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Abstract
Intention Aware Routing System is a route-
planning algorithm for electric vehicles that
minimizes overall travel time by taking into con-
sideration congestion at charging stations. This
paper extends this algorithm to allow choices to
be made based on prices at charging stations.
The goal of this paper is to find a way to min-
imize maximum congestion while maximizing
overall profit across the stations.

1 Introduction
There seems to be a common consensus in the scientific
world and the vehicle industry: The future of vehicles is
going to be electric. This is great, as Electric vehicles (EV)
play a significant role in tackling climate change, which is
one of the biggest problems of our time. EVs do not emit any
greenhouse gases, as opposed to petrol vehicles which do.
While the time has not yet arrived at which driving electric is
the standard, companies like Tesla, Volkswagen and Renault
are pushing electric vehicles to their limits, and are steadily
advancing this market. But while advances are being made
in charging EVs, they are not universal. Many vehicles can
not make use of superchargers. And even superchargers,
which are supposed to be the fastest way to charge EVs,
still cannot compare to petrol vehicles. The quickest an
EV can get the charge equivalent to 600km is about 30
minutes, compared to a petrol vehicle where this takes about
5 minutes. If EVs want to charge en route, any queue at the
charging stations increases waiting times linearly with the
size of the queue. Considering the case where each vehicle
charges for 30 minutes, on average this will increase waiting
times with 15 minutes per vehicle[3]. As such, the waiting
times at charging stations have to be taken into account while
scheduling. This is not required for petrol vehicles, as the
time to refill a tank is significantly quicker.
De Weerdt et al. [3] has already attempted to tackle this
issue. Their paper suggested an Intention Aware Routing
System (IARS). The basic idea is that individual vehicles
share their intentions with a central system. The system then
updates the traffic information. And as a result the vehicles
can then formulate a better route. One thing that is missing in
this model is the pricing at the charging stations as different

stations might have different prices, and this might affect if
people may want to charge or not.Various authors suggest
different ways to deal with pricing of electricity for electric
vehicles, like [2] [4], and [5]. [2] discusses a way to balance
EVs over charging stations by setting certain prices. [4]
suggests having a bidding system for charging spots. And
finally, [5] describes the game-theoretic nature of buying and
selling electricity for EVs. In this project, aspects from [2]
and [5] will be used to extend the model developed by de
Weerdt et al.
Adding pricing to the model then begs the question:

How can prices be set across the stations to minimize
maximum congestion while maximizing overall profit across
the stations?

To aid in answering this question, this paper will answer
these subquestions:

1. How can pricing be included in the model of de Weerdt
et al.[3]?

2. How can decision policies of a distribution of EVs across
the system be modelled?

3. What strategies can stations use to affect the flow of ve-
hicles?

4. What is the optimal strategy to reduce maximum con-
gestion?

This Paper is structured as follows. Section 2 introduces the
model used to solve the problem. Subsection 2.1 focuses on
explaining the model given in [3], and subsection 2.2 focuses
on extending the model to allow for station prices. Next Sec-
tion 3 deals with the setup of the experiments performed in
this paper. Section 4 demonstrates the found results, based
on the experiments of Section 4. In Section 5 the ethical as-
pects of this paper will be discussed. Section 6 will contain a
conclusion and discuss possible extensions of the model de-
scribed in this paper.

2 Model
To effectively give an answer to the questions asked in this
paper, a good model is needed. As such, this section discusses
the model which is used for the simulations. Subsection 2.1
explains the model introduced in [3], which our model uses

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



as a base. Next, Subsection 2.2 introduces the extension of
this model which allows for stations to include prices, and
the vehicles to react to these prices.

2.1 Base Intention Aware Routing System
The model used for this problem was introduced in [3]. This
model works on a domain given by 〈V,E, T, P, S, C〉. Where
e = (vi, vj) ∈ E are edges, with vi ∈ V vertices. Both
roads and charging stations are represented by these edges,
but charging stations are represented by loops, so edges where
vi = vj . We use the notation Estation ⊂ E and Eroad ⊂ E
for roads and stations respectively. For each edge there is
a probabilistic distribution P, which models possible waiting
times. This P is time-dependent for a finite set of time points
represented by T = {1, 2, ..., tmax}. Since Vehicles have
a finite amount of charge, the model includes S which rep-
resents the state of charge of a vehicle, which has a finite
domain {0, 1, 2, ..., smax}. Where 0 and smax represent re-
spectively an empty battery, and a fully charged battery. Fi-
nally each edge depletes a certain amount of charge based on
cost function C(e), which gives the cost of charge for each
edge in the graph. For charging stations however, C(e) is
negative to represent charging the vehicle. Charging stations
always fully charge EVs in this model. P represents a prob-
ability mass function, which for edge e = (va, vb) gives that
P (∆t = tb − ta|e, ta) gives the probability that if you arrive
at va at time ta the chance that you take ∆t time units on that
edge.
To plan a route, this model creates a policy as opposed to a
simple route. This policy is a function π : V × T × S → V ,
which for state, consisting of a vertex vc, current time at
the vertex tc, and state of charge at that vertex sc gives the
next vertex w. Using this, the next edge for a current state
(vc, tc, sc), and a policy π is given by e = (vc, π(vc, tc, sc) =
w). The final policy is calculated by finding a policy which
maximizes the expected utility function given by

EU(ec = (vc, w), tc, sc|π)

=


−∞, if sc < 0∑

∆t∈T P (∆t|ec, tc) · U(tc + ∆t, s′) ifw = vdest∑
∆t∈T P (∆t|ec, tc)
·EU((w, π(w, tc + ∆t, s′)), tc + ∆t, s′|π) otherwise

Where s′ is the new state of charge after taking an edge.

2.2 Pricing Extension
To influence the traffic in the model based on pricing, first
the model needs to be equipped to deal with pricing. To this
end, this paper extends the IARS model to include pricing.
This leads to a model which works on a domain defined by
〈V,E, T, P, S, C,M〉. This introduces money to the model,
where the amount of money spent is represented by a value
in a finite set M = {0, 1, ...,mmax}, where mmax is the
maximum price charged in the system. This then also af-
fects the states of the individual EVs, which changes from
(vc, tc, sc) ∈ (V ×T ×S) to (vc, tc, sc,mc) ∈ (V ×T ×S×

M). The cost of charging at a charging station is defined by

Π(e) =

{
0, ∀e ∈ Eroads
pe ∀e ∈ Estations

where pe is a fixed station price. It is possible to make pe
time dependent, but in this paper we consider the impact on
the period with highest possible congestion, i.e. rush hour.
As such, making the price time dependent is not necessary.
The original model worked with a utility function dependent
on charge and arrival time, where the utility function U is
given by

U(tc, sc) =

{
−∞, if sc < 0

−tc, otherwise.

To extend IARS to handle pricing multiple different methods
can be used. One possible example is as given in [4], where
U is given by:

U(tc, sc,mc) =

{
−∞, if sc < 0

−tc − γ ·mc, otherwise.
(1)

with γ > 0 representing a time/ money trade-off. Here γ =
10 could represent that 10 minutes of detour is worth 1 euro of
discount. In concept, the final utility function is similar, but it
uses normalizing factors both in terms of decision parameters,
and based on the values in the domain.
The final utility function decided upon was:

U(tc, sc,mc) =


−∞, if sc < 0

γ
(

Tmax−tc
Tmax−Tmin

)
+(1− γ)

(
Mmax−mc

Mmax−Mmin

)
otherwise

In this formula Mmax represents the highest price available
at a charging station in the system. Mmin was set to 0 as it
was decided that the highest utility should be received from
not charging at all. Tmax is the maximum time the vehicle
is willing to arrive at the destination, and Tmin is the mini-
mum possible time to reach the destination excluding charg-
ing time. In the end, Tmax was decided to be 3 ∗ Tmin as
this seemed to be a reasonable upper bound on the max will-
ingness to make a detour. γ ∈ [0, 1] is a normalized deci-
sion parameter, used to represent the time/ money trade-off.
As such, γ = 1 represents a pure focus on arriving early,
and γ = 0 represents only caring about getting the cheap-
est price. The choice to add normalizing factors based on
Tmin, Tmax,Mmax, and Mmin was made because decisions
regarding prices are usually based on relative discount.

3 Experimental Setup
To find meaningful results, this paper discusses a number of
different graph layouts and corresponding distributions of Ve-
hicles. This subsection presents scenarios in increasing or-
der of complexity. These graphs will be used in the corre-
sponding subsections of Section 4. The first three graphs will
be bottleneck graphs, which are defined by having only one
starting node, and one destination node, with a row of sta-
tions in the middle only connected to the starting node and
destination node.



3.1 General Two Stations
For the first scenario we will be considering a graph with one
starting node, and one destination node. Between these two,
there are two stations, Station 1 and Station 2.

Figure 1: Graph used for the first scenario. Edge lengths represent
travel time.

The route via Station 1 will be shorter than the route via
Station 2, and will be denoted by T1 = Tmin. The time it
takes to travel to the destination node via Station 2 will be
considered to be a proportion of Tmax = 3Tmin. This time
will be denoted by T2 = αTmax, where α ∈ [ 1

3 , 1]. This
domain is to ensure that Tmin ≤ T2 ≤ Tmax. We consider
one class of vehicle, with γ ∈ [0, 1]. Since T1 ≤ T2, the price
at Station 2 needs to be lower than the price at Station 1. As
such we set the price at Station 1 p1 = Mmax. The price
at Station 2 will be a proportion of Mmax and will be given
by p2 = βMmax, where β ∈ [0, 1]. This setup allows for the
formulation of a direct formula to calculate what β should be,
this formula will be worked out in 4.1.

3.2 Two Stations
The second scenario that will be dealt with is an arbitrary case
of the first one. This allows for verifying whether the model
works as expected.

Figure 2: Graph used for the first scenario. Edge lengths represent
travel time.

This layout uses one starting node and one destination
node. As such all vehicles travel from Start to Dest. To go

from the starting node to the destination node, only two pos-
sible paths are possible. The path via Station 1 takes 22 min-
utes in total, while the path via Station 2 takes 8 minutes.
Station 1 and Station 2 each have their own prices, and these
can be changed in the parameter file. We analyze this sce-
nario in 2 ways. In the first case there is just 1 vehicle type,
for which first γ = 0.6 will be considered, and then γ = 0.4.
In the second case, we will consider 2 types of vehicles, V1

and V2, where both use IARS, but V1 has γ = 0.6 and V2 has
γ = 0.4. This means that V1 focuses more on getting to the
destination quickly compared to C2 which has a higher focus
on getting a good deal. In this scenario, both V1 and V2 will
have 5 vehicles in the system. What is interesting about this
scenario is that if all vehicles in the system were using base
IARS (equivalent to γ = 1.0 in the current system), all vehi-
cles would choose station 2, as even with the extra congestion
it would be faster than using Station 1. To affect this, Station
1 will be given a lower price than Station 2.

3.3 Three Stations

The third scenario is similar to the first two, but has an extra
route to the destination.

Figure 3: Graph used for the second scenario. Edge lengths repre-
sent travel time.

Once again this layout uses one starting node, and one des-
tination node. To go from the starting node to the destination
node, three paths are possible. The path via Station 1 takes 9
minutes, the path via Station 2 takes 6 minutes, and the path
via Station 3 takes 18 minutes. Like scenario 2, we analyze 2
types of vehicles, separately the case where there is only one
class of car, and then consider 2 classes of cars.

3.4 Two Station Grid

The final scenario, while having two stations like the first two,
is differentiated by having multiple start nodes and destina-
tion nodes.



Figure 4: Graph used for the final scenario. Edge lengths represent
travel time.

This layout uses two starting nodes, and two destination
nodes. Vehicles are randomly assigned a starting node and
destination node. This means that there are 4 unique (start-
ing node, destination node) pairs. Each starting node is con-
nected to both Station 1 and Station 2, and so are the desti-
nation nodes. As such, for every (starting node, destination
node) node pair, a vehicle can either choose to take the route
via Station 1 or the route via Station 2. The fact that each
unique pair of starting/destination nodes has different routes
available, means that it also has its own unique Tmin.

4 Results
In this section, various results from the scenarios introduced
in Section 3 will be shown. In 4.1, a formula will be derived
to directly calculate the required prices to create an even split.
The following subsections will use this formula to show var-
ious results.

4.1 General two stations bottleneck
For there to be an even split across the two stations, it is re-
quired for the utility function of the route via Station 1 and
Station 2 to be equal, considering an equal queue. Using that
we get that the Utility function for the path past Station 1 is

U1 = γ
Tmax − T1

Tmax − Tmin
+ (1− γ)

Mmax − p1

Mmax −Mmin

= γ
Tmax − Tmin
Tmax − Tmin

+ (1− γ)
Mmax −Mmax

Mmax −Mmin

= γ

Then the Utility function for the path past Station 2 is

U1 = γ
Tmax − T2

Tmax − Tmin
+ (1− γ)

Mmax − p2

Mmax −Mmin

= γ
Tmax − αTmax
Tmax − 1

3Tmin
+ (1− γ)

Mmax − βMmax

Mmax

= γ
Tmax − αTmax

2
3Tmax

+ (1− γ)(1− β)

= γ
3(1− α)

2
+ (1− γ)(1− β)

Transforming the domain of α from [ 1
3 , 1] to [0, 1]. Using

α = (
2

3
αnew +

1

3
)

gives

U1 = γ
3− 3(( 2

3αnew + 1
3 )))

2
+ (1− γ)(1− β)

= γ
2− 2αnew

2
+ (1− γ)(1− β)

= γ(1− αnew) + (1− γ)(1− β)

This αnew is defined in such a way, that α = 0 corresponds
to Tmin and α = 1 to Tmax. So, if the time the route takes is
T1, we get

αnew =
T1 − Tmin
Tmax − Tmin

αnew will be just referred to as α from now on. Equating U1

and U2 gives the following equation:

γ(1− α) + (1− γ)(1− β) = γ (2)

Solving for β gives

β = 1− αγ

1− γ
(3)

Plotting this gives the following results:

Figure 5: Graph showing the equilibrium β(blue axis) for each γ
(red axis) and α (green axis)

Looking at Figure 5, there are some interesting results.
When the two routes have the same length, so α = 0, the
function gives β = 1, meaning that the price should be the
same at both stations. This makes sense, since the distances
are the same, the algorithm would evenly split vehicles across
the station based on the time aspect. Making one of the
two stations cheaper would increase the utility function for
that route, skewing the distribution towards that station. For
γ = 0, once again we have β = 1. This is due to the fact
that for γ = 0, the algorithm only looks at the price to deter-
mine the route. If there was even a small difference in price,
all vehicles would go to one station. Next to that, this for-
mula can be used to calculate what price would create an even
split, it also gives another interesting result. To some extent,
it is a disappointing result, but it was to be expected. What
it shows is that, for some values of α and γ, there is no pos-
sible β, since β ∈ [0, 1], for which the vehicles would split



evenly across the stations. From the perspective of drivers, it
does make sense, as there is a maximal detour which drivers
would find acceptable, though this can depend on the individ-
ual driver.

4.2 Two stations bottleneck

This scenario is an arbitrary instance of the first scenario, it is
possible to directly use the formula to calculate the price p1

at Station 1. First, it is necessary to calculate the α from the
values in the graph. This gives Tmin = 8 and Tmax = 24,
and the route via Station 1 takes a total of 22 minutes. This
gives α = 22−8

24−8 = 14
16 = 0.875. Filling this in in the formula

for γ = 0.6 gives

β = 1− 0.875 ∗ 0.6

1− 0.6
= −0.3125

The formula gives β < 0, which means it is impossible to
get an even split for this graph, if all vehicles have γ = 0.6.
Doing the same however for γ = 0.4 gives

β = 1− 0.875 ∗ 0.4

1− 0.4
≈ 0.4167

With Mmax = 10, this gives p1 = 4 as the model uses in-
teger values for prices. Figure 6 shows a bar graph of how
the vehicles, with γ = 0.6 distribute themselves for different
prices at Station 1.

Figure 6: Bar Graph showing different amounts of visits across the
stations for various p1 with γ = 0.6

The distribution for p1 = 0 is also shown, even though the
price is realistic. This was done to show that even with the
lowest price possible, vehicles still prefer Station 2 because
of the shorter travel time. The distributions for p1 ≥ 4 is not
shown as all vehicles are already choosing Station 2. Figure
7 shows a bar graph of how the vehicles distribute themselves
for different prices at Station 1, this time the cars have γ =
0.4.

Figure 7: Bar Graph showing different amounts of visits across the
stations for various p1 with γ = 0.4

As can be seen, if p1 = 1, all vehicles choose for Station
1. As p1 increases, more vehicles start choosing for Station 2,
until for p1 ≥ 7 all vehicles choose Station 2. The even split
occurs when p1 = 4, just as calculated.
Extending this scenario to two classes of Vehicles adds an-
other dimension to this problem. If we generalize the prob-
lem saying we have two classes of vehicles V1 and V2 with γ1

and γ2 respectively, where γ1 ≥ γ2. Assuming there are the
same amount of vehicles of both in the system, it is possible
to do the following. As we are trying to reach an even split,
the easiest way to solve the problem would be to have all ve-
hicles of one class to go to one station, and all of the other
class to the other station. For this, define Ui,j as the utility
function for class i, for the route via Station j.
To get all vehicles of one class to one station, and all of the
other class to the other station, we want U1,1 ≤ U1,2 and
U2,1 ≥ U2,2. This was done because by assumption V1

has a preference for the shorter route, so it is easiest to let
them keep choosing that route. These inequalities are basi-
cally equivalent to Equation 2, save for the equals sign being
replaced by the lesser or equal symbol and greater or equal
symbol respectively. As such:

U1,1 = γ1(1− α) + (1− γ1)(1− β) ≤ γ1 = U1,2

which gives
β ≤ 1− αγ1

1− γ1

and

U2,1 = γ2(1− α) + (1− γ2)(1− β) ≥ γ2 = U2,2

which gives
1− αγ2

1− γ2
≤ β

Which when combined gives:

1− αγ2

1− γ2
≤ β ≤ 1− αγ1

1− γ1

Since γ1 ≥ γ2,

1− αγ2

1− γ2
≤ 1− αγ1

1− γ1



As such there will be values of β to make it valid. The issue
comes from the fact that β ∈ [0, 1], which might not always
be between 1 − αγ2

1−γ2 and 1 − αγ1
1−γ1 . These values were cal-

culated in the first case, so we get −0.3125 ≤ β ≤ 0.4167.
Any value of β between those two values should give an even
split. Seeing as profit should be maximized simultaneously,
β = 0.4167 is chosen. This leads to p1 = 4 once again. In
Figure 8, once again distributions for different prices at Sta-
tion 1 can be seen.

Figure 8: Bar Graph showing different amounts of visits across the
stations

The prices 2 and 3 have been left out as they are the same
as 1 and 4. This seems to confirm that the inequality gives
valid values for an equal split.
It is also possible to directly solve the problem removing
the assumption that both classes of vehicles have the same
amount in the system. To do this we solve the problem for
the class with the most vehicles in it, for which the problem
is still solvable. γ = 0.6 for example is not solvable in this
scenario, as it gives a β < 0. By solving for the largest pos-
sible group, the vehicles of that class will head to the path
which has fewer vehicles in the queue, because that path will
have the higher utility. This leads to them first equalizing both
queues, and after that equally dividing over the stations.

4.3 Three stations bottleneck
The third scenario is a bit more complex, and serves as a step
towards an N stations bottleneck problem. Assuming there is
only one class of vehicle, it is possible to directly solve the
problem, assuming the edge lengths allow for this. This can
be done by making the utility function of all routes equal once
again. This is equivalent to solving equation 3, for both non-
shortest routes. To solve this example, set αi to be the α of
the route via Station i. Then α1 = 9−6

18−6 = 0.25. Assuming
γ = 0.4, we get β1 = 1 − 0.25·0.4

0.6 = 0.8333. Doing the
same for α3 = 18−6

18−6 = 1 gives β3 = 1 − 1·0.4
0.6 = 0.3333.

Which since Mmax = 10 means, p1 = 8 and p3 = 3. Filling
this into the model gave an exact even split. Of course, if for
any of the αi, equation 3 gives a negative value, the problem
is infeasible. When dealing with multiple classes of vehicles,

the problem becomes a bit more complex. Assuming there are
two classes of vehicles, no general way was found to solve
the problem. If one of the classes for which the problem is
solvable is large enough, it is possible to solve the problem
for that class, leading to an even split. But if both classes are
of equal size no direct solution was found. Figure 9 is a bar
chart which shows how the vehicles distributed themselves
across the stations, with increasing amounts of vehicles with
γ = 0.4. For this scenario there are 6 vehicles with γ = 0.6.

Figure 9: Bar graph showing different proportions of visits across
the stations for various amounts of vehicles with γ = 0.4

The station prices in this case have been solved for γ = 0.4
so p1 = 8 and p3 = 3. What this graph shows, is that the ve-
hicles are disproportionately splitting across the stations to in
the end make it an even split. In this case, since we keep
adding 3 cars to the system, one car always splits to Station
1. This ensures that Station 1 keeps the same proportion of
visits, since it already has 1

3 of the visits with the first distri-
bution.
This form of solution will work similarly for any such N-
station bottleneck scenario

4.4 Two Stations Grid

This final scenario, while seeming very similar to the two sta-
tions problem, immediately becomes more complex. Firstly,
the utility functions for vehicles with different (start, destina-
tion) pairs is different, even for vehicles within the same class.
This is due to the fact that Tmin differs for unique (start, des-
tination) pairs. And secondly, there are 2 stations that have to
even out 8 total potential routes. The following figure shows
the distribution of cars for different prices at Station 1. p2 in
this case was set to Mmax = 10, and γ = 0.4 for all vehicles.



Figure 10: Bar Graph showing different amounts of visits across the
stations for various p1 with γ = 0.4

In this case p1 was changed, because it was the only sta-
tion price which had influence on the distribution. Setting
p1 = Mmax = 10 and varying p2 always led to a 43:37
distribution. With most edge lengths there seemed to be no
major changes when influencing the price of the less popu-
lar station. Overall, it seems to be difficult to find an even
split in this scenario. There are two likely reasons for this
behavior. The first, is that unlike the previous scenarios, the
vehicles might have a different travel time to a station, based
on where they start. This makes it so vehicles which have a
longer route to a station, will be guaranteed to have to queue
behind cars that have a shorter route. In the previous scenar-
ios, there was a chance that they would be further ahead in
the queue. As such vehicles are less likely to take a station
that another starting point can reach quicker. The second is,
this problem can be seen as 4 separate two station problems,
one for each (start, destination) pair. To solve the original 2
station problem, there was one degree of freedom, being the
β. This made it possible to equate the utility functions for
both routes. However, in this case we would require 4 de-
grees of freedom, where we only have 2. This makes solving
it directly, nearly impossible.

4.5 Discussion
Having seen these examples, a few conclusions can be made.
For bottleneck scenarios equation 3 (see Section 4.1) can be
used to calculate even splits. However more complicated
graph structures like the grid structure, can’t be solved in this
manner. The problem also becomes significantly more re-
strictive, and many might not be solvable at all. This idea is
strengthened by the fact that even the simplest scenarios, like
the bottleneck scenario, are impossible to solve.
Even though no direct method was found to solve the grid sce-
nario, the solution could technically be found through brute
force methods. However, these are too time consuming, con-
sidering that for each combination of prices the entire simu-
lation needs to run again. According to [3] the IARS algo-
rithm is bounded in time complexity by O(|T |2 · |V | · |S| ·
|E|). Adding the money aspect increased the complexity

to O(|T |2 · |V | · |S| · |E| · |M |). All possible combina-
tions of prices comes down to |M ||Stations| since for each
station, all values in M have to be considered. This ends
up making the final complexity of a brute force algorithm
O(|T |2 · |V | · |S| · |E| · |M ||Stations|+1). Considering that the
amount of stations will usually be bounded, this complexity is
technically not truly exponential. However, it was considered
to still be excessive.

5 Responsible Research
According to [1] many researchers have tried and failed to re-
produce experiments of other researchers. This is problematic
since it then becomes questionable if the right conclusions
have been drawn. To circumvent this, we have taken care to
ensure that it is possible to replicate the results found in this
paper. This was done by explicitly stating which graphs were
used. The formula used most often in the paper, also was
carefully derived step by step. This was done to ensure that
the formula could be replicated. Next to that, the code is open
source, and can be accessed from GitLab. This is done not
only to allow other scientists to try to reproduce the results,
but also to improve the model.

6 Conclusions and Future Work
In this paper the IARS model introduced in [3] was extended
to adjust to station prices. This was done to find a way to
calculate prices to minimize maximum queue size across the
stations, while maximising profit.
To this end, formula 3 was derived, and subsequently applied
to different graphs. This led to the conclusion that the easiest
way to split vehicles across a bottleneck graph, is to solve the
problem only considering the largest class of vehicles. For
more complicated graphs the problem quickly becomes too
restricted, due to too few degrees of freedom to influence the
traffic. Finally the use of a brute force algorithm was dis-
carded, as the complexity was too high.
For future work, more research could be done regarding the
grid scenario. Even though no direct way to solve it was
found, maybe changes in the model might make it possible
to solve. Using equation 1 as the utility function, might be
more interesting and lead to more varied solutions. Next to
that, the current model makes assumptions which might need
to be relaxed to make it more realistic. The two main ones are
that both charge time and money spent at a charging station
are not charge dependent. In reality, you have to pay for the
amount of charge, and charging an empty tank takes longer
than charging a tank that is half full.
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