

Delft University of Technology

Reference RL
Reinforcement learning with reference mechanism and its application in traffic signal
control
Lu, Yunxue; Hegyi, Andreas; Maria Salomons, A.; Wang, Hao

DOI
10.1016/j.ins.2024.121485
Publication date
2024
Document Version
Final published version
Published in
Information Sciences

Citation (APA)
Lu, Y., Hegyi, A., Maria Salomons, A., & Wang, H. (2024). Reference RL: Reinforcement learning with
reference mechanism and its application in traffic signal control. Information Sciences, 689, Article 121485.
https://doi.org/10.1016/j.ins.2024.121485

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ins.2024.121485
https://doi.org/10.1016/j.ins.2024.121485

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Reference RL: Reinforcement learning with reference mechanism
and its application in traffic signal control

Yunxue Lu a,b,c, Andreas Hegyi d, A. Maria Salomons d, Hao Wang a,b,c,*

a Jiangsu Key Laboratory of Urban ITS, Southeast University, 2 Si Pai Lou, Nanjing 210096, PR China
b Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University, 2 Si Pai Lou, Nanjing 210096, PR
China
c School of Transportation, Southeast University, 2 Si Pai Lou, Nanjing 210096, PR China
d Department of Transport and Planning, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands

A R T I C L E I N F O

Keywords:
Traffic signal control
Reinforcement learning
Real-world learning
Reference policy
Reference mechanism

A B S T R A C T

This paper addresses the challenges of deploying reinforcement learning (RL) models for traffic
signal control (TSC) in real-world environments. Real-world training can prevent mismatches
between simulation environments and the actual traffic conditions, thereby achieving better
performance of agent upon deployment. However, free explorations by agents during real-world
training can disrupt traffic operations. To mitigate this, this paper proposes a reference mecha-
nism to guide the decision-making process within the RL framework. A reference timing policy,
typically a model-based signal strategy, is integrated into the learning process to provide agents
with reference actions. Specifically, an additional Q-value function is introduced to evaluate both
the agent’s actions and those of the reference policy, allowing for adjustments before the actions
are executed in real traffic system. Numerical results indicate that the reference mechanism
effectively enhances system performance early in the training process, thus accelerating learning.
We also combine the reference RL method with a pretraining procedure and a jump-start algo-
rithm, respectively. Experimental results demonstrate their effectiveness in further enhancing
system performance and facilitating real-world training.

1. Introduction

The traffic signal control problem (TSC) has been extensively studied due to its vital role in separating conflicting traffic flows and
facilitating the efficient movement of vehicles through intersections. Given its widespread deployment, traffic signal controllers
significantly impact traffic safety, efficiency and pollution levels. Solutions to TSC challenges generally fall into three categories: traffic
theory-based, simulation-based, and data-driven methods [1]. Conventional traffic theory-based TSC methods typically formulate
analytical models to develop signal plans based on simplified representations of traffic dynamics [2]. These approaches often rely on
low-resolution data from traffic detectors, such as induction loops, ultrasonic and radar detection systems. While these methods are
highly interpretable and trusted by jurisdictions, their effectiveness are significantly constrained by the low-resolution traffic data and
the accuracy of the underlying models. In contrast, simulation-based TSC methods provide a more detailed representation of traffic
dynamics by optimizing control strategies through feedback from traffic simulators [3].

* Corresponding author.
E-mail address: haowang@seu.edu.cn (H. Wang).

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

https://doi.org/10.1016/j.ins.2024.121485
Received 21 January 2024; Received in revised form 14 September 2024; Accepted 15 September 2024

Information Sciences 689 (2025) 121485

Available online 19 September 2024
0020-0255/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

mailto:haowang@seu.edu.cn
www.sciencedirect.com/science/journal/00200255
https://www.elsevier.com/locate/ins
https://doi.org/10.1016/j.ins.2024.121485
https://doi.org/10.1016/j.ins.2024.121485

Reinforcement learning (RL)-based TSC methods fits in the third category. As a branch of machine learning (ML), RL has gained
increasing attention across various scientific and engineering fields. Due to its model-free nature and ability to incorporate time into
decision making process, RL offers advantages in automatic learning of optimal decisions over time, including the TSC optimizations. A
RL-based TSC agent learns to optimize its timing policy by interacting with the traffic system to maximize the long-term return.
However, the complexity of traffic system and its partially observable nature make this learning process challenging. Agents need
extensive interactions with the environment before learning a satisfying policy, thus limiting the training process to simulated sce-
narios. Furthermore, the mismatch between simulation environments and real-world conditions can pose new challenges after
deployment, as agents may encounter dynamics that were not adequately modeled during training. This highlights the need for real-
world training of RL-based agents, including TSC agents, to enhance their practical applicability and performance. Our main con-
tributions are as follows:

(1) We propose a reference RL framework that incorporates a reference policy into the traditional RL framework, providing
reference actions for the agent’s decision-making. This allows the traffic system to achieve reasonable performance early in the
learning process, significantly improving sample efficiency compared to traditional RL methods that starts from scratch.

(2) An additional Q-value function is developed to evaluate both the agent’s actions and those of the reference policy, enabling
informed adjustments to actions before they are executed.

(3) A pretraining procedure and the jump-start method [4] are integrated to the reference RL framework, respectively. It helps
further promote the system performance during the early training process and facilitates the practice of real-world training.

(4) Simulation experiments demonstrate that different reference policies have varying effects on prompting the system perfor-
mance during the training process. A simple reference policy that allocates green time in proportion to the number of queuing
vehicles on active lanes can also substantially promote the system performance and accelerate the training process.

(5) The proposed framework is not limited to TSC problems; it can be applied to other RL-based control problems. In such cases, the
reference policy and RL attributes can be customized to meet specific control requirements.

2. Related works and motivations

This section reviews key studies to gain insights into the advancements of RL-based TSC methods. Additionally, we draw inspiration
from other RL-based control domains for facilitating real-world training of TSC controllers.

2.1. Related works

Various innovative designs of RL-based signal controller have been proposed to address different challenges in TSC problems. Some
focus on improving agent convergence performance [5], while others reduce model dimensionality to lower computational demands
[6,7]. In view of the large-scale deployment of traffic signals in road networks, most of the researches designed the signal controller in a
distributed way to overcome the scalability issue of models. These models often need to enhance the communication between agents to
mitigate partial observability and improve agent convergence performance [8,9]. Additionally, some studies emphasize speeding up
the learning process of agents [10,11]. Generalizability is also of high interest to researchers. It evaluates how the TSC model trained in
a particular traffic scenario can adapt to a new scenario [12,13]. Besides, a considerable body of research addresses various domain-
specific issues, such as pedestrian crossing [14,15], traffic safety [16,17], and priority control [18,19].

Most RL-based TSC methods, with few exceptions [10,11], adopt a cold-start training process, requiring agents to engage in
extensive interactions with the simulated environment before achieving satisfactory policies. Limited attention has been given to
techniques that promote real-world training of traffic signal controllers [10]. pretrain TSC agents in an offline way using experience
data from an existing model-based controller, boosting initial online performance [11]. designed a cyclical dataset for offline training
the TSC agent, avoiding online interactions with the real-world traffic system.

In other RL-based control domains, various techniques aim to guide and accelerate the learning process, offering valuable insights
for the design of real-world TSC agents. one technique involves providing initial knowledge for agents to achieve improve agent’s early
performance, thereby speeding up the training process. Prior knowledge can take the form of demonstration data, multi-task data, or
other information sources. Resort to these external knowledges, better initialization of value functions [20–22] and of policy network
[23,24], a fitness model of environment [25,26], exploration strategies [27], or state representations [28,29] can be obtained before
online learning. Therefore, exhaustive interactions from scratch can be avoided and the learning process can be accelerated as well. In
this case, a pretraining-adaptation paradigm is commonly adopted to allow agents to learn transferable skills during pretraining, which
then facilitate adaptation to new tasks [30]. Learning from demonstrations (LfD) is a specific case of this paradigm, where demon-
stration data directly relates to the agent’s task. Depending on the quality of demonstration data, the model can be finetuned in
“adaptation” stage. More detailed reviews of related studies can be found in [31,32].

Another technique focuses on constraining the agent’s exploration by modifying undesired actions to accelerate learning process
and reduce safety risks. In many systems, unlimited exploration of agents is impractical due to efficiency or security concerns. To
improve system performance and safety, agents may seek teacher advices or guidance from trusted models to modify actions or reshape
reward signals to change the probability distribution of actions [33]. A “teacher” can be a human expert on the target task or a trusted
method. When to provide guidance and what form of advice to provide, are key issues in teacher advising framework. Common
advising mechanisms include uncertainty-based advising [34], novelty-based advising [35], early advising [36], fixed-frequency
advising [4] and safety-based advising [37].

Y. Lu et al. Information Sciences 689 (2025) 121485

2

While these studies have been demonstrated to effectively improve the initial performance, accelerate learning, or ensure the
system safety, they present challenges. Pretraining require vast amounts of experience data, and its effectiveness can be quietly
constrained by the quality of the experience data. Moreover, [31] points that bootstrap error in offline learning with actor-critic
methods can result in obvious performance drop during fine-tuning. In teacher-involved methods, it is challenging to artificially
find appropriate timings and forms of advices from the teacher.

2.2. Motivations

The motivations of this study are based on the following considerations.

(1) The necessity of training TSC agent in real-world environment. Most existing RL-based TSC models adopt a cold-start training on
traffic simulators. Although simulators, like SUMO [38] and VISSIM [39], can offer virtual environments for agent training, the
mismatch between simulated environment and real-world traffic system often raises concerns regarding the effectiveness of the
control model upon deployment. Moreover, it is challenging to quantify the performance degradation resulting from this
discrepancy before real-world deployment. Real-world training of TSC agents can effectively prevent the performance degra-
dation caused by environmental mismatches.

(2) Ensuring reliability of the real-world training. For safety–critical system like traffic system, agents learning from scratch may
generate undesired signal plans that jeopardize system safety and stability, particularly in the early stages of learning.
Therefore, efforts towards real-world training of signal controllers should prioritize two key aspects: maintaining acceptable
system performance and achieving fast convergence to prevent severe traffic disruptions. The main insight that we leverage for
real-world training of TSC agents is to introduce a trusted reference policy to guide the agent’s explorations, providing reference
actions for the agent’s decision-making. This ensures that, even with limited exploration, the traffic system is able to maintain
reasonable performance. Meanwhile, proposed reference mechanism helps achieve a rapid improvement of system
performance.

(3) Minimizing the complexity of the reference mechanism. In real-world environments, frequent adjustments to the reference
mechanism through experimentation are impractical due to the direct impact on system operations. Therefore, the reference
mechanism should be simple, using minimal hyperparameters. To this end, the proposed method establishes a Q-value baseline
for the agent’s decision-making, pruning poor actions with smaller Q values than the action generated by the reference model.
The proposed method is referred to as “reference RL” in this study. The reference RL offers several advantages: ① Pretraining is
not a prerequisite before engaging in online interaction, eliminating the necessity for an extensive dataset of offline experience
from the reference policy. ② No advising mechanism design. All agent actions need to satisfy the Q-value constraint from the
reference policy. ③ No artificially modification of reward signals. ④ Flexibility of the reference model: The reference model
need not to be “optimal” but can be any trusted TSC model, simplifying its design and implementation.

3. Theoretical background

This section provides brief overview of RL and the Soft Actor-Critic (SAC) algorithm, a state-of-the-art RL method.

3.1. Reinforcement learning

There are two entities in the framework of reinforcement learning: the agent and the environment. The agent acts as the decision
maker, improving its strategy (policy) by interacting with the environment. Everything external the agent is regarded as the envi-
ronment. Communications between the agent and its environment occurs through three channels [40]: observations (O), actions (A),
and rewards (R). Rooted in Markov Decision Process (MDP), the learning process of RL can be represented as a tuple M =

〈S,O,A,P,R, γ〉. S is the state space, and observations O provide partial representations of the environment’s state. A represents actions
taken by the agent, influencing state transition dynamics P := S × A→S directly. Reward R is the feedback the agent receives from
environment after executing an action. γ is the discount factor that balances the immediate rewards with long-term gains. At each time
step t, the agent observe the state st of system, decides the next action at based on its current policy π, and receives a reward rt+1 from
the environment after performing at . databased on these interactions, the agent reinforces its behaviors in a positive or negative way,
aiming to achieve the most accumulated reward over time.

A few terminologies helpful to formulate the RL framework are as follows: The return Gt is defined as the discounted sum of future
rewards starting from time step t:

Gt =
∑T

k=t+1

γk− t− 1rk (1)

where T is the duration of each training episode. For convenience, the value of a specific state V(s) and the value of a specific state-
action pair Q(s, a) are defined as the discounted sum of rewards received in following steps respectively.

V(st) = E[Gt |st] =
∑

at∈A
π(at |st)r(st , a)+E

[
∑T

i=t+1
γi− tr(si, ai)

]

(2)

Y. Lu et al. Information Sciences 689 (2025) 121485

3

Q(st , at) = E(Gt |(st , at)) = r(st , at)+ E

[
∑T

i=t+1
γi− tr(si, ai)

]

(3)

π(at |st) in (2) is the probability of agent choosing action at at state st.

3.2. The Soft Actor-Critic algorithm

Value methods and policy methods are two main approaches to learn an optimal control policy. Q-learning, a widely used value-
based method iterates over Q-values of state-action pairs Q(s, a) until convergence. The Q-values are updated using the Bellman
equation [40]:

Q(st , at)←(1 − ζ)Q(st , at)+ ζ
[

r + γ max
at+1∈A

Q(st+1, at+1)

]

(4)

Where ζ is a factor balancing old and new Q-value estimates. Q is the target network of Q, which is a frozen recent model of Q. After
deployment, the action for a given state is generated by a∗ = argmaxaQ∗(s,a). The Q-learning algorithm is commonly applied to control
problems with discrete action space. However, TSC problems typically involves continuous action space, making policy-based methods
more suitable. The Soft Actor-Critic (SAC) method employed in this paper is a leading policy-based approach. It optimizes the expected
return while incorporating an entropy term of policy into the objective function to encourage exploration. Then the optimal policy can
be formulated as

π∗ = argmax
πσ

∑

t
E(st ,at)∼πσ [Qω(st , at) + αH(πσ(.|st))] (5)

where σ denotes the parameters of policy π, πσ(.|st) represents the probability distribution of available actions at the visiting state st
under the policy πσ , and H(πσ(.|st)) = − logπ(.|st) is the entropy of the policy πσ at the state st, and α is a temperature parameter to scale
the entropy measure. The additional entropy term promotes the agent learning a more comprehensive policy and speeding up
convergence. With the optimal policy π∗, the optimal action at time step t can be obtained by a forwarding process a∗

t =

argmaxaπσ∗ (a|st). Algorithm1 shows the SAC algorithm, which involves three learning functions: policy function, Q-value function and
a function dynamically adjusting the temperature α. The SAC uses two Q-networks, parameterized by ω1 and ω2 to reduce over-
estimation bias in Q-value estimation.

Algorithm 1: Soft Actor-Critic

Input: σ,ω1,ω2 # Initial parameters
ω1←ω1,ω2←ω2# Initialize frozen Q-network weights
D←∅# Initialize an empty dataset
for each iteration do

for each environment step do
at ∼ πσ(at |st) # Sample action from the policy
st+1 ∼ P(st+1 |st , at) # Sample transition from the environment
D←D ∪ {(st , at ,R(st , at)), st+1} # Store the transition in the dataset

end for
for each gradient step do

ωi←ωi − λω∇ωi Lωi for i ∈ {1,2} # Update the Q function parameters
σ←σ − λσ∇σLσ # Update policy weights
α←α − λα∇αLα # Update temperature
ω i←τωi +(1 − τ)ω i for i ∈ {1, 2} # Update frozen Q-network weights

end for
Output σ,ω1,ω2

In Algorithm 1, the Lσ , Lω, and Lα are the loss function of training policy function, Q-value functions and the temperature factor
parameterized by σ,ω and α, respectively. λσ , λω and λα are learning rate of parameters in policy function, Q function and temperature
function. According to [41], we have

Lσ = Est∼D
[
E(st ,at)∼πσ [αlogPσ(at |st) − Qω(st , at)]

]
, (6)

Lω = E(st ,at)∼D

[
1
2
(
Qω(st , at) −

(
r(st , at) + γEst+1 [Vω(st+1)]

))2
]

(7)

Lα = E(st ,at)∼πσ [− αlogPσ(at |st) + H] (8)

The Vω(st+1) in (7) is the soft state value, and can be calculated as:

V(st) = E(st ,at)∼πσ [Qω(st , at) − αlogPσ(at |st)]. (9)

Y. Lu et al. Information Sciences 689 (2025) 121485

4

More details about the SAC algorithm and its theoretical foundations can be found in [41].

4. Reference RL based traffic signal control

This section first provides a detailed description of the reference RL, followed by its application to the TSC problem.

4.1. The reference RL

Compared with classic RL algorithms, the reference RL incorporates a reference policy πref to provide reference actions aref to assist
the agent (πrl) during the training process, thereby quickly upgrading system performance early on. Fig. 1 illustrates the framework of
the reference RL algorithm.

At each time step t, the agent observes the environment to obtain the state representation st, and generates an action distribution
πrl(.|st) based on its current policy πrl. Simultaneously, the reference policy πref provides a reference action aref

t ←πref (st) based on the
same state st . The Reference procedure presented in Fig. 1 requires the agent sample an action arl

t from the action distribution
arl

t ∼ πrl(.|st). If the Q-value constraint in (10) is not met, a new arl
t should be sampled.

Qθ
(
st , arl

t
)
⩾Qθ

(
st , aref

t
)

(10)

Separate from the Q functions used in the SAC algorithm, the Qθ(.) is an additional value function that evaluates both the agent’s
action and the reference action. A maximum number of resampling attempts η is set to prevent excessive resampling. If the constraint
(10) can be satisfied within η attempts, the resampled action from the agent arl

t will be executed at = arl
t . Otherwise, the reference

action will be adopted at = aref
t .

SAC algorithm presented in Section 2 is adopted to train the agent due to its stability and exploration efficiency in continuous action
spaces. The SAC optimizes a stochastic policy by balancing expected return and entropy, encouraging exploration in complex envi-
ronments like traffic system. The parameters involved in the SAC (i.e. σ, ω, and α) are updated using gradient decent with loss functions
(6)-(8). The Q-value function Qθ introduced in (10) is independent of the Q networks involved in the SAC algorithm. Based on multiple
experimental comparisons, we found that adopting a separate Q network can achieve more stable performance improvements
compared to utilizing the Q-value function Qω of SAC algorithm. Therefore, an independent Q network Qθ is employed to impose a Q-
value constraint during action selection. The function Qθ is updated alongside the SAC algorithm, with the following loss function:

Lθ = E(st ,at ,st+1 ,at+1)∼Dref

[
1
2
(Qθ(st , at) − (rt+1 + γQθ(st+1, at+1)))

2
]

(11)

where Qθ is a frozen recent model of Qθ. It is worth noting that the samples in data buffer Drl and Dref are different shaped. In the SAC
algorithm, the soft Q-value Qω is computed iteratively, where the policy is involved in to provide the probability distribution of actions
as shown in (7) and (9). However, the Qθ is updated based on the experienced trajectory data. Therefore, only the actual executed
actions both at and at+1 stored in the Dref are used to approximate the Q values. The online learning process of the reference RL al-

Fig. 1. The Framework of reference RL.

Y. Lu et al. Information Sciences 689 (2025) 121485

5

gorithm is presented in Algorithm 2.
Algorithm 2: The online learning algorithm

Input and initialization:
θ1,θ2,θ1←θ1, θ2←θ2 # Initialize Qθ1 ,Qθ2 ,Qθ1

,Qθ2
with random parameters

σ, α,ω1,ω2,ω1←ω1,ω2←ω2 # Initialize the parameters of the SAC algorithm
Dref ←∅,Drl←∅ # Initialize the database of reference policy and agent
λθ ,λσ , λω, λα,η# Initialize the learning rates and resample limits
For each episode do

For each environment step do
πrl(.|st)# Generate the action distribution based on the agents’ policy
aref

t ←πref (st)# Get reference action from the reference policy

at = REFERENCE
(

aref
t ,πrl(.|st)

)
Execute the reference process

Dref ←Dref ∪ {(st− 1, at− 1, rt , st , at)} # Store the transition to Dref

Drl←Drl ∪ {(st− 1 , at− 1, rt , st)} # Store the transition to Drl

If TIME FOR TRAINING:
For each gradient step do

θ←θ − λθ∇θLθ for θ ∈ {θ1, θ2} # Update Qθ1 ,Qθ2 with data in Dref

ω←ω − λω∇ωLω for ω ∈ {ω1,ω2} # Update Qω1 ,Qω2 with data in Drl

σ←σ − λσ∇σLσ # Update the policy parameters with data in Drl

α←α − λα∇αLα# Update the temperature parameter with data in Drl

End for
θi←τθi +(1 − τ)θi for i ∈ {1, 2} # Update frozen weights Qθ1

,Qθ2

ωi←τωi +(1 − τ)ωi for i ∈ {1, 2} # Update frozen weights Qω1 ,Qω2

End for
End for
Output θ1,θ2,ω1,ω2,σ,α

The Lσ , Lω, Lα and Lθ can refer to (6), (7), (8) and (11) respectively. The REFERENCE procedure is as follow:

The REFERENCE process

Input: aref
t ,πrl(.|st),η

Initialize: i = 1,arl
t ∼ πrl(.|st)

While Qθ
(
st , arl

t
)
< Qθ

(
st , aref

t

)
and i ≤ η: # If Q value constraint is not satisfied

arl
t ∼ πrl(.|st) # Resample arl

t from the action distribution
i←i + 1

End While
If i > η: # If the Q value constraint cannot be satisfied after resampling η times

Output aref
t # Output aref

t as the next action
Else:

Output arl
t # Output arl

t as the next action

In the REFERENCE procedure, Two Q networks with different initialized parameters, denoted as θ1 and θ2 respectively, are adopted to
obtain better estimation of Q values, i.e. Qθ(st ,at) =

(
Qθ1 (st ,at)+ Qθ2 (st ,at)

)
/2.

4.2. The reference RL based traffic signal controller

This section details the design of the reference RL-based TSC model, specifically its state representation, action set, and reward
function for solving the TSC problem.

Fig. 2. The layout a classic four-leg intersection.

Y. Lu et al. Information Sciences 689 (2025) 121485

6

4.2.1. The TSC problem
The core of TSC is to manage traffic flows by assigning right-of-way to different directions at an intersection, thereby preventing

collisions and ensuring smooth traffic movement. Fig. 2 illustrates the layout of a classic four-leg intersection.
To help drivers anticipate signal changes, a fixed-sequence, four-phase signal scheme is adopted, consisting of: East-West through

phase, East-West left turn phase, North-South through phase and North-South left turn phase. Within the RL framework, agents are
tasked with observing the traffic state before the start of each phase and determining the green duration of the next phase. forgiven the
continuous action space in TSC problems, SAC algorithm is adopted to train TSC agents.

This study aims to address the unsatisfactory system performance observed during the training process, which is primarily due to
the immature signal control policies at the early stages of agent learning. This poses a challenge for real-world training of agents.

4.2.2. The design of the reference RL based TSC model
To accommodate traffic networks of varying scales, a distributed control framework is adopted, providing greater flexibility and

adaptability. Each intersection in the road network is managed by an individual agent. From a practical traffic management
perspective, the proposed TSC model relies on widely available traffic data that can be collected through inductive loops or camera-
based techniques. In addition, the commonly-deployed fixed-sequence phase scheme is employed, where each phase allows specific
traffic movements to enter the intersection simultaneously. The agent’s task is to adjust the green duration at the start of the phase. The
goal of the TSC controller is to minimize the total vehicle delay in the road network by dynamically adjusting phase durations in real
time.

Within the RL framework, the state representation, action set and reward function in TSC problems need to be defined
appropriately.

(1) State representation

For each intersection, the traffic in both inbound and outbound lanes are considered. Let Lin be the set of all lanes leading to the
intersection, representing future traffic demand of movements. Lout is the set of downstream lanes, traffic on which indicates remaining
storage capacity. At each time step t, the agent collects the number of queuing vehicles ql

t(veh) and the waiting time wl
t of the leading

car for each lane l in Lin ∪ Lout. In addition, the one-hot encoding of the next phase pi
t is included in the state representation st. Therefore,

at time step t, the traffic state observed by the agent i can be represented as:

si
t =

{
ql

t ,w
l
t , p

i
t

}
,∀l ∈ Li

in ∪ Li
out (12)

The dimensionality of the state vector si
t depends on the number of incoming lanes |Li

in|, the number of outgoing lanes |Li
out | of the

intersection i and the number of phases |pi|: |si| = |Li
in| + |Li

out | + |pi|.

(2) Action set

Three common methods of defining actions include: changing the order of phases while keeping the phase duration fixed, altering
the phase duration while maintaining the phase order, and adjusting both the phase order and duration simultaneously. This study
adopts the second way, enabling the agent to control the green duration of phases while maintaining a fixed-sequence phase switching.
The phase duration encompasses green time, yellow change and red clearance intervals. The green time must remain within a defined
range

[
gmin, gmax

]
. Therefore, the action space is A =

[
gmin, gmax

]
and |A| = 1.

(3) Reward function

The goal of traffic signal control is to minimize the delay of vehicles in the road network. In this study, the reward function R is
defined as the weighted sum of the cumulative delay D and the throughput V at the intersection. The cumulative delay and the
throughput of the intersection at time step t is defined as follows:

Dt =
∑t

k=t− 1

∑

l∈Lin

ql
k (13)

Vt =
∑t

k=t− 1

∑

l∈Lin

vl
k (14)

where ql
k is the number of queuing vehicles at lane l in the time step k. The vl

k is count of vehicles crossing the stop line in the kth second.
It is worth noting that the seconds encompassed in the interval [t-1, t] varies depending on the phase duration generated at t-1 step, the
yellow and all-red intervals. The positive throughput variable is introduced to prevent the agent from getting negative feedback all the
time and reinforcing the policy in a negative way. At time step t, the reward returned to the agent is:

rt = ∂(β1Dt + β2Vt), (15)

Y. Lu et al. Information Sciences 689 (2025) 121485

7

where β1, β2 are the weight factors of different parts in the reward function; ∂ is the regulation factor of reward.
We would like to clarify that the primary focus of this study does not lie in the design of communication mechanisms among agents.

However, potential communications can be achieved expanding the dimension of state representation to encompass the state variables
and action footprint of adjacent intersections [42]. Optimizing the reward signals of neighboring agents in conjunction with the reward
of the ego agent can facilitate the realization of cooperative actions among agents [42,43]. Additionally, other studies have introduced
the attention mechanism to enhance communication among agents [44]. More communication and cooperation strategies can refer to
[45].

5. Extensions of the reference RL

The reference RL discussed in Section 4 starts with random initialized Q networks, which inevitably leads to inaccurate value
estimation o of both the agent’s action and the reference actions at the beginning of training. This section presents two optional
extensions of the reference RL method, aiming to enhance system performance of the initial few training episodes to ensure greater
safety and efficiency in the real-world agent learning.

5.1. Pretraining with offline data

Pretraining with offline data can reduce the occurrence of poor timing plans resulting from inaccurate Q-value estimates. However,
as noted by [31], actor-critic methods can hardly benefit from a well initialized Q network due to the bootstrap error. Therefore, rather
than pretraining the Q-value functions contained in the SAC algorithm (Qω), the reference Q-value function (Qθ) is initialized using the
parameters pretrained from offline dataset. This extension of reference RL is termed the “pretrained reference RL”, and its framework is
presented in Fig. 3.

With offline data collected from either simulation environment or real-world system (if a trusted reference policy is provided), the
reference Q-value function Qθ can be pretrained using the loss function (11).

5.2. Cooperate with the jump-start reinforcement learning algorithm (JSRL)

The JSRL algorithm, proposed by [4], gradually transfers control from a guide-policy to an exploration-policy (the policy of agent)
during the training process. In the kth training episode, the guide policy controls the system for the first hg

k steps, leading the agent into

Fig. 3. Framework of the pretrained reference RL.

Fig. 4. Framework of the reference RL with jump start.

Y. Lu et al. Information Sciences 689 (2025) 121485

8

“good” states. The exploration policy then takes over the control, allowing the agent to interacts with the environment. As the
exploration policy improves over time, the agent progressively takes control earlier and earlier. Incorporating the JSRL algorithm into
the reference RL mitigates the impact of inaccurate reference Q-value function during early training episodes. This combined approach
is referred to as “reference JSRL”, as shown in Fig. 4.

In the JSRL, a curriculum strategy is used to reduce the guide steps hg
k as training progressing. Intuitively, the JSRL starts with a

large guide-step hg
1 = h at the first training episode, and then decrease the guide-step as the agent’s moving average performance

improves over several episodes. However, manually determining the optimal horizon of the moving average is impractical in real-
world training. A short period may result in the reference policy relinquishing control too soon, while a long period may hinder
the agent’s learning due to limited control opportunities. To address this issue, we implemented a modified curriculum strategy to
decrease the guide step gradually. Specifically, at the kth training episode, if the score of the episode surpasses the reference score, the
guide step hg

k is reduced by a fixed number of seconds Δh in subsequent episodes until the agent fully takes control (hg
k = 0).

6. Numerical results

In real-world learning scenarios, maintaining a reasonable level of performance throughout the agent’s learning process is critical,
especially in the early training stages when the agent’s policy is underdeveloped and prone t undesirable actions. This section presents
numerical experiments designed to validate the advantage of the reference-RL in improving system performance during the agent’s
learning process, particularly at the initial training stages. This section first describes the simulated traffic scenarios and several
reference timing policies. Then, the reference-RL is evaluated and compared with the MA2C method [42] and the jump-start rein-
forcement learning (JSRL) reported in [4]. At last, two extension versions of the reference RL are examined and analyzed to assess their
effectiveness in enhancing the system performance during the initial training stages.

6.1. Simulation settings

Numerical experiments were performed on the SUMO [38] platform. SUMO is one of the most frequently used, open-source traffic
simulation packages, which provides the execution and evaluation of traffic simulations. Given considerations like traffic safety, ef-
ficiency, and other concerns expressed by the traffic management department, carrying out field experiments is a challenging task.
Therefore, the SUMO platform serves as a proxy for real traffic system to test the performance of the reference RL in our experiment.

A corridor network with three signalized intersections and a real-world network with seven signalized intersections are constructed
in the SUMO platform to evaluate the performance of algorithms.

6.1.1. The corridor network
The simulated corridor network is shown in the Fig. 5, where the west-east roads are considered as the main roads, while the north-

east roads are designated as branch roads. The west-east roads feature dedicated lanes for each traffic movement, ensuring separate
lanes for different directions of travel. The north–south roads have a shared turning lane for right turns and straight movements. The
traffic demand data of different movements in intersections is provided in Appendix A.1.

At the start of each phase, the agent observes the traffic state and generates action at ∈ [− 1,1], which would be linearly mapped to
an integer value between the minimum gmin = 5s and the maximum gmax = 120s. Each simulation episode starts with an empty
network, and lasts 3600 s.

Fig. 5. The corridor scenario.

Y. Lu et al. Information Sciences 689 (2025) 121485

9

6.1.2. The real-world network
Fig. 6 illustrates the studied area of Yangzhou City, where signalized intersections are marked by ★ and other intersections are

priority-controlled intersections. Most right-turn traffic travels through channelized lanes, making it exempt from signal control. The
first horizontal road from north to south and the second vertical road from west to east are primary roads, while the remaining roads
are minor arterials or collectors.

In this simulation, phase durations are constrained within the range of 5 s to 90 s. The traffic demand of the studied area is pre-
sented in Appendix A.2. Each training episode lasts 3600 s.

6.2. Reference policies and benchmarks

6.2.1. Reference policies
The reference RL can work with any reliable TSC methods. In this study, we don’t intend to make much effort to the design of

reference signal control policy. While it is true that more sophisticated control strategies may provide better suggestions on agent’s
decision makings, their implementation often require extensive fine-tuning in real-world practice to achieve optimal performance. In
addition, the choice of a simple reference policy aligns with the prevailing practices in real-world traffic management systems.
Therefore, we decide to adopt two well-known adaptive TSC models: adaptive-Webster’s controller [46] and cycle phase BackPressure
controller [47], as well as a fixed-time signal plan.

Fig. 6. The real-world scenario.

Table 1
The fixed signal plan of intersections.

Phases East-West through phase East-West left turn phase North-South through phase North-South left turn phase

The corridor network
Green duration(s) nt1 120 32 27 40

nt2 110 12 23 19
nt3 120 28 44 40

The real-world network
Green duration(s) nt1 26 27 13 30

nt3 45 19 13 19
nt4 28 5 7 5
nt5 30 9 14 19
nt7 14 19 14 27
nt9 19 34 11 13
nt11 17 23 9 23

Y. Lu et al. Information Sciences 689 (2025) 121485

10

(1) The fixed-time policy. It is a static timing plan regardless of system state. The fixed signal plans for the corridor network and the
real-world scenario are showed in Table 1, calculated using Webster’s formula. The yellow change and red clearance time
between phases are set to 2 s and 3 s, respectively. Meanwhile, overlong phase durations are truncated within the green duration
constraint, such as the East-West through phase in the corridor network.

(2) The adaptive Webster’s policy. The adaptive Webster’s policy estimates traffic volumes based on the traffic data collected over a
recent interval W. Then, as reported in [48], the Webster’s method is employed to calculate the cycle length and phase durations
for the subsequent duration of W. For algorithm details, please refer to [46].

(3) The cyclic phase BackPressure policy. The BackPressure method works by dynamically adjusting traffic signal timings based on
“pressure” values of phases, which reflect the difference between incoming and outgoing traffic. The phase with the highest
pressure is given the right of way during the next period. The cyclic phase BackPressure policy proposed in [47] addressed two
weaknesses in the previous BackPressure method [49]. First, it ensures a predictable and safe signal sequence. Second, it
addressed the challenge of estimating “turning fractions” of traffic at intersections, which is crucial for previous BackPressure

Fig. 7. The training curves of algorithms in the corridor network. (a) The first 100 episodes; (b) The whole training process.

Y. Lu et al. Information Sciences 689 (2025) 121485

11

method but is difficult to estimate accurately. However, since the cyclic phase BackPressure method only optimizes the green
time splits of phases (please refer to [47]), a fixed cycle length of 120 s is adopted in our experiments.

6.2.2. Benchmarks and simulation settings
We compare the proposed Reference-RL method with other two state-of-the-art methods, i.e. Jump-Start Reinforcement Learning

(JSRL) [4] and the multi-agent A2C (MA2C) [42]. The JSRL adopts a guide policy that progressively hands control to the RL agent,
accelerating the early training process. The JSRL would adopt the same guide policies as the reference RL. The MA2C incorporates
traffic information from neighboring intersections into its state representation and reward function. A spatial discount factor is
adopted to scale down the reward signal of neighboring agents to make the agent focus more on local traffic. The MA2C promotes
communication among agents, thereby improving the robustness and overall performance of the TSC model.

Additionally, detailed setting about the super-parameters and DNN network for the reference-RL, the JSRL and the MA2C are
presented in Appendix B.

Fig. 8. The progress of evaluation indicators of the fixed-time reference RL. (a) The network throughput; (b) The network waiting time.

Y. Lu et al. Information Sciences 689 (2025) 121485

12

6.3. Performance of the reference RL

Three reference policies are integrated with the reference RL: the fixed-time policy (fixed-time reference RL), the adaptive Web-
ster’s policy (adaptive Webster’s reference RL), and the BackPressure policy (BackPressure reference RL). These combinations allow
evaluating and comparing the influence of different reference policies on the agent’s learning process. The method without the
reference mechanism is referred to as “no-reference RL”.

6.3.1. Corridor network
Fig. 7 plots the scores of training episodes, providing insights into the progress of agent’s learning. The dashed lines in Fig. 7

represent the average scores of the three reference policies over 20 tests. Therefore, these dash lines are straight throughout the
training process.

The Fig. 7 (a) shows that all three reference RL methods significantly outperform the no-reference RL method during the first 100
episodes of training. The fixed- time reference RL rapidly achieves comparable performance to the fixed-time baseline after just a few
training episodes. Compared with the fixed-time reference RL, the adaptive Webster’s reference RL and the BackPressure reference RL

Fig. 9. The progress of evaluation indicators of the adaptive Webster’s reference RL. (a) The network throughput; (b) The network waiting time.

Y. Lu et al. Information Sciences 689 (2025) 121485

13

provides even greater promotion on the initial learning performance of agents, but take longer to surpass their respective baselines.
Among the three, the BackPressure reference RL exhibits the best performance boost. The results demonstrate that the reference RL
approach can significantly enhance the learning performance of the agent during the early training stages. Different reference stra-
tegies promote the training process to varying extents. While a well-performing policy can achieve greater promotion of initial training
performance, it takes more time for the agent to exceed the policy’s baseline performance.

The exploration of the state space by the agent in no-reference RL and fixed-time reference RL is presented in Appendix C, aiding in
a more intuitive understanding of the reference mechanism.

Fig. 7 (b) exhibits the learning curves of agents over 5000 episodes. The plots reveal that the no reference RL converges after
approximately 2500 training episodes. In contrast, it only takes 400 episodes (1000 episodes) for the BackPressure reference RL (the
adaptive Webster’s reference RL and) to reach the convergence score of no reference RL. The fixed-time reference RL initially improves
faster than the no-reference RL but eventually converges at a similar performance level. The adaptive Webster’s reference RL and the
BackPressure reference RL achieve greater performance promotion at the initial stages and higher convergence scores than the no-
reference RL.

We take the network throughput and the total waiting time as metrics to evaluate the performance of algorithms. Figs. 8-10 displays

Fig. 10. The progress of evaluation indicators of the BackPressure reference RL. (a) The network throughput; (b) The network waiting time.

Y. Lu et al. Information Sciences 689 (2025) 121485

14

Table 2
Numerical results of algorithms in corridor scenario.

The first 20 episodes Convergence performance

Network throughput (veh) Total waiting time(s) Network throughput (veh) Totalwaiting time
(s)

no-reference RL 2818 773,042 6610 506,415
MA2C 2639 788,592 4820 504,713
JSRL (with fixed-time plan) 5947 621,883 6387 512,055
fixed-time reference RL 5703 616,927 6640 500,778
JSRL (with adaptive Webster’s) 6486 579,972 6827 487,122
adaptive Webster’s reference RL 5664 561,540 6774 481,045
JSRL (with BackPressure) 6354 495,084 6689 498,760
BackPressure reference RL 5854 534,409 6810 480,138

Fig. 11. The training curves of algorithms in the real-world scenario. (a) The first 100 episodes; (b) The whole training process.

Y. Lu et al. Information Sciences 689 (2025) 121485

15

the progress of throughput and total waiting time of the network during the training process. The JSRL employs the fixed-time policy,
the adaptive Webster’s policy and the BackPressure policy as the agent’s guidance policy, respectively. Additionally, Table 2 presents
the numerical results of evaluations.

According to the plots illustrated in Figs. 8-10 and the numerical data shown in Table 2, the no-reference RL and all three reference
RL methods achieve higher network throughput and less vehicle waiting time than MA2C during the first 20 training episodes.
Comparing with the MA2C, the fixed-time reference RL, the adaptive Webster’s reference RL and the BackPressure reference RL
enhance the throughput by approximately 116.1 %, 114.6 % and 121.8 % and reduce the total waiting time by 21.8 %, 28.8 %, and
32.2 %, respectively. However, as for the convergence performance, the MA2C develops control policy with less throughput and less
waiting time than no-reference RL and fixed-time reference RL. The reason for this result may come down to the different design of
reward functions. The MA2C approach incorporates the queuing length and the cumulative delay of the first vehicle into the instant
reward, instead of the changes in network throughput. The adaptive Webster’s reference RL and the BackPressure reference RL surpass
the performance of MA2C in both network throughput and vehicle waiting time.

The numerical data in Table 2 also indicate that all three reference RL perform slightly worse than their corresponding JSRL
methods in the first 20 training episodes. However, after more training episodes, three reference RL approaches surpass their

Fig. 12. The progress of evaluation indicators of the fixed-time reference RL in the real-world scenario. (a) The network throughput; (b) The
network waiting time.

Y. Lu et al. Information Sciences 689 (2025) 121485

16

corresponding JSRL methods. Specifically, the fixed-time reference RL reaches the performance of the JSRL (with fixed-time plan) at
the 5th training episode, and surpass it after 200 training episodes. The adaptive Webster’s reference RL and the BackPressure
reference RL perform equivalent to their corresponding JSRL methods within 20 training episodes. The adaptive Webster’s reference
RL outperforms the JSRL (with adaptive Webster’s plan) after approximately 150 training episodes, while the BackPressure reference
RL surpasses the performance of the JSRL (with BackPressure plan) after 3000 episodes. In addition, as illustrated in Figs. 8-10, due to
the artificially designed learning curriculum, JSRL methods exhibit obvious periodic performance drops during the training process.

The comparative analysis between the reference RL methods and the MA2C model elucidates notable advancements in network
throughput and reduction in vehicle waiting time during the initial training stages. Despite the reference RL methods initially lag
behind their JSRL counterparts, they quickly surpass them after a short training period. Furthermore, the reference RL methods
demonstrate superior convergence performance in both increasing the network throughput and reducing vehicle waiting time.

6.3.2. Real-world network
Due to its minor enhancement in the agent’s initial performance in the corridor scene, the MA2C method is excluded from the

benchmarks in the subsequent real-world network experiments. Fig. 11 plots the training curves for algorithms in the real-world

Fig. 13. The progress of evaluation indicators of the adaptive Webster’s reference RL in the real-world scenario. (a) The network throughput; (b)
The network waiting time.

Y. Lu et al. Information Sciences 689 (2025) 121485

17

Fig. 14. The progress of evaluation indicators of the BackPressure reference RL in the real-world scenario. (a) The network throughput; (b) The
network waiting time.

Table 3
Numerical results of algorithms in real-world scenario.

The first 20 episodes Convergence performance

Network throughput (veh) Total waiting time(s) Network throughput (veh) Totalwaiting time
(s)

no-reference RL 11,200 2,441,501 13,382 1,029,273
JSRL (with fixed-time plan) 12,387 1,720,937 13,632 862,885
fixed-time reference RL 11,758 1,866,047 13,734 892,164
JSRL (with adaptive Webster’s) 13,117 1,310,974 13,818 860,698
adaptive Webster’s reference RL 12,036 1,798,859 13,812 860,615
JSRL (with BackPressure) 13,232 1,158,170 13,638 889,054
BackPressure reference RL 12,713 1,483,161 13,831 866,212

Y. Lu et al. Information Sciences 689 (2025) 121485

18

scenario.
As depicted in Fig. 11 (a), all three reference RL algorithms demonstrate obvious enhancement in the initial learning performance

of the agent. Consistent with the experiment results in the corridor scenario, the BackPressure reference RL achieves the highest initial
performance. The adaptive Webster’s policy shows similar initial performance to the fixed-time policy. Viewing the entire training
process presented in Fig. 11 (b), the fixed-time reference RL attains its baseline after 20 training episodes, improving training speed by
97.7 % compared to the no-reference RL. Meanwhile, the adaptive Webster’s reference RL surpasses its baseline performance after 400
training episodes, showcasing a speed enhancement of around 60 % over the no-reference RL. Meanwhile, the BackPressure reference
RL achieves its baseline performance after about 1000 training episodes, demonstrating a 50 % acceleration compared to the no-
reference RL. Regarding convergence performance, all three reference RL algorithms exhibit higher scores than the no-reference RL.

Figs. 12-14 present the progress of throughput and total waiting time for the real-world network during the training process. As
depicted in Figs. 12-14, all reference RL algorithms outperform their corresponding JSRL algorithms after approximately 20 training
episodes, and continue to exhibit superior performance during the subsequent training process. Table 3 presents the average results of
evaluation metrics during the first 20 training episodes and their convergence values. While JSRL methods initially perform better due
to their curriculum design, the reference RL methods outperform them after about 20 training episodes. The superiority of JSRL

Fig. 15. The learning curves of pretrained fixed-time reference RL. (a) The score progress during training process; (b) The network throughput in
the first 10 episodes; (c) The network total waiting time in the first 10 episodes.

Y. Lu et al. Information Sciences 689 (2025) 121485

19

algorithms in the early training is attributed to the curriculum design, where nearly all decisions during the first 20 training episodes
are made by the guide policy. As control is gradually transferred to the agent, the performance of the JSRL algorithms initially de-
teriorates and then gradually improve. In terms of convergence performance, the reference RL algorithms achieve comparable network
throughput and total waiting time to the JSRL algorithms.

In summary, the proposed reference RL algorithms demonstrate superior performance over their corresponding JSRL algorithms in
the real-world network scenario. While JSRL algorithms initially excel due to their curriculum design, the reference RL algorithms
surpass them after approximately 20 training episodes. Despite minor differences in early performance, both sets of algorithms achieve
comparable convergence in network throughput and total waiting time.

6.4. Performance of the reference RL extensions

6.4.1. The pretrained reference RL
With the pretrained Q-value network (Qθ), the reference mechanism is able to provide more accurate value estimation early in

training process. The Figs. 15-17 plot the learning curves of evaluated methods. In addition, Table 4 provides detailed numerical

Fig. 16. The learning curves of pretrained adaptive Webster’s reference RL. (a) The score progress during training process; (b)The network
throughput during the first 10 episodes; (c) The network total waiting time during the first 10 episodes.

Y. Lu et al. Information Sciences 689 (2025) 121485

20

results of the first 10 episodes, facilitating an assessment of the performance boost of the pretraining procedure on the initial training
episodes.

As shown in Fig. 15, the fixed-time reference RL benefits little from the pretraining process. This may come down to the significant

Fig. 17. The learning curves of pretrained BackPressure reference RL. (a) The score progress during training process; (b)The network throughput
during the first 10 episodes; (c) The network total waiting time during the first 10 episodes.

Table 4
Performance of the reference RL methods and the pretrained reference RL methods during first 10 episodes.

fixed-time
reference RL

pretrained fixed-
time reference RL

Adaptive
Webster’s
reference RL

pretrained adaptive
Webster’s reference RL

BackPressure
reference RL

pretrained
BackPressure reference
RL

Network
throughput
(veh)

5484 5548 5432 6156 5576 6721

Total waiting
time(s)

625,743 654,810 572,060 554,830 550,231 501,126

Y. Lu et al. Information Sciences 689 (2025) 121485

21

shift of action distribution between the pretraining and online training process, as only one signal plan is executed during pretraining.
Based on the plots in Figs. 15-17, the pretraining procedure effectively enhance the initial learning performance of the adaptive
Webster’s reference RL (a 13.3 % increase in network throughput and 3 % reduction in vehicle waiting time) and the BachPressure
reference RL (a 20.5 % rise in network throughput and an 8.9 % drop in vehicle waiting time). Additionally, pretraining the Q networks
before the online training process does not appear to impact the convergence performance of the agent.

The results reveal that the pretraining procedure effectively improves system performance at the beginning of training process
when adopting the adaptive Webster’s policy and the BackPressure policy as the agent’s reference strategy. Therefore, it is recom-
mended to incorporate an offline pretraining procedure before real-world training, provided the experience data of the reference
policy is available or can be easily collected.

6.4.2. The reference JSRL
The reference JSRL leverages the jump-start concept in [4] to the reference-RL framework, aimed at alleviating the inaccurate Q-

value evaluations at the early training episodes. Figs. 18-20 depict the learning curves for the reference JSRL methods and their system
performance during the first 10 training episodes. Table 5 lists the corresponding numerical results during first 10 training episodes.

Fig. 18. The learning curves of fixed-reference JSRL. (a) The score progress during training process; (b) The network throughput during the first 10
episodes; (c) The network total waiting time during the first 10 episodes.

Y. Lu et al. Information Sciences 689 (2025) 121485

22

The results in Figs. 18-20 demonstrate that the integration of the reference RL method with the jump-start algorithm yields a
notable enhancement in system performance during the early training episodes. Specifically, the fixed-time reference JSRL attains an
8.5 % augmentation in network throughput, and concurrently maintains a vehicle waiting time comparable to that of the fixed-time
reference RL approach. The adaptive Webster’s reference JSRL exhibits a notable 23.9 % increase in network throughput, coupled with
a marginal 2.1 % reduction in total waiting time. The BackPressure reference JSRL approach demonstrates a substantial 17.1 %
enhancement in network throughput, alongside a significant reduction of 12.7 % in total waiting time. Meanwhile, the incorporation
of the Jump-start concept does not appear to adversely impact convergence performance. Consequently, the integration of the jump-
start concept enables the reference RL to maintain a comparable level of performance to its reference policy within the first few
training episodes. This is achieved without compromising the learning speed and convergence performance of the agent.

7. Conclusions and future work

Towards training agents in real-world traffic system, the reference RL algorithm is proposed in this paper to improve the system
performance during the agent training process, particularly at the early stage of training. By resampling the agent’s actions to satisfy

Fig. 19. The learning curves of adaptive Webster’s reference JSRL. (a) The score progress during training process; (b) The network throughput
during the first 10 episodes; (c) The network total waiting time during the first 10 episodes.

Y. Lu et al. Information Sciences 689 (2025) 121485

23

the Q-value constraints set by the reference policy, the reference RL algorithm accelerates the agent’s learning to quickly reach a
performance level comparable to its reference policy, thereby speeding up the training process. To further boost the initial learning
performance of agent, the pretraining procedure and the jump-start algorithm are combined with the reference RL, respectively.
Simulation experiments in both corridor and real-world scenarios demonstrate the superiority of the reference RL, especially in the

Fig. 20. The learning curves of BackPressure reference JSRL. (a) The score progress during training process; (b) The network throughput during the
first 10 episodes; (c)The network total waiting time during the first 10 episodes.

Table 5
Performance of the reference JSRL methods during first 10 episodes.

fixed-time
reference RL

fixed-time
reference JSRL

adaptive Webster’s
reference RL

adaptive Webster’s
reference JSRL

BackPressure
reference RL

BackPressure
reference JSRL

Network
throughput
(veh)

5484 5948 5432 6729 5576 6527

Total waiting time
(s)

625,743 624,552 572,060 560,121 550,231 483,763

Y. Lu et al. Information Sciences 689 (2025) 121485

24

initial training stages. Meanwhile, the experiment results suggest that the reference mechanism does not hinder the agent’s ability to
develop advanced TSC strategies. In addition, the pretraining process can further boost the performance of the reference RL in the first
few training episodes. Similarly, the jump-start algorithm helps the reference RL method quickly achieve a performance level similar to
its reference policy early in training, without negatively affecting the agent’s learning speed and convergence performance.

Several important steps remain for the real-world deployment of the proposed reference RL. Key areas for further investigation
include testing scalability in larger and more complex traffic networks, assessing robustness under various traffic environmental
conditions, and designing effective communication and cooperation channels between TSC agents. Additionally, this paper focuses on
the TSC problem, the border applicability and efficacy of reference RL to other domains necessitate further validation through
additional experiments and evaluations. Additional research across various fields is essential to fully understand the potential and
limitations of the reference RL in diverse real-world scenarios.

Declaration of Generative AI and AI-assisted technologies in the writing process

During the preparation of this work the authors used the ChatGPT in order to improve the readability and language of this article.
After using the ChatGPT, the authors reviewed and edited the content as needed and take full responsibility for the content of the
publication.

CRediT authorship contribution statement

Yunxue Lu: Writing – original draft, Validation, Software, Methodology, Formal analysis, Conceptualization. Andreas Hegyi:
Writing – review & editing, Resources, Conceptualization. A. Maria Salomons: Writing – review & editing, Resources, Conceptual-
ization. Hao Wang: Supervision, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This work is sponsored by the National Science and Technology Major Project (No. 2022ZD0115600).

Appendix

A. The traffic demand loaded in simulation scenarios

A.1. The corridor network
The intersections in the corridor are labeled as nt1, nt2 and nt3, with the peripheral nodes on the west-east roads designated as “nt0″

and ”nt4″ respectively. The six peripheral nodes of the branch roads are denoted with “np” prefixes. Vehicles enter the network with
predetermined origin–destination (OD) pairs. In the simulated network, a total of 80 routes are designed, consisting of 40 pairs and
their reverse counterparts. The actual routes for vehicles are automatically calculated to select the fastest route when vehicles enter the
network. The total traffic volume of movements during a complete simulation episode are illustrated as in Fig. A1.

Y. Lu et al. Information Sciences 689 (2025) 121485

25

Fig. A1. Traffic demand of intersections.

As shown in Fig. A1, traffic on the west-east roads is much heavier than on the north-east branches. This aligns with typical traffic
conditions where the west-east road serves as the primary artery. It is worth noting that the traffic demand is not evenly loaded
throughout the episode, but includes obvious peaks to simulate the traffic rushes.

The traffic demand is set at three levels based on OD pair types: fnt− nt = 400(veh/h), fnt− np = 200(veh/h) and fnp− np = 200(veh/h).
Additionally, in order to simulate traffic rushes, the entry time of vehicles into the network exhibits two distinct peaks. Fig. A2 il-
lustrates the demand dynamics, represented by the ratio of the actual loaded vehicles to peak demand. In Fig. A2, F1 and F2 displays the
demand loading dynamics for 40 routes in opposite directions.

Fig. A2. The fluctuation of traffic demand.

A.2. The traffic demand of the real-world network
The traffic volumes at intersections in the real-world network are shown in the Fig. A3. Similar to the corridor network, vehicles

enter the network with predetermined OD road segments, and their actual routes are automatically calculated based on the fastest
available path when vehicles entering the network.

Y. Lu et al. Information Sciences 689 (2025) 121485

26

Fig. A3. The traffic demand of real-world network.

In addition, as with the corridor scenario, traffic rushes are simulated in real traffic environment (refer to the Fig. A2).

B. The hyperparameters and DNN settings of the reference-RL

Table B1 lists the hyperparameters and the DNN settings for the reference RL method, the JSRL and the MA2C. Since JSRL also
employs the SAC algorithm for policy optimization, it shares similar hyperparameter settings with the reference RL.

Table B1
The hyperparameters settings.

Hyper-parameters of reference-RL and JSRL Value

DNN optimizer Adam
DNN initializer Xavier
Learning rate (λσ ,λω, λα ,λθ) 0.0001
Discount (γ) 0.9
Replay buffer size (Drl,Dref) 2.105

Hidden units per layer in value functions (Qω,Qθ) [64, 96, 64, 32, 16, 8, 4, 1]
Hidden units per layer in actor network [64, 96, 64, 32, 16, 8, 4, 2]
Number of samples per minibatch 16
Entropy target (H) − 1
Nonlinearity elu
Smoothing coefficient (τ) 0.005
Update interval 3
Updates per learning session 3
Gradient clipping norm 5
Maximum resample times (η) 10
Number of training episodes 5000
Duration of each episode 3600 s
Weights in the reward function (β1 ,β2) − 0.01, 1
Regulation factor (∂) 0.001
Hyperparameters of MA2C
Batch size 60
Learning rate for actor and critic 5e-4
Reward discount rate 0.99
Control interval 5 s
Yellow duration 2 s
Episode horizon 3600 s
Weight coefficient of reward function (− 1, − 0.2)

C. The state space exploration of the reference-RL

Digging deeper into the early training stages, Fig. C1 illustrates the agent’s explorations in the state space in no-reference RL and
the fixed-time reference RL during the first 10,000 learning updates.

Y. Lu et al. Information Sciences 689 (2025) 121485

27

Fig. C1. The exploration of agent in state space. (a) Agent explores without reference mechanism; (b) Agent explores with fixed-time refer-
ence policy.

The Fig. C1 illustrates the state space exploration of the agent controlling intersection nt2, as shown in Fig. 1 of Section 4.1. The
horizontal axis represents the total number of queuing vehicles in both incoming and outgoing lanes of the intersection nt2, while the
vertical axis indicates the total waiting time of vehicles. The “density” in the color bar reflects the number of data points in a specific
range of values, corresponding to the color in the bar. The experimental findings align with our expectations. The agent learning
without a reference policy explores a border state space, often encountering states with long queues and extended waiting times. In
contrast, the fixed-time reference RL guide the agent toward more favorable state spaces early on, while still allow it to develop
proficient control strategies.

Thus, the reference policy can guide the agent away from undesired state spaces, without compromising its ability to learn high-
performance control strategies.

References

[1] M. Noaeen, A. Naik, L. Goodman, J. Crebo, T. Abrar, Z.S.H. Abad, A.L.C. Bazzan, B. Far, Reinforcement learning in urban network traffic signal control: a
systematic literature review, Expert Syst. Appl. (2022) 116830.

[2] B.-L. Ye, W. Wu, K. Ruan, L. Li, T. Chen, H. Gao, Y. Chen, A survey of model predictive control methods for traffic signal control, IEEE/CAA J. Automatica Sinica
6 (2019) 623–640.

[3] L. Zheng, X. Xue, C. Xu, B. Ran, A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties,
Transp. Res. B Methodol. 122 (2019) 287–308.

[4] I. Uchendu, T. Xiao, Y. Lu, B. Zhu, M. Yan, J. Simon, M. Bennice, C. Fu, C. Ma, J. Jiao, Jump-Start Reinforcement Learning, ArXiv Preprint ArXiv:2204.02372
(2022).

[5] H. Wei, G. Zheng, V. Gayah, Z. Li, Recent advances in reinforcement learning for traffic signal control: a survey of models and evaluation, (n.d.).
[6] L.A. Prashanth, S. Bhatnagar, Reinforcement learning with function approximation for traffic signal control, IEEE Trans. Intell. Transp. Syst. 12 (2010) 412–421.
[7] L.N. Alegre, T. Ziemke, A.L.C. Bazzan, Using reinforcement learning to control traffic signals in a real-world scenario: an approach based on linear function

approximation, IEEE Trans. Intell. Transp. Syst. 23 (2021) 9126–9135.
[8] Z. Li, H. Yu, G. Zhang, S. Dong, C.-Z. Xu, Network-wide traffic signal control optimization using a multi-agent deep reinforcement learning, Transp Res Part C

Emerg Technol 125 (2021) 103059.
[9] B. Xu, Y. Wang, Z. Wang, H. Jia, Z. Lu, Hierarchically and cooperatively learning traffic signal control, in: Proceedings of the AAAI Conference on Artificial

Intelligence, 2021: pp. 669–677.
[10] N. Xiao, L. Yu, J. Yu, P. Chen, Y. Liu, A cold-start-free reinforcement learning approach for traffic signal control, J. Intell. Transp. Syst. 26 (2022) 476–485.
[11] L. Zhang, J. Deng, Data might be enough: bridge real-world traffic signal control using offline reinforcement learning, ArXiv Preprint ArXiv:2303.10828 (2023).
[12] L. Zhu, P. Peng, Z. Lu, X. Wang, Y. Tian, Meta variationally intrinsic motivated reinforcement learning for decentralized traffic signal control, ArXiv Preprint

ArXiv:2101.00746 (2021).
[13] E. Liang, Z. Su, C. Fang, R. Zhong, OAM: an option-action reinforcement learning framework for universal multi-intersection control, Proceed. AAAI Conf. Artif.

Intell. (2022) 4550–4558.
[14] Y. Zhang, Y. Zhang, R. Su, Pedestrian-safety-aware traffic light control strategy for urban traffic congestion alleviation, IEEE Trans. Intell. Transp. Syst. 22

(2019) 178–193.
[15] Y. Zhang, J. Fricker, Investigating smart traffic signal controllers at signalized crosswalks: A reinforcement learning approach, in: 2021 7th International

Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), IEEE, 2021: pp. 1–6.
[16] M. Rodriguez, H. Fathy, Vehicle and traffic light control through gradient-based coordination and control barrier function safety regulation, J. Dyn. Syst. Meas.

Contr. 144 (2022).

Y. Lu et al. Information Sciences 689 (2025) 121485

28

http://refhub.elsevier.com/S0020-0255(24)01399-9/h0005
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0005
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0010
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0010
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0015
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0015
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0020
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0020
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0030
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0035
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0035
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0040
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0040
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0050
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0055
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0060
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0060
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0065
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0065
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0070
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0070
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0080
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0080

[17] B. Yu, J. Guo, Q. Zhao, J. Li, W. Rao, Smarter and safer traffic signal controlling via deep reinforcement learning, In: Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, 2020: pp. 3345–3348.

[18] M. Xu, X. Zhai, Z. Sun, X. Zhou, Y. Chen, Multiagent control approach with multiple traffic signal priority and coordination, J. Transp. Eng. A Syst. 149 (2023)
04022124.

[19] H. Su, Y.D. Zhong, J.Y.J. Chow, B. Dey, L. Jin, EMVLight: a multi-agent reinforcement learning framework for an emergency vehicle decentralized routing and
traffic signal control system, Transp. Res. Part C Emerg. Technol. 146 (2023) 103955.

[20] I. Kostrikov, A. Nair, S. Levine, Offline reinforcement learning with implicit q-learning, ArXiv Preprint ArXiv:2110.06169 (2021).
[21] Y. Lu, K. Hausman, Y. Chebotar, M. Yan, E. Jang, A. Herzog, T. Xiao, A. Irpan, M. Khansari, D. Kalashnikov, AW-opt: Learning robotic skills with imitation

andreinforcement at scale, in: Conference on Robot Learning, PMLR, 2022, pp. 1078–1088.
[22] S. Lee, Y. Seo, K. Lee, P. Abbeel, J. Shin, Offline-to-online reinforcement learning via balanced replay and pessimistic q-ensemble, in: Conference on Robot

Learning, PMLR, 2022, pp. 1702–1712.
[23] H. Liu, P. Abbeel, Aps: Active pretraining with successor features, in: International Conference on Machine Learning, PMLR, 2021, pp. 6736–6747.
[24] P.-A. Kamienny, J. Tarbouriech, A. Lazaric, L. Denoyer, Direct then diffuse: incremental unsupervised skill discovery for state covering and goal reaching, ArXiv

Preprint ArXiv:2110.14457 (2021).
[25] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, D. Pathak, Planning to explore via self-supervised world models, in: International Conference on

Machine Learning, PMLR, 2020, pp. 8583–8592.
[26] K. Hakhamaneshi, R. Zhao, A. Zhan, P. Abbeel, M. Laskin, Hierarchical few-shot imitation with skill transition models, ArXiv Preprint ArXiv:2107.08981 (2021).
[27] Y. Seo, L. Chen, J. Shin, H. Lee, P. Abbeel, K. Lee, State entropy maximization with random encoders for efficient exploration, in: International Conference on

Machine Learning, PMLR, 2021, pp. 9443–9454.
[28] D. Yarats, R. Fergus, A. Lazaric, L. Pinto, Reinforcement learning with prototypical representations, in: International Conference on Machine Learning, PMLR,

2021, pp. 11920–11931.
[29] M. Schwarzer, N. Rajkumar, M. Noukhovitch, A. Anand, L. Charlin, R.D. Hjelm, P. Bachman, A.C. Courville, Pretraining representations for data-efficient

reinforcement learning, Adv. Neural Inf. Process Syst. 34 (2021) 12686–12699.
[30] Z. Xie, Z. Lin, J. Li, S. Li, D. Ye, Pretraining in deep reinforcement learning: a survey, ArXiv Preprint ArXiv:2211.03959 (2022).
[31] A. Nair, M. Dalal, A. Gupta, S. Levine, Accelerating online reinforcement learning with offline datasets, ArXiv Preprint ArXiv:2006.09359 (2020).
[32] S. Levine, A. Kumar, G. Tucker, J. Fu, Offline reinforcement learning: tutorial, review, and perspectives on open problems, ArXiv Preprint ArXiv:2005.01643

(2020).
[33] J. Garcıa, F. Fernández, A comprehensive survey on safe reinforcement learning, J. Mach. Learn. Res. 16 (2015) 1437–1480.
[34] F.L. da Silva, P. Hernandez-Leal, B. Kartal, M.E. Taylor, Uncertainty-aware action advising for deep reinforcement learning agents, in: Proceedings of the AAAI

Conference on Artificial Intelligence, 2020, pp. 5792–5799.
[35] E. Ilhan, J. Gow, D. Perez, Student-initiated action advising via advice novelty, IEEE Trans Games (2021).
[36] E. Ilhan, J. Gow, D. Perez-Liebana, Learning on a Budget via Teacher Imitation, in: 2021 IEEE Conference on Games (CoG), IEEE, 2021, pp. 1–8.
[37] Y. Fu, C. Li, F.R. Yu, T.H. Luan, Y. Zhang, Hybrid autonomous driving guidance strategy combining deep reinforcement learning and expert system, IEEE Trans.

Intell. Transp. Syst. (2021).
[38] P.A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, E. Wießner, Microscopic traffic simulation

using sumo, in: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), IEEE, 2018, pp. 2575–2582.
[39] A.G. Ptv, Ptv Vissim 7 User Manual, Karlsruhe, Germany, 2015.
[40] M. Lapan, Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, AlphaGo Zero and

more, Packt Publishing Ltd, TRPO, 2018.
[41] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel, Soft actor-critic algorithms and applications, ArXiv

Preprint ArXiv:1812.05905 (2018).
[42] T. Chu, J. Wang, L. Codecà, Z. Li, Multi-agent deep reinforcement learning for large-scale traffic signal control, IEEE Trans. Intell. Transp. Syst. 21 (2019)

1086–1095.
[43] Y. Liu, L. Liu, W.-P. Chen, Intelligent traffic light control using distributed multi-agent Q learning, in: 2017 IEEE 20th International Conference on Intelligent

Transportation Systems (ITSC), IEEE, 2017, pp. 1–8.
[44] J. Liu, H. Zhang, Z. Fu, Y. Wang, Learning scalable multi-agent coordination by spatial differentiation for traffic signal control, Eng. Appl. Artif. Intel. 100 (2021)

104165.
[45] P. Hernandez-Leal, B. Kartal, M.E. Taylor, Is multiagent deep reinforcement learning the answer or the question? A brief survey, Learning 21 (2018) 22.
[46] W. Genders, S. Razavi, An open-source framework for adaptive traffic signal control, ArXiv Preprint ArXiv:1909.00395 (2019).
[47] T. Le, P. Kovács, N. Walton, H.L. Vu, L.L.H. Andrew, S.S.P. Hoogendoorn, Decentralized signal control for urban road networks, Transp Res Part C Emerg

Technol 58 (2015) 431–450.
[48] F.V. Webster, Traffic signal settings, 1958.
[49] P. Varaiya, The max-pressure controller for arbitrary networks of signalized intersections, in: Advances in Dynamic Network Modeling in Complex

Transportation Systems, Springer, 2013, pp. 27–66.

Y. Lu et al. Information Sciences 689 (2025) 121485

29

http://refhub.elsevier.com/S0020-0255(24)01399-9/h0090
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0090
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0095
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0095
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0100
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0105
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0105
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0110
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0110
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0115
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0120
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0120
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0125
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0125
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0130
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0135
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0135
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0140
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0140
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0145
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0145
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0150
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0155
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0160
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0160
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0165
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0170
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0170
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0175
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0180
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0185
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0185
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0190
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0190
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0195
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0200
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0200
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0205
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0205
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0210
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0210
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0215
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0215
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0220
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0220
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0225
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0230
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0235
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0235
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0245
http://refhub.elsevier.com/S0020-0255(24)01399-9/h0245

	Reference RL: Reinforcement learning with reference mechanism and its application in traffic signal control
	1 Introduction
	2 Related works and motivations
	2.1 Related works
	2.2 Motivations

	3 Theoretical background
	3.1 Reinforcement learning
	3.2 The Soft Actor-Critic algorithm

	4 Reference RL based traffic signal control
	4.1 The reference RL
	4.2 The reference RL based traffic signal controller
	4.2.1 The TSC problem
	4.2.2 The design of the reference RL based TSC model

	5 Extensions of the reference RL
	5.1 Pretraining with offline data
	5.2 Cooperate with the jump-start reinforcement learning algorithm (JSRL)

	6 Numerical results
	6.1 Simulation settings
	6.1.1 The corridor network
	6.1.2 The real-world network

	6.2 Reference policies and benchmarks
	6.2.1 Reference policies
	6.2.2 Benchmarks and simulation settings

	6.3 Performance of the reference RL
	6.3.1 Corridor network
	6.3.2 Real-world network

	6.4 Performance of the reference RL extensions
	6.4.1 The pretrained reference RL
	6.4.2 The reference JSRL

	7 Conclusions and future work
	Declaration of Generative AI and AI-assisted technologies in the writing process
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix Acknowledgements
	A The traffic demand loaded in simulation scenarios
	A.1 The corridor network
	A.2 The traffic demand of the real-world network

	B The hyperparameters and DNN settings of the reference-RL
	C The state space exploration of the reference-RL

	References

