
Divide & Clean
A Master’s Thesis
L.F.O.Vogels
Multi-constrained edge partitioning and its application
in debris management

Divide & Clean
A Master’s Thesis

by

L.F.O.Vogels
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thursday, December 19, 2019 at 15:00.

Student number: 4691547
Project duration: March 1, 2019 – December 19, 2019
Thesis committee: Dr. P. Keskinocak Georgia Tech, supervisor

Prof. dr. ir. K. Aardal, TU Delft, supervisor
Dr. ir. M. van Gijzen, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

I would like to thank three people who made my master’s possible. First, Dr. Van Gijzen. I remember walking
into your office in 2016 to ask whether I could do my master’s at the TU Delft. It is great that you are here when
I finish it. Thank you for your humour and for being approachable. Then, Prof. Aardal. You recommended me
to apply for Georgia Tech and guided me every step of the way. Outside my thesis, you also made time to talk
about my future. Thank you for your time and devotion. Lastly, Dr. Keskinocak. You have been incredible.
You barely knew me, but decided anyway to make time for me every week for nine months. Your input was
indispensable for this thesis. You made me feel at home in Atlanta and you were flexible and compassionate
when I had to return home earlier than expected. Thank you for everything.

L.F.O.Vogels
Delft, December 2019

iii

Abstract

Let G = (V ,E) be a connected undirected graph, where every edge has two weights assigned to it. This thesis
considers the partitioning of the edge set E of G into subsets with three objectives in mind: i) balance the total
amount of the first weight among the subsets, ii) balance the total amount of the second weight among the
subsets and iii) create a non-chaotic partition. Here non-chaotic means that every subset forms a distinguish-
able and compact subgraph. We call this Unrelated Unconnected Multi Constrained Graph Partitioning, or
UUMCGP. It has applications in the collection of debris after natural disasters and in the assignment of tasks
to computers in a distributed network. We are the first to define UUMCGP and we show that for specific
cases close-to-optimal solutions can be obtained in polynomial time. Moreover, an algorithm is developed
that gives good approximate solutions to the general case of UUMCGP. The algorithm is tested on real-life
cases of debris management and gives better results than commercial solvers when they are set to find the
optimal solution.

v

Contents

1 Introduction 1
2 Literature review 3

2.1 Characteristics . 5
2.2 Classes . 6
2.3 Contribution . 7

3 Problem Description and Notation 9
3.1 The chaos measure . 10

4 Structural results 13
4.1 Solving UUMCGP . 13

4.1.1 Hardness of UUMCGP . 13
4.1.2 Cases of UUMCGP . 14
4.1.3 Theorems . 23

4.2 The multi-resource assignment problem . 35

5 Algorithms 41
5.1 The UM algorithm . 41
5.2 Starting UM algorithms . 42

5.2.1 The regular version . 42
5.2.2 The restricted version . 45
5.2.3 The combination version . 46
5.2.4 Conclusion. 47

5.3 Ending UM algorithms . 48
5.3.1 The regular version . 49
5.3.2 The restricted version . 50
5.3.3 The combination version . 51
5.3.4 Conclusion. 52

5.4 Conclusion . 52

6 Experimental Design 55
6.1 Creating instances . 55
6.2 Running algorithms . 61

7 Results 65
7.1 UM algorithm vs MIP solver. 65
7.2 Performance per category. 66

7.2.1 The amount of contractors. 68
7.2.2 The weight setting . 71
7.2.3 The city . 72

8 Conclusion 73
9 Further Research 75

9.1 Applicability of UUMCGP to the debris management problem 75
9.2 Vertex connectivity . 75
9.3 Partition shape . 78
9.4 Matching algorithm . 79
9.5 Instance variety . 79

Bibliography 81

vii

1
Introduction

In 2005 Hurricane Katrina buried New Orleans in an amount of debris equivalent to the area of a football pitch
10 kilometers high [24]. Clearance operations were complicated by the sheer mass of the destruction and di-
versity of debris including trees, electronic appliances and other hazardous waste. It took over 10 years to
return New Orleans to its previous state. After natural disasters, whether they be earthquakes, hurricanes or
floods, it has been proven time and time again that debris collection is a long and arduous process, account-
ing for 27% of the total cost of debris management [34]. Combined with the fact that now more people are
affected by natural disasters than ever [28], leads us to conclude that efficient debris collection is extremely
important.

Debris clearance comprises two phases. First, the debris is moved to the side of the road to allow emergency
services to operate. In the second phase, the debris is transferred to processing facilities by independent con-
tractors. The local government assigns each street to a particular contractor. An assignment results in (i) an
operation time for each contractor, (ii) a profit for each contractor and (iii) a “chaos metric”, which we now
loosely define as the clarity of the assignment when glanced upon by an observer.

A problem in a totally different category than the debris management problem, but with a strong mathemat-
ical resemblance to it, is the processor problem. Here nodes of a graph represent tasks to be executed by
computers located on other fixed nodes in the graph. Each task requires memory and computing time to
execute. Moreover, the assignment of tasks to computers needs to be done in such a way that the communi-
cation costs between the computer and the tasks assigned to it are minimized. This leads to the desire to have
a partitioning of the graph in such a way that each computer has its own connected area of tasks assigned to
it. Note that the processor problem is in fact a node partitioning problem. However, by dividing the load of a
node over its adjacent edges, we can reformulate the problem to an edge-partitioning problem equal to the
debris management problem.

In this thesis we abstract the issues of the debris management and processor problems to a mathematical
program that we will call Unrelated Unconnected Multi Constrained Graph Partitioning (UUMCGP). Here,
we assign the edges of a graph to agents. When an edge gets assigned to an agent, that agent will perform the
tasks related to that edge. It will take an agent two types of resources to execute that task. Examples of two
resources could be time and money in the case of debris management. In the case of assigning jobs to com-
puters, memory and computing time are examples of the two resources. Each agent will use these resources
at a different rate. In the debris management problem some contractors will clean a street faster and cheaper
for example. The same goes for computers. Some of them might be faster or have more memory available.
When all edges are assigned, each agent will have two total loads. The first (second) load corresponds to the
sum, over all edges, of the first (second) resource that agent uses to process all edges assigned to him. Each
assignment of edges to agents can also be seen as a partition of the graph. A partition with certain “niceness”
properties. An example of a niceness property is the number of nodes that have adjacent edges assigned to
different agents. Another example could be the number of zones, where a zone is a subset of the edges as-
signed to the same agent.

1

2 Introduction

In UUMCGP we assign edges to agents with three objectives in mind. First, the partition should balance the
total loads of the first resource of all agents. We measure the fit of this balance by the maximum total load of
the first resource for any agent. We try to minimize this maximum load. In the debris management problem
this would mean that we are trying to minimize the time that all contractors are finished cleaning the streets
assigned to them. In the processor problem this objective resembles the wish to minimize the time for all
computers to complete their tasks.
Second, the partition should balance the total loads of the second resource of all agents. We measure the fit
of this balance by the minimum total load of the second resource for any agent. We try to maximize this min-
imum load. In the debris management problem this would mean that we are trying to maximize the profit of
the least earning contractor.
Third, the partition should be “nice” or non-chaotic. This means roughly that the graph with all edges as-
signed gives an organized impression to the observer. In the debris management problem it resembles the
wish that contractors have clear areas of the city assigned to them. It is certainly unwanted for example to
have one neighbourhood assigned to ten different contractors. In the aftermath of a disaster it would add
to the chaos if trucks of ten different contractors drive around in the same area. In the processor problem
this objective reflects the desire to minimize the communication costs. To put this loosely defined desire in
a more robust mathematical framework, we will define metrics for the chaos of an assignment later on. The
third objective then comes down to minimizing one of these metrics.

This thesis will answer the following questions regarding UUMCGP:

1. Can we define UUMCGP as an MIP?
2. Can we solve this MIP in polynomial time?
3. Can we come up with good approximate solutions to this MIP using an algorithm?
4. How does this algorithm perform in real-life cases of debris management?

In the next chapter we will summarize the literature of problems similar to UUMCGP. We will then introduce
notation and write out the MIP of UUMCGP in Chapter 3. In Chapter 4 we will see that UUMCGP is solvable
in polynomial time in some specific cases. An algorithm for UUMCGP is designed in Chapter 5, which is
tested on 9 disaster prone cities in the United States using the experimental design described in Chapter 6.
The results of these experiments are shown in Chapter 7. Finally, we conclude our findings in Chapter 8 and
give suggestions for further research in Chapter 9.

2
Literature review

As discussed in the introduction, this thesis considers the problem of Unrelated Unconnected Multi Con-
strained Graph Partitioning (UUMCGP). Here, we assign edges of a graph to agents with three objectives:

1. Balance the total loads of the first resource among all agents.
2. Balance the total loads of the second resource among all agents.
3. Minimize the chaos.

In this chapter we will see that literature is abundantly available when only one or two of these objectives
are considered. Despite its practical applications, to the best of our knowledge and with the exception of one
paper [31], there has not been any research including all three objectives.

When only the first objective is considered, the problem falls under the category of parallel machine schedul-
ing. These problems consider assigning jobs to machines with the objective to minimize the total operation
time, also called the makespan. Each job has a different processing time for each machine. Each job must
be assigned to exactly one machine. Each job is ready to be processed right from the start and there are no
constraints regarding the finish time of a job. Neither are there any precedence constraints for the jobs. An
example of this problem is given in Figure 2.1.

Figure 2.1: Two solutions to a minimum makespan problem Rm ||Cmax with 9 jobs and 3 machines. Jobs have different processing
times for different machines. Therefore, the different arrangement in the second solution has a lower makespan.

Parallel machine scheduling, using the notation of [13], can be denoted by Rm ||Cmax and is NP-hard, since
the special case with identical machines is known to be so [9]. Since its introduction by McNaughton in 1959
[25], methods have been proposed to solve the problem. In [30] a branch and bound method is given to
solve the problem to optimality. However, this method has practical limitations on larger instances. Due to
the NP-hardness of the problem, many approximation algorithms have been proposed to solve the problem
approximately, starting with Ibarra and Kim, who propose six m-approximation algorithms, where m is the
number of machines [18]. The best approximation algorithm so far is that of Lenstra et al. [22]. They give a 2-
approximation algorithm and showed that no polynomial time algorithm exists with a better worst-case ratio
than 3/2 unless P = N P . It is this 2-approximation algorithm that serves as a basis for one of the theorems in
this paper and for the development of an algorithm for UUMCGP.

3

4 Literature review

We can also include both the first and the second objective. We can do this in two ways.
The first way entails including the second objective as a constraint in our assignment problem Rm ||Cmax .
Here, we still minimize the makespan, but we are constrained by a resource whose availability is limited.
Every execution of a job on a machine requires using that resource. This problem is similar to unrelated par-
allel machine scheduling with additional resource constraints, or RCPMSP. There is significantly less research
done with this extra resource constraint added in the scheduling problems. Edis [5] summarizes the com-
plexity and solution methods of this field. It should be noted that in the RCPMSP, resource constraints need
to be met at any moment in time. In our case, however, we are only interested in the total resource use of a
job machine assignment.
The second way involves including both the first and second objective as constraints in our problem. We
then add costs for the execution of every job by an agent and minimize the sum of all costs. The problem we
end up with is the multi-resource generalized assignment problem, or MRGAP [11]. An example of a feasible
solution to MRGAP is given in Figure 2.2.

Figure 2.2: A feasible solution to MRGAP with three machines, nine jobs, and two resources. This solution is feasible, since for every
resource, every machine uses less than the amount available. The objective value needs to be minimized.

MRGAP is an extension of the generalized assignment problem, GAP. GAP can be seen as Figure 2.2 with
only one resource. MRGAP is known to be NP-hard [29]. The simpler problem GAP is NP-complete, since
the partition problem can be reduced to GAP on two machines. For MRGAP, Gavish and Pirkul proposed a
branch-and-bound algorithm and two simple Lagrangian heuristics [11]. The only other algorithm that is de-
veloped is by Yagiura et al. [36]. They use tabu search and a very large-scale neighborhood search to come up
with an effective algorithm. In the structural result chapter of this thesis, we will show that by conditioning

2.1. Characteristics 5

parameters and allowing the constraints to be relaxed mildly, the MRGAP becomes polynomially solvable.
This result is used when designing our algorithm.

So far, we have not considered the third objective. When we do include this objective, we enter the extensive
field of graph partitioning. We will now categorize the available literature in this field to position our prob-
lem. We will categorize each relevant class of partition problems according to five characteristics of graph
partitioning: the objects of partition, connectivity of partition, the number of balancing constraints, the type
of the weights to be balanced, and the type of niceness to be optimized. We will first elaborate on each of
these characteristics. Then, the relevant classes will be positioned using their values for these characteristics,
resulting in Table 2.1.

2.1. Characteristics
Objects of partition
The first characteristic of a graph partitioning problem is the objects of partition. There are two possible ob-
jects of partition: nodes and edges. In node partitioning the goal is to split the node set V of a graph in γ

disjoint subsets V1,V2, . . . ,Vγ for some γ. Similarly, in edge partitioning, the edge set E of a graph is split in γ

disjoint subsets E1,E2, . . . ,Eγ for some γ.

Connectivity
The second characteristics is the connectivity of the partition assigned to one agent. We will see that in most
graph partitioning literature, for all agents k, the subset of nodes or edges assigned to k is required to be con-
nected.

Number of balancing constraints
Thirdly, we will categorize graph partitioning problems by the number of balancing constraints. A balancing
constraint requires the subsets to be of similar size. Most partitioning problems have one such balancing
constraint, but there are problems that include several balancing constraints.

Weight type
Fourthly, the type of weights in the balancing constraints will be looked at. We mentioned that a balancing
constraint requires the subsets to be of similar size. Suppose the subset V ′ ⊂V is assigned to agent k. The size
S(V ′) of V ′ is now defined by S(V ′) = ∑

v∈V ′
wv,k , for given wv,k ∈ R. In line with [13], we consider three weight

types:

• Unit: wv,k = 1 for all v,k, in this case the size of a subset is simply the number of elements in the subset.

• Identical: wv,k = tv for all k, here every element v has a different weight tv . However, the weights of an
element are the same for every agent.

• Unrelated: there is no rule for the weight value wv,k .

Niceness type
Lastly, we consider the niceness objective to be optimized. In all partitioning problems the objective to be
optimized has to do with the niceness of the solution. This niceness is defined in different ways throughout
the literature. We consider three of these ways.

• Edge cut: niceness is the sum of the weights of the edges with nodes in different partitions.

• Node span: niceness is the sum of the span of all the nodes, where the span of a node is the number
of different agents assigned to edges adjacent to that node. In Figure 2.3 an example shows the span of
some nodes. In Expression (3.2) in the next chapter, we will formally define the span of a node.

• Shape: the geometric shape of the subsets.

6 Literature review

2 2

31 1

1

Figure 2.3: An example graph showing the span of each node.

2.2. Classes
k-cut problem
The most simple of the classes of graph partitioning is the k-cut problem. The problem is to divide the nodes
of a graph in k connected subsets such that the sum of the weights of the edges that have nodes in different
subsets is minimized. There is no constraint on the size of the subsets. The problem can be solved in polyno-
mial time for fixed k, [9].

Classical graph partitioning
Classical graph partitioning is similar to the k-cut problem, but with one balancing constraint added. It
has no polynomial time solution. The first effective algorithm designed for this problem was proposed by
Kernighan and Lin [21].

Political Districting
A similar problem is studied in the field of political districting. Here, a state or country has to be divided into
parts of equal population size, where each part should have a so-called compact shape. Here, compactness
means that the shape should be circular or square-like instead of long, thin or awkwardly shaped. Several
solution methods have been proposed for political districting problems including exact [10], heuristic [26],
and metaheuristic [4] methods.

Multi-Constrained Graph Partitioning
The first class of graph partitioning problems that has multiple balance constraints is Multi-Constrained
Graph Partitioning, or MCGP. Here, each edge has n weights, each corresponding to a resource. The nodes
now need to be partitioned such that the subsets are balanced for all n resources, while minimizing the edge
cut. The first heuristics of its kind were developed in 1998 by Karypis and Kumar [20].

Edge partitioning
So far, we have only considered node partitioning. The next class does something different. It partitions the
edges. It is a relatively novel field and rose in importance when it was observed that it is a good approach to
solve the processor problem discussed in Chapter 1, for a large number of computers. The goal is to partition
the set of edges into connected subsets such that the total edge weight for each subset is balanced, while min-
imizing the sum of the span of all nodes. Results on edge partitioning can be found in [12], [17], [15]. In [3] the
relation between node and edge partitions is shown and approximation algorithms for the problem are given.

UUMCGP
In this paper, we consider the self-named Unconnected Unrelated Multi-Constrained Graph Partitioning, or
UUMCGP. The main difference with this problem and existing literature is two-fold. First, the edge weights
are unrelated. This means that every edge has a different weight for each agent. This reflects the fact that in
the debris management problem some agents are faster with cleaning the debris of streets than others. In
the computer processing problem it reflects that some processors are more efficient or require less electricity
than others. Secondly, there is no connectivity of the subsets required. In the debris management problem,
for example, an agent can be assigned unconnected neighbourhoods of the city. To the best of our knowl-
edge [31] is the only research done similar to UUMCGP. However, it differs in three ways from this research.
First, their focus is on the application to debris management, while we take a general approach. Second, the
author’s solution method involves a human guided tool while we focus only on computerized solution meth-
ods. Third, they consider facilities, whereas in this thesis, facilities are not taken into account. Therefore they
are dealing with a double assignment problem, where they assign each street to both an agent ánd a facility.
Moreover, in their case, the operation time also depends on the facility processing times.

2.3. Contribution 7

Class Papers
Object of
Partition

Connectivity
required

#Balancing
constraints

Weight type
Niceness
type

k-cut [9] Nodes yes 0 NA Edge cut
Classical Graph Partitioning [21] Nodes yes 1 Identical Edge cut
Political Districting [10], [26], and [4] Nodes yes 1 Identical Shape
MCGP [20] Nodes yes n Identical Edge cut
Edge partitioning [12], [17], [15] and [3] Edges yes 1 Identical Span
UUMCGP [31],this thesis Edges no 2 Unrelated Span

Table 2.1: Overview of relevant graph partitioning classes with characteristics.

2.3. Contribution
Our contribution will be three-fold. First, we state UUMCGP, prove structural results for it and design an
algorithm. We are the first to do so. Secondly, we expand the field of multi-resource generalized assignment
problems (MRGAP) by designing an algorithm that solves MRGAP while only slightly violating the constraints.
Lastly, the algorithm we develop for UUMCGP is, when applied to the debris management problem, the first
algorithm to be successfully applied to nine different cities in the United States.

3
Problem Description and Notation

In Chapter 1 we introduced two problems that motivated this paper: the debris management problem and
the processor problem. Both problems are real-life examples of Unconnected Unrelated Multi-Constraint
Graph Partitioning. In this chapter we define UUMCGP as a mixed-integer program, or MIP. We will denote
this program by P1(G). To formulate this program, we use the notation in Table 3.1.

Decision variables:

xe,k =
{

1 if edge e gets assigned to agent k
0 otherwise

Sets:

V Set of nodes v ∈ {1,2, ..,n}

E Set of edges e ∈ {1,2, ..,m}

K Set of agents k ∈ {1,2, ..,r }

Parameters:

G = (V ,E) Undirected connected graph

w (1)
e,k First edge weight of edge e for agent k

w (2)
e,k Second edge weight of edge e for agent k

g (G , x) function mapping the combination of a graph G and a partition x to a so-called chaos number

Objectives:

Z1 Maximum over all total weights w (1) of edges assigned to each agent, to be minimized

Z2 Minimum over all total weights w (2) of edges assigned to each agent, to be maximized

Z3 Chaos measure of the partition x on graph G , to be minimized

Table 3.1: Notation.

9

10 Problem Description and Notation

We now formulate the MIP P1(G).

P1(G) =



min Z1

max Z2

min Z3

s.t.
∑
e∈E

w (1)
e,k xe,k ≤ Z1 ∀k ∈ K∑

e∈E
w (2)

e,k xe,k ≥ Z2 ∀k ∈ K

g (G , x) = Z3∑
k∈K

xe,k = 1 ∀e ∈ E

xe,k ∈ {0,1} ∀e ∈ E ,k ∈ K

(3.1a)

(3.1b)

(3.1c)

(3.1d)

(3.1e)

(3.1f)

(3.1g)

(3.1h)

Expression (3.1a) minimizes the first objective value Z1, (3.1b) maximizes the second objective Z2, (3.1c) min-
imizes the third objective Z3.
Constraint (3.1d) sets the first objective equal to the maximum of total weights w (1) assigned to each agent.
Constraint (3.1e) sets the second objective equal to the minimum of total weights w (2) assigned to each agent.
Constraint (3.1f) sets the third objective equal to the chaos measure. Note that, depending on the desired
chaos measure, one can choose the function g (G , x). Constraint (3.1g) forces every edges to be assigned to
exactly one agent. Lastly, constraint (3.1h) makes sure the partition variables xe,k are binary for every e ∈ E
and k ∈ K .

3.1. The chaos measure
In this thesis two versions of g (G , x) will be discussed. The first version of g (G , x) is the sum of the span of all
nodes. To define this formally, we need some definitions. Let N (v) be the set of edges adjacent to node v .

N (v) := {e ∈ E : e adjacent to v in G} .

The span of a node v for an assignment x, labeled ηv (x), is defined as the number of different agents assigned
to edges in N (v) in the assignment x.

ηv (x) := ∑
k∈K

1∃e∈N (v):xe,k=1 .

Figure 2.3 shows an example graph with the span of each node. The function g (G , x) now becomes

g (G , x) = ∑
v∈V

ηv (x) . (3.2)

The second version of g (G , x) discussed in this thesis is the number of “zones” of a partition x in graph G .
Here, a zone is a subset of edges assigned to the same agent. We now give a definition of a zone.

Definition 1. Let G = (V ,E) be a graph and K be a set of agents. Let xe,k be the edge-agent assignment. Then a
subset F ⊆ E is called a zone if and only if all of the following hold

i) There exists a k ∈ K such that ∀e ∈ F , we have xe,k = 1.
ii) F is connected.
iii) 6 ∃F ′ ⊃ F for which i) and ii) hold.

An example of a graph divided in zones is given in Figure 3.1.

3.1. The chaos measure 11

Figure 3.1: Zones for a certain edge-agent assignment.

4
Structural results

In this chapter we will show theoretical results for Unrelated Unconnected Multi-Constrained Graph Parti-
tioning problem, or UUMCGP, whose mixed-integer program (MIP) P1(G) is described in Chapter 3. In Sec-
tion 4.1 results are shown for specific cases of UUMCGP. In Section 4.2 we will show a theoretical result for
the related Multi-Resource Generalized Assignment Problem.

4.1. Solving UUMCGP
In this section we will show that we can come up with good solutions in specific cases of UUMCGP. We will
first show that UUMCGP is hard to solve in Subsection 4.1.1. We will then elaborate on four cases, define what
we mean by “good” solutions and give supporting lemmas, programs and notation in Subsection 4.1.2. We
will end by proving four theorems that give good solutions to UUMCGP in polynomial time in specific cases
in Subsection 4.1.3.

4.1.1. Hardness of UUMCGP
Coming up with good solutions for UUMCGP in polynomial time is difficult. This is partly because UUMCGP
is multi-objective. We want to optimize the niceness of a solution, balance the first resource among agents
and balance the second resource among the agents. A solution to P1(G) can have one of the objectives opti-
mized, while the other two objectives are far from their optimal value. In the case of debris management for
example, do we prefer a solution with a fast operation time above a solution that yields good profit? How do
we decide which objective is more important?

Suppose we do somehow decide on an objective Zi that we think is the most important. Let us now only
focus on that objective and ignore the other two completely. Let us denote the problem we are left with as
P1(G , Zi). By choosing only one objective instead of three, we hugely simplify the MIP P1(G). However, for
i = 1,2, our simplified MIP P1(G , Zi) remains NP-hard. For i = 3 the optimal solution becomes trivial. This
result is shown in Theorem 1.

Theorem 1. Let P1(G , Zi) denote the MIP P1(G) where we only optimize objective Zi and ignore the other two
objectives. P1(G , Zi) is NP-hard for i = 1,2 and trivial for i = 3.

Proof. We prove this result separately for i = 1, i = 2 and i = 3.

Case 1: i = 1
In this case we only focus on optimizing Z1. Recall that Z1 denotes the maximum use of the first resource
among all agents. We try to minimize Z1. The MIP P1(G , Z1) we end up with is P1(G) without the con-
straints (3.1b), (3.1c),(3.1e) and (3.1f). This is precisely the minimum makespan problem Rm ||Cmax discussed
in Chapter 2, which is NP-hard [9].

Case 2: i = 2
In this case we only focus on optimizing Z2. Recall that Z2 denotes the minimum use of the second re-
source among all agents. We try to maximize Z2. The MIP P1(G , Z2) we end up with is P1(G) without the

13

14 Structural results

constraints (3.1a), (3.1c),(3.1d) and (3.1f). If we multiply both sides of Expression (3.1e) by −1 and change
(3.1b) to −min(−Z2), we again have the minimum makespan problem Rm ||Cmax , which is NP-hard [9].

Case 3: i = 3
In this case we only focus on optimizing Z3. Remember that Z3 equals the chaos measure that we try to
minimize. The MIP P1(G , Z3) we end up with is P1(G) without the constraints (3.1a), (3.1b),(3.1d) and (3.1e).
In Section 3.1 we discussed the two versions of g (G , x) considered in this thesis. For both versions of g (G , x)
the optimal solution of P1(G , Z3) now is trivial: assign all edges to the same agent. When g (G , x) is the sum
of the span of the nodes, the objective value of Z3 now becomes |V |, the number of nodes of graph G . When
g (G , x) is the number of zones, the objective value of Z3 becomes 1.

4.1.2. Cases of UUMCGP
The multi-objective character of UUMCGP and the result of Theorem 1 make solving P1(G) hard or impossi-
ble in polynomial time. However, when we simplify P1(G) by forcing its parameters to be of a certain form, we
can still come up with good solutions. The next subsection, 4.1.3, provides 4 theorems that do exactly that.
Each theorem shows that we can come up with a good solution in polynomial time in a specific case. In this
subsection we will first describe all 4 of the specific cases and their characteristics. We will then explain what
we mean exactly with a “good” solution. We will end by proving some lemmas that will serve as support for
the 4 theorems.

Four cases of UUMCGP
The MIP P1(G) of UUMCGP can be simplified by putting restrictions on its parameters. One of these parame-
ters is the structure of the graph G . In all four theorems of this section we will put restrictions on the structure
of the graph concerning the vertex connectivity. We will now give the definition of this vertex connectivity.
Examples of vertex connectivity are given in Figures 4.1 and 4.2.

Definition 2. Let G = (V ,E) be an undirected graph. G is l-vertex-connected when for every subset V ′ ⊂V with
|V ′| < l , the graph G[V \V ′] is connected.

a b

cd e

f

Figure 4.1: This graph is 2-vertex-connected. Since we can remove any vertex and the graph will remain connected. It is not
3-vertex-connected, since removing vertex c and b makes the graph unconnected.

a b

cd

e

Figure 4.2: This graph is 3-vertex-connected. Since we can remove any two vertices and the graph will remain connected. It is not
4-vertex-connected, since removing vertices d , e and b makes the graph disconnected.

Other parameters of P1(G) are the number of agents r , the weight values w (i)
e,k and the chaos measure g (G , x).

Theorems 2-5 will all consider P1(G) with different values for these parameters. We will now describe these
values for each theorem. An overview of the Theorems and their corresponding parameter choices is given in
Table 4.1.

In Theorem 2, we assume that G is a 2-vertex-connected graph. We assume there are only 2 agents, (i.e. r = 2).
All weight values w (i)

e,k are of the form w (i)
e,k = weC (i)

k . Here we is a positive integer for every e ∈ E and C (i)
k is a

4.1. Solving UUMCGP 15

positive real number for k = 1,2 and i = 1,2. In the debris management problem we can be interpreted as the
amount of debris on street e in units of debris. C (1)

k represents the time it takes contractor k to clean one unit

of debris and C (2)
k represents the profit contractor k makes cleaning one unit of debris.

In Theorem 3, we assume that G is a min(r,4)-vertex planar connected graph. There is no restriction on the
number of agents r . All weight values w (i)

e,k are of the form w (i)
e,k = C (i)

k . Here C (i)
k is a positive real number

for k ∈ K and i = 1,2. This can be interpreted as the debris management problem with one unit of debris on
every street. Again, C (1)

k represents the time it takes contractor k to clean one unit of debris and C (2)
k the profit

contractor k makes cleaning one unit of debris.

In Theorem 4, we again assume that G is a min(r,4)-vertex planar connected graph. Again, there are no re-
strictions on the number of agents r . All weight values w (i)

e,k are now drawn from a distribution χ(i)
k with mean

µ(i)
k . In the debris management problem this again reflects one unit of debris on every street. However, the

time and profit per unit of debris now come from a random distribution and they are allowed to differ for ev-
ery edge. Contractor 1, for example, can clean one unit of debris in one hour on a certain street, but it might
need two hours for one unit of debris on another.

In Theorem 5, we again assume that G is a min(r,4)-vertex planar connected graph. Again, there are no re-
strictions on the number of agents r . The weights in this case represent the most realistic case of the debris
management problem. All weight values w (i)

e,k are of the form w (i)
e,k = w (i)

e Ck , where the parameters w (1)
e (w (2)

e)

are identically distributed variables from distribution χ1 (χ2). The parameters Ck are positive real numbers
for all k ∈ K . We can view w (1)

e as the time it takes one employee to clean street e and w (2)
e as the profit made

when one employee cleans street e. Ck can the be viewed as one divided by the number of employees of
contractor k. Hiring more employees now results in shorter cleaning times but lower profits, due to salaries
for example.

Theorem G is r = w (i)
e,k g(G,x)

2 2-vertex-connected 2 weC (i)
k number of zones

3 min(r,4)-vertex-connected no restr. C (i)
k number of zones

4 min(r,4)-vertex-connected no restr. ∼χ(i)
k number of zones

5 min(r,4)-vertex-connected no restr. w (i)
e Ck , where w (i)

e ∼χ(i) number of zones

Table 4.1: Overview of restrictions on the parameters in P1(G) in Theorems 2 - 5.

For all Theorems 2-5 we take for our function g (G , x) the number of zones as defined in Definition 1. The the-
orems will show that we can come up with good solutions to P1(G) in polynomial time. We will now explain
what we mean by a “good” solution.

Good solution
What does it mean for a solution to be good in a multi-objective problem like UUMCGP?

Let us start with objective value Z3, which equals the number of zones in our 4 specific cases. When can we
say that Z3 has a good value? Theorem 1 shows that the optimal value for Z3 is 1. This can be obtained by
assigning all edges to one agent. This solution, however, is non-realistic, because it results in very bad Z1 and
Z2 values. Every agent needs to be assigned at least one or more edges to obtain reasonable values for the
Z1 and Z2 objective. Hence, in every realistic solution, each agent has at least one zone assigned to it. The
number of zones is therefore equal to or greater than the number of agents. A good value for Z3 is therefore
the number of agents, r .

Can we do something similar for Z1 and Z2? When do we consider these objectives to have good values? Re-
member that Z1 needs to be minimized and Z2 needs to be maximized. With the assumption that we consider
both objectives equally important, we can then replace the two objectives by the single objective Z1,2 := Z2

Z1
,

which we will try to maximize. Let Z OPT
1,2 denote the optimal value of Z1,2. In Theorems 2-4 we will see that

we can find solutions in polynomial time whose Z1,2 objective is arbitrarily close to its optimal value Z OPT
1,2

16 Structural results

for a large enough size of the edge set, |E |. Or put differently, for every δ > 0, there exists a n ∈ N such that
P1(G) on a graph with |E | = n has a solution with |Z OPT

1,2 −Z1,2| < δ.

In Theorem 5 we do something different. Here we do not maximize the objective value Z1,2, but we stick with
our original goal: minimize Z1 and maximize Z2. Let Z OPT

1 and Z OPT
2 denote their optimal values. We will

show that in a specific case of P1(G) we can find a solution that has Z1 and Z2 values arbitrarily close to their
optimal value. Here, arbitrarily close is defined different: for every δ> 0, there exists a n ∈N such that P1(G)

on a graph with |E | = n has a solution with
|Z OPT

1 −Z1|
Z OPT

1
< δ and

|Z OPT
2 −Z2|
Z OPT

2
< δ

In Table 4.2 an overview is given of the values of the objective values in the solutions found in Theorems 2-5.

Theorem Z1 Z2 Z3

2 Z1,2 → Z OPT
1,2 2

3 Z1,2 → Z OPT
1,2 r

4 Z1,2 → Z OPT
1,2 r

5 Z1 → Z OPT
1 Z2 → Z OPT

2 r

Table 4.2: Overview of objective values of solutions we find in Theorems 2 - 5.

Supporting lemmas, programs and notation
Before proving the four main theorems, we will give supporting lemmas, programs and notation that will be
used while proving the theorems. An overview of the programs and notation introduced here is given in Table
4.3.

Let us start with an important piece of notation. Let P be a program with a feasible solution x. With Z (P, x)
we denote the value of objective value Z in program P of the feasible solution x.

The first program we define is P2. With P2 we denote the MIP obtained by ignoring the graph structure of
P1(G). Or, put differently, P2 is P1(G) without Expression (3.1c) and (3.1f).

We can simplify program P2 to obtain program Π1(r). To do this, we replace the binary variables xe,k in

P2 by Sk :=
∑

e∈E xe,k
|E | . Sk can be seen as the percentage of edges assigned to agent k. We also introduce the

continuous increasing functions f (i)
k : [0,1] → R for i = 1,2 and for all k ∈ K . f (1)

k (Sk) now represents the

amount of the first resource that is used by agent k when we assign Sk % of the edges to it. f (2)
k (Sk) represents

the amount of the second resource that is used by agent k when we assign Sk % of the edges to it. The question
Π1(r) answers is as follows: what percentage of the edges do we give to each agent to balance the use of the
first and second resource?

Π1(r) =



min Z1

max Z2

s.t . f (1)
k (Sk) ≤ Z1 ∀k ∈ {1, . . . ,r }

f (2)
k (Sk) ≥ Z2 ∀k ∈ {1, . . . ,r }

r∑
k=1

Sk = 1

Sk ≥ 0 ∀k ∈ {1, . . . ,r }

(4.1a)

(4.1b)

(4.1c)

(4.1d)

(4.1e)

(4.1f)

Π1(r) differs greatly from P1(G) and one might wonder how it might be useful for finding good solutions for
P1(G). The reason we definedΠ1(r) is because all its Pareto optimal solutions are of a certain form. This result
turns out to be useful for proving our theorems. It is proven in Lemma 1 and states:

S is Pareto Optimal ⇐⇒ Z1(Π1(r),S) = max
k∈{1,...,r }

[f (1)
k (f (2)

k
−1(Z2(Π1(r),S))] (4.2)

This can be explained best with an example. Suppose r = 2 and let f (1)
1 (S1) = S1, f (1)

2 (S2) = (S2)2, f (2)
1 (S1) =

4.1. Solving UUMCGP 17

0.5S1, f (2)
2 (S2) = 3S2. When we denote Zi (Π1(r),S)) with Zi , we get

f (1)
1 (f (2)

1
−1(Z2)) = f (1)

1 (2Z2) = 2Z2

and

f (1)
2 (f (2)

2
−1(Z2)) = f (1)

2 (
1

3
Z2) = 1

9
Z 2

2 .

Hence, a feasible solution S is Pareto optimal if we have, for the objective values Z1 and Z2, that

Z1 = max[2Z2,
1

9
Z 2

2].

We will now prove Statement (4.2).

Lemma 1. ConsiderΠ1(r) where the f (i)
k : [0,1] →R are increasing functions for i = 1,2 and all k ∈ K . Then the

following holds:

S is Pareto Optimal ⇐⇒ Z1(Π1(r),S) = max
k∈{1,...,r }

[f (1)
k (f (2)

k
−1(Z2(Π1(r),S))].

Proof. Let r be given. In this proof we denote Zi (Π1(r),S) by Zi (S) for i = 1,2.
“=⇒”
Let S be a Pareto optimal solution toΠ1(r). This proof consists of two steps:

1: We show that Z1(S) > max
k∈{1,...,r }

[f (1)
k (f (2)

k
−1(Z2(S))] leads to a contradiction.

2: We show that Z1(S) < max
k∈{1,...,r }

[f (1)
k (f (2)

k
−1(Z2(S))] leads to a contradiction.

The required result than automatically follows.

Step 1: Suppose
Z1(S) > max

k∈{1,...,r }
[f (1)

k (f (2)
k

−1(Z2(S))]. (4.3)

We then have

Z1(S) > f (1)
k (f (2)

k
−1(Z2(S)) ∀k ⇒ (4.4)

f (1)
k

−1(Z1(S)) > f (2)
k

−1(Z2(S)) ∀k. (4.5)

We will now pick another solution S′ = [S′
1, . . . ,S′

r] such that

f (1)
k

−1(Z1(S)) > S′
k > f (2)

k
−1(Z2(S)) ∀k.

We will show that S′ is feasible and more optimal than S. This leads to a contradiction, since S was Pareto
optimal. We will first show it is feasible by showing that we can choose S′ in such a way that

∑
k S′

k = 1. Note
that it is sufficient to show ∑

k
f (2)

k
−1(Z2(S)) ≤ 1 and (4.6)∑

k
f (1)

k
−1(Z2(S)) ≥ 1. (4.7)

We will prove Expression (4.6). Let Sp = [Sp,1, . . . ,Sp,r] be the solution that optimizes the objective value Z2.
We have

Z2(Sp) ≥ Z2(S) ⇒
f (2)

k (Sp,k) ≥ Z2(S) ∀k ⇒
Sp,k ≥ f (2)

k
−1(Z2(S)) ∀k ⇒∑

k
Sp,k ≥∑

k
f (2)

k
−1(Z2(S)).

18 Structural results

But Sp is a feasible solution and therefore has
∑

k Sp,k = 1. That gives Expression (4.6). Expression (4.7) has a
similar proof that we leave out here. We conclude that S′ can be chosen such that it is a feasible solution to
Π1(r).

It remains to show that S′ dominates S. Recall that we chose S′ such that

f (1)
k

−1(Z1(S)) > S′
k > f (2)

k
−1(Z2(S)) ∀k.

This gives

f (1)
k (S′

k) < Z1(S) ∀k ⇒
Z1(S′) < Z1(S).

And similarly,

f (2)
k (S′

k) > Z2(S) ∀k ⇒
Z2(S′) > Z2(S).

Hence S′ is a feasible solution to Π1(r) and dominates S. Therefore S can not be Pareto optimal. This is a
contradiction. We conclude that Expression (4.3) is false.

Step 2: Suppose
Z1(S) < max

k∈{1,...,r }
[f (1)

k (f (2)
k

−1(Z2(S))]. (4.8)

This gives for some k
f (1)

k
−1(Z1(S)) < f (2)

k
−1(Z2(S)).

But now we have for this k that

Sk = f (1)
k

−1[f (1)
k (Sk)] ≤ f (1)

k
−1[Z1(S)] < f (2)

k
−1[Z2(S)] ≤ f (2)

k
−1[f (2)

k (Sk)] = Sk .

This is a contradiction. We conclude that Expression (4.8) must be false.

Since Expressions (4.3) and (4.8) are false, we conclude that

Z1(S) = max
k∈{1,...,r }

[f (1)
k (f (2)

k
−1(Z2(S))].

“⇐=”
Let S be a feasible solution toΠ1(r) that has

Z1(S) = max
k∈{1,...,r }

[f (1)
k (f (2)

k
−1(Z2(S))]. (4.9)

We have to show that S is Pareto optimal. Suppose for contradiction that there exists a feasible solution
S′ = [S′

1, . . . ,S′
k] that dominates S. Hence, we have for this S′ that Z1(S′) < Z1(S) and Z2(S′) > Z2(S). This gives

Z2(S′) > Z2(S) ⇒
f (2)

k (S′
k) > Z2(S) ∀k ⇒

S′
k > f (2)

k
−1[Z2(S)] ∀k. (4.10)

Similarly, we have
S′

k < f (1)
k

−1[Z1(S)]. (4.11)

Moreover, we can rewrite Expression (4.9) to obtain for some k

f (1)
k

−1[Z1(S)] ≤ f (2)
k

−1[Z2(S)]. (4.12)

When we now combine Expressions (4.10)-(4.12), we obtain for some k

S′
k < f (1)

k
−1[Z1(S)] ≤ f (2)

k
−1[Z2(S)] < S′

k .

This is a contradiction. Hence, there is no solution S′ toΠ1(r) that dominates S. We conclude that S is Pareto
optimal.

4.1. Solving UUMCGP 19

We also define the programsΠ2(r) andΠ3(r). They are specific cases ofΠ1(r). InΠ2(r) the functions f (i)
k (Sk)

are set to be f (i)
k (Sk) :=C (i)

k Sk . InΠ3(r) the functions f (i)
k (Sk) are set to be f (i)

k (Sk) :=µ(i)
k Sk .

In Theorem 4 and 5 we draw the weights from random distributions. A lemma we use to deal with these
random numbers is Lemma 2 about the law of large numbers. Due to this law we know that the mean of the
sum of i.i.d. random variables from a distribution converges to the mean of that distribution. In Lemma 2 we
show the rate of this convergence.

Lemma 2. Let x j ∼ χ be i.i.d. random variables with finite expected value µ and standard deviation σ. Then
the following holds for ε> 0 and large n ∣∣∣∣∣∣∣∣∣∣

n∑
j=1

x j

n
−µ

∣∣∣∣∣∣∣∣∣∣
≤ n−0.5+ε.

Proof. Chebyshev’s inequality states the following for a real number k > 0 and a random variable X with finite
expected value µ(X) and with finite non-zero standard deviation σ(X):

Pr (|X −µ(X)| ≥ kσ(X)) ≤ 1

k2 .

Choosing k := ε′
σ(X) for some ε′ > 0 we obtain

Pr (|X −µ(X)| ≥ ε′) ≤ σ(X)2

ε′2
. (4.13)

We take X :=

n∑
j=1

x j

n . Note that µ(X) =µ and σ(X) = σp
n

We plug these values in Inequality (4.13) to obtain

Pr


∣∣∣∣∣∣∣∣∣∣

n∑
j=1

x j

n
−µ

∣∣∣∣∣∣∣∣∣∣
≥ ε′

≤ σ2

nε′2
.

If we now choose ε′ := n−0.5+ε for some ε> 0 we get

Pr


∣∣∣∣∣∣∣∣∣∣

n∑
j=1

x j

n
−µ

∣∣∣∣∣∣∣∣∣∣
≥ n−0.5+ε

≤ σ2

n2ε .

Now, for large enough n

Pr


∣∣∣∣∣∣∣∣∣∣

n∑
j=1

x j

n
−µ

∣∣∣∣∣∣∣∣∣∣
≥ n−0.5+ε

≤ 0, which implies

∣∣∣∣∣∣∣∣∣∣

n∑
j=1

x j

n
−µ

∣∣∣∣∣∣∣∣∣∣
≤ n−0.5+ε.

20 Structural results

The last supportive notion we will state is Lemma 3. It shows a results regarding the vertex connectivity of
a graph, which is defined in Definition 2. Győri and Lovász already showed separately that the vertex set
V of an r -vertex-connected graph can be partitioned in r disjoint connected subsets [16],[23]. Lemma 3
shows a similar result for a partitioning of the edge set E . It states that when a graph G is min(4,r)-vertex-
connected, we can partition its edges into r disjoint connected subsets. A result we use when proving the 4
main theorems of this chapter. When A is a subset of the vertices or edges, we will use G[A] to denote the
subgraph of G induced by A.

Lemma 3. Let G = (V ,E) be an undirected min(4,r)-vertex-connected planar graph. Let A1, A2, . . . , Ar ∈ N be
a sequence of integers such that

∑
j A j = |E |. Then there exists an edge-partitioning x of E into disjoint subsets

E1, . . . ,Er such that G[E j] is connected for all j ∈ {1, . . . ,r } and |E j | = A j for all j ∈ {1,2, . . . ,r }.

Proof. We prove this lemma separately for r = 1, r = 2,3 and r ≥ 4.
Case 1: r = 1: We need to partition the edge set E into one subset E1. This is a trivial case. The solution is
E1 = E .

Case 2: r = 2,3: We have to show, for r = 2,3, that when a graph is r -vertex-connected, we can partition the
edge set into r disjoint connected subsets of arbitrary size. We will show that this is true for all r = 2,3,4,
We use the following steps:

1. We use G to construct the dual graph G ′.
2. G ′ is r -vertex-connected.
3. There exists an arbitrary vertex partition in G ′.
4. This vertex partition in G ′ corresponds to an edge partition in G .

Step 1: Let G = (V ,E) be the original graph. The dual graph G ′ = (V ′,E ′) now is defined by V ′ := E and E ′ :={
(v, w) ∈V ′×V ′ : edges v and w share a vertex in G

}
. In Figure 4.3 such a dual graph is constructed.

a

b c

d

e

(a) Original graph G .

a

b c

d

e

(b) Dual graph G ′.

Figure 4.3: Constructing a dual graph G ′.

Step 2: We now show that when G is r -vertex-connected, its dual G ′, is also r -vertex-connected. We use
Menger’s theorem [27], that states that

G is r -vertex-connected ⇐⇒ every pair of vertices has r internally vertex-disjoint paths in between.

We show that for every v, w ∈ V ′ there are r internally vertex-disjoint paths between them in G ′. v corre-
sponds to an edge (v1, v2) and w corresponds to an edge (w1, w2) in the original graph G . Since G is r -vertex-
connected, we know that there are r internally vertex-disjoint paths between v1 and w1. But, vertex-disjoint
paths are also edge-disjoint. And every edge-disjoint path in G again corresponds to a vertex-disjoint path in
G ′. Hence there are r vertex-disjoint path in G ′ between v and w . We use Menger’s theorem to conclude that
G ′ is also r -vertex-connected.

Step 3: We now show there exists a vertex partition of V ′ into disjoint subsets V ′
1,V ′

2, . . . ,V ′
r , where |V ′

j | = A j

and G[V ′
i] is connected for j = 1,2, . . . ,r . The Győri-Lovász theorem [16] states exactly that.

Step 4: We can now construct the required edge partition in the original graph G by setting the vertices in the

vertex partition in G ′ to be the edges in the edge partition in G . Or, E j :=V ′
j for j = 1,2, . . . ,r . Clearly, we have

|E j | = |V ′
j | = A j . It remains to show that for all j = 1,2, . . . ,r the subgraph induced by E j is connected. Let

e, f ∈ E j . Hence, e, f ∈V ′
j . Since V ′

j is connected there exists a path in G ′ connecting e and f . But this path in

4.1. Solving UUMCGP 21

G ′[V ′
j] corresponds to a path in G[E j]. Hence, there exist a path between e and f in G[E j]. We conclude that

G[E j] is connected for all j = 1,2, . . . ,r .

Case 4: r ≥ 4: We will show that in a 4-vertex-connected graph , for every r ≥ 4 and A1, . . . , Ar positive integers
that sum up to |E |, there always exists a partition of the edge set E into disjoint subsets E1,E2, . . . ,Er such that
|E j | = A j and G[E j] connected for all j = 1,2, . . . ,4.

Tutte showed in 1956 that r -connected planar graphs have a Hamiltonian path for r ≥ 4 [32]. A Hamiltonian
path is a path that visits every vertex exactly once. It remains to show that the theorem holds for graphs with
a Hamiltonian path.

We will show something stronger: the theorem holds when there exists a path P such that for every edge e ∈ E ,
we have that e ∈ P or e is connected with a vertex v ∈ P . We call such a path P a Caterpillar path. Clearly, a
Hamiltonian path is a Caterpillar path.

We start with a graph with a Caterpillar path whose edge set we have to partition into disjoint subsets E1, E2,
. . . , Er with sizes A1,A2,. . . ,Ar , such that G[E j] is connected for j = 1,2, . . . ,r . A graph with a Caterpillar path
is shown in Figure 4.4a. For every edge that is not in the Caterpillar path, we duplicate one end vertex. This
gives us a tree whose edges we can label. The splitting and labeling is shown in Figure 4.4b. We now partition
the edges set as follows:

E1 = {1,2, . . . , A1}

E2 = {A1 +1, A1 +2, . . . , A1 + A2}

...

E j =
{

j−1∑
i=1

Ai +1, . . . ,
j∑

i=1
Ai

}
...

Er =
{

r−1∑
i=1

Ai +1, . . . , |E |
}

This partitioning is shown in Figure 4.4c. We then stitch the broken vertices back together, see Figure 4.4d. It
is easy to see that this gives the required partition.

22 Structural results

a b

cd

e f

g h

p

s

i

j

l

m

n o

o x

y

(a) A graph with a Caterpillar path in red. Note that every edge
is either contained in the caterpillar or connected to the

caterpillar.

a b

c

c2

d

e f

g h

p

s

i

j

o

d2 l

m

n

r 1 r 2 x

y

p2

g 2

9

14

8

4 2

7 10

6

5

3

1

13

15

11

21
20

12

17

16

18

19

(b) We disconnect one vertex of all edges that are not
contained in the Caterpillar path. We label the edges of the

resulting graph.

.

a b

c

c2

d

e f

g h

p

s

i

j

o

d2 l

m

n

r 1 r 2 x

y

p2

g 2

9

14

8

4 2

7 10

6

5

3

1

13

15

11

21
20

12

17

16

18

19

(c) We color the edges according to the labeling.

a b

cd

e f

g h

p

s

i

j

l

m

n o

o x

y

(d) We stitch the disconnected vertices back together and
obtain an edge partition.

Figure 4.4: An example graph whose edge set is partitioned in subsets of sizes A1 = 5, A2 = 6, A3 = 3, A4 = 7.

4.1. Solving UUMCGP 23

In this subsection we have introduced notation that we will use to prove the four theorems in the next section.
In Table 4.3 an overview of this notation is given.

Programs:

P1(G) Program defined by Expression (3.1)

P2 P1(G) without Expression (3.1c) and (3.1 f)

Π1(r) Program defined in Expression (4.1)

Π2(r) Π1(r) with f (i)
k (Sk) =C (i)

k Sk

Π3(r) Π1(r) with f (1)
k (Sk) =µ(1)

k Sk and f (2)
k (Sk) =µ(2)

k Sk

Decision variables:

S = [S1, . . . ,Sr] Set of decision variables forΠ1(r),Π2(r) andΠ3(r)

xe,k Decision variables for P1(G), P2, as defined in Table 3.1

Other Notation:

Z (P, x) Value of objective Z in program P at the feasible solution x

Z1,2
Z2

Z1

Z OPT
1,2 Optimal maximum value of Z1,2 in P1(G)

Z OPT
i (P) Optimal value of Zi in problem P

Table 4.3: An overview of the programs, decision variables and notation used to prove Theorems 2-5.

4.1.3. Theorems
In the previous subsection we have described all four cases. Moreover, we explain what we mean by a good
solution and gave supporting lemmas, programs and notation. This section will contain the theorems with
their proofs.

Theorem 2. We consider P1(G) with the following restrictions.

G is a 2-vertex-connected graph.
There are two agents, i.e. K = {1,2}.
w (i)

e,k := weC (i)
k for i = 1,2, k = 1,2, e ∈ E, where we ∈N and C (i)

k ∈R+.
g (G , x) := the number of zones in the partition x on graph G.

Then, there exists a feasible solution x with

• Z3 = 2.

• For every δ> 0, there exists an n ∈N such that P1(G) on a graph with |E | = n has a solution with |Z OPT
1,2 −

Z1,2| < δ. Moreover, Z OPT
1,2 = mink

C (1)
k

C (2)
k

.

Proof. The proof consists of the following steps.

1. We relax problem P1(G) to problem P1(G ′) by splitting the edges of graph G to obtain a graph G ′ with
unit edge weights.
2. We relax problem P1(G ′) to P2 by leaving out the graph structure.
3. We rewrite and relax problem P2 to obtain the continuous problemΠ2(2).

4. We prove that all solutions ofΠ2(2) on the Pareto Front have Z2(Π2(2),S)
Z1(Π2(2),S) = mink

C (1)
k

C (2)
k

.

5. We round the solutions ofΠ2(2) to obtain solutions for problem P2.

24 Structural results

6. We show that every solution to P2 corresponds to a solution of P1(G ′).
7. We round the obtained partition for graph G ′ to find a solution to P1(G).
8. We combine all results and conclude.

Step 1: We first split every edge e of G into w(e) equal parts. For each e ∈ E , we denote the edges obtained
from splitting e with Fe . After splitting, we obtain the graph G ′ = (V ′,E ′). Note that E ′ = ∪e∈E Fe . Moreover,
note that G ′ is a 2-connected undirected graph with unit edge weights. Note that any solution to P1(G) can be
written as a solution to P1(G ′). This does not work the other way around. P1(G ′) can be seen as a relaxation
of P1(G), where we allow every edge to be assigned to more than one agent.

Step 2: To solve problem P1(G ′), we first ignore the graph structure and chaos measure to obtain problem P2.
We do this so we can rewrite and relax the remaining problem in Step 3 and apply Lemma 1 in Step 4. We
define P2 by P1(G ′) without the objective Z3 and constraint (3.1f). Clearly, P2 is a relaxation of P1(G ′).

Step 3: We will now relax and rewrite P2 to obtainΠ2(2). We relax the integer constraint (3.1h) of P2. Moreover,
we start by rewriting constraint (3.1d) as follows∑

e∈E ′
w (1)

e,k xe,k ≤ Z1 ∀k ∈ K ⇒

C (1)
k

∑
e∈E ′

xe,k ≤ Z1 ∀k ∈ K ⇒

C (1)
k

∑
e∈E ′

xe,k

|E ′| ≤ Z1

|E ′| ∀k ∈ K

Let Sk now denote the percentage of edges assigned to agent k in a solution to P2. Or Sk :=

∑
e∈E ′

xe,k

|E ′| , where
integrality on xe,k is relaxed. We then obtain the following constraint.

C (1)
k Sk ≤ Z1

|E ′| ∀k ∈ K

Similarly we can rewrite constraint (3.1e) to

C (2)
k Sk ≥ Z2

|E ′| ∀k ∈ K .

Finally, we can rewrite constraint (3.1g) as follows:∑
k∈K

xe,k = 1 ∀e ∈ E ′ ⇒∑
k∈K

∑
e∈E ′

xe,k = |E ′| ⇒

∑
k∈K

∑
e∈E ′

xe,k

|E ′| = 1 ⇒∑
k∈K

Sk = 1

Hence,Π2(2) is a relaxation of P2.
In what follows we will compute all solutions on the Pareto Front of problem Π2(2). We will then round the
solutions to obtain a solution to problem P2. Note that this solution is unrelated to the graph structure and
chaos measure. In Step 6 we will show however that we can transform a solution to P2 to a solution to P1(G ′).
In Step 7 we show that the solution to P1(G ′) can then be transformed to a solution to P1(G).

Step 4: We will prove that every solution on the Pareto Front ofΠ2(2) will satisfy Z2(Π2(2),S)
Z1(Π2(2),S) = mink

C (1)
k

C (2)
k

.

Note that Π2(2) is a special case of Π1(2) with f (1)
k (Sk) =C (1)

k Sk and f (2)
k (Sk) =C (2)

k Sk . Hence, using Lemma 1,

4.1. Solving UUMCGP 25

we have for all solutions S on the Pareto Front ofΠ2(2), that

Z1(Π2(2),S) = max
k∈K

[f (1)
k (f (2)

k
−1(Z2(Π2(2),S)))] ⇒

Z1(Π2(2),S) = max
k∈K

[
C (1)

k

C (2)
k

Z2(Π2(2),S)] ⇒

Z2(Π2(2),S)

Z1(Π2(2),S)
= min

k

C (1)
k

C (2)
k

.

Step 5: Let S = [S1,S2] be a solution ofΠ2(2). We will show in this step that there exists a solution x ′′ of P2 with
objective values Z1(P2, x ′′) ≤ Z1(Π2(2),S)|E ′|+0.5maxk (C (1)

k) and Z2(P2, x ′′) ≥ Z2(Π2(2),S)|E ′|−0.5maxk (C (2)
k).

To obtain this solution x ′′ we simply assign the first S1% of the edges to agent 1 and the last S2% of the edges
to agent 2. There may be one edge that falls both in the first S1% and the last S2% of the edges. We assign that
edge using a rounding technique. The process is depicted in Figure 4.5.

Figure 4.5: Going from solution S = [S1,S2] to solution x′′

Let e ′ := bS1|E ′|c, where bqc denotes the integer part of a real number q . For k = 1, we choose

x ′′
e,1 =

{
1 if e ∈ {1,2, . . . ,e ′}
0 otherwise.

For k = 2, we choose

x ′′
e,2 =

{
1 if e ∈ {e ′+2,e ′+3, . . . , |E ′|}
0 otherwise.

We are left with one unassigned edge e = e ′+1. We assign this element as follows

x ′′
e ′,k =

{
1 if dec(|E ′|Sk) ≥ 0.5
0 otherwise.

Here, dec(a) := a −bac, ie., the decimal part of a.
Suppose that dec(|E ′|S1) ≥ 0.5. In this case, we have for constraint (3.1d) with k = 1∑

e∈E ′
w (1)

e,1x ′′
e,1 =C (1)

1

∑
e∈E ′

x ′′
e,1

=C (1)
1 (bS1|E ′|c+1)

≤C (1)
1 (S1|E ′|+0.5).

Similarly, for k = 2, ∑
e∈E ′

w (1)
e,2x ′′

e,2 =C (1)
2

∑
e∈E ′

x ′′
e,2

=C (1)
2 (bS2|E ′|c)

≤C (1)
2 S2|E ′|.

26 Structural results

Hence,

Z1(P2, x ′′) = max(
∑

e∈E ′
w (1)

e,1x ′′
e,1,

∑
e∈E ′

w (1)
e,2x ′′

e,2)

= max(C (1)
1 (S1|E ′|+0.5),C (1)

2 S2|E ′|)
≤ |E ′|max(C (1)

1 S1,C (1)
2 S2)+0.5C (1)

1

= |E ′|Z1(Π2(2),S)+0.5C (1)
1 .

When dec(|E ′|S2) ≥ 0.5 it can be shown similarly that Z1(P2, x ′′) ≤ |E ′|Z1(Π2(2),S)+0.5C (1)
2 . Hence, in all cases,

Z1(P2, x ′′) ≤ |E ′|Z1(Π2(2),S)+0.5max
k

(C (1)
k).

Similarly, it can be shown for constraint (3.1e) that

Z2(P2, x ′′) ≥ |E ′|Z2(Π2(2),S)−0.5max
k

(C (2)
k).

Step 6: Let x ′′ be a solution to P2. We show there exists a solution x ′ for P1(G ′) with the objective values

• Z1(P1(G ′), x ′) = Z1(P2, x ′′),

• Z2(P1(G ′), x ′) = Z2(P2, x ′′), and

• Z3(P1(G ′), x ′) = 2.

Note that Z3(P1(G ′), x ′) = 2 means that x ′ partitions G ′ into two connected subsets.
Note that if we just simply say that x ′

e,k := x ′′
e,k , we would have a solution with the above Z1 and Z2 values.

However, the graph would look completely chaotic. This is because we have not taken the graph structure
into account so far. There is however a way to transform x ′′ to a solution x ′ on graph G ′ resulting in only two
zones.

Let Ak denote the number of edges e ∈ E assigned to agent k in solution x ′′. Graph G ′ is 2-vertex-connected.
According to Lemma 3, we can now partition the graph G ′ into two connected subsets of size A1 and A2. This
partition does not change the objective values Z1 and Z2 and results in an objective value Z3 equal to 2.

Step 7: Let x ′ be a solution to P1(G ′). It remains to be shown that there now exists a solution x to P1(G) with
objective values

Z1(P1(G), x) ≤ Z1(P1(G ′), x ′)+0.5max
e∈E

(we)max
k∈K

C (1)
k

Z2(P1(G), x) ≥ Z2(P1(G ′), x ′)−0.5max
e∈E

(we)max
k∈K

C (2)
k

Z3(P1(G), x) = 2.

For the partition x ′ on G ′, we define Be,k = {e∗ ∈ Fe : x ′
e∗,k = 1}. We call an edge e ∈ E a demi-edge for partition

x ′, when |Be,k | ≥ 1 for all k ∈ K . We will show that there exists a simple algorithm to change the partition x ′
into a partition x such that there is only one demi-edge for x and the objective values does not change.
Suppose there are two demi-edges e1,e2. Without loss of generality assume that |Be1,1| ≤ min(|Be1,2|, |Be2,1|, |Be2,2|).
We then assign all edges in Be1,1 to agent 2, and |Be1,1| edges in Be2,2 to agent 1. We have now swapped |Be1,1|
identical edges between two agents. Hence, objectives Z1 and Z2 do not change. Furthermore, the new parti-
tion still results in two connected subsets. Hence Z3 = 2. Edge e1 is no longer a demi-edge. Hence, we showed
that any pair of demi-edges can be reduced to a single demi-edge. The process of reducing two demi-edges
to one demi-edge is shown in Figure 4.6.

4.1. Solving UUMCGP 27

Be2,1 Be2,2

Be1,1 Be1,2

(a) Before.

Be2,1 Be2,2

Be1,2

(b) After.

Figure 4.6: Two demi-edges reduced to one demi-edge.

We can repeat this process until there is only one demi-edge e∗ left. We assign this edge to k∗ := argmaxk (|Be∗,k |).
Doing this increases Z1 at most with

0.5we∗C (1)
k∗ ≤ 0.5max

e∈E
(we)max

k∈K
C (1)

k .

Also, Z2 decreased with at most
0.5we∗C (2)

k∗ ≤ 0.5max
e∈E

(we)max
k∈K

C (2)
k .

Z3 remains unchanged.

Step 8:
In this step we will conclude that, for every δ> 0, there exists an n ∈N such that for all G with |E | > n, we have
|Z1,2 −Z OPT

1,2 | < δ.

First we bound the value of Z OPT
1,2 . Recall thatΠ2(2) is a relaxation of P2, which is a relaxation of P1(G ′), which

is a relaxation of P1(G). Hence,

Z OPT
1,2 (P1(G)) ≤ Z OPT

1,2 (P1(G ′)) ≤ Z OPT
1,2 (P2) ≤ Z OPT

1,2 (Π2(2)) = min
k

C (1)
k

C (2)
k

. (4.14)

We will now bound Z1,2. In Step 4, we showed that for S on the Pareto Front ofΠ2(2), we have

Z2(Π2(2),S)

Z1(Π2(2),S)
= min

k

C (1)
k

C (2)
k

. (4.15)

In Step 5, we showed that with a solution S toΠ2(2), we can find a solution x ′′ to P2 such that

Z1(P2, x ′′) ≤ Z1(Π2(2),S)|E ′|+0.5max
k

(C (1)
k), (4.16)

Z2(P2, x ′′) ≥ Z2(Π2(2),S)|E ′|−0.5max
k

(C (2)
k). (4.17)

In Step 6, we showed that with a solution x ′′ to P2, we can find a solution x ′ to P1(G ′) such that

Z1(P1(G ′), x ′) = Z1(P2, x ′′), (4.18)

Z2(P1(G ′), x ′) = Z2(P2, x ′′). (4.19)

In Step 7 we showed that with a solution x ′ to P1(G ′), we can find a solution x to P1(G) such that

Z1(P1(G), x) ≤ Z1(P1(G ′), x ′)+0.5max
e∈E

(we)max
k∈K

C (1)
k (4.20)

Z2(P1(G), x) ≥ Z2(P1(G ′), x ′)−0.5max
e∈E

(we)max
k∈K

C (2)
k (4.21)

Z3(P1(G), x) = 2 (4.22)

We can combine Expression (4.15)- (4.22) and conclude the theorem as follows.

28 Structural results

There exists a feasible solution x to P1(G) with Z3(P1(G), x) = 2 and

Z1,2 = Z2(P1(G), x)

Z1(P1(G), x)
(4.23)

≥
Z2(P1(G ′), x ′)−0.5maxe∈E (we)maxk∈K C (2)

k

Z1(P1(G ′), x ′)+0.5maxe∈E (we)maxk∈K C (1)
k

=
Z2(P2, x ′′)−0.5maxe∈E (we)maxk∈K C (2)

k

Z1(P2, x ′′)+0.5maxe∈E (we)maxk∈K C (1)
k

≥
Z2(Π2(2),S)− 0.5

|E ′| [maxe∈E (we)+1]maxk∈K C (1)
k

Z1(Π2(2),S)+ 0.5
|E ′| [maxe∈E (we)+1]maxk∈K C (2)

k

= Z2(Π2(2),S)−α2

Z1(Π2(2),S)+α1

= δ1
Z2(Π2(2),S)

Z1(Π2(2),S)
−δ2

= δ1 min
k

C (1)
k

C (2)
k

−δ2.

Here, for i = 1,2 the αi := 0.5
|E ′| [maxe∈E (we)+ 1]maxk∈K C (i)

k go to zero when |E | → ∞, since |E ′| = ∑
e∈E we .

Moreover, δ1 := 1
1+ α1

Z1(Π2(2),S)
goes to 1 and δ2 := α2

Z1(Π2(2),S)+α1
to zero as |E | goes to infinity. Hence, for every δ,

there exists an n such that

|Z1,2 −Z OPT
1,2 | = |δ1 min

k

C (1)
k

C (2)
k

−δ2 −min
k

C (1)
k

C (2)
k

| = |(δ1 −1)min
k

C (1)
k

C (2)
k

−δ2| < δ.

Moreover, we have that

δ1 min
k

C (1)
k

C (2)
k

−δ2 ≤ Z1,2 ≤ Z opt
1,2 ≤ min

k

C (1)
k

C (2)
k

.

Hence, Z OPT
1,2 = mink

C (1)
k

C (2)
k

.

Theorem 3. We consider P1(G) with the following restrictions:

G is a min(4,r)-vertex-connected graph.
There are r agents, i.e. K = {1, . . . ,r }.
w (i)

e,k :=C (i)
k for i = 1,2, k = 1, . . . ,r , e ∈ E, where C (i)

k ∈R+.
g (G , x) := the number of zones in the partition x on graph G.

Then, there exists a feasible solution x with

• Z3 = r.

• For every δ > 0, there exists an n ∈ N such that P1(G) on a graph with |E | = n has a solution with

|Z OPT
1,2 −Z1,2| < δ. Moreover, Z OPT

1,2 = mink
C (1)

k

C (2)
k

.

Proof. The proof consists of the following steps

1. We know that we can compute all solutions S on the Pareto Front ofΠ2(r).
2. Using S, we compute a solution x ′′ to P2.
3. Using x ′′, we compute a solution x to P1(G).
4. We summarize and conclude.

4.1. Solving UUMCGP 29

Step 1: Proceeding similarly as in Step 1-3 from Theorem 2, we have that Π2(r) is a relaxation of P1(G). We
use Lemma 1 and proceed as in Step 4 of Theorem 2 to conclude that all solutions S on the Pareto Front of
Π2(r) have

Z2(Π2(r),S)

Z1(Π2(r),S)
= min

k

C (1)
k

C (2)
k

Step 2: Using S, we show that we can obtain a solution x ′′ to P2 with

• Z1(P2, x ′′) ≤ |E |Z1(Π2(r),S)+maxk C (1)
k ,

• Z2(P2, x ′′) ≥ |E |Z2(Π2(r),S)−maxk C (2)
k .

To obtain x ′′, we assign the first S1% of the edges to agent 1. The following S2% of the edges, we assign
to agent 2. We continue until we assigned the last Sr % of the edges to agent r . The edges that are on the
“border” between agent k and k +1 are assigned to agent k. The process is graphically depicted for r = 4 in
Figure 4.7. It will now be formally defined.

Figure 4.7: Going from solution S = [S1,S2,S3,S4] to solution x′′.

Let e0 :=−1, er := |E |−1. For k = 1, . . . ,r −1, we define ek := b|E |
k∑

j=1
S j c

x ′′
e,k =

{
1 if e ∈ {ek−1 +2,ek−1 +3, . . . ,ek +1},
0 otherwise.

Note that every edge gets assigned to an agent in this way (i.e.
∑

k x ′′
e,k = 1). Moreover, we have for constraint

(3.1d) for general k ∑
e∈E

w (1)
e,k x ′′

e,k =C (1)
k

∑
e∈E

x ′′
e,k

=C (1)
k [ek +1− (ek−1 +2)+1]

=C (1)
k [ek −ek−1]

≤C (1)
k [|E |

k∑
j=1

S j −|E |
k−1∑
j=1

S j +1]

= |E |C (1)
k Sk +C (1)

k .

Therefore, we have for the objective value Z1 of problem P2 with solution x ′′ that

Z1(P2, x ′′) = max
k

∑
e∈E

w (1)
e,k x ′′

e,k

= max
k

(|E |C (1)
k Sk +C (1)

k)

≤ |E |max
k

(C (1)
k Sk)+max

k
C (1)

k

= |E |Z1(Π2(r),S)+max
k

C (1)
k .

30 Structural results

Similarly, we obtain for Z2 that

Z2(P2, x ′′) ≥ |E |Z2(Π2(r),S)−max
k

C (2)
k .

Step 3:
Let x ′′ be a solution to P2. We show that there exists a solution x for P1(G) with the objective values

• Z1(P1(G), x) = Z1(P2, x ′′),

• Z2(P1(G), x) = Z2(P2, x ′′), and

• Z3(P1(G), x) = r .

This step is very similar to Step 6 of Theorem 2. Note that Z3(P1(G), x) = r means that x partitions G ′ in r
zones.
Note that if we just simply say that xe,k := x ′′

e,k , we would have a solution with the above Z1 and Z2 values.
However, the graph would look completely chaotic. This is because we have not taken the graph structure
into account so far. There is, however, a way to transform solution x ′′ to a solution x with only r zones in
graph G .

Let Ak denote the number of edges e ∈ E assigned to agent k in solution x ′′. Graph G is min(4,r)-vertex-
connected. According to Lemma 3, we can now partition the graph G into r connected subsets of size
A1, A2, . . . , Ar . This partition does not change the objective values Z1 and Z2 and results in an objective value
Z3 equal to r .

Step 4: In this step we will conclude that, for every δ> 0, there exists an n ∈N such that for all G with |E | > n,
we have |Z1,2 −Z OPT

1,2 | < δ.

First we bound the value of Z OPT
1,2 . Recall thatΠ2(r) is a relaxation of P2, which is a relaxation of P1(G ′), which

is a relaxation of P1(G). Hence,

Z OPT
1,2 (P1(G)) ≤ Z OPT

1,2 (P1(G ′)) ≤ Z OPT
1,2 (P2) ≤ Z OPT

1,2 (Π2(r)) = min
k

C (1)
k

C (2)
k

. (4.24)

We will now bound Z1,2. In Step 2, we showed that for S on the Pareto Front ofΠ2(r), we have

Z2(Π2(r),S)

Z1(Π2(r),S)
= min

k

C (1)
k

C (2)
k

. (4.25)

According to Step 2 we can use S to find a solution x ′′ to P2 with

Z1(P2, x ′′) ≤ |E |Z1(Π2(r),S)+max
k

C (1)
k , (4.26)

Z2(P2, x ′′) ≥ |E |Z2(Π2(r),S)−max
k

C (2)
k . (4.27)

According to Step 3 we can use x ′′ to find a solution x to P1(G) with

Z1(P1(G), x) = Z1(P2, x ′′), (4.28)

Z2(P1(G), x) = Z2(P2, x ′′), (4.29)

Z3(P1(G), x) = r. (4.30)

4.1. Solving UUMCGP 31

Combining Expressions (4.25)-(4.30), we obtain

Z2(P1(G), x)

Z1(P1(G), x)
= Z2(P2, x ′′)

Z1(P2, x ′′)

≥
Z2(Π2(r),S)− 1

|E | maxk C (2)
k

Z1(Π2(r),S)+ 1
|E | maxk C (1)

k

= Z2(Π2(r),S)−α2

Z1(Π2(r),S)+α1

= δ1
Z2(Π2(r),S)

Z1(Π2(r),S)
−δ2

= δ1 min
k

C (1)
k

C (2)
k

−δ2.

Here the αi := 1
|E | maxk C (i)

k go to zero as |E | → ∞. Hence, δ1 := 1
1+ α1

Z1(Π2(r),S)
goes to 1 as |E | → ∞ and δ2 :=

α2
Z1(Π2(r),S)+α1

goes to zero as |E |→∞.

Hence, for every δ, there exists an n such that

|Z1,2 −Z OPT
1,2 | = |δ1 min

k

C (1)
k

C (2)
k

−δ2 −min
k

C (1)
k

C (2)
k

| = |(δ1 −1)min
k

C (1)
k

C (2)
k

−δ2| < δ.

Moreover, we have that

δ1 min
k

C (1)
k

C (2)
k

−δ2 ≤ Z1,2 ≤ Z opt
1,2 ≤ min

k

C (1)
k

C (2)
k

.

Hence, Z OPT
1,2 = mink

C (1)
k

C (2)
k

.

The value of Theorem 3 might seem limited, because we restricted the w (i)
e,k to be constants depending only

on k and i . However, Theorem 3 serves as a basis for the more general case discussed in Theorem 4, where
we take the w i

e,k to be identically independently distributed variables from distributions χk with means µk .
In Theorem 4 we show that in this case we can still find a solution x whose value Z1,2 gets arbitrarily close to
Z OPT

1,2 . To prove Theorem 4 we use Lemma 2.

Theorem 4. We consider P1(G) with the following restrictions:

G is a min(4,r)-vertex-connected graph.
There are r agents, i.e. K = {1, . . . ,r }.
For all k = 1, . . . ,r , e ∈ E, i = 1,2 the w (i)

e,k are independently identically distributed variables from distri-

butions χ(i)
k with mean µ(i)

k .
g (G , x) := the number of zones in the partition x on graph G.

Then, there exists a feasible solution x with

• Z3 = r.

• For every δ > 0, there exists an n ∈ N such that P1(G) on a graph with |E | = n has a solution with

|Z OPT
1,2 −Z1,2| < δ. Moreover, Z OPT

1,2 = mink
µ(1)

k

µ(2)
k

.

Proof. The proof consists of the following steps

1. We know that we can compute all solutions S on the Pareto Front ofΠ3(r).
2. Using S, we compute a solution x ′′ to P2.
3. Using x ′′, we compute a solution x to P1(G).
4. We summarize and conclude.

32 Structural results

Step 1: We start with Π3(r), which is a relaxation of P1(G) that we obtain similarly as in Step 3 of Theorem 2.
We use Lemma 1 and proceed as in Step 4 of Theorem 2 to conclude that all solutions S on the Pareto Front
ofΠ3(r) satisfy

Z2(Π3(r),S)

Z1(Π3(r),S)
= min

k

µ(1)
k

µ(2)
k

Step 2: We will show that with a solution S toΠ3(r) we can find a solution x ′′ to P2 that satisfies

• Z1(P2, x ′′) ≤ |E |Z1(Π3(r),S)+ A(1),

• Z2(P2, x ′′) ≥ |E |Z2(Π3(r),S)+ A(2),

where A(1) := maxk∈K

{
|E |Sk |Qk |−0.5+ε+|Qk |−0.5+ε+µ(1)

k

}
and A(2) := mink∈K

{
−|E |Sk |Qk |−0.5+ε−µ(2)

k +|Qk |−0.5+ε
}

.

We find x ′′ using S in the exact same manner as in Step 2 of Theorem 3: Let e0 := −1, er := |E | − 1. For

k = 1, . . . ,r −1, we define ek := b|E |
k∑

j=1
S j c. Let Qk := {ek−1 +2,ek−1 +3, . . . ,ek +1}. We now take x ′′

e,k to be

x ′′
e,k =

{
1 if e ∈Qk ,
0 otherwise.

We now have for constraint (3.1d) for general k:∑
e∈E

w (1)
e,k x ′′

e,k = ∑
e∈Qk

w (1)
e,k

= |Qk |

∑
e∈Qk

w (1)
e,k

|Qk |

= |Qk |


∑

e∈Qk

w (1)
e,k

|Qk |
−µ(1)

k

+|Qk |µ(1)
k . (4.31)

Note that when |E | →∞ then |Qk | →∞ too. Let 0 < ε< 0.5. When we let |E | go to infinity, we can use Lemma
2 to bound the parts between brackets in Expression (4.31) to obtain∑

e∈E
w (1)

e,k x ′′
e,k ≤ |Qk ||Qk |−0.5+ε+|Qk |µ(1)

k

= |Qk |
(
|Qk |−0.5+ε+µ(1)

k

)
≤ (|E |Sk +1)

(
|Qk |−0.5+ε+µ(1)

k

)
= |E |Skµ

(1)
k +|E |Sk |Qk |−0.5+ε+|Qk |−0.5+ε+µ(1)

k .

We can now bound Z1(P2, x ′′) from above

Z1(P2, x ′′) = max
k

(∑
e∈E

w (1)
e,k x ′′

e,k

)
≤ |E |max

k

[
Sk (µ(1)

k)
]
+ A(1)

= |E |Z1(Π3(r),S)+ A(1).

For constraint (3.1e) and general k, we proceed similarly, to obtain:

Z2(P2, x ′′) ≥ |E |Z2(Π3(r), s)+ A(2).

Step 3: Let x ′′ be a solution to P2. Proceeding as in Step 3 of Theorem 3, there exists a solution x for P1(G)
with the objective values

4.1. Solving UUMCGP 33

• Z1(P1(G), x) = Z1(P2, x ′′),

• Z2(P1(G), x) = Z2(P2, x ′′), and

• Z3(P1(G), x) = r .

Step 4: In this step we will conclude that, for every δ> 0, there exists an n ∈N such that for all G with |E | > n,
we have |Z1,2 −Z OPT

1,2 | < δ.

First we bound the value of Z OPT
1,2 . Recall thatΠ3(r) is a relaxation of P1(G). Hence,

Z OPT
1,2 (P1(G)) ≤ Z OPT

1,2 (Π2(r)) = min
k

µ(1)
k

µ(2)
k

. (4.32)

We will now bound Z1,2. According to Step 1, we can find solutions S toΠ3(r) with

Z2(Π3(r),S)

Z1(Π3(r),S)
= min

k

µ(1)
k

µ(2)
k

. (4.33)

According to Step 2 we can use S to find a solution x ′′ to P2 with

Z1(P2, x ′′) ≤ |E |Z1(Π3(r),S)+ A(1), (4.34)

Z2(P2, x ′′) ≥ |E |Z2(Π3(r),S)+ A(2). (4.35)

According to Step 3 we can use x ′′ to find a solution x to P1(G) with

Z1(P1(G), x) = Z1(P2, x ′′), (4.36)

Z2(P1(G), x) = Z2(P2, x ′′), (4.37)

Z3(P1(G), x) = r. (4.38)

Combining Expression (4.33)-(4.38), we have

Z2(P1(G), x)

Z1(P1(G), x)
= Z2(P2, x ′′)

Z1(P2, x ′′)

≥
Z2(Π3(r),S)− 1

|E | A(1)

Z1(Π3(r),S)+ 1
|E | A(2)

= δ1
Z2(Π3(r),S)

Z1(Π3(r),S)
−δ2

= δ1 min
k

µ(1)
k

µ(2)
k

−δ2.

Here, A(1)

|E | and A(2)

|E | go to zero as |E |→∞. Hence, δ1 := 1

1+
A(1)
|E |

Z1(Π3(r),S)

goes to 1 as |E |→∞ and δ2 :=
A(2)
|E |

Z1(Π3(r),S)+ A(1)
|E |

goes to zero as |E |→∞.
Hence, for every δ, there exists an n such that

|Z1,2 −Z OPT
1,2 | = |δ1 min

k

µ(1)
k

µ(2)
k

−δ2 −min
k

µ(1)
k

µ(2)
k

| = |(δ1 −1)min
k

µ(1)
k

µ(2)
k

−δ2| < δ.

Moreover, we have that

δ1 min
k

µ(1)
k

µ(2)
k

−δ2 ≤ Z1,2 ≤ Z opt
1,2 ≤ min

k

µ(1)
k

µ(2)
k

.

Hence, Z OPT
1,2 = mink

µ(1)
k

µ(2)
k

.

34 Structural results

We have arrived at the last theorem. In this theorem we again assume G to be a min(4,r)-vertex-connected
graph with r agents. In the previous theorem, we considered one distribution χ(i)

k for each agent. We now

consider the distributions χ(1) and χ(2) from which we draw the values w (1)
e and w (2)

e . Each agent now has a
constant Ck . This setting resembles the debris management problem well. The value we can be seen as the
amounts of debris, different for every street. The constants Ck resembles the efficiency rate for every agent.
The smaller Ck , the faster it can clean the debris.

Theorem 5. We consider P1(G) with the following restrictions:

G is a min(4,r)-vertex-connected graph.
There are r agents, i.e. K = {1, . . . ,r }.
For all k = 1, . . . ,r , e ∈ E, i = 1,2, we have w (i)

e,k = w (i)
e Ck , where the w (i)

e ’s are identically distributed

variables from a distribution χ(i) with mean µi .
g (G , x) := the number of zones in the partition x on graph G.

Then, for every δ> 0, there exists a n ∈N such that P1(G) on a graph with |E | = n has a solution x with

• Z3 = r ,

•
|Z OPT

1 −Z1|
Z OPT

1
< δ,

•
|Z OPT

2 −Z2|
Z OPT

2
< δ.

Proof. The proof consists of the following steps:

1. Compute a lower bound for Z1 and an upper bound for Z2 in P2.
2. Find a solution x ′ to P2 which gets arbitrarily close to these lower bounds as |E | goes to infinity.
3. Using x ′, we compute a solution x to P1(G) that meets the requirements.

Step 1: We compute a lower bound for Z1 and an upper bound for Z2 in problem P2. In problem P2 we relax
the binary constraint. Or put differently, we replace the constraint xe,k ∈ {0,1} with xe,k ≥ 0. It turns out that
this relaxed problem has a solution x ′′ that minimizes Z1 and maximizes Z2 at the same time. This solution
has

x ′′
e,k = 1

Ck
∑

j
1

C j

∀e,k

and gives us the following bounds for Z1 and Z2 in P2 for any feasible solution x

Z1(P2, x) ≥
∑

e w (1)
e∑

j
1

C j

, (4.39)

Z2(P2, x) ≤
∑

e w (2)
e∑

j
1

C j

. (4.40)

We define these lower bounds respectively as Z (l ow)
1 and Z (hi g h)

2 .

Step 2: We find a solution x ′ to P2 that gets arbitrarily close to these lower bounds as |E | goes to infinity.

We create x ′ in a similar manner as in Step 2 of Theorem 3. Let lk = 1
Ck

∑
j

1
C j

. Now let e0 :=−1, er := |E |−1. For

k = 1, . . . ,r −1, we define ek := b|E |
k∑

j=1
l j c. Let Qk := {ek−1 +2,ek−1 +3, . . . ,ek +1}. We now take x ′

e,k to be

x ′
e,k =

{
1 if e ∈Qk ,
0 otherwise.

4.2. The multi-resource assignment problem 35

Let k ′ be the agent for which Z1(P2, x) = ∑
e∈E

w (1)
e Ck ′x ′

e,k ′

(
Z1(P2, x ′)−Z (l ow)

1

)
=

∑
e∈E

w (1)
e Ck ′x ′

e,k ′ −
∑

e w (1)
e∑

j
1

C j


=

Ck ′
∑

e∈Qk′
w (1)

e −
∑

e w (1)
e∑

j
1

C j


= 1∑

j
1

C j

(∑
j

1

C j
Ck ′

∑
e∈Qk′

w (1)
e − ∑

e∈E
w (1)

e

)

= 1∑
j

1
C j

(
|E |
|Qk ′ |

∑
e∈Qk′

w (1)
e − ∑

e∈E
w (1)

e

)

≤ 1∑
j

1
C j

t |E |0.5,

where t is a constant. In the last step we used Lemma 2. We now have(
Z1(P2, x ′)−Z (low)

1

)
Z (low)

1

= o(|E |−0.5). (4.41)

Hence, as |E | increases Z1(P2, x ′) gets arbitrarily close to its lower bound. Similarly, it can be shown that, as
|E | increases Z2(P2, x ′) gets arbitrarily close to its upper bound.

Step 3: Let x ′ be a solution to P2. Proceeding as in Step 3 of Theorem 3, there exists a solution x for P1(G) with
the objective values

• Z1(P1(G), x) = Z1(P2, x ′),

• Z2(P1(G), x) = Z2(P2, x ′), and

• Z3(P1(G), x) = r .

This gives the result.

4.2. The multi-resource assignment problem
In Chapter 2 we introduced the Multi-Resource Generalized Assignment Problem, or MRGAP. In this section
we give the Mixed Integer Program (MIP) of this problem and give an algorithm that solves the problem when
we allow to violate two constraints slightly. The relevance of our algorithm for this thesis is not straightfor-
ward, since graphs are not mentioned in it. However, in the next chapter, we will see that the results obtained
in this section are, in fact, applicable to the Unrelated Unconnected Multi-Constrained Graph Partitioning
problem (UUMCGP) studied in this thesis.

We denote the MIP of the MRGAP by PMRG AP . It is defined as follows:

PMRG AP =



min C :=∑
e,k

ce,k xe,k

s.t.
∑
e∈E

w (1)
e,k xe,k ≤ Z1 ∀k ∈ K∑

e∈E
w (2)

e,k xe,k ≤ Z2 ∀k ∈ K∑
k∈K

xe,k = 1 ∀e ∈ E

xe,k ∈ {0,1} ∀e ∈ E ,k ∈ K

(4.42a)

(4.42b)

(4.42c)

(4.42d)

(4.42e)

36 Structural results

Our algorithm resembles a bi-criteria algorithm. Iyer and Bilmes [19] define this as an approximation algo-
rithm that violates one constraint. In our case there is not one, but two violated constraints. We call this class
of algorithms tri-criteria algorithms. We define them as follows.

Definition 3. Let Q be a set of constraints and let P be a program defined by

P = min{ f (x)| g (x) ≤φ1,h(x) ≤φ2,Q},

where x is a solution to P, f is the function to be minimized and g (x) and h(x) are constraints. Let POPT be the
value of f (x) at a feasible and optimal x.
Now, for α,β,γ≥ 1, A is an (α,β,γ)-tri-criteria algorithm when it outputs a solution x that has

f (x) ≤αP opt ,
g (x) ≤βφ1, and
h(x) ≤ γφ2.

In other words,A gives a solution x that gives an objective value a factor α close to its optimal, while violating
the first constraint with a factor β and the second constraint with a factor γ.

Our algorithm is an extension of a bi-criteria algorithm for the Generalized Assignment Problem (GAP) de-
veloped by Lenstra et al.[22]. We denote the MIP of GAP by PG AP . It is defined as PMRG AP but without con-
straint (4.42c). Lenstra et al. [22] showed that for PG AP a bi-criteria algorithm exists that shows that either
no feasible solution exists, or outputs a solution x at optimal C , while only violating constraint (4.42b) by
w (1)

max := maxe,k w (1)
e,k . We will now extend this algorithm so it can be applied to PMRG AP . We first need two

definitions.

Definition 4. Two vectors (a1, . . . , am), (b1, . . . ,bm) ∈Rm are δ-ordered if

• ai+1
ai

≤ δ for all i ∈ [1, . . . ,m −1] and

• bi+1
bi

≤ δ for all i ∈ [1, . . . ,m −1].

Note that for all a,b ∈ Rm , a and b are δ′-ordered, with δ′ := max(amax
ami n

, bmax
bmi n

), where amax and bmax are the
maximum entries of a and b, and ami n and bmi n are the minimum entries of a and b. Moreover, note that
when we have a1 ≥ ·· · ≥ am and b1 ≥ ·· · ≥ bm , the vectors are δ′−ordered with δ′ ≤ 1.

We can almost start proving the existence of the algorithm. We only need one more definition. We will define
what we mean by a fractional complete matching. We will use this term in our proof.

Definition 5. Let G = (N , M ,F) be a bipartite graph, where F is the set of edges connecting the node set N with
the node set M. Then y is a fractional complete matching of G, if and only if all of the following hold.∑

m:(n,m)∈F
yn,m = 1 for all n ∈ N , (4.43)∑

n:(n,m)∈F
yn,m ≤ 1 for all m ∈ M , (4.44)

yn,m ≥ 0 for all n ∈ N and m ∈ M . (4.45)

Moreover, y is an integer complete matching of G, when all of the above hold, but instead of Expression (4.45)
we have yn,m = {0,1} for all n ∈ N and m ∈ M.
Moreover, the cost of a matching y is

∑
n,m cn,m yn,m , where cn,m ∈R≥0 for all n ∈ N , m ∈ M.

We can now state and prove the theorem.

Theorem 6. Consider PMRG AP . Assume that for all k ∈ K the vectors (w (1)
1,k , · · · , w (1)

m,k) and (w (2)
1,k , · · · , w (2)

m,k) are

δ-ordered. Then there exist a (1,1+max(1,δ)|E |,1+max(1,δ)|E |)-tri-criteria algorithm to MRG AP

Proof.
We will output a solution x in polynomial time that has the following.

4.2. The multi-resource assignment problem 37

•
∑
e,k

ce,k xe,k ≤Copt ,

•
∑
e∈E

w (1)
e,k xe,k ≤ ε|E |Z1 +w (1)

max ,

•
∑
e∈E

w (2)
e,k xe,k ≤ ε|E |Z2 +w (2)

max ,

where Copt is the value of C in the optimal solution, ε := max(1,δ) and w (i)
max := maxe,k w (i)

e,k for i = 1,2. Since

w (i)
max ≤ Zi for i = 1,2, the theorem then follows.

This proof resembles a proof concerning the PG AP given in [35] and consists of the following steps:
1. We find the optimal solution x ′

e,k to a relaxation of PMGR AP with costs C ′ ≤Copt .

2. We use x ′
e,k to construct a bipartite graph B .

3. We show that B has a fractional complete matching of cost at most C ′.
4. We show that B has an integer complete matching of costs at most C ′.
5. We show that every integer complete matching of B of costs C ′ corresponds to a solution to PMRG AP

of costs at most Copt .
6. We show that every integer complete matching of B corresponds to a solution to PMRG AP in which
each agent requires at most ε|E |Z1+w (1)

max of the first resource and ε|E |Z2+w (2)
max of the second resource.

Step 1: We can relax PMRG AP by replacing constraint (4.42e) by

xe,k ≥ 0 ∀e ∈ E ,k ∈ K .

The new problem can be solved in polynomial time. Let x ′ denote the optimal solution to this problem. Note
that x ′ is a fractional solution. Let C ′ denote the cost of this solution. Hence, C ′ :=∑

e,k ce,k x ′
e,k . Since x ′ is the

optimal solution to the relaxation of PMRG AP , we have that C ′ ≤Copt .

We can depict x ′ as a bipartite graph A with node sets E and K . We connect edge e with agent k if x ′
e,k > 0. An

example of a bipartite graph A corresponding to a solution x ′ is given in Figure 4.8a.

Step 2: We will now construct a new bipartite graph B using x ′. Later on, we will use this graph to prove our
results. Let Lk := d∑

e∈E
xe,ke, where dae denotes the integer obtained from rounding up the number a to the

nearest integer. Now, for every agent k we define “agent slots” (k, s) for s = 1,2, . . . ,Lk . Let S denote the set
containing all agent slots of all agents. S := {(k, s), k = 1,2, . . . ,r and s = 1,2, . . . ,Lk }. The two node sets of our
bipartite graph are now E and S. To determine the edges F of our bipartite graph B we use a so-called “bucket
filling” procedure.

This procedure works as follows. For every agent k we start connecting nodes with slot (k,1). We first select
the node e1 with x ′

e1,k > 0 with the lowest index. We connect e1 to (k,1) and we fill slot (k,1) with x ′
e1,k . We

then select the node e2 with x ′
e2,k > 0 with the second lowest index. We again connect this node e2 with slot

(k,1) and add x ′
e2,k to the slot. We repeat this process until the slot is completely filled and we continue filling

the next slot (k,2). When (k,2) is filled up, we start filling (k,3). We continue until all nodes e for which x ′
e,k > 0

are connected to slots (k, s). During this procedure we define a variable y . Whenever we pack a positive frac-
tion of e in slot (k, s), we set ye,(k,s) equal to that fraction. This procedure is depicted in Figure 4.8b.

Step 3: Note that the variable y is a fractional complete matching in B . When we define the cost function
ce,(k,s) to be ce,k , we have that the cost of the fractional complete matching y is equal to C ′, since∑

e

∑
k

∑
s

ce,(k,s) ye,(k,s) =
∑

e

∑
k

∑
s

ce,k ye,(k,s)

=∑
e

∑
k

ce,k

∑
s

ye,(k,s)

=∑
e

∑
k

ce,k x ′
e,k

=C ′.

Step 4: Every bipartite graph that has a fractional complete matching contains an integer complete matching
with smaller or equal costs [35]. Hence, there exists an integer complete matching z of graph B with costs

38 Structural results

(a) Bipartite graph A. The value on every edge (e,k) denotes x′e,k . (b) Bipartite graph B. The value on every edge (e, (k, s)) denotes ye,(k,s).

Figure 4.8: An example of the bipartite graphs A and B corresponding to a solution x′. In this example there are 4 edges that need to be
assigned to 2 agents.

smaller or equal than C ′.

Step 5: Recall that z is the integer complete matching of graph B with costs smaller or equal than C ′. Hence,∑
e
∑

k
∑

s ce,(k,s)ze,(k,s) ≤C ′. We will show now that there exists an integer solution x to PMRG AP that might be
infeasible, but that has costs at most Copt . We define this x as follows:

xe,k =
{

1 if ze,(k,s) = 1 for some s = 1,2, . . . ,Lk ,
0 otherwise.

Clearly, xe,k is integer. Note that xe,k =∑
s ze,(k,s). Therefore we have that∑

e

∑
k

ce,k xe,k =∑
e

∑
k

ce,k

∑
s

ze,(k,s)

=∑
e

∑
k

∑
s

ce,k ze,(k,s)

≤C ′

≤Copt .

Step 6: In Step 5 we found an integer solution xe,k that has costs at most Copt . It remains to show that this
xe,k violates the constraints only by the required amount. We will show this only for constraint (4.42b). The
proof for constraint (4.42c) is the same.

We will show that for any agent k, the total load of the first weight assigned to him will be lower than the
required amount ε|E |Z1 +w (1)

max . We know that the vector (w (1)
1,k , · · · , w (1)

m,k) is δ-ordered. Hence, we have

4.2. The multi-resource assignment problem 39

w (1)
m,k ≤ δw (1)

m−1,k ≤ δ2w (1)
m−2,k ≤ . . . ≤ δm−1w (1)

1,k .

When we set ε= max(1,δ), we get

w (1)
m,k ≤ εw (1)

m−1,k ≤ ε2w (1)
m−2,k ≤ . . . ≤ εm−1w (1)

1,k .

We therefore have for every e ∈ E
w (1)

e,k ≤ ε|E |w (1)
e ′,k for all e ′ < e (4.46)

In Step 4 we gave the integer complete matching z on the bipartite graph B . Note that the total load for agent
k under the solution x, is the same as the total load for agent k under the integer complete matching z. It
therefore suffices to show that agent k has a load smaller than ε|E |Z1 +w (1)

max in the integer complete match-
ing z.

Note that graph B only contained edges (e, (k, s)) for which ye,(k,s) > 0. Hence the only edges in z that can be
connected to an agent slot (k, s) are (e, (k, s)) for e such that ye,(k,s) > 0. Let max(k, s) denote the maximum
value of w (1)

e,k among those edges. Hence, the total load of agent k in the integer matching z is not larger than

Lk∑
s=1

max(k, s) = max(k,1)+
Lk∑

s=2
max(k, s)

≤ w (1)
max +

Lk∑
s=2

max(k, s)

It remains to show that
∑Lk

s=2 max(k, s) ≤ ε|E |Z1. Because we assigned the edges with higher indices first in
the bucket filling procedure, we have that all the e ′ assigned to an agent slot (k, s) have a lower index than the
edges assigned to agent slot (k, s+1). Hence, we use (4.46) to obtain max(k, s+1) ≤ ε|E |w (1)

e,k for all e connected
to agent slot (k, s). Now also note that for s = 1, . . . ,Lk −1 the agents slots are filled, i.e.

∑
e ye,(k,s) = 1. Hence,

for s = 1, . . . ,Lk −1,
max(k, s +1) ≤∑

e
ye,(k,s)ε

|E |w (1)
e,k .

Hence, we get

Lk∑
s=2

max(k, s) =
Lk−1∑
s=1

max(k, s +1)

≤
Lk−1∑
s=1

∑
e

ye,(k,s)ε
|E |w (1)

e,k

≤
Lk∑

s=1

∑
e

ye,(k,s)ε
|E |w (1)

e,k

= ε|E |∑
e

w (1)
e,k

Lk∑
s=1

ye,(k,s)

But, by construction of y , we have
∑Lk

s=1 ye,(k,s) = x ′
e,k , where x ′

e,k is the optimal fractional solution to PMRG AP

from Step 1. Hence,

Lk∑
s=2

max(k, s) ≤ ε|E |∑
e

w (1)
e,k x ′

e,k

≤ ε|E |Z1

Note that this theorem is strong in particular when the relevant vectors are δ′-ordered with δ′ ≤ 1. In that case
we can find an optimal solution to MRG AP in polynomial time while only violating Zi by w (i)

max for i = 1,2.
In the next chapter we will use Theorem 6 to come up with an algorithm to approximately solve P1(G).

5
Algorithms

The multi-objectivity of P1(G) makes it hard or impossible to solve it in practice. Moreover, Theorem 1 in Sec-
tion 4.1.1 shows that P1(G) is an NP-hard problem even when it is single objective in Z1 or Z2. This motivates
the use of approximation algorithms to find good solutions. In this chapter such an algorithm is presented.
We take the function g (G , x) in P1(G) as the sum of the spans of all nodes as defined in Expression (3.2).

In Section 4.2 we defined the multi-resource generalized assignment problem, or MRGAP. The mixed integer
problem (MIP) of MRGAP is denoted by PMRG AP and is given in (4.42). In this problem we assign edges to
agents so that the cost function is minimized. Moreover, every agent can use at most Z1 of the first resource
and Z2 of the second resource. We have seen that there exists a tri-criteria algorithm for PMRG AP . The algo-
rithms discussed in this section are based on this result, since they repeatedly solve the PMRG AP . We call these
algorithms “UM” algorithms. Here the “U” stands for the problem the algorithm approximately solves: the
Unconnected Unrelated Multi-Constrained Graph Partitioning problem. The “M” stand for the MIP it uses to
come up with this solution: the Multi-Resource Generalized Assignment Problem. We distinguish two types
of these UM algorithms: “starting” UM algorithms and “ending” UM algorithms. First, in Section 5.1 we will
explain the general workings of the basic UM algorithm. In Section 5.2 we will then dive into the starting UM
algorithms. The ending UM algorithms will be explored in Section 5.3. In Section 5.4 we will conclude and
present the final algorithm.

5.1. The UM algorithm
UM algorithms use a certain edge-agent assignment y with good objective values Z1 and Z2 as input. They
then solve the multi-resource assignment problem PMRG AP to obtain an edge-agent assignment x with an
improved Z3 objective, while only slightly worsening the Z1 and Z2 objectives. It then uses the new edge-
agent assignment as an input and repeats the process. We will now present the extra notation of this section
and the exact model and steps of the UM algorithm.
Parameters:

ye,k =
{

1 if edge e is assigned to agent k in the input assignment,
0 otherwise.

he,k (y) Parameter depending on given assignment y .

B1 Parameter denoting the upper bound of Z1.

B2 Parameter denoting the lower bound of Z2.

Decision variables:

xe,k =
{

1 if edge e gets assigned to agent k in the new assignment,
0 otherwise.

Model:
Suppose we have a graph G = (V ,E) with agent-depended edge weights w (1)

e,k and w (2)
e,k . Let ye,k be a given edge-

agent assignment. We can now write PU M , which is a mixed-integer program (MIP) very similar to PMRG AP .

41

42 Algorithms

Recall that PMRG AP does not take any graph into account. To include the graph structure of problem P1(G), we
replace in PMRG AP the parameter ce,k with a new parameter he,k (y) that we calculate based on characteristics
of the graph and the assignment y . More on that calculation in the next sections. We also replace Z1 with B1,
Z2 with B2 and flip the inequality sign in (4.42c). We then obtain PU M .

PU M =



min ZU M :=∑
e,k

he,k (y)xe,k

s.t .
∑

k∈K
xe,k = 1 ∀e∑

e∈E
w (1)

e,k xe,k ≤ B1 ∀k∑
e∈E

w (2)
e,k xe,k ≥ B2 ∀k

xe,k ∈ {0,1} ∀k,e

(5.1a)

(5.1b)

(5.1c)

(5.1d)

(5.1e)

Constraint (5.1b) makes sure that every edge gets assigned to exactly one agent. Constraint (5.1c) makes sure
that the first objective Z1 is bounded from above by B1. Constraint (5.1d) makes sure that the second objec-
tive Z2 is bounded from below by B1. Hence, the solution x is an edge assignment with objective values Z1

and Z2 bounded by respectively B1 and B2. There is one more thing left to show: x has a better chaos mea-
sure than the old edge assignment y . This improvement is due to the choice of he,k (y) in the objective value
ZU M . We will elaborate on this choice in the following sections. The objective value ZU M can be seen as the
increase in chaos between the input assignment y and the new assignment x. A negative objective value of
ZU M corresponds to a decrease in chaos between the assignments.

In the following we will describe two classes of the UM algorithm: starting and ending UM algorithms. To
solve an instance of P1(G) one first runs a starting UM algorithm and ends with an ending UM algorithm.
Each class, starting and ending, has 3 versions: the regular, restricted, and combination version. The versions
only differ in their he,k (y) parameter. By changing this parameter each version reduces the chaos of the old
assignment in its own way.

5.2. Starting UM algorithms
Imagine a solution y to P1(G) with good values of Z1 and Z2 but with a bad objective value Z3. To improve the
latter, one can run one of the three versions of the starting UM algorithm. We will discuss each version now
and conclude which version is the best starting UM algorithm.

5.2.1. The regular version
The algorithm
We define the parameter h(y) calculated in the regular version by h(1)(y). We define h(1)

e,k (y) as the increase
in the chaos objective, defined in Expression (3.2), when changing edge e to agent k in assignment y . Some
examples of edges with their corresponding h(1)

e,k values are given in Figure 5.1 and Table 5.1.

5.2. Starting UM algorithms 43

e1

(a) City A

e2

(b) City B

e3

(c) City C

e4

(d) City D

Figure 5.1: Four different edge-agent assignments in example cities with 3 agents (red, blue and green).

Edge red blue green
e1 0 -2 0
e2 2 0 2
e3 0 1 1
e4 -2 0 -2

Table 5.1: h(1)
e,k

values corresponding to edges in Figure 5.1.

Notice that for an edge e that is already assigned to agent k in the old assignment y (i.e. when ye,k = 1), we
have h(1)

e,k (y) = 0. Note that, when we do not change the solution (i.e. xe,k = ye,k), the objective value ZU M in
Expression 5.1a equals zero.
Let all parameters be given as in P1(G) and PU M . Like the other versions, the regular version of the UM algo-
rithm takes an assignment y with good Z1 and Z2 objective values. It then solves PU M obtaining a solution
x. It repeats this process, each time using the obtained solution x as an input for the new iteration, until the
objective value Z3 does not improve anymore. The algorithm is shown in Algorithm 1.

Algorithm 1 The regular version of the starting UM algorithm

1: Find solution y of P1(G) with good Z1, Z2 values
2: ∆ :=−1
3: while ∆< 0 do
4: he,k (y) ← h(1)

e,k (y)∀e,k
5: Find optimal solution x to PU M

6: ∆← ZU M (x)
7: y ← x

The Results
The results after five iterations of the regular version of the UM algorithm are shown in Figures 5.2 and 5.3.

44 Algorithms

Figure 5.2: Edge-agent assignment.

Figure 5.3: Edge-agent assignment after five iterations of the regular version of the UM algorithm.

It can be seen that the chaos of the graph has been decreased after five iterations. However, parts of the graph
are still chaotically assigned. Running more iterations does not solve this. This is due to the adjacent-edge-
problem, which is described below.

Adjacent-edge-problem
The main problem with the regular version of the UM algorithm is that it does not take into account that
adjacent edges can both change agent. An example of this is given in Figures 5.4 and 5.5.

a b

cd

e f

g h i

j k

l

m

n o

Figure 5.4: Edge-agents assignment for a simple city with two agents.

5.2. Starting UM algorithms 45

a b

cd

e f

g h i

j k

l

m

n o

Figure 5.5: Edge-agents assignment of simple city with two agents after iteration of running the regular version of the UM algorithm

In Figure 5.4, swapping the edge (c, g) to the black agent does not worsen the sum of spans defined in Expres-
sion (3.2), nor does swapping the edge (g , l) to the red agent. Running the UM algorithm on this instance,
therefore might result in the edge-agent assignment depicted in 5.5. The objective value will be zero, but the
chaos of the assignment has increased. This problem will be dealt with in the restricted version of the UM
algorithm.

5.2.2. The restricted version
The algorithm
We define the parameter h(y) calculated in the restricted version by h(2)(y). In the restricted version we
solve the adjacent-edge-problem by making sure that for every node only one edge adjacent to that node
can change agent. We do this using a matching. A matching in a graph G = (V ,E) is a subset E ′ of the edges
such that no edges in E ′ are adjacent to the same node. In short, in the restricted version, we first construct a
matching as described below. We then assign values to h(2)

e,k for all e and k such that all edges in the matching
can change agent and all edges not in the matching stay with their current agent. Since a matching does not
contain adjacent edges, we make sure that there are no adjacent edges that can both change agent.

We want to have the edges in the matching, which, when changed to another agent, lead to the biggest re-
duction in chaos. We search for a minimum cost matching on G with the edge weights for each edge e equal
to mink {h(1)

e,k (y)}. The problem of finding a minimum cost matching can be solved in time O(|V |2|E |) using
Edmonds’ blossom algorithm [6]. For simplification reasons, we use a Greedy algorithm to find a feasible
matching. In each step we take, from a set of available edges, the edge with the highest potential for decreas-
ing the chaos. Or, put differently, we search for the edge e with the smallest value of mink {h(1)

e,k (y)}. We add
this edge to the matching, and remove this edge, together with all adjacent edges from the set of available
edges. We repeat until there are no more available edges. The process is shown in Algorithm 2.

Algorithm 2 Find a minimum cost matching M

1: A := E
2: M :=;
3: while A 6= ; do
4: e∗ ← argmine∈A[mink h(1)

e,k (y)]
5: A ← A \ {e∗}
6: A ← A \ { f } for all f ∈ A adjacent to e∗ in G
7: M ← M ∪ {e∗}

Now that we have a matching M , the values of h(2)
e,k can be assigned. All edges in the matching M get assigned

the same he,k as in the regular version of the UM algorithm. The edges not in M get assigned he,k values in
such a way that they are forced to stay with their current agent. Hence, we define h(2)

e,k by

h(2)
e,k (y) :=


h(1)

e,k (y) if e ∈ M ,

0 if e 6∈ M and ye,k = 1,
∞ if e 6∈ M and ye,k = 0.

46 Algorithms

In our code we use 109 instead of ∞. The adjacent-edge problem is solved by this way of assigning values to
he,k . We can look at Figure 5.4 to see this. Let us say that the edge (c, g) is in the matching M . Then edge (g , l)
is not. The values for h(1)

e,k (y) and h(2)
e,k (y) for Figure 5.4 are shown in Table 5.2

Edge e Agent k h(1)
e,k h(2)

e,k
(c,g) red 0 0
(c,g) black 0 0
(g,l) red 0 ∞
(g,l) black 0 0

Table 5.2: Values for h(1)
e,k

(y) and h(2)
e,k

(y) in Figure 5.4.

When we solve PU M with the values he,k := h(2)
e,k the new solution x will assign edge (g , l) to the black agent

and thereby avoiding the situation depicted in Figure 5.5. The restricted version of the starting UM algorithm
is shown in Algorithm 3.

Algorithm 3 The restricted version of the UM algorithm

1: Find solution y of P1(G) with good Z1, Z2 values
2: ∆ :=−1
3: while ∆< 0 do
4: Find matching M with algorithm 2
5:

6: for e ∈ M do
7: h(2)

e,k (y) ← h(1)
e,k (y) ∀k

8:

9: for e 6∈ M do
10: if ye,k = 1 then
11: h(2)

e,k (y) ← 0

12: if ye,k = 0 then
13: h(2)

e,k (y) ←∞
14:

15: he,k (y) ← h(2)
e,k (y) ∀e,k

16: Find optimal solution x to PU M

17: ∆← ZU M (x)
18: y ← x
19:

The disadvantage of solving PU M with he,k := h(2)
e,k is that only around 25% of the edges are allowed to change

agent, since only edges in the matching are allowed to switch. Therefore, the results of the restricted version
are similar to the those of the regular version. To solve this problem we developed the last version of the
starting UM algorithms: the combination version.

5.2.3. The combination version
So far, we have discussed two versions of the starting UM algorithm: the regular and the restricted version.
Both give decent results, but are constrained for different reasons. The performance of the regular version
is held back by the adjacent-edge problem and the performance of the restricted version is held back due to
the fact that only around 25% of the edges are allowed to change agent. To solve this we run a hybrid form
of these two versions, which we call the combination version. This version repeatedly alternates between the
regular and restricted version. Its exact workings are shown in Algorithm 4.

5.2. Starting UM algorithms 47

Algorithm 4 The combination version of the starting UM algorithm

1: Find solution y of P1(G) with good Z1, Z2 values
2: ∆ :=−1
3: while ∆< 0 do
4: he,k (y) ← h(1)

e,k (y)
5: Find optimal solution x to PU M

6: ∆1 ← ZU M (x)
7: y ← x
8:

9: he,k (y) ← h(2)
e,k (y)

10: Find optimal solution x to PU M

11: ∆2 ← ZU M (x)
12: y ← x
13:

14: ∆=∆1 +∆2

Results
In Figure 5.6 a chaotic graph was transformed by the combination version of the UM algorithm to a “nicer”
graph while only hurting the time and profit objective by 5%.

Figure 5.6: Edge-agent assignment before and after running the combination algorithm.

Looking at Figure 5.6 gives the impression that the combination version gives better results than the regular
or restricted version. This impression is confirmed in the following section.

5.2.4. Conclusion
We have discussed three versions of starting UM algorithms. The results of these are shown in Figure 5.7.

48 Algorithms

Figure 5.7: Chaos decrease measured in the sum of span for all starting versions of the UM algorithm on a simulated disaster in the city
of Nijmegen, the Netherlands with 5 contractors. Nijmegen has 170.000 inhabitants and 5500 streets.

In Figure 5.7 we see, first of all, the effectiveness of the starting UM algorithms. After only 10 iterations all ver-
sions have significantly reduced the chaos. More on the effectiveness of these algorithms follows in the results
chapter of this thesis. Secondly, we see that, as expected, the combination version performs better than the
other algorithms. This pattern reoccurs in other experiments we ran. Thirdly, we see that the chaos-reducing
effect of the algorithms wears out after about 10 iterations resulting in assignments similar to the one in Fig-
ure 5.6. The chaos has been significantly reduced. However, agents still have multiple non-connected regions
of edges assigned to it. Moreover, some regions are as small as three or four edges. There is definitely more
work to do. The next class of UM algorithms does this work. The ending class of UM algorithms, described
in the following section, transforms the solution produced by the starting UM algorithm into an even less
chaotic desirable final solution.

5.3. Ending UM algorithms
The previous class of UM algorithms produced solutions y to P1(G) with good objective values Z1 and Z2

and with a decent chaos objective Z3. The class covered in this section improves the chaos objective of these
solutions further. They are the last step in approximately solving P1(G) and are therefore called ending UM
algorithms.

They operate very similarly to the starting UM algorithms with the difference that they operate on zones
instead of on edges. Here, a zone is defined in Definition 1. Let Φ denote the set of all zones F . For every
e ∈ E , let Fe denote the zone containing e. Figure 5.8 depicts the zones for a certain edge agent assignment.

Figure 5.8: Zones for a certain edge agent assignment.

Now, instead of assigning edges to agents, this class of algorithms assigns zones to agents. We name the
MIP, which is approximately solved during the ending UM algorithms, P Z

U M . Approximately solving P Z
U M

changes an old assignment y Z to a new assignment x Z with reduced chaos. To obtain P Z
U M from PU M , we

simply replace the set E of edges by the set Φ. The decision variables xe,k then logically become x Z
F,k and the

parameter he,k changes to hF,k . We now replace the weight parameter w (i)
e,k by w (i)

F,k := ∑
e∈F

w (i)
e,k . Note that a

5.3. Ending UM algorithms 49

solution x Z to P Z
U M corresponds to a solution x to PU M as follows:

xe,k =
{

1 if x Z
Fe ,k = 1,

0 otherwise.

Just like the starting UM algorithms, we distinguish three versions: the regular, restricted and combination
version. All of them approximately solve P Z

U M iteratively. Again, they only differ in the values of the parameter
hF,k (y Z)

5.3.1. The regular version
We define the parameter h(y Z) calculated in the regular version of the ending UM algorithm by h(3)(y Z).
The values of h(3)(y Z) are chosen in such a way that zones are forced to switch agent so that their new agent
matches that of adjacent zones. Running the regular version repeatedly will then have small zones merging
to larger zones resulting in a reduced chaos.

To formally define h(3)(y) we need to define N (F) first. With N (F) we denote the set of agents assigned to
zones adjacent to F . Or, more formally:

N (F) = {k ∈ K : yF ′,k = 1 for some F ′ adjacent to F }

We can now define h(3)(y):

h(3)(y)F,k =


0 if y Z
F,k = 1,

−1 if k ∈ N (F),
∞ otherwise.

An example of how to determine the value h(3)(y Z) is given in Figure 5.9 and Table 5.3.

a b

cd

e f

g

p

h i

j k

l

m

n o

Zone 1

Zone 2

Zone 4

Zone 3

Figure 5.9: Four zones of edge-agent assignment of simple city with three agents.

Agent
Blue Red Black

Zone

1 0 -1 ∞
2 -1 0 -1
3 ∞ -1 0
4 ∞ 0 -1

Table 5.3: Values of h(3)
F,k

(y Z) for the edge assignment depicted in Figure 5.9

Note that, when we do not change the solution, (i.e x Z
F,k = y Z

F,k), the objective value ZU M in Expression (5.1a)
equals zero. The regular version of the ending UM algorithm is shown in Algorithm 5. The regular version of
the ending UM algorithm gives good results. However, just like the adjacent-edge-problem in the regular ver-
sion of the starting UM algorithm, it struggles with adjacent elements. In this case, adjacent zones. Adjacent
zones can both switch agent leading to increased instead of reduced chaos. To deal with this problem, the
restricted version of the ending UM algorithm was developed.

50 Algorithms

Algorithm 5 The regular version of the ending UM algorithm

1: ∆ :=−1
2: y ← Edge assignment obtained by running a starting UM algorithm
3: while ∆< 0 do
4: Obtain zone assignment y Z from edge assignment y
5: hF,k (y Z) ← h(3)

F,k (y Z) ∀e,k

6: Find optimal solution x Z to P Z
U M

7: ∆← ZU M (x Z)
8: Obtain edge assignment x from zone assignment x Z

9: y ← x

5.3.2. The restricted version
We define the parameter h(y Z) calculated in the regular version of the ending UM algorithm by h(4)(y Z). The
values of h(4)(y Z) are chosen in such a way that adjacent zones can not both switch agent. We do this by
selecting a subset M ⊆Φ of zones that we allow to change. All zones not contained in M are forced to stay to
their current agent. We choose M in such a way that it i) does not contain adjacent zones and ii) does contain
the zones with the least amount of edges. The algorithm of finding M is similar to the matching algorithm
described in Algorithm 2 and is depicted in Algorithm 6.

Algorithm 6 Find a subset M ofΦ

1: A :=Φ
2: M :=;
3: while A 6= ; do
4: F∗ ← argminF∈A[|F |]
5: A ← A \ {F∗}
6: A ← A \ {F ′} for all F ′ ∈ A adjacent to F∗ in G
7: M ← M ∪ {F∗}

When we have this subset M , we can construct our parameter h(4)(y Z) as follows:

h(4)
F,k (y Z) :=


h(3)

F,k (y Z) if F ∈ M ,

0 if F 6∈ M and y Z
F,k = 1,

∞ if F 6∈ M and y Z
F,k = 0.

The algorithm of the restricted version of the ending UM algorithm is depicted in Algorithm 7.

5.3. Ending UM algorithms 51

Algorithm 7 The restricted version of the ending UM algorithm

1: y ← Edge assignment obtained by running a starting UM algorithm
2: ∆ :=−1
3: while ∆< 0 do
4: Obtain zone assignment y Z from edge assignment y
5: Find subset M ⊆Φwith Algorithm 6
6:

7: for F ∈ M do
8: h(4)

F,k (y Z) ← h(3)
F,k (y Z) ∀k

9:

10: for F 6∈ M do
11: if y Z

F,k = 1 then

12: h(4)
F,k (y Z) ← 0

13: if y Z
F,k = 0 then

14: h(4)
F,k (y Z) ←∞

15:

16: he,k (y Z) ← h(4)
e,k (y Z) ∀e,k

17: Find optimal solution x Z to P Z
U M

18: ∆← ZU M (x Z)
19: Obtain edge assignment x from zone assignment x Z

20: y ← x
21:

The restricted version deals with the problem the regular version was struggling with. However, it restrains
many zones from switching agent, since it only allows adjacent agents to switch agent. Therefore, the results
of the restricted version are similar then the ones of the regular version in chaos. To solve this, we came up
with the combination version of the ending UM algorithm.

5.3.3. The combination version
The regular version and restricted version work well, but both have their disadvantages. Again, we need to
combine the two versions to obtain the best result. This is what we do in the combination version of the
ending UM algorithm. This version repeatedly alternates between the regular and restricted version. Its exact
workings are shown in Algorithm 8.

52 Algorithms

Algorithm 8 The combination version of the ending UM algorithm

1: y ← Edge assignment obtained by running a starting UM algorithm
2: ∆ :=−1
3: while ∆< 0 do
4: Obtain zone assignment y Z from edge assignment y
5: hF,k (y Z) ← h(3)

F,k (y Z)

6: Find optimal solution x Z to P Z
U M

7: ∆1 ← ZU M (x Z)
8: Obtain edge assignment x from zone assignment x Z

9: y ← x
10:

11: Obtain zone assignment y Z from edge assignment y
12: hF,k (y Z) ← h(4)

F,k (y Z)

13: Find optimal solution x Z to P Z
U M

14: ∆2 ← ZU M (x Z)
15: Obtain edge assignment x from zone assignment x Z

16: y ← x
17:

18: ∆=∆1 +∆2

5.3.4. Conclusion
We have discussed three versions of ending UM algorithms. Figures 5.10 and 5.11 show how these algorithms
decrease the sum of span and the number of zones in a particular example.

Figure 5.10: Decrease in sum of span for all ending versions of the UM algorithm on a simulated disaster in the city of Nijmegen, the
Netherlands with 5 contractors. Nijmegen has 5500 streets.

From Figure 5.10 and 5.11 we can draw several conclusions. Again, just like in the case of the starting version
of the UM algorithm, the algorithms are effective in reducing the chaos and the number of zones. Moreover,
it can be concluded that the combination version works best: it reduces the chaos and the number of zones
the most of all versions. Lastly, we see that the chaos reducing effect wears out after 10 iterations.

5.4. Conclusion
We have discussed two classes of algorithms, starting and ending. Each with a regular, restricted and combi-
nation version. We concluded that for both classes the combination version is the most effective in reducing
the chaos. This conclusion is used to create the “final UM algorithm”. The final UM algorithm simply runs
the combination version of the starting UM algorithm first and ends by running the combination version of
the ending UM algorithm. The final UM algorithm is shown in Algorithm 9.

In Figure 5.12 and Figure 5.13 it can be seen how a chaotic graph is turned into a less chaotic graph using the
“final UM algorithm”.

5.4. Conclusion 53

Figure 5.11: Decrease in number of zones for all ending versions of the UM algorithm on a simulated disaster in the city of Nijmegen,
the Netherlands with 5 contractors. Nijmegen has 5500 streets.

Algorithm 9 The final UM algorithm

1: Run Algorithm 4 (The combination version of the starting UM algorithm)
2: Run Algorithm 8 (The combination version of the ending UM algorithm)

(a) Original chaotic graph before UM algorithm.

(b) Graph after running the final UM algorithm given in Algorithm 9.

Figure 5.12: In this 30 by 40 node graph with three agents, the chaos is successfully reduced. The objective values Z1 and Z2 are still
around 85% of their optimal values.

54 Algorithms

Figure 5.13: Result after running the final UM algorithm on an 80 by 80 node graph with seven agents.

Figure 5.12 and Figure 5.13 show the power of the final UM algorithm. However, we still do not know much
about the quality of our algorithm. Does it perform well on all types of graphs and all types of edge weights?
How good are the solutions to P1(G) it produces for all three objective values? How does it perform on real-life
instances like cities? Does it outperform an MIP solver? We answer these questions by testing the algorithm
on different instances. In the next chapter we will discuss how we created these instances and how we test
our algorithms. We will then show the results.

6
Experimental Design

To test the performance of the final UM algorithm discussed in the previous chapter, we run computational
experiments. In this chapter we discuss on which instances we test the algorithms (Section 6.1) and how we
test them (Section 6.2). We will test our algorithms on real-life cities where we will simulate disasters. For this
reason we will speak of time instead of Z1, profit instead of Z2 and contractors instead of agents.

6.1. Creating instances
There are three types of parameters that influence our problem P1(G): the number of contractors, the graph
G and the weights w (i)

e,k . After we make choices for each of these parameters, we obtain an instance of a city
after a natural disaster.

Number of contractors
We seek to answer the question: what is the impact of the number of contractors on the performance of the
final UM algorithm? We test the algorithm for 5 and 10 contractors. This captures the variation that occurs
for real-life debris management problems.

Graphs
Another question we seek to answer is the following: does the city street plan have an impact on the perfor-
mance of the algorithms? To answer this question we test our algorithms on a set of 9 American cities with
the highest Natural Disaster Hazard Score. This is a score measuring the combined risk of earthquakes, fires,
floods, tornadoes and hurricanes [8]. The nine cities are Miami (Florida), Sacramento (California), Seattle
(Washington), Memphis (Tennessee), Philadelphia (Pennsylvania), St. Louis (Missouri), Birmingham (Al-
abama), San Antonio (Texas) and Kansas City (Missouri). Street maps of all cities were downloaded from
Open Street Map using Osmnx in Python [2]. For each city we remove all self loops for simplification reasons.
These are streets that start at the same point as that they end. We can do this without significantly hurting the
output, because self-loops form less 1% of the streets.

The weights w i
e,k

In P1(G) every edge has two weights for every contractor: w1
e,k and w2

e,k . In the applied case of natural disas-

ters the first weight w1
e,k represents the time it takes for an contractor k to clean street e. The second weight

w2
e,k represents the profit it takes for contractor k to clean street e. There are many ways that we can assign

values to these weights and each assignment may have an effect on the performance of the final UM algo-
rithm. Regarding the edge weights, we hope to answer the following questions, the terminology of which will
be explained below.

1. What is the impact of symmetric versus asymmetric contractors on the performance of our algorithm?

2. What is the impact of an equal spread of debris versus a non-equal spread of debris on the performance
of our algorithm?

3. What is the impact of a correlated time and profit and a non-correlated time and profit?

55

56 Experimental Design

We will now elaborate on these questions and how we will create 8 weight settings to answer them. In Table
6.2 an overview of all weights settings and their corresponding values is provided.

The first question deals with the symmetry of the contractors. We can have contractors who all have similar
efficiency, machine power and number of trucks. This would make computations easier. In reality however,
more often than not, the contractors differ. One can imagine for example that some contractors have more
and bigger trucks, better drivers or more efficient truck engines using less fuel. We mimic asymmetry between
contractors by dividing edge weights by a factor ck for each contractor k. A contractor with a high value of ck

corresponds to an efficient contractor with many trucks. When there are r contractors, we assign the values
ck such that [c1,c2, . . . ,cr] = [1,2, . . . ,r].

The second question deals with the distribution of the debris over the city. It makes computation easier when
debris is more or less equally spread within the city. In reality however, some parts of cities tend to have more
debris than other parts. This has two main reasons. First, more populated parts of the city create more debris
and second, the intensity of the disaster is different in different parts of the city. The destruction of an earth-
quake is bigger closer to the epicentre, the damage of a cyclone is bigger closer to the eye of the storm and the
damage of floods is closer to the sea or river. In this thesis, we only consider the first reason. In the following
we will explain why the physical structure of the disaster is not taken into account as a cause of an unequal
debris spread.

Let us start with earthquakes. We will argue that its intensity is more or less the same across a city. The
destruction of an earthquake can be measured using the unit intensity I ranging from 1 (no damage) to 12
(total damage, destroyed bridges and buildings). The intensity I of the earthquake at a point at the surface
x can be estimated using equations including the magnitude M of the earthquake and the distance Rdi ag of
the point x to the hypocentre, the point in the crust where the earthquake takes place [1]. Using Pythagoras’

theorem we can replace the distance Rdi ag in these equations with
√

R2
d +R2

v , where Rd is the horizontal

distance between x and the epicentre and Rv is the depth of the earthquake. Rdi ag ,Rd and Rv are graphically
depicted in Figure 6.1

Figure 6.1: Depiction of Rdi ag ,Rh and Rv

We can now plot the difference in intensity between a point x and the epicentre with the distance Rd between
point x and the epicentre. We can do this for different magnitudes and depths of the earthquake. The results
are shown in Figure 6.2.

6.1. Creating instances 57

(a) Depth of 5 km (b) Depth of 10 km (c) Depth of 15 km

Figure 6.2: Difference in earthquake intensities between a point x and the epicentre for different earthquake magnitudes and depths.

As expected the intensity of the earthquake decreases as we move further away from the epicentre. However,
it decreases slowly. A magnitude 7 earthquake occurring at a depth of 5 km is felt 1.75 intensities lower 50 km
away from the epicentre. A magnitude 9 earthquake at a depth of 15 km is felt just 0.1 intensity lower 50 km
away from the epicentre. We conclude that cities are too small to have significant differences in earthquake
intensity.

For hurricanes we can draw a similar conclusion. The further from the eye of the hurricane the smaller the
destruction, but the size of a hurricane-force wind field averages about 161 km across. The area over which
tropical storm-force winds occur is even greater, ranging as far out as almost 500 km from the eye of a large
hurricane [14]. We conclude that cities are too small to have significant differences in hurricane intensity.
We just showed that the intensity of earthquakes and hurricanes can be assumed similar across a city. This
is not the case however for floods, wildfires, tornadoes and landslides. These types of disasters cause more
damage in parts of the city closer to water bodies in the case of floods, closer to forests in the case of wildfires
and closer to the eye in the case of tornadoes. However, the destruction of landslides and wildfires measured
in economical damage is little compared to earthquakes and hurricanes, see Figure 6.3.

Figure 6.3: Total worldwide economic damage per disaster type (1900-2019) [28].

The same goes for tornadoes. Economically, tornadoes cause about a tenth as much damage per year as
hurricanes [7]. Hence, floods are the only type of natural disaster that cause i) a lot of economical damage
and debris and ii) an unequal spread of debris across the city. For simplification reasons, we decided not to
take this into account. We therefore consider the intensities of disasters to be equally spread over the city.
We do however consider the first cause for an unequal debris spread: difference in population density across
a city. We will distinguish two types of instances: cities where every street has more or less the same debris
amount and cities where streets have debris amounts corresponding to their population. We argue that more
populated streets are more prone to produce more debris. An estimation of the population of a street is made
using two data points for every street we obtained from Open Street Map: its length and its type. Clearly,
the length of a street is an indicator of the population of the street. Street types are provided by Open Street
Map too and indicate the importance of a road in the street network ranging from highways to residential
roads. They can give an indication of the population of a street under the assumption that, in cities, less
important and residential roads have a higher population than important roads like highways. The type of a
street results in a debris multiplier for that street. All street types with their description and multipliers are
shown in Table 6.1.

58 Experimental Design

Number Name Description Multiplier τe

1 Motorway Highways 0.1
2 Primary Most important road that aren’t highways 0.2
3 Secondary The next most important roads 0.3
4 Tertiary The next most important roads 0.4
5 Residential Roads with housing 1
6 Other Miscellaneous roads like dirt tracks 0.1

Table 6.1: Roadtypes with names, description and multipliers.

The second question regarding the edge weights is hence tackled by creating two types of instances. One
where edge weights are more or less the same across streets and one where edge weights depend on the
length and type of the street.

The third question regarding the weights we are trying to answer in our experimental design deals with the
correlation between the time and profit corresponding to each street. One might say that streets with a lot
of debris take more time to clean and are more profitable. Therefore a positive correlation between the two
seems logical. In reality however, it is more complicated due to the different types of debris. Some streets
might be full of non-recyclable debris and cause large cleaning times and negative profits. To show the rela-
tion between time and profit we analyzed data from a simulated disaster in Puerto Rico [31]. In Figure 6.4 the
times and profits of all streets in Puerto Rico are shown for four different contractors.

(a) Contractor 1. (b) Contractor 2.

(c) Contractor 3. (d) Contractor 4.

Figure 6.4: Correlation between expected time and profit to clean a street for four different contractors. Each dot represents a street in
Puerto Rico after a simulated hurricane.

In total, 10 contractors were analyzed in the Puerto Rico case. For each contractor the correlation between
the time and profit values is shown in Figure 6.5.

6.1. Creating instances 59

Figure 6.5: Correlation coefficients of time and profit for all streets of Puerto Rico after a simulated disaster for 10 contractors.

Figures 6.4 and 6.5 indicate that time and profit are correlated in some cases and uncorrelated in others. To
investigate the impact of this variability on the performance of our algorithm we distinguish two cases: one
where time and profit are correlated and one where they are not.

We have discussed the three questions that we will answer regarding the edge weights by making three choices.
One choice for every question: i) symmetric or asymmetric contractors, ii) equal or unequal spread of debris
and iii) correlated or uncorrelated time and profit values. This gives us 2× 2× 2 = 8 weight settings Si for
i = 1,2, . . . ,8. All weight settings have a specific combination of the three choices. In Table 6.2 it is shown how
we obtain the weights for each of the eight weight settings.

Contractors Debris spread Time and Profit Setting w (1)
e,k w (2)

e,k

Symmetric
Equal

Uncorrelated S1 ∼N (5,1) ∼N (5,1)
Correlated S2 ∼N (5,1) ∼N (w (1)

e,k ,1)

Unequal
Uncorrelated S3 ∼N (leτe ,0.2leτe) ∼N (5,1)
Correlated S4 ∼N (leτe ,0.2leτe) ∼N (w (1)

e,k ,0.2leτe)

Asymmetric
Equal

Uncorrelated S5 = γ(1)
e,k

ck
,γ(1)

e,k ∼N (5,1)
γ(2)

e,k
ck

,γ(2)
e,k ∼N (5,1)

Correlated S6 = γ(1)
e,k

ck
,γ(1)

e,k ∼N (5,1)
γ(2)

e,k
ck

,γ(2)
e,k ∼N (γ(1)

e,k ,1)

Unequal
Uncorrelated S7 = γ(1)

e,k
ck

,γ(1)
e,k ∼N (leτe ,0.2leτe)

γ(2)
e,k

ck
,γ(2)

e,k ∼N (5,1)

Correlated S8 = γ(1)
e,k

ck
,γ(1)

e,k ∼N (leτe ,0.2leτe)
γ(2)

e,k
ck

,γ(2)
e,k ∼N (γ(1)

e,k ,0.2leτe)

Table 6.2: An overview of the eight weight settings with their corresponding values of w (1)
e,k

and w (2)
e,k

. le denotes the length of street e, τe

denotes the road type of street e and ck denotes the efficiency factor of a contractor k.

Drawing the weight values from their distribution as shown in Table 6.2 results in the scatter plots of time and
profit values shown in Figure 6.6.

60 Experimental Design

Figure 6.6: Scatter plots of time and profit weights for 3 contractors for each weight setting. Every dot represents a street in the city of

Delft, the Netherlands. TPA represents the value of w (1)
e,k

and PPA represents the value of w (2)
e,k

.

Figure 6.6 shows us that we chose the parameters in Table 6.2 correctly. First, observe the difference between
the symmetric and asymmetric plots. In the case of symmetric contractors the plots look similar for each
contractor. In the case of asymmetric contractors however, we see that contractor 3 has lower time and profit
values than contractor 1. Secondly, we observe the difference between uncorrelated and correlated settings.
In the uncorrelated cases we observe no relation between time and profit values. The correlated case however,
clearly shows a positive relation: streets with a higher cleaning time, have a higher profit. The difference
between an equal and a non-equal spread of debris does not clearly show from these graphs. Figure 6.7 does
show this. Here, the amount of debris in the city of Delft, the Netherlands for setting 1 and setting 3 is shown.

6.2. Running algorithms 61

(a) Debris spread in setting 1.

(b) Debris spread in setting 3.

Figure 6.7: Debris spread in kg per meter on the driving network of the city of Delft, the Netherlands for weight setting 1 and weight
setting 3.

In Figure 6.7a one can observe that the debris is equally spread along the city. Each street has roughly the
same amount of debris. In Figure 6.7b we see that the debris is clustered in certain areas. These areas are the
residential areas. Bigger roads like highways have less debris.

In the above we have discussed three types of choices we make for each instance: the number of contractors,
the type of graph and the weight setting. By making a choice in each category we obtain what we call an
instance. An example of an instance can be “5 contractors, Miami, Florida, weight setting 3”. Since we have 2
sizes of our contractor set, 9 different cities and 8 different weight settings, we obtain 2×9×8 = 144 instances.
Now it is time to run our algorithm on each of these instances. How we do this is described in the following
section.

6.2. Running algorithms
In the previous section we explained how we create our instances. Now, we show how we run the final UM al-
gorithm, described in Algorithm 9 in Section 5.4, on each of these instances. This is done the easiest by taking
one instance as an example. Let us suppose our instance has 5 contractors, has Nijmegen, the Netherlands
as its graph, and weight setting 4.

We first calculate the optimal value of the time,Topt , when the other objectives are ignored. We ask and an-
swer the following question: How fast can we clean the city when profit and niceness are ignored? In other
words, we solve P1(G) without constraints (3.1b), (3.1c), (3.1e) and (3.1f). We do this with Gurobi [33], an MIP
solver, and run until we obtain an gap between the lower bound and objective value of less than 0.1%. This
is done in seconds. In our specific instance of 5 contractors, Nijmegen, the Netherlands and weight setting 1
the optimal time is 564 hours.

62 Experimental Design

We then calculate the optimal value of the profit,Popt , when the other objectives are ignored. We ask and
answer the following question: what is the profit of the least earning contractor, when the time and niceness
are ignored? In other words, we solve P1(G) without constraints (3.1a), (3.1c), (3.1d) and (3.1f). Again, we run
until we obtain an gap between the upper bound and objective value of less than 0.1%. In our case we find an
optimal profit of 974 dollars per asset.

We now compute a Pareto Front of the time and profit values while ignoring the niceness. We ask and answer
the following question: what are the best time and profit values when we ignore the niceness? We pick ten
values for the time ranging from 50% to 100% of its optimum. We then optimize the profit value while bound-
ing the time value. Once for every 10 time values in this range. We run until we obtain a gap between the
lower bound and objective value of less than 1%. In other words, we solve P1(G) without constraints (3.1a),
(3.1c) and (3.1f), while bounding (3.1d). In Figure 6.8 the obtained Pareto Front is shown for our case.

Figure 6.8: Pareto Front of time and profit for weight settings 4 for the city of Nijmegen (5500 streets) in The Netherlands with 5
contractors.

Figure 6.8 shows that, as expected, a better time, leads to a worse profit and vice-versa. For our instance, we
now have several solutions x on the time-profit Pareto Front. All of these solutions x are still chaotic. We now
choose one x on the Pareto Front which we are going to make “nice”. The solution x we pick is the solution
with the highest value of min{t i me, pr o f i t }, where time and profit for each solution are expressed in per-
centage of the optimal. This solution corresponds to the point on the line in Figure 6.8 closest to the upper
right corner. In our instance the solution we pick has a profit value of 799 dollar per asset, 82% of the optimal
profit. It has a time value of 655 hours, 84% of the optimal time. Hence, our solution has decent time and
profit objective values. However, it is still chaotic. This is where the final UM algorithm, described in Algo-
rithm 9 comes in.

We run this algorithm for three values of α: 0.8, 0.7 and 0.6. α resembles the allowed relaxation of the
time and profit values, while we reduce the chaos. The upper bound Tmax for the time is chosen such that
|Tmax−Topt |

Topt
= α. Similarly, the lower bound Pmi n for the profit is chosen such that

|Pmi n−Popt |
Popt

= α. With these

bounds in mind, we solve P1(G) in two ways: with the MIP solver Gurobi and with our final UM algorithm.

Let us start with explaining how we solve P1(G) with the MIP solver Gurobi. The MIP we give to Gurobi is
P1(G) without the objectives (3.1a) and (3.1b) and bounding constraint (3.1d) with the time bound and con-
straint (3.1e) with the profit bound. We run until we reach an MIP gap of less than 1% or until we reached a
time limit of 5 hours. We save every solution that Gurobi outputs on the way.

We solve the same instance with our final UM algorithm. To do this we run Algorithm 9. This algorithm re-
peatedly solves the program PU M , described in Expression (5.1), approximately. In PU M , we use for B1 the
upper bound for the time Tmax . For B2 we use the the lower bound for the profit Pmi n . We run every iteration
of the starting and ending UM algorithm until an MIP gap of 1% or the time limit of 200 seconds is reached.

The entire code for the final UM algorithm and the MIP-solver can be found on Github by searching for the
user “lucasvogels33”. We use Gurobi 8.1.0 which we run in Python 3.7. All code is run on a HP Notebook with

6.2. Running algorithms 63

model number 15-ay164nd with a Intel Core i5-7200U processor.

For our instance of 5 contractors, on Nijmegen, the Netherlands with weight setting 4, we will now have six
solutions of P1(G), since we have for each of the three values of α one solution provided by the MIP solver
and one solution provided by our algorithm.

We have introduced our problem P1(G). We have come up with structural results for it and designed an
algorithm based on of these structural results. We explained how we are testing this algorithm. We are now
ready to see the results of our experiments. Does the algorithm perform?

7
Results

In this chapter we will discuss the results of the experiments described in Chapter 6. We will first compare the
results of the final UM algorithm with the results of the MIP solver. We will then see how the performance of
the UM algorithm depends on the type of instance it is ran on.

7.1. UM algorithm vs MIP solver
In this section we will show that the final UM algorithm as described in Section 5.4 completely outperforms
the MIP solver when solving P1(G).

In Chapter 6 we said that we tried solving P1(G) to a 1% optimality gap using Gurobi, an MIP solver. We
instructed the solver to also output all solutions that it finds along the way. Even if those solutions have a
worse optimality gap. There was not one single instance for which the MIP solver gave a solution with an
optimality gap less than 1%. Neither were there any mid-way solutions with a worse optimality gap found.
The cities are simply to large for an MIP solver to handle. Even Miami, Florida, the smallest city tested with
12.500 streets, turned out to be too big to be solved to any accuracy in 5 hours. Now imagine Philadelphia
with 40.000 streets. A simply impossible task for a regular MIP solver. To test whether the MIP solver was
correctly programmed, we ran the MIP solver on small cities. In Figure 7.1 the solution of the MIP solver on
the small city of Duncan in Canada is shown.

Figure 7.1: The city of Duncan, Canada, solved by the MIP solver for 5 contractors, a weight setting 1, an α= 0.4

Running the MIP solver on Duncan and other small cities shows us that it does in fact work. It can success-
fully produce good solutions to P1(G) for small instances. However, as the cities get bigger and the number
of edges increases, the complexity of the problem explodes and the MIP solver becomes useless. Any city big
enough to have a debris cleaning process in place has too many streets for an MIP solver. There is need for
another way to solve the debris management problem.

This is where our algorithm (Algorithm 9) comes in. It produced good solutions for all cities, weight settings
and number of contractors. And, astonishingly, it did so in under one hour for all instances. Most instances
were even solved under 15 minutes. Before we dive into the analysis of the results, let us show the power of
the final UM algorithm, by example. In Figure 7.2 we see solutions for different values of α produced by the
final UM algorithm for Atlanta, Georgia with 5 contractors under weight setting 1.

65

66 Results

(a) α= 0.8. Hence time and profit are 80% from their optimal value.

(b) α= 0.7. Hence time and profit are 70% from their optimal value.

(c) α= 0.6. Hence time and profit are 60% from their optimal value.

Figure 7.2: The city of Atlanta, Georgia, solved by the final UM algorithm for 5 contractors and weight setting 1. Solutions are shown for
three different values of α.

The solutions in Figure 7.2 were obtained within just 10 minutes. A time unthinkable for an MIP solver. Note
how the solutions look less chaotic as α decreases. This makes sense, since a lower α corresponds to looser
bounds for the time and profit objectives.

7.2. Performance per category
We observed that the final UM algorithm (Algorithm 9) outperforms an MIP solver. From now on we will only
focus on the performance of the final UM algorithm. It will be shown how its performance depends on the
amount of contractors, the city and the weight setting.

In Chapter 6 we explain that for every city, weight setting and number of contractors, we obtain three solu-
tions. One for every value of α. We can measure the chaos of these solutions in two ways: the number of
zones and the sum of span. However, when we compare different cities, this second measure becomes trou-
blesome. Big cities automatically have a bigger sum of span, because they have more nodes. We define a new

7.2. Performance per category 67

measure R to correct for this.

R := sum of span

edges

We can now measure the chaos of every solution with R and the number of zones. We will start with one
specific case to explain how we will present the results. This is the case of weight setting 1 and a contractor
amount of 5. In Figure 7.3 the results for this case are shown.

(a) Choas metric R (b) Chaos metric number of zones

Figure 7.3: The results of the experiments for the case of weight setting 1 and 5 contractors. Figure 7.3a shows the chaos metric R and
Figure 7.3b shows the number of zones. Both figures contain 3 box plots corresponding to α = 0.6,0.7 and 0.8. Every boxplot shows
the spread of datapoints. Each datapoint represents the value of the chaos measure for a certain city and α under weight setting 1 and
contractor amount 5. The number above every boxplot represent the mean of the data points in that boxplot.

Let us explain how one should read Figure 7.3a. It shows that, when we relax time and profit to be 60%
(α = 0.6) of their optimal values, the chaos measure R was between 0.65 and 0.75 for all nine cities with an
average of 0.7. When we tighten the time and profit bounds to 70% (α= 0.7), the chaos measure R is slightly
higher. The chaos metric R of the nine cities varies again between 0.65 and 0.75. The average is 0.71. When
we further tighten the time and profit bounds to 80% (α= 0.8) of their optimal value, we see that the average
chaos measure R increased to 0.87.

Figure 7.3b can be interpreted similarly. When we allow time and profit to be 60% (α = 0.6) of their optimal
values, the number of zones was low for all cities. It varied between 7 and 10 with an average of 9. When we
tighten the time and profit bounds to 70% (α= 0.7), the number of zones in the solution is higher for all cities.
It varies between 12 and 23 with an average of 19 zones. When we further tighten the time and profit bounds
to 80% (α= 0.8) of their optimal value, we see that the number of zones explodes to an average of 1233 zones.
The boxplot is not shown because it is outside the range of the y-axis. We can conclude that anα of 0.8 results
in a completely chaotic assignment in this case.

Figure 7.3 shows the results for weight setting 1 and 5 contractors. We can produce the same boxplots for all
eight weight settings and for 5 and 10 contractors. The results are shown in Figure 7.4.

68 Results

Figure 7.4: The results of the experiments. We measured niceness in two ways: using R := sum of span
edges and using the number of zones.

Every combination of weight setting Si and contractor amount has its own figure. Every figure contains 3 box plots corresponding to
α= 0.6,0.7 and 0.8. Every box plot shows the spread of datapoints. Each datapoint represents the value of the chaos measure for a certain
city, α, weight setting and contractor amount. The number above every box plot represents the mean of the data points in that box plot.

Note that for 10 contractors combined with weight setting 2,4,6 or 8 and α = 0.8 there were no feasible so-
lutions found by the algorithm. This is shown in Figure 7.4 by “NA” for non-applicable. In all other cases
solutions were found for every city. We will see why this is the case later.

Figure 7.4 tells us that the algorithm performs performs well. When we have 5 contractors, the algorithm
creates non-chaotic partitions at 70% of the optimal time and profit values. This holds across all weight
settings and all nine cities.
We will now interpret Figure 7.4 for each of the three parameter classes discussed in Chapter 6: the number
of contractors, the weights w (i)

e,k and the graph structure G . For each parameter class we will i) repeat the
questions asked in Chapter 6, ii) answer those questions using the observations from our experiments and
iii) give recommendations to local governments of cities prone to natural disasters.

7.2.1. The amount of contractors
Questions
In Chapter 6 we asked the following question: what is the impact of the number of contractors on the perfor-
mance of the final UM algorithm? Let us look at the results and answer the question.

Observations
The algorithm works better when less contractors are involved.

Figure 7.4 tells us that, when time and profit are 60% from their optimal values (α = 0.6), all instances with
5 contractors are reduced to 10 or less zones. Tightening the time and profit bounds to 70% still gives non-

7.2. Performance per category 69

chaotic solutions with on average less than 20 zones for all weight settings. The algorithm has more difficulties
with 10 contractors. With 10 contractors, anα of 0.6 still results, on average, between 43 and 184 zones. Tight-
ening the time and profit bounds to 70% (α= 0.7) or 80% (α= 0.8) results in completely chaotic solutions with
more than 600 and sometimes even thousands of zones. For weight settings 2,4,6 and 8 the algorithm does
not even output a solution.

Why does the algorithm perform better when there are less contractors involved? The answer can be found
in Figure 7.5 that shows the Pareto fronts of the time and profit objectives for each weight setting for the city
of Nijmegen, the Netherlands. It shows the optimal time and profit values when we completely ignore the
niceness objective. Figure 7.5a shows the Pareto fronts in the case of 5 contractors and Figure 7.5b shows
them in the case of 10 contractors.

(a) 5 contractors (b) 10 contractors

Figure 7.5: Pareto fronts for the time and profit objectives for the city of Nijmegen (5500 streets)

We observed similar Pareto Fronts for all other cities, regardless of their size. Notice that in the case of 10
contractors the Pareto Fronts are closer to the left bottom of the graph than in the case of 5 contractors. This
means that, when we ignore the niceness objective, we achieve less optimal time and profit values when we
have more contractors. In the final UM algorithm we relax the time and profit objectives to 80%, 70% and 60%
of their optimal. When we have only 5 contractors this relaxation creates more room to improve the niceness
than in the case of 10 contractors. Figure 7.5b shows that for 10 contractors a relaxation of 80% is not even
feasible for weight settings 2,4,6 and 8. This corresponds to the observation that for these instances the final
UM algorithm does not output feasible solutions.

Recommendations
We saw that our algorithm performs worse when hiring more contractors. Does this mean that policy makers
should avoid hiring many contractors to do clean-up operations? No, not necessarily. We will show that this
depends on the preferences of the policy makers by showing the effect of more contractors on time, profit
and niceness. We limit ourselves to weight setting 1. Other weight settings show similar behaviour.

Clearly, hiring more contractors results in a lower total cleaning time, since there are more resources to clean
the same amount of debris. But how much lower? Figure 7.6 answers this question.

70 Results

Figure 7.6: Total operation times for nine cities, for 5 and 10 contractors and weight setting 1.

Figure 7.6 shows that the total cleaning time approximately halves when increasing the contractor amount
from 5 to 10. Strikingly, the cleaning time decreases by the same percentage for all nine cities: 55%. Hence
doubling the amount of contractors, reduces the operation time by more than halve.

What about the profit? It is obvious too that hiring more contractors results in a lower profit for the poorest
contractor, since there are more contractors to share the same amount of money. But how much lower? Figure
7.7 answers this question.

Figure 7.7: Profit of the poorest contractor, for 5 and 10 contractors and weight setting 1.

Figure 7.7 shows that the profit for the poorest contractor approximately halves when increasing the contrac-
tor amount from 5 to 10. In fact, it decreases between 49% and 45% for all nine cities. Hence doubling the

7.2. Performance per category 71

amount of contractors, reduces the profit of the poorest contractor by less than halve.

Figures 7.6 and 7.7 indicate that it is beneficial for the time and profit objectives to increase the amount of
contractors. This might seem counter intuitive with Figure 7.5, where we saw that an increase in contractors
causes less optimal time and profit values. However, in Figure 7.5 time and profit are measured as a percent-
age from their optimal value, whereas in Figures 7.6 and 7.7 the absolute values of time and profit are given.
Hence, increasing the amount of contractors leads to worse time and profit values, when they are measured
as a percentage from their optimal, but to better absolute time and profit values.

We conclude that doubling the contractor fleet results in a reduction of the time of more than 50%, a reduction
of the profit of less than 50% and a more chaotic solution. It depends on the objective that the policy maker
prioritizes, whether it is advisable to increase the amount of contractors.

7.2.2. The weight setting
Questions
In Chapter 6 we asked the following questions regarding the edge weights:

1. What is the impact of symmetric versus asymmetric contractors on the performance of our algorithm?

2. What is the impact of an equal spread of debris versus a non-equal spread of debris on the performance
of our algorithm?

3. What is the impact of a correlated time and profit and a non-correlated time and profit?

Let us look at the results and answer these questions.

Observations
The final UM algorithm (Algorithm 9) works better for asymmetric contractors than for symmetric contrac-
tors. It works equally well for an equal and a non-equal spread of debris. Lastly, it works better for uncorre-
lated time and profit weights than for correlated time and profit weights.

Figure 7.4 tells us that when we have asymmetric contractors, we obtain better solutions. In the case of 10
contractors and an α of 0.6, we see that asymmetric contractors partition the graph in 30-60 zones, while
symmetric contractors end up with 100-156 zones. Moreover, in the case of 5 contractors and an α of 0.7,
we see that asymmetric contractors partition the graph in 10-12 zones, while symmetric contractors end up
with 17-19 zones. This might be explained by the fact that a team of diverse contractors is better equipped
to deal with diverse debris. This hypothesis is supported by the fact that, with 10 contractors and α = 0.6,
asymmetric contractors perform better when there is a non-equal spread of debris (around 40 zones) than
when there is an equal spread (around 50-60 zones).

There is no real difference in the performance of the algorithm between equal and non-equal debris spread.
The chaos metrics R and the number of zones are very similar for both 5 and 10 contractors and all values ofα.

Lastly, we observe a difference in performance between uncorrelated and correlated time and profit weights.
The final UM algorithm performs better when the time and profit weights are uncorrelated. This effect only
occurs for higher values of α. Figure 7.4 shows that for α = 0.6 there is no difference between uncorrelated
and correlated time and profit weights. When we increase α to 0.7 we see a difference occurring in the case of
10 contractors. For α= 0.8 the difference is biggest. For 5 contractors, the weight settings that are correlated
show higher chaos metrics than uncorrelated weight settings. For 10 contractors, correlated weight settings
even become infeasible. This effect can be explained by the Pareto fronts of the time and profit objective
shown in Figure 7.5. The correlated weight settings 2,4,6 and 8 have their Pareto fronts further away from
their optimal values than the uncorrelated weight settings 1,3,5 and 7. Therefore, instances with these weight
settings have less “room” to improve their chaos metric, especially for high values of α.

Recommendations
The observations show that the characteristics of the edge weights matter for the duration, profit and chaos
of the cleaning schedule.

72 Results

Governments often know before a disaster whether the time and profit related to cleaning every street will be
correlated or uncorrelated and whether the spread of the debris will be equal or non-equal. When they are
correlated they should prepare for more chaotic debris collection schedules. Moreover, when a non-equal
spread of debris is expected, policy makers need to hire a diverse fleet of contractors.

7.2.3. The city
Questions
In Chapter 6 we asked the following question regarding the structure of the street plan of a city: does the city
street plan have an impact on the performance of the algorithms? Let us look at the results and answer these
questions

Observations
We see a striking lack of variety in the results across the cities.

We tested our algorithm on nine American cities. Their sizes vary from 12000 streets to 40000 streets. Some
cities have rivers, some do not. Some are cities are coastal, some are not. Moreover, the street plans of the
cities vary greatly. It is therefore striking that the algorithm performs very similarly across these cities. Figure
7.3 shows that for weight setting 1, 5 contractors and α= 0.6 all cities have their chaos metric R between 0.65
and 0.75. The number of zones varies between 7 and 10. The same goes for different values of α. Figure 7.4
shows that for all weight settings, contractor amounts and values of α, the nine cities behave very similar.
Moreover, in Subsection 7.2.1, we observed that a doubling of the amount of contractors from 5 to 10 resulted
in the same decrease in operation time for all cities: 55%

The robustness of the final UM algorithm indicates that it will produce good results on all cities worldwide.

8
Conclusion

This thesis discussed the problem of Unrelated Unconnected Multi Constrained Graph Partitioning (UUM-
CGP). Here, an edge set E of a graph G is partitioned into subsets with three objectives in mind: i) balance the
total amount of the first weight among the subsets, ii) balance the total amount of the second weight among
the subsets and iii) create a non-chaotic partition. This problem has applications in the management of de-
bris after natural disasters and in assigning tasks to computers in a distributed network. In the introduction
we asked four questions that we will answer now.

Can we define the UUMCGP as an MIP?
Yes. We are the first to formally define and describe the mixed-integer program of UUMCGP.

Can we solve this MIP in polynomial time?
No. We show that solving this multi-objective problem is hard in practice. Even when we focus only on the
first objective or only on the second objective, the problem is NP-hard. However, we discuss four cases for
which we can produce solutions that get arbitrarily close to the optimal solutions for big enough graphs.

Can we come up with good approximate solutions to this MIP using an algorithm?
Yes, we are the first to do so. We first designed an algorithm for a different mixed-integer program: the Multi-
Resource Generalized Assignment Problem (MRGAP). This algorithm solves the MRGAP, while violating the
constraints only by a certain amount. This novel result expands the field of multi-resource generalized as-
signment problems. We use this result to develop an algorithm that produces good approximate solutions to
the general case of UUMCGP.

How does this algorithm perform in real-life cases of debris management?
It does well in these cases, producing fast and profitable cleaning schedules for nine disaster prone American
cities. When there are five contractors, the algorithm outputs non-chaotic partitions at 70% of the optimal
time and profit values. The results are very similar across the nine cities, what suggests that the algorithm
could be applied on any city worldwide. It is the first algorithm that can produce cleaning schedules of any
city without the help of a human.

73

9
Further Research

In this chapter we will discuss the shortcomings of this thesis and suggest topics for future research.

9.1. Applicability of UUMCGP to the debris management problem
Shortcomings
In Chapters 1 and 2 we abstract the debris management problem to Unrelated Unconnected Multi-Constrained
Graph Partitioning (UUMCGP). In Chapter 3 we formulate the mixed-integer program (MIP) P1(G) for UUM-
CGP. While doing so, we leave out two major aspects of the debris management problem that hurt the ap-
plicability of UUMCGP to debris collection: the role of facilities and the lack of information on the time and
profit values.

Facilities play an important role in the collection of debris. However, for simplification reasons, they are left
out in the formulation of UUMCGP. This hurts the applicability of UUMCGP to the debris management prob-
lem.

UUMCGP assumes that the time and profit corresponding to cleaning every street is known for every contrac-
tor. In other words, it assumes that the values of w (i)

e,k in P1(G) are deterministic. One could argue whether
this is realistic. In the aftermath of a disaster there are many uncertainties. An estimation of the time a con-
tractor would take to clean a pile of debris is uncertain. UUMCGP does not allow for this uncertainty. Again,
this hurts the applicability of UUMCGP to the debris management problem.

Possible solutions
There already exists research in debris management involving facilities. Stilp considers UUMCGP with facil-
ities [31]. However, the author focuses on the development of a human operated computer tool to design
cleaning schedules. It is valuable to know whether the final UM algorithm can be updated to approximately
solve UUMCGP with facilities. This could result in a fully automated algorithm to solve the debris manage-
ment problem with facilities.

There is limited research available that considers the collection phase of debris management with proba-
bilistic debris weights. Improvement in this area would be of great value in designing better disaster response
tools.

9.2. Vertex connectivity
Shortcomings
In Subsection 4.1.3 four theorems are given. They show that when we increase the size of the edge set E , we
can obtain solutions that are arbitrarily close to the optimal solutions. We obtain these results because we
restrict the weights, the number of agents and the structure of the graph G . The restrictions on the number
of agents are realistic. Apart from Theorem 2, where we set the number of agents to 2, we do not restrict the
agents. The values for the edge weights are chosen realistically too. All four theorems resemble edge weights

75

76 Further Research

that could occur in real-life too. However, the structure of the graphs treated in these theorems is limited to
r -vertex-connected planar graphs. The planarity characteristic is not the problem, since the street networks
of most cities are planar too. What stands between these theorems and their application is the assumed ver-
tex connectivity of the graphs. Recall that using Menger’s theorem [27] r -vertex connectivity is equivalent to
the existence of r vertex disjoint paths between every pair of vertices. The 2-vertex connectivity assumed in
Theorem 2 is still moderately realistic, since there often exist two distinct routes between every two points
in a city. 3-vertex connectivity already gives bigger problems. It gets problematic when we assume 4-vertex
connectivity, which we do in Theorems 3-5, when we take r ≥ 4. This is equivalent to assuming the existence
of 4 distinct paths between any two points in a city. Every junction therefore needs at least 4 roads leading to
it, ruling out cities with T-junctions. We can conclude that the assumption of vertex connectivity limits the
number of graphs to which the theorems can be applied.

Possible solutions
What can future research do to avoid this vertex connectivity restriction and make these four theorems more
applicable to debris management? Our choice for vertex connectivity as an assumption was motivated by the
characteristic that 4-vertex-connected graphs have a Hamiltonian path [32]. A Hamiltonian path is a Cater-
pillar path and graphs with a Caterpillar path are arbitrarily edge divisible. Instead of a Hamiltonian path,
one could also search for an Eulerian path. A path that visits every edge exactly once. By the same logic as
in Case 4 of Lemma 3 it can be seen that graphs with Eulerian paths have the required edge divisibility too.
Since graphs where every node has an even degree have such a path, we can conclude that these graphs are
suitable for our theorems too. We could replace the requirement of vertex connectivity with graphs with only
even degree nodes. However, this method still rules out cities with T-junctions, since T-junctions have degree
3.

There is another possibility to work around vertex connectivity. We can remove edges of the graph G = (V ,E)
to obtain a new graph G ′. As long as G ′ is connected, then the existence of an Eulerian path in G ′, is a suffi-
cient condition for a Caterpillar path in G . This is true because an Eulerian path in G ′ visits every vertex in G ′
and, since we only removed edges, G ′ has the same vertex set as G . Therefore, the Eulerian path also visits all
vertices in G . Hence, all edges in E are either in this Eulerian path or connected to a vertex that is in the path.
The Eulerian path in G ′ is therefore a Caterpillar path in G . We are left with one question: how to remove
edges of G such that the remaining graph G ′ is connected and has an Eulerian path?

We need to remove edges in such a way that every node in the remaining graph (except for two nodes) have
an even degree. One approach could be to find the set Vodd of all odd degree nodes in G . We then create pairs
of two odd degree nodes, such that every node in Vodd is in exactly one pair. This is always possible, because
there is an even of number of odd degree nodes in undirected connected graphs. Let us call the collection
of these pairs of odd degree nodes Q. For all pairs q = (q1, q2) ∈ Q, except for one pair, we find a path Pq

connecting q1 and q2 such that i) all nodes in Pq except for q1 and q2 are of even degree and ii) all paths Pq

are edge-disjoint. There is one pair of odd degree vertices in Q that we do not connect by a path. We call the
combination of the pairs Q and the paths Pq an “odd pair path set”.

We now remove in the original graph G every edge that occurs in Pq for some q . In the remaining graph, we
remove every vertex that has degree zero. We denote the graph we end up with by G ′. Now if G ′ is connected
and contains for every edge e from the original graph G at least one of its endpoints, we call the odd pair path
set “suitable”. When an odd pair path set is suitable, G ′ has an Eulerian path and G has a Caterpillar path.

Why is this true? For some pair q of odd nodes, let v be an interior node in the path Pq . By assumption, it
has even degree k. After we removed the edges in path P , the vertex v has degree k −2 > 0. Hence v still has
an even degree. However, the degree of the starting and ending nodes of Pq , vertices q1 and q2, reduces by
1 and becomes even. This is true for every path Pq . Hence G ′ only has even nodes, except for the pair in Q
that we did not connect. Let us denote the vertices in this pair by vst ar t , vend . Since G ′ is connected , it has
an Eulerian path between vst ar t , vend . By assumption, every edge in G has an endpoint in this Eulerian path.
Hence the Eulerian path forms a Caterpillar path in G . In Figure 9.1 it is shown how to find a Caterpillar path
with this method.

9.2. Vertex connectivity 77

a b

cd

e f

g h

p

s

i

j

l

m

n o

r x

y

q

(a) A graph for which we need to find a Caterpillar path. All
odd degree nodes are red.

a b

cd

e f

g h

p

s

i

j

l

m

n o

r x

y

q

(b) We find a suitable odd pair path set by connecting pairs q
of odd nodes by a path Pq . All paths Pq are in red. Note that

we did not connect the two odd nodes f and o.

a b

cd

e f

g h

p

s

j

l

m

n o

r

q

7 8

2 1

6 9

5

3

4 15

16

10

11

12

14

17

13

(c) We remove all edges that appear in Pq for some pair q .
The remaining graph G ′ has a Eulerian path starting in node f

and ending in node o, denoted by the edge labeling.

a b

cd

e f

g h

p

s

i

j

l

m

n o

r x

y

q

(d) The Eulerian path in G ′ is a Caterpillar path in G . The
Caterpillar path is denoted in red.

Figure 9.1: An example graph for which a Caterpillar path is found using the odd pair path method. With this Caterpillar path and using
the method from Figure 4.4 we can now partition the edge set of this graph into connected subsets.

In Figure 9.1b we find a suitable odd pair path set. The existence of this set is sufficient for the existence of a
Caterpillar path and hence, for arbitrary edge divisibility. In other words, the existence of a suitable odd pair
path set would lead to an enormous improvement of the applicability of Theorems 2-5. Can we always find
such a set? No, not always. In Figure 9.2 a graph is shown without an odd pair path set. Notice that for every
pair of odd vertices in this graph, removing the edges of the path connecting them results in a disconnected
graph.

a b c d e

f

g

Figure 9.2: An example graph that does not have a suitable odd pair path set and therefore also no Caterpillar path.

78 Further Research

The graph in Figure 9.2 has some nodes of degree 2. In a city these nodes do not exist, since every junction
has at least 3 streets joining. Moreover, the graph in Figure 9.2 is not 2-vertex-connected. We did not manage
to find an example of a 2-vertex-connected planar graph with minimal degree 3 that had no suitable odd pair
path set. However, we could not prove that a suitable odd pair path set always exists in these graphs either. A
proof that shows which conditions are sufficient for the existence of a suitable odd pair path set would be of
great value.

9.3. Partition shape
Shortcomings
In Theorems 2-5 we show that we can find solutions that partition the edge set into r connected subsets
E1,E2, . . . ,Er , where r denotes the number of agents. In this way, every agent gets assigned exactly one con-
nected subset of the edges. When applied to the debris management problem, this means that every contrac-
tor is assigned one connected part of the city. But connectedness is not the only desirable characteristic of a
subset. We prefer to have subsets that have a compact shape, like a circle or square, rather than an awkward
shape. The method using the Caterpillar path described in Lemma 3 does not necessarily give this result. In
Figure 9.3 we see how a poorly chosen Caterpillar path can result in a partition that, albeit connected, is still
undesirable.

a b c d

e f g h

i j k l

m n o p

(a) An example graph with a Caterpillar path

a b c d

e f g h

i j k l

m n o p

(b) The resulting edge partition

Figure 9.3: An example graph with a poorly chosen Caterpillar graph can result in a partition that is connected, but awkwardly shaped.

Possible solutions
A solution to this particular problem is to use a different Caterpillar path. One that does result in compact
subsets. In Figure 9.4 another Caterpillar path is given to the same graph as in Figure 9.3, resulting in subsets
with better shapes.

9.4. Matching algorithm 79

a b c d

e f g h

i j k l

m n o p

(a) An example graph with a Caterpillar path

a b c d

e f g h

i j k l

m n o p

(b) The resulting edge partition

Figure 9.4: The same graph as Figure 9.3, but with a Caterpillar graph that does result in a good partition.

But finding a better Caterpillar path is hard for graphs the size of cities. An approach could be to randomly
produce many different Caterpillar paths and use the one that gives the “nicest” partition. Another approach
could be to write an algorithm that grows the Caterpillar path edge by edge. When there is more than one
edge to add, the algorithm could pick the edge that is most suitable to add according to a metric.

9.4. Matching algorithm
Shortcomings
In our final UM algorithm (Algorithm 9) we run two other algorithms: the combination version of the starting
UM algorithm and the combination version of the ending UM algorithm. To run the former algorithm we
compute a matching M . In the algorithm we then allow all edges in this matching to change. All other edges
are forced to stay with their current agent. Clearly, the success of the algorithm depends on this matching.
For simplification reasons we computed this matching greedily using Algorithm 2, while Edmonds’ blossom
algorithm [6] provides a polynomial time method to find the minimum cost matching. The choice of leaving
out this Edmonds’ method might have resulted in a non-optimal matching and hence, in a less effective al-
gorithm.

Possible solutions
The solution is simple. Instead of Algorithm 2 one could implement Edmonds’ blossom algorithm. It would
be worthwhile to observe the obtained improvement in the efficiency of the final UM algorithm.

9.5. Instance variety
Shortcomings
In Chapter 6 we describe the instances on which we test our final UM algorithm (Algorithm 9). We run in-
stances on nine different American cities, with 5 and 10 contractors and for eight weight settings. With these
choices we captured a variety of possibilities that can occur in real-life. However, we still ignored many other
possible instances. The variety of instances treated in this thesis was lacking in four main areas: i) the amount
of contractors, ii) the weight settings, iii) the cities and iv) the values of α.

The algorithm was not tested for enough different amounts of contractors. We only considered the case of 5
and the case of 10 contractors. In real cases the amount of contractors can be anything bigger than two.

The algorithm was not tested for enough different weight settings. This thesis only considered disasters that
have the same impact around a city. We showed in Chapter 6 that this holds for earthquakes and hurricanes.
However, floods, wildfires, landslides and tornadoes do typically cause certain parts of the city to be more
severely struck than other parts. By limiting ourselves to location independent weight settings, we have no
information on the applicability of our algorithm on these kinds of disasters.

80 Further Research

The algorithm was not tested for enough different cities. Only American cities were considered. We therefore
have no information on the applicability of our algorithm on other cities. Due to the robustness of our algo-
rithm we expect the algorithm to work on all cities worldwide. Further research should show whether this is
true.

The algorithm was tested for three values of α: 0.8, 0.7 and 0.6. It is valuable to know how the algorithm per-
forms for more values of α

Possible solutions
It is valuable to know how the final UM algorithm (Algorithm 9) would perform on the instances left out in
this thesis. Future research can test the performance of our algorithm for different amounts of contractors,
location dependent weight settings, cities outside of the United States and more values of α. It is interesting
to see what the effect is on the recommendations discussed in Chapter 7.

In Chapter 7 we saw that in the case of 10 contractors the algorithm could not produce solutions with a small
number of zones. Even for the lowest value of α, 0.6, the algorithm partitioned the graph in at least 40 zones.
What would happen when we decrease the value of α even further? Figure 9.5 shows that in this case good
solutions can be found.

Figure 9.5: A solution of the final UM algorithm on Miami, Florida using weight setting 1, 10 contractors and α= 0.5

Because of the robustness of the algorithm, we hypothesize that when α = 0.5, the algorithm can find solu-
tions with a small number of zones for other cities and weight settings too.

Bibliography

[1] T. Allen, D. Wald, and C. Worden. Intensity attenuation for active crustal regions. Journal of Seismology,
16(3):pp 409 433, 2012. doi: https://link.springer.com/article/10.1007/s10950-012-9278-7.

[2] G. Boeing. Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street
networks. Computers, Environment and Urban Systems, 65:126–139, 2017. doi: https://geoffboeing.
com/publications/osmnx-complex-street-networks/.

[3] F. Bourse, M. Lelarge, and M. Vojnovic. Balanced graph edge partition. Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 1456–1465, 2014. doi:
https://dl.acm.org/citation.cfm?id=2623660.

[4] B. Bozkaya, E. Erkut, and G. Laporte. A tabu search heuristic and adaptive memory procedure for
political districting. European Journal of Operations Research, 144(1):12–26, 2003. doi: https://www.
sciencedirect.com/science/article/abs/pii/S0377221701003800.

[5] E. Edis, C. Oguz, and I. Ozkarahan. Parallel machine scheduling with additional resources: Nota-
tion,classification, models and solution methods. European Journal of Operational Research, 230(3):
pp 449–463, 2013. doi: https://www.sciencedirect.com/science/article/abs/pii/S0377221713001914.

[6] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:pp 449–467, 1965.

[7] R. Edwards. How does the damage from hurricanes compare to that of tornadoes? doi: https://www.
americangeosciences.org/critical-issues/faq/how-does-damage-hurricanes-compare-tornadoes.

[8] T. Ellis. Detroit, indianapolis and buffalo among the least disaster-prone and most affordable places to
live. 2019. doi: https://www.redfin.com/blog/natural-disaster-hazard-score-by-metro-area/.

[9] M. Garey and D. Johnson. Computers and intractability:a guide to the theory of np-completeness. 1990.
doi: https://dl.acm.org/citation.cfm?id=574848.

[10] R. Garfunkel and G. Nemhauser. Optimal political districting by implicit enumeration techniques. Man-
agement Science, 16(8):pp B495–B508, 1970. doi: https://www.jstor.org/stable/2628656?seq=1.

[11] B. Gavish and H. Pirkul. Algorithms for the multi-resource generalized, assignment problem. Manage-
ment Science, 37(6):695–713, 1991. doi: https://www.jstor.org/stable/2632526?seq=1.

[12] O. Goldschmidt, S. D. Hochbaum, A. Levin, and E. V. Olinick. The sonet edge-partition problem. Net-
works, 41(1), 2003. doi: https://onlinelibrary.wiley.com/doi/abs/10.1002/net.10054.

[13] R. Graham, E.Lawler, J. Lenstra, and A. Rinnooy Kan. Optimization and approximation in deterministic
sequencing and scheduling graham. Annals of Discrete Mathematics, 5:pp 287–326, 1979. doi: https:
//www.sciencedirect.com/science/article/abs/pii/S016750600870356X.

[14] S. Graham and H. Riebeek. Hurricanes: The greatest storms on earth. 2006. doi: https://
earthobservatory.nasa.gov/features/Hurricanes.

[15] A. Guerrieri and A. Montresor. Distributed edge partitioning for graph processing. CoRR, 2014. doi:
http://arxiv.org/abs/1403.6270.

[16] E. Győri. On division of graphs to connected subgraphs. Combinatorics (Proc. Fifth Hungarian Combi-
natorial Coll., 1976., Keszthely), pages pp 485–494, 1976.

[17] W. Hager, D. Phan, and H. Zhang. An exact algorithm for graph partitioning. Mathematical Program-
ming, 137(1-2):pp 531–556, 2013. doi: https://link.springer.com/article/10.1007/s10107-011-0503-x.

81

82 Bibliography

[18] O. Ibarra and C. Kim. Heuristic algorithms for scheduling independent tasks on nonidentical processors.
Journal of the ACM, 24(2):pp 280–289, 1977. doi: https://dl.acm.org/citation.cfm?id=322011.

[19] R. Iyer and J. Bilmes. Submodular optimization with submodular cover and submodular knapsack con-
straints. CoRR, 2013. doi: https://arxiv.org/abs/1311.2106.

[20] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning. IEEE, 1998. doi:
https://ieeexplore.ieee.org/document/1437315.

[21] B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell System Tech-
nical Journal, 49(2), 1970. doi: https://ieeexplore.ieee.org/abstract/document/6771089.

[22] J. Lenstra, D. Shmoys, and E. Tardos. Approximation algorithms for scheduling unrelated parallel ma-
chines. Mathematical Programming, 46(1-3):pp 259–271, 1990. doi: https://link.springer.com/article/
10.1007/BF01585745.

[23] L. Lovász. A homology theory for spanning trees of a graph. Math. Acad. Sci. Hungaricae, 30:pp 241–251,
1977. doi: https://link.springer.com/article/10.1007\%2FBF01896190.

[24] L. Luther. Disaster debris removal after hurricane katrina: Status and associated issues. 2008. doi:
https://fas.org/sgp/crs/misc/RL33477.pdf.

[25] R. McNaughton. Scheduling with deadlines and loss functions. Management Science, 6(1):pp 1, 1959.
doi: http://www.columbia.edu/~cs2035/courses/ieor6400.F07/mcn1.pdf.

[26] A. Mehrotra, E. Johnson, and G. Nemhauser. An optimization based heuristic for political districting.
Mangement Science, 44(8):1100–1114, 1998. doi: https://www.jstor.org/stable/2634689?seq=1.

[27] K. Menger. Zur allgemeinen kurventheorie. Fund. Math., 10(1):pp 96–115, 1927. doi: https://eudml.org/
doc/211191.

[28] H. Ritchie and M. Roser. Natural disasters. 2014. doi: https://ourworldindata.org/natural-disasters.

[29] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of the ACM, 23(3):pp 555–565,
1976. doi: https://dl.acm.org/citation.cfm?id=321975.

[30] H. Stern. Minimizing makespan for independent jobs on nonidentical parallel machines: An optimal
procedure. 1975. doi: https://books.google.nl/books/about/Minimizing_Makespan_for_Independent_
Jobs.html?id=5erucQAACAAJ&redir_esc=y.

[31] K. Stilp, P. Keskinocak, M. Celik, and O. Ergun. Area partitioning for debris collection. Unpublished, 2015.

[32] W. Tutte. A theorem on planar graphs. Transactions of the American Mathematical Society, 82(1):pp
99–116, 1956. doi: https://www.jstor.org/stable/1992980?seq=1.

[33] Unknown. Gurobi optimization. doi: https://www.gurobi.com/.

[34] Unknown. Debris management guide. page 43, 2007. doi: https://www.fema.gov/pdf/government/
grant/pa/demagde.pdf.

[35] D. Williamson and D. Shmoys. The design of approximation algorithms. pages pp 282–285, 2010. doi:
http://www.designofapproxalgs.com/book.pdf.

[36] M. Yagiura, S. Iwasakib, T. Ibarakic, and F. Glover. A very large-scale neighborhood search algorithm for
the multi-resource generalized assignment problem. Discrete Optimization, 1:87–98, 2004. doi: https:
//core.ac.uk/download/pdf/82288788.pdf.

	Introduction
	Literature review
	Characteristics
	Classes
	Contribution

	Problem Description and Notation
	The chaos measure

	Structural results
	Solving UUMCGP
	Hardness of UUMCGP
	Cases of UUMCGP
	Theorems

	The multi-resource assignment problem

	Algorithms
	The UM algorithm
	Starting UM algorithms
	The regular version
	The restricted version
	The combination version
	Conclusion

	Ending UM algorithms
	The regular version
	The restricted version
	The combination version
	Conclusion

	Conclusion

	Experimental Design
	Creating instances
	Running algorithms

	Results
	UM algorithm vs MIP solver
	Performance per category
	The amount of contractors
	The weight setting
	The city

	Conclusion
	Further Research
	Applicability of UUMCGP to the debris management problem
	Vertex connectivity
	Partition shape
	Matching algorithm
	Instance variety

	Bibliography

