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Abstract

The computation of incompressible turbulent flow with two-equation closure models (k— and k—w) is considered. The
Cantesian staggered grid approach is generalized to general boundary-fitted coordinates. An accurate discretization on non-
smooth grids is presented. For higher-order monotone discretization of the equations for the turbulence quantities, flux-limited
versions of the x-scheme are developed. In order to better assess the relative merits of explicit and implicit time discretization,
a new approach to obtain von Neumann stability conditions is presented. A comparison is made between physical time scales
for direct and large-eddy simulation, and stability restrictions on the time step for explicit schemes. Applications are presented
for stationary turbulent flow computations with the k—¢ model.

1. Introduction

The purpose of this contribution is to report on the experience that has been gathered in the
development of a computing method for incompressible flow in complicated domains. We will mainly
discuss the path that we have been following towards this goal, and mention alternative approaches only
in passing; without any pretension, however, that our way is better. See Ref. [14] for a survey of the
field. Our approach may be characterized as a coordinate-invariant generalization of the classical
staggered grid discretization in Cartesian coordinates [7] and associated solution methods for
incompressible flows.

2. Spatial discretization

We use the finite volume method, with a boundary-fitted coordinate mapping, resulting in a
structured grid, and requiring block decomposition for complicated domains. There are basically two
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finite volume options for the incompressible Navier—Stokes equations: staggered and collocated (non-
staggered). On Cartesian grids, the collocated approach needs special measures to avoid checkerboard
oscillations, cf. [21]. However, generalizing the staggered approach to general grids is more
complicated than for the collocated approach. This is caused by the fact that the cell face normal
velocity components are used as unknowns, and that the staggered grid control volumes have a
complicated shape. Furthermore, the results of a straightforward implementation may be inaccurate on
non-smooth grids, due to the fact that practical boundary-fitted coordinate mappings are only piecewise
differentiable. This difficulty may be overcome, however, by taking non-smoothness of the coordinate
mapping into account, cf. [27,40]. As a consequence of these difficulties, in general coordinates the
collocated version seems to be more popular than the staggered version at present; see Refs. [39,45,46].
We have chosen for the staggered approach, generalizing the classical Cartesian formulation [7] to
general coordinates.

The viscous terms are generally discretized with central differences, but the discretization of the
inertia terms is an issue. For the momentum equations, central second-order discretization has been
employed successfully for large-eddy and direct simulation of turbulence, but some argue that higher-
order central or upwind-biased schemes (such as QUICK [11]) are preferable. For convection of
reacting chemical species, or of turbulence modelling quantities (e.g. k and £) second-order accuracy
may be and monotonicity is certainly required. We will illustrate how this may be achieved in general
coordinates.

Let a boundary-fitted coordinate mapping in m dimensions be given:

x=x(§), xen, &G

with {2 the physical domain and G the m-dimensional unit cube. In G we have a uniform grid with cells
with vertices ;.12 11/2 (in two dimensions). The mapping is generated by a discrete numerical process
specifying x(&; /2j+1/2) extended to all of G by multilinear interpolation. As a consequence, the cell
faces are ruled surfaces for m = 3 and straight lines for m = 2, as illustrated in Fig. 1. In general
coordinates, with summation over pairs of equal Greek super- and subscripts from 1 to m, the
convection—diffusion equation for a scalar ¢ may be written as
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Fig. 1. Cell in G and its image in .
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Here /g is the Jacobian of the mapping, s the source term, v the diffusion coefficient, and
a® =ver, Vo= /za® .y

with u the velocity field, and V the gradient operator. For m = 2, a(® can be determined from
al) = (‘152), —aéz))/\/é?, a? = (“0%1)70(11))/\/3’_
a(a) = BX/aga, \/g = a(ll)azz) - a%l)aé2) (2.2)

The covariant basis vectors a(s) can be determined exactly by straightforward finite differencing from
the piecewise multilinear mapping x = x(&).

The contravariant base vectors are discontinuous at cell faces. How to take this into account in order
to avoid significant errors on non-smooth grids is discussed in Refs. [27,40]. Here we give a brief
explanation for the viscous term. Integration over a finite volume {2;; with centre at (i,j) gives, noting
that dx =, /gd¢,

o it1/2 i iv1/2
oga (VB - vVR)AEE = (/ga® - vV [T1V2 1 (/ga® - vvp)|3* /2
Gy
At the respective cell faces \/ga’) and ,/ga®® are smooth and evaluated exactly by (2.2), and vV
is smooth. Writing V¢ in terms of & would introduce effects of the non-smoothness of x = x(&). We,
therefore, proceed as follows, allowing v to be piecewise continuous per cell. We have

Xitl,

.y 1
@l = / ;chp -dx 2 (¢(y) - ALY (2.3)

i

Xy

with

C(1)i+1/24 = %{(a(l)/u)ij + @) /V)ip1}
Similarly,

2P 4 o) = (e - 90, (24)
with

@) E% {@@)/v)ijo1+@@)/V)ij1+@0) /V)ig1jo 1+ @) V) a1 + 2@/ V) + 2@@)/v)iy, ;)
Solving (2.3) and (2.4) for vV results in

a1 il o
(VV‘P);'-H/z,,' = c(”(P'i,"‘-lJ + Zc(z)(solij'tl + ‘pl:ﬂzfl)

with
C(l) = (C%Z)’ —sz))/C,C(z) = (—C%l)vcz]))/c
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The other cell face diffusion fluxes are approximated in the same way. The resulting approximation is
exact for Vo piecewise constant, irrespective of the smoothness of the grid and of v. A similar
procedure can be followed for the pressure and viscous terms in the Navier—Stokes equations.

Next, we turn to the discretization of the convection term in (2.1). Finite volume integration gives

oave ; ; i
/ 75}”%'%2 = (V') al + (V)12 (2.5)
Gy

From (2.2) it follows that V© is smooth at its points of definition on the staggered grid, so that the
smoothness of the grid plays only a minor role here. In (2.5), @ir1/2, etc. have to be further
approximated in terms of cell centre values. The equations for the turbulence quantities in two-equation
turbulence models (e.g. k, € or w) are of the type (2.1). It is essential that the discretization does not
allow spurious wiggles, and desirable that the spatial accuracy is of the second order. In order to have
second-order accuracy, we take a three-point upwind biased scheme. Such schemes, requiring second-
order accuracy, leave us with a free parameter x, and can generally be written in the form of the
k-scheme [30). Assuming V! 2 0, this scheme gives, deleting the subscript j for brevity,

i+1/2j =
1 1—-%
Pit12 = 3 (@i + pir1) + - (—pi-1 + 20; — pir1) (2.6)
For & = —1, we have the fully upwind second-order scheme studied in Ref. [25]. For x = 0, the zero-

average phase error scheme proposed in Ref. [4] results; this scheme results from optimizing, among 5-
point schemes, the propagation of a step function over one time step [35]. For & = 1/3, used in Ref. [1],
the local truncation error for the convection term becomes third order in space. For x = 1/2, we have
maximal accuracy for the cell face convection fluxes (QUICK scheme [11]). Finally, the standard
second-order central scheme is obtained when x = 1.

In order to avoid spurious wiggles the approximation (2.6) has to be made nonlinear. Nonlinear
wiggle-free schemes can be formulated conveniently in a unifying framework laid out in Ref. [12]. The
following normalized variable is introduced:

&= (¢ = @i-1)/(Pir1 — i-1)

For the k-scheme, we have

- - 1+&
Biv12 = (1~ 6/2)@; +—7

A nonlinear scheme is obtained by taking

951'-1-1/2 =f(&;) (2.7)

Such schemes are analysed in Refs. [5,12,13]. We have second-order accuracy if f(1/2) = 3/4, and
we may say that we have a nonlinear generalization of the x-scheme if for B =1/2, dp;y1/,/dp,
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Fig. 2. Normalized variable flux functions for TVD k-schemes,

F(1/2) =1-k/2

Using another formulation (the flux limiter), in Ref. [26) conditions are given for the scheme to be
total variation diminishing (TVD). These conditions are easily reformulated in terms of normalized
variables, and require that for s € [0, 1], fs) is inside the triangles shown in Fig. 2. For s¢[0, 1], we take
the first-order upwind scheme: f(s) = s. Inside the triangle we take f differentiable, in order to facilitate
iterative convergence. The following piecewise polynomial function satisfies, for k €

triangle condition, f(1/2) = 3/4 and (2.8):
f(s) =25 + (5 — 1)s? — 2ks°,

f(s)=1+%n(s—1)+(n—l)(s—1)2, 0<k<l, 1/2<s<1

f&)=1-(1+r)(s—1)* - 2x(s —1)°,

This function is shown in Fig. 2.

0<s<1/2

-1<k<0, 1/2<s<1

373

(2.8)

[—1,1], the
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For easy implementation we use defect correction on the first-order upwind scheme. Eq. (2.7) is
rewritten as
Pir1/2 = Pi+ @ic1 — i + (ir1 — @ic1 ) (@)

and all terms but the first of the right-hand side are lagged behind one iteration or one time step, as the
case may be.

3. Temporal discretization

We use time-stepping with the pressure correction method, which is simple, accurate and efficient for
instationary flows on staggered grids. The second-order version given in Ref. [29] is used. In the
following, by stability analysis we imply the von Neumann stability analysis, using Fourier
transformation. In practice, the stability analysis for the incompressible Navier—Stokes and two-
equation turbulence model equations then reduces to stability analysis for the convection—diffusion
equation in Cartesian coordinates:

Op & 7] i
E‘*‘;(Ha—a;a—— VBF)(p—— 0

a

The convection term is discretized with the x-scheme and the diffusion term with central differences.
Denoting the step-sizes by 7 and h,, stability is governed by the parameters ¢, (CFL-numbers) and d,,,
defined by

Co = |Ua|T/hg, d, = 2ur/hi

With x =1 and forward Euler temporal discretization (FTCS scheme) necessary and sufficient
stability conditions are ([8,9,15]);

D da<1 and S c2/d, <1
[o] x

For leapfrog Euler in time and « = 1, heavily used for large-eddy simulation in the past, the
following criterion, put forward in Ref. [23] and proven to be sufficient in Ref. [20] is known:

Z(Zda + Ca) <1
23
whereas in Refs. [36,37] the following condition is shown to be necessary and sufficient:
Y (dat /2 +c2) <1

For other temporal discretizations and/or other values of x few analytic stability results seem to be
known, especially for the number of space dimensions m > 1, and in practice heuristic criteria to
determine T are used. Here we briefly describe a method, put forward in Ref. [36], by which sufficient
stability conditions are easily obtained in a wide variety of cases. Let I, (0),0 = (61,0s,...,0,) be the
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symbol (Fourier transform) of the spatial discretization operator L. Define Sp = {—-rLy(8) € C : vo).
Let § C C be the stability domain of the time integration method employed (in the usual sense in the
context of solving ordinary differential equations). Then S; C S is sufficient for stability. Hence, it
is useful to know something about S;. In Refs. [36-38], the following theorems are proven for the
k-scheme. Define d = 3~ {d, + (1 — k)c,}.

Theorem 3.1: If
d<a and Zcﬁ/da <(2-k)*/a

then Sy is contained in the ellipse

(via+ 1 +w/bY? =1, v+iw=1
Theorem 3.2: If d < a and one or both of the following two conditions hold:

D (€/d)' P < qi(6*10)' or 3 ca < grb?/a

a

where
q) = %(8 - 4;@)_5/3(15 — 5k — r)4/3(5h: —34+n"39 -7k + '3,
r = (25k% — 54k + 33)'/2,
@2 = (1~ k)*(8/5 - 4x/5)2, —1 <k <3/4,

@2=(1-K)/2, 3/4<k<1

then Sy is contained in the oval given by

(va+ 1 +w/b) =1, v+iw=¢
Theorem 3.3: If

Zigg- and gzci/aag(2—n)‘2(1+\/1—432/a2)

then Sy is contained in the ellipse given by

(v/a’ + w/b)> =1, v+iw=z

Theorem 3.4: If

Z Ci/dcx < q3b2
@
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Fig. 3. Stability domain of second-order Adams-Bashforth scheme (

where

@:=1/2 f1/2<k<]l,

7
s=T(1-R)/2=r ¥ —1<r<1p2
then Sy is contained in the parabola given by

v+ (Wb =0, v+iw=z

Similar results are presented in Ref. [36] for £ = 1 and for fourth-order central discretization of the
convection term. By fitting suitable unions or intersections of the conics and oval of these theorems
inside S covering S to a satisfactory extent in order to stay close to necessity, sufficient stability
conditions are easily obtained. We give a few examples. Fig. 3 shows S for the second-order Adams—
Bashforth scheme with the oval of Theorem 3.2 (parameters: a = 1/2, b = 2-1/4) and the ellipse of
Theorem 3.3 (parameters: a = 1, b = /2/3). All stability domains to be encountered are symmetric
with respect to the real axis, so that we show only the upper half. Requiring S; C oval N ellipse,
Theorems 3.2 and 3.3 immediately result in useful stability conditions. Fig. 4 shows S for the third-
order Adams—Bashforth scheme with the ellipse of Theorem 3.3 (parameters: a = 6/11,
b =72/11,/2/235 = 0.6038). To show the versatility of the method we also apply it to a Runge—
Kutta scheme, namely, the three-stage method described in Ref. [24] and called Wray’s scheme. When
applied to the single ordinary differential equation dy/dt = Ay, A € C the method gives

Y =PR)y", =M
with the amplification polynomial P(z) given by
P(z) = (1 + 12)(1 + %2)(1 + m2) + &1zl + 7132) + &22(1 + m2)
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where v, = 8/15, v, =5/12, v3 = 3/4, £, = —17/60, & = —5/12. The stability domain is defined
by

S={zeC:|P(z)) <1}

and is shown in Fig. 5, together with the ellipse of Theorem 3.3 (parameters: a = 25127, b=17/4).
Application of Theorem 3.3 gives sufficient stability conditions. Additional examples, including
schemes with implicit time discretization of the diffusion term, are given in Refs. [36,37].

When choosing between explicit and implicit schemes, not only stability but also accuracy
restrictions on 7 have to be taken into account. As an example we consider direct numerical simulation
of turbulent flow in a pipe with diameter L. The length scale % and the velocity scale % of the
turbulence macrostructure are approximately
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< =L/10, U=\/Tu/p

with 7, the wall friction. From Blasius’ resistance formula ([6], section 155)

U=02URe™ 8, Re=UL/v

with U the mean velocity. Hence the microscale Reynolds number is
1
Rem =UL /v = §6Re7/8

Away from the wall the length and time scales of the micro structure are according to Kolmogorov’s
law

L

= —3/4 g = =
n =% Re ", n/U o0

Re;3/4 (3. 1)

Near the wall the time scale is

Tw=v/U = 0.9-(L7Re,;"/7

In practice Re;, < 10°, so that 7, > 9. For accuracy, the mesh sizes must satisfy
T<7, hhe<7n a=123

For the present qualitative considerations we disregard the need for polar coordinates in pipe flow,
and assume a Cartesian grid. In direct simulation the viscous sublayer has to be resolved. It is
reasonable to put the nearest grid point to the wall at 2 = y* = Y& /v, resulting in the following step
size perpendicular to the wall:

hy = 2nRe-1/4 3.2
m

whereas k; and 43 can be as in the interior.

The physical time scale J can be compared to the stability restrictions on 7 for explicit schemes as
follows. First, consider the interior. The maximum values of |uq| can be estimated as (taking the x!-axis
in the mean flow direction)

| = U, (2| = |us| = U = yU, ~=02Re”"/® (3.3)
Furthermore, h; = hy = h3 = h, so that the (maximum) CFL numbers become, with ¢ = Y ata
a=Ur/h, ca=c3=7c, c=(1 + 2v)c; (3.4)
The numbers d,, become
1 6 TU [L\?
di=d, =dy = §d, d= R L (i_z) (3.5)

Taking as an example the second-order Adams—Bashforth method with the k = 1 scheme, the
stability conditions following from Theorems 3.2 and 3.3 and Fig. 3 can be written as
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Fig. 6. c~d diagram for interior. -: equality in Eq. (3.7); * : direct simulation, (d,c) according to Eq. (3.8); +: large eddy
simulation, (d.c) according to Eq. B.11) with 6 =1; o: § = 10.

d<1/2 and Y (c2/d.)'* <1 and 3dY " /d, <14+ V1 -4 (3.6)

fer=c3=2v, and dy=d,= ds this is equivalent with

1/4
d<1/2and c < (g) 6%7:2/'—;)—3/7 and ¢ S%(l + 27){(1 + V1 — 4d?) /(1 + 24*)}'/2
3.7)

We will call the graph of c(d) a c—d diagram, of which Fig. 6 is an example. For (3.7) to be satisfied,
the point (d,c) must lie below the two curves. Choosing 7 = s and h = 5 with 7, ¢ given by (3.1) and
s a parameter to be chosen we find

c=(142y)s, d=6syRe;!/* (3.8)

For Rer, = 64 (i.e. Re = 10*) and s = 1,1/2,1/4, (d,c) has been plotted in Fig. 6. We see'that we
have stability for s = 1/4, so that the stability requirement does not seem overly restrictive, and this
explicit scheme seems efficient. Repeating the same analysis for the wall region, we choose h,
according to (3.2) and h; = h3 =7n. Write hy=n/a, a= %Re,lr.M. Furthermore, we assume
lur| = BU(B == 2), lup| = |us| = %. This gives

a=p0sy, a=asy, c3=sv, dy=dy = 2s7Re;]/4, dy = 2sa2'yRe;‘/4
Substitution in (3.6) gives

d<1/2 and c<d(1+a+B)(2+a?) 41 + ¥ 4 4334
and ¢ < \—}—5(1 +a+ A2 +a) 2+ )V + VT —adt)' (3.9)

We take 3 = 2, Re,, = 64. In order to satisfy (3.9) the point (d,c) must be below the two curves in
Fig. 7. Choosing 7 = sJ", we find
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c=(1+a+p8)ys, d=25v(2+a*)Re/* 3.10
m

For Ren = 64 and s = 1,1/2,1/4, (c,d) has been plotted in Fig. 7. We sec that in this case stability
is less restrictive on 7 than accuracy.

We repeat the analysis for large-eddy simulation in the interior of the pipe. The physical time scale to
be resolved is 7 = h/U. The eddy viscosity v, varies; we take ve = bv where typically 1 < § ~ 10,
This gives, with 7 = 57 and using (3.3):

L
ca=s c=c=v d 2 =ds = b5 (3.11)
The boundaries of the admissible region in the c—d diagram are again given by (3.7). When the
turbulence intensity y corresponds to (3.3), Fig. 6 gives (d,c) for s = 1,1/2,1 /4 and 6§ =1,10. We
have stability for s = 1/4, so that again the stability requirement does not seem too restrictive.

4. Solution methods

We use implicit time stepping with the second-order pressure-correction method proposed in Ref.
[29] to compute stationary flows, although using stationary methods instead of time-stepping may be
more efficient. The nonlinear inertia term is Newton-linearized. The k—& equations are discretized with
the x = 1/2 scheme (QUICK) with limiting implemented by defect correction on the first-order
upwind scheme. The k-¢ equations are solved after the momentum equations. The velocity components
are updated simultaneously. The stencil of the discretization of a velocity component has 13 elements in
two and 51 elements in three dimensions; for the stencil corresponding, to the pressure correction
equation these numbers are 9 and 19, respectively. Various solution methods have been studied, cf.
[16-19] [31-34,39,41-44). We use GCR [3] preconditioned with multigrid for the pressure and
GMRESR [28] (a combination of GCR and GMRES [22]) for the velocity. In three dimensions this
requires much storage. Per finite volume cell, we store five reals for geometric quantities, seven for
v, p,k, € and a right-hand side, eight for two solution fields, 3 x 51 = 153 for the velocity matrix, six
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for the preconditioner and 45 for building a 15-dimensional Krylov subspace, giving a total of 224 reals
per cell. Solving for the pressure, k and € requires no additional storage, since the same memory can be
reused. In the explicit case, the pressure matrix requires 19 reals per cell, the preconditioner two and a
workspace of 10 is needed, giving a total of 51 reals per cell. This would seem to be not much above a
lower limit for the storage requirement for solving Navier-Stokes in general coordinates. One could
economize on the above storage requirement for implicit methods by decoupled solution of the velocity
components or using other methods that do not use the full matrix, such as ADI, but this would decrease
robustness and might increase computing time. Obviously, explicit methods require significantly less
memory than implicit methods, and also consume less computer time per time step.

5. Applications

We computed a turbulent flow in a two-dimensional channel with a restriction and symmetry with
respect to the centreline. The computational domain is shown in Fig. 8. The problem is fully specified
in Ref. [2], which also contains experimental results. Fig. 9 gives some results computed on a
150 x 100 grid, which gives sufficient resolution, as verified by mesh refinement. A turbulent kinetic
energy and velocity profile are shown at a distance of 2 radii from the inlet, together with experimental
values. The standard k—¢ model [10] is used, with two discretizations: first-order upwind (‘UDS’) and
QUICK with limiting (‘ISNAS’ [47]). Total computing time was 50 and 64 min, respectively, on a HP
9000/735 workstation (445 and 435 time steps, respectively). There is hardly any difference between
the two discretizations. The reason is that here production and dissipation of turbulent energy are in
good balance, and the role of the convection term is minor. The discrepancies with experiment are not
due to the numerics but to the turbulence modelling.

Fig. 8. Computational domain with grid.

0 T T 0 T T T T T T T T -6
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v/ Ro °
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Fig. 9. Turbulent kinetic energy (k) profile (left) and velocity profile (ﬁght); UDS, - - -: ISNAS, — { —: experiment.
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Fig. 11. Turbulent viscosity profiles at x/Dg = 1.875.

In the following example the role of the convection term is more important. We consider a co-flow jet
in a planar channel (Fig. 10). The problem is specified in Ref. [47]. We take U;/U, = 31.49 and
Re = Ujdp/v = 1.5 x 10°. The standard k- model is used again, both with UDS and ISNAS
discretization of convection. Fig. 11 shows the effect of grid resolution and discretization on the
turbulent viscosity profile. There is a noticeable difference between UDS and ISNAS. The latter is
assumed to be more accurate, and allows a coarser grid. The ISNAS solution on the 70 x 50 grid
required 135 min (1500 time steps, this flow takes a long time to become steady) on a HP 9000/735
workstation. We find that the computing times reported can be decreased by a factor of about 2.5 by
using the solution on a coarser grid (with mesh-size doubled) as initial condition. At first sight one
might think that replacing time-stepping for stationary problems by a stationary solution method would
save time, but in the case of the k—¢ turbulence model, due to its strong nonlinearity, methods other than
time-stepping are hard to make converge and require many iterations.

6. Concluding remarks

Although more complicated than for collocated schemes, generalization of the staggered grid
discretization of the incompressible Navier-Stokes equations from Cartesian to general coordinates is
feasible. Inclusion of associated strongly nonlinear convection-diffusion equations for scalars, such as
the k~¢ equations for turbulence modelling, presents no particular problems compared to the Cartesian
case. The flux-limited «-scheme approach carries over from Cartesian to general coordinates. In two
dimensions, engineering applications are feasible on workstations. Storage and computing time



P. Wesseling et al. /Mathematics and Computers in Simulation 44 (1997) 369-385 383

requirements need to be reduced in three dimensions. For certain flow problems, such as direct and
large-eddy simulation, explicit schemes may be efficient. For implicit schemes, storage requirements
may be reduced by uncoupled solution of velocity components, or even more by using matrix-free
solvers. However, this will probably increase computing time and lower robustness. For stationary
flows, computing time can probably be reduced significantly by replacing time stepping by a stationary
solver.
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