
2 .

Comparing to Figure 3.4.4 and Figure 3.4.5, the variances of the cut-size are similar, while the av-

erage cut-size increase with higher k. In addition, the variance of the normalized cut-size as shown

in Appendix B.3.9, is smaller than 10−6. The result proves the centric phenomenon of the cut-size.
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Figure 3.4.4: The cut-size distribution when k=200 for the European E-road network with N=1174

Figure 3.4.5: The cut-size distribution when k= N
2 for the European E-road network with N=1174

Figure 3.4.6 and Figure 3.4.7 show the cut-size distribution of Facebook network when k=N
2 and

k = 2000. The blue dots represent the value of the cut-size and the red curve is a Gaussian

distribution fitting curve. When k=N
2 , the cut-size distribution resembles a Gaussian distribution
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Figure 3.4.6: The cut-size distribution when k= N
2 for the Facebook with N=2888

Figure 3.4.7: The cut-size distribution when k=2000 of the Facebook with N=2888

with µ = 1492 and σ = 32.02. When k=2000, the cut-size distribution does not fit the Gaussian

distribution with µ = 1201 and σ = 412.8. The mean cut-size value when k = 2000 is smaller

than the mean cut-size when k=N
2 . The comparison between these two cut-size distributions
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illustrates that the distribution of the cut-size changes from a Gaussian distribution to degree

distribution of the network with a higher k increase from N
2 to N. As shown in Appendix B.3.8,

the variance between the normalized cut-size is smaller than 6× 10−5, which also indicate the

centric phenomenon of the cut-size.

3.4.3 Discussion

The normalized cut-size have a centric phenomenon, in which the maximum and minimum nor-

malized cut-size get closer to the average normalized cut-size with k approaching N
2 . The variance

between the maximum and the minimum normalized cut-size is shrinking with the increase of k.

Comparing to the theoretical bounds derived by the isoperimetric inequality (3.3.18), the range

between the maximum and minimum normalized cut-size is much smaller than the loose theo-

retical bounds. Moreover, the average normalized cut-size is a constant related to the network

density. The decreasing rate of the maximum normalized cut-size is related to the node degree

in subset K. Also, for each k value, there exists a different cut-size distribution. The cut-size

distribution closely resembles the Gaussian distribution when K ≈ N
2 .

3.5 The effect of degree on the cut-size property

In this section, the effect of degree is the main concern to study the normalized cut-size of real

networks. The method to formulate the set K affects the normalized cut-size result.

3.5.1 The effect of degree

Based on the node degree, we select nodes to conduct the set K. The nodes with a higher degree

have a higher probability to be chosen for set K, while the nodes with a lower degree have a lower

probability to be selected for set K. The step to calculate the cut-size is given here. Firstly,

we use the degree of each node to generate a node vector V which contains Ndav elements. The

number of node i appears di times in the node vector. Next, the nodes will be randomly selected

within the node vector V . The selected nodes formulate the subset K in which most nodes have a

larger degree. For each subset K, the cut-size is calculated by equation (3.3.1). The degree-based

partition process repeats m= 105 times for each value of k to obtain the normalized cut-size of the
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networks.

Based on the above calculation method, there are some conclusions observed from all these results.

• The range between the maximum and minimum normalized cut-size shrinks with the increase

k. The selection of high degree nodes within set K leads to a significant increase in the cut-size

when k is small .

• The average normalized cut-size is not a constant and decreases with the increase k.

• The maximum normalized cut-size continuously declines with k. The minimum normalized

cut-size increases when k is small and then decreases along with the average normalized

cut-size.

• The nodes with the higher degree are playing more important role in the change of the

normalized cut-size.

The results of three real networks are shown and discussed in the following section. Other networks

are given in Appendix B.

Figure 3.5.1: The normalized cut-size of the Europe E-road based on degree method

Figure 3.5.1 shows the normalized cut-size of the Europe E-road network based on the degree

selection. Comparing to the figure 3.4.1, the result is entirely different. The green curve is the

average normalized cut-size which is not a constant anymore and continuously decrease with k.

The purple curve is the maximum normalized cut-size, which decreases significantly when k< 50
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because the set K includes most of the high-degree nodes. When all high degree nodes are selected

in set K, the decrease of the maximum normalized cut-size slows down. The pink curve is the

minimum normalized cut-size, which increases approximately to the average normalized cut-size

with a few lower-degree nodes. Then, the minimum normalized cut-size decreases along with the

average normalized cut-size. The variance between the maximum and minimum normalized cut-

size continuously shrinks. The normalized cut-size change largely before k ≤ 100. After that, the

normalized cut-size decrease approximately linearly with lower degree nodes. In addition, the red

curves as shown in figure 3.5.1 represent the upper and low bounds derived from the isoperimetric

inequality (3.3.18). A real example of the European E-road network is given here. If the news of

the Netherlands toxic eggs [39] suddenly appear on the Internet, the cities with more neighbors,

like Paris, Berlin, and Amsterdam, post this news. The neighbors of these central cities directly

receive the news. After a period, all major cities with plenty of neighbors receive the news. But,

the rural cities will receive the news with a delay.

Figure 3.5.2: The normalized cut-size of the Chicago transportation based on degree method

Figure 3.5.2 illustrates the normalized cut-size of the Chicago transportation network. The purple

curve is the maximum normalized cut-size which continuously decreases with k. The pink curve is

the minimum normalized cut-size. The blue curve is the average normalized cut-size which has the

decreasing trend within the whole process. Both the maximum and the minimum normalized cut-

size have a centric phenomenon that approaching to the average normalized cut-size. The difference

between the maximum and the minimum normalized cut-size decreases with the number of nodes



CHAPTER 3. THE CUT-SIZE PROPERTY OF REAL NETWORKS 28

in set K. Let us consider the traffic congestion on this network. If the congestion happened in

the central station with a large degree, then the congestion will fast spread to other neighbors

stations. The central station has the largest influence on creating congestion.

Figure 3.5.3: The normalized cut-size of the email communication based on degree method

Figure 3.5.3 shows the normalized cut-size of the email communication network. In this network,

plenty of the nodes have the highest degree 11. The purple curve is the maximum normalized cut-

size which decreases with k. The pink curve is the average normalized cut-size which also decreases

with the increase k. The difference between the maximum and minimum normalized cut-size has

the decreasing trend. When k ≈ 200, this difference is quite small which indicates the maximum

and the minimum cut-size are approaching each other. This network contains around 200 nodes

with a high degree, and both the maximum and minimum normalized cut-size approximately equal

to the average when k>200. Therefore, the larger-degree nodes have the large influence on the

value of the normalized cut-size when partitioning the network.

Compared with the Figure 3.5.1, Figure 3.5.2, and Figure 3.5.3, the normalized cut-size changing

trends are similar. The maximum normalized cut-size dramatical decreases with the number of

the large-degree nodes in set K. When the low-degree nodes are selected to formulate set K, the

decrease rate of the maximum normalized cut-size slows down. Furthermore, the average nor-

malized cut-size continuously decreases with the increase k. The minimum normalized cut-size
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increases when k is approximately smaller than the number of the large-degree nodes, because of

a similar reason in the maximum cut-size case. When k is approximately larger than the number

of large-degree nodes, the minimum normalized cut-size gradually decreases. From the physical

meaning perspective, the changing trend of the normalized cut-size is related to the degree distri-

bution of each network. The Europe E-road has a few nodes with the highest degree and large

amounts of nodes with a similar degree, so the decrease rate is slow after K=80. The Chicago

transportation network contains plenty of nodes with the high degree, so the maximum normalized

cut-size decrease fast to the average normalized cut-size when k < 400. The cut-size bursts at

the beginning when more critical nodes are selected. Therefore, the nodes with high degree in

real networks have a higher influence on the cut-size property when using degree-based partition

method.

3.5.2 The effect of the hub

In this section, an example is given to show the effect of the hub nodes on the cut-size property.

In this case, the network is partitioned into two sets based on the hub nodes, as a result of the

minimum cut of the network.

We consider the Zachary karate club network [29] as the example to explain the effect of hub nodes

for partitioning the network. This network has 34 members and 78 relations between members

with a high clustering coefficient and a large network density. But, two teachers with the highest

connections argue with each other, then this club splits into two parts. Half of the members form

a new club around one teacher and other members of another group found a new instructor or

quit the karate club. Only five nodes contain most of the links, so these five nodes are the hubs

in the network. According to the degree of each node, we split these five hubs into two sets, set K

and its complement set S. If the set K contains the large-degree nodes and most of its neighbors,

then the number of links connecting nodes within K is large. The number of the links between

two sets reaches a small size. If we want to obtain the minimum cut-size crossing two subsets,

then we need to make sure to find the most connected part of the networks.

As shown on Figure 3.5.4, the nodes in Zachary karate network are partitioned into the red and
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Figure 3.5.4: The two subsets of Zachary karate network

the black set. Nodes 1,2,3 are the most critical hubs in the red set. Most of the neighbors of node

1, node 2, and node 3 belong to the red set. Nodes 34 and node 33 are the critical hubs of the

black sets and most of the neighbors of node 33 and node 34 also belong to the black set. These

hubs decide the structure of the sets with the minimum cut. However, there still exists nodes

which can belong to any sets with less importance. For instance, node 31 and node 8 have the

same degree, connecting with both sets. These two nodes have less influence on the cut-size of

this partition. In this case, the cut-size is the minimum value. We conclude that the hub nodes

have the largest influence on the cut-size when partitioning the networks.

3.5.3 Discussion

Figure 3.5.1, Figure 3.5.2 and Figure 3.5.3 illustrate the normalized cut-size result based on the

node degree. The method to select nodes in set K influences the cut-size. The number of nodes

with high degree affect the change rate of the maximum and the minimum normalized cut-size.

The range between the maximum and the minimum normalized cut-size is gradually shrinking

when k is smaller than the number of nodes with high degree. Different from the maximum and

minimum normalized cut-size, the average normalized cut-size decreases with k. Comparing to

the theoretical bounds, the real normalized cut-size has a centric trend that concentrates around

the average normalized cut-size. The theoretical bounds can not represent the real case well. In
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particular, the hub nodes have the largest influence on the change of the cut-size.

3.6 Conclusions

In this chapter, the average and the bounds of the normalized cut-size are derived by the average

interconnection constant and the isoperimetric inequality, respectively. Based on the studying of

all real networks, the general normalized cut-size results are obtained by applying two different

methods of the graph partition. The normalized cut-size has a centric trend that closes to its

average normalized cut-size, i.e. the normalized cut-size almost equals to the average normal-

ized cut-size, and the average normalized cut-size is a constant which is related to the network

density when the graph is randomly partitioned. Moreover,the cut-size distribution is a Gaus-

sian distribution when K=N
2 . When k ≈ 1, the distribution of the cut-size is approximately the

degree distribution of the networks. If the graph partition is based on degree, the normalized cut-

size has a different result. Different from the case where the graph is randomly partitioned, our

study shows that the average normalized cut-size decreases with the increase k, and the average

normalized cut-size is not a constant anymore.

The difference between the maximum and the minimum normalized cut-size declines until a cer-

tain value of k. The number of nodes with a certain high degree is essential for the change of the

normalized cut-size. What is more, the theoretical bounds derived by the isoperimetric inequality

(3.3.18) can not represent the distribution of the normalized cut-size well since the value of the

normalized cut-size concentrates to the average normalized cut-size. Also, the hub nodes have the

largest influence when partitioning a graph.



Chapter 4

The cut-size property and the SIS

epidemic process

4.1 Overview

This chapter discusses the application of the cut-size in the epidemic spreading process on net-

works. We provide an estimation of the prevalence in the metastable state. The average normalized

cut-size is applied to the estimation. The simulated prevalence is obtained by the simulator of the

Susceptible-Infected-Susceptible (SSIS). We compare the estimated prevalence with the simulation

of the exact process. Then, we explain the comparisons result of real networks.

In section 4.2, we review the background knowledge of the SIS epidemic process on networks. In

section 4.3, we estimate the metastable state prevalence by the cut-size property of the networks. In

section 4.4, we compare the simulated prevalences of real networks and the estimated prevalences.

Section 4.5 concludes this chapter.

4.2 Epidemic spreading on networks

The Susceptible-Infected-Susceptible (SIS) process is a basic epidemic model, in which each node

has two states: susceptible (S) or infected (I). Another basic epidemic model is the Susceptible-

32
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Infected-Recovered (SIR) model with three states transitions, in which two states transitions

are same with SIS model, and the third state is, Recover state(R). An infected node can be

cured or removed. The removed nodes are not involved in the spreading process after removing.

More complex models are evolute from the SIR and SIS models, for instance, the Susceptible-

Infected-Recovered-Susceptible (SIRS) model. The Susceptible-Infected-Recovered-Susceptible

(SIRS) model has transition process from the removed state to susceptible state. The newborn

susceptible node is added into the population when the node state change from recovered to sus-

ceptible R → S [48].

4.2.1 The SIS model and Markov chain

As a basic epidemic model, the Susceptible-Infected-Susceptible (SIS) model can be described

by a Markov chain. In the SIS model, there are only two states of each node on networks [10]:

susceptible (S) or infected (I). The susceptible (S) node can be infected with the infection rate β.

The infected node can be cured with the curing rate δ. There exists two states transitions [10],

S → I and I → S. The transmission processes from S → I and I → S are independent Poisson

processes.

Figure 4.2.1: States transition process between infection and health for each node has one infected
neighbor

Figure 4.2.1 illustrates the different states of node i and the state transition process in the SIS

model. For each node, the node state at time t is a Bernoulli random variable Wi(t) ∈{0,1}. The in-

fected state of node i can be described as Wi(t)=1 with the infected probability E[Wi(t)]=Pr[(Wi(t)=
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1]. The healthy state can be described as Wi(t)=0 with the healthy probability 1-E[Wi(t)]=Pr[Wi(t)=

0]. The curing process triggers directly for the infected node with the curing rate δ, while in the

infection process, each infected neighbor of a healthy node contributes an infection rate β. The

average period of the infected state and the healthy state of each node is 1
δ and 1

β ,respectively.

The time duration of being infected or healthy follows an exponential distribution. The infection

rate of a healthy node i is β∑N
j=1 ai jWj(t), so the infection rate of node i is proportional to the

number of the infected neighbors. A node with a large degree normally has a better chance of

being infected [35].

Meanwhile, the effective infection rate of the network is τ = β
δ which separates two phases of the

epidemic process on networks. If the effective rate τ is above the epidemic threshold τc, then the

epidemics break out with a non-zero fraction of infected nodes in the networks. If the effective

infection rate τ is below the epidemic threshold τc, then leads to the virus dies out approximately

exponentially fast. The epidemic threshold τc is the standard to judge where the phase changes

from dies out phase to outbreak phase. The epidemic threshold τc is determined by the underlying

networks.

The states transitions of SIS process are independent Poisson processes with the memoryless

property. Since the process is Markovian, the process is only determined by the current network

infection state. Hence, a continuous-time Markov chain with 2N states can be used to describe the

SIS process. The infinitesimal generator Qi(t) of each node is [14]

Qi(t) =

 −qi(t) qi(t)

δ −δ

 (4.2.1)

where δ is the curing rate and qi(t)=β∑N
j=1 ai jWj(t) [35].

Figure 4.2.2 shows one simple example of a complete graph with N = 3 nodes and uses Markov

chain to express the transition of 8 states. A node with 1 presents the infected state and with 0

presents the healthy state.
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Figure 4.2.2: Exact Markov chain of SIS process

For a small graph, the Markov chain is available to describe the whole stage of SIS process. With

the increasing of the network size N, the computation complexity increases exponentially, and the

process is infeasible to be calculated for a large N. Therefore, the exact model is limited by the

computation complexity. As the result, the approximation methods are needed to approximately

solve the SIS process [14].

4.2.2 The Mean-field Approximation method

The N-Intertwined Mean-Field Approximation (NIMFA) [35] is a basic approximation method of

the Markovian SIS epidemic process. NIMFA incorporates the adjacency matrix A, which contains

topology information of the network. NIMFA is a reliable analytical approach to solve the SIS

process, which can be applied to most networks with a high accuracy.

NIMFA approximates the random variable qi(t)=β∑N
j=1 ai jWj(t) by the average E[qi(t)]. The av-

erage E[qi(t)] is

E[qi(t)] = β
N

∑
j=1

ai jE[Wj(t)]≈ β
N

∑
j=1

ai jv j(t) (4.2.2)

where vi(t) ≈ E[qi(t)] is the NIMFA infection probability of node i. The NIMFA governing equation
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of the infection probability is

dvi(t)
dt

=−δvi(t)+β(1− vi(t))
N

∑
j=1

ai jv j(t) (4.2.3)

the first term of the right-hand side represents the curing process that a infected node i with the

infected probability vi(t) which is cured by the curing rate δ. The second term represents the

infection process that a healthy node i with the healthy probability (1−vi(t)) which is infected by

all infected neighbors with infection rate β∑N
j=1 ai j [35].

The equation (4.2.3) can be written in a matrix form is

dV (t)
dt

= (βA−δI)V (t)−βdiag(vi(t))AV (t) (4.2.4)

where V (t)=[v1(t),v2(t), ...,vn(t)]T , the diag(vi(t)) is a diagonal matrix whose diagonal elements are

Vi(t) for i=1,2, ...,N. I is the identity matrix [35].

Based on the equation (4.2.4), the NIMFA provides a lower bound of the epidemic threshold τc as

τc > τ(1)c =
1

λ1
(4.2.5)

where λ1 is the largest eigenvalue of the adjacency matrix A. The superscript (1) means the τ(1)c

is a first order mean-field threshold [35].

4.2.3 SSIS

The simulator of SIS, which is a continuous-time Markov process simulator, is applied to obtain

the prevalence of the epidemic process. By averaging the simulation result of the SIS process

in the simulator with 105 times, the prevalence is obtained with enough accuracy. In the SSIS

simulator, the infection and curing events randomly occur within the time line. Both processes

are independent Poisson processes and the time interval of states transition follows exponential

distributions. For an arbitrary time, the network state vector is w(t) = [W1(t),W2(t), ...,WN(T )].

At time t=0, the initial number Ny(0) of the infected nodes is set and we obtain the metastable

prevalence y(t) by running the simulator for enough time [33]. In this chapter, the SSIS simulator
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is applied to obtain the prevalence of real networks in the metastable state. In the simulation, we

let all nodes infected initially to prevent the early large die-out probability, and thus, we obtain a

relatively accurate metastable prevalence. Finally, the simulated prevalence y(t) in the metastable

state is compared with the prevalence estimated by the average normalized cut-size property.

4.3 The estimated prevalence

The prevalence y(t) is the average fraction of infected nodes at time t. For each time t, the preva-

lence is determined by the topology of the network. The prevalence is hard to calculate because

of the computational complexity. The infection rate β and the curing rate δ are independent of

time, the fraction of the infection nodes is [12]

S(t) =
1

N

N

∑
i=1

Wi(t) (4.3.1)

and the prevalence y(t) is the expected fraction of the S(t) equals

y(t) = E[S(t)] =
1

N

N

∑
i=1

Pr[Wi(t) = 1] (4.3.2)

since E[Wi(t)] = Pr[Wi(t) = 1] ] for the Bernoulli random variable. In the SIS process, the governing

equation of the exact SIS prevalence is [12]:

dy(t)
dt

=−y(t)+
τ
N

E[w(t)T Qw(t)] (4.3.3)

where τ=β
δ is the effective infection rate, Q is the Laplacian matrix of the graph obtained and

w(t)=[W1(t), ..., WN(t)] is the network state vector. The term E[w(t)T Qw(t)] is the expected cut-

size at t moment. From equation (4.3.3), the change rate of the prevalence equals to the difference

between product of the expectation cut-size and τ
N and the prevalence y(t). This equation (4.3.3)

implies that the prevalence is related to the expectation cut-size. We assume

Ncut =
E[wT Qw]
k(N − k)

(4.3.4)
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where k is the number of infected nodes, (N − k) is the number of the healthy nodes, and here we

approximate Nk ≈ y and the infected nodes are randomly distributed in the networks. Then, for
dy(t)

dt = 0 in the metastable state, the estimated metastable prevalence ỹ is

ỹ = 1− 1

NτNcut
(4.3.5)

If we know the adjacency matrix A of the network, then the prevalence and the epidemic threshold

can be estimated by equation (4.3.5).

4.4 Simulation and explanation

In this section, the simulated metastable prevalence y of real networks is obtained by simulations,

and the estimated prevalence ỹ is calculated by equation (4.3.5). The comparison between the

simulated and the estimated metastable prevalence is given and discussed. The comparisons of

four real networks are shown in this section. The result of other networks are given in Appendix B.

Figure 4.4.1: The Comparison between the simulated metastable prevalence y and estimated
metastable prevalence ỹ of the Facebook network
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Figure 4.4.1 shows the comparison between the simulated metastable prevalence y and the esti-

mated metastable prevalence ỹ of the Facebook network. The simulation process is repeated 105

times. The green curve is the estimated metastable prevalence ỹ and the purple curve is the sim-

ulated metastable. When the effective infection rate τ is small, equaling to 0.5, the error between

the simulation and the estimation is large. There is a crossing point when τ=1.0. At this point,

the difference between the simulated metastable prevalence and estimated metastable prevalence

is smallest. However, when τ=0.5, the estimated prevalence is almost zero which indicates that the

infection cannot persist on the network. The simulated metastable prevalence y = 0.34 is higher

than the estimated metastable prevalence.

Figure 4.4.2: The Comparison between the simulated metastable prevalence y and estimated
metastable prevalence ỹ of the Chicago transportation network

Figure 4.4.2 shows the comparison between the simulated metastable prevalence y and the esti-

mated metastable prevalence ỹ of the Chicago transportation network. The simulation process is

also repeated 105 times. The green curve is the estimated metastable prevalence ỹ and the purple

curve is the simulated metastable prevalence y. The comparison shows one crossing point with

the minimum difference when τ=0.8. For τ > 0.8, the difference between the simulated and the
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estimated metastable prevalence is increasing. When τ=0.5, the estimated metastable prevalence

is smaller than 0 which indicates presents no virus survivals under our estimation. The simulated

metastable prevalence has the small value close to zero.

Figure 4.4.3: The Comparison between the simulated metastable prevalence y and estimated
metastable prevalence ỹ of the Europe E-road network

Figure 4.4.3 shows the result of the European E-road network. The purple curve is the simu-

lated metastable prevalence y, which is a smaller value compared with the estimated metastable

prevalence ỹ. The difference between the simulated prevalence y and the estimated metastable

prevalence ỹ is the minimum value when τ=0.5. However, when τ=0.5, the simulated metastable

prevalence approaches zero because the virus goes extinct on the networks. Hence, the effective

infection rate τ=0.5 belows the epidemic threshold τc. With the higher effective infection rate >

τc, the virus is spreading through the network. Besides, with a larger effective infection rate τ,

the estimated metastable prevalence is precise and closer to the simulate metastable prevalence.

Figure 4.4.4 shows the result of the Jazz musician network. The green line is the estimated
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Figure 4.4.4: The Comparison between the simulated metastable prevalence y and estimated
metastable prevalence ỹ of the Jazz musician network

metastable prevalence ỹ and the purple curve is the simulated metastable prevalence y. The dif-

ference between the simulated metastable prevalence y and the estimated metastable prevalence

ỹ decreases which shows the estimated prevalence is precise for a larger effective infection rate τ.

The estimated metastable prevalence gets closer to the simulated prevalence.

Figure 4.4.5 shows the comparison of the simulated metastable prevalence y and the estimated

metastable prevalence ỹ of the Email communication network. The estimated metastable preva-

lence ỹ is larger than the simulated metastable prevalence. The difference between the simulated

metastable prevalence y and the estimated metastable prevalence ỹ is decreasing with τ. The

estimated prevalence is precise when the effective infection rate τ is larger, and the estimated

prevalence is getting closer to the simulated metastable prevalence.

Figure 4.4.6 shows the comparison between the simulated metastable and the estimated metastable

prevalence of the random ER network. The random network has a fix network size N=50 nodes

and the link density p=0.1. The effective infection rate τ=[0.5,1,1.5,2,3,4,5]. The pink curve is

the estimated metastable prevalence and the purple curve is the simulated metastable prevalence.
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Figure 4.4.5: The Comparison between the simulated metastable prevalence y and estimated
metastable prevalence ỹ of the Email communication network

Figure 4.4.6: The Comparison between the simulated metastable prevalence y and estimated
metastable prevalence ỹ of the random ER graph with N=50 and p=0.1

As shown in the figure, with the increase effective infection rate τ, the estimated prevalence get

closer to the simulated prevalence. The difference decrease with a larger effective infection rate τ.
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Figure 4.4.7: The Comparison between the simulated metastable prevalence y and estimated
metastable prevalence ỹ of the random ER network with N = 50 and p=0.7

Figure 4.4.7 shows the comparison result of the random ER network with the same network size

N=50 and a larger link density p=0.7. The effective infection rate τ=[0.22, 0.32, 1.22, 2.22, 2.52,3].

The red curve is the estimated metastable prevalence which has the higher value than the sim-

ulated metastable prevalence as shown as the green curve. Similarly, the difference between the

estimated prevalence and the simulated prevalence declines with a larger effective infection rate

τ. Comparing to the previous figure, the difference of the estimated prevalence and the simulated

prevalence in Figure 4.4.7 is smaller than the difference in Figure 4.4.6 because of the higher link

density p. Therefore, the link density p of the random network influence the difference between

the estimated prevalence and the simulated prevalence.

Figure 4.4.8 shows the comparison of the estimated metastable prevalence and the simulated

metastable prevalence of the ER network with N=50 and a fixed effective infection τ=0.22. In
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Figure 4.4.8: The Comparison between the simulated metastable prevalence y and estimated
metastable prevalence ỹ of the random ER network with N=50 and τ=0.22

this figure, the link density continuously increases from p = 0.1 to p = 1. The purple curve is the

estimated prevalence and the red curve is the simulated prevalence. When p = 0.1, the simulated

prevalence close to zero which means the virus dies out in this network and the effective infection

rate τ = 0.22 < τc. But, with the increase link density p, both of the prevalences are increasing,

and the error between the simulated prevalence and the estimated prevalence decreases. The sim-

ulated and the estimated prevalence is almost zero with the link density p > 0.7.

According to the above results of the random network, we find the accuracy of the estimated

metastable prevalence depends on the link density and the effective infection rate τ. With a larger

link density, the difference between the estimated and the simulated prevalence is small. With

a larger effective infection rate τ, the difference is small, and the estimated and the simulated

prevalence are close.

Comparing to the results of the real networks, we find the difference between the estimated and

the simulated prevalence of the homogeneous network is smaller. The estimated prevalence is

more accuracy and the estimation is precise in homogeneous networks. However, for the real net-
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works which are usually heterogeneous, the difference between the estimated and the simulated

prevalence is larger. Besides, the estimated metastable prevalence is also affected by the effective

infection rate and the network density. For example, based on the table 3.2.1, the network density

(0.149) of the Jazz musician network is higher than the network density (0.000715) of the Facebook

network. Then, by comparing the Figure 4.4.4 with the Figure 4.4.1, the error of estimation of

the Jazz musician network is smaller than that of the Facebook network. Jazz musician network

has a precisely estimated prevalence, and the higher network density leads to a precise estimated

metastable prevalence.

4.5 Discussion

In this chapter, the normalized cut-size property is applied to the epidemic process to estimate

the metastable prevalence without simulation. The estimated metastable prevalence is derived by

equation (4.3.5). By comparing the simulated metastable prevalence and the estimated metastable

prevalence, we obtain some conclusion observed from above comparison results. For a larger

effective infection rate τ, the estimated metastable prevalence is precise and is close to the simulated

metastable prevalence. For a larger network density, the difference of the simulated and the

estimated prevalence is smaller. Besides, the accuracy of the estimated prevalence depends on the

homogeneity of the networks. In a homogeneous network, for example, ER random network, the

estimated prevalence is more accurate comparing to that in a heterogeneous network. Overall, the

accuracy of the estimated prevalence depends both on the underlying networks and the effective

infection rate τ.



Chapter 5

Conclusion

This chapter concludes the thesis work. Contributions and conclusions are summarized in section

5.1. In section 5.2, we introduce the possible future works.

5.1 Contributions

In this thesis, we aim to obtain initial understanding and explore more about the cut-size prop-

erty on real networks. We study the cut-size property from different aspects to gain a general

conclusion of the cut-size property of real networks. By using seven real networks, we obtain the

normalized cut-size and analyze the physical meaning for real networks. Besides, we apply the

cut-size property on the epidemic process to estimate the prevalence.

The thesis achieved the following contributions:

• We study the mathematical properties of the cut-size in networks. To fairly compare the

cut-size for different formulations of network cut, we define the normalized cut-size and de-

rive its average and bounds by the isoperimetric inequality. Based on the random partition

method, we find that the average normalized cut-size which is a constant determined by

the network density. The average cut-size of the network is verified by the results of real

networks, while the mathematical bounds seem to be very loose. For the real networks, the

normalized cut-size has a centric phenomenon that the normalized cut-size converges to its
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average. Therefore, the theoretical bounds can not represent the normalized cut-size well.

What is more, based on the degree partition method, we find an entire difference result that

the average normalized cut-size is not a constant anymore. The normalized cut-size still

concentrate to the average normalized cut-size but decreases along with the average normal-

ized cut-size. The larger-degree nodes have the largest influence on the normalized cut-size

when partitioning the networks. Moreover, the theoretical bounds still cannot represent the

normalize cut-size in degree-based partition method, because of the centric phenomenon of

the normalized cut-size.

• Because of the centric phenomenon of the normalized cut-size, we apply the average normal-

ized cut-size to the SIS epidemic process for estimating the prevalence in the metastable state.

We find that for the homogeneous random network, the estimation is better and accurate.

However, for the real networks which are heterogeneous, the deviation between the estima-

tion and the simulation is large and inaccurate. Also, other factors have the influence on

the accuracy of the estimated prevalence, for example, the network density and the effective

infection rate τ. With a larger effective infection rate τ, the precisely estimated metastable

prevalence can be obtained. With a larger network density, the estimated metastable preva-

lence is more accuracy. According to the above results, the cut-size property can be applied

to predict the epidemic behaviors and understanding the epidemic process.

5.2 Future works

In this thesis, we used seven real networks to study the cut-size property. More real networks

can be applied in the study of the cut-size property. Also, the networks used in this thesis are

a part of the original networks. For example, the Facebook network has millions of users while

our Facebook network in this thesis has only 2888 nodes. For further works, we plan to study

larger networks and obtain their statistical property of the normalized cut-size, since currently

there is rare research focuses on the cut properties of complex networks. The cut-size property is

also related to the epidemic process. Hence, the study of the cut-size property may contribute to

further understand and control of the dynamical processes in real complex systems.



Appendix A

A.1 Average interconnection constant

Assume a random node i with degree di is selected in set K, and it contains li links connecting

node i to other nodes also located in set K. Then, the number of links that connect node i to set

S equals to di − li ≥ 0. From the equation (3.3.2), we have

η(G,k) =
1(N
k

) ∑
(∀K)K=(i1,i2,...,ik),K⊂{1,...,N},|K|=k

∑k
j=1 di j − li j

k
(A.1.1)

the combination number of the set K in which contains a random node i, equals to
(N−1

k−1

)
.

K=(i1, i2, ..., ik) with k nodes, and then for j=1,2...,k, di j is the degree of the node i, where node

i is the j element of the set K. li j is the number of neighbors of a node i located in set k, where

node i is the j element of the set K. Then, calculating the combination number of the varies

li j = 0,1,2, ...,k, we obtain

η(G,k) =

(N−1
k−1

)
∑N

i=1 di

k
(N

k

) − 1

k
(N

k

) ∑
(∀K)K=(i1,i2,...,ik),K⊂{1,...,N},|K|=k

k

∑
j=1

li j (A.1.2)

Where the first term of the right hand equals to dav. To calculate the second term, we set li j=m

is the number of the neighbors a node i located in set K. The combination of the set K, in which

contains a node i and its m neighbors, equals to
(N−1−di

k−1−m

)
multiple the combination of a node i

with its m neighbors
(di

m

)
. For a large di, it is not always possible to contain any number of its

neighbors in set K, hence the minimum number of the neighbors of a node i can be contained in
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set K is m = max(0,m+di −N) and the maximum number is m = min(di,k), then we have

η(G,k) = dav −
∑N

i=1 ∑min(di,k)
max(0,m+di−N)

(N−1−di
k−1−m

)(di
m

)
k
(N

k

) (A.1.3)

Further simplifying the above equation and reach the average interconnection constant is

η(G,k) = dav(1−
k−1

N −1
) = dav(

N − k
N −1

) (A.1.4)

where dav is the average degree of graph and k is the number of nodes in the set K and N is the

graph size.



Appendix B

In the appendix B, the rest cut-size results of real networks are shown.

B.1 The cut-size of real networks

From figure B.3.1 to figure B.3.7, these figures show the cut-size results of networks, including

real networks result, random graph and scale-free graph result. These results are obtained by the

random partition method, which support foregoing conclusions in chapter 3.4.

B.2 The cut-size of real networks based on degree

From figure B.3.10 to figure B.3.13, these figures show the cut-size property of real networks based

on degree partition method. The results are similar to the ones that are analyzed in chapter 3.5,

which give the solid supports to the conclusions of the cut-size property.

B.3 Prevalence comparison

From figure B.3.14 to figure B.3.23, these figures show the comparison between the simulated

metastable prevalence and the estimated metastable prevalence of real networks. These results

are the supplement to prove the conclusions in chapter 4.
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Figure B.3.1: The normalized cut-size of the Email communication network with N=1133.

Figure B.3.2: The normalized cut-size of the Chicago transportation network with N=1467.



APPENDIX B. 52

Figure B.3.3: The normalized cut-size of the Jazz musician network with N=198

Figure B.3.4: The normalized cut-size of the Facebook network with N=2888
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Figure B.3.5: The normalized cut-size of the Europe E-road network with N=1174

Figure B.3.6: The normalized cut-size of the random network with N=500
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Figure B.3.7: The normalized cut-size of the Scale-free network with N=1000

Figure B.3.8: The normalized cut-size variance of the Facebook network
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Figure B.3.9: The normalized cut-size variance of the European network

Figure B.3.10: The normalized cut-size of the email communication network based on degree
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Figure B.3.11: The normalized cut-size of the Chicago transportation network based on degree

Figure B.3.12: The normalized cut-size of the Europe E-road network based on degree
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Figure B.3.13: The normalized cut-size of the Jazz musician network based on degree

Figure B.3.14: The Prevalence comparison of the Zachary karate club network
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Figure B.3.15: The Prevalence comparison of the Facebook network

Figure B.3.16: The Prevalence comparison of the Email communication network
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Figure B.3.17: The Prevalence comparison of the Jazz musician network

Figure B.3.18: The Prevalence comparison of the Europe E-road network
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Figure B.3.19: The Prevalence comparison of US power grid network

Figure B.3.20: The Prevalence comparison of the Chicago transportation network
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Figure B.3.21: The Prevalence comparison of random graph with link density p=0.1 for different
effective infection rate τ

Figure B.3.22: The Prevalence comparison of random graph with link density p=0.7 for different
effective infection rate τ
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Figure B.3.23: The Prevalence comparison of Random graph with different link density
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