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We experimentally and theoretically demonstrate that nonlinear spin-wave dynamics can induce an
effective resonant interaction between nonresonant magnon modes in a yttrium iron garnet disk. Under
strong pumping near the ferromagnetic resonance mode, we observe a spectral splitting that emerges with
increasing drive amplitude. This phenomenon is well captured by a theoretical framework based on the
linearization of a magnon three-wave mixing Hamiltonian, which at high power leads to parametric Suhl
instabilities. The access and control of nonlinear magnon-parametric processes enable the development of
experimental platforms in an unexplored parameter regime for both classical and quantum computation
protocols.

DOI: 10.1103/jnpb-2mxx

Ferromagnetic resonance (FMR) [1,2] is a well-
established experimental technique for studying the
dynamics of magnons, collective spin excitations in mag-
netically ordered materials. The power absorption that
arises when the Larmor precession of spins under an
external bias field resonates with microwave signals stands
at the core of magnonics [3]. Coherent interactions between
spin-waves and microwave fields have potential applica-
tions in sensing, transduction, and information processing
[4–11]. The collective nature of magnons makes them well
suited for coupling to photons [12,13], phonons [14,15],
and electronic charge [16]. Moreover, their integration with
superconducting qubits has enabled the generation of
magnon quantum states [7,10,17], while their tunability
opens pathways to exploring non-Hermitian band theory
[18]. Theoretically, proposals exist for realizing robust
magnon squeezed states [19,20] and generating quantum
entanglement [21–23].
Most FMR experiments operate in the linear regime,

where higher-order processes are negligible. However, at
higher magnon amplitudes, nonlinear phenomena such as
Suhl instabilities can emerge [24]. These intrinsic non-
linearities stem from higher-order contributions to the
magnetic energy density in the Landau-Lifshitz-Gilbert
equation [25] and the power expansion of the spin
Hamiltonian in bosonic operators under the Holstein-
Primakoff transformation [26,27]. The first nonlinear term,

which causes the first-order Suhl instability, involves the
coupling of three magnon modes in the form of three-wave
mixing. Figure 1(a) schematically depicts this coupling for
the case of the decay of a zero-momentum mode m̂0 at
frequency ω0 into two counterpropagating modes m̂�k at
half the frequency ω0=2. Indirect evidence of these three-
magnon interactions has been observed in studies of FMR
mode saturation and decay mechanisms [28,29] and, more
recently, in cavity magnonics [30] and nanoscale ferro-
magnets [31–33]. However, a systematic framework for
controlling and manipulating the magnon three-wave
mixing Hamiltonian has yet to be established, hindering
deeper exploration and practical applications of these
interactions.
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FIG. 1. FMR in a driven YIG disk leading to parametric
instability. (a)Three-wavemixing: k ¼ 0modedecays into counter-
propagating magnons �k at ω0=2. (b) Device: YIG disk on a
50 Ohm transmission line. (c) Measured FMR amplitude and phase
response of the k ¼ 0magnonmode at 28mT. Solid lines represent
a fit yielding ω0=2π ¼ 2.15 GHz and γ0=2π ¼ 58.94 MHz.
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In this Letter, we study a magnon-magnon coupling
phenomenon originating from the three-wave interaction in
a driven ferrimagnetic disk. Analytical solutions of the
Hamiltonian dynamics show that linearizing the magnon
three-wave mixing term yields an effective resonant beam-
splitter interaction between the mode at k ¼ 0 and the
excited magnon pair at �k [see Fig. 1(a)]. The strength of
this coupling shows a nonlinear dependence on the input
microwave power. In addition, we show that this effect is
visible only below a threshold external magnetic field,
above which energy-momentum conservation cannot be
satisfied.
The device is a 350-μm-thick, two-sided polished

yttrium iron garnet (YIG) (Y3Fe5O12) disk with a diameter
of 5 mm grown along the ½111� crystallographic axis by the
floating zone method, with a Curie temperature of
559 K [34]. The disk is placed on a 50 Ω transmission
line narrower than the magnetic sample, as shown in
Fig. 1(b). An external magnetic fieldHext is applied parallel
to the feedline. We measure the microwave transmission
spectrum S21 through the transmission line at room temper-
ature using a vector network analyzer as a function of
frequency ω=2π, microwave power P, and magnetic field.
With a single-tone measurement, sweeping the probe in
frequency as a function of external field, we observe several
magnetostatic modes of the disk. The resonances corre-
spond to Walker modes with azimuthal nodes along the
direction of the field [35–37]. Here, we address the most
prominent resonance dip in the spectrum corresponding
to a homogeneous mode both in plane and across the
thickness, as confirmed by micromagnetic simulations
(see Supplemental Material [37], which includes
Refs. [38–40]). The amplitude of its resulting transmission
at P ¼ −20 dBm and Hext ¼ 28 mT is shown in Fig. 1(c).
Fitting the FMR [41], we extract ω0=2π ¼ 2.15 GHz,
γext=2π ¼ 50.06 MHz, and γint=2π ¼ 8.88 MHz for the
external and internal mode damping rates, respectively.
To study nonlinear processes, we adopt a two-tone

measurement scheme, as depicted in Fig. 2(a). A strong
pump tone is applied with a detuning Δ from the k ¼ 0
mode resonance, while a weak probe with detuning Δp is
swept across the FMR mode spectrum to measure its
response. First, we focus on the case where the pump
detuning Δ is zero. As the pump power is increased above
a critical value, the k ¼ 0 FMR response splits into two
separate resonances with equal amplitude [see Figs. 2(b)
and 2(c)]. When the pump power is fixed at a value greater
than the threshold and the pump detuning Δ is swept
across the k ¼ 0 mode, the output spectrum shows the
signature of normal mode splitting [see Fig. 2(d)]. The
resulting spectral line shapes also feature a small fre-
quency distortion with power, which can be attributed to
the pump not being perfectly at zero detuning, small
temperature fluctuations, or a contribution from high-
order nonlinearities.

The data can be accurately represented by the micro-
scopic theory of nonlinear spin-wave dynamics [26,28,42],
achieved through the linearization of the magnon
three-wave mixing process under a strong pump drive.
We model our system starting from the Hamiltonian
Ĥ ¼ Ĥ0 þ Ĥint þ Ĥd, in which

Ĥ0=ℏ ¼ ω0m̂
†
0m̂0 þ

X
k>0

�
ωkm̂

†
km̂k þ ω−km̂

†
−km̂−k

� ð1Þ

describes the bare resonant terms of the k ¼ 0mode probed
by FMR, and k ≠ 0 modes, with ωk ¼ ω−k. The micro-
wave drive contribution at ωd is enclosed in the term
Ĥd=ℏ ¼ iðΩ�

dm̂
†
0e

iωdt −Ωdm̂0e−iωdtÞ, where Ωd represents
the coherent amplitude (in hertz) of the driving field. The
three-magnon scattering is captured by the nonlinear
interaction term [24]

FIG. 2. FMR mode splitting of a strongly driven magnon mode
at 28 mT. (a) Two-tone measurement scheme to probe three
magnon processes. A strong pump is applied at detuning Δ from
the FMR mode, and a small probe is swept with detuning Δp.
(b) Map of the transmission as a function of pump power at
Δ ¼ 0. (c) Line cuts extracted from (b) at the powers indicated
with arrows, shifted by 4 dB for clarity, and filtered data points
corresponding to the strong pump and its leak image. (d) Map of
the transmission as a function of pump and probe detunings for
power 10 dBm, showing normal mode splitting.
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Ĥint=ℏ ¼
X
k>0

Vkm̂
†
0m̂km̂−k þ H:c:; ð2Þ

where the coupling Vk depends on sample parameters and
scales inversely proportional to the number of spins
[26,28]. The magnon self-Kerr contribution and higher-
order nonlinearities are not considered, as they are not
necessary to explain the presented phenomenon. To find
the effective interaction between the (k, −k) magnon pair
and the k ¼ 0 mode, we further analyze the presented
dynamics.
In the rotating frame at frequency ωd, we derive the

Heisenberg equations of motion for the modes and solve for
the steady-state amplitudes. Under mean-field approxima-
tion, and considering jhm̂kij ¼ jhm̂−kij ¼ β, the amplitude
of the coherently driven k ¼ 0 mode (at Δ ¼ 0) reaches a
threshold for increasing Ωd [24,28]:

hm̂0icr ¼
Ωd

γ0=2
¼ γk

2Vk
; ð3Þ

with total loss rates γ0 and γk of the k ¼ 0 and down-
converted modes, respectively. Since the final expression
for hm̂0icr is power independent, the number of excited
magnons at k ¼ 0 cannot exceed the critical value
ðγk=2VkÞ2, which is determined solely by the system
parameters. Together with a saturation of the k ¼ 0 mode,
the k ≠ 0 mode experiences the Suhl parametric instability
and acquires a coherent amplitude, which for zero detuning
is given by

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4VkΩd − γ0γk

4V2
k

s
: ð4Þ

Equation (4) sets a lower bound on the input power strength
Ωd;cr ¼ γkγ0=4Vk that is required for the ω0=2 mode to
acquire a nonzero amplitude and an upper threshold on the
saturation of the main resonant mode. This condition,
which is a common trait of parametric phenomena [43,44],
is due to the coherent backreaction of the magnon pair on
the k ¼ 0 mode once Ωd;cr is crossed.
The splitting feature under a strong pump emerges by

linearization of the equations of motion for small fluctua-
tions δm̂0;�k around the steady-state solution m̂0;�k ¼
hm̂0;�ki þ δm̂0;�k (see Appendix B). The resulting inter-
action term in Ĥ can be recast by performing a Bogoliubov
transformation on the �k modes. In the new basis, we
introduce the modes m̂kþ ¼ ðiδm̂k þ δm̂−kÞ=

ffiffiffi
2

p
and

m̂k− ¼ ð1= ffiffiffi
2

p Þðδm̂k þ iδm̂−kÞ, and we find that

Ĥ0
int=ℏ ¼

ffiffiffi
2

p
Vkβðδm̂0m̂

†
kþ þ δm̂†

0m̂kþÞ þ ĤSQ: ð5Þ

Equation (5) describes a resonant beam-splitter interaction
between the k ¼ 0 mode and the pair of parametrically

excited �k magnon modes. The effective coupling geff ¼ffiffiffi
2

p
Vkβ scales proportionally with the coherent amplitude

of the excited magnon pair and exhibits a nonlinear
dependence on the input rf pump power. The second term
ĤSQ contains a single-mode squeezing contribution for
mode m̂kþ and its orthogonal mode and is a consequence of
the magnon three-wave mixing process. The orthogonal
mode is not coupled to m̂0.
Figures 3(b) and 3(c) highlight the consistency between

the theoretical model and experimental findings. As the
pump power increases, the population of the driven mode
rises until it reaches a threshold, as shown in Fig. 3(b). At
this point, the amplitude of m̂0 saturates, and down-
converted modes with �k and amplitude jβj are coherently
excited by the strong drive. This phenomenon is evident in
the experimental data, where the observed spectral splitting
is proportional to jβj.
To demonstrate this proportionality, we extract the

empirical effective coupling geff from the splitting feature
in the S21 two-tone spectrum (see Supplemental Material
[37]) and then fit the results to Eq. (4). Here, the driving
rate is related to the microwave power, using standard

(a)

(b)

(c)

FIG. 3. Effective beam-splitter interaction between the driven
k ¼ 0 mode and the parametrically excited magnon pair. (a) In-
teraction scheme between the fluctuations of the driven k ¼ 0
mode and the �k mode. (b) Power dependence of the magnon
mode amplitudes. The dashed line indicates the saturation power
Pth. The amplitude values are normalized to the saturation
amplitude of m̂0. (c) Power dependence of the extracted magnon
coupling geff from measurement data at 30 mT, fitted with Eq. (4).
The right scale indicates the correspondence with the steady-state
amplitude of mode β. The power scale is corrected for rf
attenuation.
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input-output theory: Ωd;cr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pthγext=2ℏω0

p
. The free fit-

ting parameters are the attenuation of the rf signal in the
setup and the loss term γk. We obtain a value of γk ¼
1.77 MHz for the �k magnon pair mode and a total
attenuation of 28 dB due to the coaxial cables and
electronic instruments. Using the expression for circularly
polarized waves [28], we can compute the bare three-
magnon scattering strength Vk from the material parame-
ters and external field. At 30 mT, we find a value of 0.91 Hz
(see Appendix A). These calculations, illustrated in Figs. 4
(a) and 4(b) and detailed in Supplemental Material [37],
align well with the retrieved geff , confirming the theoretical
power dependence of the down-converted mode amplitude,
jβj. Similar evidence was observed in a recent Letter
conducted on a YIG sphere driven at high power [45].
The arising of the splitting was interpreted via a phenom-
enological model.
To further support our interpretation of the observations,

we study the magnetic field dependence of the measured
spectral splitting. We assume that our sample has a uniform
demagnetization field, which enables us to compute an
approximate magnetic-field-dependent dispersion relation
and coupling strength Vk, with equations shown in
Appendix A. The dispersion relation of spin-waves propa-
gating along the applied field is shown in Fig. 4(a), for two
different values of the external field, above and below a
threshold field Hth. By indicating the value of ω0=2 with a
dashed line, we show that for H < Hth there are two pairs
of available states marked with stars, while for H > Hth
there are none. Computing Vk as a function of the field we
arrive at two conclusions: (i) in the case where there are two

possible pairs, the coupling of the lower k pair is 3 orders of
magnitude higher, enabling us to disregard the higher k
pair, and (ii) as the external field is increased, the rate
diminishes until it vanishes at the point where the energy
momentum conservation condition can no longer be met.
These two conclusions are illustrated in Fig. 4(b), where we
show Vk for the two branches with lower and higher k
(upper and lower branches, respectively).
The power dependence at zero pump detuning (Δ ¼ 0) for

four different magnetic fields is presented in Fig. 4(c). At 40
and 60 mT, the splitting is clear, with a slightly higher power
threshold at 60 mT. At 100 mT, the splitting is barely visible,
and at 120mT, there is no splitting at all. These results yield an
experimental threshold field Hth between 100 and 120 mT.
Theoretically, an ellipsoidal sample approximation predicts
Hth ¼ 58 mT [37], approximately a factor of 2 lower than the
experimental value. We attribute this discrepancy to simpli-
fied assumptions in calculating the dispersion relation andVk,
particularly the neglect of inhomogeneous demagnetization
fields arising from the sample’s cylindrical geometry. These
fields modify the dipolar dispersion and lead to other FMR
modeswith lower frequency than the one studied here, whose
dispersion branches could also interactwith the studiedmode.
Notably, the demonstrated magnetic field dependence of Vk
provides a handle for tuning the strength of the beam-splitter
interaction, enabling precise control of magnon dynamics.
In summary, we have observed the strong interaction of a

magnetostatic mode with a dark mode under strong
pumping, revealing a novel scheme to achieve magnon-
magnon interactions. We demonstrate that the mode split-
ting corresponds to an excitation of a pair of magnons with

FIG. 4. Magnetic field dependence of the splitting. (a) Calculated dispersion relation for two magnetic fields below and above the
threshold. Below the threshold, there are two pairs of available states at ω0=2 (dashed line), indicated with stars. (b) Calculated magnetic
field dependence of the coupling Vk. The upper (lower) branch corresponds to the available state of lower (higher) k. Details of the
calculation can be found in [37]. (c) Power dependence at zero pump detuning (Δ ¼ 0), for magnetic fields of 40, 60, 100, and 120 mT.
In the lower right corner, a schematic illustrates the dispersion relation and the corresponding position of ω0=2.
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opposite momentum and half frequency. The model enables
the extraction of the effective coupling, which is a direct
measure of the power-dependent population of the magnon
pair. It also predicts a threshold magnetic field for nonzero
coupling, in agreement with experimental observations. Our
results shed new light on the understanding of nonlinear
parametric magnon phenomena and their dependence on
bias parameters, by establishing a good agreement between
theoretical predictions and experimental observations.
Recently, it was demonstrated that the higher k magnon

pairs accessible through this interaction have long lifetimes
of up to 18 μs at low temperatures [46]. Together with the
control of the modes shown here by tuning the incident
power and external bias field, it might unlock experimental
routes for magnon quantum information [5,21,47].

Acknowledgments—We acknowledge V. A. S. V.
Bittencourt and R. Das for helpful discussions and thank
T. Bras for the help with the experimental setup. A. B.-S.,
H. S. J. v. d. Z., and Y.M. B. acknowledge support by the
Dutch Research Council (NWO) under the project “Ronde
Open Competitie XL” (File No. OCENW.XL21.XL21.058).
A. B. and Y.M. B. acknowledge the support by the EU-
Project No. HORIZON-EIC-2021-PATHFINDEROPEN-01
PALANTIRI-101046630. M. A. and G. A. S. acknowledge
support by the Dutch Research Council (NWO) under the
Project No. VI. C.212.087 of the research program VICI
round 2021. C. fA. P. acknowledges the support of the Novo
Nordisk Foundation,NNFQuantumComputing Programme.

M. A. proposed the experiment, performed measure-
ments and data analysis, developed the Hamiltonian model,
wrote the manuscript, and helped make the figures.
A. B.-S. performed measurements and data analysis, helped
with the development of the theoretical model, made the
calculations for the coupling estimation and conducted
Mumax3 simulations, wrote the manuscript, and made the
figures. A. B. set up and postprocessed simulations on
Mumax3. C. A. P. contributed to the theory development
and supervised the writing. Y. M. B. supervised the theory
and gave feedback on the writing. H. S. J. v. d. Z. provided
the setup, gave feedback on data acquisition, helped devise
the storyline, and supervised the writing process. G. A. S.
contributed to the conception of the experiment, supervised
the project and experimental work, came up with the
explanation via three-wave mixing, helped devise the
storyline, and gave feedback on the manuscript.

Data availability—The data that support the findings of
this article are openly available [48].

[1] J. H. Griffiths, Anomalous high-frequency resistance of
ferromagnetic metals, Nature (London) 158, 670 (1946).

[2] C. Kittel, On the theory of ferromagnetic resonance
absorption, Phys. Rev. 73, 155 (1948).

[3] V. Kruglyak, S. Demokritov, and D. Grundler, Magnonics,
J. Phys. D 43, 264001 (2010).

[4] B. Zare Rameshti, S. Viola Kusminskiy, J. A. Haigh, K.
Usami, D. Lachance-Quirion, Y. Nakamura, C.-M. Hu,
H. X. Tang, G. E. Bauer, and Y. M. Blanter, Cavity mag-
nonics, Phys. Rep. 979, 1 (2022).

[5] H. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan,
Quantum magnonics: When magnon spintronics meets
quantum information science, Phys. Rep. 965, 1 (2022).

[6] P. Pirro, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands,
Advances in coherent magnonics, Nat. Rev. Mater. 6, 1114
(2021).

[7] Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R.
Yamazaki, K. Usami, and Y. Nakamura, Coherent coupling
between a ferromagnetic magnon and a superconducting
qubit, Science 349, 405 (2015).

[8] M. Song, T. Polakovic, J. Lim, T. W. Cecil, J. Pearson, R.
Divan, W.-K. Kwok, U. Welp, A. Hoffmann, K.-J. Kim
et al., Single-shot magnon interference in a magnon-super-
conducting-resonator hybrid circuit, Nat. Commun. 16,
3649 (2025).

[9] Y. Li, W. Zhang, V. Tyberkevych, W.-K.
Kwok, A. Hoffmann, and V. Novosad, Hybrid
magnonics: Physics, circuits, and applications for coherent
information processing, J. Appl. Phys. 128, 130902
(2020).

[10] D. Xu, X.-K. Gu, H.-K. Li, Y.-C. Weng, Y.-P. Wang, J. Li,
H. Wang, S.-Y. Zhu, and J. You, Quantum control of a single
magnon in a macroscopic spin system, Phys. Rev. Lett. 130,
193603 (2023).

[11] A. V. Chumak, A. A. Serga, and B. Hillebrands, Magnon
transistor for all-magnon data processing, Nat. Commun. 5,
4700 (2014).

[12] Ö. O. Soykal and M. Flatté, Strong field interactions
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End Matter

Appendix A: Dispersion relation and three magnon
scattering coupling strength—Understanding the
dispersion relation in the sample is crucial to identifying
the magnon (m̂k) modes available for three-wave mixing
that satisfy energy and momentum conservation.
Analytical expressions for the dispersion relation of an in-
plane magnetized thin disk have not been comprehensively
addressed in the literature. Sparks [35] described dis-
persion relations for out-of-plane magnetized disks and

some specific modes in in-plane magnetized configura-
tions. The primary challenge lies in solving the Walker
equations to accurately determine the sample’s
demagnetization field. However, given the large radius and
thickness of our sample, the dispersion relation can be
approximated by that of an ellipsoid as a reasonable first-
order approximation. Using a frame of reference with z in
the out-of-plane direction and the feedline and magnetic
field aligned along x, we can define [28]
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Ak ¼ μ0γ

�
H þMSλexk2 þMS

k2y þ k2z
2k2

�
;

Bk ¼ μ0γMS
ðky þ ikzÞ2

2k2
; ðA1Þ

such that

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
k − jBkj2

q
: ðA2Þ

Here, μ0 is the permeability of free space, γ the
gyromagnetic ratio, H the external magnetic field, MS the
saturation magnetization, and λex the exchange stiffness
constant and k the modulus of the momentum�
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q �
. This gives the dispersion for a

homogeneous mode and completely disregards all other
magnetostatic modes mentioned earlier and shown in
Supplemental Material [37].
To have available states for three-wave mixing, it is

required to have a dispersion that has lower frequencies for
increasing k in some range of the dispersion. That happens
for any branch other than the Damon-Eshbach branch
(kx ¼ 0) and is most pronounced for ky ¼ 0, that is, for
backward volume magnetostatic waves.
The coupling of a magnetostatic mode to a pair of such k

states was calculated for ellipsoidal samples with homo-
geneous demagnetization in [28] and is given by

Vk ¼ ωM

ffiffiffiffiffiffiffiffiffiffiffiffi
geffμB
2νMS

r �
1þ ωk

Ak þ jBkj
�
kxðky þ ikzÞ

k2
; ðA3Þ

where ωM ¼ μ0γMS. The first insight this equation pro-
vides is that for pure backward volume spin-waves—i.e., k
is parallel to the magnetization, ky ¼ kz ¼ 0—the coupling
is zero. The situation for which one finds the higher
coupling is for ky ¼ 0, and kz ¼ π=t, corresponding to
one node along the thickness direction. With these values,
taking an external field of 30 mT and the material
parameters, we found Vk ¼ 0.91 Hz. This result does
not provide accurate values of the coupling rate in our
geometry, due to the mismatch in the considered demag-
netization field. Still, it enables us to get an order-of-
magnitude estimate of the coupling and evaluate which of
the two pairs of magnons that are enabled by E-k
conservation participate more strongly in the process.
These calculations provide only order-of-magnitude

estimates of the coupling and understanding of the par-
ticipating modes. To get a better estimate, even within the
ellipsoidal sample approximation, one would need to
consider all k modes for which the E-k condition is
satisfied. Those will be a continuum along ky and a sum
of discrete modes with kz ¼ nπ=t. The next step toward a
more quantitative theory would be to include the non-
uniform demagnetization field and the rest of the

magnetostatic modes. Those modes have a corresponding
dispersion relation to which the uniform mode could
couple, influencing the coupling rate and the magnetic
field threshold.

Appendix B: Three-wave mixing hamiltonian and
linearized dynamics—We present here the key steps
connecting three-magnon scattering with the emergence of
an effective magnon-magnon beam-splitter interaction. The
complete derivation and dynamics can be found in
Supplemental Material [37]. We start from the Hamiltonian
Ĥ0 of a quasimagnetostatic mode m̂0 coupled via a three-
wave mixing interaction Ĥint to a pair of counter-
propagating modes m̂�k with momentum jkj ≠ 0 living in
the spin-wave continuum, where

Ĥ0=ℏ ¼ ω0m̂
†
0m̂0 þ

X
k>0

�
ωkm̂

†
km̂k þ ω−km̂

†
−km̂−k

� ðB1Þ

and

Ĥint=ℏ ¼
X
k>0

Vkm̂
†
0m̂km̂−k þ H:c: ðB2Þ

Here, ω0 and ωk ¼ ω−k represent the frequencies of the
k ¼ 0 and jkj ≠ 0 magnon modes, respectively, while Vk
characterizes the strength of the bare three-magnon
process. The FMR mode is coherently excited by a
microwave drive at ωd of the form Ĥd=ℏ ¼
iðΩ�

dm̂
†
0e

iωdt −Ωdm̂0e−iωdtÞ, where Ωd describes the
amplitude (in hertz) of the driving field. To fully remove
the time dependence from the Hamiltonian, we can apply

in sequence two unitary operations. The first, ÛðtÞ ¼
eiωdm̂

†
0
m̂0t allows us to move to a frame rotating at the drive

frequency ωd, followed by the transformation ÛðtÞ ¼
eiωd=2m̂

†
km̂kteiωd=2m̂

†
−km̂−kt to a frame corotating at the

frequency of the m̂�k modes. By retaining the coupling to
a single pair of �k modes, we can rewrite the resulting
Hamiltonian as

Ĥ=ℏ ¼ Δ0m̂
†
0m̂0 þ Δkm̂

†
km̂k þ Δ−km̂

†
−km̂−k

þ V�
km̂0m̂

†
km̂

†
−k þ Vkm̂

†
0m̂km̂−k

þ iðΩ�
dm̂0 − Ωdm̂

†
0Þ; ðB3Þ

where we have introduced the detuning with respect
to the drive Δ0 ¼ ω0 − ωd and the mode detuning
Δ�k ¼ ω�k − ω0=2. After the derivation of the steady-
state solution amplitudes [37], for large input drive powers
we can focus on the dynamics of the fluctuations around
these solutions Ô ¼ hÔi þ δÔ. Following the argument in
Supplemental Material [37], we can assume Vk and
hm̂ki ¼ β to be real and by the gauge of choice that
hm̂−ki ¼ iβ. If we expand the three-wave mixing
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interaction term around the steady state

m̂0m̂
†
km̂

†
−k → ðhm̂0i þ δm̂0Þðβ þ δm̂†

kÞð−iβ þ δm̂†
−kÞ ðB4Þ

and keep only terms quadratic in the fluctuations, we
arrive at

m̂0m̂
†
km̂

†
−k → hm̂0iδm̂†

kδm̂
†
−k þ βδm̂0δm̂

†
−k − iβδm̂0δm̂

†
k:

ðB5Þ

From here, the Hamiltonian can be recast in a simpler
form by performing a Bogoliubov transformation to a
collective mode basis defined by

m̂kþ ¼ 1ffiffiffi
2

p ðiδm̂k þ δm̂−kÞ; ðB6Þ

m̂k− ¼ 1ffiffiffi
2

p ðδm̂k þ iδm̂−kÞ; ðB7Þ

which enables one to redefine the original modes as

δm̂k ¼
1ffiffiffi
2

p ð−im̂kþ þ m̂k−Þ; ðB8Þ

δm̂−k ¼
1ffiffiffi
2

p ðm̂kþ − im̂k−Þ: ðB9Þ

As a consequence, in the new canonical basis, the
interaction Hamiltonian takes the form

Ĥ0
int=ℏ ¼

ffiffiffi
2

p
Vkβðδm̂0m̂

†
kþ þ δm̂†

0m̂kþÞ þHSQ: ðB10Þ

In the linearized dynamics, the first term describes a
power-dependent effective beam-splitter interaction
between the driven k ¼ 0 mode and the collective pair
excitation at �k. The second term, given by

HSQ ¼ −
iVk

2
hm0i

	ðm̂kþÞ2 − ðm̂†
kþÞ2

þðm̂k−Þ2 − ðm̂†
k−Þ2



; ðB11Þ

refers to a single-mode squeezing interaction for the
counterpropagating modes whose strength is limited by the
occupation of the FMR mode amplitude.
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