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Aggregates of Monotonic Step Response Systems: A
Structural Classification

Franco Blanchini , Senior Member, IEEE, Christian Cuba Samaniego, Elisa Franco, and Giulia Giordano

Abstract—Complex dynamical networks can often be analyzed
as the interconnection of subsystems: This allows us to consider-
ably simplify the model and better understand the global behavior.
Some biological networks can be conveniently analyzed as aggre-
gates of monotone subsystems. Yet, monotonicity is a strong re-
quirement; it relies on the knowledge of the state representation
and imposes a severe restriction on the Jacobian (which must be a
Metzler matrix). Systems with a monotonic step response (MSR),
which include input–output monotone systems as a special case, are
a broader class and still have interesting features. The property of
having a monotonically increasing step response (or, equivalently,
in the linear case, a positive impulse response) can be evinced from
experimental data, without an explicit model of the system. We
consider networks that can be decomposed as aggregates of MSR
subsystems and we provide a structural (parameter-free) classifi-
cation of oscillatory and multistationary behaviors. The classifica-
tion is based on the exclusive or concurrent presence of negative
and positive cycles in the system aggregate graph, whose nodes
are the MSR subsystems. The result is analogous to our earlier
classification for aggregates of monotone subsystems. Models of
biomolecular networks are discussed to demonstrate the applica-
bility of our classification, which helps build synthetic biomolecu-
lar circuits that, by design, are well suited to exhibit the desired
dynamics.

Index Terms—Bifurcations, biological networks, graph theory,
positive impulse response, structural analysis.

I. INTRODUCTION

THE THEORY of monotone systems has been one of
the most successful tools for the analysis of biologi-

cal systems, in particular, biomolecular circuits and gene net-
works [30], [32]. It is straightforward to check the monotonic-
ity of low-order phenomenological models by inspecting their
Jacobian matrix, and verification (or lack) of this property
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immediately provides important information about the poten-
tial dynamic behaviors of the system, without having to resort
to extensive numerical studies. Large, complex networks can
often be decomposed into the interconnection of input-output
monotone subsystems, making it possible to employ many the-
oretical tools that help establish the admissible dynamics of the
network: for instance, interconnected monotone modules have
been shown to exhibit multistationarity [2] and oscillations [4]
depending on the interconnection topology.

It remains difficult, however, to establish monotonicity of
biological networks in many cases. Due to the absence of com-
partments, molecular circuits are often plagued by the presence
of unmodeled or unknown dynamics. Also, phenomenological
models often neglect the effects of the environment on a module,
and further simplify several chemical reactions into few equa-
tions: these simplifications may yield monotone models that
enable sophisticated theoretical analysis, whereas the mecha-
nistic (and more realistic) state-space model does not in reality
enjoy such properties; we are not aware of systematic crite-
ria allowing us to establish monotonicity of generic chemical
reaction networks.

While it can be difficult to apply the tools of monotone sys-
tems theory to realistic biological models, whose state-space
model may be too complex or uncertain, we suggest an alter-
native route that focuses on the monotonicity of the system
step response. We focus on identifying the possible instability
patterns that can arise in interconnections of systems having
a monotonic step response (MSR) in isolation, and we prove
a structural (parameter-independent) [7] classification analo-
gous to the classification that was previously established for
interconnections of monotone subsystems [9]. A first structural
classification for systems with a sign-definite Jacobian [8] re-
lied on the Jacobian graph, where the nodes are associated with
state variables and the arcs with signed Jacobian entries: strong
(weak) candidate oscillators were identified as systems that can
exclusively (possibly) transition to instability due to a complex
pair of eigenvalues, while strong (weak) candidate multista-
tionary systems can exclusively (possibly) transition to insta-
bility due to a real eigenvalue. Building on a vast literature
(see [5], [18], [21], [28], [31], [33], [34], and the discussion
in [8]), a structural classification of oscillatory and multistation-
ary networks was proposed based on the exclusive or concurrent
presence of negative and positive cycles in the Jacobian graph.
These results were extended to interconnections of monotone
subsystems in [9], based on cycles in the aggregate graph, whose
nodes are the monotone subsystems.

2325-5870 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Here, conversely, we show how large networks can often be
regarded as aggregates of interacting subsystems with mono-
tonic step response (MSR). MSR systems include, and signif-
icantly generalize, input–output monotone systems. As a main
result, we prove that the classification in [8] and [9] can be scaled
and suitably adapted to consider interconnections of MSR sub-
systems. We provide a graph-based characterization of potential
multistationary and oscillatory behaviors, based on the exclu-
sive or concurrent presence of positive and negative cycles in
the aggregate graph, whose nodes are the MSR subsystems.
We then propose a summary of available criteria to establish
whether a system has a positive impulse response (PIR), which
is equivalent to MSR in the linear case. Our classification can
be successfully applied to structurally evaluate the behavior
of artificial biomolecular networks: The analysis of oscillators
and bistable systems built of potentially MSR aggregates [12]
reveals that their design is well suited to achieve the desired
dynamics.

A. Motivating Example: Gene Expression

Consider the following elementary gene expression process
with negative autoregulation [29], where x is the RNA concen-
tration and y is the protein concentration:

ẋ =
a

A + y
− αy + u (1)

ẏ = γx − βy (2)

with output y. Negative autoregulation is extremely common in
bacterial systems, and there is evidence that it helps reduce vari-
ability of protein expression at the population level [24]; thus, it
is a very important “module” in the context of synthetic biology.
The Jacobian of this system is not a Metzler matrix; therefore,
the system is not monotone. However, since the degradation of
RNA molecules and of proteins occurs on time scales having
different orders of magnitude, this system has a monotonic step
response (for values of the parameters that are compatible with
physical observations), as will be shown in Section VII.

II. MONOTONIC STEP RESPONSE (MSR) SYSTEMS

Given a dynamical system of the form

ẋ(t) = f(x(t), u(t)), x ∈ Rn (3)

y(t) = g(x(t)) (4)

where the input u ∈ R and the output y ∈ R are both scalars,
consider an equilibrium pair (x̄, ū) and the corresponding output
value ȳ, so that 0 = f(x̄, ū) and ȳ = g(x̄). Let us consider the
following definition.

Definition 1: System (3)–(4) is an MSR system if, for any
equilibrium pair (x̄, ū) and any constant input u > ū, the output
function y(t) corresponding to the trajectory x(t) with initial
condition x(0) = x̄ is monotonically increasing. �

The previous definition admits a local version.
Definition 2: System (3)–(4) is a locally MSR (locMSR) sys-

tem with respect to the equilibrium pair (x̄, ū) if, for sufficiently
small constant u > ū, the output function y(t) corresponding to

the trajectory x(t) with initial condition x(0) = x̄ is monotoni-
cally increasing. �

In the linear case, the two definitions are equivalent.
The MSR property can be characterized as follows.
Theorem 1: Assume that functions f and g are continuously

differentiable. Then, system (3)–(4) is an MSR system if and
only if, for any equilibrium pair (x̄, ū) and any constant u > ū,
there exists a setPu,x̄ that is positively invariant for ẋ = f(x, u),
such that x̄ ∈ Pu,x̄ and

Pu,x̄ ⊆
{

∂g(x)
∂x

f(x, u) ≥ 0
}

where {ϕ(x) ≥ 0} generically denotes the set of all points at
which function ϕ is non-negative. �

Proof: Sufficiency is obvious; if x̄ ∈ Pu,x̄ , then, for all t >
0, x̄(t) ∈ Pu,x̄ (where x̄(t) denotes the trajectory with initial
condition x̄). Hence, the system is MSR because

ẏ =
∂g(x)
∂x

f(x, u) ≥ 0.

As for necessity, given an MSR system, consider the set P∗
u,x̄

of all states for which x(t0) ∈ P∗
u,x̄ implies ẏ ≥ 0 for all t ≥

t0 . The set P∗
u,x̄ is positively invariant, x̄ ∈ P∗

u,x̄ , and P∗
u,x̄ ⊆

{ ∂g(x)
∂x f(x, u) ≥ 0}. �
Proposition 1: Given the linear system

ẋ(t) = Ax(t) + Bu(t), x ∈ Rn (5)

y(t) = Cx(t) (6)

where A ∈ Rn×n , B ∈ Rn×1 , and C ∈ R1×n , assume without
restriction that x̄ = 0. The following properties are equivalent.

1) [locMSR] System (5)–(6) is a locally MSR system.
2) [MSR] System (5)–(6) is an MSR system.
3) [PIR] System (5)–(6) has a PIR. �
Proof: The equivalence between [locMSR] and [MSR] is

due to linearity. [PIR] and [MSR] are equivalent since the im-
pulse response is the derivative of the step response. �

Our analysis is performed on the linearized system. Hence,
we always assume that the overall nonlinear system admits an
equilibrium, around which it can be linearized, and is defined in
a neighborhood of this equilibrium. Then, we have the following
preliminary result.

Theorem 2: If system (3)–(4) is an MSR system, then its
linearization about any equilibrium point is an MSR system
(or, equivalently, a PIR system). �

Proof: Let the equilibrium be x̄ = 0 and ū = 0, w.l.o.g., then

ẋ(t) = Ax(t) + Bu(t) + R(x(t), u(t)) (7)

y(t) = Cx(t) + S(x(t)) (8)

where R and S are infinitesimals of order greater than one.
Consider the sign-preserving coordinate transformation

z = kx, w = ky, and v = ku

Authorized licensed use limited to: TU Delft Library. Downloaded on May 28,2020 at 12:56:09 UTC from IEEE Xplore.  Restrictions apply. 
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with k integer and positive. Also, let Rk (z, v) .= kR( z
k , v

k ) and
Sk (z) .= kS( z

k ). Then

ż(t) = Az(t) + Bv(t) + Rk (z(t), v(t)) (9)

w(t) = Cz(t) + Sk (z(t)) (10)

where Rk (z, v) and Sk (z) converge to 0 uniformly, as k → ∞,
in any compact ball B including 0 (in the z space). Let zk be the
solution of (9) and (10) and z∞ the solution of the associated
linear system with Rk (z, v) = Sk (z) = 0, and let wk and w∞
be the corresponding outputs.

To prove that the linear system is an MSR system (that is, its
step response is nondecreasing), assume by contradiction that

w∞(t1) − w∞(t2) ≥ ε > 0 (11)

for t1 < t2 and for a positive input v, and let the compact ball
B include z∞(t1) and z∞(t2).

Due to the uniform convergence of Rk and Sk , the solution
zk of the nonlinear system uniformly converges to the solution
z∞ of the linear system [19]. Hence, for ε small enough and
for k large enough, it must be |wk (t1) − w∞(t1)| ≤ ε/2 and
|wk (t2) − w∞(t2)| ≤ ε/2. In view of (11), this would imply
wk (t1) ≥ wk (t2), against our assumption. �

Henceforth, we will consider MSR systems and remember
that their linearization is a PIR system.

It is fundamental to compare the properties of MSR systems
and monotone systems.

Definition 3: System (3) is input-to-state monotone if, given
u2(t) ≥ u1(t) ∀t and x2(0) ≥ x1(0), the corresponding so-
lutions satisfy x2(t) ≥ x1(t). System (3)–(4) is input–output
monotone if it is input-to-state monotone and the output func-
tion g is sign preserving, that is, x1 ≤ x2 implies

g(x1) ≤ g(x2).

All of the inequalities are to be intended componentwise. �
The following well-known result holds [32].
Proposition 2: If system (3)–(4) is input–output monotone,

then its linearization (5)–(6) is such that
1) the Jacobian A is Metzler: Aij ≥ 0 for i �= j;
2) B and C are non-negative.
Hence, the linearization is a PIR system. �
Proposition 2 shows that if a system is input–output mono-

tone, then its linearization is a PIR system. The opposite is not
true: having a linearization for which 1) and 2) hold is a stronger
requirement. Hence, there are systems that are not monotone,
but whose linearization is a PIR system, as shown next.

Example 1: The linear system

ẋ =

⎡
⎢⎣
−α −β γ

−α −(β + δ) 0

α β −(γ + ε)

⎤
⎥⎦x +

⎡
⎢⎣

1

0

0

⎤
⎥⎦u (12)

y =
[
0 0 1

]
x, (13)

where the Greek letters denote positive parameters, is associated
with the transfer function

F (s) =
α(s + δ)

s3 + p2s2 + p1s + p0
(14)

Fig. 1. MSR (left) and the PIR (right) of the system in Example 1 with
α = ε = 3, β = γ = 1, and δ = 2.

having coefficients

p2 = α + β + γ + δ + ε

p1 = αδ + αε + βγ + βε + γδ + δε

p0 = αδε.

The system is not monotone, since its Jacobian is not Metzler.
However, its linearization is a PIR system, hence an MSR sys-
tem. We can see this for the choice of parameters α = ε = 3, β =
γ = 1, and δ = 2; in this case, the transfer function becomes

F (s) =
3(s + 2)

s3 + 10s2 + 27s + 18

and the corresponding impulse response

f(t) = L−1 [F (s)] =
3
10

e−t +
1
2
e−3t − 4

5
e−6t

is positive for all t > 0. The MSR and the PIR are shown in
Fig. 1. Actually, system (12)–(13) is structurally PIR, for any
choice of the positive parameters α, β, γ, δ, and ε, as shown
in Section VII. �

III. TRANSITION TO INSTABILITY AND STRUCTURE

Our analysis proceeds along the lines in [8] and [9]. To inves-
tigate transitions to instability, we consider the system

ẋ(t) = f(x(t), μ), x ∈ Rn (15)

where μ is a real-valued parameter and f(·, ·) is a sufficiently
smooth function, continuous in μ. We assume that the system has
a structure (a sign pattern, formally defined later in Definition 6)
that is invariant with respect to μ, and an equilibrium x̄μ exists
as a function of μ, such that f(x̄μ , μ) = 0.

We aim at assessing which type of instability can arise
[8], [9]. To this aim, we denote as critical a choice of param-
eters for which the system loses stability due to poles crossing
the imaginary axis. Then, the system is a strong (respectively,
weak) candidate bistable system if its response is monotone for
all of the critical choices (respectively, for some critical choice)
of the parameters. In this case, stability is typically lost due to a
real pole that crosses the imaginary axis at zero. Conversely, the
system is a strong (respectively weak) candidate oscillator if its
response for critical choices of the parameters is never monotone
(respectively, can be nonmonotone). This typically occurs due
to a pair of complex eigenvalues that cross the imaginary axis.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 28,2020 at 12:56:09 UTC from IEEE Xplore.  Restrictions apply. 
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Remark 1: We keep the terminology in [8] and [9], although
our analysis is carried out in a linear context, while the terms
candidate oscillator and (especially) candidate bistable system
are meaningful, in principle, in a nonlinear context. The tran-
sition of a pair of complex eigenvalues to the right-half plane
induces sustained oscillations if the overall solution is bounded;
and the boundedness has to be proved in the nonlinear frame-
work. The transition of a real eigenvalue from the negative to
the positive real axis typically generates new equilibria, which
are stable under additional assumptions [8], [9]; and this kind
of phenomena has to be studied in the nonlinear framework. �

The structure of an MSR aggregate system is given by the
pattern of the signed interactions in an aggregate graph where
the arcs represent the signed interactions among the (linearized)
subsystems, which, in turn, correspond to the nodes. (In our
earlier work, the system structure was defined as the Jacobian
sign pattern [8] or as the pattern of signed interactions in the
aggregate graph associated with the system [9].) To qualitatively
represent the interaction between subsystem k and subsystem
h, we consider a coefficient σkh , which can be either positive
or negative (equivalently, in the aggregate graph, an arc with
weight σkh goes from node h to node k).

For instance, consider a system of the form

ẋ1 = f1(x1 , σ12y2 , σ14y4), y1 = g1(x1)

ẋ2 = f2(x2 , σ21y1), y2 = g2(x2)

ẋ3 = f3(x3 , σ32y2), y3 = g3(x3)

ẋ4 = f4(x4 , σ43y3), y4 = g4(x4)

where each subsystem is an MSR system with respect to all
of its inputs σij yj . The system structure is given by the sign
pattern, sign[Σ], of the interaction matrix

Σ .=

⎡
⎢⎢⎢⎢⎣

0 σ12 0 σ14

σ21 0 0 0

0 σ32 0 0

0 0 σ43 0

⎤
⎥⎥⎥⎥⎦ . (16)

After linearization, the above system corresponds to

y1(s) = F12(s)σ12y2(s) + F14(s)σ14y4(s)

y2(s) = F21(s)σ21y1(s)

y3(s) = F32(s)σ32y2(s)

y4(s) = F43(s)σ43y3(s)

where Fij (t) = L−1 [Fij (s)] are generic PIRs (L denotes the
Laplace transform operator andL−1 its inverse). Then, the ques-
tion is: which kind of instability is possible, given the sign pat-
tern sign[Σ]?

IV. PROBLEM DEFINITION AND MAIN RESULTS

We assume that the transfer functions of the subsystems are
admissible, according to the following definition.

Fig. 2. Aggregate graph of the system with the interaction matrix (16).

Definition 4: If F (t) is the impulse response of a linear
single-input single-output system, then the Laplace transform

F (s) = L[F (t)] =
∫ ∞

0
F (t)e−stdt

is its transfer function1. The transfer function

F (s) = e−sτ G(s)

is admissible if G is rational, strictly proper (hence, lims→∞
F (s) = 0) and stable (namely, its poles have negative real parts),
and the delay τ > 0. �

A (possibly small) delay is always present in practice; from
a technical point of view, the presence of a delay will allow us
to provide clean necessary and sufficient conditions.

With a slight abuse of terminology, we call PIR transfer func-
tion a transfer function F (s) corresponding to a PIR F (t).

Let y(s) be an N -dimensional vector including the Laplace-
transformed outputs of the N MSR linearized subsystems that
compose the overall system. Then, our model can be written as

y(s) = Φ(s)y(s) (17)

where matrix Φ(s) has entries of the form

Φij (s) = σijFij (s) (18)

with Fij (s) admissible PIR transfer functions.
The interaction matrix Σ, whose entries are the interaction co-

efficients σij , is the weighted adjacency matrix of the oriented
aggregate graph, where the nodes represent the MSR subsys-
tems. In the graph, there exists an arc from node j to node i if
and only if σij �= 0, namely, if and only if yj affects yi . As an
example, the interaction matrix (16) is associated with the graph
in Fig. 2. The arc from node j to node i can be either positive
or negative, depending on the sign of σij .

Definition 5: Given a graph, a cycle is an oriented, closed
sequence of distinct nodes connected by distinct directed arcs.
A cycle is negative (positive) if the number of negative arcs
involved in the cycle is odd (even). �

If the graph is represented by the matrix Σ, a cycle is
associated with a sequence of nonzero off-diagonal entries:
{σk2 ,k1 σk3 ,k2 . . . σks ,ks−1 σk1 ,ks

}. We assume that at least a cy-
cle exists in the aggregate graph.

Definition 6: Given an aggregate of interconnected subsys-
tems, matrix S = sign[Σ] is the system structure, while matrix
Σ is a realization of structure S. �

1We accept the standard notation abuse of denoting L[F (t)] as F (s)
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TABLE I
STRUCTURAL CLASSIFICATION IN THEOREM 3

Candidate oscillator Candidate bistable system

Weak A negative cycle exists A positive cycle exists
Strong All cycles are negative All cycles are positive

The overall system is stable if the interactions σij are small,
because each subsystem is assumed to be stable. Hence, poten-
tial instability can be due to the interactions only.

Definition 7: Matrix Σ∗ is a critical realization if, in each
neighborhood Nε = {Σ : ‖Σ − Σ∗‖ ≤ ε} of radius ε > 0, the
structure S = sign[Σ∗] admits both asymptotically stable and
exponentially unstable realizations. �

We consider systems with a perturbing input vector u as
follows:

y(s) = Φ(s)y(s) + Δu(s) (19)

where Δ is a diagonal matrix with non-negative entries.
For example, if Δ has a single positive diagonal entry

Δkk > 0, then the step response of the system shows (roughly
speaking) the reaction to a persistent “injection” of yk from the
outside, whereas the impulse response shows the reaction to the
instantaneous addition of a “large” amount of yk .

Let us introduce the following classification.
Definition 8: Given a system of the form (19) having struc-

ture S = sign[Σ], assume that a step input is applied to a single
variable yk (namely, Δkk > 0 and Δjj = 0 for all j �= k). Then,
the system is:

1) a strong candidate bistable system: if, for any choice of
admissible functions and any critical realization Σ∗, the
step response of all variables yi(t) (i = 1, . . . , N ) with
zero initial conditions is either monotonically increasing,
or monotonically decreasing, for all k ∈ {1, . . . , N};

2) a strong candidate oscillator: if, for any choice of admis-
sible functions and any critical realization Σ∗, the step
response of all variables yi(t) (i = 1, . . . , N ) with zero
initial conditions is not monotone, for all k ∈ {1, . . . , N};

3) a weak candidate bistable system: if, for some choice of
admissible functions and some critical realization Σ∗, the
step response of all variables yi(t) (i = 1, . . . , N ) with
zero initial conditions is either monotonically increasing,
or monotonically decreasing, for all k ∈ {1, . . . , N};

4) a weak candidate oscillator: if, for some choice of admis-
sible functions and some critical realization Σ∗, the step
response of all variables yi(t) (i = 1, . . . , N ) with zero
initial conditions is not monotone, for all k ∈ {1, . . . , N}.

�
Remark 2: In practice, the critical configuration is achieved

either due to a single eigenvalue at zero, for candidate bistable
systems, or due to a single pair of purely imaginary eigenvalues,
for candidate oscillators. However, for the sake of generality, we
consider the case of possibly many eigenvalues on the imaginary
axis. �

We have the following result, summarized in Table I.

Theorem 3: A system of the form (19) having the structure
S = sign[Σ], associated with an aggregate graph, is:

1) a strong candidate bistable system if and only if all of the
cycles in the aggregate graph are positive;

2) a strong candidate oscillator if and only if all of the cycles
in the aggregate graph are negative;

3) a weak candidate bistable system if and only if there exists
at least one positive cycle in the aggregate graph;

4) a weak candidate oscillator if and only if there exists at
least one negative cycle in the aggregate graph. �

V. PROOF OF THE MAIN RESULTS

A. Preliminaries

The following results are preliminary for the proof of
Theorem 3, but they are of interest per se.

Proposition 3: Given the PIR F (t) of an asymptotically sta-
ble system, the corresponding transfer function F (s) is positive
for s real and non-negative. �

Proof: From the expression of the Laplace transform, it im-
mediately follows that F (s) > 0 for any real s ≥ 0. �

In particular, F (s) > 0 for s = 0. An immediate consequence
is the following:

Proposition 4: Given the transfer function F (s) correspond-
ing to an asymptotically stable system with PIR F (t), the neg-
ative loop characteristic equation 1 + F (s) = 0 cannot have 0
roots

1 + F (0) �= 0.

Hence, the negative loop has no zero poles. �
The following result considers the cascade (series connection)

of transfer functions.
Proposition 5: The cascade of PIR transfer functions is a

PIR transfer function. �
Proof: It follows from the convolution expression; if y(s) =

F1(s)F2(s)1, where 1 = L[δ(t)], then

y(t) =
∫ t

0
F1(t − θ)F2(θ)dθ

which is positive since F1 and F2 are positive. For the cascade
of more transfer functions, the proof is identical. �

Definition 9: A pole λ1 of a transfer function F (s) is dom-
inant if any other pole λ of F (s) has a nongreater real part:
Re(λ) ≤ Re(λ1). A real pole, or a pair of complex poles, is
strictly dominant if the inequality is strict: for all other poles λ,
Re(λ) < Re(λ1) = Re(λ∗

1).
Proposition 6: A PIR transfer function cannot have strictly

dominant imaginary poles different from zero. �
Proof: It is immediate, since a pair of dominant imaginary

poles ±jω, with ω �= 0, would introduce oscillations. �
Note that a PIR transfer function can have both zero and

imaginary poles, as long as zero is dominant; for instance,

F (t) = L−1
[
2
s

+
1

s2 + 1

]
= 2 + sin(t) > 0.

Proposition 7: Given the transfer function F (s) correspond-
ing to the PIR F (t) of an asymptotically stable system, the
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non-negative feedback loop transfer function

W (s) =
1

1 − μF (s)
, μ ≥ 0

is associated with a PIR (MSR) system. �
Proof: The step response satisfies the equation

y(t) =
∫ t

0
μF (t − θ)y(θ)dθ + 1.

Since the integrand function is non-negative, y(t) is monotoni-
cally increasing. �

Corollary 1: Given the transfer function F (s) correspond-
ing to the PIR F (t) of an asymptotically stable system, the
complementary sensitivity function

W (s)F (s) =
F (s)

1 − μF (s)
, μ ≥ 0

is associated with a PIR (MSR) system. �
Proof: It follows from Proposition 5, the complementary

sensitivity function is the cascade of two PIR transfer functions.
(F (s) is a PIR transfer function by assumption, and W (s) is a
PIR transfer function in view of Proposition 7.) �

B. Proof of Theorem 3

1) All Cycles Positive =⇒ Strong Candidate Bistable System:
If all of the cycles are positive, then there exists a sign-change
transformation ỹk = ±yk , such that, after changing sign to some
nodes and to the arcs incident in these nodes, all of the arcs
become positive [32]. Assume that the transformation has been
applied, so that all of the nonzero coefficients σij are positive.

Then, let us consider the time-domain response to a step input,
weighted by the diagonal matrix Δ.

We first temporarily assume that all Δkk are strictly positive.
Then

y(t) =
∫ t

0
Φ(t − θ)y(θ)dθ + Δ1 (20)

where1 is the N × 1 vector of all ones. For t1 small enough, y(t)
is componentwise positive for 0 ≤ t ≤ t1 , because the integral
is small. Also, in a right neighborhood of t1 , the contribution of
the integral is positive (Φ ≥ 0 componentwise, because σij ≥ 0
for all i, j in view of the transformation). Hence, when we extend
the integral interval, y(t) increases.

Now apply the positive step to a single variable, say y1 . So,
Δ11 > 0 only (and Δjj = 0 for all j �= 1), as per Definition 8.
Then, y1(t) is positive in an interval 0 ≤ t ≤ t1 , with t1 arbitrar-
ily small. For all of the variables yk such that node k is directly
connected with node 1 in the aggregate graph

yk (t) =
∫ t

0

N∑
j=1

Φkj (t − θ)yj (θ)dθ. (21)

Then, all of these variables become positive at a time instant
0 < t2 ≤ t1 , because all of the terms in the integral are non-
negative and at least that depending on y1 is positive. By iterating
the reasoning, if the graph is connected, we have that all of the
variables become positive at some time 0 < t̄ ≤ · · · ≤ t2 ≤ t1 .

Hence, since the integrals always provide a positive contribution
(for the same argument presented before), yi(t) is monotonically
increasing for all i. If the graph is not connected, then the re-
sponse is monotonically increasing for all of the nodes in the
same connected component as node 1, while the response is 0
for the other nodes. �

2) All Cycles Positive⇐= Strong Candidate Bistable System:
Assume, by contradiction, that there exists a negative cycle of
length l, involving the variables y1 , y2 , ..., yl . Then, we can set
all of the coefficients σij to “virtually” zero (cf. [8] and [9]),
except for those pertaining to the negative cycle. If y1 is taken
as an output, the resulting loop is

y1(s) = −
l∏

k=1

|σk,k−1 |Fk,k−1(s)e−(∑ l
k = 1 τk , k −1 )sy1(s)

.= −σcFc(s)e−τc sy1(s)

where the subscript 0 corresponds to l, σc =
∏l

k=1 |σk,k−1 |,
Fc(s) =

∏l
k=1 Fk,k−1(s), and τc =

∑l
k=1 τk,k−1 . Since Fc(0)

> 0, in view of Proposition 3, there are no poles at s = 0,
because the characteristic equation

1 + σcFc(s)e−τc s = 0

is not satisfied by s = 0. For σc > 0 small, the loop is asymp-
totically stable by assumption, since all elements Fk,k−1(s) are
stable. However, as we can see via Nyquist plot analysis, if we
increase σc > 0, there is necessarily a critical value σ∗

c for which
a pair of imaginary roots ±jω∗ (associated with an undamped
oscillatory mode [25]) appear, with all other roots having non-
positive real part. At s = 0, we have σ∗

cFc(0) > 0. For the sign
conservation theorem, Fc(λ) must be positive in an interval λ ∈
(−ζ, 0], where 1 + σcFc(λ)e−τc λ > σcFc(λ)e−τc λ > 0. Then,
there cannot exist real poles of the closed-loop transfer func-
tion (associated with nonoscillatory modes) that are larger than
−ζ: real modes, if any, are converging exponentially, faster than
e−ζ t . The presence of persistent oscillatory modes implies that,
if we apply an impulse to y1 , the response of the loop is oscilla-
tory; hence, it has both positive and negative values: the system
is not a strong candidate bistable system. �

3) All Cycles Negative =⇒ Strong Candidate Oscillator:
We show that if all cycles are negative, then no critical configu-
ration (at the stability boundary) can have zero eigenvalues. The
loop equation corresponding to (17) is

det[−I + Φ(s)] = 0. (22)

We now invoke the following result, from [23, Theor. 3.1].
Theorem 4: Given a real matrix M with negative diagonal

entries, such that all of the cycles in it are nonpositive, each
leading minor of M having order k has sign (−1)k . �

As a corollary, the determinant of M is nonzero. If we take
s = 0, then (22) becomes the real equation det[−I + Φ(0)] = 0,
which is false (because the matrix satisfies the assumptions of
Theorem 4, hence it must be nonsingular). Therefore, any critical
configuration must have purely imaginary dominant eigenval-
ues. Hence, there are undamped oscillatory modes and the step
response cannot be monotone [25]. �
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4) All Cycles Negative ⇐= Strong Candidate Oscillator:
Assume, by contradiction, that there is a positive cycle of length
l, involving the variables y1 , y2 , ..., yl . Then, we set to “virtually”
zero all of the coefficients σij that are not involved in this
cycle. Considering the resulting loop, with y1 taken as an output,
Δ11 > 0 and a constant unitary step input, we obtain

y1(s) = σcFc(s)e−τc sy1(s) + Δ11
1
s

where σc =
∏l

k=1 σk,k−1 > 0, Fc(s) =
∏l

k=1 Fk,k−1(s), and
τc =

∑l
k=1 τk,k−1 , with the subscript 0 corresponding to l. In

the time domain, we have the convolution

y1(t) =
∫ t

0
σcFc(t − θ)y1(t − τc)dθ + Δ11 .

Since the integrand function is positive, y1(t) is monotonically
increasing, so this is not a strong candidate oscillator. �

The proof of the two last statements follows immediately
from the fact that, by definition, a system with structure S is not
a strong candidate oscillator if and only if it is a weak candidate
bistable system and is not a strong candidate bistable system if
and only if it is a weak candidate oscillator. �

Our classification is stated in terms of monotonicity and non-
monotonicity of the step response for all/some critical configu-
rations. We have seen that when the dominant eigenvalues are
purely imaginary, then the step response cannot be monotonic,
because an MSR requires a real dominant eigenvalue.

However, a transfer function with a (even strictly) dominant
zero pole is not necessarily associated with an MSR (or with a
sign-definite impulse response). The transfer function

F (s) =
1 − s

s(s + 1)
= L [

1 − 2e−t
]

for instance, is not PIR. However, this impulse response is pos-
itive for large values of t.

To consider this point, we can call the step response
eventually monotonic if there is t̄ ≥ 0 such that the step
response is monotonically increasing or decreasing for t > t̄.
Definition 8 can be then restated in terms of eventually mono-
tonic (instead of monotonic) step responses just by replacing
“monotonically increasing/decreasing” with “eventually mono-
tonically increasing/decreasing.” With this new definition, the
ambiguity associated with the presence of a strictly dominant
zero pole disappears: If all other poles have a negative real part,
then the step response is eventually monotonic.

It is worth stressing that with the new definition, the pro-
posed classification would hold without changes. Indeed, going
back to the proof of Theorem 3: all cycles being positive im-
plies that the step responses are monotonic, hence eventually
monotonic. Conversely, in the presence of a negative cycle, the
system admits a critical configuration with dominant imaginary
poles, corresponding to step responses that are not eventually
monotonic. Furthermore, if all cycles are negative, any critical
configuration has imaginary dominant poles; therefore, there
are persistently oscillatory modes and the step responses are
not eventually monotonic. On the other hand, the presence of a
positive cycle implies that, by “virtually eliminating” all other

cycles, we get a monotonic (hence eventually monotonic) step
response.

VI. CONSEQUENCES OF THE CLASSIFICATION

The results in the previous section have some interesting
consequences.

For instance, a positive interconnection of PIR subsystems
(an interconnection such that all of the cycles in the aggregate
graph are positive; namely, a strong candidate bistable system)
has some properties in common with monotone systems. In
particular, if we increase one variable by adding a persistent
positive input, all of the others increase as well.

Corollary 2: A positive interconnection of PIR subsystems
is a PIR system, regardless of which variable yk is chosen as an
output and to which yh the positive input is applied. �

Remark 3: To build the structural influence matrix M [17],
which is a sign matrix, we apply a step input to the jth system
variable and we consider the sign of the ensuing steady-state
variation of the ith variable. The structural steady-state influ-
ence is determined if Mij is sign definite; if the sign depends on
the parameters, the influence is indeterminate and in this case
we write Mij = “?.” For a positive interconnection of PIR sub-
systems, matrix M is a sign definite and has all “+” entries.
This particular property had been shown to hold, as a special
case, for monotone systems [17]. �

Another property concerns the worst case input signal,
namely, the signal |u| ≤ 1 that produces the largest output de-
viation from a nominal condition. It is well known that for an
input–output monotone system, the worst case input is a constant
signal. For a PIR system, the same property holds. Assuming a
zero initial condition, the worst case deviation is

sup
|u(·)| ≤ 1,t ≥ 0

|y(t)| =
∫ ∞

0
F (t)dt

and the worst case input is a step.
For a strong candidate bistable system, we also have the fol-

lowing results.
Proposition 8: A strong candidate bistable system always

has a real dominant eigenvalue for any configuration Σ. �
Proof: Since the system is a strong candidate bistable sys-

tem, if Σ is critical, then it must have a zero dominant eigenvalue.
Let Σ be noncritical and let λ∗ be the largest real part of the
eigenvalues. If we artificially replace Fkh(s) by Fkh(s − λ∗),
then we achieve a critical configuration for the same system, in
which all of the impulse responses are replaced as follows:

Fkh(t) −→ e−λ∗tFkh(t).

This operation does not alter positivity of the impulse responses.
However, all eigenvalues are translated of −λ∗. Thus, there can-
not be dominant complex eigenvalues, because the translation
would lead to a critical configuration with nonzero imaginary
eigenvalues (hence, to oscillations). �

Corollary 3: Consider a configuration Σ corresponding to a
strong candidate bistable system. If Σ is critical, then it remains
critical for any possible value of the delays. �

Proof: For any critical configuration of a strong candi-
date bistable system, 0 is the dominant eigenvalue. For s = 0,
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e−τk 0 = 1. Hence, 0 remains the dominant eigenvalue for any
possible choice of the delays τk . �

VII. REVIEW OF CRITERIA FOR ESTABLISHING PIR

Does a given linear system have a PIR transfer function? This
problem has been considered for a long time [20], [22] and
is not fully solved. Sufficient conditions, as well as necessary
conditions, are available in terms of zeros and poles.

Also, the link between PIR systems and monotone
(positive, in the linear case) systems is worth investigating. Any
input–output monotone linear system is a PIR system. The op-
posite question is: does a PIR transfer function admit a positive
realization? This is the positive realization problem [15]. Under
proper assumptions, any PIR transfer function admits a positive
realization, but this realization is nonminimal: to find a state-
space representation that is input–output monotone, the state
needs to be artificially augmented [27]. This augmentation can
be avoided, under some assumptions, by considering eventually
positive minimal realizations [1].

We summarize a set of properties concerning PIR systems.
The rational transfer function F (s) is a PIR transfer function:
1) iff its step response is monotonically nondecreasing;
2) only if it has no complex strictly dominant poles;
3) if it is the positive feedback of a PIR system;
4) if it is the cascade of PIR systems;
5) if it has n real poles and no zeros;
6) if it has n real poles and m < n real zeros with the order-

ing property −p1 > −z1 , −p2 > −z2 , ...−pm > −zm ,
whereas the other real poles are arbitrary [20], [22].

Criterion (6) can be proved by noting that F (s) can be written
as the product of terms of the type μk

s+pk
, which are PIR due to

criterion (5), and terms of the type s+zk

s+pk
, which have a PIR if

−pk > −zk [20], [22]. Hence, the whole transfer function is
PIR, in view of criterion (4).

Example 2: To demonstrate the application of the criteria,
consider the chemical reaction network

X1 + X2
g1 2
⇀X3 , X3

g3
⇀X1 , X2

g2
⇀ ∅, X3

g̃3
⇀ ∅

∅ x1 , 0
⇀ X1 , ∅ x2 , 0

⇀ X2 .

Chemical species are denoted with uppercase letters and their
concentrations with the corresponding lowercase letter. In the
presence of an additive input u affecting x1 , and taking x3 as an
output, the concentrations evolve according to the equations

ẋ1 = − g12(x1 , x2) + g3(x3) + x1,0 + u

ẋ2 = − g12(x1 , x2) − g2(x2) + x2,0

ẋ3 = + g12(x1 , x2) − g3(x3) − g̃3(x3)

y = x3

where all reaction rate functions (gs and g̃3) are increasing and
x1,0 , x2,0 are positive terms. If we denote the positive partial
derivatives by α = ∂g12/∂x1 , β = ∂g12/∂x2 , γ = ∂g3/∂x3 ,
δ = ∂g2/∂x2 and ε = ∂g̃3/∂x3 , and x = [x1 x2 x3 ]�, the
linearized system can be written as system (12)–(13) in
Example 1, which has transfer function (14).

For any possible choice of the positive parameters, the ap-
plication of the Routh–Hurwitz criterion shows that this system
is asymptotically stable. To prove that it is also a PIR system
for all possible choices of α, β, γ, δ, ε > 0, note that it can be
viewed as the feedback loop

y(s) =
α(s + δ)

(s + α)(s + δ) + sβ

1
s + γ + ε

(u(s) + y(s)). (23)

According to criterion (3) (see also Proposition 7), the positive
feedback of a PIR system yields a PIR transfer function, so we
just need to show that the transfer function in (23) is PIR. This
function is the cascade connection of

F2(s)
.=

1
s + γ + ε

which is a PIR transfer function due to criterion (5), and of

F1(s)
.=

α(s + δ)
(s + α)(s + δ) + sβ

.

Since, according to criterion (4), the cascade connection of PIR
transfer functions is a PIR transfer function, we need only to
show that F1(s) is a PIR transfer function.

F1(s) has two real negative poles −λ1 > −λ2 and one real
negative zero −δ. Moreover, the dominant pole −λ1 is strictly
greater than the zero (λ1 < δ). The denominator of the transfer
function evaluated at s = −δ is

(s + α)(s + δ) + sβ|s=−δ = −δβ < 0.

For s real, this second-order polynomial is a parabola having
positive limits at s = ±∞. Hence, its roots are, respectively, to
the right and to the left of −δ. In view of criterion (6), F1(s) is
a PIR transfer function, and our proof is over. �

VIII. EXAMPLES

A. Negative Autoregulation Yields an MSR Module

Reconsider the gene expression (transcription–translation)
system with negative autoregulation discussed in Section I-A.
After linearization around the equilibrium (x̄, ȳ), we can notice
that aγ/(A + ȳ)2 = αβȳ/(A + ȳ) in view of the equilibrium
conditions and then we can write the transfer function as

F (s) =
n(s)
d(s)

=
γ

s2 + (α + β)s + αβ
(
1 + ȳ

A+ ȳ

) . (24)

Since 0 < ȳ
A+ ȳ < 1, this system does not have complex poles

if the roots of the polynomial s2 + (α + β)s + 2αβ, obtained
by replacing ȳ/(A + ȳ) with 1, are real. This happens when

(α − β)2

αβ
> 4 (25)

a condition that is normally verified by typical degradation rates
α and β in bacteria. Since there are no zeros and all of the
poles are real, the linearized system is a PIR system in view of
criterion (5).

Therefore, this fundamental module in both systems and syn-
thetic biology is indeed an MSR module.
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Fig. 3. Left: biomolecular oscillator in [12], built as the overall negative feed-
back interconnection of an activated and an inhibited module. Right: biomolecu-
lar bistable system in [12], built as the overall positive feedback interconnection
of two mutually inhibiting modules.

B. Monomeric Activator–Inhibitor Loop: An Oscillator

While some synthetic biomolecular oscillators have been
shown to be the negative feedback interconnection of input–
output monotone modules [6], [11], this is not the case for the
system considered in [12].

The biomolecular oscillator in [12] is the interconnection of
an activated module, having equations

ż1 = αz (ztot
1 − z1)x3 − δz z1z2

ż2 = κz (ztot
2 − z2 − ztot

1 + z1) − δz z1z2 − νzx3z2

ẋ3 = βxx1 − αz (ztot
1 − z1)x3 − νzx3z2 − φzx3 (26)

where x1 is the input and z1 is the output, and of an inhibited
module, having equations

ẋ1 = αx(xtot
1 − x1)x2 − δxx1z3

ẋ2 = κx(xtot
2 − x2 − x1) − αx(xtot

1 − x1)x2 − νxx2z3

ż3 = βzz1 − δxx1z3 − νxx2z3 − φxz3 (27)

where z1 is the input and x1 is the output. This results in an
overall negative feedback loop: the only cycle in the aggregate
graph is negative, as shown in Fig. 3 (left). For these two mod-
ules, no monotonicity property can be proved, unless we neglect
the titration reactions by assuming νx = νz = 0. (See [12] for
details.) However, for the nominal value of the parameters, both
modules are MSR systems; to be precise, the activated module
has a monotonically increasing step response, whereas the in-
hibited module has a monotonically decreasing step response:
the overall interconnection can be seen as the negative feedback
of two MSR modules. Also, it can be numerically shown that
for large ranges of the parameters, this property is very likely
to be preserved, as discussed below. Then, whenever the MSR
property holds, the overall system can be classified as a strong
candidate oscillator.

Following the approach in [13], we generated random pa-
rameter values in the range from 10−a to 10a times the nominal
values listed in Table II. Next, we used MATLAB to integrate the
ordinary differential equations with zero initial conditions: The
response is considered monotone if the numerical derivative of
z1 (respectively, x1) is always positive (respectively, negative).
We considered 10 000 samples: in the range with a = 1, the
fraction of MSR occurrences was 59.44% for the first module,
83.61% for the second. With a larger sampling range a = 3,

TABLE II
NOMINAL PARAMETERS FOR THE OSCILLATOR IN (26) AND (27) [12]

Rate Value Rate Value

αz (/M/s) 75 · 103 αx (/M/s) 3 · 105

δz (/M/s) 3 · 105 δx (/M/s) 3 · 105

νz (/M/s) 3 · 105 νx (/M/s) 3 · 105

βz (/s) 5 · 10−3 βx (/s) 2 · 10−2

κz (/s) 1 · 10−3 κx (/s) 1 · 10−3

φz (/s) 1 · 10−3 φx (/s) 1 · 10−3

z t o t
1 (nM) 250 xt o t

1 (nM) 120

z t o t
2 (nM) 700 xt o t

2 (nM) 300

the fraction of MSR occurrences was 62.57% for the first mod-
ule and 70.83% for the second; the plots in Fig. 4 show some
projections in the parameter space.

C. Monomeric Inhibitor–Inhibitor Loop: A
Bistable System

Also, a biomolecular bistable system is proposed in [12],
built as the interconnection of two mutually inhibiting modules,
having equations

ż1 = αz (ztot
1 − z1)z2 − δz z1x3

ż2 = κz (ztot
2 − z2 − z1) − αz (ztot

1 − z1)z2 − νzx3z2

ẋ3 = βxx1 − δz z1x3 − νz z2x3 − φzx3 (28)

where x1 is the input and z1 is the output, and

ẋ1 = αx(xtot
1 − x1)x2 − δxx1z3

ẋ2 = κx(xtot
2 − x2 − x1) − αx(xtot

1 − x1)x2 − νxx2z3

ż3 = βzz1 − δxx1z3 − νxx2z3 − φxz3 (29)

where z1 is the input and x1 is the output. This results in an
overall positive feedback loop: the only cycle in the aggregate
graph is positive, as shown in Fig. 3 (right).

For each of these two inhibited modules, the same analysis
applies as for the inhibited module of the biomolecular oscillator
in Section VIII-B. No monotonicity property can be proved, un-
less titration reactions are neglected (namely, νx = νz = 0, see
[12] for details). However, for the nominal value of the parame-
ters, both modules are MSR systems; precisely, they both have
a monotonically decreasing step response, so that the overall in-
terconnection can be seen as the positive feedback of two MSR
modules. Again, this property is very likely to be preserved for
large ranges of the parameters, as can be numerically shown.
Then, whenever the MSR property holds, the overall system can
be classified as a strong candidate bistable system.

IX. CONCLUDING DISCUSSION

Many biochemical systems are monotone [30], [32], or can
be regarded as the interconnection of monotone subsystems
(the Cds-Wee1 network [3], the MAPK pathway [32], the Gold-
beter oscillator [4] in Drosophila, etc). However, to asses mono-
tonicity, we need a state-space model, which is not always easy
to provide for complex biomolecular networks.
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Fig. 4. Projections for random parameter choices in the range from 10−3 to 103 times the nominal values (for the activated module on the left, for the inhibited
module on the right). Points corresponding to MSR modules are cyan, whereas points corresponding to non-MSR modules are orange; the black diamond indicates
the nominal parameter set. Note that, for the sake of clarity, just 350 of the 10 000 analyzed samples are actually shown in the plots.

A natural and much more general system decomposition
can be achieved by considering aggregates of MSR systems.
In this paper, we have shown that the structural classification
of oscillatory and multistationary systems proposed in [8] for
sign-definite systems and in [9] for aggregate monotone systems
can be adapted to MSR aggregates. The classification is based
on the exclusive presence of negative or positive cycles in the
system aggregate graph, whose nodes are the MSR subsystems.

For significant biochemical examples, our classification pro-
vides a parameter-free method to assess or rule out potential
dynamic behaviors. This approach can then be useful to design
artificial biomolecular circuits that are structurally well suited to
achieve the desired dynamics: bistable and oscillatory behaviors
can be enforced by design in synthetic biomolecular circuits, by
properly interconnecting MSR modules.

There are several directions for future work. First, it would be
interesting to consider trajectories, rather than single equilibria:
in this sense, the variational approach in [10] is very promis-
ing. Also, the connection between PIR systems and eventually
monotone systems [1], [26] (and differentially positive systems
[16]) has not been completely explored here and deserves fur-
ther investigation. Finally, structural conditions on sign patterns
related to eventual positivity [14] could be applied to provide
further insight into the problem.
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