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Abstract
This contribution investigates four members of the class of Detection, Identification, and Adaptation (DIA) estimators, which
integrate parameter estimation with hypothesis testing. Using the framework of minimum mean penalty testing, we analyze
and compare the misclosure-space partitionings of the traditional DIA procedure, which combines the overall model test
with likelihood-ratio-based tests, and those maximizing the probabilities of correct hypothesis identification and parameter
estimation. A constrained version of the latter, with the null hypothesis acceptance region fixed to the traditional procedure,
is also examined. Our study focuses on cases where the biases under alternative hypotheses are fully known. Next to the
conceptual comparison, we also assess, through a number of examples, misclosure-space partitionings and the probabilities
of DIA estimators falling within a defined elliptical safety region. The results highlight the relationships and distinctions
among the DIA estimators, revealing the influence of penalty functions, bias magnitude, safety region size, and false alarm
probability.

Keywords Detection-identification-adaptation (DIA) · DIA-estimator · Misclosure space partitioning · Minimum mean
penalty testing · Penalty function

1 Introduction

The DIA method for detection, identification, and adapta-
tion of modeling errors integrates parameter estimation with
hypothesis testing. This integration is formally encapsulated
in the DIA-estimator introduced by Teunissen (2018). Com-
bining estimationwith testing has beenwidely applied across
various domains, including the quality control of geodetic
networks (DGCC 1982; Amiri Simkooei 2001; Zaminpar-
daz and Teunissen 2019; Yang et al. 2021; Zaminpardaz and
Teunissen 2022; Rofatto et al. 2022), navigational integrity
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(Teunissen 1990; Gillissen and Elema 1996; Yang et al.
2014), deformation analysis and structural health monitor-
ing (Verhoef and De Heus 1995; Lehmann and Lösler 2017;
Yavaşoğlu et al. 2018;Nowel 2020;Zaminpardaz et al. 2020),
andGNSS integritymonitoring (Jonkman andDe Jong 2000;
Kuusniemi et al. 2004;Hewitson andWang 2006;Khodaban-
deh and Teunissen 2016; Zaminpardaz and Teunissen 2020).

The DIA estimator represents a class of estimators, each
uniquely characterized by its partitioning of the misclosure
space (Teunissen 2024a). Modifying the testing procedure
results in changes to the partitioning, thereby altering the
corresponding DIA estimator. Leveraging the concept of
penalized testing introduced in (ibid), penalty functions can
be assigned to each decision region within the misclosure
space, enabling the calculation of the mean penalty for any
given partitioning. This framework facilitates the identifi-
cation of the optimal partitioning by minimizing the mean
penalty. Since the minimum mean penalty partitioning is
influenced by the choice of penalty functions, different selec-
tions canbe tailored to specific applications. For instance, one
choice may yield a partitioning that maximizes the probabil-
ity of correct testing decisions, making it advantageous from
a testing perspective. Conversely, another choice may opti-
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mize the probability of correct parameter estimation, aligning
better with estimation objectives.

In this contribution, we study and compare four members
from the class of DIA-estimators, whose misclosure-space
partitionings are defined based on the concept of minimum
meanpenalty testing.Our analysis focuses on caseswhere the
biases under the alternative hypotheses are fully known. The
partitionings considered correspond to: I) the traditional DIA
procedure, which combines the overall model test (OMT)
with likelihood-ratio-based tests, and is commonly used in
geodetic applications; II) maximizing probability of correct
hypothesis identification; and III) maximizing probability
of correct parameter estimation. In geodetic applications,
the acceptance region of the null hypothesis, P0, is typi-
cally determined through the OMT based on a user-defined
false alarm probability. Therefore, we also examine the P0-
constrained version of II and III, where P0 is defined by
the OMT. It will be demonstrated that, when all alternative
hypotheses are equally likely, this P0-constrained variant of
II is identical to I.

This contribution is structured as follows. Section 2 pro-
vides a brief overview of theDIAmethod, outlining its inputs
and its integration of estimation and testing. It specifies the
null and alternative hypotheses and discusses the implemen-
tation of the method’s testing scheme using a partitioning
of the misclosure space. The DIA-estimator and its statis-
tical distribution are then presented for both bias-unknown
and bias-known cases. In Sect. 3, we review the concept of
penalized testing, detailing the misclosure-space partition-
ings I, II and III. The relationships between the test statistics
of these testing procedures are highlighted, and the condi-
tions under which two hypotheses can be distinguished for
each partitioning are discussed.

The DIA-estimators are analyzed and compared in Sect.
4 using three different examples: three repeat measure-
ments of a single quantity, distance measurements in a
three-dimensional geodetic network, and height-difference
measurements in a leveling network. In all cases, it is
assumed that the alternative hypotheses are equally likely.
The analysis includes the misclosure-space partitionings and
the probabilities of the DIA-estimators falling within an
x-centered elliptical safety region. Additionally, the con-
ditions under which the probabilistic properties of these
DIA-estimators converge are highlighted. Finally, Sect. 5
provides a summary and conclusions.

We use the following notation: The n-dimensional space
of real numbers is denoted by R

n . Random vectors are rep-
resented by underlined symbols, e.g., x ∈ R

n is a random
vector, while x is not. The PDF of random vector x ∈ R

n

is denoted by fx (θ), with θ ∈ R
n being its argument. The

squared weighted norm of a vector with respect to a positive-
definite matrix Q is defined as ‖ · ‖2Q = (·)T Q−1(·). We
reserve H for statistical hypotheses, P for partitions of the

misclosure space, and N (x, Q) for the normal distribution
with mean x and variance matrix Q. The notation P(·|H),
E(·|H), and D(·|H) are the probability, expectation and dis-
persion operators underH, respectively. The m-dimensional
vector of ones, vector of zeros and identitymatrix are denoted

by em , 0m and Im , respectively. The symbol
H∼ should be

interpreted as ‘distributed as . . . under H’. The superscripts
T and −1 are used to denote the transpose and the inverse of
a matrix, respectively.

2 DIAmethod: an overview

In this section, we provide a brief overview of the DIA
method, including its inputs and how it combines the princi-
ples of statistical inference, namely estimation and testing.

2.1 Workingmodel and hypothesized
misspecifications

The inputs to the DIA procedure consist of the observa-
tions to be modeled and a set of candidate observational
models, denoted by H0,H1, . . . ,Hk , where H0 represents
the working (null) hypothesis and Hi (for i = 1, . . . , k)
are the alternative hypotheses capturing different misspec-
ifications in H0. Assuming these hypotheses cover all the
events that can possibly occur, they can be viewed as the
outcomes of a discrete random variableH = {H0, . . . ,Hk},
with each hypothesis Hi occurring with probability P[Hi ]
for i = 0, . . . , k, such that

∑k
i=0 P[Hi ] = 1. While it is

standard in geodetic literature to assign randomness only to
observation errors, in thisworkwe also consider probabilities
associated with the hypotheses themselves. This allows for
a structured way to reflect prior knowledge or assumptions
about the likelihood of different scenarios, and supports a
more informed decision-making process within the hypoth-
esis testing framework.

We assume that the null hypothesis, believed to be valid
under normal working conditions, is expressed as follows

H0 : y ∼ N (
A x, Qyy

)
(1)

where the mean of the random vector of observables y ∈
R
m is parameterized in the unknown parameter vector x ∈

R
n through the known full-rank design matrix A ∈ R

m×n

(rank(A) = n), and the dispersion of y is characterized by
the positive-definite variance matrix Qyy ∈ R

m×m .
The null hypothesis may be misspecified in various ways,

including the assumed expectation (mean) of y, its disper-
sion, and even its statistical distribution. Here, we focus on
alternatives that describe deviations in the mean of y from
Ax , as these are among themost common errors encountered
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in model formulation (Teunissen 2017). Thus, the alternative
hypotheses will differ fromH0 only in the mean of y, taking
the form

Hi : y ∼ N (
Ax + Cibi , Qyy

)
, i = 1, . . . , k (2)

where Cibi ∈ R
m \ {0} represents the potential bias in the

mean of y, with [A Ci ] ∈ R
m×(n+qi ) a known matrix of

full rank. In most cases, the vector bi ∈ R
qi is unknown,

such as in scenarios involving pseudorange outliers, carrier-
phase cycle slips, or ionospheric gradients. However, there
are applications where bi is completely known; this contribu-
tion focuses on such cases, which we refer to as bias-known
examples. For example, in the context of terrestrial survey-
ing, one may confuse two nearby benchmarks when running
a level run, where the known bias would be the difference
between the known heights of the two benchmarks. It is
important to note that, although the biases under the alterna-
tive hypotheses are assumed to be known in this study, their
actual presence is uncertain and must be assessed through
statistical hypothesis testing.

2.2 Hypothesis testing

The detection and identification steps of the DIA method
require implementing a testing procedure to select one of
the hypothesized models in (1) and (2) based on a specific
criterion. This necessitates the presence of redundancy under
H0, i.e. r = m − n �= 0. With redundancy, one can form a
misclosure vector as (Teunissen 2024b)

t = BT y
Hi∼ N (

Cti bi , Qtt
)
, i = 0, . . . , k (3)

with B ∈ R
m×r amatrix of rank(B) = r such that AT B = 0,

Cti = BTCi where C0b0 = 0, and Qtt = BT Qyy B the vari-
ance matrix of t . We note that t has a known probability
distribution under H0, which is a zero-mean normal distri-
bution with variance matrix Qtt . Therefore, the misclosure
vector t and its known distribution under H0 form the basis
of any statistical testing procedure.

A testing procedure can be defined by unambiguously
mapping the outcomes of t to the hypotheses Hi for i =
0, . . . , k. This is achieved by partitioning the misclosure
spaceRr into k+1 disjoint regionsPi ⊂ R

r for i = 0, . . . , k.
Consequently, the testing procedure can be described as fol-
lows (Teunissen 2018)

select Hi if and only if t ∈ Pi , for i = 0, . . . , k (4)

The above representation of testing decisions enables the for-
mulation of the final outcome of the DIAmethod, namely the
DIA-estimator, in a single equation (see 7).

2.3 DIA-estimator

The decision of the testing process determines how the
unknown parameter vector x should be estimated. If the out-
come of testing is the acceptance of H0, i.e. t ∈ P0, then x
will get estimated based on (1). The Best Linear Unbiased
Estimator (BLUE) of x under H0 is given by

x̂0 = A+ y (5)

where A+ = Qx̂0 x̂0 A
T Q−1

yy is the BLUE-inverse of A with
Qx̂0 x̂0 = (AT Q−1

yy A)−1 the variance matrix of x̂0. Note that
x̂0 and t are statistically independent of each other under
a given hypothesis. If the testing decision is to select the
alternative hypothesisHi �=0, i.e. t ∈ Pi �=0, then x̂0 should be
adapted as

x̂ i = x̂0 − A+Ci b̂i , i = 1, . . . , k (6)

where b̂i = C+
ti t is the BLUE of bi under Hi with C+

ti =
(CT

ti Q
−1
t t Cti )

−1CT
ti Q

−1
t t the BLUE-inverse of Cti .

The actual estimator for x produced by the combined
estimation-testing nature of the DIA method is the DIA-
estimator (Teunissen 2018) which reads

x̄ =
k∑

i=0

x̂ i pi (t) (7)

with pi (t) the indicator function of Pi , i.e. pi (t) = 1 for t ∈
Pi and pi (t) = 0 elsewhere. The probabilistic properties of
the DIA-estimator can be captured by its Probability Density
Function (PDF), which under the hypothesis Hi∈[0,...,k] is
characterized by (Teunissen 2018)

fx̄ (θ |Hi ) =
k∑

j=0

fx̂ j |t∈P j (θ |t ∈ P j ,Hi )P(t ∈ P j |Hi ) (8)

with fx̂ j |t∈P j (θ |t ∈ P j ,Hi ) the conditional PDF of x̂ j con-
ditioned on t ∈ P j under Hi .

2.4 Bias-known case

For the case where the biases bi (for i = 1, . . . , k) are
fully known, which is the focus of this contribution, the x-
estimator under Hi �=0 in (6) would change to

x̂ i = x̂0 − A+Cibi , i = 1, . . . , k (9)

which, in comparison with (6), replaces the BLUE of bi with
its known vector. We note that x̂ i and x̂0 have the same dis-
persion, but different expectations. Therefore, like x̂0, all the
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estimators x̂ i ’s (i = 1, . . . , k) in (9), are independent from
the misclosure of theH0-model, t , under a given hypothesis.

With (9), the DIA-estimator (7) can be written as

x̄ = x̂0 − A+
k∑

i=1

Cibi pi (t) (10)

and its PDF is given by

fx̄ (θ |Hi ) =
k∑

j=0

fx̂0(θ + A+C jb j |Hi )P(t ∈ P j |Hi ) (11)

which is a weighted average of shifted versions of the PDF
of x̂0, fx̂0(θ |Hi ), over A+C jb j for j = 0, . . . , k, where
the weights are determined by the probabilities of the testing
decisions. In the following, we work with the DIA-estimator
(10) and its distribution in (11).

3 Misclosure space partitioning

TheDIA-estimator (10) represents a class of estimators, each
uniquely defined by its partitioning of the misclosure space.
Altering the testing procedure changes this partitioning and,
consequently, the DIA-estimator. In this section, we consider
a fewmembers of this class, where the misclosure-space par-
titionings are defined using the concept of minimum mean
penalty testing.

3.1 Penalized testing

Teunissen (2024a) introduced penalized testing to provide
a means for comparing the quality of different misclosure-
space partitionings. In penalized testing, each testing deci-
sion, say t ∈ Pi , is assigned a nonnegative risk penalizing
function riα(t) for each of the k + 1 hypotheses Hα (for
α = 0, . . . , k). Thus, the hypothesis Hα-penalty function
can be written as

rα(t) =
k∑

i=0

riα(t)pi (t) (12)

which is the penalty given when the sample outcome of the
misclosure vector is t and hypothesis Hα is true. Therefore,
the penalty associated with the partitioning Pi∈[0,...,k] is a
random variable as it is driven by the outcome of t and H,
both of which are random. The random risk penalty variable
can be formulated as

r =
k∑

α=0

rα(t)ια(H) (13)

with ια(H) the indicator function of the hypothesis Hα ,
where ια(H) = 1 ifH = Hα and ια(H) = 0 otherwise.

One can compare different testing procedures by looking
at their mean penalty. With (13), the mean penalty, condi-
tioned on either Hα or t , reads

E(r |Hα) =
∫

Rr
rα(t) ft (t |Hα)dt

E(r |t) =
k∑

α=0

rα(t)P[Hα|t]
(14)

and the unconditional mean penalty reads

E(r) =
k∑

α=0

E(r |Hα)P[Hα]

=
∫

Rr
E(r |t) ft (t)dt

(15)

where

P[Hα|t] = ft (t |Hα)P[Hα]
ft (t)

(16)

and

ft (t) =
k∑

α=0

ft (t |Hα)P[Hα] (17)

Substitution of the second equation of (14) into the second
equation of (15) gives, after the use of (12),

E(r) =
k∑

i=0

∫

Pi

k∑

α=0

riα(t)P[Hα|t] ft (t)dt (18)

Note, with E(r) being the mean penalty, that 1 − E(r)
may be considered the mean reward. For a given set of
penalty functions riα(t) (for i, α = 0, . . . , k), any change
in the partitioning of Rr would result in a corresponding
change in the mean penalty E(r) (or the mean reward).
The misclosure-space partitioning that minimizes the mean
penalty (or maximizes the mean reward) is given as (Teunis-
sen, 2024a, Theorem 2a)

Pi∈[0,...,k] = arg min
P j∈[0,...,k]

E(r)

=
{

t ∈ R
r

∣
∣
∣
∣i = arg min

j∈[0,...,k]

k∑

α=0

r jα(t)P[Hα |t]
}

=
{

t ∈ R
r

∣
∣
∣
∣i = arg max

j∈[0,...,k]

k∑

α=0

[1 − r jα(t)]P[Hα |t]
}

(19)

In geodetic applications, P0 is usually determined through
the OMT (Baarda 1968), based on a user-defined false alarm
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probability. If P0 is known, then the P0-constrained coun-
terpart of (19) is obtained by

Pi∈[1,...,k] = arg min
P j∈[1,...,k]∈Rr \P0

E(r)

= arg min
P j∈[1,...,k]∈Rr\P0

k∑

i=1

∫

Pi

k∑

α=0

riα(t)P[Hα |t] ft (t)dt

=
⎧
⎨

⎩
t ∈ R

r \ P0

∣
∣
∣
∣i = arg min

j∈[1,...,k]

k∑

α=0

r jα(t)P[Hα |t]
⎫
⎬

⎭

=
⎧
⎨

⎩
t ∈ R

r \ P0

∣
∣
∣
∣i = arg max

j∈[1,...,k]

k∑

α=0

[1 − r jα(t)]P[Hα |t]
⎫
⎬

⎭

(20)

From the second equality, it is clear that the partitioning (20)
minimizes only a part of the mean penalty E(r). As a result,
the P0-constrained partitioning incurs a larger penalty com-
pared to its unconstrained counterpart in (19).

We note that the above partitioning or its P0-constrained
variant, given (16) and (17), is only applicablewhen the PDFs
ft (t |Hα) for α = 0, . . . , k are completely known. In gen-
eral, however, the bias vectors bα associated withHα are not
known, and thus one can only work with these PDFs condi-
tioned on a given bias vector. In that case, one can work with
the BLUEs of the bias vectors to estimate the mean penalty
which can be shown to be an upper bound for the actual mean
penalty (Teunissen 2024a). If all the bias vectors are known,
these PDFs are fully determined, allowing the partitionings
(19) and (20) to be applied directly.

Different choices of penalty functions lead to different
minimummeanpenalty partitionings of themisclosure space.
In the following,we consider three such choices, which result
in the following partitionings: I) representing the traditional
DIA procedure commonly used in geodetic applications; II)
maximizing probability of correct hypothesis identification;
and III) maximizing probability of correct parameter estima-
tion.

3.2 Traditional DIA

When the biases bi∈[1,...,k] are unknown, a traditional geode-
tic approach for testing combines the OMT (Baarda 1968)
with likelihood-ratio-based tests (Teunissen 2024b) to select
themost likely hypothesis. The detection and identification of
such approach can be summarized as follows. In the detec-
tion step, the OMT is used to validate the null hypothesis,
whereby H0 is accepted if the outcome of t lies in

P I
0 =

{

t ∈ R
r
∣
∣
∣
∣ S

I
0 ≤ χ2

1−PFA(r , 0)

}

(21)

in which SI0 is a realization of

SI0 = ‖t‖2Qtt
(22)

and χ2
1−PFA

(r , 0) is the (1−PFA) quantile of the central Chi-
square distribution with r degrees of freedom, and PFA is the
probability of false alarm, typically set a priori by the user.
SinceH0 is the working hypothesis one believes in, one will
want to work with a sufficiently large acceptance region for
the null hypothesis H0, i.e. a large P I

0. Therefore, PFA is
usually set to small values.

Upon the rejection ofH0 in the detection step, one moves
to the identification step, where the most likely alternative
hypothesis is chosen using

SIi∈[1,...,k] = ‖êi‖2Qyy
(23)

with êi the least-squares residual vector of the Hi -model,
which, in the bias-known case, takes the form êi = y−A x̂i−
Cibi . Selecting the hypothesis with the smallest realization
of SIi∈[1,...,k], leads to the selection of the best-fitting model
among the considered alternative hypotheses. The above test
statistic can also be formulated in the H0-model misclosure
as

SIi∈[1,...,k] = ‖t − Cti bi‖2Qtt
(24)

Therefore, the alternative hypothesis Hi∈[1,...,k] is selected
as the most likely hypothesis if the outcome of t lies in

P I
i∈[1,...,k] =

{

t ∈ R
r \ P I

0

∣
∣
∣
∣ i = arg min

j∈[1,...,k] S
I
j

}

(25)

One can easily verify that the regions (21) and (25)
together cover the entire misclosure space R

r . Any t ∈
R
r \ P I

0 produces a vector of k realizations SIi∈[1,...,k] as

defined by (24). For any such t , there exists a region P I
i con-

taining it, for some i ∈ {1, . . . , k}. Hence, ⋃k
i=0 P I

i = R
r .

In order for the regions (21) and (25) to form a partitioning
of the misclosure space, they must also be mutually disjoint,
i.e. P I

i ∩ P I
j = ∅ for any i �= j . As P I

i∈[1,...,k] are defined

in R
r \ P I

0, they are all disjoint from P I
0. For the mutual

disjointness of P I
i �=0 and P I

j �=0, we have the following result.

Lemma 1 Consider the regions in (25). For any i �= j , P I
i ∩

P I
j = ∅ if and only if Cibi − C jb j �= Av for all v ∈ R

n.

Proof See ‘Appendix’. 
�
To show how the above partitioning can be obtained based

on P0-constrained minimization of the mean penalty, we
make use of the following Lemma.
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Lemma 2 Let the misclosure vector be normally distributed
(cf. 3). Further, assume that all the alternative hypotheses
have the same probability of occurrence, i.e. P[H1] = . . . =
P[Hk], and that the penalty function is chosen such that

r jα(t) = 1 − δ jα (26)

with δ jα the Kronecker delta. Under these assumptions, the
P0-constrained partitioning (20) simplifies to

Pi∈[1,...,k] =
{

t ∈ R
r \ P0

∣
∣
∣
∣ i = arg min

j∈[1,...,k] S
I
j

}

(27)


�
Proof Incorporating the penalty function (26), the objective
function in (20) is expressed as

∑k
α=0[1−r jα(t)]P[Hα|t] =

P[H j |t]. Using (16), and under the assumptions that all alter-
native hypotheses have the same probability of occurrence
and that the misclosure vector is normally distributed, (27)
follows. 
�

It can be easily seen that (25) is a special case of (27)where
P0 = P I

0. Therefore, if all correct decisions are assigned a
zero penalty and the penalties for incorrect decisions are set
to one, then the misclosure space partitioning induced by the
traditional DIAmethodwould be aP0-constrainedminimum
mean penalty partitioning, provided that all the alternative
hypotheses are equally likely.

3.3 Maximizing probability of correct hypothesis
identification

The assumption that all alternative hypotheses have the
same probability of occurrence might not be valid for all
applications. Recognizing the difference in the likelihood
of occurrence of different hypotheses, and incorporating
the penalty function (26), the objective function in (19)
is expressed as

∑k
α=0[1 − r jα(t)]P[Hα|t] = P[H j |t].

Consequently, the corresponding minimum mean penalty
partitioning regions, without imposing any constraint on P0,
are given by

P II
i∈[0,...,k] =

{

t ∈ R
r
∣
∣
∣
∣i = arg max

j∈[0,...,k] P[H j |t]
}

(28)

with the maximum reward being the probability sum of cor-
rect hypothesis identifications,

1 − min
P j

E(r) = max
P j

k∑

i=0

P(t ∈ Pi ,Hi ) (29)

If one would like to have the acceptance region ofH0 deter-
mined by the overall model test, i.e.P II

0 = P I
0 (cf. 21), then it

follows that P I
i∈[1,...,k] becomes a special case of P II

i∈[1,...,k].
Furthermore, the two partitionings would be identical if, in
addition, P[H1] = . . . = P[Hk].

Using (3) and (16), the partitioning (28) simplifies to

P II
i∈[0,...,k] =

{

t ∈ R
r
∣
∣
∣
∣ i = arg min

j∈[0,...,k] S
II
j

}

(30)

where

SIIj = SIj − ln[P[H j ]2] (31)

The testing procedure corresponding with these partitioning
regions selects, among all the considered hypotheses, the one
that has the best fit to the observed data while having a higher
probability of occurrence.

Similar to P I
i∈[0,...,k], it can be shown that the regions

P II
i∈[0,...,k] also cover the whole misclosure space R

r , i.e.
⋃k

i=0 P II
i = R

r . The following Lemma presents the nec-
essary and sufficient condition for P II

i and P II
j , with i �= j ,

to be disjoint, so that P II
i∈[0,...,k] form a partitioning of Rr .

Lemma 3 Consider the regions in (30). For any i �= j , with
C0b0 = 0, P II

i ∩ P II
j = ∅ if and only if at least one of the

following holds:

(1) Cibi − C jb j �= Av for all v ∈ R
n;

(2) P[Hi ] �= P[H j ].

Proof See ‘Appendix’. 
�
Note that H0 is often significantly more likely to occur

compared to the alternative hypotheses, i.e. P[H0] >>

P[Hi �=0]. Furthermore, C0b0 = 0 and Cibi �= 0 for any
i �= 0. Together with the assumption that [A Ci ] is a full-rank
matrix, this implies that both (1) and (2) hold for i = 0 �= j .
Therefore, P II

0 is disjoint from any P II
j �=0. Moreover, if (1)

does not hold for some i �= j , while P[Hi ] > P[H j ], then
P II

j = ∅. This happens as bothHi andH j have the same fit to
the observed data, butH j is always penalized relative toHi

due to its lower probability of occurrence. Finally, we remark
that the above Lemma also applies when P II

0 is constrained,
e.g. P II

0 = P I
0.

3.4 Maximizing probability of correct parameter
estimation

In the previous subsection, it was demonstrated how a certain
choice of penalty function yields a partitioning maximizing
the probability of correct decisions. While this property is
appealing from a testing perspective, it may not be adequate
from an estimation standpoint. Let us assume that it is desir-
able for the DIA-estimator to lie in the x-centered ‘safety’
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region �x ⊂ R
n . If the penalty function is chosen such that

(Teunissen 2024a)

r jα(t) = P(x̂ j /∈ �x |Hα, t) (32)

then, the corresponding minimummean penalty partitioning
is given by

P III
i∈[0,...,k] =

{

t ∈ R
r
∣
∣
∣
∣i = arg max

j∈[0,...,k] P(x̂ j ∈ �x |t)
}

(33)

with the maximum reward being the probability of the DIA-
estimator residing in �x ,

1 − min
P j

E(r) = max
P j

P(x̄ ∈ �x ) (34)

Therefore, the choice of (32) as the penalty function yields
the DIA estimator that, within its class, has the highest prob-
ability of lying inside its safety region.

When the biases are known, as (9) shows, all the estimators
x̂ i∈[0,...,k] are independent from t under a given hypothesis.
Therefore, the conditioning on t = t of the probability in (32)
would disappear, so does the dependency of the penalty func-
tion on t . In this instance, for the special case of ellipsoidal
safety regions where

�x =
{

u ∈ R
n
∣
∣
∣
∣‖u − x‖2Qx̂0 x̂0

≤ τ 2
}

(35)

the penalty function in (32) specializes to

r jα = P[χ2(n, λ jα) > τ 2] (36)

with χ2(n, λ) a random variable with a non-central Chi-
square distribution with n degrees of freedom and non-
centrality parameter λ, and

λ jα = ‖A+[C jb j − Cαbα]‖2Qx̂0 x̂0
(37)

withC0b0 = 0. The partitioning (33) for the penalty function
(36) can be formulated, using (3), as

P III
i∈[0,...,k] =

{

t ∈ R
r
∣
∣
∣
∣ i = arg max

j∈[0,...,k] S
III
j

}

(38)

where

SIIIj =
k∑

α=0

P[χ2(n, λ jα) ≤ τ 2] exp
{

−1

2
SIIα

}

(39)

The regions P III
i∈[0,...,k], similar to (30), cover the whole

misclosure space Rr , i.e.
⋃k

i=0 P III
i = R

r . However, unlike
the two previous partitionings, deriving the necessary and

sufficient condition for P III
i and P III

j , with i �= j , to be

disjoint—thereby ensuring that P III
i∈[0,...,k] partition R

r—is
not straightforward. Nonetheless, it is easy to verify that if
A+Cibi = A+C jb j , or alternativelyCibi −C jb j = Qyy Bu
for some u ∈ R

r , then λiα = λ jα for all α ∈ [0, . . . , k]. Con-
sequently, SIIIi = SIIIj , implying that P III

i = P III
j . This is also

the case for the P0-constrained variant of (38).
Table 1 summarizes the three partitionings discussed

above, along with the required user inputs necessary for their
application.

4 Performance comparison of
DIA-estimators

In this section, we compare the three partitionings (21) +(25),
(30), and (38) alongwith their correspondingDIA-estimators
through a series of bias-known examples. Our analysis also
incorporates the P0-constrained versions of (30) and (38),
where their H0 acceptance region is constrained to be the
same as P I

0. In these examples, we assume P[H1] = . . . =
P[Hk], making the P0-constrained version of (30) identical
to (25), as SIIi − SIIj = SIi − SIj for any i, j �= 0. We denote

the P0-constrained version of (38) as P IV
i∈[0,...,k]. The DIA-

estimators yielded by these partitionings are denoted by x̄ ι

with ι = I, . . . , IV.
We begin with a simple example to illustrate the differ-

ences between these partitionings, which helps establish a
clear foundation for understanding. Building on the insights
gained from this example, we then consider more practical
examples in the context of terrestrial surveying.

4.1 Simple example

Let y ∈ R
3 contain three equally-precise repeat measure-

ments of the unknown quantity x ∈ R, which implies A = e3
and Qyy = σ 2 I3 with σ the standard deviation of the
individual observables. Three alternative hypotheses are put
forward, each addressing the presence of a known bias in a
different observable, and thus Ci = ci ∈ R

3 (i = 1, 2, 3) are
canonical unit vectors and bi ∈ R (i = 1, 2, 3) are scalars.
In this case, if bi = b j for i �= j , then, since A+ = 1

3e
T
3 ,

we have A+ci = A+c j . Consequently, P III
i = P III

j and also

P IV
i = P IV

j for i, j = 1, 2, 3. To avoid this non-separability
of the alternative hypotheses, we assume different values for
each bi . The three alternatives are assumed to be equally
likely, i.e. P[Hi ] = (1 − P[H0])/3 for i = 1, 2, 3.

4.1.1 Misclosure space partitioning

Assuming σ = 1, Fig. 1 illustrates (21)+(25) with PFA =
0.01; Fig. 2 illustrates (30); and Fig. 3 illustrates (38) along
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Table 1 An overview of the misclosure space partitioning regions studied in this contribution

Misclosure Space Partitioning User Input Property

P I
0 =

{

t ∈ R
r

∣
∣
∣
∣ S

I
0 ≤ χ2

1−PFA
(r , 0)

}

PFA Traditional DIA

P I
i∈[1,...,k] =

{

t ∈ R
r \ P I

0

∣
∣
∣
∣ i = arg min

j∈[1,...,k] S
I
j

}

with SI0 = ‖t‖2Qtt
and SIj �=0 = ‖t − Ct j b j‖2Qtt

P II
i∈[0,...,k] =

{

t ∈ R
r

∣
∣
∣
∣i = arg min

j∈[0,...,k] S
II
j

}

P[Hi ] for i = 0, . . . , k Maximizing
∑k

i=0 P(t ∈ Pi ,Hi )

with SIIj = SIj − ln[P[H j ]2]

P III
i∈[0,...,k] =

{

t ∈ R
r

∣
∣
∣
∣ i = arg max

j∈[0,...,k] S
III
j

}

P[Hi ] for i = 0, . . . , k Maximizing P(x̄ ∈ �x )

with SIIIj =
k∑

α=0
P[χ2(n, λ jα) ≤ τ 2] exp {− 1

2 S
II
α

}
with �x =

{

u ∈ R
n

∣
∣
∣
∣‖u − x‖2Qx̂0 x̂0

≤ τ 2
}

and λ jα = ‖A+[C jb j − Cαbα]‖2Qx̂0 x̂0

with its P0-constrained version setting PFA = 0.01. These
figures correspond to the above example for different sets of
biases b = [b1, b2, b3]. The partitioning regions are shown
in different shades of gray, getting darker as i increases from
0 to 3. Note that the misclosure vector is formed by

B = 1

2
√
3

⎡

⎣
−2 −2

1 + √
3 1 − √

3
1 − √

3 1 + √
3

⎤

⎦ (40)

which has identitymatrix as its variancematrix, i.e. Qtt = I2.
The geometry of partitionings will change, would one use a
different B matrix from (40).

As the design matrix A is a vector of ones and all mea-
surements are assumed to be equally precise, the angles
between cti ’s are 120

◦. Consequently, the partitioning regions
P I
i∈[1,2,3] would have identical shapes and sizes if b1 = b2 =

b3. However, as shown in Fig. 1, the biases under the alterna-
tive hypotheses have different values, resulting in P I

i∈[1,2,3]
having different sizes and shapes. It can be seen that the
common boundary between P I

0 and P I
i �=0 shrinks as bi gets

larger relative to the other biases. This occurs because the
distance between a point t on the boundary of P I

0 and cti bi
gets larger with larger bi , reducing the number of points t on
the boundary ofP I

0 that satisfy the inequality SIi < SIj �=i . For

instance, in the right panel, where b = [5, 10, 20],P I
0 shares

no common boundary with P I
3 since ct3b3, among cti bi for

i = 1, 2, 3, is significantly farther from the points on the
boundary of P I

0.
In Fig. 2, comparing the left and middle panels with the

right panel, we observe an expansion in P II
0 , which can be

explained as follows. As (30) and (31) show, P II
0 is formed

by the intersection of k hyperplanes (lines in the 2D case)
whose normal vectors are ctα , α = 1, . . . , k, when Qtt = Ir ,

as is the case with the example at hand. The distance from the
origin to these hyperplanes is determined by 0.5‖ctαbα‖ +
ln P[H0]−ln P[Hi ]‖ctα bα‖ . For bα ∈ R

+, this distance is an increasing

function of bα if bα ≥
√

ln [P[H0]2]−ln [P[Hi ]2]
‖ctα ‖ , which leads to

the enlargement of the volume ofP II
0 . Note that the boundary

between regions P II
i �=0 and P II

j �=0, for i, j = 1, 2, 3, in Fig. 2

and the boundary between P I
i �=0 and P I

j �=0 in Fig. 1 , lie on
the same hyperplane. This is due to the assumption in the
current example that P[Hi ] = P[H j ].

Comparing the panels from left to right in Fig. 3 (exclud-
ing the last row), it is observed that the partitioning regions
P III

α∈[0,...,k] approach in shape to P II
α∈[0,...,k] when the biases

and their differences increase, which can be explained as
follows. For the three-dimensional example at hand, since
A+c j = 1

3 , larger values of |b j − bα| for j �= α lead
to larger values of λ jα (cf. 37). When λ jα is much larger
compared to τ 2, then P[χ2(n, λ jα) ≤ τ 2] → 0 and thus

SIIIj → P[χ2(n, 0) ≤ τ 2] exp{− 1
2 S

II
j }. As a result, the

maximization problem in (38) reduces to the minimization
problem in (30), hence the similarity betweenP III

α∈[0,...,k] and
P II

α∈[0,...,k] for large biases and bias differences.
By comparing the panels in the first and second rows

of Fig. 3, we observe that as P[H0] increases from 0.9 to
0.99, P III

0 expands in size. This outcome aligns with our
expectations that a higher probability of the null hypoth-
esis corresponds to a larger acceptance region, eventually
leading to no rejection in the limit as P[H0] → 1. Further-
more, looking at the first and the third rows, we note that
increasing τ 2 from 0.5 to 10, i.e. increasing the volume of
�x , reduces the size of P III

0 . This happens as enlarging the
desirable region �x makes the probability constraint on the
DIA-estimator more relaxed so that a more frequent selec-
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Fig. 1 Misclosure space partitioning corresponding with the simple
example for traditional DIA (cf. 21 and 25) assuming σ = 1 and
PFA = 0.01. The partitioning regions P I

i∈[0,...,3] are shown in differ-
ent shades of gray, getting darker as i increases from 0 to 3. The panels

from left to right correspond to different sets of biases b = [b1, b2, b3],
as indicated at the top of each panel. The projection of observation bias
vectors onto the misclosure space is shown in the right panel

Fig. 2 Misclosure space partitioning corresponding with the simple
example for maximizing probability of correct hypothesis identification
(cf. 30) assuming σ = 1 and P[H0] = 0.9. The partitioning regions
P II
i∈[0,...,3] are shown in different shades of gray, getting darker as i

increases from 0 to 3. The panels from left to right correspond to dif-
ferent sets of biases b = [b1, b2, b3], as indicated at the top of each
panel

tion of the alternatives, even thoughH0 is highly likely to be
the true hypothesis, would still results in acceptable solutions
for x . A comparison between the first and last row reveals,
upon constrainingP0, thatP III

0 \P IV
0 is predominantly inher-

ited byH1, which, among the alternative hypotheses, has the
smallest bias value.

Finally,we note thatwhen the penalties change from {0, 1}
to P[χ2(n, λ jα) > τ 2], the geometry of the partitioning
regions can change to the extent that some regions may leak
between two adjacent areas, rendering them non-adjacent.
For example, compare the left panels in Fig. 2 and the third
row of Fig. 3. To further illustrate this difference, Fig. 4 [top]
shows the latter, superimposed with the borders of the for-

mer. The bottom panel presents the penalty matrix, rounded
to three decimal places, corresponding to the colored par-
titioning, with each column representing the penalties for
different testing decisions under Hα , where α = 0, . . . , 3
from left to right. Each column of the penalty matrix, from
top to bottom, contains the penalties for selectingHi , where
i = 0, . . . , 3. It can be seen that the penalty for choosingH1

whenH0 is true, or choosingH0 whenH1 is true, is approx-
imately 4 times and 40 times smaller than the penalties for
choosingH2 andH3 whenH0 is true, or choosingH0 when
H2 and H3 is true, respectively. This explains why P III

0 is
fully encompassed by P III

1 , and shares no common borders
with P III

2 or P III
3 . In addition, the penalty for choosing H1
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Fig. 3 Misclosure space partitioning corresponding with the simple
example formaximizing probability of correct parameter estimation (cf.
38) assuming σ = 1. The last row shows the P0-constrained version
of the top row setting PFA = 0.01. The partitioning regions P III

i∈[0,...,3]

and P IV
i∈[0,...,3] are shown in different shades of gray, getting darker as

i increases from 0 to 3. The columns from left to right correspond to
different sets of biases b = [b1, b2, b3], as indicated at the top of each
column
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Fig. 4 [Top] Illustration of the left panel in the third row of Fig. 3,
superimposed with the borders of the left panel of Fig. 2. [Bottom]
Penalty matrix corresponding to the colored partitioning, with each
column representing the penalties for different testing decisions under
Hα , where α = 0, . . . , 3 from left to right. Each column, from top to
bottom, contains the penalties for selecting Hi , where i = 0, . . . , 3

underH3 (and vice versa) is 15 times higher than the penalty
for choosing H1 under H2 (and vice versa). Consequently,
P III
2 leaks between P III

1 and P III
3 due to the large harm asso-

ciated with selecting H1 for misclosure vectors originating
from H3.

4.1.2 DIA-estimator quality

The misclosure space partitionings P ι
i∈[0,...,k] for ι ∈

{I, . . . , IV} yield different DIA-estimators, denoted by x̄ ι for
ι ∈ {I, . . . , IV}. Among these, x̄ III has the highest probability
of lying inside the user-specified safety region �x , making
it the optimalDIA-estimator from an estimation perspective.
The quality of the other estimators can then be evaluated rel-
ative to x̄ III by assessing their probabilities of falling within
�x .

Using the total probability rule, and given (35) and that
the estimators x̂ i∈[0,...,k] in (9) are independent of t under
Hα∈[0,...,k], one can write

P(x̄ ι ∈�x )=
k∑

α=0

P[Hα]
k∑

i=0

P[χ2(n, λiα)≤τ 2]P(t ∈ P ι
i |Hα)

(41)

While P[χ2(n, λiα) ≤ τ 2] can be approximated using Chi-
square distribution tables, see, e.g. (Haynam et al. 1982;
Costa et al. 2010), the computation of P(t ∈ P ι

i |Hα) can be

done through a Monte-Carlo simulation (Robert and Casella
2004). In doing so, we leverage the fact that probabilities can
be expressed as expectations, and thus we have

P(t ∈ P ι
i |Hα) =

∫

P ι
i

ft (τ |Hα) dτ

=
∫

Rr
ft (τ |Hα)pι

i (τ ) dτ

= E(pι
i (t)|Hα)

(42)

with pι
i (t) the indicator function of P ι

i . The expectation in
the last equality can be approximated by averaging a suffi-
cient number of samples from the distribution. Let t (s) ∈ R

r ,
s = 1, ..., N , be sample vectors independently drawn from
the distribution ft (τ |Hα). Then, for sufficiently large N ,
determined by the requirements of the application at hand,
the probability (42) can be well approximated by

P̂(t ∈ P ι
i |Hα) =

∑N
s=1 p

ι
i (t

(s))

N
, for ι = I, . . . , IV (43)

The difference between the four DIA-estimators in terms
of the probability (41) is driven by the difference in their
corresponding partitioning regions through P(t ∈ P ι

i |Hα).
If the individual probabilities P[χ2(n, λiα) ≤ τ 2] all take
the same value, then, since

∑k
i=0 P

ι(t ∈ Pi |Hα) = 1 and
∑k

α=0 P[Hα] = 1, the probability (41) would become iden-
tical across all the four DIA-estimators. This comes close to
reality when, e.g. τ → 0 or τ → ∞, and/or A+Cαbα → 0
for all α ∈ [1, . . . , k] (small influential biases).

We note that P[H0] is usually much larger than P[Hα �=0].
In the limit when P[H0] → 1, the maximization problem in
(38) reduces to

i = arg max
j∈[0,...,k]P[χ

2(n, λ j0) ≤ τ 2] (44)

The solution to this problem is i = 0, implying that one
would always accept the null hypothesis, i.e. P III

0 → R
r .

This is also the case with the testing procedure in (30),
i.e. P II

0 → R
r , as SIIj �=0 → ∞ when P[H0] → 1. There-

fore, the DIA-estimators x̄ II and x̄ III would have similar
probabilistic properties, and thus similar values for (41),
when P[H0] → 1, as both would approach x̂0. Note that
if P0 is constrained, then in (44), [0, . . . , k] is replaced with
[1, . . . , k]. This results in selecting the index of the alter-
native hypothesis with the smallest noncentrality parameter
λ j0, which, for the current simple example, corresponds to
the alternativewith the smallest biasmagnitude. For example,
if b1 has the smallest magnitude among the biases, then H1

would always be accepted if the null hypothesis is rejected,
i.e. P IV

1 → R
r \ P IV

0 . Consequently, the DIA estimator x̄ IV

would be driven solely by x̂0 and x̂1, with their contribution
determined by PFA.
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In Fig. 5, the panels in the first row show P(x̄ III ∈ �x ) as
a function of τ 2 (cf. 35) for P[H0] = 0.9, 0.99, assuming
different ranges of bias values b = [b1, b2, b3]. The panels
from the second rowdownward show the differences between
P(x̄ III ∈ �x ) and each of the probabilities P(x̄ IV ∈ �x ),
P(x̄ II ∈ �x ) and P(x̄ I ∈ �x ), respectively. These prob-
abilities have been computed numerically using (43) with
N = 106. The probability P(x̄ III ∈ �x ) shows only marginal
sensitivity to changes in the values of the biases and P[H0].
As expected, all the graphs from the second row onward in
Fig. 5 take values close to zero when τ 2 → 0, and they
approach zero again as τ 2 → ∞.

The probability P(x̄ II ∈ �x ) closely follows P(x̄ III ∈ �x )

particularly when P[H0] is close to one. It is observed that as
the biases and their differences become larger, the difference
between these two probabilities take on smaller values. This
is consistentwith Figs. 2 [right] and 3 [right],which show that
the partitioning regionsP II

i∈[0,...,3] andP III
i∈[0,...,3] converge as

the biases become larger. We also note that the small proba-
bility difference between P(x̄ III ∈ �x ) and P(x̄ II ∈ �x ) for
b = [5, 10, 20] exhibits significant variability across simu-
lation runs. This variability can bemitigated by using a larger
number of samples, N , or by applying variance-reduction
techniques, see, e.g. (Kroese et al. 2011). Furthermore, the
difference between P(x̄ III ∈ �x ) and P(x̄ II ∈ �x ) can take
large values depending on the influence of biases on the esti-
mator x̂0, referred to as influential biases. As (37) shows, the
penalty functions (36) are driven by these influential, i.e. non-
testable, biases PAcibi (i = 1, . . . , k), where PA = AA+
represents the projector that orthogonally projects, in the
metric of Qyy , onto the range space of matrix A (Teunis-
sen 2024a). The partitioning P III

i∈[0,...,k], through its choice
of penalty functions, seeks to mitigate the influence of these
influential biases, which is not the case with the partitioning
P II
i∈[0,...,k] which uses a set of fixed penalty functions, i.e.

{0, 1}. For the current example, the ci vectors form an angle
of approximately 55◦ with the range space of A, suggesting
that almost 50% of the observation bias ci bi is testable, while
the remaining 50% is influential. Now, consider a new set of
fault lines

c1 =
⎡

⎣
1
1

0.99

⎤

⎦ , c2 =
⎡

⎣
1

0.99
1

⎤

⎦ , c3 =
⎡

⎣
0.99
1
1

⎤

⎦ (45)

which are almost aligned with the range space of A. The
observation biases happening along the above fault lines
are almost non-testable as cti ≈ 0. The difference between
P(x̄ III ∈ �x ) and P(x̄ II ∈ �x ) for this case, assuming
b1 = 1, b2 = 2, b3 = 4, is illustrated in Fig. 6. As shown,
this difference can now take large values.

The probabilities P(x̄ IV ∈ �x ) and P(x̄ I ∈ �x ) in
Fig. 5 show significant differences from P(x̄ III ∈ �x ). The

magnitude of these differences increases as the biases and
their differences grow, PFA becomes larger, and/or P[H0]
approaches one. When P[H0] is sufficiently close to one,
x̄ III can be approximated by x̂0, leading to the following
approximation

P(x̄ III ∈ �x ) − P(x̄ ι ∈ �x ) ≈
k∑

i=1
[P(x̂0 ∈ �x |H0) − P(x̂ i ∈ �x |H0)]P(t ∈ P ι

i |H0),

ι = I, IV

(46)

with
∑k

i=1 P(t ∈ P ι
i |H0) = PFA.ReducingPFA by, for exam-

ple, a factor of 10 results in a proportional decrease in the
probability difference (46), which is corroborated by the sec-
ond and fourth rows in Fig. 5. When the biases grow, while
P(x̂0 ∈ �x |H0) remain invariant, P(x̂ i ∈ �x |H0) becomes
smaller, leading to larger values for [P(x̂0 ∈ �x |H0)−P(x̂ i ∈
�x |H0)]. In the extreme case, when for example bi << b j

for all j �= i , then, as also confirmed by Figs. 1 and
3, P ι

i grows at the cost of shrinking P ι
j �=i . Consequently,

P(t ∈ P ι
i |H0) → PFA while P(t ∈ P ι

j �=i |H0) → 0. In this
case, (46) can be approximated by [P(x̂0 ∈ �x |H0)−P(x̂ i ∈
�x |H0)]PFA which is an increasing function of bi .

As the user controls the false alarm probability when P0

is set by the OMT, it may motivate a comparison of the
DIA estimators x̄ I and x̄ IV against x̄ III for the same prob-
ability of false alarms. This probability for the partitioning
P III
i∈[0,...,k] can be numerically computed using the approxi-

mation in (43). Note that, in addition to the bias values, PFA
for P III

i∈[0,...,k] also depends on τ 2. Figure 7 illustrates the

probability differences P(x̄ III ∈ �x ) − P(x̄ IV ∈ �x ) (solid
lines) and P(x̄ III ∈ �x )−P(x̄ I ∈ �x ) (bold lines), alongwith
PFA associated withP III

i∈[0,...,k] (dashed lines) as a function of
τ 2 for different sets of biases, assuming P[H0] = 0.9.

All the probability differences in Fig. 5 initially show an
increasing trend as a function of τ 2, followed by a decrease,
and eventually stabilize.We explain this behavior for the bot-
tom panels, making the simplifying assumption that P[H0]
is sufficiently close to one, such that the approximation (46)
can be used. As �x is an x-centered region and the PDF of
x̂0 is more peaked around x than the PDF of x̂ i �=0, when τ 2

starts increasing from zero, P(x̂0 ∈ �x |H0) increases more
rapidly than P(x̂ i �=0 ∈ �x |H0). This, along with the fact that

these probabilities are continuous functions of τ 2 and that
their difference approaches zero when τ 2 → 0 or τ 2 → ∞,
results in an increasing and then decreasing behavior of the
probability difference in (46).

4.2 Surveying example

To determine the three-dimensional coordinates of a point,
denoted by [e,n,h]T ∈ R

3, five distance measurements are
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Fig. 5 Comparison of the
DIA-estimators x̄ ι for
ι ∈ {I, . . . , IV} corresponding
with the simple example. These
results are obtained assuming
P[Hi �=0] = (1 − P[H0])/3.
[First row] The probability
P(x̄ III ∈ �x ) as a function of τ 2,
with a zoom-in view. [Second
row] The difference between
P(x̄ III ∈ �x ) and P(x̄ IV ∈ �x )

as a function of τ 2 for
PFA = 0.1 with an inset panel
showing the result for
PFA = 0.01. [Third row] The
difference between P(x̄ III ∈ �x )

and P(x̄ II ∈ �x ) as a function of
τ 2, with a zoom-in view. [Fourth
row] The difference between
P(x̄ III ∈ �x ) and P(x̄ I ∈ �x ) as
a function of τ 2 for PFA = 0.1
with an inset panel showing the
result for PFA = 0.01. [Left]
P(H0) = 0.9. [Right]
P(H0) = 0.99
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Fig. 6 The difference between P(x̄ III ∈ �x ) and P(x̄ II ∈ �x ) as a
function of τ 2 for (45), assuming b1 = 1, b2 = 2, b3 = 4, P(H0) =
0.9, and P[Hi �=0] = (1 − P[H0])/3

Fig. 7 [Left axis] The probability differences P(x̄ III ∈ �x ) − P(x̄ IV ∈
�x ) (solid lines) and P(x̄ III ∈ �x ) − P(x̄ I ∈ �x ) (bold lines) as a
function of τ 2. [Right axis]PFA associatedwithP III

i∈[0,...,k] (dashed lines)
as a function of τ 2. The results are presented for different sets of biases:
b = [1, 2, 4] (blue), b = [2, 4, 8] (red) and b = [5, 10, 20] (gray),
assuming P[H0] = 0.9 and P[Hi �=0] = (1 − P[H0])/3

designed between the point and five different Permanent Sur-
vey Marks (PSMs), i.e. PSMi for i = 1, . . . , 5, with known
coordinates [ei ,ni ,hi ]T as shown in Fig. 8. We assume that
the unknown point is occupied by a total station taking slope
distance measurements to the prism reflectors set up on the
PSMs. Under the null hypothesis H0, it is assumed that all
of the five prisms are of the same type, say ‘Type-1’, with a
known prism constant. UnderH0, the linearized observation
equation of the slope distance measured from the unknown
point to PSMi , reads

H0 : E(di ) = uTi x, i = 1, . . . , 5 (47)

Fig. 8 A geodetic network, consisting of five PSMs (triangles) and
one unknown point (circle). Using a total station over the unknown
point, a slope distance is measured to the prism on each PSM. The
known coordinates of each PSM and the approximate coordinates of
the unknown point are shown next to them

withdi the observed-minus-computed distancemeasurement
corrected for the prism constant, ui = 1

li
[e−ei , n−ni , h−

hi + (hT − hPi )]T the unit direction vector of the line of
sight from prism to total station telescope, hPi the height of
prism, hT the height of total station, li the computed length
of the line of sight and x the coordinate increment vector of
the unknown point. Note, in the following, that we assume
hT = hP1 = . . . = hP5 .

The distance measurement errors are assumed to be
uncorrelated and normally distributed, and also of the same
standard deviation equal to σ = 5mm. The matrix–vector
representation of (47) reads

H0 : E(d) = A x, D(d) = σ 2 I5 (48)

with d = [d1, . . . , d5]T ∈ R
5 and A = [u1, . . . , u5]T ∈

R
5×3. With m = 5 distance measurements and n = 3

unknown coordinate increments, the redundancy under H0

is r = 2. Now let us assume that there is a suspicion that one
of the prisms is of another type, say ‘Type-2’, again with a
known prism constant but differing from that of ‘Type-1’ by
an amount of μ. In this case, five hypotheses alternative to
(48) can be formed as

Hi : E(d) = A x + ciμ, D(d) = σ 2 I5, i = 1, . . . , 5 (49)

Note that the biases under all the alternative hypotheses are
of the same value, i.e. bi = μ (i = 1, . . . , 5).

Assuming μ = 40mm, P[H0] = 0.9, P[Hi �=0] =
(1 − P[H0])/5 and PFA = 0.001, Fig. 9, from left to right,
illustrates the partitionings (21)+(25), (30), (38) and its P0-
constrained variant with τ 2 = 60. Note that the misclosure
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Fig. 9 Misclosure space partitioning corresponding with the survey-
ing example. The panels, from left to right, show P ι

i∈[0,...,5], for ι ∈
{I, . . . , IV}, respectively,whereby the partitioning regions are displayed

in different shades of gray, getting darker as i increases from 1 to 5, with
P ι
0 shown in green. These results are obtained assuming μ = 40mm,

P[H0] = 0.9, P[Hi �=0] = (1 − P[H0])/5, PFA = 0.001 and τ 2 = 60

is formed by

B =

⎡

⎢
⎢
⎢
⎢
⎣

66.092 −137.603
70.339 70.181

−110.96 −111.547
120.377 −51.793
−62.302 31.855

⎤

⎥
⎥
⎥
⎥
⎦

(50)

whose elements are shown to three decimal places, and
yields Qtt = I2. The partitioning regions P ι

i∈[1,...,5], for
ι ∈ {I, . . . , IV}, are shown in different shades of gray, getting
darker as i increases from 1 to 5, with P ι

0 shown in green.
In addition, E(t |Hi ) = cti bi for i = 1, . . . , 5 are also shown
as black vectors in the left panel. The relative orientation of
these vectors is determined by the geometry of the network.
For instance, the angle between two vectors cti and ct j can
be computed from (Zaminpardaz and Teunissen 2019)

cos � (cti , ct j ) = −ūTi ū j
√(

1 − ‖ūi‖2
) × (

1 − ‖ū j‖2
) (51)

where ūi = G−T ui with GT the Cholesky-factor of the
Cholesky-factorization Cxx = ∑m

l=1 ulu
T
l = GTG. The

above equation results from the identity BQ−1
t t BT = Q−1

yy −
Q−1

yy AQx̂0 x̂0 A
T Q−1

yy with Qx̂0 x̂0 = σ 2C−1
xx , and also the fact

that the B matrix in use corresponds to Qtt = I2. There-
fore the angle between cti and ct j is determined by the angle
between ūi and ū j as well as their length. For the network
geometry illustrated in Fig. 8, we have

ū1 =
⎡

⎣
0.431
0.457

−0.152

⎤

⎦ , ū2 =
⎡

⎣
−0.433
0.494

−0.567

⎤

⎦ , ū3 =
⎡

⎣
−0.552
−0.010
−0.277

⎤

⎦ ,

ū4 =
⎡

⎣
−0.221
−0.689
−0.218

⎤

⎦ , ū5 =
⎡

⎣
0.523

−0.270
−0.729

⎤

⎦ (52)

These values, rounded to three decimal places, in tandem
with (51) explain why ct2 and ct3 are almost parallel, as well
as why ct4 and ct5 are almost parallel.

As shown in Fig. 9, due to the assumption that P[Hi ] =
P[H j ] for i �= j , the boundaries separating the regions P II

i �=0

and P II
j �=0, as well as those separating P I

i �=0 and P I
j �=0 for

i, j = 1, . . . , 5, are situated on the same hyperplanes. Com-
paring the two middle panels, we note that changing the
penalties from {0, 1} to P[χ2(n, λ jα) > τ 2] causes the H0

region leak between those of H1-H3, H1-H4, and H3-H5.
In addition, theH3 region leak between those ofH0-H2 and
H2-H4. This behavior can be understood by examining the
penalty matrix corresponding to P III

i∈[0,...,5], which, to three
decimal places, is given by

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.000 0.008 0.253 0.004 0.060 0.452
0.008 0.000 0.523 0.872 0.998 0.439
0.253 0.523 0.000 0.002 0.991 0.988
0.004 0.872 0.002 0.000 0.061 0.973
0.060 0.998 0.991 0.061 0.000 0.635
0.452 0.439 0.988 0.973 0.635 0.000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(53)

The entries of the matrix are determined by the geometry of
the network shown in Fig. 8, through the relationship

λ jα = μ2

σ 2 ‖ū j − ūα‖2 (54)

with ū0 = 0. The penalty for selecting H j under Hα (and
vice versa) increases with the distance between the vectors
ū j and ūα , and decreases as the distance becomes smaller.

From (53), it can be seen that the penalties associated
with the pairsH1-H3 andH1-H4 are over 100 times greater
than that of the pair H0-H1. This explains why P III

1 is fully
encompassed by P III

0 , and shares no common borders with
P III
3 orP III

4 . Similarly, the penalty for the pairH3-H5 exceeds
that ofH0-H3 by more than 240 times, resulting in no shared
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Fig. 10 Comparison of the
DIA-estimators x̄ ι for
ι ∈ {I, . . . , IV} corresponding
with Fig. 8. These results are
obtained assuming P[H0] = 0.9
and P[Hi �=0] = (1 − P[H0])/5.
[Top-left] The probability
P(x̄ III ∈ �x ) as a function of τ 2,
with a zoom-in view. [Top-right]
The difference between
P(x̄ III ∈ �x ) and P(x̄ IV ∈ �x )

as a function of τ 2 for
PFA = 0.1 with an inset panel
showing the result for
PFA = 0.001. [Bottom-left] The
difference between P(x̄ III ∈ �x )

and P(x̄ II ∈ �x ) as a function of
τ 2. [Bottom-right] The
difference between P(x̄ III ∈ �x )

and P(x̄ I ∈ �x ) as a function of
τ 2 for PFA = 0.1 with an inset
panel showing the result for
PFA = 0.001

border between P III
3 and P III

5 . In contrast to the second panel
(from the left), the region corresponding to H2 in the third
panel does not share borders withH0,H4 andH5, but instead
shares a border with H3. This is due to the penalties for the
pairs H0-H2, H2-H4 and H2-H5 being larger than that of
H2-H3 by factors of 127, 496 and 494, respectively.

Comparing the two panels on the right of Fig. 9, we
observe that constraining P0 to be determined by the over-
all model test does not result in significant changes to the
geometry of the regions corresponding toHα∈[1,...,k]. The pri-
mary difference is that theH0 region, located between these
regions in the second panel (from the right), is replaced by
regions of the alternative hypotheses, depending on the cor-
responding penalties. For instance, the region ofH4 extends
between H3 and H5 as the penalty for the pair H3-H4 is 16
times smaller than that for H3-H5.

A comparison among the four DIA-estimators x̄ ι for
ι = I, . . . , IV is shown in Fig. 10, assuming P[H0] = 0.9,
P[Hi �=0] = (1 − P[H0])/5, μ = 10, 20, 30, 40, 50mm and
PFA = 0.1, 0.001. Similar to our observations from Fig. 5,
there can be significant differences between P(x̄ I ∈ �x )

and P(x̄ III ∈ �x ), as well as between P(x̄ IV ∈ �x ) and
P(x̄ III ∈ �x ) depending on μ, τ 2, and PFA. While P(x̄ II ∈
�x ) closely follows P(x̄ III ∈ �x ) for the considered alter-
native hypotheses, their difference can become significant if
these hypotheses are replaced by ones describing more influ-
ential observation biases, as seen in the simple model. For
instance, in (49), angles of approximately 50◦ are formed by
c1 and c3 with the range space of A. By substituting them

Fig. 11 The difference between P(x̄ III ∈ �x ) and P(x̄ II ∈ �x ) as
a function of τ 2 for (55), assuming μ = 40mm, P(H0) = 0.9, and
P[Hi �=0] = (1 − P[H0])/5.

with the following fault lines

c1 =

⎡

⎢
⎢
⎢
⎢
⎣

0
1
1
0
0

⎤

⎥
⎥
⎥
⎥
⎦

, c3 =

⎡

⎢
⎢
⎢
⎢
⎣

0
0
0
1
1

⎤

⎥
⎥
⎥
⎥
⎦

(55)

which describe the use of Type-2 prisms on survey point
pairs PSM2-PSM3 and PSM4-PSM5, respectively, these new
fault lines form angles of around 12◦ with the range space
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of A. Consequently, the observation biases along these new
fault lines are much more influential compared to their coun-
terparts in (49). The difference between P(x̄ III ∈ �x ) and
P(x̄ II ∈ �x ) for this case, assumingμ = 40mm, is illustrated
in Fig. 11, showing significantly larger values compared to
the purple graph in Fig. 10 [bottom-left].

4.3 Leveling example

To establish three new survey points (P1, P2, P3), a level-
ing loop is performed that includes these points as well as
three benchmarks (BM1, BM2, BM3) with known heights
as shown in Fig. 12. The loop, consisting of six instru-
ment set-ups, starts and finishes at BM1 progressing in a
clockwise direction. Let �h ∈ R

6 contain the measured
height differences between successive points. We define
y = �h+[hBM1 , hBM2e

⊥T

2 , hBM3e
⊥T

2 ,−hBM1 ]T with hBMi

the known height of BMi and e⊥
2 = [−1, 1]T being orthogo-

nal to e2.Under the null hypothesis, the observation equations
to find the unknown heights of the survey points (P1, P2, P3),
stacked in x ∈ R

3, reads

H0 : E(y) = −(I3 ⊗ e⊥
2 ) x, D(y) = σ 2 I6 (56)

with ⊗ the Kronecker product and σ the standard deviation
of the height difference measurements which are assumed to
be independent and equally precise. The redundancy under
H0 is r = 3.

As Fig. 12 shows, BM
′
2 and BM

′
3 are in close proximity

to BM2 and BM3, respectively. Therefore, it is suspected
that BM2 and/or BM3 might have been confused with their
nearby benchmarks. Let us assume that hBM′

2
− hBM2 =

hBM′
3
−hBM3 = μwhereμ is known. Then three hypotheses

alternative to (56) can be defined as follows

H1 : E(y) = −(I3 ⊗ e⊥
2 ) x +

⎡

⎣
0

−e⊥
2

03

⎤

⎦μ, D(y) = σ 2 I6

H2 : E(y) = −(I3 ⊗ e⊥
2 ) x +

⎡

⎣
03

−e⊥
2

0

⎤

⎦μ, D(y) = σ 2 I6

H3 : E(y) = −(I3 ⊗ e⊥
2 ) x +

⎡

⎢
⎢
⎣

0
−e⊥

2
−e⊥

2
0

⎤

⎥
⎥
⎦μ, D(y) = σ 2 I6

(57)

Among the above alternatives, H1 describes the confusion
of BM2 with BM

′
2,H2 describes the confusion of BM3 with

BM
′
3, and H3 describes the confusion of both benchmarks

with their nearby counterparts.

Fig. 12 A leveling network, consisting of a loop, running through six
points with three of them being benchmarks (black triangles). The
curved arrow in the middle indicates that the leveling progresses in
a clockwise direction starting from and ending at BM1. The curves
between points indicate the observed height differences

Figure 13 shows a comparison among the four DIA-
estimators x̄ ι for ι = I, . . . , IV, assuming σ = 5mm,
P[H0] = 0.9, P[Hi �=0] = (1 − P[H0])/3, PFA = 0.1, 0.001,
and μ = 10, 20, 30mm. We note that the graphs in the top
right panel closely resemble those in the bottom right panel
in terms of values. The results depicted in these figures are
consistentwith the trends identified in the previous examples.

5 Summary and conclusions

In this contribution, we studied four members from the class
of DIA-estimators, whosemisclosure-space partitionings are
defined based on the concept of minimum mean penalty
testing (Teunissen 2024a). This approach involves assign-
ing penalty functions to each of the partitioning decision
regions in misclosure space, calculating the mean penalty
for each partitioning using the distribution of the misclo-
sure vector, and identifying the partitioning that minimizes
the mean penalty. Our focus was on cases where the biases
under the alternative hypotheses were fully known.

The minimum-mean penalty partitionings we considered
correspond to: I) the traditional DIA procedure, which com-
bines the OMT with likelihood-ratio-based tests, and is
commonly used in geodetic applications; II) maximizing
probability of correct hypothesis identification; III) maxi-
mizing probability of correct parameter estimation; and IV)
aP0-constrained version of III, whereP0 was set to that of I.
It was demonstrated that partitioning I is a special case of II
when itsP0 is determined by theOMT.We also discussed the
conditions under which two hypotheses can be distinguished
through the testing procedures associatedwith thementioned
partitionings.

To compare the four DIA-estimators, we examined their
misclosure-space partitioning and evaluated the probabilities
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Fig. 13 Comparison of the
DIA-estimators x̄ ι for
ι ∈ {I, . . . , IV} corresponding
with Fig. 12. These results are
obtained assuming P[H0] = 0.9
and P[Hi �=0] = (1 − P[H0])/3.
[Top-left] The probability
P(x̄ III ∈ �x ) as a function of τ 2,
with a zoom-in view. [Top-right]
The difference between
P(x̄ III ∈ �x ) and P(x̄ IV ∈ �x )

as a function of τ 2 for
PFA = 0.1 with an inset panel
showing the result for
PFA = 0.001. [Bottom-left] The
difference between P(x̄ III ∈ �x )

and P(x̄ II ∈ �x ) as a function of
τ 2, with a zoom-in view.
[Bottom-right] The difference
between P(x̄ III ∈ �x ) and
P(x̄ I ∈ �x ) as a function of τ 2

for PFA = 0.1 with an inset
panel showing the result for
PFA = 0.001

of these estimators falling within an x-centered ellipti-
cal safety region. This analysis was conducted using three
distinct examples: three repeat measurements of a sin-
gle quantity, distance measurements in a three-dimensional
geodetic network, and height-difference measurements in a
leveling network. In all cases, we assumed that the alterna-
tive hypotheses were equally likely. It was discussed how
the distinct penalty functions of III, compared to those of II,
account for the differences in their partitionings.Weobserved
that, depending on how influential the observation biases are,
the DIA estimator of II can deviate significantly from III in
terms of its probability of falling within the safety region.
Additionally, significant differences can arise between the
DIA estimators of I and IV relative to III. These differences
depend on the size of the biases, the extent of the safety
region, and the probability of false alarm.

Appendix

Proof of Lemma 1 ‘if’ part: Let us assume that P I
i j = P I

i ∩
P I

j �= ∅ for i �= j . Then, for some t ∈ R
r \ P I

0, we have

‖t − Cti bi‖2Qtt
= ‖t − Ct j b j‖2Qtt

(58)

or alternatively

2(Ct j b j − Cti bi )
T Q−1

t t t = κi j (59)

with κi j = ‖Ct j b j‖2Qtt
− ‖Cti bi‖2Qtt

. From the above,
two conclusions can be made: (1) t lies in the hyper-
plane as defined by (59); (2) Cti bi = Ct j b j . With t i j =
2(Ct j b j −Cti bi )

T Q−1
t t t being a continuous random variable

with nonzero variance, its probability being equal to the con-
stant value κi j is zero, i.e P(t ∈ P I

i j ) = 0. Therefore, the
probability of the occurrence of the former conclusion is zero.
Also, the latter conclusion contradicts our earlier assumption
ofCibi −C jb j �= Av for all v ∈ R

n . Therefore,P I
i ∩P I

j = ∅
for any i �= j .

‘only if’ part: Let us assume that there exists some v ∈ R
n

so that Cibi −C jb j = Av, and hence Cti bi = Ct j b j , which
implies that SIi = SIj for all t ∈ R

r . This reveals thatP I
i = P I

j

which contradicts our earlier assumption of P I
i ∩ P I

j = ∅.
Therefore,Cibi −C jb j �= Av for all v ∈ R

n , and any i �= j .

�

Proof of Lemma 3 ‘if’ part: Let us assume that P II
i j = P II

i ∩
P II

j �= ∅ for i �= j . Then, for some t ∈ R
r , we have

‖t−Cti bi‖2Qtt
− ln[P[Hi ]]2 = ‖t−Ct j b j‖2Qtt

− ln[P[H j ]]2
(60)

or alternatively

2(Ct j b j − Cti bi )
T Q−1

t t t = κi j (61)
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with κi j = ‖Ct j b j‖2Qtt
− ‖Cti bi‖2Qtt

− ln[P[H j ]]2 +
ln[P[Hi ]]2. From the above, two conclusions can be made:
(1) t lies in the hyperplane as defined by (61); (2) Cti bi =
Ct j b j and P[Hi ] = P[H j ]. With t i j = 2(Ct j b j −
Cti bi )

T Q−1
t t t being a continuous random variable with

nonzero variance, its probability being equal to the constant
value κi j is zero, i.e P(t ∈ P II

i j ) = 0. Therefore, the former
conclusion has zero probability of occurring. Also, the latter
conclusion contradicts our earlier assumptions (1) and (2).
Therefore, P II

i ∩ P II
j = ∅ for any i �= j .

‘only if’ part: Let us assume that P[Hi ] = P[H j ] and that
there exists some v ∈ R

n so that Cibi − C jb j = Av, and
henceCti bi = Ct j b j . Therefore, we have SIIi = SIIj for all t ∈
R
r , which reveals that P II

i = P II
j . This however contradicts

our earlier assumption of P II
i ∩ P II

j = ∅. Therefore, at least
one of (1) and (2) should hold true. 
�
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