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Abstract

Numerous structures constructed in 60’s and 70’s are now reaching their design service life
and require reassessment to assure safety of users, reliability and economical exploitation. As
a consequence, an adequate structural assessment of existing bridges has recently become a
major subject of scientific work commissioned by the authorities in charge.
The bridges designed according to then biding codes are often deemed to be structurally
deficient when re-evaluated with more restricting current design provisions. At the same time,
it is often in conflict with the reality as many of the structures still continue in operation
displaying no perceptible deterioration of state nor fatigue. The challenge therefore is to
develop more refined models to evaluate the structural behaviour and possible reserves of
capacity accounting for the actual condition of the bridge under investigation.
One of the potential deficiencies is related to the shear tension failure in thin-webbed post-
tensioned T-girders which is the item of the this dissertation. The study comprises of two
major parts. In the first part, the thesis investigates an ability of the shear provisions for
reinforced concrete structures as given in the following codes: Canadian Standard Association
(CSA), the fib Model Concrete 2010 (MC2010), the Eurocode 2 (EC2) and the RBK 1.1
(Richtlijnen Beoordeling Kunstwerken) to adequately address shear tension critical members.
The predictions from codes are calculated for the three selected benchmark continuous I-
beams tested in destructive laboratory tests as a part of the research on the influence of axial
load and prestress on the shear strength of web-shear critical reinforced concrete elements at
the University of Toronto. Out of three selected beams of interest subjected to approximately
the same prestressing force, two contained a varying amount of reinforcement equal to twice
and four times the minimum amount shear reinforcement as specified by the CSA code and one
containing no stirrups in the test region. From the comparison of codes it was concluded that
shear previsions relating shear resistance to the strain state of the considered section (CSA
and MC2010) provide good predictions for members furnished with stirrups but inaccurately
evaluate shear resistance for members without shear reinforcement being overly conservative.
For this case, the empirical formulation according to the EC2 with mean characteristics
applied resulted in the best estimate.
In the second part of the study, an attempt to reproduce the tests of the benchmark beams
numerically was undertaken. The simulation according to the highest level of approximation
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as classified in the MC2010 was performed through a series of nonlinear finite element analyses.
Sensitivity analyses with the diverse variables such as: crack models, shear retention functions,
iterative methods and convergence norms were studied to determine their influence on the
ultimate shear strength and competence to recreate the observed in tests performance; i.e.
the failure mechanism and crack pattern. From the conducted analyses, it was concluded
that satisfactory crack pattern as well as magnitudes of shear resistance can be obtained
for all treated specimens. The thesis was completed with considerations regarding the most
appropriately performing constitutive model to simulate shear tension failure mechanism for
the cases of benchmark tests. For the considered cases of shear tension critical beams, models
with the rotating crack, energy convergence norm in combination with force or displacement
convergence norm and the modified Newton-Raphson iterative method are recommended.
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Chapter 1

Introduction

Following the reconstruction after the Second World War, the Netherlands entered the period
of economic expansion with the beginning dated back to 1950s. This prosperous period left
a mark on the Dutch infrastructure network. A number of vehicles increased substantially
and this consequently triggered a need for enhanced roads network resulting in numerous
infrastructural investments. Figure 1-1 shows the growth of the motorway network in the
Netherlands (in kilometres). Many of existing nowadays bridges were originated in the 60’s
and 70’s and are located in highways lines. The bridges were design in accordance with then
binding standards with a predicted service life of 50 years and hence they are now reaching
the end of their working life. Many bridges require reassessment and some rehabilitation to
assure safety for users, reliability and economical exploitation. Such reassessment is currently
one of the most common project type commissioned by the Ministries of Transportation and
Infrastructure in many countries and it is no different in the Netherlands.

Figure 1-1: Growth of the motorway network in the Netherlands [1]

The common standards cover
the procedures for new struc-
tures. Because the procedures
of assessment of existing struc-
tures differ from those for new
structures, the existing bridges
require often an application of
more refined methods. The
difficulty lies in a lack of re-
liability of the actual state of
structures and used material
properties. In addition, the current standards impose more sever requirements by an applica-
tion of higher traffic loads and partial safety factors on both action side as well as strength of
materials [16]. For these reasons some of existing structures may not meet the requirements
of the design for new structures and hence deemed to be structurally deficient. This however
may be in conflict with the reality as they may still comply with the performance require-
ments and be adequate to continue in operation. In this context, the shear strength is one of
the major concerns.
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2 Introduction

1-1 Background information

In many designs, the governing aspect dictating the section dimensions is generally not the
shear phenomenon. It is however well known that a shear failure requires special attention.
It is a failure mechanism, which comes from a low degree of redundancy in beam elements,
is sudden and therefore a minimum amount of shear reinforcement should be provisioned.
An element subjected to a certain load can display two types of cracking, namely flexural
cracking and shear tension cracking. The cracking occurs when the principal tensile stresses
in the considered section exceed the tensile strength of the concrete. The principal tensile
stresses act perpendicular/normal to the principal compressive stresses, thus these paths can
be a representation of the directions of crack development. Depending on a crack type and
aspects contributing the cracks development (a region of crack occurrence, a cross section
type and geometry etc.), two main failure mechanisms can be distinguished. The diagonal
tension shear failure depicted in Figure 1-2a which is originated from the flexural cracks
nearest the support (where the shear force is the greatest). The flexural cracks develop into
the inclined shear-flexure crack and propagate further till the failure mechanism occurs. As
a vast majority of beam elements fail in this manner, it is therefore a very common failure
mechanism. The second failure mechanism is related to shear tension cracking, hence called
the shear tension failure, Figure 1-2b. This very brittle failure type appears in beams with
thin webs in regions where shear force is large compared to bending moment (e.g. a point of
contraflexure or in a vicinity of a support).
In prestressed concrete members, the prestressing delays the formation of any crack type.
Another effect of prestressing is that after tensile stress σ1 reaches the tensile strength of
concrete, the crack tend to be more inclined to horizontal. In an ordinary reinforced element
such behaviour would be advantageous for the shear strength as a higher number of shear
links cross the crack and is involved in load carrying. Nevertheless, for poorly reinforced
against shear forces elements the effect of prestressing has yet to be examined.

(a) Diagonal flexure-shear failure (b) Web shear failure in tension shear

Figure 1-2: Typical shear failure mechanisms of reinforced concrete

1-2 Aim of the Study

In the past in the Netherlands about 150 bridges were built with post-tensioned T girders.
The design was developed according to the RVB 1962 and RVB 1967 standards. When
compared with ECs in which the traffic loads are increased and the partial safety factors are
applied, there is a possibility that the old bridges do not meet reliability requirements. In
order to evaluate the factual shear capacity, it is necessary to have a refined method accurately
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1-3 Outline of the Study 3

assessing the shear resistance at hand. The objective of this thesis is therefore to investigate
which of the available shear provisions is able to evaluate the tension shear critical the most
accurately.
The benchmark beams used in this study serving as an indicator of the models correctness
are thin-webbed reinforced concrete I-beams subjected to the destructive laboratory test at
the University of Toronto. The research was conducted to investigate the influence of an axial
load and prestressing on the shear resistance of web-shear critical reinforced concrete elements.
The methods used in that research were the shear provision from American Concrete Institute
(ACI) and Canadian Standard Association (CSA) which are two major models for shear design
commonly applied in North America. The results of the experimental research indicated that
the CSA code provides better predictions for shear strength of the web-shear critical reinforced
concrete members subjected to combined axial force and shear force than the ACI code [13].
Consequently, the ACI code will not be treated in this study. For the sake of a better
comparison, the analytical solution in this study employs three additional standards: the
Eurocode 2 (EC2), the fib Model Code for Concrete Structures 2010 (MC2010) and the RBK
1 (Richtlijnen Beoordeling Kunstwerken). The analytical solution will be computed using
parameters of the members tested in the PhD dissertation (hence the as-built dimensions and
mean material properties) and validated with the test results. The scope of the study includes
also numerical analysis on models of beams LB6, LB10 and LB11. In this part, an ability to
implement numerical methods to simulate the tension shear failure and their compatibility
with the results of destructive laboratory tests are investigated.

1-3 Outline of the Study

The report contains five principal parts:

1. Literature study (Chapter 2)

2. Description of the experimental study of the benchmark beams conducted at the Uni-
versity of Toronto (Chapter 3)

3. Analytical analysis (Chapter 4)

4. Numerical analysis (Chapter 5)

5. Conclusions and recommendations (Chapter 6)

The intention of the first part is to familiarize the reader with general aspects related to
shear in concrete structures i.e. cracking and shear transfer after cracking. Moreover, the
background of the applied shear provisions is introduced and thoroughly explained (the RBK
1.1 is excluded from the consideration, yet applied in the second part of the report). In the
subsequent chapter, the experimental research on the influence of axial force and prestressing
on the web-shear critical beams is summerized. The summary pays special attention to the
post-tensioned beams LB6, LB10 and LB11 containing a varying amount of shear reinforce-
ment across the tested span. The approaches demonstrated in the foregoing Chapter 2 are
implemented in Chapter 4 with mean values of material properties applied. Such a measure is
undertaken due to the predictions of the factual shear resistance being of the primary interest
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4 Introduction

rather than the design or characteristic resistances. The results are collated and compared to
support a conclusive recommendation regarding the most appropriate approach (under given
circumstances). Last but not least, an attempt to reproduce the experimental results from
the test site using finite element analysis is made in Chapter 5. The objective of this part
was to study different shear behaviours (crack models and shear retention functions) within
the total strain based crack model by means of variable iterative procedure configurations.
The report is concluded with a summary of the results and observations and further research
recommendations.
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Chapter 2

Literature Study

In design of structural elements for moment and axial loads, engineers can make use of
available general and rational method called the "plane sections" theory. With this method it
is possible to predict both the flexural strength and the complete load-deformation response
of reinforced concrete elements. The theory has proved its validity and therefore there is little
disagreement in different design codes on the design of the flexural strength or the required
amount of reinforcement needed to ensure ductile flexural behaviour [17]. In contrast to
flexure, there is substantial disagreement on how to design reinforced concrete members to
ensure ductile shear behaviour. Over the years different methods have been proposed. Upon
the lack of universally agreed model for shear behaviour, codes of practise propose complex,
restricted or purely empirical equations for estimation of shear strength. In addition to that
they tend to be conservative imposing more sever safety requirements which leads to their
inapplicability for evaluation of existing structures. An ability to adequately address shear
resistance of existing bridges which are often deemed to be structurally deficient emphasized
the need for more suitable shear design provision and triggered more researches on this subject.

Good understanding of shear behaviour of concrete structures is essential to properly design
members against shear failure. Therefore, this section will provide a reader with general infor-
mation about shear. A review of shear design in codes of practise further used in the analytical
solution will be introduced and explained. Although the shear problems in this chapter will
be treated globally, it should be borne in mind that the web-shear failure constitutes the key
interest of this study.

2-1 Cracking in concrete

In Figure 2-1 a small segment at the level of neutral axis of a beam subjected to certain loading
is illustrated. From the vertical equilibrium, there appear to be two vertical opposite stresses
acting on either side of the segment which tend to rotate the segment clockwise. To prevent
from this rotation and to obtain the overall equilibrium, two additional balancing stresses are
required on horizontal faces of the segment. The forces corresponding to those four stresses
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6 Literature Study

Figure 2-1: Stress in a segment of concrete; a) a beam subjected to four point bending; b) and c)
shear stresses in a concrete segment; d) stress resolution; e)stresses in the principal directions [2]

can be resolved into components at the 45 degrees angle as depicted in Figure 2-1(d). Now,
it can be observed that a total compressive force

√
2vδx in one direction and a total tensile

force of the same magnitude in the other. These forces divided by the length on which they
are acting, which is the diagonal of the segment

√
2δx, result in stresses

√
2vδx/

√
2δx = v.

Such stresses are called the principal stresses and are of great importance as far as cracking
is concerned. The principal stresses therefore are defined as the normal stresses on the face
oriented in such a way that shear stress vanishes. From 2-1(e) it can be seen that such tensile
stresses are a cause of the crack at 45 degrees to the horizontal. It is important to note that
cracking occurs when the principal tensile stresses exceed the tensile strength of concrete. For
the segments not in line with the neutral axis, additional axial stresses as a result of bending
moment should be accounted for. Also for prestressed members, axial stresses have an impact
on diagonal cracking.

First type of cracking called web-shear cracking occurs in a section where shear stresses
prevail. It is not a very common type of cracking but can appear in sections near a point of
contraflexure which is where bending moment is negligible and shear force predominates or
in members with thin webs and a limited amount of shear reinforcement (often considered as
elements without shear links) such as for example T or I girders. The distinctive features of
this type of cracking are cracks propagating from the level in a close proximity of the neutral
axis. Another type of cracking is called flexural cracking. For the segment located at the
bottom of a member, shear stress in an extreme bottom fibre equal 0 while bending normal
stresses have the maximum value. As a result, the principal stresses act normal to the vertical
plane. It was previously shown that there exist two limits. For the segment at the level of
neutral axis (for 0 bending stress and the maximum shear stress) crack inclines at the angle
of 45 degrees, Figure 2-2(b) while for pure bending stresses and the extreme bottom fibre a
crack appears at the angle of 90 degrees. In the segment between the neutral axis and the
bottom of the member, a combination of bending and shear stresses is acting on the element
and therefore the crack will develop with an inclination of between 45 and 90 degrees, Figure
2-2(d). At any point/segment of a beam, an inclination of principal stresses can be determined
through the Mohr’s Circle. It can be well represented by means of stress paths through the
member, Figure 2-3, where the dashed lines are the trajectories along which cracks will tend
to develop. It is clear that the inclination of the crack will decrease towards the neutral axis
as the shear stress become larger and the axial stresses from bending approach 0. The stress
paths however are only an indication and it is by no means in agreement with the crack
patterns developed in practice. Such a model does not account for many aspects such as for
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2-1 Cracking in concrete 7

example redistribution of the shear stresses which occurs when cracks are formed.

Figure 2-2: Principal stresses in individual locations a) beam with segments’ locations; b) seg-
ment A principal stress; c) segment B; d) segment C [2]

Figure 2-3: Principal stress trajectories

From the stress paths in Figure 2-3, one can see that for a member in shear and bending,
the cracks are curved with a slope ranging from 45 at the neutral axis – pure shear, to 90
degrees at the extreme fiber due to pure bending. This form of cracking is called shear-flexure
cracking. The vast majority of reinforced and prestressed members crack in flexure so before
the tensile stresses at the neutral axis exceed the tensile strength of concrete. It is thus the
most common type of cracking and in the most severe cases a cause of failure [2].
The advantage of prestressing concrete members is a reduction or elimination of tensile stresses
at the serviceability limit state. At the ultimate limit state, when the applied loads are
significantly larger, the tensile principal stresses can reach the tensile strength of concrete
resulting in cracks. Nevertheless, the benefit of prestressing is that the load at which cracking
forms is increased. Prestressing has also an influence on the angle of crack formation and a
crack width. In Figure 2-4, the chosen segment B at the centroid from Figure 2-2 subjected
to horizontal compression stresses and shear stresses due to applied loading is considered.
The effect of prestressing can be explained using a simple Mohr’s circle. When the segment
B is subjected to pure shear τ , the principal tensile stresses act at 45 deg. When the axial
force is not equal zero the reduction of principal tensile stress occurs. In addition, if the crack
materialize its inclination is flattened and forms at the angle between 0 and 45 degrees. The
lowered angle has in general a beneficial effect on the shear strength of members because the
crack is such a situation crosses a higher number of shear links thus effectiveness of transverse
reinforcement is increased. Please note that in case of I-beams the maximum principal tension
may not occur at the controidal axis where the shear stress is the greatest but instead,it may
arise at the flange-web junction. In this location shear stresses are slightly lower but the crack
formation is aided by external bending.
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Figure 2-4: Effect of prestress on an angle of principal stresses in a beam; reproduced from [3]

2-2 Mechanism of Shear Transfer After Diagonal Cracking

Prior to cracking of concrete, shear in the beam’s web is carried by diagonal compressive
stresses at a certain angle of inclination complemented with perpendicular to them diagonal
tensile stresses. The steels bars (if present) have a negligible effect on the behaviour of
reinforced concrete element. For such a concrete element (without inclusion of steel bars),
the principal stresses coincide with the applied principal stresses. Once the tensile strength of
concrete is reached, cracks form and the ability of concrete to transmit principal tensile stresses
is substantially reduced (for the cracks width greater than 0.05 mm significant transmission
does not occur [18]) and unless a member is sufficiently reinforced, failure may develop.
The purpose of such reinforcement is therefore to carry shear. In the case of an element
reinforced with a different amount of reinforcement in two directions, the principal coordinate
of the concrete element will deviate from the applied principal stresses coordinate of the RC
element. The deviation will increase under the shear stress increase until the maximum angle
is reached which relates to the yielding of the steel [9]. To elaborate further the mechanism, a
reference to the possible stress fields given in the [4] can be made. The stress fields depicted in
Figure 2-5 are related to the behaviour of reinforced concrete before and after a crack onset.
Before cracking the principal stresses in both compression and tension are equally engaged
in resisting the shear. After cracking however, under the assumption that tensile stresses in
concrete decline to zero, the concrete diagonals have to take over the part previously carried by
principal tensile stresses, thus principal compressive stresses double in the value. If the beam
is appropriately reinforced, the imbalance is redistributed with longitudinal reinforcement
in tension balancing the longitudinal component of the diagonal compression and the web
reinforcement balancing the transverse component of the diagonal compression Figure 2-5
(b).
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Figure 2-5: Stress field before and after cracking in a reinforced element; reproduced from [4]

In normal strength concrete, the strength of aggregates is typically higher than the strength
of harden cement paste. In the system consisting of the aggregate particles and the matrix,
the interface between cement and aggregate (the interfacial transition zone of high porosity)
is normally regarded as the weakest link [19]. Because of this, the cracks cross the cement
paste but instead intersecting further the aggregate particles, the cracks propagate along the
edges of the particles creating a rough surface, Figure 2-6 [5]. Such protruding aggregates,
by means of interlocking one another, generate shear stresses when the relative tangential
displacement occurs [20]. This is however only true for regular or low strength concrete. The
capacity of aggregate interlock is reduced for concretes with lightweight aggregate and high
strength concrete. In the lightweight concrete, as the result of the low strength of aggregate,
the crack runs through the particles. Similarly in the later case, due to the high strength of
concrete, the crack proceeds through the matrix as well as the aggregate particles. Another
load carrying mechanism is dowel action of longitudinal reinforcement. It is defined as an
ability of reinforcing bars to transfer forces in the direction perpendicular to their axes. The
dowel action occurs upon a crack surface slip which is counteracted by crossed reinforcement.
Lastly, the shear can be carried in the uncracked compression zone of a member.

Figure 2-6: Crack surface in cracked concrete [5]
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10 Literature Study

2-3 Shear Models

2-3-1 The 45 Degree Truss Model

The first truss model with parallel chords was proposed by Ritter. The truss is composed
of diagonal compressive struts inclined at the angle of 45 degrees, the transverse tension
ties, the top compression chord and bottom tension chord. Later in 1902, the model with
discrete diagonal compressive struts was undermined by Mörsch who claimed that the diagonal
compression is transferred through a continuous field resisting shear. The 45-degree model
comprises of three assumptions: the tensile stresses in the cracked concrete are neglected;
the diagonal compression stress coincides with the crack angle and after cracking the angle
remains at 45 degrees; the contribution of the top and bottom chords in resisting shear is
neglected and shear stressed are uniformly distributed over an effective shear area (bw ∗ d).

Figure 2-7: Free body diagram for the equilibrium derivation [6]

From the 2-7 (b) and (c), it can be seen that the total diagonal compressive force, f2:

f2bwd/
√

2 =
√

2V thus f2 = 2V/bwd (2-1)

The vertical component of the diagonal compressive force f2bws/
√

2 in Figure 2-7(c) has a ver-
tical component equal f2bws/2 which has to be balanced by the force in stirrups. Substituting
f2 from equation 2-1 to f2bws/2 gives:

Avfv
s

= V

d
(2-2)

with Asfv being the cross-sectional area of stirrups and tensile stress in the stirrups. The
additional force in the longitudinal reinforcement due to shear is:

Nv = V (2-3)

With the equation 2-1 the compressive stress in the web can be checked while the equation
2-2 enables to determine the required areas and spacing of stirrups. The 45 degrees angle of
inclination, which was also recognized by Mörsch, gives conservative estimations because in
the members containing usual amounts of shear reinforcement the shear cracks form at the
angle much smaller angle. In addition, for members with a little amount of reinforcement,
the contribution of concrete is far from negligible.
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2-3-2 Variable-Angle Truss Model

The variable-angle truss model is based on the same rules as the previous truss model. To
account for the fact that the angle θ is typically less than 45 degrees for some cases, such as
e.g. prestressed members, the model was modified. In a similar manner, for the equilibrium
in Figure 2-7, the equations for the principal compressive stress 2-4, the tensile force in the
longitudinal reinforcement due to shear 2-5 and the tensile force in the stirrups 2-6 can be
derived:

f2 = V

bwd sin θ cos θ = V

bwd
(tan θ + cot θ) (2-4)

Nv = Alfl = V cot θ (2-5)

Avfv = f2bws sin2 θ or subtituting for f2 7→ Avfv
s

= V

d
tan θ (2-6)

For the given shear load, there are four unknowns (i.e. the principal compressive stress f2,
the tensile force in the longitudinal reinforcement Nv, the stress in the stirrups fv and the
inclination of the principal stresses θ) and only three equilibrium equations. To solve the
problem, two plasticity-based methods have been developed. The plasticity-based methods
are referred as the approaches which consider the mechanism of failure to solve a set of equa-
tions 2-4, 2-5, 2-6. The first of these methods, assumes that in the ultimate limit state the
stirrups yield and the concrete in compressive diagonals reaches an effective concrete compres-
sive strength [4]. With these assumptions, V and θ can be found by solving simultaneously
equations 2-4 and 2-6. In the second approach, it is assumed that both the longitudinal and
transverse reinforcement yield and subsequently with (2-5–2-6), V and θ can be determined.
The recommended effective concrete compressive strength is 0.6f ′c.

2-3-3 Compression Field Theory and Modified Compression Field Theory

Compression Field Theory
The Compression Field Theory is a smear crack continuum mechanics modelling approach [6]
in which cracked concrete is treated as a new material with its own stress-strain characteristics.
The word smeared in this context refers to the strains expressed in average terms thus the
strains are smeared over a base lengths equal at least the crack spacing. The formulation of
the approach comprises of the equilibrium equations of external forces with internal forces,
the compatibility equations relating strains in the reinforcement and strains in the concrete
and lastly the constitutive relationships linking the average strains and average stresses for
the reinforcement and concrete. The equilibrium conditions result from balancing the applied
external forces on a RC element and stresses arose in the concrete and the reinforcing steel.
The sum of the forces in each direction and shear forces equals to zero. The compatibility
conditions assume that (provided that steel is properly anchored in the concrete and the
rebars are perfectly bonded) the deformation of concrete is accompanied by an identical
deformation in the reinforcement. The same condition applies to strains in the reinforcement
and concrete. In the second assumption, the angle of inclination of the principal stresses
coincides with the angle of inclination of the principal strains hence it is a rotating crack
concept. The compatibility conditions are essentially derived from the three compatibility
equations of the rotating angle theories which are fully elaborated in [9]. The stress-strain
relationship of the concrete in e.g. a cracked web of a beam differs from the relationship
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obtained with standard compression tests on a concrete cylinder. Therefore in the CFT,
depending on the actual strain condition to which concrete elements is subjected, the "new"
stress state is calculated. Moreover, the diagonally cracked web is subjected to significant
tensile strains which in turn results in the concrete being weaker and softer than the concrete
in a cylinder in which the only existing tensile strains come from Poison’s effect [4]. Such a
detrimental impact of the principal tensile strains on the stiffness and strength of concrete in
compression is called compression softening [6]. It can be seen in Figure 2-13 (h) stress-strain
relationship for concrete in compression that principal compressive stresses f2 are indeed a
function of the corresponding principal compressive strain ε2 as well as the principal tensile
strain ε1 and that the principal tensile strain decreases the maximal concrete strength. In
conclusion, employing the equilibrium, compatibility and constitutive relationships of CFT
enables determination of the complete load-deformation response of a member subjected to
shear.

Modified Compression Field Theory
The compression field theory assumes that after concrete has cracked, the principal tensile
stress is equal to zero. For this reason, CFT overestimates deformations and provides conser-
vative results. In reality, which was found by Vecchio and Collins in the tests on RC panels
subjected to pure shear, the residual tensile stresses exist in the concrete between two adjacent
cracks which in turn can significantly contribute and increase the ability of concrete to resist
the shear. It essentially means that shear after cracking is not carried solely by reinforcement
but instead by a combination of the concrete and steel contributions (concrete stiffening).
To account for this, the Modified Compression Field Theory was developed which explicitly
considers a residual post-peak tensile capacity of reinforced concrete.
The mechanism of the shear transfer in a panel subjected to shear is shown in Figure 2-8 (b)

Figure 2-8: Reinforced concrete panel subjected to shear [7]

and (c) – average stresses between the cracks and local stresses at the crack location respec-
tively. These two sets of stresses are statically equivalent (their resultants are equal). Because
of this, the stresses between two sets impart. It means that the loss of tensile stresses in the
concrete at the crack location must result in an increase of steel stresses at the crack or, when
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the reinforcement yielded due to excessive stresses in shear stresses on the crack interface
(aggregate interlock) .The effectiveness of such a shear transfer across the crack depends on
the crack width [7].
It was already mentioned that the CFT considers the "actual" strain state. So does the MCFT.
In [7], it is explained that the average principal tensile strain ε1 in the cracked concrete serves
as a "damage indicator" that controls the average tensile stress f1 in the cracked concrete (eq.
14 Figure 2-13), the ability of the diagonally cracked concrete to carry compressive stresses
f2 (eq. 13 Figure 2-13), and the shear stress that can be transmitted across the crack vci
through relating it to the crack width (eq. 9 and 15 Figure 2-13).
The stress-strain relationship for concrete in tension can be seen in Figure 2-13 i). The av-
erage tensile stresses after cracking can be calculated from the equation (14) in this figure.
This expression is related to the second branch (tension softening due to the gradual loss of
concrete integrity) of the stress-strain diagram Figure 2-13 (i). For the substantial values of
the principal tensile strains, the average tensile stress f1 is limited by the yielding of the rein-
forcement at the crack and shear stress vci on the crack that can be transferred across cracks.
The maximum shear stress vci that can be transmitted across the crack was defined from the
experimental test data of Walraven and is expressed with the equation 15 in Figure 2-13. It
is a function of crack width w and the aggregate size a. The third branch of the Figure 2-13
(i) describes the limit value of f1 against "crack slipping failure" which is when stirrups have
reached the yield stress and the shear transfer depends on the aggregate interlock according
to [7]:

f1 = vci tan θ (2-7)

Figure 2-9: Beam subjected to shear, moment and an axial load [7]

The nominal shear strength given with:

V = Vc + Vs + Vp = f1bwdvcotθ + Avfv
s

dv cot θ + Vp (2-8)

Equation 2-8 is derived from the average stresses equilibrium (Equation (3) in Figure 2-13)
in the form of f2 = v(tan θ + cot θ) − f1 substituted into the expression for the unbalanced
vertical component that must be taken over by the stirrups(Figure 2-9 (e)):

Avfv = (f2sin
2θ − f1cos

2θ)bws (2-9)

Combining Equation 2-8 with the expressions for the aggregate interlock the nominal shear
resistance can be written as:

V = β
√
f ′cbvdv + Asfy

s
dv cot θ + Vp (2-10)
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Where:

β = 0.33 cot θ
1 +
√

500ε1
≤

0.18
√
f ′c

0.3 + 24w
a+16

(2-11)

The MCFT procedure to calculate the concrete tensile stress factor β and an angle of struts
inclination θ is iterative and can be adopted for hand calculations provided that some simpli-
fying assumptions are made. Due to the fact that under a combination of shear and moment
longitudinal strain εx varies over the depth of the section, the angle of inclination θ also
varies being steeper in a tension zone and flatter in a compression zone. In Figure 2-9 (b)
the shear stresses are shown. They are assumed to be uniformly distributed over the effective
depth. Moreover, the stresses and strains are considered at only one level and the longitu-
dinal strain εx at this level is used to determine an angle θ which is assumed to remain the
same over the whole depth of the web [4]. The determination of the longitudinal strain is
illustrated in Figure 2-10. While it is conservative to compute the longitudinal strain in the

Figure 2-10: Determination of strain εx for nonprestressed beam [7]

level of longitudinal reinforcement (increased εx will result in decrease of the shear capacity),
the members with shear reinforcement are considered to have an ability to redistribute shear
stresses from the locations where strains are the greatest to the location less highly strained.
Because of this redistribution, [4] suggests that it is reasonable to use the longitudinal strains
at the mid-depth of the web. Members without web reinforcement have a limited capacity to
redistribute the stresses hence the longitudinal strains should be taken as the strain in the
flexural tension reinforcement:

εx = Mu/dv + 0.5Nu + 0.5Vu cot θ −Apsfpo
EsAs + EpAps

(2-12)

The formula above considers a member with applied prestressing and the reinforcement on
the flexural tension side of the member. For the case where the longitudinal strains are
considered at the mid-depth level, the denominator should be multiplied by the factor of two.
In Equation 2-12, the stiffness of the concrete, for strains larger than zero, is not taken into
account. It is reasonable for the sections in tension. When however a section in compression
is treated, exclusion of the concrete stiffness would overestimate calculated strains (strains
are negative when in compression). For this reason, for the compressive strains, the MCFT
takes conservatively εx as equal to zero. Because the nominal strength is dependent on the
"damage indicator" ε1, it is ε1 where the remaining strains should be related to. Through the
average strain compatibility, equations (6) and (7) Figure 2-13, the following can be obtained:

ε1 = εx + (εx − ε2) cot2 θ (2-13)
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Including further (3) Figure 2-13 conservatively taken as:

f2 = v(tan θ + cot θ) (2-14)

and the equation (13) Figure 2-13 assuming that at the peak stress the compressive strain is
ε
′
c 0.002, the principal tensile strains can be expressed as:

ε1 = εx +
[
εx + 0.002

(
1−

√
v

f ′c
(tan θ + cot θ)(0.8 + 170ε1)

)]
cot2(θ) (2-15)

With a known value of ε1 and an angle of inclination θ, the tensile stress factor β can be
calculated as shown in Equation 2-11. To further simplify calculations, the method provides
an engineer with a table with use of which, the values of β and θ for calculated v/f ′c and εx
can be obtained. The values of θ in the table were derived assuming crack spacing of 300mm
and were chosen to ensure that stirrups yield and crushing of the concrete struts do not occur.
The procedure of the shear design along with solved examples is given in textbook [4].
As far as members without shear reinforcement are concerned, the shear strength is governed
by the crack width calculated with Equation 9 Figure 2-13. Where no stirrups were provided,
the crack spacing is larger and so is the crack width, Figure 2-11. Therefore, following the

Figure 2-11: Assumed determination of spacing for members without shear reinforcement [7]

above instructions (for members with shear reinforcement) would result in an overestimation
of the shear strength. The maximum shear capacity i.e. the largest value of β can be obtained
by setting the concrete shear resistance Vc:

Vc =
0.33

√
f ′c

1 +
√

500ε1
cot θbvdv (2-16)

to the value limiting the ability of diagonal cracks to transmit the shear stress:

Vc ≤
0.18

√
f ′c

0.3 + [24/(a+ 16)](ε1sx/ sin θ)bvdv (2-17)

After rearranging, the angle at the maximum shear can be found with:

θ = tan−1
(0.568 + 44ε1sx/[(a+ 16) sin θ]

1 +
√

500ε1

)
(2-18)
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Finally, the principal tensile strain is calculated from the equation (13) Figure 2-13, eq. 2-16
and noticing from the Mohr’s circle that f2 = v cot θ, thus:

ε1 = εx(1 + cot2 θ) + 0.002

1−
√√√√1− 0.33 cot2 θ(0.8 + 170ε1)√

f ′c(1 +
√

500ε1)

 cot2 θ (2-19)

With εx calculated at the level of the longitudinal reinforcement in the flexural tensile part.
An iterative procedure explained in [21] is necessary to determine εx, ε1 and θ. In order to
simplify the calculation, Collins and Mitchell tabulated the solutions of Equations 2-18 and
2-19 in a form of a table for the concrete compressive strength f

′
c = 35MPa and a=19mm

with variable εx and a crack spacing sx. It is explained in [21] that the solutions are not
strongly influenced by concrete strength and can be corrected for a different aggregate size
hence can be used for all designs of members without shear reinforcement. It is important to
mention that the size effect plays an important role. The crack spacing will increase as the
member size increases resulting in a reduced shear strength.

In the members subjected to shear, the shear force causes the additional tension in the lon-
gitudinal reinforcement in the flexural tensile side. For a considered section with no bending
moment such as e.g. the section near the support, Figure 2-12, the tensile force that is
generated by shear is (the contribution of the aggregate interlock is assume to be negligible):

T =
(
Vu
φ
− 0.5Vs

)
cot θ (2-20)

For sections subjected to combined shear force, bending moment and an axial force, to avoid
yielding of the longitudinal reinforcement on the flexural tension side, the following relation
must be satisfied:

Asfy +Apsfps ≤
Mu

φdv
+ 0.5Nu

φ
+
(
Vu
φ
− 0.5Vs − Vp

)
cot θ (2-21)

Figure 2-12: Influence of shear on forces in the longitudinal reinforcement [7]
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Figure 2-13: Description of Modified Compression Field Theory
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2-4 Codes of Practice

In the previous section, a general background of the shear transfer mechanisms before and
after cracking was briefly explained. Moreover, different approaches such as the variable
strut inclination approach and the MCFT were introduced. This will further serve better
understanding of how these approaches were adapted in the contemporary codes which are
treated in this section. The shear provisions according to the following standards are of
interest: Eurocode 2, fib Model Code 2010, the 2004 Canadian Standards Association A23.3
and RBK 1.1.

2-4-1 Eurocode 2

Prestressed Members Without Shear Reinforcement

While considering a prestressed element without shear reinforcement two main regions should
be distinguished. Depending on the region, the EC2 suggests different measures. The first
region (called here the area A in Figure 2-14) is largely uncracked in flexure (high V, small
M) with a failure location near the beam supports. The criteria for the determination of the
shear capacity are permissible tensile stresses in the principal direction caused by interaction
between the compressive stress from prestressing, the shear stress caused by the applied load
and stresses due to bending moment. In the EC2, the stresses are designed on the elastic
basis. In the region A, Figure 2-14, cracks originate in the web where principal tensile stresses
exceeded the concrete tensile strength. In members where no reinforcement is applied, crack-
ing will lead to failure. This type of failure is called tensile splitting shear failure [8]. The
second region cracked in flexure is (area B) located away from the supports for a simply sup-
ported beam as well as for continuous beams, at the internal supports, where both moderate
V and M are present. The shear capacity in regions cracked in flexure is designed based on
an empirical formula developed based on numerous tests. The elements are deemed to be
cracked in flexure if the flexural tensile stress in the extreme fibre is greater than fctk,0.05

γc
.

Figure 2-14: Crack pattern in a prestressed beam and the stresses in the bottom part [8]

Region 1
The equation 6.4 from EC2 [22] can be found making a use of the Mohr’s circle, Figure 2-15 [9]
– formula for the stress σI in the principal direction equated to the concrete tensile strength
and the expression for shear stresses in a considered section.
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Figure 2-15: Graphical expression of principal stresses; [9]

σI = σx
2 +

√
σ2
x

4 + τ2
xy = fctd (2-22)

τxy = VEdSc
bwIc

(2-23)

After transformations of the above formulas, the shear tension resistance 6.4 in the EC2 is
given as:

VRd,c = Ibw
Sc

√
(f2
ctd) + αlσcpfctd (2-24)

in the case of compression σx is negative. The formula 6.4 from EC2 VRd,c can be only applied
in prestressed single span members in the regions uncracked in bending. In the members with
the width changing over the height, the maximum principal stress should be also checked
in the axis other than the centroidal axis. In the equation 2-24, αl takes into account the
transition length; relevant in the case of pre-tensioned elements where the prestressing force
is transmitted to concrete by bond. 6.2.2(3) in EC2 provisions that it is not required to
calculate the shear resistance for the cross-sections that are nearer to the support than the
point which is intersection of the elastic centroidal axis and a line inclined from the inner
edge of the support at an angle of 45 degrees.
Region 2
The design value for the shear resistance of the region cracked in flexure (area B in the Figure
2-14) is given by EN 1992-1-1; (6.2.a) and (6.2.b) from [22]:

VRd,c = [CRd,ck(100ρlfck)
1
3 + k1σcp]bwd (2-25)

The formula takes into account the most relevant factors for the members’ shear strength such
as the concrete strength, longitudinal reinforcement ratio and a height of the cross section. It
can be seen that the expression 2-25 also takes into account effect of prestressing. It origins
from the assumption that the shear behaviour of a prestressed beam can be regarded as a
reinforced beam after decompression moment (bending moment that reduces stresses from
prestressing in a beam to zero) has been reached; thus:

VRd,c = Vc + Vp (2-26)
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where Vc is the shear resistance of a non-prestressed beam and Vp is the contribution of
prestressing force to the shear resistance. The derivation of the expression 2-24 can be found
below.
In Figure 2-16, a prestressed beam with reduced normal stresses at the bottom side is depicted.
The reduction of initially compressive stresses in the whole section from prestressing is caused
due to action of bending moment. The magnitude of this so-called decompression bending
moment M0 can be calculated as follows:

σcb = −Pm
Ac
− Pmep

Wcb

M0 = σcbWcb = Fp

(
Wcb

Ac
+ ep

)
= Fp

(1
6h+ ep

)
= Vpa.

Proceeding considerations, in most tests on shear critical beams the ratios ep/h is about 0.35.
Under this assumption and the assumption that for a rectangular cross section d = 0.85h, the
contribution of prestressing force to the shear resistance is: Vp = 0.61Fp

a/d .
Moreover, in most tests on shear critical beams a/d varies between 2.5 and 4 which gives:
Vp = 0.15Fp to Vp = 0.25Fp or Vp = 0.15σcpbd to Vp = 0.25σcpbd.
It can be seen therefore that k1 in expression 2-24 is a coefficient of an increase of shear
capacity relative to a reinforced beam due to an application of prestressing. The recommended
safe lower bound value suggested in [8] is 0.15. The coefficient k1 can only be applied in
prestressed members without shear reinforcement.

a

e
p

V

0

Figure 2-16: Calculation of the contribution Vp from prestressing to shear resistance [10]

The expression 2-24 indicates that when a value of reinforcement ratio goes to zero, the shear
resistance also approaches zero. For this reason the minimum value of shear resistance is
derived. For the position of a point load in a distance a < 2.5d , the shear capacity of a beam
increases due to the arc action. For the position of a = 2.5d which is the most unfavourable
for a beam, the 5% lower limit for the shear resistance is obtained with:

Vuk = 0.15k(100ρlfcm)1/3bwd

The bending moment at this location is:

Muv = 2.5dVuk = 0.375k(100ρlfcm)1/3bwd
2

When equated to the yielding bending moment Muf = 0.9d(ρlbd)fyk, taking fyk = 500MPa,
results in the reinforcement ratio below which shear failure will not occur:

ρl = 0.00024k3/2(fcm)0.5 bw
b

3/2
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Substituting this value to the expression 2-24 and replacing fcm with fck and taking bw/b = 1
results in:

νmin = 0, 035k3/2f
1/2
ck

Accounting for the positive impact of prestressing force results in the expression:

VRd,c = (νmin + k1σcp)bwd (2-27)

where: k = 1 +
√

200/d ≤ 2.0; d in mm is a size-effect coefficient; ρl is a longitudinal
reinforcement ratio based on the effective depth ρl = Asl

bwd
≤ 0.02; bw the smallest width of

the cross-section in the tensile area; σcp the axial stress due to prestressing, note: σcp =
NEd
Ac
≤ 0.2fcd; Ac is the cross-sectional area of concrete; fcd is cylinder compressive strength

of concrete; CRd,c is the coefficient with recommended value 0,12 (König and Fisher 1995,
from [10]), the Dutch Annex EN 1992-1-1.

6.2.2(6) explains that for members with loads applied on the upper side within a distance
0.5d < av < 2d from the edge of a support, the contribution of this load to the shear force
VEd can be multiplied by β = aρ/2d as the result of an arch action. In addition, within the
distance d from the face of the support, it is not required to check the design value of the
shear force VEd, however this shear force must be less than VRd,max from:

VEd ≤ 0.5bwdvfcd with υ = 0.6
[
1− fck

250

]
(2-28)

Prestressed members with shear reinforcement

Members in which the shear resistance is lower than the value of shear force, must be provided
with shear reinforcement. In the EC2, members with shear reinforcement are designed with
the variable angle truss model with no contribution of concrete to the shear resistance. It is
so because the model conservatively assumes that the angle of the shear cracks are parallel to
the diagonal compression and as the result no shear friction on the crack interface exists [23].
The contribution of the uncracked compression zone of a member is neglected as well. The
capacity of each vertical member follows from the strength of shear reinforcement within the
length of 0.9dcotθ (with 0.9d = z), hence the shear resistance:

VRd,s = Aswzfywd cot θ
s

(2-29)

From the results of the experiments it was concluded that crack patterns is dependent on
the amount of applied reinforcement. The manner in which beams fail adapts to the amount
of reinforcement hence the lower inclination of the cracks corresponds to a smaller amount
of stirrups. In other words when shear reinforcement yields, the compression struts rotate
lowering the angle (a new state of equilibrium is reached, or not at failure) and consequently
more stirrups become intersected and activated to carry the load. Such a rotating mechanism
increases however compression stresses in the struts and can proceed until crushing of the
concrete occurs [23], [8]. The limit value is dictated by:

VRd,max = bwzσcd
cot θ + tan θ where σcd = αcwν1fcd (2-30)
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αcw is a coefficient taking into account the state of stress in the compression strut; EN 1992-1-
1 cl.6.2.3 eq. (6.11.aN), (6.11.bN) and (6.11.cN); ν1 is a strength reduction factor for concrete
cracked in shear which can be found from EN 1992-1-1 eq. (6.10.aN), (6.10.bN) or (6.6N)
otherwise.
The range of θ values can be derived from the equilibrium plasticity truss model theory
assuming that the maximum possible shear capacity can be found when crushing of the
concrete and yielding of the shear reinforcement occur simultaneously, thus when VRd,s =
VRd,max. The recommended limiting values for cotθ are: 2.5 ≤ cot θ ≤ 1 (21.8◦ ≤ θ ≤ 45◦).
The prescribed range of angles according to the equilibrium plasticity truss model is derived
by combining expressions 2-4 and 2-6 hence assuming that yielding of transverse steel occurs
in parallel with crushing of concrete as follow:

f2 = V

bwd sin θ cos θ −→ v = fc1 sin θcosθ where fc1 = νf2 and f2 = fc (2-31)

Avfv = f2bws sin2 θ −→ ρvfy = fc1sin
2θ with ρv = Av/bws (2-32)

to eliminate dependence on the angle θ, sin2θ = ρvfy/fc1 is substituted to 2-31 and including
cos2θ + sin2θ = 1 results in:

v2 = fc1ρvfy

(
1− ρvfy

fc1

)
−→ v =

√
ρvfy(fc1 − ρvfy) (2-33)

The balanced condition 2-33 can be represented graphically by a semicircular curve in v/fce−
−Ψ coordinated system presented in Figure 2-17 dictated by the formula:

v

fc1
=
√

Ψ(1−Ψ) −→
(
v

fc1

)2
+ (Ψ− 0.5)2 = 0.52 where Ψ = ρvfy

fc1
(2-34)

Additionally by equating equations 2-29 and 2-30 the following relation can be obtained:

Aswzfyw cot θ
s

= bwzfc1
cot θ + tan θ −→ Ψ = 1

cot2 θ + 1
−→ tan θ =

√
Ψ

1−Ψ (2-35)

It is found that for Ψ in the range of 0 and 0.5, the angle θ runs from 0 to 45◦. For Ψ > 0.5
Eurocode 2 assumes θ = 45◦ = const. On the other side of the spectrum, the cut-off limit is
cot θ = 2.5 so θ = 22◦.
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ϴ=22°
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Figure 2-17: Graphical representation of the angle limits according to EC2; reproduced from [10]
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2-4-2 fib Model Code 2010

The fib Model Code 2010 procedures for shear analysis in members with and without rein-
forcement are developed from observation of physical-mechanical models. It can be considered
as advancement when compared to the preceding Model Code 1990 in which shear provision
was based on empirical relationships for members without shear reinforcement and on a truss
model for members with shear reinforcement. Furthermore, the new code incorporates an
approach called "levels of approximation" (LoA). The concept of the LoA is to provide an
engineer with different design models depending on the level of detail needed at the stage
of calculations (e.g. preliminary design or detailed design) and importance of the structural
member [24] or where not all the details are well defined [25]. The individual LoA are derived
from a single physical model and the refinement of the design can be adapted with an applica-
tion of simplifications. This means that lower LoA can be derived from the higher levels after
introduction of appropriate conservative approximations [11]. The fib Model Code 2010 dis-
tinguishes four levels of approximation for members with shear reinforcement. The Level III
constitutes the base model with the Level II and Level I models being simplified derivatives.
As far as members without shear reinforcement are concerned, the Level II model provides
the base model, with Level I being a simplification. The highest levels of approximation are
Level IV for members with and Level III for element without shear reinforcement. In this
case the strength is determined by numerical modelling and it is suggested that great care
must be paid to the validation of models [24].

Codes Provisions

The base of the fib Model Code 2010 shear provisions is the Simplified Modified Compres-
sion Field Theory (SMCFT). The shear resistance VRd in the section (called the controlled
section) z = 0.9d away from the support (or at other locations if decisive) is determined as a
combination of steel and concrete contributions:

VRd = VRd,s + VRd,c ≥ VEd (2-36)

The procedure of fib Model Code 2010, as the representative parameter, takes the value of
the strain εx at the mid-depth of the effective shear section. The effective shear depth z
in a reinforced member can be assumed to be 0.9d while for a prestressed member it is the
distance from the resultant of the compressive chord force Fc to the resultant of forces Ft and
∆Fp (see Figure 2-19).
The strain εx is obtained from equilibrium of a section of a beam as shown in Figure 2-19:

Ftop = M

z
+ V

2 cot θ +N

(1
2 ±

∆e
z

)
(2-37)

In derivation of the strain parameter two assumptions/simplifications apply. Introducing the
first simplification mentioned in [24], it is possible to avoid dependence of strain εx on a
variable θ which otherwise would induce a need for double iterative calculations to determine
strain parameter. Instead, it is conveniently assumed that V/2 cot θ ≈ V .
Furthermore, with the conservative assumption that the compressive chord strain is 0, the
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Figure 2-18: Definition of the control section [11]

Figure 2-19: Definition of the sectional forces acting of the control section [11]

final form of strain at the mid-depth for members prestressed with bonded tendons can be
found with the equation:

εx =
MEd
x + VEd +NEd

zp−ep
z

2
( zs
z EsAs + zp

z EpAp
) (2-38)

with definitions according to Figure 2-19. The assumption of the zero strain value in the
compressive chord is not far-fetched as the expression for compressive strain, similar to 2-38,
would contain stiffness of uncracked concrete in the denominator which significantly reduces
the value of strain.
Additionally the following conditions apply [11]:

• MEd and VEd must be taken as positive quantities and NEd as positive for tension and
negative for compression

• It is permissible to use a value of εx that is greater than half the yield strain of the
longitudinal bars εsy/2 but a more detailed cross-sectional analysis must be undertaken.
The strain εx must not exceed 0.003.

• If the value of εx is negative it must be taken as zero
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• For sections closer than d to the face of the support, the value of εx taken at d from the
face of the support may be used.

• when calculating As and Ap, the area of bars that are terminated less than their devel-
opment length from the section under consideration must be reduced in proportion to
their lack of full development

• If the axial tension is large enough to crack the flexural compression face of the section,
the calculated value of εx must be multiplied by a factor of 2.0.

In [11] sectional forces accounting for prestressing are taken as:

MEd = MEd0 +MPd (2-39)

NEd = NEd0 + Fp cos δp (2-40)

VEd = VEd0 + Fp sin δp (2-41)

Where MPd is the designed bending moment due to prestressing which includes a possible
moment resulting from static indeterminacy.

Members without shear reinforcement (2 levels of approximation)

In the design of members without shear reinforcement, the stirrups contribution VRd,s in the
main equation 2-36 for the shear resistance, is set to 0. The shear resistance attributed to
concrete is calculated with:

VRd,c = kv

√
fck
γc

bwzfck in MPa (2-42)

The value of
√
fck cannot be taken as greater than 8MPa. It accounts for the fracture surface

passing through aggregates and the large scatter of the observed results. As explained in the
section devoted to the mechanism of shear transfer after onset of cracking, this behaviour
is typical for members with higher classes of concrete strength and lightweight aggregate
concretes.

For level II approximation, the design shear resistance is determined with (z in mm):

kv(II) = 0.4
1 + 1500εx

1300
1000 + kdgz

(2-43)

This parameter includes "strain parameter" εx, the size effect and the effect of aggregate size.
In members without shear reinforcement, the shear resistance is influenced by the maximum
size of aggregate. For concrete with a different maximum size of aggregate than dg = 16mm,
the value kdg may be calculated with:

kdg = 32
16 + dg

≥ 0.75 (2-44)

For concrete strength more than 70MPa and lightweight concrete, the variable dg in the
formula for kdg should be set to 0 as in this case cracks pass through aggregate and aggregate
interlock cannot be accounted for [24].

Master of Science Thesis Maciej J. Kraczla



26 Literature Study

The level I approximation is derived from the more general level II. The equation 2-43 is
simplified to

kv(I) = 180
1000 + 1.25z (2-45)

by setting kdg in 2-44 to 1.25 (assuming a maximum aggregate size >9.6mm) and εx to 0.00125
(εx ≈

fyk
2Es ) which corresponds to half the yield strain for a reinforcing bar with fyk = 500MPa

Members with shear reinforcement (3 levels of approximation)

Members with shear reinforcement are defined as those which meet the demand for the min-
imum shear reinforcement according to:

ρw ≥ 0.08
√
fck
fyk

fck and fyk in MPa (2-46)

Otherwise the members should be treated as without shear reinforcement.
The general equation 2-36, consists of the shear resistance from stirrups calculated with:

VRd,s = Asw
sw

zfywd cot θ (2-47)

and the component of the concrete resistance which is considered differently depending on the
LoA. While levels I and II disregard the concrete contribution to the total shear resistance, in
the level III concrete contribution is added with the angle of inclination of compressive struts
θ = θmin.

Table 2-1: Summary of shear resistance for the individual levels of approximation

LoA I - represents a variable angle truss model approach
VRd = VRd,s ≤ VRd,maxLoA II - represents a variable angle truss model approach

LoA III - based on the SMCFT VRd = VRd,s + VRd,c
VRd ≤ VRd,max(θmin)

If VRd ≥ VRd,max(θmin) then
VRd from LoA II

For all LoA, the upper limit of the shear strength intended to prevent from web crushing
failures is calculated with :

VRd,max = kc
fck
γc
bwz sin θ cos θ (2-48)

where kc is the strength reduction factor kc = kεηfc. The strength reduction factor in turn
includes a factor to account for the strain effect kε and a brittleness factor ηfc which reduces
the strength for concretes with fck > 30MPa. Concretes with an increase strength according
to the foregoing relationship typically exhibit more brittle failure behaviour. The brittleness
factor is calculated with:

ηfc =
( 30
fck

) 1
3
≤ 1.0 fck in MPa (2-49)

The strain effect for LoA I is taken as kε = 0.55. For LoA II and III:

kε = 1
1.2 + 55ε1

≤ 0.65 (2-50)
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with
ε1 = εx + (εx − ε2) cot2 θ

from the average strain compatibility of MCFT (eq. 6 and 7 in Figure 2-13). From [24], an
adequate approximation for negative strain −ε2 may be taken as the concrete peak strain
εc0 = 0.002.

The possible angle of the strut is in the range θmin < θ < 45 deg. The values of θmin depend
on the LoA; in [11] the following values are presented:

• Level I with the fixed values of the minimal inclination of the compressive stress field:
θmin = 25◦ for members with significant axial compression or prestress;
θmin = 30◦ for reinforced concrete members;
θmin = 40◦ for members with significant axial tension

• Levels II and III θmin is a function of strains at the mid-depth:

θmin = 20◦ + 10000εx (2-51)

The contribution of concrete in Level III is taken into account through equation 2-42 with:

kv = 0.4
1 + 1500εx

(
1− VEd

VRd,maxθmin

)
(2-52)

Here again, the value of
√
fck must not be greater than 8MPa. In the equation 2-48, the

effective web width bw in the case of prestressing tendons with duct diameters φD ≥ bw
8

follows from:
bw,nom = bw − kD

∑
φD (2-53)

Where
∑
φD is the most unfavourable prestressing tendon configuration. The value kd varies

depending on the type of material of the duct and whether it is grouted or not. The values
from [11]: grouted steel ducts kD = 0.5; grouted plastic duct kD = 0.8; ungrouted duct:
kD = 1.2.

2-4-3 2.1.3. 2004 Canadian Standards Association (CSA) A23.3 Shear Design
Provision for Reinforced and Prestressed Concrete Structures

Fully based on [12] with a similar structure.
The 2004 shear design provision was an answer to an attempt of harmonizing the two previous
independent methods for shear design: the simplified method which was derived from the
empirical method of the American Concrete Institute code and the second rationally based
shear design method developed by Michael P. Collins called the general method. It was
reported in [12] that those two methods at times could cause incompatibilities. Members
calculated with one method and considered as safe could be deemed as unsafe by the other
method.
The idea of harmonization consisted of an application of one or two physical assumptions so
that the general method would mathematically be reduced to the simplified method. In this
way incompatibilities would be disposed and the code would become more transparent for a
user.
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Basis of the general shear design method

The 2004 shear design provision is based on the Modified Compression Field Theory for
reinforced concrete element subjected to shear. In Figure 2-20 the free body diagram of
concrete flexural members with a diagonal shear crack running through stirrups legs, the
longitudinal reinforcement and the flexural compression area is shown. According to the CSA
code, in such members the bending moment at the critical shear section is carried by coupled
compression force in concrete and a tension force in the longitudinal reinforcement; C and Flt
respectively. As usual, the shear behaviour is more complex and here is assumed to be carried
by the following: the vertical forces in the yielding stirrup legs that are intersected by the
crack, the aggregate interlock stress vc, the vertical component of prestressing force Vp and
shear stresses in the concrete flexural compressive zone. It is also noted that an additional
resistance can be obtained from the dowel action. This however is ignored in the MCFT thus
the CSA does not considered it as well.

Figure 2-20: Basic shear mechanism of the CSA method [12]

Another assumption in the shear model refers to the aggregate interlock. It concludes that
the aggregate interlock resistance of the complex crack geometry can only be represented
across the entire crack surface by the aggregate interlock resistance estimated at one depth.
The third assumption is related to the members without shear reinforcement and states that
because the resistance of the cracked regions is lower than that of the compression region thus
the former would be governing.
The shear strength of a member in the CSA code is considered as a combination of individual
contributions in a section: the concrete component in a form of the aggregate interlock Vc, the
steel component from the shear links crossed by the diagonal crack and the vertical component
from prestressing. The resistance thus is calculated from:

Vr = Vc + Vs + Vp (2-54)

Vr
bwdv

= φcλβ
√
f ′c + Avφsfy

bws
cot θ + Vp ≤ 0.25φcf

′
c + Vp (2-55)

where bw is the web width, dv = 0.9d is the flexural lever arm in the beam, φc is the resistance
factor for concrete, λ is a factor to account for low-density concrete, β is a factor to account
for aggregate interlock in concrete members, f ′c is the concrete cylinder strength, Av is the
area of transverse reinforcement, φs is the resistance factor for the reinforcing steel, fy is the
yield strength of reinforcement, s is the spacing of the shear reinforcement, θ is the angle of
average principal compression in the beam with respect to the longitudinal axis.
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The equation 2-55 is limited by the maximum shear strength, which is based on the crushing
capacity of the concrete struts. The value dv = 0.9d is related to the shear stresses in the
cross section. It is known that shear stresses at the top and the bottom surface of the section
approach zero. The exclusion of the resistance in those parts of the section corresponds better
to the reality and hence the value of d is reduced. The further precaution of

√
f ′c not to be

taken as greater than 8MPa is related to the smoother crack surface when the rupture passes
through the aggregate. It is typical for members with high strength concrete.

To define the remaining variables β and θ in the equation 2-55, the required main parameters
are: the normalized shear stress ν/f ′c, longitudinal strain εx and effective crack spacing sze.
They are elaborated below.

Longitudinal strain parameter

To account for all the geometrical and loading effect such as percentage of reinforcement,
applied moment, shear and axial force, prestressing etc. the CSA code uses the longitudinal
strain parameter. The concept of the strain parameter as explained in [12] is that the larger
it is, the wider crack becomes, hence the lower the aggregate interlock and consequently Vc.
Such a decrease of strength with an increased value of longitudinal strains is called strain
effect. The longitudinal strain is to be calculated at the mid-depth of a section. It is a
conservative approximation. The strain in the concrete in flexural compression, due to the
high stiffness of concrete, is small thus can be assumed to be equal to zero. In this way, the
strain in the mid-depth is the half of the strain in flexural tensile reinforcement.

εx =
Mf

dv
+ Vf + 0.5Nf −ApFp0
2(AsEs +ApEp)

(2-56)

Where Mf is the factored applied moment (Mf and Vf should be always taken as positive),
Nf is factored applied axial force (tension positive), Ap is the area of prestressed flexural
tendon, fp0 is the stress in the prestressed reinforcement when the strain in the surrounding
concrete is zero, As is the area of main flexural reinforcement, Es is the Young’s modulus of
the reinforcement, and Ep is the Young’s modulus of the prestressed reinforcement.

Figure 2-21: Development of the longitudinal strain parameter equation

The equation 2-56 can be derived from the section of a beam with external forces on the
left and resolved internal forces on the right (Figure 2-21). From the equilibrium about the
compressive force C, the force in the longitudinal reinforcement can be found. To get rid of the
dependence on the angle of inclination of struts θ , the conservative assumption 0.5 cot θ ≈ 1
which slightly overestimates the impact of shear on the force T is applied. The force T is then
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converted to strain from the relation presented in Figure 2-21. From the strain-force relation,
two important aspects can be noted. Firstly, the offset caused by the prestressing force which
increases the cracking force occurs in the member. Another is the stiffness of the concrete
part in the tension zone which no longer has an impact on strain once the concrete member
is cracked (Act is the area of concrete on the flexural tension side of the member and Ec is
the uncracked elastic stiffness of the concrete). The final value of the strain term must not be
taken as less than −0.2 ∗ 10−3. The last provision mentioned in the code’s background is in
the case of the applied forces of such a magnitude that the flexural compression zone cracks.
When it occurs, the equation 2-56 is not conservative anymore and to account for this, the
mid-depth strain can be calculated as an average of the top and bottom chord strains, or the
results from 2-56 may be doubled.
In conclusion, the longitudinal strain parameter indicates what is the relation between the
demand on the reinforcement and the reinforcement in a member. The higher the demand,
the larger the crack width, unless prestressing or an axial compression is applied which would
significantly diminish the strain effect and it would result in a higher shear strength. On
the other hand, in the case of the axial tensile force or high moment, the shear strength is
decreased.
Effective crack spacing parameter
It was earlier mention that the aggregate interlock, and at the same time Vc , depends on
a crack width in a member. The crack width can be calculated as the value of strain in
the direction perpendicular to the crack multiplied by the average crack spacing in the same
direction. From the researches conducted by Kuchma and Collins, Shioya, Lubell and Bentz
and Buckley, it was concluded that the crack pattern is consistent and proportional with an
increased depth of a member. It means that for members subjected to the same shear stresses
and therefore the same strain, the beam of a larger depth would display the larger crack
spacing and thus the crack width. This phenomenon is called the size effect in shear. While
for the members reinforced in the transverse direction with shear links, the crack width can
be control (such members are not expected to display a meaningful size effect), the size effect
is of a huge importance for members without shear reinforcement. The crack spacing varies
depending on the element type. For members without shear reinforcement the crack spacing
is assumed to be dv = 0.9d while for members with shear reinforcement the crack it is no
more than 300mm.
The aggregate interlock depends not only on the crack width but also an aggregate size. The
increased roughness of the crack surface results in the higher resistance to shear. In the CSA
code it is taken into account by a simple aggregate size correction to the crack spacing. It is
calculated according to the formula:

sze = sz35
15 + ag

≤ 0.85sz (2-57)

The CSA provision for the higher concrete strength: as concrete strengths increase from 60
to 70 MPa, it is recommended that the aggregate size used in the equation for sze be reduced
linearly from the specified size to zero. The nominal value of aggregate size is 20mm.
Relating shear parameters to shear strength
In the 2004 CSA code shear provision, the equations for β and θ are related to the above
explained parameters εx and sze.
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The following equations 2-59–2-63 can be applied provided that a flexural failure will not occur
before a shear failure. The flexural failure is determined by the sufficient flexural capacity of
the longitudinal reinforcement to permit the shear failure; according to the Figure 2-20, by
taking the moment equilibrium about the point O, the force in the longitudinal reinforcement
at the position x:

Flt ≥
Mf

dy
+ 0.5Nf + (Vf − 0.5Vs − Vp) cot θ (2-58)

Development of the β equation

The final form of β to account for concrete component to shear resistance in the general
equation 2-55 of the CSA general method is:

β = 0.4
1 + 1500εx

1300
1000 + sze

(2-59)

The development of β begins with a relationship for aggregate interlock. The maximum
aggregate interlock that may be resisted for a given crack width is:

vci =
0.18

√
f ′c

0.31 + 24w/(16 + ag)
(2-60)

By means of an iterative procedure of the MCFT the diagonal crack width w (in mm) at the
moment of failure can be obtained. The result of the analysis is plotted in Figure 2-22 for the
effective crack spacing of 300 mm and concrete cylinder strengths of 20 and 100 MPa. The
figure shows that with the increase longitudinal strain, the crack width increases as well. The
minimum diagonal crack width is predicted for the negative compression strain for example
due to prestressing. This is a result of principal tensile strain at least 0.2 ∗ 10−3 for all
analyses and therefore all analyses consider the strength in already cracked concrete. Next,
the equation 2-60 is simplified to 2-61 by limiting strain values to 0.001 and an application
of the simplified equation for the crack width to the equation from the MCFT:

vci =
0.4
√
f ′c

1 + 1500εx
(2-61)

The strain limit value of 0.001 comes from the consideration that steel with fyd = 400MPa is
the most commonly used in Canada and therefore at the failure, the strains at the mid-depth
are equal to: εx = fyd

2Es = 1.0 ∗ 10−3.

From Figure 2-22, it can be seen that the negative strain values smaller than −0.2∗10−3 would
result in the negative crack width, thus the equations of the general method should not be used
lower values than this. The linear simplified equation for the crack width w = 0.2 + 1000εx
diverges for higher values of strain as compared to the MCFT analysis. The crack widths are
overestimated and consequently, the predicted shear strengths for those values of strain are
conservative.

The second multiplier in the equation 2-60 accounts for different member depths and aggregate
sizes. It was obtained from the iterative process with different effective crack spacings and
further the results are normalized by dividing them with the results from the iterative process
for sze = 300mm. The reference [12] explains that such a relation was chosen because it is
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Figure 2-22: Longitudinal strain and the diagonal crack width relation [12]

Figure 2-23: Size effect factor [12]

close to the lower bound of the data from the MCFT across the size range and it is similar to
the size factor used in the 1994 CSA simplified method. The chart in Figure 2-23 indicates
that the size effect is underestimated for large members (prestressed) without stirrups and
slightly overestimated for small reinforced members.

An angle of inclination θ of principal strains to x-axis

Redistribution of shear stresses by mechanism of a plastic truss in concrete reinforced in both
longitudinal and transverse directions at different angles is possible provided that certain
assumptions are fulfilled:

• concrete inclined compressive struts must be able to resist the applied load without
crushing,
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• stirrups are able to yield

The above assumptions, similarly as in the other codes, are the lower and upper limit respec-
tively. The angle θ should be taken as higher than the lower limit dictated by crushing of
concrete and lower than the upper limit controlled by the yield of reinforcement. The Figure
2-24 from [12] shows that limits calculated based on the equations of the MCFT. It can be
observed that with increasing longitudinal strains, the permissible angles range also increases.
The CSA code fits a linear equation for θ between the lower and upper limits that meet the
requirements for a shear resistance of v = 0.25f ′c:

θ = 29 deg +7000εx (2-62)

Figure 2-24: Limits on the angle θ for higher shear loading [12]

In the paper of the CSA code development, the equation 2-62 is claimed to be appropriate
for members with stirrups and can be conservative for large members without shear links.
As the result, the CSA code modifies it by adding the adjustment from curve fitting to the
MCFT results, for checking the anchorage requirements:

θ = (29 deg +7000εx)(0.88 + sze
2500) (2-63)

Validation with the MCFT

In Figure 2-25 the prediction of the strength development from plasticity with employed
equations of the MCFT are presented. The equation for the shear strength is derived from
the equilibrium based equations fz = ρzfsz + f1 − v tan θ, v = (f1 + f2)/(tan θ + cot θ)
[17] with applied additional assumptions: tension stiffening f1 can be ignored, the stress-
strain relationships will be ignored and the maximum compressive stress in the concrete f2
is assumed to be a constant percentage of the concrete cylinder strength; clamping stress
fz is assumed to be zero. The resulting equation for the shear strength of a member with
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transverse steel that is yielding but the stresses in longitudinal steel do not reach the yield
stress is (see also equation 2-33):

v =
√
ρzfy(f2 − ρzfy) (2-64)

Figure 2-25: Shear strength by plastic analysis [12]

It can be seen that according to the equilibrium based equation 2-64 for the shear strength,
with increased stirrups quantity, the shear strength is also increased. The increase is not linear
and for different assumed concrete cylinder strengths, different shear strengths are obtained.
Conversely, the general method of the CSA code, between the limits, predicts a linear increase
of the shear strength for a constant longitudinal strain εx . The argumentation for this is the
fact, the equations 2-59 and 2-63, for a constant strain in the mid-depth, stay constant and
therefore the linear increase of strength is possible. It is also explained that the assumption
of the constant strain is not unrealistic for members failing in flexure which would have the
same longitudinal strain at the mid-depth for one type of steel (fyd/2Es). The limits here
are the shear strength of the members without shear reinforcement and the top limit for
the members heavily reinforced with stirrups. The second limit is constrained by crushing
of concrete with a threshold of 0.25f ′c given in the equation 2-55. It is notable, that as the
plots of the actual shear strength are concave downwards, the linear code function will give
a conservative results for all quantities of stirrups.

2-4-4 Summary

Different general methods of computing shear strength of members containing and without
stirrups have been presented. As the report regards tension shear failure, the evaluation pays
special attention to this failure mechanism. The first mentioned approach for members with
shear reinforcement was the EN 1992-1-1:2004. According to the EC2, failure occurs when
the principal tensile stresses in the web in the region uncracked in flexure calculated with
the expression 2-24 reach the tensile strength of concrete. This method, when the code’s
commentary is strictly followed, has a limited application as it is only suitable for single span
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beams. The code suggests that a member has no residual resistance after an onset of a crack
resulting from exceeding the tensile strength of concrete. Typically, the tension shear crack
appears in the mid-depth of a element’s web. The uncracked concrete might still contribute
to load carrying as well as flanges through the so-called clamping effect; it was proven in [13]
that such a clamping effect is advantageous for the ultimate shear resistance. It is further
questionable as there exist additional potential sources of shear resistance such as aggregate
interlock resistance, dowel action of longitudinal reinforcement or a shear contribution of
compression zone which are not taken into account. As far as the expression for the tension
shear resistance from the EC2 is concerned, no influence of shear reinforcement is accounted
for. An application of the minimum shear reinforcement or effective shear reinforcement
could possibly increase shear capacity and ensure a ductile failure after cracking. Even a
small amount of shear reinforcement might turn out to be effective. It is especially relevant
for prestressed beams in which prestressing reduces an angle of crack inclination and thus
more stirrups can be intersected.

The fib Model Code 2010 and the CSA shear provision are somewhat similar as both are
based on Simplified Modified Compression Field Theory (SMCFT) for members without
shear reinforcement and only fib Model Code 2010 for members with stirrups combines a
general stress field approach with SMCFT [24]. Both methods provide an engineer with
a general more refined method which can be reduced to a simplified method(s) with an
application of simplifying assumptions. In the fib Model Code 2010, it is known as the
Levels-of-Approximation approach.
In contrast to the EC2 methods (limiting principal tensile stresses for a region uncracked in
flexure, the empirical expression for regions cracked in flexure in members without stirrups
and the variable angle truss model for members with stirrups), the methods in Model Code
and the CSA code use a strain condition in the web hence there is no distinction between
different methods for different types of cracking (a flexural shear crack and a shear tension
crack). It can be considered as a drawback as the nature of the governing failure mechanism
remains unknown making the analysis ambiguous.
The first difference as compared to the CSA code method is the way in which the equilibrium
is considered. For the case in which an external axial force is applied, in the CSA the force is
located at the depth of a half of an effective shear depth dv. Conversely, in the MC 2010 an
external axial force is applied in the center of gravity, therefore calculating the strain εx from
the moment equilibrium about the center of compression zone, this force acts on a certain
eccentricity (see Figures 2-20 and 2-19 for comparison). For both cases the longitudinal strain
is calculated at the level a half the depth of the effective shear depth from the reinforcement
and tendon axes. In the equilibrium, similar as previously, to avoid iterations shear force
term is approximated as V/2cotθ = V .

The shear resistance according to the General Method of the CSA shear provision and the
Level III Approximation is determined as a summation of concrete and stirrups contributions.
Whereas the shear resistance attributed by stirrups does not require explanation, the concrete
part differs slightly. The first factor in the expression for β and kv, namely 0.4

1+1500εx is the
same for both methods. It origins from the maximum aggregate interlock as specified in the
MCFT and the simplified equation for the crack width (Figure 2-22). The second factor in
the CSA code 1300

1000+sze as mentioned earlier is a curve fitting extension to account for dif-
ferent member depths and aggregate sizes. In the case of the MC10, the second component
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(
1− VEd

VRd,max(θmin)

)
limits the concrete contribution to the total resistance by relating the

applied shear load to the crushing at the minimum inclination. From [11], the value of kv ≥ 0
hence when the applied load exceeds the shear strength limited by crushing of concrete given
by VRd,max(θmin), the concrete contribution cannot be taken into account. This however does
not mean that the design is not possible. By increasing an angle of struts inclination and thus
the amount of shear reinforcement needed, shear resistance defined by stirrups alone (Level II
Approximation) can meet the limits of crushing of concrete VRd,max and θ explicitly limited
by θmin < θ < 45◦. Here, another difference arises. In the CSA code, the angle of inclination
θ is defined with a use of a value of a strain factor εx (as depicted in Figure 2-24) while the
MC10 allows an engineer to choose a value of θ within the limits specified above.
In the MC 2010, members with the amount of reinforcement lower than specified as the min-
imum, thus without reinforcement, a transition is made to expression 2-59 in which only the
coefficient for aggregate size is slightly different. This is why it is crucial to check if the pro-
vided amount of shear reinforcement in an element is higher than minimum; when the amount
is lower, the failure mechanism changes and different aspects start to play an important part
such as for example the member size. In members containing a sufficient quantity of shear
reinforcement, the member size effect is not expected to be significant [12].

Figure 2-26: Crushing of concrete struts according to CSA and MC2010

Both methods have the shear strength cut-off limits. For the MC10, the limit is related to
crushing of concrete struts at the angle of 45 degrees, expressed with equation 2-48. In 2-48,
the concrete strength is reduced by a factor for the strain effect and a brittleness factor.
The maximum shear stress according to the CSA is derived using the MCFT equations from
Figure 2-13. Under the assumption that at the failure the transverse reinforcement yields
while concrete crushes in compression, the conservative assumption of the shear strength
0.25f ′c was made. Due to this simplification, from Figure 2-26, it can be seen that the CSA
code gives a more conservative limit of the failure shear stress than MC10.
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The allowable range of the strain effect parameter in both methods does not exactly match.
The longitudinal strain must not exceed the value of 0.003 for the either case. The permissible
minimum values of strain are −0.2 · 10−3 and 0 for the CSA code and MC10 respectively.
Typically, for a section in high compression, due to for example prestressing, while calculat-
ing longitudinal strain the stiffness of the concrete should be included in the denominator.
Neglecting the stiffness of concrete would result in an overestimated negative strain value and
consequently in an overestimated shear strength. Therefore, the assumption of the 0 value of
the longitudinal strain for a section in compression adapted by the MC10 is conservative.
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Chapter 3

Study of the Influence on the Shear
Strength of Web-Shear Critical
Reinforced Concrete Elements

3-1 General Information

This chapter contains summarized information on the experimental research "Influence of
Axial Load and Prestress on the Shear Strength of Web-Shear Critical Reinforced Concrete
Elements" conducted by Liping Xie at the University of Toronto [13].

Purpose of the study
The basis for a comparison of different design codes are experimental results from the study of
Liping Xie on eleven I-shaped reinforced concrete beams subjected to different combinations
of axial and shear force. The study investigated the influence of axial load, prestress and an
amount of stirrups on the shear strength of web-shear critical reinforced concrete elements
and related the results to the predictions from the commonly used design codes; i.a. the ACI
code, the CSA code and the EC2.

Test setup
The test setup was chosen to simulate the conditions of a continuous beam near the point of
inflection, as illustrated in Figure 3-1. In this study, the point of inflection which corresponds
to the point where bending moment becomes zero is accompanied by a region of constant
shear force. Such a static scheme with double bending was obtained with the use of the
Balwin machine and a spreader beam applying the load in a way that the ratio between loads
at the eastern and western loading plate equals 1.8. The positions of the supports along with
loading plates are depicted in the Figure 3-1. This scheme has an additional advantage over
tests on simply supported beams under three or four points bending for which the critical
web-shear sections are located in the disturbed region close to a support. This in turn may
enhance the shear strength by strut-action [13]. The highest values of the shear force were
located outside of the test region whereas the hogging bending moment at the support.
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Figure 3-1: Test setup [13]

Specimens
The tested beams consisted of two parts: the middle I-shaped part 3220mm long and the
700 mm long diaphragm blocks at each end of the beams. The specified height of all beams
was 500mm. The specified web thickness of 75 mm was the same for beams while the flange
thickness varied depending on the test group: 75mm thick flanges for the first group and
50mm for the group with thin flanges. The group 1 (thick flange) comprised of beams LB1-
LB5 under different axial loading with the LB1 in high compression (-800kN) and LB5 in
high tension (500kN). The axial force in beams LB2 till LB5 ranged -800, -400, 250, 500 kN.
The second group consisted of beams LB6-LB11 in axial compression with the highest force
for LB6 decreasing for the subsequent beams till LB9 (0 axial force). The beams LB6, LB10
and 11 reinforced with a different amount of stirrups were subjected to the same compressive
force. The objective of a such division was to investigate the impact of the compressive/tensile
force and a different flange thickness in beams LB1-LB9 and a varying (increased) amount of
shear reinforcement in beams LB6, LB10, LB11 on the shear tension resistance.

For the comparison of designers’ codes, three thin flange beams were chosen: LB6, LB10,
LB11. The selected beams can be also classified as the beams with a normal amount of
stirrups for LB6, an increased amount of stirrups for LB10 and a beam without stirrups in
the Region 1 of the test setup. The amount of longitudinal reinforcement for the beams is
the same. With such selection, the intention is to examine shear capacity of the beams with
and without shear reinforcement with respect to different design approaches in common codes
and refer the results to the benchmark tests.
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Reinforcement Layout for the Beams LB6, LB10 and LB11

To ensure the intended web-shear failure mode within the region 1 while avoiding a premature
failure in other parts of the beams, an extra amount of shear reinforcement was provided in
the regions of the high shear force – outside of the test region. The layout of the transverse
reinforcement in those location was identical for all beams, namely 10M deformed bars spaced
at 125mm. This amounts for about three times the quantity of the shear reinforcement in
the Region 1. In addition to that, to prevent the flexure-shear failure at the support (region
2) where high bending moments act, an additional amount of stirrups was applied. For all
beams these are wires D4 spaced 87.5 mm. In the case of LB10, wires D4 are spaced 87.5 mm
throughout the whole test region. Stirrups in the Region 1 for the beam LB6 are reduced
twofold as compared to the Region 2; these are wires D4 spaced 175mm apart. As opposed
to the LB6 and LB10, the beam LB11 has no stirrups in the Region 1. Further, in order to
ensure that flexural failures would not control nor the rebars yield, a sufficient amount of the
longitudinal reinforcement was applied. It consisted of four rebars M15 in each flange. The
reinforcement layout is shown in Figures 3-2, 3-3, 3-4.
The beams were prestressed through post-tensioning of two unbonded one-inch high strength
smooth bars embedded in conduit ducts and greased to reduce friction losses. The clearance
between the duct and prestressing smooth bars was only 1.5mm. The prestressing force was
introduced to the test region by means of solid diaphragm concrete blocks at both ends. The
prestressing bars as well as the longitudinal rebars are symmetrical with respect to the el-
ements’ centroidal axes. Lastly, the D4 cross ties were applied parallel to the longitudinal
reinforcement. The function of the cross ties was to hold the bars in place during casting and
resist any tendency of longitudinal splitting in flanges.

Method of Prestressing

Prestressing was applied from one end only. The smooth bars were longer than the specimens.
The protruding part at one end was fixed to steel plates using nuts and connected to the
jacking apparatus at the other. The force was applied by stressing the bar at one end while
the steel plates were reacting at the anchored end. After prestressing achieved the desired
magnitude, the nuts were tightened to maintain the force.

3-2 Observations of Tests

To bring up the behaviour of specimens in different loading conditions, the general observation
of the tested beams will be given.
Each beam before failing developed a crack pattern with numerous cracks. The crack pattern
was related to the axial loading and the amount of shear reinforcement. It could be noted
that where the amount of shear reinforcement was increased, the crack distribution was
improved. The beams with the double shear reinforcement required by the CSA code tend
to display solely web-shear cracks. Where the amount of the minimum shear reinforcement
was increased four times, as in the case of the beam LB10, both web-shear and flexure-shear
cracks developed. The amount of axial compression influenced the sequence of the cracks’
development. For the specimens subjected to moderate to no compression, for the low value
of shear force the onset of flexural cracks in the locations with high bending moment was
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Figure 3-2: Shear reinforcement in the beam LB6 [13]

Figure 3-3: Shear reinforcement in the beam LB10 [13]

Figure 3-4: Shear reinforcement in the beam LB11 [13]

observed. The cracks later (at the increased shear force) tended to develop into flexure-shear
cracks accompanied with the appearance of new, web-shear cracks. For all the specimens, at
failure, one web-shear crack developed into the critical shear crack.
The web-shear cracking usually appear at the distance of dv from one end of the test region
and tended to develop towards the mid-span of the beam. The failure mechanism was abrupt.
Where shear reinforcement was applied in the whole test region, thus except for the beam
LB11, the failure mechanism was related to the rupture of consecutive stirrups and sliding
along the surface of the critical web-shear crack. Beams subjected to high compression and
shear force tended to expand transversely. As the result, it could be observed that the
beams with thick flanges demonstrated higher resistance due to the restraining action – the
clamping effect. The clamping effect turned out to affect the resistance more than the amount
of longitudinal reinforcement. In the beams with a moderate and high amount of shear
reinforcement combined with high axial compression, opening of the critical web-shear crack
was followed by flange buckling due to the sudden release of compressive strain energy after
the web failed.

From the readings of the load cells it was concluded that the prestressing was successfully
transferred from one end of the beam to another. The values of axial compression for beam
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LB6, LB10 and LB11 are listed in table 3-1. It can be seen that the loading variation was
small and thus the load was maintained at the same level and therefore the average value
can be used for further study as representative. It is also noticed that the ratio of the
load at the east and the west end of the spreader beam was fairly constant in the range of
PE/PW = 1.74/1.86. In Table 3-2 the cracking and ultimate shear forces are presented with
the corresponding values of shear stresses.

Table 3-1: Axial forces for the specimens LB6, LB10, LB11

Specimen LB6 LB10 LB11
Nmin [kN] -793 -810 -809
Nmax [kN] -808 -853 -811
Navg [kN] -797 -822 -809

Table 3-2: Summary of the test results for beams

Specimen N [kN] fpc [MPa] Vcr−exp [kN] vcr−exp [MPa] Vu−exp [kN] vu−exp [MPa] θexp
[deg]

LB6 -797 -10.88 148.1 4.77 155.8 5.01 21-35
LB10 -822 -11.16 138.1 4.38 215 6.83 21-29
LB11 -809 -10.97 143.7 4.56 142.8 4.53 21-35

fpc = N/Ag
vcr−exp = Vcr−exp

bwdv
, where Vcr−exp is inclined web-shear cracking force

vu−exp = Vu−exp
bwdv

,where Vu−exp is the ultimate shear force

3-3 Detailed Observation of Beams LB6, LB10, LB11

3-3-1 Beam LB6

Figure 3-5: Crack pattern for load stage 1 and 2 [13]
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Beam LB6 was loaded with the average axial compression of 797 kN. At the cracking shear
load of V = 148.1kN , the first set of web-shear cracks together with secondary cracks at the
joint of the flange and the web appeared. The inclination of the web-shear cracks was between
27◦ and 36◦ while the maximum crack width was 1 mm. Further increase of the shear force
resulted in widening of the existing cracks and propagation of the horizontal cracks along
the junction of the flange and the web towards the loading point. The crack pattern for the
cracking shear force and at 98 % of the ultimate shear force is illustrated in Figure 3-5. The
failure occurred at the shear force of 155.8kN due to opening of the critical shear crack and
buckling of the top and bottom flanges, Figure 3-6. The inclination of the critical crack was
25◦.

Figure 3-6: Failure of beam LB6 [13]; As = 934mm2, N = −797kN , Vu = 155.8kN , s =
175mm

3-3-2 Beam LB10

Figure 3-7: Crack pattern for load stage 1, 4 and 6 [13]

The beam LB10 was loaded with the average axial compression of 822kN . The first set of
web-shear appeared at the load of 138.1kN before occurrence of any flexural cracks. The
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average inclination of cracks was about 25◦. The cracks were initiated in the junction of the
flange and the web. At the subsequent loading stages more almost parallel web-shear cracks
appeared together with some flexural and flexure-shear cracks over the left support and under
the right loading point. As the specimen was reinforced with stirrups at the same spacing of
87.5mm in both region 1 and 2, Figure 3-3, a well distributed crack pattern could be observed,
Figure 3-7. At failure, the specimen reached the maximum shear force of 215 kN. The failure
occurred due to opening of the critical web-shear crack and buckling of the top and bottom
flanges as shown in Figure 3-8. The inclination of the failure shear crack was 20◦.

Figure 3-8: Failure of beam LB10 [13]; As = 934mm2, N = −822kN , Vu = 215kN , s =
87.5mm

3-3-3 Beam LB11

Figure 3-9: Crack pattern for load stage 1 [13]

The beam was loaded with the axial compression of 809kN . At the load 143.7kN , the multiple
web-shear cracks developed with inclination between 16 and 35◦. The widest cracks of 3mm
appeared at the junction of the flange and the web propagating towards the right loading
point, Figure 3-9. The beam failed at the shear force of 142.8kN in an unusual fashion with
most of the web remaining uncracked and the critical crack at the junction of the flange and
the web. In Figure 3-10, crushing and spalling of concrete close to the right loading point
can be seen. Insufficient distribution of cracks before failure could be assigned to the lack of
stirrups in the region 1 of the specimen, Figure 3-4.

Figure 3-10: Failure of the bean LB11 [13]; As = 934mm2,N = −809kN , Vu = 142.8kN
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3-4 General Findings for the Beams in Compression

From the test on beams in compression the following findings can be drawn:

• Axial compression increases the cracking strength and the shear strength of reinforced
concrete beam

• The behaviour at failure of beams in high compression was more brittle than of those
subjected to lower compression

• Adding more stirrups improves the shear capacity of beams but did not improve ductility
of specimens

• Axial compression increases the post cracking shear capacity as the result of more
stirrups being intersected by less inclined cracks.
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Chapter 4

Analytical Solution

4-1 Introduction

The theoretical approaches for calculating shear resistance can be divided into two groups.
The first group equates the shear strength of a member to a sum of steel and concrete
contributions; with the latter contribution by means of the factor to account for aggregate
interlock in concrete through strain effect parameter and member size (General Method CSA
A23.3.2004 and MC2010 LoA III). Both contributions are also determined with an explicitly
defined angle of average principal compressive stress field. The second group addresses shear
resistance with expressions applicable depending on the failure mechanism and an amount of
shear reinforcement. Methods from this group allow a designer to select a value of an angle
of concrete struts for members with shear reinforcement within the limits or implicitly from
the Mohr’s stress circle (for the splitting tension shear failure).1
In this chapter results of calculations for shear resistance of the benchmark beams LB6, LB10
and LB11 are presented. The beams are calculated using expressions from the codes outlined
in Chapter 2 Literature Study to check which of the approaches provides the most accurate
and comprehensible outcome.

4-2 General Input

To evaluate the specimens as accurately as possible the as-built dimensions and properties of
sections were used; and corrected where necessary. The correction concerned solely values of
statical moment of area. The geometries and the mass properties used in the calculations are
shown in Table 4-1.

The properties of SCC concrete used in the experiment were obtained from the full stress-
strain response of the concrete samples tested in compression at 7-day, 14-day, 28-day and at

1The flexural shear resistance acc. to the RBK 1.1 combines resistances of both concrete and steel. The
expressions are modified versions of the EC2 and the results are analysed as in the case of the EC2
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Table 4-1: As-built dimensions

Specimen LB6 LB10 LB11
h[mm] 506 506 506
bw[mm] 73 74 74
bfbot[mm] 350 350 350
hfbot[mm] 55 50 49
bftop[mm] 350 351 352
hftop[mm] 51 56 57
h1&h2 25
d[mm] 473 473 473
dv[mm] 426 626 426
Ag[mm2] 73225 73670 73740
Act[mm2] 36265 36650 37597
Ig[mm4] 2.55 2.56 2.56
Qcen[mm3] 6.323 6.346 6.350
y0top[mm] 256 248 247
y0bot[mm] 250 258 259
Astop[mm2] 934
Asbot[mm2] 934
Av[mm2] 24.2
s∗[mm] 175 87.5 -

ρy = As
bws

[%] 0.1894 0.374 -
N [kN ] -797 -822 -809

*) values for region 1 only

the test day. More detailed information available in [13]. The material properties from tests
used in the calculations are listed in Table 4-2.

Table 4-2: Concrete properties for analytical solution

Specimen 28-days [MPa] At test [MPa] Ec ft = 0.33
√
f ′c [MPa] εc[mε]

LB1 56.2 63.5 40300 2.63* 2.47
LB10-11 59.2 62.3 37900 2.60* 2.27

*Note: the concrete tensile strength was not a measured value. It is calculated from the measured
concrete compressive strength. Different tensile strengths are applied for the calculations according to

the EC2 (mean concrete tensile strength)

The properties of reinforcing steel and 1 inch high strength smooth bars resulted from coupon
tests on 18 inch long sample bars are listed in Table 4-3.

For the specimens which contained a varying amount of stirrups along the length, the function
taking into account the variation of stirrups was applied (Figure 4-1). Such a proportioning
of transverse reinforcement is supported by C8.9.3.9 in the Commentary to the CSA shear
provision [26]. It argues that a shear failure caused by yielding of stirrups involves yielding
of transverse reinforcement over a certain length. At locations where the spacing of stirrups
changes, no abrupt but rather a gradual change in shear strength occurs. The gradual dif-
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Table 4-3: Steel properties for analytical solution

Size db[mm2] As[mm2] fy[MPa] fu[MPa] εy[mε] εu[mε] Es[MPa] Es[MPa]
D4 5.72 24.2 529 581 2.65 40 195800 1392
10M 11.3 100 431 571 2.16 140 201880 -
15M 16.0 200 409 671 2.05 130 201100 -

1 inch bar 25.4 507 972 1074 - - 199400 -

Figure 4-1: Variation of stirrups [13]

ference in capacity spreads over h/2 from an end of a region with spacing s1 to h/2 of the
beginning of a region with spacing s2, Figure 4-1.

Depending on the location of the considered section, the effective amount of stirrups per
meter of length was calculated with equation 4-1:

Av
s

=


(
Av
s

)
1

for x ≤ 0(
Av
s

)
1
−
[(

Av
s

)
1
−
(
Av
s

)
2

] (
x−x1
x2−x1

)
for x1 < 0 < x2(

Av
s

)
2

for x ≥ x2

(4-1)

where x1 = 425− h
2 [mm] and x2 = 425 + h

2 [mm].

4-3 Analytical Solution CSA A23.3 2004

The recommendations of the CSA code in case of a member containing a constant amount
of stirrups specify to check the critical section located at the distance dv from the edge of
support. The specimens LB6 and LB11 tested in the research program contained a varying
amount of stirrups per running meter of length. Consequently, shear resistance has to be
checked at different locations in order to determine the critical section. For the beam LB10
which contained a uniform spacing of the stirrups calculations were conducted at diverse
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locations as well. Only after this, it could be concluded that the critical section indeed is
found at dv from the edge. In the analytical solution checked locations start at dv from the
edge for the first section and subsequently increase by the increment of 25 mm for the further
located sections. The calculation of the shear resistance according to the CSA Code requires
an iterative procedure as shown in the flow chart, Figure 4-2.

4-3-1 Shear Resistance of the Critical Sections

Refer also to Appendix A for all results and Mathcad calculations

Analysis of the Critical Section in the Beam LB6

In this section exemplary calculations for the critical section of the beam LB6 are carried out.
The as-built dimensions as well as the concrete properties measured at test are used.

The procedure requires iterations to determine the shear resistance of the considered section.
However, the critical section location is also unknown. Consequently, a number of sections
have to be checked. Because calculations in this section serve only as an example, they are per-
formed for the already known location of the critical cross-sections(located at x=0.675m from
the face of the supporting plate) and the value of shear resistance Vf = 159.23kN = Vf,trial.

To find bending moment from the self-weight, the reaction forces at the supports have to be
determined. The beam consists of two sections with different areas: the diaphragm block and
the I shaped region, Figure 3-1.

The uniformly distributed load from the block:
qEg1 = h ∗ bftop ∗ γconcrete = 0.506m ∗ 0.35m ∗ 25kN/m3 = 4.4275kN/m
Uniformly distributed load from the I shaped section:
qEg2 = Ag ∗ γconcrete = 0.0732m2 ∗ 25kN/m3 = 1.831kN/m

The reaction force at the west support from the vertical force equilibrium:
0.70m∗ qEg1 ∗4.120m+ 3.220m∗ qEg2 ∗ (3.220m

2 + 0.550m) + 0.550m∗ qEg1 ∗ 0.550m
2 − (0.150m)2

2 ∗
qEg1 −RA ∗ 3.360m = 0 7−→ RA = 0.9m ∗ qEg1 + 2.07m ∗ qEg2 = 7.774kN

The bending moment:
MEg(x = 0.675m) = 0.7m∗qEg1∗(0.350m+0.410m+x)+(0.41m+x)∗qEg2∗(0.41m+x

2 )−RA∗x =
0.277kNm
The shear force from the self-weight:
VEg(x = 0.675m) = − d

dx(0.7m∗qEg1 ∗(0.350m+0.410m+x)+(0.41m+x)∗qEg2 ∗(0.41m+x
2 )−

RA ∗ x) = 2.689kN

The amount of shear reinforcement at the critical section from the equation 4-1:
Av/s = 139.1mm2/m

The effective shear depth is defined as dv = max(0.72h, 0.9d) = max(364mm, 426mm) =
426mm

The bending moment for the section located at 0.675m from the edge of the support:
Mf = MEg + Vf,trial(1.2m− x− 0.15m/2) = 71.88kNm
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Figure 4-2: Flowchart for calculation of shear resistance acc. to the CSA code
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The section is fully in compression which was found from the force in the longitudinal rein-
forcement at a crack:
Mf/dv+Vf,trial+VEg+0.5Naxial = 71.88kNm/0.426m+159.1kN+2.689kN−0.5∗797kN =
−67.835kN < 0 thus in compression.
The longitudinal strain at the mid-height (average) is calculated including the stiffness of
concrete on the flexural tension side of the member:
εx = Mf/dv+Vf,trial+VEg+0.5Naxial

2(EsAs+EcAct) = 71.88kN∗m/0.426m+159.1kN+2.69kN−0.5∗797kN
2(201100MPa∗934mm2+40300MPa∗35560mm2) = −0.0000209

Because of the fact that the amount of shear reinforcement is higher than the minimum, the
crack spacing is 300mm. The factor β accounting for aggregate interlock in concrete is:
β = 0.4

1+1500εx
1300

1000+sze = 0.4
1+1500∗(−0.0000209)

1300
1000+300 = 0.41

The diagonal crack inclination θ:
θ = 29 + 7000εx = 28.85 deg
Now, the concrete and steel contribution to shear resistance can be calculated:
Vc = β

√
f ′cbwdv = 0.41 ∗

√
63.5 ∗ 73mm ∗ 426mm = 102.26kN

Vs = fyv
Av
s dv cot θ = 529MPa ∗ 139.1mm2/m ∗ 426mm ∗ cot(28.85 deg) = 56.856kN

The total shear resistance: Vf = Vc + Vs = 102.26kN + 56.856kN = 159.12kN
which is exactly the value of the assumed Vf,trial, hence no further iterations are necessary.
Calculation of the shear resistance is determined assuming that the flexural capacity of the
longitudinal reinforcement is sufficient to allow a shear failure. In addition to this, crushing
of concrete compressive struts cannot occur.
Flexural failure:
Flt = As ∗ fy = 382.0kN ≥ Mf/dv + 0.5Naxial + (VR − 0.5Vs) cot θ = 71.88kNm/0.426m −
0.5 ∗ 797kN + (159.12kN − 0.5 ∗ 56.856kN) cot(28.85 deg) = 7.553kN , thus flexural failure
does not occur.
Crushing of concrete struts:
VR
bwdv

= 159.1kN
73mm∗426mm = 5.12N/mm2 < 0.25φcf

′
c = 0.25 ∗ 1 ∗ 63.5N/mm2 = 15.875N/mm2.

Neither the flexural capacity of the longitudinal reinforcement nor the crushing of concrete
struts is governing hence the requirements are met. The governing failure mechanism is shear
failure.

Analysis for the Critical Section in the Beam LB10

A similar procedure was carried out for the beam LB10. In this case, as opposed to the other
beam, no variation of stirrups along the beam’s length takes place. Nevertheless, a number
of sections have to be check in order to determine the critical. Similarly to the preceding
section, the calculations presented below are related to the critical section with the already
known shear capacity found through the iterative procedure at a different distance from the
edge of the support’s face.
The critical section of beam LB10 is at the distance x=425mm from the edge of the loading
plate. The shear resistance at this location is: Vf = Vf,trial = 182.25kN

The uniformly distributed load from the block:
qEg1 = h ∗ bftop ∗ γconcrete = 0.506m ∗ 0.351m ∗ 25kN/m3 = 4.44kN/m
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Uniformly distributed load from the I shaped section:
qEg2 = Ag ∗ γconcrete = 0.0737m2 ∗ 25kN/m3 = 1.842kN/m
The reaction force at the west support resulting from the self-weight equals:
RA = 7.81kN .
Bending moment from the self weight at the considered location:
MEg(x) = 0.7m ∗ qEg1 ∗ (0.350m+ 0.410m+ x) + (0.41m+ x) ∗ qEg2 ∗ (0.41m+x

2 )−RA ∗ x
MEg(0.425m) = 1.00kN ∗m
The shear force from the self-weight:
VEg(x = 0.425m) = − d

dx(0.7m∗qEg1 ∗(0.350m+0.410m+x)+(0.41m+x)∗qEg2 ∗(0.41m+x
2 )−

RA ∗ x) = 3.16kN
The amount of shear reinforcement is constant in the entire test region: Av/s = 276.57mm2/m

The bending moment for the section located at 0.425m from the edge of the support:
Mf (x = 0.425m) = MEg + Vf,trial(1.2m − x − 0.15m/2) = 1.00kNm + 182.25kN(1.2m −
0.425m− 0.075m) = 128.58kNm
From:
Mf/dv + Vf,trial + VEg + 0.5Naxial = 128.58kNm/0.426m+ 182.25kN + 3.16kN − 411kN =
76.45kN
it can be seen that the section at the level of the longitudinal reinforcement is in tension.
Under the conservative assumption of the General Method, the compressive strains are zeroed
and consequently the longitudinal strain factor is calculated without the effect of the concrete
stiffness ActEc:
εx = Mf/dv+Vf,trial+VEg+0.5Naxial

2(EsAs) = 128.58kNm/0.426m+182.25kN+3.16kN−0.5∗822kN
2(201100MPa∗934mm2) = 0.000020351

The amount of shear reinforcement is four times the minimum amount, therefore the crack
spacing is again 300mm. Factor β accounting for the aggregate interlock in concrete is:
β = 0.4

1+1500εx
1300

1000+sze = 0.4
1+1500∗(0.000020351)

1300
1000+300 = 0.31

The diagonal crack inclination θ:
θ = 29 + 7000εx = 30.42 deg
The concrete and steel contribution to shear resistance can be calculated:
Vc = β

√
f ′cbwdv = 0.31 ∗

√
62.3 ∗ 74mm ∗ 426mm = 76.2kN

Vs = fyv
Av
s dv cot θ = 529MPa ∗ 276.57mm2/m ∗ 426mm ∗ cot(30.42 deg) = 106.05kN

The total shear resistance:
Vf = Vc + Vs = 76.2kN + 106.05kN = 182.25kN
Because Vf = Vf,trial no further iterations are needed.
To check if the above calculated shear failure mechanism is governing, the flexural capacity
of the longitudinal reinforcement and crushing of compressive struts are checked.
Flexural failure:
Flt = As ∗ fy = 382.0kN ≥ Mf/dv + 0.5Naxial + (VR − 0.5Vs) cot θ = 128.58kNm/0.426m −
0.5 ∗ 822kN + (182.25kN − 0.5 ∗ 106.53kN) cot(30.42 deg) = 73.48kN , thus flexural failure
does not occur.
Crushing of concrete struts:
VR
bwdv

= 182.25.kN
74mm∗426mm = 6.51N/mm2 < 0.25φcf

′
c = 0.25∗1∗62.3N/mm2 = 15.575N/mm2 thus

also not governing.
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Analysis for the Critical Section in the Beam LB11

The test region essentially consists of two regions: Region 1 and Region 2. In the case of
the beam LB11, to avoid a flexural-shear failure, stirrups were applied only in the Region 2
(near the support). As previously, a number of cross-sections are to be check to determine
the critical. In this example, the cross-section at x=0.575m with the shear resistance of
Vf = 86.29kN is considered.

The uniformly distributed load from the diaphragm block:
qEg1 = h ∗ bftop ∗ γconcrete = 0.506m ∗ 0.352m ∗ 25kN/m3 = 4.453kN/m
Uniformly distributed load from the I shaped section:
qEg2 = Ag ∗ γconcrete = 0.0737m2 ∗ 25kN/m3 = 1.843kN/m

The reaction force at the west support from the vertical force equilibrium:
0.70m∗ qEg1 ∗4.120m+ 3.220m∗ qEg2 ∗ (3.220m

2 + 0.550m) + 0.550m∗ qEg1 ∗ 0.550m
2 − (0.150m)2

2 ∗
qEg1 −RA ∗ 3.360m = 0 7−→ RA = 0.9m ∗ qEg1 + 2.07m ∗ qEg2 = 7.824kN

The bending moment for the self-weight:
MEg(x = 0.575m) = 0.7m∗qEg1∗(0.350m+0.410m+x)+(0.41m+x)∗qEg2∗(0.41m+x

2 )−RA∗x =
0.557kNm
The shear force from the self-weight:
VEg(x = 0.575m) = − d

dx(0.7m∗qEg1 ∗(0.350m+0.410m+x)+(0.41m+x)∗qEg2 ∗(0.41m+x
2 )−

RA ∗ x) = 2.89kN

The amount of shear reinforcement at the critical section from the equation 4-1:
Av/s = 56.3mm2/m which is lower than the minimum value:

Av,min = 0.06
√
f ′c

bw
fyv

= 66.25mm2/m

The total bending moment due to the applied load at x=0.575m from the edge of the support:
Mf = MEg+Vf,trial(1.2m−x−0.15m/2) = 0.557kNm+86.29kN∗(1.2m−0.575m−0.075m) =
48.01kNm

Force in the longitudinal reinforcement is: Mf/dv+Vf,trial+VEg+0.5Naxial = 48.01kNm/0.426m+
86.29kN + 2.89kN − 0.5 ∗ 807kN = −201.5kN < 0 thus in compression.

As a consequence, the longitudinal strain at the mid-depth includes the stiffness of concrete
on the flexural tension side of the member:
εx = Mf/dv+Vf,trial+VEg+0.5Naxial

2(EsAs+EcAct) = 48.01kN∗m/0.426m+86.29kN+2.89kN−0.5∗807kN
2(201100MPa∗934mm2+37900MPa∗36880mm2) = −6.36 ∗ 10−5

The amount of shear reinforcement is lower than the minimum. For members without shear
reinforcement the general method of shear design takes crack spacing sz as the effective shear
depth dz.
Aggregate interlock is influenced by two major factors: a crack width and roughness of a
crack plane. Cracks spaced in a larger distance from each other imply a reduced effect of the
aggregate interlock as a results of larger crack widths. To account for an aggregate size, an
effective crack spacing parameter is calculated with: sze = 35∗dv

ag,adjusted+15 = 35∗426
7.7+15 = 656.4mm

where ag,adjusted is the correction factor accounting for the cracks passing through aggregate
particles rather than around them in concrete of higher strength. This in turn reduces the
effect of the aggregate interlock. It follows from:
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ag,adjusted =


0 for f ′c ≥ 70MPa

ag
70−f ′c

10 for 60MPa < f
′
c < 70MPa

ag otherwise

The factor β: β = 0.4
1+1500εx

1300
1000+sze = 0.4

1+1500∗(−0.0000636)
1300

1000+656.37 = 0.35

The diagonal crack inclination θ:
θ = 29 + 7000εx = 28.56 deg

As the results of not sufficient quantity of stirrups, the total shear resistance is equal to the
contribution of concrete only:
Vc = β

√
f ′cbwdv = 0.35 ∗

√
62.3 ∗ 74mm ∗ 426mm = 86.29kN

Vs = 0

Total shear resistance: Vf = Vc = 86.29kN
which is equivalent to the assumption Vf,trial.

Finally, the remaining possible failure mechanisms have to be checked:

Flexural failure:
Flt = As ∗ fy = 382.0kN ≥ Mf/dv + 0.5Naxial + (VR − 0.5Vs) cot θ = 48.01kNm/0.426m −
0.5 ∗ 807kN + (86.29kN) cot(28.56 deg) = −132.16kN , thus flexural failure does not occur.

Crushing of concrete struts:
VR
bwdv

= 86.29kN
74mm∗426mm = 2.73N/mm2 � 0.25φcf

′
c = 0.25 ∗ 1 ∗ 62.3N/mm2 = 15.575N/mm2

thus also not governing.

4-3-2 Cumulative Results

The obtained results, Figures 4-3, 4-4 and 4-5 are generally in agreement with the results
in [13] except for the results of the LB11. The critical sections found in [13] and in this report
for the beams LB6 and LB10 coincide and the ultimate shear resistance is found to be almost
the same (LB6: 159.12kN and 159.9kN; LB10:182.25kN and 183.2kN). Slightly higher values
from [13] resulted probably from excluding the impact of the self-weight, which in fact turned
out to be negligibly small. The locations of the critical section for each specimen is marked
in the figures with a blue marker.
The only difference arises for the case LB11. It is most probably caused by the way in which
the steel contribution was treated. In this thesis, the contribution of shear reinforcement for
sections at which the amount of stirrups does not meet the minimum amount requirement
was completely disregarded; resulting in a sudden drop of shear resistance visible in Figure
4-5. As opposed to that, the [13] considered the impact of stirrups even below the threshold
of As,min.
From the comparison between the experimental and analytical solution results, it is apparent
that the prediction of the shear capacity for region without shear reinforcement is substantially
underestimated. The reason for this is presumably the fact that the code conservatively
estimates the post-cracking shear strength (an ability of an element to bridge stresses across
the crack plane through aggregate interlock) rather than the first cracking shear force which
is much higher (as will be shown in the section devoted to the EC2).
It is interesting to note that the effect of a combination of axial force, shear force and bending
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moment on an angle θ is the same as explained in section 2-1. The angle is flatter for
sections in compression (LB6, LB11) and more open for sections in tension (LB10). Heavily
reinforced members naturally are capable of withstanding higher values of shear forces before
failure which translate to positive (tensile) strain in the "strain state" parameter εx on which
θ in the method is dependent.
The critical section for the beam LB6 was determined at the distance 675 mm from the
west support. The major crack observed in the test happened to be situated roughly at the
same distance. The governing resistance for the beam LB10 was predicted at the distance
dv from the edge of the support which is often considered as the critical section. From the
test observation, this region was extensively cracked with web shear cracks with the major
crack situated approximately in the same area. Again, it can be concluded that the code’s
prediction is fairly good. For the beam LB11 the critical crack runs along the junction of
the web and the upper flange with the largest crack width in the middle of the test region.
This location does not exactly coincide with the prediction of the code but in both cases the
critical section(s) is determined to be in the region unreinforced against shear.
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Figure 4-3: Shear capacity of the beam LB6 by CSA at different locations
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Figure 4-4: Shear capacity of the beam LB10 by CSA at different locations
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Figure 4-5: Shear capacity of the beam LB11 by CSA at different locations

4-3-3 Detailed Analyses

"More Accurate Calculations"

The method of the CSA code to determine the longitudinal strain conservatively assumes zero
strain values in the flexural compression flange. This enables to conveniently take εx = εt/2.
The simplification is supported by the fact that εc has usually small negative values thus
might be assumed to be negligible.

This section investigate the shear resistances for the critical cross-sections obtained when the
aforementioned conservative assumption is disregarded. The axial strain in the flanges is
calculated directly from forces acting on the flanges and adopting the bilinear relationships
shown in Figure 2-21. The average strain at the mid-depth is calculated as an average of
strains at the top and bottom flanges. The procedure is iterative and apart from the way a
section is considered, does not differ from the one explained in the preceding chapters.

Beam LB6
Predefined shear resistance and the location of the critical section: Vf,trial = 168.06kN and
x = 0.7m
The axial strain is calculated from the axial forces in the flanges.
FTopChord = Vf + VEg + Mf/dv + Naxial/2 = 168.06kN + 2.643kN + 71, 637kNm/0.426m −
797kN/2 = −59.52kN compression

FBottomChord = Vf +VEg−Mf/dv +Naxial/2 = 168.06kN + 2.643kN + 71.637kNm/0.426m−
797kN/2 = −396.08kN compression

The cross-section is in compression hence strains are calculated with a combination of the
concrete and steel stiffnesses.

εTopChord = FTopChord
EsAs+EcAct = −1.84 ∗ 10−5

εBottomChord = FBottomChord
EsAs+EcAct = −1.22 ∗ 10−4

The average strain, Figure 4-6:
εx = εTopChord+εBottomChord

2 = −7.03 ∗ 10−5
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The parameter β:
β = 0.4

1+1500εx
1300

1000+sze = 0.447

The angle θ:
θ = (29 + 7000εx) = 28.51 deg

The contributions of concrete and steel and the ultimate resistance:
Vc = β

√
f ′cbwdv = 110.730kN

Vs = fyv
Av
s dv cot θ = 529MPa ∗ 138.29mm2/m ∗ 426mm ∗ cot(28.51 deg) = 57.336kN

Vf = Vc + Vs = 168.06kN
The shear resistance calculated from the actual strain state is increased due to:
first, an increase of the factor β resulting in greater aggregate interlock and a higher concrete
contribution, and
second, a slightly flattened inclination of compressive struts leading to a crack crossing a
higher number of stirrups increasing effectiveness of applied shear reinforcement which trans-
lates to higher resistance attributed to steel.
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Figure 4-6: Calculated values of strain and forces for LB6

Beam LB10
Similar calculations have been performed for LB10:
Predefined shear resistance and the location of the critical section: Vf,trial = 199.21kN and
x = 0.425m.

FTopChord = Vf + VEg + Mf/dv + Naxial/2 = 199.21kN + 3.162kN + 140.45kNm/0.426m −
822kN/2 = 121.31kN tension

FBottomChord = Vf − Mf/dv + Naxial/2 = 199.21kN + 3.162kN − 140.45kNm/0.426m −
822kN/2 = −538.56kN compression

The top chord is in tension thus the strains are calculated taking only the reinforcement
stiffness into account: εTopChord = FTopChord

EsAs
= 3.23 ∗ 10−4

The bottom chord is in compression; an effect of concrete stiffness is included:
εBottomChord = FBottomChord

EsAs+EcAct = −1.71 ∗ 10−4

The average strain, Figure 4-7:
εx = εTopChord+εBottomChord

2 = 7.61 ∗ 10−5
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The parameter β:
β = 0.4

1+1500εx
1300

1000+sze = 0.359

The angle θ:
θ = (29 + 7000εx) = 29.53 deg

The contribution of concrete and steel and the ultimate resistance:
Vc = β

√
f ′cbwdv = 89.271kN

Vs = fyv
Av
s dv cot θ = 529MPa ∗ 276.57mm2/m ∗ 426mm ∗ cot(29.53 deg) = 109.94kN

Vf = Vc + Vs = 199.21kN
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Figure 4-7: Calculated values of strain and forces for LB10

Beam LB11
Predefined shear resistance and the location of the critical section: Vf,trial = 91.43kN and
x = 0.575m.

FTopChord = Vf + VEg + Mf/dv + Naxial/2 = 91.43kN + 2.89kN + 50.84kNm/0.426m −
807kN/2 = −189.7kN compression

FBottomChord = Vf + VEg −Mf/dv + Naxial/2 = 91.43kN + 2.89kN − 50.84kNm/0.426m −
807kN/2 = −428.6kN compression

εTopChord = FTopChord
EsAs+EcAct = −5.98 ∗ 10−5

εBottomChord = FBottomChord
EsAs+EcAct = −1.35 ∗ 10−4

The average strain, Figure 4-8:
εx = εTopChord+εBottomChord

2 = −9.75 ∗ 10−5

The parameter β:
β = 0.4

1+1500εx
1300

1000+ 35∗dv
ag,adjusted+15

= 0.368

The contribution of concrete and steel and the ultimate resistance:
Vc = β

√
f ′cbwdv = 91.43kN

Vs = 0
Vf = Vc + Vs = 91.43kN

In Figure 4-9 and Table 4-4 the "accurate method" is summarized. From the comparison
between the methods, it can be concluded that the slight increase of the ultimate shear resis-
tance mostly stems from a larger contribution of concrete and almost unnoticeable increase of
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Figure 4-8: Calculated values of strain and forces for LB11

shear resistance from the stirrups. It would suggest that the method is only somewhat sensi-
tive to small changes in longitudinal for sections in compression and moderately sensitive to
sections in tension. For the design in which the benchmark shear resistances are not known
beforehand, more detailed consideration might have a negative impact being more unconser-
vative as it happened in this study for beam LB6. From Table 4-4, it can be seen that while
for LB10 and LB11, "more accurate" analyses improved code’s prediction, for beam LB6 the
effect was opposite and the results unconservatively drifted away from the benchmark result.

Table 4-4: Summary of the predictions by the CSA code

Beam LB6 LB10 LB11
CSA General Method 159.1 kN 182.25 kN 86.29 kN
CSA "More Accurate Method" 168.06 kN 199.1 kN 91.43
VU,Experiment 155.8 kN 215.0 kN 142.8 kN
Exp./General Method 0.97 1.18 1.65
Exp./"More Accurate Method" 0.92 1.08 1.56

Influence of a Variable Angle θ

In [12], which covers the development of the shear provision for concrete structures, the
bottom chord longitudinal force component resulting from shear is simplified by assuming
that 0.5cotθ is approximately equal to one. Conservativeness of this assumption has been
analysed for the critical sections in all beams through adding a dependence of the shear
strength on the angle of the compressive principal direction. It was found that when the
conservative assumption is ignored, the shear resistance for the beam LB10 can be increased
by around 6%. The impact of the variable angle of compressive struts on the shear resistance
was not meaningful for the remaining cases; less than 1% for the LB6 and LB11. The reason
why the impact on the beams LB6 and LB11 is so small is the fact that the longitudinal
strain for the critical sections has a negative value, thus calculated taking the stiffness of
concrete into account which greatly decreases the value. Therefore, it can be seen that the
reduction of applied forces with 0.5cotθ is diminished through the strain parameter εx. It
is important to know that negative value of εx indicates that the crack width is much lower
(the member is cracked! even for negative values of the longitudinal strain εx), though not
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Figure 4-9: Contribution of concrete and steel to total resistance according to the General
Method and "more accurate method"

negative. In [12], the authors mentioned that the method "does not predict first cracking
strength, but the strength in a member that is already cracked for whatever cause". A different
situation occurs for the beam LB10 which is heavily reinforced with stirrups. Consequently,
on a section act higher forces which results in a positive value of the longitudinal strain; a
higher crack width controlled by the higher demand of shear reinforcement. The positive
value of the longitudinal strain is calculated with only steel stiffness taken in the formula
resulting in a greater impact of the forces on the strain parameter εx. This means that the
reduction of the applied shear and moment by employing 0.5cotθ would results in an increase
of the ultimate shear strength as indicated in Table 4-5.
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Table 4-5: Summary of the results for calculations with a variable angle θ.

Beam εx β θ [deg] Vc [kN] Vs [kN] Vf [kN]
LB6 with a variable angle θ −2.928 ∗ 10−5 0.418 28.795 103.60 56.99 160.6
LB6 −2.09 ∗ 10−5 0.41 28.85 102.26 56.86 159.12
LB10 with a variable angle θ 1.123 ∗ 10−4 0.342 29.79 85.12 108.81 193.93
LB10 2.034 ∗ 10−4 0.31 30.42 76.198 106.05 182.25
LB11 with a variable angle θ −6.147 ∗ 10−5 0.346 28.57 85.99 0 85.99
LB11 −6.36 ∗ 10−5 0.35 28.56 86.29 0 86.29

4-4 Analytical Solution fib Model Code 2010

The fib Model Code 2010 (MC 2010) introduces a significant advancement over the previous fib
Model Code 1990 as it waives from standardized empirical methods. In the current MC2010
the approach referred as levels of approximation (LoA) is introduced. The method was already
outlined in the chapter 2 to which reference is made for further information.
To analyse strength reserves of existing structures, the fib Model Code 2010 suggests the
refined base level of approximation III for members including shear reinforcement [24], [25].
By virtue of consideration potential increases on the shear strength, a precise assessment
can be achieved. The background of the fib MC 2010 explains that for members with shear
reinforcement the method brings together the simplified MCFT and Generalized Stress Field
approach, hence similarly to CSA A23.3 2004, the methods explicitly takes account of concrete
contribution to the ultimate shear resistance. Moreover, as presented in previous sections, the
procedure of determining shear resistance requires iterations with intermediate parameters
dependent to the greatest extent on a strain parameter and an angle of compressive stress
field; in this case minimum value of the angle. Because of the common background that the
CSA code and Model Code 2010 have, even though differences in certain aspects occur, the
methods are expected to yield similar results.

In the flowchart 4-10, the general procedure for members with shear reinforcement is demon-
strated. For members without shear reinforcement in LoA II only the formula for parameter
kv changes. Examples explaining the calculations for the critical sections for both types of
members are presented in the following sections of the report.

4-4-1 Shear Resistance of the Critical Sections

The MC 2010 specifies to check the shear resistance in the critical section which is generally
taken in a distance dv from the support but other potential critical section should be checked
as well. In the calculations below, the critical section was searched for at the same intervals
as for the CSA code. To maintain consistency with prior estimations an effective amount of
reinforcement was calculated using relation 4-1.

In contrast with CSA A23.3 2004, calculation of effective shear depth was carried out by
determining the centrelines of the top and the bottom chord, where the depth of the com-
pression chord is calculated for the location of maximum bending and assumption of a stress
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Figure 4-10: Flowchart for calculation of shear resistance in members with shear reinforcement
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block [25]. It is only an alternative as the MC 2010 allows assuming the effective shear depth
z = 0.9d.

Refer also to Appendix B for all results and Mathcad calculations

Analysis of the Critical Section in the Beam LB6

The calculations start with determining the self-weight of the beam. It was already described
in the section devoted to the CSA code calculations for the critical sections thus the reference
to this part of the report is made (section 4-3-1). In contrast to the CSA approach an effective
shear depth was calculated from equilibrium assuming the bilinear stress distribution for a
double reinforced section. Having calculated these values, an iterative procedure can be
commenced.
Alike the CSA code computation, in these examples the critical sections are known as well
as the VR,trial. These are: x = 0.7m from the face of the supporting plate and VR,trial =
137.98kN .

The bending moment from the self-weight at the considered location:
MEg(x = 0.7m) = 0.211kNm
The value of the bending moment at x from effects’ action:
ME = MEg +VR,trial

(
1.2m− x− 0.15m

2

)
= 0.211kNm+ 137.98kN(1.2m−0.7m−0.075m) =

58.85kNm

The force in the longitudinal reinforcement at the "tension side" at the crack:
Flt,section = ME

z +VR,trial +VEg + 0.5Naxial = 58.85kNm
0.448m + 137.98kN + 2.64kN −0.5∗797kN =

−126.42kN which indicates compression.

Commentary to the fib MC2010 in cl.7.3.3.1 explains that for sections in compression thus
negative values of εx, it is conservatively assumed εx = 0.

The minimum angle of inclination θmin and remaining parameters following suit are indepen-
dent of the strain condition.
θmin = 20 + 10000εx = 20 deg

The principal tensile strain:
ε1 = εx + (εx − ε2) ∗ (cot(θmin)2) = 0 + (0− 0.002) cot(20 deg) = 0.0151

The strain effect parameter:
kε = 1

1.2+55ε1
= 0.493 ≤ 0.65

The strength reduction factor:
kc = kεηfc = 0.493

(
30

63.5

)1/3
= 0.384

The strength limited by crushing of concrete at the θmin.
VR,max = kcfcmbw sin(θ) cos(θ) = 0.384∗63.5MPa∗73mm∗sin(20 deg) cos(20 deg) = 255.87kN
which is more than VR,trial thus in the LoA III, the concrete contribution can be accounted
for with a factor kv.
kv = 0.4

1+1500εx

(
1− VE,trial

VR,max(θmin)

)
= 0.4

1+0

(
1− 137.98kN

255.87kN

)
= 0.184

The steel and concrete contributions are:
VR,s = Av

s zfyw cot(θmin) = 138.28mm2/m ∗ 0.448m ∗ 529MPa ∗ cot(20 deg) = 89.98kN
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VR,c = kv ∗
√
fcmbwz = 0.184 ∗

√
63.5MPa ∗ 73mm ∗ 448mm = 48.00kN The total shear

resistance:
VR = VR,s + VR,c = 89.98kN + 48kN = 137.98kN

Analysis of the Critical Section in the Beam LB10

The critical section is defined as: x = 425mm with the shear resistance VR,trial = 190.2kN .

The bending moment from the self-weight at the considered location:
MEg(x = 0.425m) = 1.007kNm

The value of the bending moment at x from effects’ action:
ME = MEg+VR,trial

(
1.2m− x− 0.15m

2

)
= 1.007kNm+190.2kN(1.2m−0.425m−0.075m) =

134.1kNm

The force in the longitudinal reinforcement at the "tension side" at the crack:
Flt,section = ME

z + VR,trial + VEg + 0.5Naxial = 134.1kNm
0.446m + 190.2kN + 3.15kN − 0.5 ∗ 822kN =

82.78kN > 0 hence in tension.

The value of the strain parameter:
εx = 1

2EsAs

(
ME
z + VR,trial +Naxial

(
1
2 + ∆e

z

))
= 1

2∗201100MPa∗934mm2 ((134.1kNm
0.446m + 190.2kN −

822kN9(1
2 + 7.63mm

446mm )) = 0.000183

The minimum angle of inclination θmin is dependent on the value of average strain.
θmin = 20 + 10000εx = 20 + 10000 ∗ 0.000183 = 21.83 deg

The principal tensile strain:
ε1 = εx + (εx − ε2) ∗ (cot(θmin)2) = 0.000183 + (0.000183− 0.002) cot(21.83 deg) = 0.014

The strain effect parameter:
kε = 1

1.2+55ε1
= 0.511 ≤ 0.65

The strength reduction factor:
kc = kεηfc = 0.511

(
30

62.3

)1/3
= 0.4

The strength limited by crushing of concrete at the θmin.
VR,max = kcfcmbw sin(θ) cos(θ) = 0.4 ∗ 62.3MPa ∗ 74mm ∗ sin(21.83 deg) cos(21.83 deg) =
284.4kN
which is more than VR,trial thus in the LoA III, the concrete contribution can be accounted
for with a factor kv.
kv = 0.4

1+1500εx

(
1− VE,trial

VR,max(θmin)

)
= 0.4

1+1500∗0.000183

(
1− 190.2kN

284.4kN

)
= 0.104

The steel and concrete contributions are:
VR,s = Av

s zfyw cot(θmin) = 276.57mm2/m ∗ 0.446m ∗ 529MPa ∗ cot(21.83 deg) = 163.1kN
VR,c = kv ∗

√
fcmbwz = 0.104 ∗

√
62.3MPa ∗ 74mm ∗ 446mm = 27.1kN

The total shear resistance:
VR = VR,s + VR,c = 163.1kN + 27.1kN = 190.2kN
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Analysis of the Critical Section in the Beam LB11

The minimum demand for shear reinforcement is determined according to the equation 7.3-22
fib Model Code 2010 with help of which it is possible to determine whether a section qualifies
as unreinforced against shear or not. For such sections, concrete is accounted for differently.
In the considered example, the critical section happened to be located at x = 0.525m for
the face of the support. The area of stirrups per running meter calculated with equation 4-1
for this sections is: Av

s = 83.63mm2/m.

The minimum required amount of shear reinforcement per running meter resulting from the
aforementioned equation is: ρminbw =

(
0.08
√
fcm
fyw

)
∗ 74mm = 88.33mm2/m

which proves the point that the section should be calculated as unreinforced against shear.

The shear resistance at the considered location is equal to VR,trial = 87.51kN .

The bending moment from the self-weight at the considered location:
MEg(x = 0.525m) = 0.703kNm

The value of the bending moment at x from effects’ actions:
ME = MEg+VR,trial

(
1.2m− x− 0.15m

2

)
= 0.703kNm+87.51kN(1.2m−0.525m−0.075m) =

53.21kNm

The force in the longitudinal reinforcement at the "tension side" at the crack:
Flt,section = ME

z + VR,trial + VEg + 0.5Naxial = 53.21kNm
0.446m + 87.51kN + 2.89kN − 0.5 ∗ 807kN =

−194.8kN which indicates compression 7−→ εx = 0

The minimum angle of inclination θmin: θmin = (20 + 10000εx) = 20 deg

The principal tensile strain:
ε1 = εx + (εx − ε2) ∗ (cot(θmin)2) = 0 + (0− 0.002) cot(20 deg) = 0.0151

The strain effect parameter:
kε = 1

1.2+55ε1
= 0.493 ≤ 0.65

The strength reduction factor:
kc = kεηfc = 0.493

(
30

62.3

)1/3
= 0.39

The strength limited by crushing of concrete at the θmin.
VR,max = kcfcmbw sin(θ) cos(θ) = 0.39∗62.3MPa∗74mm∗ sin(20 deg) cos(20 deg) = 255.4kN
which is more than VR,trial.
For LoA II, members without shear reinforcement, the factor kv:
kv = 0.4

1+1500εx

(
1300

1300+kdgz

)
where: kdg = 32

16+dg = 32
16+10 = 1.23 ≥ 0.75

kv = 0.4
1

(
1300

1000+1.23∗446mm

)
= 0.336

The total shear resistance is attributed to the concrete shear resistance:
VR,c = kv ∗

√
fcmbwz = 0.336 ∗

√
62.3MPa ∗ 74mm ∗ 446mm = 87.51kN

VR = VR,c = 87.51kN .
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4-4-2 Cumulative Results

In Figures 4-11, 4-12 and 4-13 the shear resistances obtained from calculations are plotted.
From the comparison with the results of the CSA code, it can be concluded that both methods
yield similar results. The critical sections were found to be located in the same distances from
the edge of the support – beam LB10 or the point of contraflexure – beams LB6 and LB11.
For a more detailed comparison, see section 4-7.
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Figure 4-11: Shear capacity of the beam LB6 by fib MC 2010 at different locations
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Figure 4-12: Shear capacity of the beam LB10 by fib MC 2010 at different locations
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Figure 4-13: Shear capacity of the beam LB11 by fib MC 2010 at different locations
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Figure 4-14: Crack pattern in regions cracked in flexure (Region I) and tensile splitting (Region
II)

In the EC2, unlike the "strain dependent" codes, the applied procedure depends on whether
the considered section is cracked or uncracked in flexure and whether the amount of shear
reinforcement is higher than minimum or not. Both criteria determine the expected failure
mechanism and accordingly different formulas are used to calculate shear resistance of a
member. It was already described in the literature study, that in the case of prestressed
members, two regions can be distinguished. In the first region where prestress is not enough
to compensate for bending, thus where high bending moment and shear occur, flexural cracks
initiate when the flexural tensile stress in the outer fibre of a section exceeds the tensile
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strength of the concrete (Region I in Figure 4-14). In the second region, (Region II in Figure
4-14) possibly where high values of shear force and low bending moment occur, flexural tensile
stresses are compensated for by prestressing. When the principal tensile stresses reach the
concrete tensile strength, it is expected that tension shear failure is the governing mechanism.

4-5-1 General Procedure

Start

Assume VE,trial

Calculate MEg(x), VEg(x) 7→ Vtotal = VE,trial + VEg and
ME = VE,trial(1200mm−x−0.075mm); Mtot = MEg +ME

σTopF lange = Naxial
Ag

+ MtotzTopFlange
Ig

σCentroid = Naxial
Ag

τTopF lange = VtotQTopFlange
bwIg

τCentroid = VtotQCentroid
bwIg

σI,TopF l =
√
τ2
TopF l + (σTopFl2 )2 + σTopFl

2 σI,Cen =
√
τ2
Cen + (σCen2 )2 + σCen

2

σI = max(σI,Cen;σI,TopF l)

σI = fftm

Stop

Assume
higher VE,trial

yes

no

Figure 4-15: Determination of the critical tensile splitting shear force
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Definition of the region cracked in flexure

The procedure of finding the shear resistance consisted of a collation of the shear force that
would lead to the flexural shear failure and the shear force related to the shear tension
failure. The smaller value of them would indicate the ultimate shear load the beam is able to
withstand. As mentioned before, the flexural shear cracks are cracks which propagate from
flexure cracks. Since the concrete is assumed to crack when the tensile stress in the outer
fibre reaches the concrete tensile strength, the cracking bending moment as a function of the
distance from the edge of the west loading plate could be found with the following relation:

Naxial

Ag
+ Mcry0top

Ig
+ MEg(x)y0top

Ig
= fctm

and subsequently after transformations:

Mcr(x) =
Ig
(
Naxial
Ag
− fctm + MEg(x)y0top

Ig

)
y0top

The shear force due to the experimental setup is constant in the test region, thus the maximum
shear force is obtained with:

VE(1200− x− 150mm/2)−Mcr = 0 7−→ VE = Mcr(x)
1200− x− 150mm/2

The values of the flexural cracking shear force (represented by the red curve in Figure 4-14)
were compared with values of shear resistance against shear tension cracking in the web (a
black line in Figure 4-14); followed from the Mohr’s circle.

Definition of tensile splitting shear capacity

The proceedings of the method are shown in Figure 4-15. The procedure starts with an
assumption of a shear force. For the assumed shear force value VE,trial, the bending moment:

ME = VE,trial

(
1200mm− x− 150mm

2

)
increased by the effect of self weight was calculated.
Next, normal stresses at the junction of the web and the flange, normal stresses in the centroid
as well as shear stresses are computed. Having all the components needed to calculate tensile
stresses in the principal direction at the level of the junction of the web and the flange and the
centroidal axis were checked. If for the initially assumed shear force, the principal stresses are
lower than the tensile strength of the concrete, the resistance of the beam against the tensile
splitting shear failure is larger and therefore the assumed shear force has to be increased. The
iterations proceed until the strength of concrete is reached. Different locations x are to be
checked.

Shear capacity of regions cracked uncracked in flexure

Another aforementioned influential aspect is whether an element is considered as with or with-
out shear reinforcement. The minimum ratio of reinforcement is given by the expression 9.5N
in EN 1992-1-1: 2004. For all elements that do not meet the requirement of the minimum
ratio of reinforcement, irrespective of the crack type (i.e. flexural or shear tension crack), the
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shear resistance is determined by the formula 6.2; therefore this shear resistance constitutes
the "guaranteed" capacity of a member. Even though it is not directly stated in the code,
the expression 6.2 can be used in the region that is not cracked in bending; meaning that the
highest result of expressions 6.2 and 6.4 from the EC2 is the shear resistance of a beam in
the region uncracked in bending. If the considered section uncracked in flexure contains shear
reinforcement, its resistance should be also accounted for; an inclined crack initiated in an
element’s web intersects the stirrups which can provide resistance according to the formula
6.8 EC2.

Ultimate shear resistance

The maximum of 6.2 and 6.8 from the EC2 for the region cracked due to bending has to
be compared with the minimum value resulting from the expression 6.4, or if V6.4 < V6.2 or
V6.4 < V6.8, the resistance obtained with the expression 6.2 or 6.8. The minimum value of
this comparison is the shear resistance of the beam. It can be represented with:

VUltimate = min[max(V6.2, V6.4, V6.8 for Region II),max(V6.2, V6.8 for Region I)] (4-2)

where indices indicate the expression number in the code and the regions are depicted in
Figure 4-14. For members without shear reinforcement the shear resistance is taken as the
smallest value of results from the expressions 6.2 and 6.4.
It is important to mention that the higher values of the coefficient C and k1 in the expression
6.2 of the EC2 were used: 0.163 (0.12 in EC2) for the coefficient C and 0.225 for k1 (0.15 in
EC2). The first increase originate from the study of Regan, 1993 which later was confirmed
by König/Fischer. The mean value for 0.225 is the result of the currently ongoing research
at the TU Delft.

As far as calculations from [13] are concerned, it can be concluded that the predictions given
by the author were made without distinguishing between regions cracked in flexure and tension
shear. Additionally, shear resistance against the web splitting tensile crack was not checked
for different sections. Instead, from the results of the expressions 6.2, 6.4 and 6.8 in EN
1992-1-1, the lowest value of these estimations was taken as the governing shear resistance.
Lastly, values of coefficient C = 0.12, k1 = 0.15 were used as specified in the code, thus lower
than in this project.

4-5-2 Example of Calculations for Beam LB6

Refer also to Appendix C for all results and Mathcad calculations

Shear resistance of region uncracked in flexure

In the first step, the procedure as shown in Figure 4-15 is used to determine shear resistance
for beam LB6 in the section located x = 0.2m from the edge of the support. The assumed
shear force resistance is: Vtrial = 157.7kN . It can be seen from Figure 4-16 that it is the
lowest value in the region uncracked in flexure. Please bear in mind that the trial value of
shear resistance in not known beforehand and it has to be found iteratively. Also the position
of critical section is not prescribed to a certain distance from the edge of the support. Con-
sequently, in order to determine the critical section, an iterative procedure has to performed
at several locations.
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Shear force and bending moment from the self-weight calculated with the equations as derived
in section 4-3-1 at the location x are:
VEg = 3.56kN and MEg = 1.76kNm.
The total shear force:
Vtot = Vtrial + VEg = 157.7kN + 3.56kN = 161.3kN
The bending moment from the applied loads increased by the effect self-weight:
Mtot = Vtrial∗(1200mm−x−150mm/2)+MEg = 157.7kN ∗(1200mm−200mm−150mm/2)+
1.76kNm = 147.70kNm
The axial stress from prestressing is:
σc,cen = Naxial/Ag = −797kN/73225mm2 = −10.884MPa
The calculations of the principal stresses at the level of centroidal axis and the junction of
flange and web are carried out separately.

Shear stress at the centroidal axis:
τCentroid = VtotQCentroid

bwIg
= 161.3kN∗6.32∗106mm3

73mm∗2.55∗109mm4 = 5.476MPa
Stress in the principal direction:

σI,Cen =
√
τ2
Cen +

(σCen
2
)2+σCen

2 =
√

(5.476MPa)2 +
(
−10.884MPa

2

)2
+−10.884MPa

2 = 2.278MPa

Normal and shear stresses at the junction of the web and the flange:
σTopF l = Naxial

Ag
+ Mtot∗zTopFl

Ig
= −10.884 + 147.70kN∗m∗0.18m

2.55∗10−3mm4 = −0.461MPa

τTopF l = Vtot∗QFlange
bw∗Ig = 161.3kN∗5.14∗106mm3

73mm∗2.55∗109mm4 = 4.453MPa
Stress in the principal direction:

σI,TopF l =
√
τ2
TopF l + (σTopFl2 )2 + σTopFl

2 =
√

5.4762 +
(
−0.461MPa

2

)2
+ −0.461MPa

2 = 4.229MPa

For the considered section as well as the magnitude of shear force Vtrial = 159.31kN , tensile
stress in the principal direction reached the concrete tensile strength fctm = 4.229MPa at
the level of web-flange junction. It is a governing depth in the section. No further iterations
are necessary. Note: if for the assumed Vtrial, σI 6= fctm, a different value of Vtrial has to be
assumed and calculations repeated till σI = fctm.

As indicated in equation 4-2, the above-obtained shear resistance has to be compared with
resistance attributed to stirrups (6.8 EC2) at this location and shear resistance for members
not requiring shear reinforcement (6.2 EC).
The amount of reinforcement at the specified location x = 200mm from equation 4-1:
As = 269.041mm2/m
Shear resistance of stirrups calculated for θ = 21.8◦:
VR,s = Asfywz cot(θ) = 269.041mm2/m ∗ 0.448m ∗ 529MPa ∗ cot(21.8◦) = 159.31kN
Shear resistance acc. 6.2 EC2 for members not requiring shear reinforcement:
VR,c = [CRd,ck(100ρlfcm)

1
3 + k1σcp]bwd = 0.163 ∗ 1.65 ∗ (2.0 ∗ 63.6)1/3 ∗ 0.225 ∗ 10.884MPa ∗

74mm ∗ 473mm = 131.247kN
where:
CRc = 0.163;
σcp = Naxial/Ag = 797kN/73225mm2 = 10.884MPa;
k = 1 +

√
200
d = 1 +

√
200/473mm = 1.65;
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ρl = min
(
As
bwd

, 0.02
)

= 0.02;
k1 = 0.225
The dictating criterion in expression 4-2 takes the highest value as the governing shear resis-
tance: V = max(157.7kN ; 159.31kN ; 131.247kN) = 159.31kN

Shear resistance of region cracked in flexure

According to the assumed procedure, the governing ultimate shear resistance is the minimum
value of regions uncracked and crack in flexure. In Figure 4-16, it can be observed that within
the region limited by the blue line (cracked in flexure) the maximum shear reinforcement is
related to resistance attributed to yielding of stirrups. The shear resistance therefore is:
VR,s = As/sfywz cot(θ) = 276.57mm2/m ∗ 0.448m ∗ 529MPa ∗ cot(21.8◦) = 163.77kN
Note: for the derivation of z in the above formula, refer to Appendix B.

Shear resistance in the region cracked in flexure is equal to max(6.2, 6.8) as explained in
expression 4-2. Therefore the remaining flexural shear resistance acc. to 6.2 EC2:
VR,c = [CRd,ck(100ρlfcm)

1
3 + k1σcp]bwd = 0.163 ∗ 1.65 ∗ (2.0 ∗ 63.6)1/3 ∗ 0.225 ∗ 10.884MPa ∗

74mm ∗ 473mm = 131.247kN
V = max(163.77kN, 131.247) = 163.77kN

Governing shear resistance

To finalize calculations, the governing resistances from both regions have to be compared and
the minimum value according to equation 4-2 constitutes the ultimate shear resistance. It is
therefore:
Vultimate = min(159.31kN ; 163.77kN) = 159.31kN
Due to the fact that the location corresponding to the shear resistance of 159.31kN is outside
the region crack in flexure as indicated by a blue line in Figure 4-16, the failure mechanism
is shear tension.

4-5-3 Results

In Figures 4-16, 4-17, 4-18 the predictions of shear resistance according to the EC2 are
presented. The calculations were carried out at sections spaced 50 mm starting from the
inner edge of the support. The values of the shear force causing flexural cracking are marked
with a blue dashed line. It is important to remember that these are values of the shear force
causing an onset of cracking in the outer top fibre i.e. due to bending, not the shear resistance.
These cracks can further propagate into flexural shear cracks. The shear resistance within
the test region is controlled by the stirrups with values obtained from the expression 6.8 EC2.
The remaining lines are the resistances attributed to different formulas. The shape of the
curve of shear tension resistance can be split in two branches. In the first branch (the sloped
branch) values of shear resistances resulting from stresses at the web-flange junction reached
the tensile concrete strength before stresses at the centroidal axis, thus decisive. In the second
branch the situations is reversed with stresses at the centroid dictating the outcome; almost
constant values of VR,c6.4 are the effect of calculations being independent of the bending
moment. The shear resistance for the critical section is indicated with a green marker. It
can be see that for all specimens the critical section was found to be within the distance
of 100-200 mm from the axis of the support. The summary containing the calculated shear
resistance and governing failure mechanism is shown in Table 4-6.
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Table 4-6: Results of the analysis according to the EC2

Beam Shear resistance [kN] Distance x [m] Governing mechanism
LB6 159.31 0.2 Tension shear
LB10 160.2 0.15 Tension shear
LB11 163.143 0.15 Flexural shear

The shear resistances from the analysis for all beams are similar. Not only in terms of the
magnitude but also the locations of the critical sections. They are either the values of a
splitting shear capacity at the transition from flexural crack region (region I) or constant
resistance attributed to stirrups in the Region I. For the specimens LB6, 10 and 11 these
values happened to be very much alike. It is also aftermath of the short region I following
from high compression applied to the beams.
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Figure 4-16: Shear resistance for the LB6 according to the EC2; VUltimate = 159.31kN
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Figure 4-17: Shear resistance for the LB10 according to the EC2; VUltimate = 160.2kN
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Figure 4-18: Shear resistance for the LB11 according to the EC2; VUltimate = 163.143kN

4-6 Analytical Solution RBK 1.1

4-6-1 General Procedure

The RBK (Richtlijnen Beoordeling Kunstwerken) are the guidelines for an assessment of
structural safety of existing structures. Shear resistance is calculated as a sum of concrete and
steel contributions. The contributions are obtained from the EC2 expression with adjustments
applied. The total resistance acc. to RBK 6.2.1 (2):

VRd = VRd,s + VRd,c (4-3)

where the steel contribution to the resistance for prestressed concrete is calculated with the
expression 6.8 from the EC2 with an angle of struts inclination limited to 30 deg. The con-
tribution from concrete acc. to 6.2.2 (1) follows from the modified expression 6.2 from the
EC2:

VRd,c = [0.12kcapk(100ρlfck)(1/3) + 0.15σcp]bwgemde (4-4)

with kcap = 1 for members different than plates; bwgem determined based on Figure 2.1 in the
RBK 1.1 and cl. 6.2.2 (1) as Aprojected/d with the maximum of 1.25bmin and bmin being the
smallest width of the projected cross-section with exclusion of ducts and prestressing cables.
The areas of the projected sections are given in Figure 4-19.

4-6-2 Example of Calculations for Beam LB6

Refer also to Appendix D for all results and Mathcad calculations

The shear resistance according to the procedure from Figure 4-15 will be applied for beam
LB6 in the section located x = 0.7 from the edge of the support. The assumed shear force
resistance is: Vtrial = 216kN . From the calculations it was recognized that the shear resis-
tance for this section is governing.
Shear force and bending moment at this locations are:
VEg = 2.64kN and MEg = 0.21kN ∗m.
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Bending moment from the applied loads increased by the self-weight:
Mtot = Vtrial∗(1200mm−x−150mm/2)+MEg = 216kN ∗(1200mm−700mm−150mm/2)+
0.21kN ∗m = 92.01kN ∗m
Axial stress from prestressing is:
σc,cen = Naxial/Ag = −797kN/73225mm2 = −10.884MPa
This was general input. Now, the calculations for the junction of the web and the flange and
at the centroid of the section will be considered separately.

Shear stress at the centroidal axis:
τCentroid = VtotQCentroid

bwIg
= 218.6kN∗6.32∗106mm3

73mm∗2.55∗109mm4 = 7.423MPa
Stress in the principal direction:
σI,Cen =

√
τ2
Cen + (σCen2 )2+σCen

2 =
√

(7.423MPa)2 + (−10.884MPa
2 )2+−10.884MPa

2 = 3.762MPa

Normal and shear stresses at the junction of the web and the flange:
σTopF l = Naxial

Ag
+ Mtot∗zTopFl

Ig
= −10.884MPa+ 92.01kNm∗0.18m

2.55∗10−3mm4 = −4.39MPa

τTopF l = Vtot∗QFlange
bw∗Ig = 218.6kN∗5.14∗106mm3

73mm∗2.55∗109mm4 = 6.037MPa
Stress in the principal direction:
σI,TopF l =

√
τ2
TopF l + (σTopFl2 )2 + σTopFl

2 =
√

6.0372 + (−4.39MPa
2 )2 + −4.39MPa

2 = 4.229MPa

One can see that tensile stress in the principal direction at the considered location at the web-
flange junction for the assumed shear force reached the concrete tensile strength. It means
that the assumed shear force Vtrial is equal to the shear resistance acc. to 6.4 EC2.

This shear resistance has to be compared with the shear resistance from combined contribu-
tions of steel and concrete.

Contribution of concrete:
the "mean" width:
bwgem = min(1.25bw; Ac,projectedde

) =
min(1.25 ∗ 73mm; 42778mm2/473mm) = min(91.25mm; 90.44mm) = 90.44mm

A

RBK,LB6

=42778 mm

2
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Figure 4-19: Projected section area according to RBK

Size effect factor: k = 1 +
√

200
de

= 1.65
Reinforcement ratio: ρ = As

bwgem∗de = 934mm2

90mm∗473mm = 0.022 and ρ ≤ 0.02 −→ ρ = 0.02

The concrete contribution is therefore:
VR,c =

[
0.163 ∗ 1 ∗ 1.65 ∗ (100 ∗ 0.020 ∗ 63.5)1/3 + 0.225 797∗103

73225mm2

]
∗473mm∗90.44mm = 162.601kN .

Maciej J. Kraczla Master of Science Thesis



4-6 Analytical Solution RBK 1.1 77

The resistance of stirrups that constitutes another source of strength to the ultimate shear
resistance is calculated with equation 2-29 for θ = 30◦. For the amount of stirrups from
equation 4-1, the resistance is:
VR,s = Aswzfywd cot θ

s = 138.2857mm2/m ∗ 0.448m ∗ 529MPa ∗ cot 30◦ = 56.726kN

Total shear resistance:
Vtot = VR,c + VR,s = +162.601kN + 56.726kN = 219.327kN

From the comparison of Vtot = 219.327kN and VShearTension = 216kN can be deduced that
because 219.327kN > 216kN , the former is the governing shear resistance at this cross section.
In conclusion: for the considered section at x = 0.7m according to the assumed procedure for
RBK 1.1 the beam fails in shear tension with governing ultimate shear resistance from the
combined contributions of stirrups and concrete.

4-6-3 Results

The results of the RBK 1.1 code should be interpreted in the same way as the outcome
of the EC2 calculations hence the reader is referred to the previous section. In Figure 4-
20 through 4-22 the curves represent the results of different formulas. One can already see
that the resistance attributed to concrete is significantly higher than that obtained from the
EC2. An important role to the overall resistance plays concrete providing resistance which
in the considered cases is even higher than that provided by stirrups (at the reduced angle
θ = 30◦). In addition, the location of the governing resistance is shifted towards the point of
contraflexure and equals roughly 500-700 mm from the axis of the west support plate.
The results are summerized in 3-2 and Figure 4-23.

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Sh
ea

r 
re

si
st

an
ce

 [
kN

] 

Distance from the edge to the loading plate [m] 

LB6 

Flexural cracking shear force

Tension shear resistance

RBK 1.1 total

Concrete contribution

Ultimate shear force

Figure 4-20: Shear resistance for the LB6 according to RBK 1.1; VUltimate = 219.33kN ;
governing mechanism: shear tension
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Figure 4-21: Shear resistance for the LB10 according to RBK 1.1; VUltimate = 278.48kN ;
governing mechanism: shear tension/flexural shear
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Figure 4-22: Shear resistance for the LB11 according to the RBK 1.1; VUltimate = 199.2kN ;
governing mechanism: shear tension

4-7 Comparison of the Theoretical and Experimental Results

Table 4-7 and Figure 4-23 summarize the predictions by different methods. To estimate
which of the methods determines shear resistance the most accurately, the ratio between the
experimental results and the shear resistances were calculated. The ratios the closest to unity,
thus the best predictions, are highlighted.

The CSA "more accurate method" gives the best prediction for the beam LB10. For the
beam LB6 it overestimates the capacity. The CSA General Method provides lower values
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than the detailed analysis acc. to the CSA code. It predicts conservative results for beam
LB10 and LB11 while for the LB6 the predicted shear capacity is very close to unity. The
resistance predicted for LB11 was much lower than the experimental results. The reason
for this deviation is the fact that the experimental ultimate load for LB11 was taken as the
cracking load while the CSA code predicted the post-cracking shear strength which was low
for beams without stirrups [13].
As expected due to the common background, the MC2010 yielded similar results to the CSA
code. The prediction for the LB6 were slightly lower as compared to the CSA code. For
the beam LB10, the MC2010 predicted the resistance more accurately than any other code
except for the detailed method of the CSA. Similarly to the CSA code, the resistance for
beams without shear reinforcement was much lower than the experimental results. It can be
again justified by the code taking the post cracking shear strength.
The results from the EC2 were fairly satisfactory in terms of values but not so much when
the location of the crack is concerned. The code predicted the resistance of the LB6 the most
accurately out of all the codes. One the other hand, it slightly overestimates the resistance
of the beam LB11. The critical section was determined to be located in the region crack in
flexure thus by no means in agreement with the experimental observation. The resistance of
the LB10 was conservatively underestimated.
Lastly, the RBK 1.1 proved to be overly unconservative (unsafe) for all specimens. Even
though the location as well as the governing shear failure mechanism for beams LB6 and
LB11 were predicted correctly, the ultimate shear strength was substantially overestimated
by 29 and 28% for LB6 and LB11 respectively. The interpretation of the governing results
of beam LB10 is ambiguous as the resistance is predicted to be constant across the beam
therefore both in the region cracked in flexure as well as in the region where the shear tension
failure might appear.
When the average of ratios as well as the coefficient of variation are concerned, the results
of the CSA detailed method were the best; even though the shear resistance of LB6 was
overreached by 8%. The remaining codes of practise result in similar coefficient of variation.
It can be reasoned by stating that for each of the codes, one of the predictions was over or
underestimated.

In Figure 4-24, the contributions of concrete and steel to the ultimate shear resistance at
different sections are presented. Even though the methods have a similar background, a few
dissimilarities can be observed. While comparing the charts, one can notice that in the CSA
code, the contributions of steel and concrete are more levelled out. In contrast, the resistance
in the MC2010 is mostly attributed to stirrups. The difference stems from the way in which
the sections with the amount of stirrups higher than minimum are considered (for the sections
without stirrups, the methods are the same). For these sections, unlike the CSA code, MC2010
assumes conservatively longitudinal strains equal to zero. Moreover, for sections in tension
under the assumption of the same value of an average strain εx, the contribution of concrete
according to MC2010 results in lower values as compared to the CSA code. To compensate
for this, greater resistance has to be attributed to shear reinforcement. It can be achieved
by virtue of reduced values of an angle θ. The θ calculated with the MC2010 provision is
generally lower than θ estimated by the CSA code. It can be therefore reasoned that the
function of the reduced angle in MC2010 is to compensate for the intentionally diminished
contribution of concrete to the ultimate resistance. Naturally, the lower values of the angle
of compressive struts result in a crack intersecting a higher number of stirrups thus higher
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shear resistance originated from shear reinforcement.

Table 4-7: Summary of prediction by analysed methods

Specimen LB6 LB10 LB11 Average C.o.V
N [kN] -797 -822 -809

Vu−exp [kN] 155.8 215 142.8
CSA General Method [kN] 159.1 182.25 86.29
CSA Detailed Method [kN] 168.06 199.1 91.43

MC2010 [kN] 137.98 190.2 87.51
EC2 [kN] 159.31 160.2 163.143

RBK 1.1 [kN] 219.33 278.48 199.2
Exp/CSA General Method 0.98 1.18 1.65 1.27 27.30 %
Exp/CSA Detailed Method 0.92 1.08 1.56 1.19 27.85 %

Exp/MC2010 1.13 1.13 1.63 1.30 22.34 %
Exp/EC2 0.98 1.34 0.88† 1.07 23.02 %
Exp/RBK 0.71 0.77 0.72 0.73 4.62 %
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Figure 4-23: Normalized summary of predictions by analysed methods

To conclude the discussion, it is crucial to appreciate the most suitable method for assessing
shear tension failure in existing bridges. The decision is made based on the following criteria:

• conservative methods are preferred over unconservative; overestimation of the shear
resistance can lead to unexpected, abrupt failure which implies possible tragic conse-
quences,

†the value of shear strength corresponds to the shear resistance calculated according to expression 6.4 EC2
which is in disagreement with the experimental research outcome.
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• the code has to be consistent in terms of the predicted shear strength as well as the
location of the critical section with experimental results; this means that the governing
failure mechanism as well as the magnitude of failing shear force should be in agreement
with the observations from the test,

• the results from the point above followed from the models should be as accurate as
possible

Sieving out could begin by eliminating both RBK 1.1 and EC2. The results of RBK greatly
overestimate the shear resistance while the EC2, despite of providing values close to the reality
for beam LB6 and LB11, neither predict the correct failure mechanism nor the location which
is claimed to be too close to the west support. The ratios close to unity for beam LB6 and
11 could be to thought to be coincidental. It can be explained by the fact that the prediction
comes from the region reinforced against shear (near the support)thus attributed to stirrups
while the beam failed in the region unreinforced with stirrups. At the same time the code is
inconsistent for beam LB10 yielding an underestimated value.
As far as the "strain state" based methods are concerned the results are similar and here the
most accurate prediction for the beam LB10 and a conservative prediction for LB6 seem to
be decisive. The resistance for the specimen sparsely furnished with shear reinforcement is
too conservative and even though special measures through scrutinizing the real strain state
were undertaken, the results were not significantly improved. Concluding from the above
considerations the results of the fib Model Code 2010 give the most accurate and the same
time conservative shear resistances. The results according to this method are also the most
consistent for members supplied with shear reinforcement.

Please note I: from the previous paragraph, it was concluded that none of the methods
is appropriate to accurately evaluate members without shear reinforcement failing in shear
tension. However, if a relation to the results of the expression 6.2 EC2 with mean values in
section 4-5-3 is made, the resistance at the level of 133.42 kN and the ratio Vu−exp/VRc,6.2 =
142.8kN/133.42kN = 0.93 is obtained. It implies that for members unreinforced against
shear, the hereby assumed procedure (section 4-5-1) is not suitable and with a single formula
the shear resistance can be predicted much more accurately. ?

Please note II: the choice of the fib MC2010 as the most adequate shear provision was not
obvious. It clearly suffers from a major drawback of inability to address the governing shear
failure mechanism which is of high importance. Nevertheless the location of the predicted
critical section can serve as an indirect indication of the possible failure mode. This, in a
combination with good engineering judgement, might be sufficient in some cases.

?even though not directly expressed in the EC2, the formula EC2 can be applied in the region crack and
uncracked in flexure. Moreover, the empirical expression was obtained based on the results of experiments of
beams failing in flexural shear therefore the resulting values of the shear resistance assigned to shear tension
failure might be coincidental
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Figure 4-24: Values of shear resistances according to CSA and MC2010 methods attributed to
concrete and steel for individual sections
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Chapter 5

Numerical Analysis of Benchmark
Beam LB6, LB10, LB11

5-1 General Aspects of Numerical Modelling of Concrete

To model cracking, which is one of the most common types of nonlinearity in concrete struc-
tures, there are discrete crack or smeared crack approaches (with a fixed or with rotating
fracture plane) available. The cracks accordingly can be taken as smeared all through an
element or present at finite element boundaries for the discrete cracking. In this section, an
attempt to explain basic concepts, and thereby the decisions taken throughout the process of
modelling is made.

5-1-1 Discrete Crack Modelling

In the discrete crack concept cracks are modelled through a separation between element
edges [27]. The discontinuity is modelled with an application of an interface element between
e.g. plane stress elements; in this case line interface elements. These elements relate the forces
acting on the interface (a traction vector) to the relative displacement of the two sides of the
interface [28]. For a two-dimensional configuration the relative displacement vectors consist of
a mode I opening component and a mode II sliding component. Further in [27], it is explained
that this approach suffers from two drawbacks. The first drawback is the fact that separation
of the element edges implies "a continuous change in nodal connectivity, which does not fit the
nature of the finite element displacement method". Secondly, the crack propagates along the
path predefined by a user by means of an interface element. The approach of discrete crack
modelling may be undertaken when the location of the potential cracking is well-known.
Concrete structures are typically characterized by distributed fracture. Such a dispersed
cracking is especially valid for reinforced concrete structures. Modelling of structures with
discrete cracks is impractical. This provides the reason why it is appropriate and rational to
consider the numerical models in the report with the smear crack approach explained below.
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84 Numerical Analysis of Benchmark Beam LB6, LB10, LB11

5-1-2 Smeared Crack Modelling

Modelling of reinforced concrete with dispersed cracking as a quasi-continuous material waives
from a user defined crack location but instead, the cracks are idealized as being distributed
over the whole element. The [27] explains that the procedure is attractive twofold. Firstly, it
preserves the topology of the original finite element mesh and consequently no redefinition is
needed and secondly, it does not restrain the orientation of the crack planes.
In principle, in the smear crack approach the material is initially considered as isotropic. Upon
generation of one or more fractures in a representative area of an element that is attributed
to an integration point, the fractures are translated into a reduction of stiffness and strength
at integration point. The fractures are initiated when e.g. the condition of tensile stresses in
the principal direction is violated. This implies that at the integration point which is where
stresses and strains are calculated, the initially isotropic stress-strain relation is substituted
with the orthotropic stress-strain relation. The axes of orthotropy are defined in direction
normal and tangential to the crack at the angle φ to the global x, y coordinate system. With
the angle φ the local components of stress and strain can be related to the global components
in the x,y coordinate system through transformation matrices: T ε(φ) and T σ(φ):

εns = T ε(φ)εxy (5-1)

σns = T σ(φ)σxy (5-2)

σxy = T−1
σ (φ)DST ε(φ)εxy (5-3)

where DS is a stiffness matrix accounting for a gradual reduction of the tensile carrying
capacity (µ) and shear stiffness retention with β given by

DS =

µE 0 0
0 E 0
0 0 βG

 (5-4)

The reduced shear stiffness component βG(0 ≤ β ≤ 1) depends upon the assumed stress-
strain concept; fixed or coaxial (rotating) stress-strain concept. The shear as well as tensile
behaviour of concrete is elaborated in subsequent sections.

5-1-3 Shear Reduction β

Upon cracking, the crack plane in a concrete element is defined as normal to the maximum
principal stress direction. At the moment of cracking, shear stress and strain are zero as the
crack plane coincides with the principal stress direction. As loading proceeds, the principal
axes rotate and this eventually leads to initiation of a new crack. Now, two options are
possible. As loading proceeds or/and due to potential redistribution of strains and stresses
after a cracking onset, the principal axes rotate and this eventually leads to initiation of a new
crack. As the already existing crack plane is regarded as being geometrically fixed (under the
assumption of the fixed crack concept), the misalignment of a new orientation of the principal
axes, therefore the newly formed crack, and the plane of existing crack gives a rise to shear
stress resulting from being subjected to shear strain. Consequently, the fixed crack approach
requires an explicit definition of shear transfer along the crack interface. It is furnished via
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5-1 General Aspects of Numerical Modelling of Concrete 85

Figure 5-1: Classification of the smeared crack approach [14]

the shear retention factor β. A number of different approaches is available in FEA software
packages. The approaches of interest in this report are: variable shear retention, damage
based shear retention and aggregate size based shear retention; where shear retention means
a reduction of the shear stiffness as a result of cracking. The behaviours are further analysed
in the section devoted to evaluation of shear behaviour in total strain based fix crack models,
section 5-5.
A different situation applies for the rotating crack concept. The rotating smeared crack
approach primarily assumes that the crack direction coincides with the principal direction of
average strain. Here only normal and parallel to the crack axis stress-strain relations need to
be defined and shear stiffness vanishes.
The classification of the smeared crack approaches are summarized in Figure 5-1. The fixed
crack approach is regarded as physically more appealing due to its ability to included shear
stresses on the crack interpreted as aggregate interlocking. It is also closer to the reality that
after a crack initiation, its orientation remains in place while only principal strains rotate. In
the rotating crack approach, a crack plane is continually updated to align with principal strains
which seems to be incorrect. Nevertheless, this proves to significantly simplify computation
and still provide reasonably accurate results.

5-1-4 Tensile Behaviour

A concrete element prior to cracking is described as an isotropic linear-elastic material with
Young’s modulus E and Poisson’s ratio v. Once the element is cracked, the behaviour of
a crack is locally described by a stress-crack opening (traction/crack strain for the smeared
cracking framework) relation whereas surrounding concrete continue with linear elasticity,
Figure 5-2. The relation stress-crack opening applies to discrete cracking and as far as smeared
cracking framework is concerned, it has to be translated into average stress-average strain
relation. It can be done by smearing the cracks over a specified reference length/bandwidth
which can be conveniently assumed as an element size [14]. To address a tensile behaviour
of concrete after cracking, [27] specifies that the most versatile alternative in finite element
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analysis is to use mode I fracture function representing tensile tension softening through the
fracture energy parameter Gf and the shape of tensile-softening diagram. Fracture energy is
the energy consumed per unit of crack propagation in the mode I while tension softening is
defined as a decrease in the ability for concrete to bridge/resist the tensile stresses when a
crack width increases. The possible diagram shapes that can be employed in the FEA vary
from linear, bilinear to nonlinear exponential. The area under the softening curve is fracture
energy for discrete cracking or when divided by the crack bandwidth, fracture energy for
smeared crack formulation. In the matrix 5-4, a gradual reduction of the tensile strength is
introduced via µ.

Figure 5-2: Softening behaviour of concrete [14]

5-2 Solution Methods in FEA

A credible assessment of strength and integrity of concrete structures requires non-linear mod-
elling of materials and geometry. In such an analysis the relation between a force vector and
displacement vector are nonlinear. To determine the state of equilibrium, the incremental-
iterative solution procedure is used. The name stems from discretization not only in space
(with finite elements) but also in time with the external load increments [28]. In each load
increment the equilibrium is achieved by an iterative solution algorithm. The discretization
with load increments is imposed to ensure convergence. The accuracy of the solution also de-
pends on the size of the increments as the behaviour of the structures is often path dependent
meaning that different stress states can be obtained depending on the way displacement/force
was applied.

5-2-1 Incremental Procedure

The most elementary incremental procedures of applying an external load are the load and
displacement control. As the names suggest, the first method applies a load in a number
of increments while the second types imposes prescribed displacement onto a structure, also
in an incremental manner. Which of these alternatives is selected depends primarily on the
nature of a given problem.
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5-2-2 Iterative Procedures

An incremental solution with equilibrium iterations after each step is a correction to a pure
incremental procedure. In the pure incremental approach, Figure 5-3 material stiffness is
updated after each load increment and the value corresponds to the displacement obtained in
a previous increment. This however results in the calculated curve progressively drifting away
from the correct curve. It is important to know that the correct curve is in fact unknown
therefore the calculated error is unknown as well. The measure to eliminate this problem is the
implementation of equilibrium iteration performed by the Newton-Raphson method. A force
imbalance that is the difference between the applied force in an increment and the resisting
force can be used to drive the displacement towards the correct value. Consider the example
shown in Figure 5-4. In the first iteration that would enable to approach the correct solution,
the tangent stiffness kta is used to solve the linear equation for ∆u through kta ∆u = ePA.
and then added to uA. This displacement is now used to calculate a new tangent stiffness
(reduced in case of softening) for the subsequent iteration. With a new force imbalance,
the procedure is repeated until the force imbalance is considered by a convergence criterion
small enough that a new force increment can be applied. The method in which the stiffness
relation is evaluated for every iteration is called Regular Newton-Raphson. An alternative
to Regular Newton-Raphson is the Modified Newton-Raphson. This method evaluates the
stiffness relation only at the start of the increment. For every iteration, only the prediction of
the iterative incremental displacements and the internal force vector have to be calculated.

Figure 5-3: Pure incremental procedure [15]
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Figure 5-4: Incremental iterative procedure [15]; a) regular Newton-Raphson b)modified Newton-
Raphson

5-3 Pre-processing

The objective of this part is to develop a finite element model that simulates the experiments
as closely as possible through non-linear analyses. The non-linear finite element analyses
according to the classification of the fib Model Code 2010 fall within the highest level of
approximation IV. The hereby non-linear models were developed based on the Guidelines for
Nonlinear Finite Element Analysis of Concrete Structures RTD 1016:2012 [29].

Please note that the recommendations of RTD 1016:2012 applied here are related to general
procedures of treating girder members but do not apply to all material properties. The
material properties (if covered) employed in the models were as specified in the Liping Xie
PhD dissertation [13]. In the remaining cases, the instructions from [29] were followed. By
means of that, the intention is to adapt measures available in the software (i.e. different iter-
ative procedure, shear retention functions etc.) according to RTD 1016:2012 to the specified
material properties in [13].

5-3-1 Geometry

The test set-up was chosen to reproduce the loading condition of a continuous beam. The
geometry with a longitudinal plane of symmetry, in-plane loading and boundary conditions
allow for approximations to be made to the full three-dimensional beams. Additionally,
according to the beam theory the stress in the out of plane direction is zero. Consequently, the
beams were conveniently modelled as plane stress models. Such a measure enables significantly
reduce pre and post processing as well as computational expenses without compromising the
accuracy of results. The plane stress models were constructed using plane elements with a
given thickness. The as-built geometry was used therefore deviations arisen at execution were
not neglected.
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5-3-2 Boundary Conditions

In Figure 5-5 the model of the beam LB6 is depicted. The fixed translations are located
at the bottom side of the element. At the top, the prescribed displacement is applied. In
order to avoid stress concentrations, the load and support reaction forces were introduced
through steel loading plates. Due to occurrence of the discontinuous behaviour between steel
plates and concrete, interface line elements have to be inserted. The very high dummy normal
stiffness modulus was chosen:

kn = 1000 ∗ Ec/lelement = 1000 ∗ 40300/50mm ≈ 806000N/mm3

where 50 mm stands for the length of initially assumed adjacent continuum element, Ec is the
Young’s modulus and small tangential stiffness kt = 100N/mm3. In further analysis the size
of elements was more refined. The characteristics of the normal stiffness modulus of interface
elements remained the same as they were deemed to be high enough to be consider dummy.

Figure 5-5: Applied boundary conditions and loading

Apart from the prescribed deformation, prestressing and self-weight loading were applied.
The prestressing was introduced through unbonded strands anchored in the plate elements
at the both ends of the members. The end steel plates spread across the whole section of a
beam to avoid splitting of concrete in the web. The prestressing force in each of the 1-inch
smooth bars was 797kN/2 ∗ A1InchBar = 786N/mm2 (please note that different values were
used for specimens LB10 and LB11 because the values of prestressing force, although similar,
were not exactly the same). As far as the value of prescribed deformation is concerned, it was
specified as the maximum deflection from the readings of vertical LVDTs used in the test.

5-3-3 Material Properties and Material Behaviour

The input data used in the report relies to a large extend on the specified values in [13]. If
the input required additional parameters not covered in [13], the recommendations from RTD
1016:2012 were exercised.
Concrete input data
The concrete compressive strengths used in the models were taken from the laboratory tests
performed on cylinders at the test day. The cylinders were cured under the same condition as
the specimens. The concrete tensile strength was not measured but derived from the concrete
compressive strength.
The fracture energy Gf was calculated with:

GF = Gf0

(
fcm
10

)0.7
Nmm/mm2 (5-5)
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where Gf0 = 0.025 for da = 8mm [30].
The compressive fracture energy:

GC = 250GF (5-6)

Cl. 2.4.1.1 of [29] recommends to use a reduced Young’s modulus with a reduction factor
equal to 0.85 to account for initial cracking due to creep, shrinkage. The reduction was
applied to the derived values of Ec specified in [13]. Young’s modulus including the reduction
is calculated in [29] as:

0.85Eci = 0.85Ec0
(
fcm
fcm0

)1/3

and for e.g. LB6 it equals to:

0.85 ∗ 22000
(63.5

10

)1/3
= 34.63GPa

which is a slightly larger value than listed in Table 5-1. Nevertheless, in the models the
values as given in Table 5-1 were applied. It can questioned whether it is appropriate to
use the reduction of Young’s modulus in newly built structures as recommendations of RTD
1016: 2012 address existing structures. To argument the decision, in tests of [13] members
were heavily reinforced against flexure. Due to a high level of restrain from the used steel,
development of microcracks is expected to be greater which result in a reduction of material
strength.

Table 5-1: Concrete input data

Beam LB6 LB10 LB11

Linear material properties Young’s modulus [N/mm2] 34255 32215 32215
Poisson’s ratio 0.15 0.15 0.15

Tensile behaviour Tensile strength [N/mm2] 2.63 2.60 2.60
Fracture energy [N/mm] 0.091 0.090 0.090

Compressive behaviour Compressive strength [N/mm2] 63.5 62.3 62.3
Compressive fracture stength [N/mm] 22.75 22.5 22.5

Steel for rebars and prestressing bars

The material properties for bars 10M, 15M, wires D4 and prestessing steel were provided
in [13]. The simplified stress-strain relations are presented in Figure 5-6.
The test set-up was design such that the highest force in the prestressing smooth-rebars would
not exceed the yield force therefore the prestressing steel was modelled as linear elastic. The
steel properties are listed in Table 4-3 supplemented by the Poisson’s ratio v = 0.3.

Constitutive Model for Concrete

The behaviour of reinforced concrete incorporated in the models is shown in Table 5-2. For
the tensile behaviour after cracking, RTD 1016:2012 recommends models with an exponential
softening diagram. The compressive behaviour of concrete should have a specified limit of
maximum stresses. The parabolic stress strain diagram with a softening branch based on
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Figure 5-6: Stress-strain relation for steel used in the model

compressive fracture energy is recommended. For shear behaviour RTD 1016:2012 specifies a
rotating crack model and a fixed crack model with variable shear retention as preferable.

The reduction of the Poisson’s effect was applied as well. The general idea of the reduction
is that when an finite element is a subject of cracking, the Poisson’s effect ceases to exist. It
means the element while being stretched no longer contracts in the direction perpendicular
to the direction of stretching [28].

Table 5-2: Concrete Constitutive Model

Total strain based crack model
Fixed/rotating

Tensile behaviour
Tensile curve Exponential

Reduction due to later cracking Vecchio and Collins 1993,
lower bound reduction curve 0.6

Poisson’s ratio reduction Damage based
Compressive behaviour

Compression curve Parabolic
Shear behaviour

Shear retention function Damage based
Variable

Steel behaviour

To model the behaviour of steel reinforcement an elastic-plastic stress-strain relationship with
strain hardening hypothesis was selected, Figure 5-6. Yielding of steel is expressed with the
von Mises yield criterion.
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5-3-4 Element Selection and Discretization

The prestressed beams were modelled using the plane stress method. The eight-node quadri-
later isoparametric plane stress elements based on quadratic interpolation and 3x3 Gaussian
integration scheme were adopted for the concrete elements and the steel loading and support
plates. The reinforcement was modelled with embedded reinforcement elements. A perfect
bond between surrounding elements and the embedded reinforcement was specified. This
implies that reinforcement strains are computed from the displacement field of the mother
element. The embedded elements are integrated within a mother element using 2-pointed
integration. The specified mesh size was 25mm.

5-4 Preliminary Analysis

The goal of the preliminary analysis was to check whether loading is applied correctly and
forces are introduced to the test region as intended. It was also meant to ensure that the
incremental-iterative procedure provides rational results.

Performing analysis with a prescribed displacement in Diana 10 requires imposing a constraint
in the direction in which the displacement is applied i.e. application of an additional support
to the same node which the load is applied to. For this reason, a model with an included
effect of self-weight demanded a phased analysis. In such an analysis computations comprise
of several calculation phases. In between each phase the model is updated by addition or
removal of elements and constrains and for each phase a separate analysis is performed. At
the beginning of each subsequent phase, results from previous phases are contained and used
as initial conditions.

The analysed models comprised of three phases. In the first phase, supports were only applied
to the bottom side of the beam and the beam was loaded with self-weight alone. In the second
phase the beams were prestressed. Finally, the prescribed displacement at the constrained
nodes at the upper side of a beam split into a number of increments was activated.

The preliminary analysis was performed on the beam LB6 because it combines the charac-
teristics of the remaining beams. In this analysis the rotating total strain based crack model
and the fixed total strain based crack model with the damage based shear retention function
were used. Both constitutive models were selected as they do not require any additional user
input (the models were described in chapter 5-1). The displacement controlled procedures
was applied with the incremental step-size set as 0.005 of the total displacement (0.025mm).
The iterative procedure was regular Newton-Raphson with the maximum of 50 iterations.
The convergence tolerance was left as default thus 0.01 acc. to both displacement or force
convergence norm. The convergence was attained when the equilibrium according to one of
the norms was met.

The desired compressive stresses in the test region should be similar to those measured in
the test and specified in Table 3-2. From Figure 5-7 it can be seen that for the specified
prestressing force, the resulting normal stresses have slightly lower values in the region near
the bottom flange which has a higher cross-sectional area than the top flange. The difference
between the readings from the test and the model is approximately 4% hence can be considered
as insignificant.
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Figure 5-7: Compressive stresses SXX in the test region, beam LB6

Figure 5-8: Crack pattern for rotating crack shear behaviour, beam LB6

Figure 5-9: Crack pattern for fixed crack, damage based shear behaviour, beam LB6
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Figure 5-10: Displacement controlled procedure, shear force - displacement for beam LB6

From the observations of the preliminary analysis we can draw a few distinctive conclusions.
First, the general behaviour until failure will be appreciated. When the applied load ap-
proaches the shear capacity of the beam, at the junction of the web and the flange at the
tension side at the distance around dv from the edge of the support a crack develops. Such
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(a) Damage based fixed crack model (b) Rotating crack model

Figure 5-11: Crack patterns before failure for displacement control models

an initiation in both models occurs at the similar shear force, approximately 133 kN. The
location is also related to the detrimental effect of tensile normal stresses from high bending
moment combined with a shear force contributing to crack formation. With an increasing
load, the crack further propagates into the critical crack until the beams capacity is reached.
The failure mechanism is very abrupt and takes place within one load step. It is noticeable
when two last steps of the analysis in figures 5-11 and 5-9 are compared. At the moment of
failure i.e. during the last load step, the crack propagates further along the junction as well
as diagonally towards the support following the principal compressive stresses. The critical
crack is more prominently visible in the case of the rotating crack model than for the fixed
crack behaviour. Furthermore, when stirrups along the critical crack yield at failure, the
beam exhibits no further load-carrying capacity. It is important to mention that stresses in
the shear reinforcement prior to failure were significantly lower than the yield stress. After the
failure, stirrups yielded across the crack with the strain at the critical location equal almost
to rupture strain. When the developed crack pattern and the fact that longitudinal rebars did
not yield are considered, it can be concluded that the beams failed in shear tension. Lastly,
the applied prescribed displacement produces reaction forces with the ratio of 1.8 which is in
agreement with the ratio achieved from the transverse loading in the tests.
When the results of the benchmark beam LB6 from the experimental research and the ob-
tained FEA results are compared, both similarities and deviations can be noticed. The
primary common feature is undoubtedly the failure mechanism. In both cases the opening of
one major shear crack crossing the web diagonally took place followed by the dissection at the
web-flange junction. Even though formation of the major crack and the shear tension failure
appeared in both experimental research and FEA models, the crack patterns obtained from
the numerical analyses do not exactly resemble the crack patter from the test. It is visible
when the crack pattern from Figure 3-5 is compared with either Figure 5-9 or 5-8. Moreover,
the result obtained from the model with rotating crack behaviour tend to overestimate the
web-shear capacity.

Table 5-3: Comparison of the results obtained from the preliminary numerical analysis and the
experimental results

Loading procedure Crack orientation Shear behaviour Ultimate shear force [kN]

Displacement controlled Fixed damage based 154.0
Rotating – 159.55

VU−exp – – 155.8

From Table 5-3 it can be seen that the models with fixed crack orientation provided better

Maciej J. Kraczla Master of Science Thesis



5-5 Evaluation of Shear Behaviour 95

results than the rotating crack models. It is surprising as it was documented in various liter-
ature that fixed crack models typically provide higher values of shear resistance.
In subsequent sections models of LB10 and LB11 for a fixed crack orientation with differ-
ent shear retention functions are further investigated. As an additional premise, cl.2.4.1.3
of RTD 1016:2012 specifies that for fixed crack models variable shear retention models are
strongly recommended. Consequently, the selected shear behaviours are the damage based
shear retention function, the variable shear retention function and the shear retention based
on a mean aggregate size.

5-5 Evaluation of Shear Behaviour

Shear behaviour of the beams was modelled using the Total strain based constitutive model
which is based on the modified compression field theory. Originally this model used an
approximation that the principal strain and stress directions coincide for both elastic stress
limit as well as after an onset of cracking thus known as the rotating crack model. Currently
Diana offers a constitutive model in which the reference system of the crack does not follow
the direction of the principal strains – the fixed crack concept. For the fixed crack concept
a number of shear retention function can be selected. The guidelines RBT 1016:2012 do
not specify which shear retention function should be chosen therefore, in order to determine
whether it is possible to simulate the propagation of the crack as observed in the experiments,
different set-ups were investigated.
To maintain consistency throughout the analyses, the following framework was used: for
beams LB6 and 11, no. of iterations was set to 100 and 150 for LB10. For all the specimens
force and displacement convergence norms with the convergence tolerance 0.01 were governing.
In addition to that for the selected models an inclusion of energy norm with the tolerance of
0.01 was considered.

5-5-1 Total strain based fixed crack models

Variable shear retention

The recommended variable shear retention function is an improvement to the drawback that
the approach with a constant value of the crack shear modulus suffers from. The first drawback
is the arbitrariness of the selection for the value of retention. Further, because the shear stress
can constantly increase, the principal stresses in the cracked elements rotate endlessly. The
variable shear retention function, as explained in [27], relates the reduction of shear stiffness
after cracking through the crack normal strain. It means that along with increasing crack
width, the shear modulus decreases. This phenomenon can be interpreted as decline of the
interlock of aggregate particles. The reduction of the elastic shear modulus G can be written
as Gred = βG with:

β =
[
1− εnncr

εcru

]p
(5-7)

where εcrnn is the crack normal strain at the beginning of the load increment, εcru is the ultimate
strain and p is a constant. The stress-free crack normal strain εcru for the exponential softening
is calculated with: εu = GF

heqfct
.
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Figure 5-12: Shear retention function for beam LB6

The shear retention function applied in the
models are shown in Figure 5-12. The re-
sults of the analysis for different β functions
do not differ very much from each other.
The pre-peak behaviour up to the moment of
cracking is linear for all the models and only
the value of the ultimate shear resistance
slightly increases along with a low value of
the constant p. The response of the models
with higher shear retention is therefore stiffer
after cracking. The failure for all the cases
is brittle and upon formation of the critical
crack, the stirrups yield providing no addi-
tional capacity.
The crack pattern for the beam LB6 is shown in Figure 5-13. The crack patterns were in
essence very similar for all functions. It can be observed that the higher the shear retention,
the slightly more developed the crack pattern as well as the ultimate resistance. Nevertheless
in either case, the the major crack initiated at the distance roughly dv from the support, in
the subsequent loading step, propagates further along the web-flange junction and towards
the support (or towards the east loading plate on the opposite side). Please note that the
depicted crack pattern represents general crack pattern with the stress-free (open) cracks in
the colour different than dark blue.
All the three models did not convergence at the failure. For the models with a power function
of the constant p = 2 decay at the last step spurious kinematic modes were observed. The
location of the spurious kinematic modes was the tip of the longitudinal crack along the bot-
tom flange, near the point of contraflexure. In [27] it was stated that the constitutive models
with the fixed crack concept are more susceptible to the spurious modes than models with the
rotating crack concept. It is so because spurious modes of softening remain fixed throughout
the analysis while for the later concept spurious modes may vanish in the subsequent steps
due to the ability to rotate direction of material softening. In the models, except for the
same location where spurious modes occurred, no excessive stress-locking was observed. The
stress-locking is a phenomenon typically related to smeared crack approach as a consequence
of displacement compatibility. It means that element which underwent cracking imposes
strain on the adjacent elements causing tensile straining as the result of inseparability of the
mesh. It can result in excessive tensile stresses of the element in the proximity of a crack
resulting in spurious stiffening - overstiffening. Alternatively, when the tensile strength of the
material is reached, an onset of crack takes place. This is also undesirable due to disruption of
a crack localization, called spurious cracking [27]. When the ultimate shear force is compared
to the results of the laboratory tests it can be concluded that the models are characterized
as over-stiff in the pre-peak regime and display too brittle post-peak behaviour.

Similar shear retention functions were applied to the remaining beams LB10 and 11. It is
important to remember that the shear retention acc. to 5-7 are a little different due to differ-
ent values of fct and Gf for those beams. In Figure 5-17 only the crack pattern of the beam
LB11 for shear retention with the constant k=5 is presented. The remaining beams displayed
almost the same crack pattern up to failure due to insignificant influence of shear retention.
All beams failed in a brittle manner with only a single critical crack along the top flange. The
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Figure 5-13: Crack pattern for LB6 with variable shear retention, constant k=2

crack was initiated in a distance approximately dv from the support and propagated further
along the flange till failure. The location of the critical crack at the top side is probably
related to the asymmetric section with the top flange having a higher cross-sectional area,
thus a lower value of compressive stresses from prestressing. As a consequence the tensile
strength of the concrete in the principal direction is reached earlier than at the bottom side.
From Figure 5-34 and Table 5-7 one can see that both beams LB6 and LB11 failed at ap-
proximately the same shear force in the test region. It is surprising as the beam LB6 had
twice the minimum amount of stirrups in the test region while the beam LB11 none. Similar
ultimate shear resistance can be justified by the fact that a higher value of prestressing acted
on the beam LB11 which increased the concrete cracking shear force through diminishing the
detrimental effect of tension from bending. While for the beam LB6 at failure stirrups at
the bottom flange-web junction ruptured, for the beam LB11 no rupture strain of 0.04 was
observed. The response prior to failure was almost constantly linear with no visible reduction
of stiffness nor ductility.

Figure 5-14: Crack pattern for LB11 with variable shear retention, constant k=5

Much more developed crack pattern was obtained for the beam LB10 containing a high
amount of stirrups, Figures 5-16 and 5-17. One can notice three general observation. First,
with an increase of shear retention formation of the critical crack is delayed (represented with
the first snap and jump in Figure 5-15). As it turned out from the performed analysis, this
also influenced the overall crack pattern. Delayed formation of the critical crack through
a stiffer response of the member in the region with high bending moment and shear force
enable development of crack across the beam’s web. Nevertheless, the advancement of the
major crack with increasing loading does not vary significantly. Another observations are
improved shear resistance and ductility. Such improvements can be assigned to the shear
stresses build-up on a crack plane even at an advanced stage of stirrups yielding.
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Figure 5-15: Shear force – displacement curve for variable retention shear behaviour

Figure 5-16: Crack pattern for LB10 with variable shear retention, constant k=1

Figure 5-17: Crack pattern for LB10 with variable shear retention, constant k=5

Aggregate size based shear retention

In this shear retention model implemented in Diana the shear stiffness of a crack diminishes
with opening of a crack equal to w = εnh [28]. The linear relation reads:

β = 1−
(

2
dagg

)
εnh (0 ≤ β ≤ 1) (5-8)

It assumes no contact between a crack face thus no shear stiffness for the crack width wider
than half the mean aggregate size. The formulation 5-8 would suggest that for the element size
of 25mm, shear retention factor reaches 0 when the crack strain equals to 0.2 or equivalently a
crack width 5mm. At first glance, it means that only for very large cracks the shear retention
diminishes. To investigate the model’s performance, the analyses of beams LB6, 10 and 11
were conducted. The resulting ultimate shear resistances are tabulated in Tables 5-4, 5-5, 5-6
and Figure 5-34.
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Figure 5-18: F-δ for beam LB10 with aggregate size shear retention and only force and displace-
ment norms

The course of the crack propagation, apart from the failure mode, does not differ from the
one explained in the proceeding section. The crack onset in the web comes into sight in the
regions influenced by bending moment. Moreover, the crack appears earlier on the side of the
cross section where the cross-sectional area is larger. As expected due to higher values of shear
retention factor β, a build-up of shear stresses on the crack plane occurs; e.g. for the beam
without shear reinforcement in the region I, prior to failure, crack shear stresses were twice as
high as for the model with variable shear retention with the constant p = 2. Another conflict-
ing observation as compared to the previous models regards failure mechanism which occurs
roughly at the same shear force. It is therefore clear that the crack pattern is dependent on
the applied shear retention function. One can see in Figures 5-22 and 5-23 that beams LB10
and 11 fail with the pronounce critical crack propagating across the web in the final stage.
Such a behaviour resembles the crack pattern from exterimental research depicted in Figure
3-9 and 3-9. A possible remark concluding this observation is that shear retention based on
the aggregate size substantially improves failure mechanism and at the same time does not
deviate meaningfully from the ultimate shear resistance of the experimental research. Please
note that this applies only to the models without energy convergence norm. The behaviour
of the aggregate size based shear retention function was confirmed by user supplied input
relation β − εnn assuming the mean aggregate size equal to 8 mm. Predictably, the ultimate
shear force as well as failure mechanisms were identical.
The analyses with force and displacement convergence norms and with an additional energy
convergence norm were carried out using two different iterative procedure: regular (rNR) and
modified Newton-Raphson (mNR). The results obtained with those methods differ substan-
tially from each other for both beams LB6 and LB10. For beam LB11, the failure character-
istics were rather consistent as the beam always fails in the region unreinforced in shear. The
response of beam LB10 with rN-R (Figure 5-19b) exhibited a ductile behaviour with extensive
yielding of the majority of stirrups eventually leading to crushing of concrete near the west
support. It is important to mention that values of strain in individual stirrups at the critical
crack exceeded the rupture strain which in reality should be accompanied by the failure due
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Experimental results

(a) Specimen LB6
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Figure 5-19: Comparison of force-displacement diagrams of specimens LB6 and LB10 calculated
with energy convergence norm with the experimental results

to limited redundancy at a late loading stage. Contrary to that, the beam was able to with-
stand loading till a failure mode different than shear tension was developed. The response
after reaching the rupture strain is depicted with a dotted line in Figure 5-19b. The possible
explanation for this might be extrapolation of stress-strain relation for stirrups performed
by the computer program after reaching the strain limit specified by a user. Calculations
of LB10 with mN-R were terminated at much earlier load step resulting in a lower ultimate
shear resistance which is closer to the ultimate shear resistance observed in the experimental
research. The beam failed with a pronounced diagonal crack crossing the web. Prior to the
onset of failure, stirrups in the crack location already yielded with the maximum strain of
roughly 0.015.
The above description treats the set of analyses of LB10 with the energy convergence norm.
Similar however applies to the analysis of LB10 without energy norm where abnormal elon-
gation of stirrups occurred as well. It can observed in Figure 5-18.
As far a model of beam LB6 with the energy convergence norm is concerned, the shear re-
sistance predicted with mN-R is higher than with rN-R, Figure 5-19a. The analysis using
the former iterative method results in more realistic crack pattern with formation of a well-
established major crack, Figures 5-20 and 5-21.
Finally, in the case of analyses of both beams LB6 and LB10 with mN-R, extensive distortion
of mesh in the last step accompanied by numerous spurious nodes and stress-locking were
monitored.

Damage based shear retention

In damage based shear retention, shear stiffness decays with a decay of normal stiffness beyond
the cut-off stress [28]. It is done by relating the factor β to the strain in normal direction of
a crack. In this case the decrease of the shear stiffness is based on the principle that along
with an increase of a crack width, the shear stiffness decreases. The exact relation applied
in Diana is however not given in the users’ manual. A simplified strain-stress relation can be
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Figure 5-20: Crack pattern of LB6 with aggregate size based shear retention obtained with regular
N-R iterative procedure and force, displacement and energy convergence norms, Vultimate =
171.4kN

Figure 5-21: Crack pattern of LB6 with aggregate size based shear retention obtained with mod-
ified N-R iterative procedure and force, displacement and energy convergence norms, Vultimate =
184.3kN

Figure 5-22: Crack pattern of LB10 with aggregate size based shear retention obtained
with modified N-R iterative procedure and force, displacement and energy convergence norms,
Vultimate = 234.22kN

Figure 5-23: Crack pattern of LB11 with aggregate size based shear retention obtained with regu-
lar N-R iterative procedure and force and displacement convergence norm, Vultimate = 177.82kN

represented with:
σ = (1− d(α))D0ε (5-9)

where the damage variable d is a function of an internal parameter α and grows from zero for
undamaged state to unity at full disintegration. The internal parameter α is in turn a func-
tion of uniaxial strain determined based on formulation of the damage norms. The stiffness
D0 is the stiffness of the virgin material [31].
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To start with, the obtained ultimate shear forces are considered. The results are generally
in a good agreement with results from the test site. Likewise all the previous analyses the
capacity of the beam LB6 and 11 are overestimated and underestimated for the LB10. How-
ever, this shear retention provides the most accurate (in terms of the average and coefficient
of variation) results as far as the fixed crack models are concerned. The incremental-iterative
procedure for the beam LB10 diverged at the shear force 199.7kN despite of an application
of very small load steps equal to 0.0005.

Figure 5-24: In-plane principal components at the
critical crack at failure in LB10

The failure mechanism for beams with lim-
ited amount stirrups initiates in the location
near the east support (the location of high
bending moment and shear force). As soon
as crack passes Region II supplied with stir-
rups, thus crack width controlled, the beam
fails abruptly. Only beam LB10 is equipped
with a sufficient amount of reinforcement to
ensure some stresses redistribution therefore
ductility. In this case a formation of critical
crack takes place gradually.
The observable feature of beam LB6 and 11 is not well-developed crack pattern, Figure 5-9.
The crack pattern in LB10 is much more expanded. Nevertheless the diagonal crack pro-
gressing through the web is not so well established as for the case with aggregate interlock
shear retention, Figure 5-25. Moreover, at the several location along the major crack, strain
concentration in the stirrups can be observed. The maximum crack width at failure, which
occurred at approximately the same shear force, is almost twice as large as the crack width
obtained with the aggregate size based shear retention. It would suggest that according to
present model local strain concentration can be expected. Lastly, in Figure 5-24 the critical
crack is depicted. It is apparent that the finite element mesh is distorted in unnatural way
leading to stress concentration around the crack.
Side note: this type of behaviour was recognized in every other model calculated with mN-R
iterative procedure.

Figure 5-25: Crack pattern of LB10 with damage based shear retention

Rotating crack

The second recommended shear behaviour in RTD 1016:2012 [29] is that based on the rotating
angle theory. The stress-strain mode II relation in the vector 5-4 now is:

βG = σ11 − σ22
2(ε11 − ε22) (5-10)
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The general aspects of models with a rotating crack orientation were explained in section
5-1. Tables 5-4, 5-5, 5-6 and Figure 5-34 summarize the results of the analyses. From the
comparison of main counterparts i.e. fixed crack model with aggregate size based shear
retention and rotating crack model, it can be observed that shear stresses at the crack surface
significantly influence both the crack pattern as well as the ultimate shear resistance. It is
well observed when formation of the critical crack is examined for both models LB10. A lack
of the stress build-up encourages crack propagation which is accompanied by higher values
of normal crack strains in the already existing cracks. In this context, it is worthwhile to
mention that the critical crack for the fixed crack model with the aggregate size based shear
retention arose from a newly created crack in the zone with no moment and high shear stresses
i.e. the centroidal axis at the point of contraflexure. On the other hand for the rotating crack
model LB10, the major crack developed from the "first crack" at the distance dv from the
edge of the support. The crack subsequently propagates horizontally towards the centre of
the test region in a search of a new equilibrium state. This equilibrium can be obtained by
redistribution of forces to neighbouring stirrups in zones not affected by cracking. This in
turn triggers formation of new cracks (and widening of existing) following the flow of principal
stresses. Again, it is apparent that crack pattern is dependent on a selected shear behaviour.
The presented in this section crack pattern in Figure 5-29, which most properly captured
features observed in the crack pattern from tests, was obtained with application of energy
convergence norm and mN-R iterative method.

As far as the value of ultimate shear force are concerned, apart from dependency on the applied
iterative method, it is relevant to pay attention to the chosen convergence norm. In Figure
5-26, a comparison between results of the same rN-R analyses and a different selection of
convergence norms are presented. According to the red curve (based on observation of results),
calculations were terminated due to rupture of stirrups. While it was appropriately caught by
this analyses, the model assigned to the green curve, thus with additional energy convergence
norm, continuously converged until crushing of concrete appeared. Such a spurious yielding
resulted in a overestimated prediction of failing shear force and an incorrect failure mechanism.
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Figure 5-26: F-δ for beam LB10, rN-R iterative pro-
cedure

A shear transfer mechanism in beams con-
taining a lower amount of stirrups (LB6 and
LB11) can be easily portrayed when the anal-
yses with only displacement and force con-
vergences norms are considered. According
to such models, the first critical crack thus
the crack formed along the flange-web junc-
tion leads to failure. It was already men-
tioned that crack initiated at the distance
dv typically propagates further along the
web-flange junction and diagonally towards
the support following principal compressive
stresses. In the case of beam LB11 failure
occurs once the crack reaches the region un-
reinforced with stirrups. It is interesting to
mentioned that the crack propagates into this region as far as the end of the zone controlled
by the last stirrup. At this point a reference to expression 4-1 and Figure 4-1 is made. Once
the crack goes out beyond this zone, abrupt failure occurs due to inability to redistribute
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internal forces. The crack pattern for this particular case is shown in Figure 5-30. Such
a failure exhibits a satisfactory resemblance to the observed failure mechanism depicted in
Figure 3-9. A similar although slightly delayed failure mechanism applies to the specimen
LB6. It can be well recognized in Figure 5-27. This small retardation does not translate to a
higher shear force causing first crack formation but rather an ability to find the equilibrium
after onset of major crack. One can only capitalise on it when the energy convergence norm is
included into analyses. The response of the structure is depicted in Figure 5-31a whereas the
crack pattern in Figure 5-28. It can be seen that for the rN-R analysis, after a few snap and
jump, the lower level equilibrium could be found. This eventually resulted in a greatly overes-
timated ultimate shear resistance accompanied it substantial elongation of stirrups. Locally,
the elongation exceeded the threshold value assigned to rupture which might result in a spu-
rious behaviour. This observation i.e. the first excess of the rupture strain is represented by a
dashed line in Figure 5-31. One can draw a few conclusions from the aforementioned figures.
Fundamentally, for the respected cases the analyses with mN-R resulted in more smooth force
displacement curves with no significant drops. This enabled to reach higher value of the shear
force before the onset of the major crack. What is more, the analyses with mN-R iterative
method were usually terminated at earlier load steps than the analyses with rN-R. The later,
as already mentioned, usually resulted in extensive yielding of stirrups until a different failure
mechanism occurred – crushing of concrete (in Figure 5-31 indicated by sudden drop of a
shear force). It is important to remark that analyses according to mN-R iterative procedure
also failed abruptly but the failure was caused by considerable widening of the major crack.
It is highlighted by the drop for beam LB6 and marker at the end of the curve for beam
LB10, Figure 5-31b. Lastly, from the comparison of responses between rotating crack models
of beams LB6 and LB10 and experimental readings, it is apparent that if it was not for the
initial overstiff response, the curves would resemble each other acceptably well in both pre
first cracking as well as post first cracking regime. It is especially prominent in the case of
beam LB10 in which similar hardening plateau and rupture of stirrups are displayed. As far
as the specimen LB6 is concerned, an occurrence of the first critical cracking takes place at
roughly the same displacement but a distinctly higher shear force.

(a) σ1 contour near east loading plate for specimen
LB6

(b) σ1 contour near west support plate for specimen
LB11

Figure 5-27: Principal stresses prior to failure in the test region of beams LB6 and LB11

Note: in the present report, a detailed mesh sensitivity study has not been performed. From
the performed analyses, it was recognised that the rupture strain can be reached at different
load steps depending on a mesh size e.g. for the analysis with rNR and the mesh with an
element size of 25mm, the rupture strain was surpassed right after onset of the first major
crack whereas for the same analysis set-up but the mesh size of 45 mm, it occurred at much
later stage, if occurred at all; Figure 5-32.
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Figure 5-28: Crack pattern at failure of beam LB6 for rotating crack orientation, mN-R iterative
method and energy norm convergence

Figure 5-29: Crack pattern at failure of beam LB10 for rotating crack orientation, mN-R iterative
method and energy norm convergence

Figure 5-30: Crack pattern of LB11 for rotating crack, rNR
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Figure 5-31: Comparison of force-displacement diagrams of specimens LB6 and LB10 with
experimental results
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Figure 5-32: Comparison of results for LB6 with mesh element size 25mm and 45mm; dashed
line represents the response after stirrups strain locally reached 0.04 corresponding to the rupture
strain value

5-5-2 Influence of the Amount of Stirrups

In the study [13], the results of ultimate shear strength were obtained based on the finite
element analysis using the program VecTor2 developed at the University of Toronto. From
that results which are relatively similar to results listed in Table 5-7, an increase of shear
capacity along with an increase of applied stirrups was experienced. The shear resistances
from the FEA in [13] were 179kN for LB6, 201kN for LB10 and 167kN for LB11. This is
conflicting with some of obtained results of shear strength for LB6 and LB11. An influence of
shear reinforcement for beam LB10 was therefore investigated with two additional reinforce-
ment ratios, namely: ρ = 0.283% and 0.566% thus an amount of reinforcement for LB6 and
LB10 increased by 1.5. It is important to factor in that the spacing of reinforcement does
not impact results significantly as concluded from the analysis on models with the amount of
shear reinforcement of LB6 (0.1885%) but spaced 87.5 mm apart which is the original spacing
decreased by the factor of two – beams having the same reinforcement ratio but different
spacing of 175mm and 87.5mm failed at the same shear force.
From Figure 5-33 it is clear that a higher amount of shear reinforcement, confirming the
presumption, increases the ultimate shear strength. The increase in strength is not however
proportional and equal for different shear retention functions and is the most pronounced for
the model with a rotating crack orientation. Also, based on the results, an increased in shear
reinforcement by 50 % obviously does not lead to an increase in the ultimate shear strength
by the same magnitude. It is incompatible with the outcome of the analytical expression such
as e.g. equation 2-29 at which the growth of shear resistance is proportional to the added
amount of stirrups. Please note that the analyses were conducted with force and displacement
convergence norms only.
It is although distant from our current focus but not completely irrelevant to mention here that
the beam with the reinforcement ratio of 0.566% and the rotating crack orientation failed due
to crushing of concrete near the east loading plate. The completion of the remaining models’
analyses with the same reinforcement ratio was necessitated due to divergence.
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Figure 5-33: Influence of an increased amount of shear reinforcement illustrated with beam
LB10‡

‡the arrow in Figure 5-33 indicates that the shear resistance for the considered case is most likely to be
higher than obtained. The conclusion is drawn based on the observed relative out of balance force which was
very close to fulfil the convergence norm which was set 0.01. The current result is taken to maintain the
consistency with the remaining models’ analysis settings.
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5-6 Summary

Table 5-4: Summary of results for beam LB6

Shear resistance of beam LB6 [kN]
Iterative procedure Convergence normrNR mNR

Variable shear retention k=1 167.2 – force & displacement
Variable shear retention k=2 165.5 – force & displacement
Variable shear retention k=5 161.7 – force & displacement
Damage based 154 – force & displacement

Aggregate size based 170.5 168 force & displacement
171.4 184.3 force, displacement & energy

Rotating crack 159.55 159.5 force & displacement
207.49 190.17 force, displacement & energy

Table 5-5: Summary of results of beam LB10

Shear resistance for beam LB10 [kN]
Iterative procedure Convergence normrNR mNR

Variable shear retention k=1 188 – force & displacement
Variable shear retention k=2 185.2 – force & displacement
Variable shear retention k=5 178.9 – force & displacement
Damage based 199.7 – force & displacement

Aggregate size based 269.39 199.58 force & displacement
269.7 234.22 force, displacement & energy

Rotating crack 209.75 201.77 force & displacement
255 225.33 force, displacement & energy

Table 5-6: Summary of results of beam LB11

Shear resistance of beam LB11 [kN]
Iterative procedure Convergence normrNR mNR

Variable shear retention k=1 167.45 – force & displacement
Variable shear retention k=2 165.2 – force & displacement
Variable shear retention k=5 160.7 – force & displacement
Damage based 160.7 – force & displacement

Aggregate size based 177.82 176.66 force & displacement
180 182.6 force, displacement & energy

Rotating crack 164.4 166.4 force & displacement
164.4 166.97 force, displacement & energy

Maciej J. Kraczla Master of Science Thesis



5-6 Summary 109

The objective of the present section is to target the question stated in section 1-2 concerning
the aim of this study. It reads as follows: is it possible model shear tension failure of the
experiments numerically?
To start with, to a certain extend implementation of numerical analysis can be used to re-
produce the shear tension behaviour of tested specimens subjected to a mixed mode fracture
(mode I and II). In the considerations two aspect were taken into account: the failure mech-
anism with a trajectory of the critical crack and the ultimate shear force in the test region.
In Tables 5-5, 5-6 and 5-7 the results of different analyses are presented (the best records are
highlighted in blue for the first group and cyan for the second group). The variables of the
study were: shear retention functions, iterative method and convergence norms.
To formulate constructive conclusions from the conducted analyses, the results were catego-
rized into two groups. The results of the first group are highlighted in Table 5-4. The group
constitutes the outcome of the analyses which were performed with diverse shear retention
functions and convergence regulated with force and displacement norms. From the outlined
results one can see that for different shear retention functions, the obtained results do not
deviate significantly from each other. From considerations in the previous section it could be
concluded that the failure mechanism was highly dependent on the applied shear retention
factor β and its relation with the crack normal strain.
The best representation of the crack pattern combined with values of shear tension resis-
tance were obtained with the rotating crack orientation. Please recall that fully developed
crack pattern could be only established when the energy norm convergence was included (it
is elaborated in a further part of the section). Nevertheless for only force and displacement
convergence norms, it was possible to capture the shear tension failure characteristics of each
tested beam. The method provided sensible results for beams containing shear reinforcement
but overestimated the capacity of the specimen without shear reinforcement. The average
ratio of predicted values of shear resistance and readings from the experimental study is 0.97
with the relatively low c.o.v 8.4%.
Next to rotating crack models, accurate results were be obtained with the damage based
shear retention function. The values of shear tension resistances support the tendency of the
previous method thus the models predicted resistances of LB6 and LB10 with acceptable cor-
rectness while the shear capacity of LB11 was slightly overestimated. The average of results is
almost equal to unity and the c.o.v equal to 9.6%. As far as the crack patterns are concerned,
the shear retention function mapped them correctly. The exception may be beam LB6 for
which, at failure, horizontal critical cracks arose along flanges.
The results from models with the aggregate size based shear retention typically overestimated
shear tension capacity. It refers to models irrespective of the applied amount of reinforcement
except of the LB10 computed with mN-R iterative method. An encountered pitfall was the
analysis of beam LB10 with rN-R which exhibited greatly exaggerated resistance of 269.39
kN which is the highest deviation of all the results in this category. The characteristics of the
crack pattern from tests were well reproduced.
Lastly, the variable shear retention from [27], not so commonly used in nowadays engineering
practise, might well serve as visualization of the impact of shear retention on the ultimate
shear resistance. It is clear from 5-4 that shear tension resistance increases for smaller reduc-
tion of shear stiffness G.
As far as crack formation is concerned a few mutual characteristics were observed. For all
the beams the initial crack initiated at the distance roughly dv from the support. In region
(Region 2) the crack is controlled by stirrups spaced 87.5mm apart. The crack propagates
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further towards Region 1. In the case of beam without shear reinforcement instantaneous
failure occurs while for the remaining beams yielding of subsequent stirrups takes place. It
can be seen that stirrups in the beam LB6 do not grant a reserve of load carrying capacity
and the beams fail in a brittle manner. The similar values of resistance for LB6 and LB11
result probably from a higher value of prestressing force for beam LB11. The critical crack
typically appeared on the side of where compressive stresses were diminished due to a larger
area of flanges.
Regarding the effect of material parameters, the assumed concrete tensile strength fct =
0.33(f ′c)1/2 provided better estimates than the value of fctm acc. to the RTD 1016:2012. For
the value of the concrete tensile strength according to the RTD 1016:2012 equal:

fctm = fctk,0,m

(
fck
fck,0

)2/3

= 1.4MPa ∗
(63.5MPa− 8MPa

10MPa

)2/3
= 4.389MPa (5-11)

the cracking shear force as well as the ultimate shear resistance were extensively overestimated
e.g. for the beam LB11 with rotating crack shear behaviour, the first cracking shear forces
were 134 kN and 179.26 kN for the reduced concrete tensile strength and the tensile strength
acc. to the RTD 1016 respectively. The ultimate shear forces were 164kN and 192.2kN thus
also divergent.
In Figure 5-35 shear force in the test region against the displacement under the east support
is plotted for all specimens. The pre-peak response for the assumed material properties of
concrete in NLFEA is generally too stiff, even for the reduced value of Young’s modulus
by 15 %. In [32] a similar problem was encountered. A possible reason is the fact that
Young’s modulus of self compacting concrete is lower than for conventional concrete (Klug
& Holschemacher 2003). The softer behaviour is explained by the lower amount of coarse
aggregate in comparison with normal concrete. The extent of this effect is however uncertain.
Additionally, the beams were heavily reinforced against flexure which could also be impactful
due arose shrinkage cracks which reduce stiffness.

Table 5-7: Summary of results of numerical analyses with force and displacement convergence
norms

Specimen LB6 LB10 LB11 Average C.o.V [%]
N [kN] -797 -822 -809
Vu−exp [kN] 155.8 215 142.8
VecTor2 from [13] [kN] 179.0 201.0 167.0
Rotating crack [kN] 159.55 209.75 164.4
Damage based [kN] 154 199.7 160.7
Variable shear retention p=1 [kN] 167.2 188.6 167.45
Variable shear retention p=2 [kN] 165.5 185.2 165.2
Variable shear retention p=5 [kN] 161.76 178.9 160.7
Aggregate size based [kN] 170.5 199.58 176.66
Exp/Rotating crack 0.98 1.025 0.87 0.97 8.4
Exp/Damage based 1.01 1.07 0.89 0.99 9.6
Exp/VSR, p=1 0.93 1.14 0.85 0.98 15.2
Exp/VSR, p=2 0.94 1.16 0.86 0.99 15.56
Exp/VSR, p=5 0.96 1.20 0.89 1.02 16.07
Exp/Aggregate size based 0.91 1.077 0.81 0.933 14.522
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Figure 5-34: Summary of the numerical analysis results for different shear behaviours
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Figure 5-35: Force-displacement diagrams for beams LB6, 10 and 11 corresponding to the results
in Table 5-7.
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The presented in previous sections crack patterns were typically obtained from the analyses
with energy convergence norm of 0.01. By means of it, the analyses could further proceed
(the equilibrium was found) after formation of major crack or in the stage of extensive yield-
ing of reinforcement which is when the analyses corresponding to only force and displacement
convergence norms terminated. The ultimate tension shear resistance values of these analyses
are outlined in Table 5-8 and Figure 5-36. The corresponding force-displacement curves are
plotted in Figures 5-19 for aggregate size based shear retention and 5-31 for rotating crack
shear behaviour.
From the table it is rather difficult to distinguish a superior performance of one particular
analysis set-up type. What can be concluded is that predicted shear resistances are over-
estimated for all possible combinations of amount of shear reinforcement, shear retention
functions or iterative methods. For the case of a rotating crack orientation in both mN-R as
well as rN-R, a distinction with respect to ultimate shear resistance between specimens with
varying amounts of shear reinforcement can be made. In addition to that the trend of ratios
of experimental and numerical analyses is consistent which is substantiated by a low value of
c.o.v equal to 6.915 % and 5.739 % for rN-R and mN-R respectively.
While comparing the results of rN-R and mN-R, one can arrive at the conclusion that the lat-
ter iterative method furnishes better predictions. The values of shear resistance are lower than
those obtained with rN-R. Another very relevant aspect is the consideration associated with
spurious elongation of stirrups beyond the rupture threshold. From the force-displacement
curves in section 5-5-1, it can be noticed that rN-R is much more susceptible to this phe-
nomenon which potentially is the reason for exaggerated shear capacity. What is more,
mN-R for the analysed specimens always resulted in shear failure. A different situation took
place for individual analyses with rN-R which were terminated due to crushing of concrete in
the location of either loading plate or a support. It was already mentioned that such a failure
mechanism is succession of excessive extrapolated by program strains in stirrups. This leads
to another essential aspect which is a crack pattern. In the majority of cases, reproducing a
satisfactory crack was only possible with the mN-R iterative method. At this point, it is clear
that it can be accomplished when the model fails in an anticipated manner – in shear tension.
In conclusion, the results of the ultimate shear tension resistance as well as developed crack
patterns proved that to be better for mN-R.

Table 5-8: Comparison of results for different iterative procedure

Specimen LB6 LB10 LB11 Average C.o.V [%]
N [kN] -797 -822 -809
Vu−exp [kN] 155.8 215 142.8
Rotating crack rNR [kN] 204.77 269.7 164.0
Rotating crack mNR [kN] 190 234.22 166.97
Aggregate size based rNR [kN] 171.4 255 180
Aggregate size based mNR [kN] 184.3 225.33 182.6
Exp/Rotating crack rNR 0.761 0.797 0.871 0.81 6.915
Exp/Rotating crack mNR 0.820 0.918 0.855 0.864 5.739
Exp/Aggregate size based rNR 0.909 0.843 0.793 0.848 6.837
Exp/Aggregate size based mNR 0.845 0.954 0.782 0.861 10.117
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Figure 5-36: Summary of the numerical analysis results for different convergence norms and
iterative procedures
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Chapter 6

Conclusions and Recommendations

6-1 Analytical Analyses

The report contains analytical and numerical analyses of the benchmark specimens LB6,
LB10 and LB11 tested as a part of the research on the influence of axial load and prestress
on the shear strength of web-shear critical reinforced concrete elements [13]. The intention
of the experiment set-up was to investigate shear tension behaviour at low moment regions
in continuous reinforced concrete members under axial compression and tension away from
the disturbed region near the support. At this locations the shear strength may be enhanced
by strut action. The description of the research is summarized in Section 2. The selection of
prestressed beams for the experiment i.e with a varying amount of shear reinforcement was
meant to study a whole range of resistances (members with stirrups including those heavily
reinforced against shear and members without shear reinforcement) according to a number of
shear provisions in available designers’ codes. The investigation was conduced in the context
of the existing bridges therefore it was crucial to determine the shear strength as accurately
as possible. It was executed by means of application of "real" (mean) material properties.
From the consideration on the analytical approaches, it was concluded that "strain state
dependent" codes, namely the CSA and MC2010, give very good predictions for members
supplied with stirrups. The differences between those codes were very small and only the cri-
terion of conservativeness decided that the shear provision of fib Model Code 2010 is preferred
over that of the CSA. It was also shown that despite of the shared background, the resis-
tances attributed to the stirrups and concrete are assigned differently for individual standards.
While for the CSA shear provision the contribution of stirrups and concrete was more levelled
out, the fib Model Code 2010 assigns the majority of the shear resistance to shear reinforce-
ment. The prediction according to the applied procedure of the EC2 provided a complicated
analyses resulting in incorrect determination of the governing shear failure mechanism. The
predictions of the tension shear capacity of the analysed standards for the beam without shear
reinforcement were very poor. The predictions according to the fib MC2010 and the CSA
code greatly underestimated the shear resistance as the resulting shear strength constitutes
the post-cracking capacity while the experimental ultimate resistance was taken as the first
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read cracking load. Lastly, the outcome of the analysis according to the RBK 1.1 yielded
consistent results in terms of ratios of the calculated and observed in tests shear resistances
as well as the governing failure mechanism yet extensively overestimated the shear tension
capacity for all the considered specimens.

6-2 Numerical Analyses

In the second part of the study, an attempt to analyse the benchmark beams numerically was
undertaken. From the conducted analysis the following main conclusions could be drawn:

• a prediction of the first cracking shear force and the ultimate shear resistance were
substantially improved when the concrete tensile strength was determined according
to 0.33

√
f ′c; a similar observation of the decisive effect of concrete tensile strength was

reported in [33] and [32] where despite being equipped with fct measured from splitting
tests on concrete cylinders, an improved prediction of the initial crack development was
obtained with a reduced value as shown above. As far as the ultimate shear resistance
is concerned, the estimates based on the measured (thus not reduced) tensile strength
in [33] were in a good agreement with experimental tests of beams failing in shear. 1

• from the analysis on models of beams LB6 and LB11, the load corresponding to the onset
of critical crack constituted the ultimate shear resistance for force and displacement
norms; the results of analysis on LB10 heavily reinforced against shear displayed some
ductility upon the formation of the major crack.

• analyses according to the displacement and force convergence norms provided accurate
results nevertheless the observed in tests crack pattern could be better reproduced
with an addition of the energy convergence norm. Despite of being more realistic, this
approach provided overestimated results as compared to former analyses with only force
and displacement convergence norms

• the most accurate as well as consistent results for all types of analyses (Table 5-7 and
Table 5-8) could be obtained with a rotating crack orientation. It was also shown that
the aggregate size based shear retention, despite overestimated predictions of shear ten-
sion resistance for members without shear reinforcement, provided sufficiently accurate
results as well as correct crack patterns

• the results obtained with mN-R iterative procedure proved to yield more accurate val-
ues of shear resistance as well as a better representation of the crack pattern. The
analyses according to rN-R suffered from extensive spurious stirrups elongation leading
to incorrect results and a failure mechanism

• the pre-cracking response of FE models displays overstiff behaviour and deviates from
the response from the tests’ readings. This phenomenon potentially impacted the first
cracking shear force as well the ultimate shear tension resistance

1concrete tensile strength reduction is recommended by Bresler and Scordelis [34] as explained in [33]
and [32]; no access to item [34] was gained
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6-3 Recommendations

Recent shear provisions in designers’ codes relate shear design to calculations based on the
strain state of a member. By means of that codes waive from expressions assigned to individ-
ual types of failure mechanisms or shear resistances attributed to steel or concrete separately.
In this thesis, it was indicated that the shear provision of the CSA and the MC2010, while
being correct for members with shear reinforcement, estimates the shear capacity of members
sparsely reinforced with stirrups too conservatively. Moreover, from the performances of nu-
merical models, it was concluded that the value of the first cracking shear force is significantly
improved when fct is taken as 0.33

√
fc. At the same time, from the analytical solution of

the EC2, it is clear that first cracking shear force as derived from the Mohr’s circle with
mean values of material properties according to the EC2 applied is typically overestimated.
The question that might arise is: what would be the effect of exercising the reduced concrete
strength fct = 0.33

√
fc in the expression for the first cracking shear force, 6.4 EC2?
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Figure 6-1: Shear resistance of beam LB11 without stirrups according to EC2 with the reduced
value of concrete tensile strength

The answer to this question (the results of such an analysis) can be seen in Figure 6-1. Several
aspects, some in relation to the numerical solution, should be considered. First, for the
reduced values of concrete tensile strength, across the whole member’s length, shear tension
cracking is the governing failure mechanism. It is apparent as the values marked with a blue
line in Figure 6-1 are always above the line assigned to Shear tension resistance 6.4. Secondly,
according to the proposed procedure for the EC2, the ultimate shear resistance corresponds
to the first cracking shear force according to 6.4 EC2 at the location of 250 mm which is
roughly dv/2. As far as the cross section of the beam is concerned, the crack is predicted at
the depth of the web-flange junction. It is to some extend in agreement with the numerical
analyses as the first cracking always initiated approximately dv from the support at the level
of the web-flange junction. From Figure 6-1, the value of shear resistance corresponding to
dv is approximately 150kN which is close to the failing shear force of the laboratory test, yet
still slightly overestimated. Furthermore, from the numerical analysis, it could be observed
that the first cracking shear force was typically 133kN which is exactly the value obtained
in the calculations – 135kN. According to the code’s predictions, the cracking shear force
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indicates failure while from the numerical models it was noted that some residual strength
was contained in an amount depending on the analysis type. Concluding from the last analysis
in this document, one can see that the correlation between the cracking shear force from the
numerical analyses and the analytical calculations is relatively strong. It was also possible to
significantly improve the ratio of experimental and predicted values of shear resistance. To
conclude more on this observation, further experiments/calculations have to undertaken. It
is left as a recommendation for future researches. The similar recommendation i.e. a use of
reduced concrete tensile strength applies to the calculations according to RBK 1.1. which
tend to be unconservative for all studies beams.
Regarding members with shear reinforcement, the structural assessment according to the fib
Model Code 2010 proved to be the most precise while still safe, therefore recommended. As far
as additional potential future improvements are concerned, the method according to the RBK
1.1 provides some room for adjustments as it resulted in overestimated yet very consistent
results (c.o.v of only 4.6%). The subject is currently under investigation therefore further
advancement can be expected.
In [35] which treats structural assessment of bridge girders in shear, one can read that the
highest level of precision can be obtained with a method derived from the Cracked Membrane
Model. As a recommendation for further study, it would be interesting to investigate what
level of accuracy can be obtained with application of elaborate analytical methods.

In connection with the numerical analysis little recommendations can be proposed. The
conducted analyses can be considered as preliminary. Throughout the study is was noticed
however that modelling shear behaviour numerically is yet another approximation and is
highly dependent on the used input. In order to estimate its influence on the obtained
results, much more in-depth sensitivity study should be performed. The aspects broached in
the further study could possibly regard: spatial discretization to eliminate dimensional and
directional bias, different crack model e.g. multi-directional crack model, different load control
procedure (force control) or constitutive parameters. The last aspect is of special interest when
the engineering practise is concerned. To visualize this thought, a reference to the current
study and the Guidelines for NLFEA of Concrete Structures RTD 1016:2012 is made. The
applied material properties in FE models developed in this thesis were taken as specified in the
study [13] hence derived from measured concrete compressive strength obtained in concrete
compressive tests, see section 5-3-3. It is e.g. for beam LB6 the concrete tensile strength of
2.63MPa. On the other hand, the suggested material properties of concrete in RTD 1016:2012
are different and might be higher in value. The equivalently calculated mean tensile strength
acc. to RTD is equal 4.389MPa (equation 5-11). In a numerical assessment of existing
bridges, an analyst would preferably follow the recommendation of RTD 1016 as they can be
considered as "the best available practise" for nonlinear FEA of concrete structures. Recalling
the conclusion stating that the tensile concrete strength acc. to 0.33

√
f ′c predicts cracking and

ultimate shear force more accurately than the constitutive parameters according to RTD 1016,
one can see that application of different material properties would lead to inaccurate results
for this particular case. Moreover, the obtained in this report predictions of shear tension
resistance generally exceeded those observed in experiments therefore a further increase would
entail greater deviations. The extend is however unknown and should be advocated by an
additional study.
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Appendix A

Results of Calculations According to
CSA A23.3 Shear Provision

The section contains calculations according to CSA A23.3 Shear provision of beam LB11 writ-
ten in Mathcad. It was author’s intention to include the analytical solution exclusively for
LB11 as it comprises of steps that have to be undertaken for any other member considered in
this report. The difference lies in an additional "if statement" for members which contain less
stirrups than specified as the minimum. In such cases it takes only concrete contribution to
the total resistance is considered. According to the method, a different crack spacing should
be accounted for with an aggregate size adjustment depending on the concrete strength.
Members with shear reinforcement are calculated with the crack spacing of 300mm and con-
tribution of both steel and concrete to the total capacity. For more information please refer
to the main part of the report: section 2-4-3 for background or section 4-3 for an explicit
solution of the critical sections. In the subsequent part of the appendix, the results for all
beams are tabularized.
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LB11 (Design according to CSA A23.3 2004)

Material properties from: Liping Xie, Influence of Ax ial Load and Prestress on the Shear Strength of

Web-Shear Critical Reinforced Concrete Elements

References to material properties etc as in the source document of Liping Xie 

Concrete properties; reference Table 4.3 Concrete Compressive Strength•

fc 62.3MPa:= compressive strength at the test

ft 2.6MPa:=

Ec 37900MPa:=

εc 2.27 10
3−

⋅:=

Steel properties: reference Table 4.6 Reinforcement Properties in a Beam•

fy 409MPa:=

Es 201100MPa:=

fyv 529MPa:=

Ep 199700MPa:=

Cross section dimensions (as-built)•

h 506mm:= bw 74mm:= bftop 352mm:= hftop 57mm:=

hfbot 49mm:= h1 25mm:= h2 25mm:= d 473mm:=

Ag 73740mm
2

:= Act 36880mm
2

:= Ig 2.56 10
9

⋅ mm
4

:= Av 24.2mm
2

:=

Astop 934mm
2

:= Asbot 934mm
2

:= Naxial 807− kN:= (Table 4.2)

As 934mm
2

:= Ap 507mm
2

:= (Table 4.6)

ag 10mm:= (Table 4.13)

ag.adjusted 0 fc 70MPa≥if

ag

70
fc

MPa
−

10
⋅











60MPa fc< 70MPa<if

ag otherwise

7.7 mm⋅=:=

Stirrups: D4 spacing 175mm, 4-15M longitudinal bars, 1" High Strength Smooth Bar prestressing 

sv

87.5mm

0









:=

x1 425mm
h

2
− 0.172 m=:= x2 425mm

h

2
+ 0.678m=:=

dv max 0.72 h⋅ 0.9d, ( ) 0.426m=:=

qEg2 Ag 25⋅
kN

m
3

1.843
kN

m
⋅=:= qEg1 h bftop⋅ 25⋅

kN

m
3

4.453
kN

m
⋅=:=

0.700m qEg1⋅ 4.120m( )⋅ 3.220m qEg2⋅
3.220m

2
0.550m+









⋅+

0.550m qEg1⋅
0.550m

2
⋅

0.150m( )
2

2
qEg1⋅− RA 3.360m( )⋅−+

... 0=



RA 0.9 m⋅ qEg1⋅ 2.07 m⋅ qEg2⋅+ 7.824 kN⋅=:=

RB 2 700⋅ mm qEg1⋅ 3200mm qEg2⋅+ RA− 4.31 kN⋅=:=

VR x( ) Vf.trial 0←

Vf.trial Vf.trial 0.001kN+←

break Vf.trial Vf=if

AvPerUnitOfLength

Av

sv
0

x x1≤if

Av

sv
0

Av

sv
0





















x x1−

x2 x1−
⋅− x1 x< x2<if

0 x x2≥if

←

MEg 0.7m qEg1⋅ 0.350m 0.410m+ x+( )⋅ 0.41 m⋅ x+( ) qEg2⋅
0.41m x+

2









⋅+ RA x⋅−←

VEg
x

0.7m qEg1⋅ 0.350m 0.410m+ x+( )⋅ 0.41 m⋅ x+( ) qEg2⋅
0.41m x+

2









⋅+ RA x⋅−








d

d
−←

Mf MEg Vf.trial 1200mm x−
150mm

2
−









⋅+←

Fsection

Mf

dv

Vf.trial+ VEg+ 0.5Naxial+←

εx

Mf

dv

Vf.trial+ 0.5 Naxial⋅+ VEg+

2 Es As⋅( )⋅
Fsection 0≥if

max

Mf

dv

Vf.trial+ 0.5 Naxial⋅+ VEg+

2 Es As⋅ Ec Act⋅+( )⋅
0.20− 10

3−
⋅, 













otherwise

←

Avmin 0.06
fc

MPa
⋅ MPa⋅

bw

fyv

←

sze 300mm( ) AvPerUnitOfLength Avmin≥if

35
dv

mm
⋅

ag.adjusted

mm
15+















mm otherwise

←

β
0.4

1 1500εx+( )
1300

1000
sze

mm
+









⋅←

θ 29 7000 εx⋅+( )
2π

360
⋅←

Vc β
fc

MPa
⋅ MPa⋅ bw⋅ dv⋅←

( )

Vf.trial Vf≤while

i x∈for

:=



Vs fyv AvPerUnitOfLength⋅ dv cot θ( )⋅⋅( ) AvPerUnitOfLength Avmin≥if

0 otherwise

←

Vf Vc Vs+←

AvPerUnitOfLength N⋅
m

mm
2

⋅

MEg

m
VEg

Mf

m
Fsection εx N⋅ sze

N

mm
⋅ β N⋅ θ

N

deg
⋅ Vc Vs Vf









T

The above function can only return a multiple rows/columns vector for values with the same unit.

Therefore all the variable had to be reduced to a consistent unit (here Newtons). The units were later

restored.  

An auxiliary function which calls the main function with every element of the argument vector and

collects the results in an n x <cols(R)> matrix.

calculateV xvec( )

R
cols R( )〈 〉

VR x( )←

x xvec∈for

R
T

:=

x 425mm 450mm, 725mm..:=

The function produces results as shown in Table A-5.

Results calculateV x( )
8 9 10 11

0

1

2

3

4

5

6

7

29.119 49.699·10 45.591·10 51.529·10

28.98 49.988·10 45.067·10 51.505·10

28.935 51.009·10 44.52·10 51.461·10

28.891 51.018·10 43.97·10 51.415·10

28.848 51.028·10 43.419·10 51.37·10

28.806 51.038·10 42.865·10 51.324·10

28.555 48.629·10 0 48.629·10

28.545 48.65·10 0 ...

N=:=

VectorDist Range( ) Count ORIGIN←

vec
Count

i←

Count Count 1+←

i Range∈for

vec

:= VecDist VectorDist x( )
0

0

1

2

3

4

5

6

7

8

9

10

11

12

425

450

475

500

525

550

575

600

625

650

675

700

725

mm⋅=:=

Astirrups
Results

0〈 〉

N

mm
2

m
⋅:=

VR Results
11〈 〉

:=

0.5 0.6 0.7
0

5 10
4

×

1 10
5

×

1.5 10
5

×

2 10
5

×

VR

VecDist

Mf Results
3〈 〉

m⋅:=

Vs Results
10〈 〉

:=

θ
Results

8〈 〉

N
deg⋅:=

VRmin min VR( ) 86.285 kN⋅=:=



Flexural capacity and crushing of diagonal struts

Calculation of shear resistance is determined assuming that the flexural capacity of the

longitudinal reinforcement is sufficient to allow a shear failure. In addition to this, crushing of

concrete compressive struts cannot occur. To check if it is true to following equation has to be

checked:

Check z( ) i ORIGIN←

FRightSide
i

Mf
i

dv

0.5Naxial+ VR
i

0.5 Vs
i

−





cot θ
i( )+←

fcc

VR
i

bw dv⋅
←

ϕc 1←

Check
i

"Flexural failure" FRightSide
i

As fy⋅≥if

"Crushing of concrete" fcc 0.25 ϕc⋅ fc⋅≥if

"Shear Failure" otherwise

←

i z∈for

FRightSide
i

As fy⋅ fcc mm
2

⋅ 0.25 ϕc⋅ fc⋅ mm
2

⋅ Check
i







T

:=

calculateV1 xvec( )

R
cols R( )〈 〉

Check x( )←

x xvec∈for

R
T

:=

z 0 1, rows VecDist( ) 1−..:=

check calculateV1 z( )

0 1 2 3 4

0

1

2

3

4

5

6

7

8

9

10

47.461·10 53.82·10 4.854 15.575 "Shear Failure"

46.348·10 53.82·10 4.779 15.575 "Shear Failure"

44.484·10 53.82·10 4.636 15.575 "Shear Failure"

42.664·10 53.82·10 4.493 15.575 "Shear Failure"

38.894·10 53.82·10 4.349 15.575 "Shear Failure"

3-8.403·10 53.82·10 4.204 15.575 "Shear Failure"

5-1.322·10 53.82·10 2.739 15.575 "Shear Failure"

5-1.367·10 53.82·10 2.746 15.575 "Shear Failure"

5-1.412·10 53.82·10 2.753 15.575 "Shear Failure"

5-1.457·10 53.82·10 2.76 15.575 "Shear Failure"

5-1.503·10 53.82·10 2.767 15.575 ...

N=:=



"More accurate method " 

VRacc x( ) Vf.trial 0←

Vf.trial Vf.trial 0.001kN+←

break Vf.trial Vf=if

AvPerUnitOfLength

Av

sv
0

x x1≤if

Av

sv
0

Av

sv
0





















x x1−

x2 x1−
⋅− x1 x< x2<if

0 x x2≥if

←

MEg 0.7m qEg1⋅ 0.350m 0.410m+ x+( )⋅ 0.41 m⋅ x+( ) qEg2⋅
0.41m x+

2









⋅+ RA x⋅−←

VEg
x

0.7m qEg1⋅ 0.350m 0.410m+ x+( )⋅ 0.41 m⋅ x+( ) qEg2⋅
0.41m x+

2









⋅+ RA x⋅−








d

d
−←

Mf MEg Vf.trial 1200mm x−
150mm

2
−









⋅+←

Fsec.top

Mf

dv

Vf.trial+ VEg+ 0.5Naxial+←

Fsec.bot

Mf−

dv

Vf.trial+ VEg+ 0.5Naxial+←

εxtop

Mf

dv

Vf.trial+ VEg+ 0.5 Naxial⋅+

2 Es As⋅( )⋅
Fsec.top 0≥if

max

Mf

dv

Vf.trial+ VEg+ 0.5 Naxial⋅+

2 Es As⋅ Ec Act⋅+( )⋅
0.20− 10

3−
⋅, 













otherwise

←

εxbot

Mf−

dv

Vf.trial+ VEg+ 0.5 Naxial⋅+

2 Es As⋅( )⋅
Fsec.bot 0≥if

max

Mf−

dv

Vf.trial+ VEg+ 0.5 Naxial⋅+

2 Es As⋅ Ec Act⋅+( )⋅
0.20− 10

3−
⋅, 













otherwise

←

εx

εxtop εxbot+

2
←

Avmin 0.06
fc

MPa
⋅ MPa⋅

bw

fyv

←

sze 300mm( ) AvPerUnitOfLength Avmin≥if

35
dv

mm
⋅







mm otherwise

←

Vf.trial Vf≤while

i x∈for

:=



ag.adjusted

mm
15+











mm otherwise

β
0.4

1 1500εx+( )
1300

1000
sze

mm
+









⋅←

θ 29 7000 εx⋅+( )
2π

360
⋅←

Vc β
fc

MPa
⋅ MPa⋅ bw⋅ dv⋅←

Vs fyv AvPerUnitOfLength⋅ dv cot θ( )⋅⋅( ) AvPerUnitOfLength Avmin≥if

0 otherwise

←

Vf Vc Vs+←

sze
N

mm
⋅

Mf

m
Fsec.top Fsec.bot εxtop N⋅ εxbot N⋅ εx N⋅ β N⋅ θ

N

deg
⋅ Vc Vs Vf









T

calculateVacc xvec( )

R
cols R( )〈 〉

VRacc x( )←

x xvec∈for

R
T

:=

The function produces results as shown in Table A-6

Results2 calculateVacc x( )

6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

-5-3.832·10 0.424 28.732 51.055·10 45.681·10 51.623·10

-5-5.69·10 0.437 28.602 51.087·10 45.147·10 51.602·10

-5-7.502·10 0.451 28.475 51.121·10 44.607·10 51.581·10

-5-7.802·10 0.453 28.454 51.126·10 44.043·10 51.531·10

-5-7.971·10 0.454 28.442 51.13·10 43.477·10 51.477·10

-5-8.141·10 0.456 28.43 51.133·10 42.91·10 51.424·10

-5-9.75·10 0.368 28.318 49.143·10 0 49.143·10

-5-9.751·10 0.368 28.317 49.143·10 0 49.143·10

-5-9.752·10 0.368 28.317 49.144·10 0 49.144·10

-5-9.754·10 0.368 28.317 49.144·10 0 ...

N=:=



126 Results of Calculations According to CSA A23.3 Shear Provision
Table

A
-1:

Results
from

calculations
ofLB6

acc.
to

CSA
A23.3

Location
[m

]

A
rea

ofstirrups
per

unit
of

length
[m
m

2/
m
]

M
om

ent
from

self-
w
eight
[N

m
]

Shear
force

from
self-w

eight
[N

]

M
om

ent
due

to
applied

load
[N

m
]

Force
in

longitudinal
reinforcem

ent
at

crack,including
effect

ofshear
[N

]

Longitudinal
strain

C
rack

spacing
[m

m
]

Factor
β
to

account
for

aggregate
interlock

in
concrete
m
em

ber

D
iagonal

crack
in-

clination
θ
[deg]

C
oncrete

contribution
to

shear
resistance
[N

]

Steel
contribution

to
shear

resistance
[N

]

Totalshear
resistance

[N
]

0.425
207.43

1006.70
3146.50

116870.00
44686.00

1.19E-04
300.00

0.34
29.83

84056.00
81456.00

165510.00
0.45

200.60
928.62

3100.70
112940.00

35861.00
9.55E-05

300.00
0.35

29.67
86647.00

79299.00
165950.00

0.475
193.76

851.68
3054.90

109050.00
27183.00

7.24E-05
300.00

0.36
29.51

89355.00
77104.00

166460.00
0.5

186.93
775.88

3009.20
105190.00

18657.00
4.97E-05

300.00
0.37

29.35
92187.00

74868.00
167060.00

0.525
180.10

701.22
2963.40

101350.00
10280.00

2.74E-05
300.00

0.38
29.19

95149.00
72594.00

167740.00
0.55

173.27
627.71

2917.60
97532.00

2056.10
5.47E-06

300.00
0.40

29.04
98248.00

70281.00
168530.00

0.575
166.43

555.34
2871.90

92540.00
-11002.00

-3.39E-06
300.00

0.40
28.98

99561.00
67682.00

167240.00
0.6

159.60
484.11

2826.10
87228.00

-25541.00
-7.88E-06

300.00
0.40

28.94
100240.00

64988.00
165230.00

0.625
152.77

414.03
2780.30

82015.00
-39861.00

-1.23E-05
300.00

0.41
28.91

100920.00
62285.00

163200.00
0.65

145.94
345.10

2734.60
76899.00

-53958.00
-1.66E-05

300.00
0.41

28.88
101590.00

59575.00
161170.00

0.675
139.11

277.30
2688.80

71882.00
-67835.00

-2.09E-05
300.00

0.41
28.85

102260.00
56856.00

159120.00
0.7

138.29
210.66

2643.00
67906.00

-77056.00
-2.38E-05

300.00
0.41

28.83
102720.00

56567.00
159280.00

0.725
138.29

145.15
2597.30

64048.00
-85694.00

-2.64E-05
300.00

0.42
28.82

103140.00
56611.00

159750.00

Table
A
-2:

Results
from

calculations
ofLB6

acc.
to

CSA
A23.3

"M
ore

accurate
m
ethod"

Location
[m

]

M
om

ent
due

to
applied

load
[N

m
]

Force
in

the
top

flange[N
]

Force
in

the
bottom

flange[N
]

Strain
in

the
top

flange
Strain

in
the

bottom
flange

M
id-depth
strain

Factor
β
to

account
for

aggregate
interlock

in
concrete
m
em

ber

D
iagonal
crack

inclination
θ
[deg]

C
oncrete

contribution
to

shear
resistance

[N
]

Steel
contribution
to

shear
resistance

[N
]

Totalshear
resistance

[N
]

0.425
126170.00

79816.00
-512930.00

2.12E-04
-1.58E-04

2.71E-05
0.3844

29.19
95182.00

83616.00
178800.00

0.45
121320.00

67933.00
-502030.00

1.81E-04
-1.55E-04

1.30E-05
0.3924

29.09
97161.00

81191.00
178350.00

0.475
116510.00

56192.00
-491200.00

1.50E-04
-1.52E-04

-9.69E-07
0.4006

28.99
99199.00

78741.00
177940.00

0.5
111750.00

44590.00
-480440.00

1.19E-04
-1.48E-04

-1.48E-05
0.4091

28.90
101300.00

76267.00
177560.00

0.525
107040.00

33127.00
-469750.00

8.82E-05
-1.45E-04

-2.84E-05
0.4178

28.80
103460.00

73769.00
177220.00

0.55
102360.00

21800.00
-459110.00

5.80E-05
-1.42E-04

-4.18E-05
0.4268

28.71
105680.00

71248.00
176930.00

0.575
97726.00

10611.00
-448520.00

2.82E-05
-1.38E-04

-5.51E-05
0.4360

28.61
107970.00

68702.00
176670.00

0.6
93076.00

-667.29
-437950.00

-2.06E-07
-1.35E-04

-6.77E-05
0.4452

28.53
110240.00

66124.00
176360.00

0.625
87266.00

-17021.00
-427010.00

-5.25E-06
-1.32E-04

-6.85E-05
0.4458

28.52
110390.00

63308.00
173700.00

0.65
81590.00

-33063.00
-416380.00

-1.02E-05
-1.28E-04

-6.93E-05
0.4464

28.51
110550.00

60492.00
171040.00

0.675
76048.00

-48790.00
-406070.00

-1.51E-05
-1.25E-04

-7.02E-05
0.4470

28.51
110700.00

57674.00
168380.00

0.7
71637.00

-59516.00
-396080.00

-1.84E-05
-1.22E-04

-7.03E-05
0.4471

28.51
110730.00

57336.00
168060.00

0.725
67371.00

-69580.00
-386100.00

-2.15E-05
-1.19E-04

-7.03E-05
0.4471

28.51
110730.00

57336.00
168060.00
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128 Results of Calculations According to CSA A23.3 Shear Provision
Table

A
-5:

Results
from

calculations
ofLB11

acc.
to

CSA
A23.3

Location
[m

]

A
rea

ofstirrups
per

unit
of

length
[m
m

2/
m
]

M
om

ent
from

self-
w
eight
[N

m
]

Shear
force

from
self-w

eight
[N

]

M
om

ent
due

to
applied

load
[N

m
]

Force
in

longitudinal
reinforcem

ent
at

crack,including
effect

ofshear
[N

]

Longitudinal
strain

C
rack

spacing
[m

m
]

Factor
β
to

account
for

aggregate
interlock

in
concrete
m
em

ber

D
iagonal

crack
in-

clination
θ
[deg]

C
oncrete

contribution
to

shear
resistance
[N

]

Steel
contribution

to
shear

resistance
[N

]

Totalshear
resistance

[N
]

0.425
138.29

1011.00
3167.00

108000.00
6367.00

0.000016950
300.00

0.39
29.12

96990.00
55910.00

152900.00
0.45

124.62
932.64

3121.00
102600.00

-8922.00
-0.000002814

300.00
0.40

28.98
99880.00

50670.00
150500.00

0.475
110.96

855.19
3075.00

95790.00
-29350.00

-0.000009255
300.00

0.41
28.94

100900.00
45200.00

146100.00
0.5

97.29
778.89

3029.00
89240.00

-49300.00
-0.000015550

300.00
0.41

28.89
101800.00

39700.00
141500.00

0.525
83.63

703.74
2983.00

82900.00
-68790.00

-0.000021690
300.00

0.41
28.85

102800.00
34190.00

137000.00
0.55

69.96
629.74

2937.00
76770.00

-87800.00
-0.000027690

300.00
0.42

28.81
103800.00

28650.00
132400.00

0.575
56.30

556.90
2891.00

48010.00
-201500.00

-6.36E-05
656.37

0.35
28.56

86290.00
0.00

86290.00
0.6

42.63
485.20

2845.00
45900.00

-206300.00
-0.000065070

656.37
0.35

28.55
86500.00

0.00
86500.00

0.625
28.97

414.66
2799.00

43780.00
-211100.00

-0.000066580
656.37

0.35
28.53

86720.00
0.00

86720.00
0.65

15.30
345.28

2752.00
41640.00

-216000.00
-0.000068110

656.37
0.35

28.52
86940.00

0.00
86940.00

0.675
1.64

277.04
2706.00

39500.00
-220800.00

-0.000069640
656.37

0.35
28.51

87160.00
0.00

87160.00
0.7

0.00
209.95

2660.00
37350.00

-225700.00
-0.000071180

656.37
0.35

28.50
87390.00

0.00
87390.00

0.725
0.00

144.02
2614.00

35190.00
-230600.00

-0.000072720
656.37

0.35
28.49

87620.00
0.00

87620.00

Table
A
-6:

Results
from

calculations
ofLB11

acc.
to

CSA
A23.3

"M
ore

accurate
m
ethod"

Location
[m

]

M
om

ent
due

to
applied

load
[N

m
]

Force
in

the
top

flange[N
]

Force
in

the
bottom

flange[N
]

Strain
in

the
top

flange
Strain

in
the

bottom
flange

M
id-depth
strain

Factor
β
to

account
for

aggregate
interlock

in
concrete
m
em

ber

D
iagonal
crack

inclination
θ
[deg]

C
oncrete

contribution
to

shear
resistance

[N
]

Steel
contribution
to

shear
resistance

[N
]

Totalshear
resistance

[N
]

0.425
114600.00

31300.00
-507300.00

8.33E-05
-1.60E-04

-3.83E-05
0.42400

28.73
105500.00

56810.00
162300.00

0.45
109100.00

16050.00
-496400.00

4.27E-05
-1.57E-04

-5.69E-05
0.43700

28.60
108700.00

51470.00
160200.00

0.475
103600.00

1182.00
-485800.00

3.15E-06
-1.53E-04

-7.50E-05
0.45100

28.48
112100.00

46070.00
158100.00

0.5
96450.00

-20840.00
-474000.00

-6.57E-06
-1.50E-04

-7.80E-05
0.45300

28.45
112600.00

40430.00
153100.00

0.525
89340.00

-42900.00
-462700.00

-1.35E-05
-1.46E-04

-7.97E-05
0.45400

28.44
113000.00

34770.00
147700.00

0.55
82510.00

-64350.00
-452000.00

-2.03E-05
-1.43E-04

-8.14E-05
0.45600

28.43
113300.00

29100.00
142400.00

0.575
50840.00

-189700.00
-428600.00

-5.98E-05
-1.35E-04

-9.75E-05
0.36800

28.32
91430.00

0.00
91430.00

0.6
48490.00

-195300.00
-423100.00

-6.16E-05
-1.33E-04

-9.75E-05
0.36800

28.32
91430.00

0.00
91430.00

0.625
46130.00

-200900.00
-417600.00

-6.34E-05
-1.32E-04

-9.75E-05
0.36800

28.32
91440.00

0.00
91440.00

0.65
43780.00

-206500.00
-412100.00

-6.51E-05
-1.30E-04

-9.75E-05
0.36800

28.32
91440.00

0.00
91440.00

0.675
41430.00

-212000.00
-406700.00

-6.69E-05
-1.28E-04

-9.76E-05
0.36800

28.32
91440.00

0.00
91440.00

0.7
39070.00

-217600.00
-401200.00

-6.86E-05
-1.27E-04

-9.76E-05
0.36800

28.32
91440.00

0.00
91440.00

0.725
36720.00

-223200.00
-395700.00

-7.04E-05
-1.25E-04

-9.76E-05
0.36800

28.32
91440.00

0.00
91440.00
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Appendix B

Results of Calculations According to
fib Model Code 2010

The Appendix B contains the algorithm used to calculate beam LB11. The decision to present
beam LB11 only was advocated by the fact that calculations in the form of a loop contain
expressions for beams with and without stirrups controlled by "if statements". Recall that
beam LB11 contained stirrups spaced 87.5 mm near the west support and east loading plate to
control the region influence by high bending moment against flexural shear cracks. Due to that
a part of the test region is calculated as members reinforced against shear. Where the effect
of stirrups is diminished, the member is calculated as a beam without shear reinforcement.
For more information please refer to the main part of the report: section 2-4-2 for background
or section 4-4 for an explicit solution of the critical sections. In the subsequent part of the
appendix, the results for all beams are tabularized.

Master of Science Thesis Maciej J. Kraczla



LB11 (Design according to fib Model Code 2010) 

Material properties from: Liping Xie, The Influence of Axial Load and Prestress  on the Shear

Strength of Web-Shear Critical Reinforced Concrete Elements :

Concrete properties: reference Table 4.3 Concrete Compressive Strength•

fcm 62.3MPa:=

Ec 37900MPa:=

Steel properties: reference Table 4.6 Reinforcement Properties in a Beam•

fy 409MPa:=

Es 201100MPa:=

fyw 529MPa:=

Cross section dimensions (as-built)•

h 506mm:= bw 74mm:= bfbot 350mm:= hfbot 49mm:=

bftop 352mm:= hftop 57mm:= h1 25mm:= h2 25mm:=

y0top 247mm:=
d 473mm:= Ag 73740mm

2
:= Ig 2.56 10

9
⋅ mm

4
:=

Asw 24.2mm
2

:=
y0bot 259mm:= Astop 934mm

2
:= Asbot 934mm

2
:=

NEd 809− kN:= (Table 4.2)

dg 10mm:= (Table 4.13)

As 934mm
2

:=
(Table 4.6)

Stirrups: D4 spacing 175mm, 4-15M longitudinal bars, 1" High Strength Smooth Bar prestressing 

sv

87.5mm

0









:=

Solution 

x1 425mm
h

2
− 0.172m=:= x2 425mm

h

2
+ 0.678 m=:=

The minimum reinforcement ratio is calculated with: ρw 0.08

fcm

MPa
MPa⋅

fyw

⋅ 0.119 %⋅=:=

Bending moment from the self-weight

qEg2 Ag 25⋅
kN

m
3

1.843
kN

m
⋅=:= qEg1 h bftop⋅ 25⋅

kN

m
3

4.453
kN

m
⋅=:=

0.700m qEg1⋅ 4.120m( )⋅ 3.220m qEg2⋅
3.220m

2
0.550m+









⋅+

0.550m qEg1⋅
0.550m

2
⋅

0.150m( )
2

2
qEg1⋅− RA 3.360m( )⋅−+

... 0=

RA 0.9 m⋅ qEg1⋅ 2.07 m⋅ qEg2⋅+ 7.824 kN⋅=:=

RB 2 700⋅ mm qEg1⋅ 3200mm qEg2⋅+ RA− 4.31 kN⋅=:=



MEg x( ) 0.7m qEg1⋅ 0.350m 0.410m+ x+( )⋅ 0.41 m⋅ x+( ) qEg2⋅
0.41m x+

2









⋅+ RA x⋅−:=

Maximum spacing of stirrups

sw min 0.75d 500mm, ( ) 0.355 m=:=

Internal lever arm calculation from the horizontal forces equilibrium 

η 1.0

fcm

MPa
50−

200
− 0.938=:=

λ 0.8

fcm

MPa
50−

400
− 0.769=:=

εcu3

2.6 35

90
fcm

MPa
−

100











4

⋅+

1000
2.806 10

3−
×=:=

εc3

1.75 0.55

fcm

MPa
50−

40











⋅+

1000
1.919 10

3−
×=:=

Assumption: bottom steel is not yielding (in compression), top steel is yielding (in tension)

NEd Asbot Es⋅

CNA 33mm−

CNA

⋅ εcu3⋅− Astop fy⋅+ η fcm⋅ bfbot⋅ λ⋅ CNA⋅− 0=

CNA 0.061m 61 mm⋅=:= Fcc CNA λ⋅ η⋅ bfbot⋅ fcm⋅ 960.258 kN⋅=:=

εsbot

CNA 33mm−

CNA

εcu3⋅ 1.288 10
3−

×=:=

εs

fy

Es

2.034 10
3−

×=:= yielding strain

εstop

d CNA−

CNA

εcu3⋅ 0.019=:=

check ε( ) "steel is yielding" ε εs≥if

"steel is not yielding" ε εs<if

:= check εsbot( ) "steel is not yielding"= OK 

check εstop( ) "steel is yielding"= OK 

Because CNA>flange height, the neutral line is located in the web thus:

Assumption: xu 69mm:=

xI

xu εcu3 εc3−( )⋅

εcu3

0.022 m=:=



F
1

xI bfbot⋅ fcm⋅ 475.553 kN⋅=:=

fccWebLocation

fcm xu hfbot−( )⋅

xu xI−
26.404 MPa⋅=:=

F
2

hfbot xI−( ) bfbot⋅

fcm fccWebLocation+

2
⋅ 422.084 kN⋅=:=

hinc xu hfbot− 20 mm⋅=:=

Ac_Inclined

bfbot

bfbot bw−( )
2

h2 hinc−( )⋅

h2











2⋅ bw+











+

2
hinc⋅ 4.792 10

3
× mm

2
⋅=:=

F
3

Ac_Inclined fccWebLocation⋅ 0.5⋅ 63.263 kN⋅=:=

F∑ 960.9 kN⋅= Check
Fcc

F∑
0.999=:= thus the equilibrium is met

λ xu⋅ 53.078 mm⋅= η fcm⋅ 58.469 MPa⋅=

z d
λ xu⋅

2
− 0.446 m=:=

yCg 259.03mm:=

∆e yCg
z

2

λ xu⋅

2
+









− 9.26 mm⋅=:=



Shear resistance

VResistance x( ) VE.trial 0←

VE.trial VE.trial 0.001kN+←

break VE.trial VR=if

AswPerUnitOfLength

Asw

sv
0

x x1≤if

Asw

sv
0

Asw

sv
0











x x1−

x2 x1−
⋅− x1 x< x2<if

0 x x2≥if

←

MEg 0.7m qEg1⋅ 0.350m 0.410m+ x+( )⋅ 0.41 m⋅ x+( ) qEg2⋅
0.41m x+

2









⋅+ RA x⋅−←

ME MEg VE.trial 1200mm x−
150mm

2
−









⋅+←

VEg
x

0.7m qEg1⋅ 0.350m 0.410m+ x+( )⋅ 0.41 m⋅ x+( ) qEg2⋅
0.41m x+

2









⋅+ RA x⋅−








d

d
−←

Fsection

ME

z
VE.trial+ VEg+ 0.5NEd+←

εx
1

2 Es⋅ As⋅

ME

z
VE.trial+ VEg+ NEd

1

2

∆e

z
+









⋅+








⋅ Fsection 0≥if

0 otherwise

←

kdg
32

16
dg

mm
+

←

θmin 20 10000 εx⋅+( )deg←

ε1 εx εx 0.002+( ) cot θmin( )( )
2

⋅+←

kεPrime
1

1.2 55 ε1⋅+
←

kε kεPrime kεPrime 0.65≤if

0.65 otherwise

←

kc kε
30MPa

fcm









1

3

⋅←

VRmaxθmin kc fcm⋅ bw⋅ z⋅ sin θmin( )⋅ cos θmin( )←

smax

Asw

bw 0.08

fcm

MPa
MPa⋅

fyw

⋅













⋅

←

VE.trial VR≤while

i x∈for

:=



kv
0.4

1 1500εx+
1

VE.trial

VRmaxθmin

−








⋅ AswPerUnitOfLength

Asw

smax

≥if

0.4

1 1500 εx⋅+

1300

1000 kdg
z

mm
⋅+

⋅










otherwise

←

Vc kv

fcm

MPa
⋅ MPa bw⋅ z⋅←

Vs AswPerUnitOfLength z⋅ fyw⋅ cot θmin( )⋅ AswPerUnitOfLength

Asw

smax

≥if

0 otherwise

←

VR Vc Vs+←

ME

m
Fsection εx N⋅ θmin

N

deg
⋅ ε1 N⋅ kεPrime N⋅ kε N⋅ kc N⋅ VRmaxθmin kv N⋅ Vc Vs VR









T

The above function can only return a multiple rows/columns vector for values with the same unit.

Therefore all the variable had to be reduced to a consistent unit (here Newtons).  

An auxiliary function which calls the main function with every element of the argument vector and

collects the results in an n x <cols(R)> matrix.

calculateV xvec( )

R
cols R( )〈 〉

VResistance x( )←

x xvec∈for

R
T

:=

x 425mm 450mm, 750mm..:=

The function produces results as shown in Table B-3.

Results calculateV x( ):=

Results

4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

9

10

11

12

0.015 0.493 0.493 0.386 52.554·10 0.184 44.804·10 48.973·10 51.378·10

0.015 0.493 0.493 0.386 52.554·10 0.194 45.061·10 48.087·10 51.315·10

0.015 0.493 0.493 0.386 52.554·10 0.204 45.318·10 47.2·10 51.252·10

0.015 0.493 0.493 0.386 52.554·10 0.214 45.575·10 46.313·10 51.189·10

0.015 0.493 0.493 0.386 52.554·10 0.336 48.751·10 0 48.751·10

0.015 0.493 0.493 0.386 52.554·10 0.336 48.751·10 0 48.751·10

0.015 0.493 0.493 0.386 52.554·10 0.336 48.751·10 0 48.751·10

0.015 0.493 0.493 0.386 52.554·10 0.336 48.751·10 0 48.751·10

0.015 0.493 0.493 0.386 52.554·10 0.336 48.751·10 0 48.751·10

0.015 0.493 0.493 0.386 52.554·10 0.336 48.751·10 0 48.751·10

0.015 0.493 0.493 0.386 52.554·10 0.336 48.751·10 0 48.751·10

0.015 0.493 0.493 0.386 52.554·10 0.336 48.751·10 0 48.751·10

0.015 0.493 0.493 0.386 52.554·10 0.336 48.751·10 0 ...

N=
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136 Results of Calculations According to fib Model Code 2010

Table
B
-3:

Results
from

calculations
ofLB11

acc.
fib

M
odelCode

2010

Loca-
tion
[m

]

A
rea

of
stirrups

per
unit

of
length

[m
m
2̂/m

]

M
om

ent
from

the
self-w

eight
[N

*m
]

M
om

ent
due

to
the

applied
load

[N
*m

]

Force
in

longitudinal
reinforcem

ent
at

a
crack

Longitudi-
nal

strain

D
iagonal
crack

inclination
[deg]

Princi-
pal

tensile
strain

Strain
factor

[unitless]

Strength
reduction
factor

for
concrete
[unitless]

M
axim

um
shear

resistance
[N

]

Factor
accounting
for

strain
effect

and
m
em

ber
size

[N
]

C
oncrete

contribution
to

shear
resistance

[N
]

Steelcon-
tribution

to
shear

resistance
[N

]

Totalshear
resistance

[N
]

0.425
138.2860

1011.00
97450.00

-45290.00
0.00E+

00
20.0000

0.0150
0.4930

0.39
255400.00

0.184
48040.00

89730.00
137800.00

0.45
124.6210

932.64
89680.00

-69040.00
0.00E+

00
20.0000

0.0150
0.4930

0.39
255400.00

0.194
50610.00

80870.00
131500.00

0.475
110.9570

855.19
82220.00

-92080.00
0.00E+

00
20.0000

0.0150
0.4930

0.39
255400.00

0.204
53180.00

72000.00
125200.00

0.5
97.2920

778.89
75080.00

-114400.00
0.00E+

00
20.0000

0.0150
0.4930

0.39
255400.00

0.214
55750.00

63130.00
118900.00

0.525
83.6270

703.74
53210.00

-194800.00
0.00E+

00
20.0000

0.0150
0.4930

0.39
255400.00

0.336
87510.00

0.00
87510.00

0.55
69.9630

629.74
50950.00

-199900.00
0.00E+

00
20.0000

0.0150
0.4930

0.39
255400.00

0.336
87510.00

0.00
87510.00
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48690.00

-205000.00
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20.0000
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0.4930
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0.336
87510.00
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LB11 (Design according to EN 1992-1-1: 2004) 

Material properties from: Liping Xie, The Influence of Axial Load and Prestress  on the Shear

Strength of Web-Shear Critical Reinforced Concrete Elements :

Concrete properties: reference Table 4.3 Concrete Compressive Strength•

fcm 62.3MPa:=

Analytical relation from EN 1992-1-1: 2004, Table 3.1 Strength and deformation characteristics for

concrete

fctm 2.12 ln 1

fcm

MPa

10
+











⋅ MPa⋅ 4.194
N

mm
2

⋅=:=

Steel properties: reference Table 4.6 Reinforcement Properties in a Beam •

fy 409MPa:= yield strength of rebars 15M

fyw 529MPa:= yield strength of shear links D4

Cross section dimensions (as-built)•

h 506mm:= bw 74mm:= bftop 352mm:= hftop 57mm:=

h1 25mm:= d 473mm:= Ag 73740mm
2

:= Asw 24.2mm
2

:=

z 446mm:= Calculated in fMC 2010 for the beam LB11

Ig 2.56 10
9

⋅ mm
4

:= Qflange 5.34 10
6

⋅ mm
3

:= Qcen 6.35 10
6

× mm
3

:= Naxial 809− kN:=

y0bot 259mm:= y0top 247mm:= ztf y0top h1− hftop− 0.165 m=:= (Table 4.2)

Ap 507mm
2

:= As 934mm
2

:= (Table 4.6)

Self weight value:•

qEg2 Ag 25⋅
kN

m
3

1.843
kN

m
⋅=:= qEg1 h bftop⋅ 25⋅

kN

m
3

4.453
kN

m
⋅=:=

lTestRegion 2400mm:= the region between the supports B and C

Solution 

Shear resistance attributed to the stirrups:

sv

87.5mm

0mm









:=

x1 425mm
h

2
− 0.172 m=:=

x2 425mm
h

2
+ 0.678 m=:=



Shear resistance according to EN 1992-1-1:2004 eq. 6.8 for members with vertical shear reinforcement

including variation of the stirrups along the span (see function AswPerUnitofLength)

VR.s6.8 x( )

θ 21.8deg←

AswPerUnitOfLength

Asw

sv
0

i x1≤if

Asw

sv
0

Asw

sv
0











i x1−

x2 x1−
⋅− x1 i< x2<if

0 i x2≥if

←

VR AswPerUnitOfLength z⋅ fyw⋅ cot θ( )⋅←

i x∈for

VR

:=

fck fcm 4MPa− 58.3 MPa⋅=:=

σcp

Naxial

Ag

10.971 MPa⋅=:=

αcw 1
σcp

fcm

+ 0 σcp< 0.25 fcm⋅≤if

1.25 0.25 fcm⋅ σcp< 0.5 fcm⋅≤if

2.5 1
σcp

fcm

−
















0.5 fcm⋅ σcp< 1 fcm⋅<if

1.176=:=

VRmax

αcw bw⋅ z⋅ 0.6⋅ 1

fck

MPa

250
−











⋅ fcm⋅

cot θ( ) tan θ( )+

θ 21.8deg∈for 383.629 kN⋅=:=

Support reactions from the self-weight

0.700m qEg1⋅ 4.120m( )⋅ 3.220m qEg2⋅
3.220m

2
0.550m+









⋅+

0.550m qEg1⋅
0.550m

2
⋅

0.150m( )
2

2
qEg1⋅− RA 3.360m( )⋅−+

... 0=

RA 0.9 m⋅ qEg1⋅ 2.07 m⋅ qEg2⋅+ 7.824 kN⋅=:=

RB 2 700⋅ mm qEg1⋅ 3200mm qEg2⋅+ RA− 4.31 kN⋅=:=

MEg x( ) 0.7m qEg1⋅ 0.350m 0.410m+ x+( )⋅

0.41 m⋅ x+( ) qEg2⋅
0.41m x+

2









⋅ RA x⋅−








+

...:=

Bending moment from prestressing 

Mvrsp 0:=



Shear resistance according to the equation (6.2) EN 1991-1-2

V6.4 x( ) VE.trial 0←

VE.trial VE.trial 0.001kN+←

break σ1 fctm=if

VEg
x

0.7m qEg1⋅ 0.350m 0.410m+ x+( )⋅ 0.41 m⋅ x+( ) qEg2⋅
0.41m x+

2









⋅+ RA x⋅−








d

d
−←

MEg 0.7m qEg1⋅ 0.350m 0.410m+ x+( )⋅

0.41 m⋅ x+( ) qEg2⋅
0.41m x+

2









⋅ RA x⋅−








+

...←

Vtot VE.trial VEg+←

ME VE.trial

lTestRegion

2
x−

150mm

2
−









⋅←

Mtot MEg ME+←

σcptf

Naxial

Ag

Mtot ztf⋅

Ig

+←

τtf

Vtot Qflange⋅

bw Ig⋅
←

σcpcen

Naxial

Ag

←

τcen

Vtot Qcen⋅

bw Ig⋅
←

σ1cen τcen
2

σcpcen

2









2

+

σcpcen

2
+←

σ1tf τtf
2

σcptf

2









2

+

σcptf

2
+←

σ1 max σ1tf σ1cen, ( )←

σ1 fctm≤while

Vtot

Mtot

m
σcptf mm

2
⋅ τtf mm

2
⋅ σcpcen mm

2
⋅ τcen mm

2
⋅ σ1cen mm

2
⋅ σ1tf mm

2
⋅ σ1 mm

2
⋅ VE.trial









T

:=

The above function can only return a multiple rows/columns vector for values with the same unit.

Therefore all the variable had to be reduced to a consistent unit (here Newtons). The units were later

restored.  

An auxiliary function which calls the main function with every element of the argument vector and

collects the results in an n x <cols(R)> matrix.

x 0mm 50mm, 1200mm..:=

calculateV xvec( )

R
cols R( )〈 〉

V6.4 x( )←

x xvec∈for

R
T

:=



Results calculateV x( ):=

Results
2 3 4 5 6 7 8 9

19

20

21

22

23

24

-8.338 6.706 -10.971 7.975 4.194 3.728 4.194 52.357·10

-9.104 6.706 -10.971 7.975 4.194 3.553 4.194 52.358·10

-9.87 6.706 -10.971 7.975 4.194 3.392 4.194 52.359·10

-10.636 6.706 -10.971 7.975 4.194 3.241 4.194 52.36·10

-11.403 6.706 -10.971 7.975 4.194 3.101 4.194 52.361·10

-12.17 6.706 -10.971 7.975 4.194 2.971 4.194 ...

N=

VResistance6.4. Results
9〈 〉

:=

Shear resistance of members not requiring shear reinforcement according to EN 1992-1-1: 2004 eq.

6.2.a. Please note: in the formulation mean values of CRc and k1 are used.

VResistance6.2 CRc 0.163←

σcp

Naxial

Ag

←

k 1
200

d

mm

+←

ρl min
As

bw d⋅
0.02, 









←

k1 0.225←

VR CRc k⋅ 100 ρl⋅

fcm

N

mm
2

⋅










1

3

⋅ k1 σcp⋅
mm

2

N
⋅+















bw⋅ d⋅
N

mm
2

⋅←

:=

VResistance6.2 133.427 kN⋅=

Definition of a region uncracked and cracked in flexure

Flexural cracking is expected in the most tensile fiber when stresses from the applied load exceed the

concrete tensile strength:

Naxial

Ag

Mcr y0top⋅

Ig

+

MEg x( ) y0top⋅

Ig

+ fctm= with: Naxial 8.09− 10
5

× N= a negative sign -

compression 

After transformations flexural cracking bending moment is:

.

Mcr x( )

Ig

Naxial

Ag

fctm−

y0top MEg x( )⋅

Ig

+








⋅

y0top

−:=



Applied shear force causing flexural cracking in concrete. Please note: due to the experimental set-up,

shear force is constant in the test region. 

VE 1200 mm⋅ x−
150mm

2
−









⋅ Mcr x( )− 0=

VE x( )
Mcr x( )

1200mm x−
150mm

2
−

:=

0 0.5 1
0

1 10
5

×

2 10
5

×

3 10
5

×

4 10
5

×

VE x( )

VResistance6.4 x( )

x
Region cracked in flexure thus where shear flexure capacity acc. to 6.2 or 6.8 EC2 is governing is presented

above. The definition of this region is based on the assumption that the lowest value of shear resistances  i.e.

shear flexure resistance  and shear tension resistance determines the manner in which a member fails. 

VRegions x1 x2, xend, ( ) i ORIGIN←

j ORIGIN←

Vultimate
i j, 

"flexural" VE x( ) VResistance6.4 x( )<if

"tension shear" otherwise

←

Vultimate
i j 1+, 

max VResistance6.2 VR.s6.8 x( ), ( ) Vultimate
i j, 

"flexural"=if

max VResistance6.4 x( ) VR.s6.8 x( ), VResistance6.2, ( ) otherwise

←

i i 1+←

x x1 x2, xend..∈for

Vultimate

:=

VRegions 0mm 50mm, 1000mm, ( )
0 1

0

1

2

3

4

5

6

7

8

"flexural" 163.143

"flexural" 163.143

"flexural" 163.143

"flexural" 163.143

"tension shear" 163.613

"tension shear" 168.129

"tension shear" 172.824

"tension shear" 177.703

"tension shear" ...

kN⋅=
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144 Results of Calculations According to Eurocode 2
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4.478
-11.158

5.355
2.154

4.194
4.194

156
152.525

163.143
134.899

163.143
0.15

3669
163900

1946
158200

-0.839
4.594

-11.158
5.494

2.251
4.194

4.194
160.2

160.537
163.143

134.899
163.143

0.2
3577

168200
1765

154100
-1.108

4.715
-11.158

5.639
2.353

4.194
4.194

164.6
169.411

163.143
134.899

164.6
0.25

3485
172700

1588
149700

-1.395
4.841

-11.158
5.789

2.461
4.194

4.194
169.2

179.293
163.143

134.899
169.2

0.3
3393

177400
1416

145000
-1.701

4.972
-11.158

5.946
2.575

4.194
4.194

174
190.368

163.143
134.899

174
0.35

3301
182300

1249
139900

-2.029
5.109

-11.158
6.109

2.694
4.194

4.194
179

202.865
163.143

134.899
179

0.4
3209

187300
1086

134600
-2.38

5.251
-11.158

6.279
2.82

4.194
4.194

184.1
217.08

163.143
134.899

184.1
0.45

3117
192600

928.035
128800

-2.754
5.398

-11.158
6.455

2.953
4.194

4.194
189.5

233.395
163.143

134.899
189.5

0.5
3024

198100
774.51

122700
-3.155

5.552
-11.158

6.639
3.093

4.194
4.194

195
252.312

163.143
134.899

195
0.55

2932
203800

625.589
116100

-3.584
5.711

-11.158
6.83

3.24
4.194

4.194
200.8

274.511
163.143

134.899
200.8

0.6
2840

209700
481.273

109100
-4.043

5.877
-11.158

7.028
3.395

4.194
4.194

206.8
300.93

163.143
134.899

206.8
0.65

2748
215800

341.561
101600

-4.533
6.05

-11.158
7.235

3.557
4.194

4.194
213.1

332.901
163.143

134.899
213.1

0.7
2656

222200
206.453

93520
-5.057

6.229
-11.158

7.449
3.727

4.194
4.194

219.6
372.384

163.143
134.899

219.6
0.75

2564
228800

75.95
84930

-5.617
6.415

-11.158
7.671

3.906
4.194

4.194
226.3

422.383
163.143

134.899
226.3

0.8
2472

235700
-49.949

75760
-6.216

6.607
-11.158

7.901
4.094

4.194
4.194

233.3
487.752

163.143
134.899

233.3
0.85

2380
239400

-171.244
65000

-6.917
6.71

-11.158
8.024

4.194
4.09

4.194
237

576.875
163.143

134.899
237

0.9
2288

239400
-287.934

53060
-7.697

6.71
-11.158

8.024
4.194

3.887
4.194

237.1
705.589

163.143
134.899

237.1
0.95

2196
239400

-400.02
41110

-8.476
6.71

-11.158
8.024

4.194
3.698

4.194
237.2

907.826
163.143

134.899
237.2

1
2104

239400
-507.501

29150
-9.256

6.71
-11.158

8.024
4.194

3.523
4.194

237.3
1272

163.143
134.899

237.3
1.05

2011
239400

-610.378
17190

-10.036
6.71

-11.158
8.024

4.194
3.361

4.194
237.4

2121
163.143

134.899
237.4

1.1
1919

239400
-708.651

5228
-10.817

6.71
-11.158

8.024
4.194

3.21
4.194

237.5
6367

163.143
134.899

237.5
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LB11 (Design according to RBK 1.1) 

Material properties from: Liping Xie, The Influence of Axial Load and Prestress  on the Shear

Strength of Web-Shear Critical Reinforced Concrete Elements :

Concrete properties: reference Table 4.3 Concrete Compressive Strength•

fcm 62.3MPa:=

Analytical relation from EN 1992-1-1: 2004, Table 3.1 Strength and deformation characteristics for

concrete

fctm 2.12 ln 1

fcm

MPa

10
+











⋅ MPa⋅ 4.194
N

mm
2

⋅=:=

Steel properties: reference Table 4.6 Reinforcement Properties in a Beam •

fy 409MPa:= yield strength of rebars 15M

fyw 529MPa:= yield strength of shear links D4

Cross section dimensions (as-built)•

h 506mm:= bw 74mm:= bftop 352mm:= hftop 57mm:=

h1 25mm:= d 473mm:= Ag 73740mm
2

:= Asw 24.2mm
2

:=

z 446mm:= Calculated in fMC 2010 for the beam LB11

Ig 2.56 10
9

⋅ mm
4

:= Qflange 5.34 10
6

⋅ mm
3

:= Qcen 6.35 10
6

× mm
3

:= Naxial 809− kN:=

y0bot 259mm:= y0top 247mm:= ztf y0top h1− hftop− 0.165 m=:= (Table 4.2)

Ap 507mm
2

:= As 934mm
2

:= (Table 4.6)

Self weight value:•

qEg2 Ag 25⋅
kN

m
3

1.843
kN

m
⋅=:= qEg1 h bftop⋅ 25⋅

kN

m
3

4.453
kN

m
⋅=:=

lTestRegion 2400mm:= the region between the supports B and C

Solution 

Shear resistance attributed to the stirrups:

sv

87.5mm

0mm









:=

x1 425mm
h

2
− 0.172 m=:=

x2 425mm
h

2
+ 0.678 m=:=



Shear resistance according to RBK 1.1 for members with vertical shear reinforcement including

variation of the stirrups along the span (see function AswPerUnitofLength) and θ in prestressed

concrete = 30 degrees.

VR.s6.8 x( )

θ 30deg←

AswPerUnitOfLength

Asw

sv
0

i x1≤if

Asw

sv
0

Asw

sv
0











i x1−

x2 x1−
⋅− x1 i< x2<if

0 i x2≥if

←

VR AswPerUnitOfLength z⋅ fyw⋅ cot θ( )⋅←

i x∈for

VR

:=

Please note: total shear resistance according to RBK 1.1 consists of steel and concrete contributions. The

above expression has to be supplemented with the resistance attributed to concrete VResistance6.2  

fck fcm 4MPa− 58.3 MPa⋅=:=

σcp

Naxial

Ag

10.971 MPa⋅=:=

αcw 1
σcp

fcm

+ 0 σcp< 0.25 fcm⋅≤if

1.25 0.25 fcm⋅ σcp< 0.5 fcm⋅≤if

2.5 1
σcp

fcm

−
















0.5 fcm⋅ σcp< 1 fcm⋅<if

1.176=:=

VRmax

αcw bw⋅ z⋅ 0.6⋅ 1

fck

MPa

250
−











⋅ fcm⋅

cot θ( ) tan θ( )+

θ 30deg∈for 481.762 kN⋅=:=

Support reactions from the self-weight

0.700m qEg1⋅ 4.120m( )⋅ 3.220m qEg2⋅
3.220m

2
0.550m+









⋅+

0.550m qEg1⋅
0.550m

2
⋅

0.150m( )
2

2
qEg1⋅− RA 3.360m( )⋅−+

... 0=

RA 0.9 m⋅ qEg1⋅ 2.07 m⋅ qEg2⋅+ 7.824 kN⋅=:=

RB 2 700⋅ mm qEg1⋅ 3200mm qEg2⋅+ RA− 4.31 kN⋅=:=

MEg x( ) 0.7m qEg1⋅ 0.350m 0.410m+ x+( )⋅

0.41 m⋅ x+( ) qEg2⋅
0.41m x+

2









⋅ RA x⋅−








+

...:=



Bending moment from prestressing 

Mvrsp 0:=

Shear resistance according to the equation (6.2) EN 1991-1-2

V6.4 x( ) VE.trial 0←

VE.trial VE.trial 0.001kN+←

break σ1 fctm=if

VEg
x

0.7m qEg1⋅ 0.350m 0.410m+ x+( )⋅ 0.41 m⋅ x+( ) qEg2⋅
0.41m x+

2









⋅+ RA x⋅−








d

d
−←

MEg 0.7m qEg1⋅ 0.350m 0.410m+ x+( )⋅

0.41 m⋅ x+( ) qEg2⋅
0.41m x+

2









⋅ RA x⋅−








+

...←

Vtot VE.trial VEg+←

ME VE.trial

lTestRegion

2
x−

150mm

2
−









⋅←

Mtot MEg ME+←

σcptf

Naxial

Ag

Mtot ztf⋅

Ig

+←

τtf

Vtot Qflange⋅

bw Ig⋅
←

σcpcen

Naxial

Ag

←

τcen

Vtot Qcen⋅

bw Ig⋅
←

σ1cen τcen
2

σcpcen

2









2

+

σcpcen

2
+←

σ1tf τtf
2

σcptf

2









2

+

σcptf

2
+←

σ1 max σ1tf σ1cen, ( )←

σ1 fctm≤while

Vtot

Mtot

m
σcptf mm

2
⋅ τtf mm

2
⋅ σcpcen mm

2
⋅ τcen mm

2
⋅ σ1cen mm

2
⋅ σ1tf mm

2
⋅ σ1 mm

2
⋅ VE.trial









T

:=

x 0mm 50mm, 1200mm..:=

calculateV xvec( )

R
cols R( )〈 〉

V6.4 x( )←

x xvec∈for

R
T

:=



Results calculateV x( ):=

Results

5 6 7 8 9

0

1

2

3

4

5

6

5.067 1.982 4.194 4.194 51.472·10

5.193 2.068 4.194 4.194 51.511·10

5.325 2.159 4.194 4.194 51.551·10

5.462 2.255 4.194 4.194 51.593·10

5.604 2.357 4.194 4.194 51.636·10

5.753 2.463 4.194 4.194 51.681·10

5.907 2.576 4.194 4.194 ...

N=

VResistance6.4. Results
9〈 〉

:=

Shear resistance of members not requiring shear reinforcement according to RBK 1.1, cl.6.2.2

(1)

VResistance6.2 CRc 0.163←

kcap 1←

de 473mm←

Ab.pro 42879mm
2

←

bwgem min 1.25bw

Ab.pro

de

, 








←

k 1
200

de

mm

+←

ρl min
As

bwgem de⋅
0.02, 









←

k1 0.225←

σcp min
Naxial

Ag

0.2 fcm⋅, 








←

VR CRc kcap⋅ k⋅ 100 ρl⋅

fcm

N

mm
2

⋅










1

3

⋅ k1 σcp⋅
mm

2

N
⋅+















bwgem⋅ de⋅
N

mm
2

⋅←

:=

VResistance6.2 163.454 kN⋅=

Definition of a region uncracked and cracked in flexure

Flexural cracking is expected in the most tensile fiber when stresses from the applied load exceed the

concrete tensile strength:

Naxial

Ag

Mcr y0top⋅

Ig

+

MEg x( ) y0top⋅

Ig

+ fctm= with: Naxial 8.09− 10
5

× N= a negative sign -

compression 

After transformations flexural cracking bending moment is:



Mcr x( )

Ig

Naxial

Ag

fctm−

y0top MEg x( )⋅

Ig

+








⋅

y0top

−:=

Applied shear force causing flexural cracking in concrete. Please note: due to the experimental set-up,

shear force is constant in the test region. 

VE 1200 mm⋅ x−
150mm

2
−









⋅ Mcr x( )− 0= therefore VE x( )
Mcr x( )

1200mm x−
150mm

2
−

:=

0 0.5 1
0

1 10
5

×

2 10
5

×

3 10
5

×

4 10
5

×

VE x( )

VResistance6.4 x( )

x
VUltimate x1 x2, xend, ( ) i ORIGIN←

j ORIGIN←

Vultimate
i j, 

"flexural" VE x( ) VResistance6.4 x( )<if

"tension shear" otherwise

←

Vultimate
i j 1+, 

VResistance6.2 VR.s6.8 x( )+ Vultimate
i j, 

"flexural"=if

max VResistance6.4 x( ) VR.s6.8 x( ) VResistance6.2+, ( ) otherwise

←

i i 1+←

x x1 x2, xend..∈for

Vultimate

:=

Function produces results of the ultimate shear resistance as given in Table D-3

VUltimate 0mm 50mm, 1000mm, ( )

0 1

0

1

2

3

4

5

6

"flexural" 276.475

"flexural" 276.475

"flexural" 276.475

"flexural" 276.475

"tension shear" 270.221

"tension shear" 259.053

"tension shear" ...

kN⋅=
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152 Results of Calculations According to RBK 1.1
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