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SUMMARY 

Timber joints are a key part of timber structures. Their reliable performance is a 
prerequisite to successful timber construction. The structural loadbearing behaviour of 
timber joints is mechanically complex and difficult to predict. Although numerical tools 
are currently available, these do not consider accurate 3D material models. However, to 
predict performance of a timber joint with useful accuracy a 3D material model need to 
be taken into account in the calculation of the global load-slip behaviour. 

Most research to date has focused on testing and modelling of timber joints of softwood 
species whilst knowledge on joints using hardwood species is limited. The use of 
hardwood as well as higher grade mechanical fixings (i.e. replacing the commonly used 
mild steel dowels with very high strength steel dowels) can enhance load carrying 
capacities significantly. This lack of research and consequently the lack of reliable data 
on hardwood leave the optimisation potentials of hardwood joints with very high strength 
steel dowels unexploited. 

The research reported in this thesis describes the newly developed 3D material model and 
it describes experiments on hardwood timber joints using dowels with different steel 
grades. It also compares the calculated mechanical behaviour with the experimental 
results. 

The complex mechanical behaviour of timber joints is mainly related to the highly 
variable and interdependent properties of the timber members. Wood is a strongly 
anisotropic material. Moreover, it is ductile in compression but it is brittle in tension and 
shear. In the area of fasteners in joints these failure modes can overlap, which causes 
complex 3D stresses to develop. Therefore, the aim of the 3D material model developed 
in this thesis was to take into account these key issues, strong anisotropy, different failure 
modes and the combination of ductile and brittle behaviour within one single model.  

Continuum damage mechanics (CDM) was chosen to develop the 3D material model. 
CDM is a nonlinear elastic approach that modifies the stiffness matrix in order to account 
for nonlinear behaviour. Different failure criteria were determined per stress quadrant in 
order to identify different failure modes and to assess the damage grade of a model. 
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Damage was defined as initiated once the failure criteria or damage initiation functions 
are exceeded. The mechanical behaviour was classified as two main constitutive laws: (i) 
elastic perfectly plastic for compression loading and (ii) linear softening for tension and 
shear loading. 

A bespoke subroutine was developed which can be supplemented to existing FE software, 
currently available to timber designers. This subroutine has been tested on simple, 
theoretical numerical models to verify the 3D material model assumptions and to validate 
the accuracy and representativeness of the mesh regularisation techniques employed. 
After the validation, material tests have been simulated under different loading patterns, 
namely altering the application of load in relation to grain of timber. The modelling 
outcomes were compared with results from literature and were seen to correlate well. In a 
final step the behaviour of more complex embedment and joint models including friction 
and metal fasteners were analysed. The model results were validated with an 
experimental programme. Embedment strength parallel-to-grain was tested. A further 180 
tests were completed on double-shear timber joints with slotted-in steel plates, using one, 
three and five dowels in row. Three timber species and two dowel steel grades were 
tested. The timber species were spruce, beech and azobé and the used dowel steel grades 
were high strength (hss) and very high strength (vhss) steel. 

The modelling outcomes were compared with the test results. The reduction of stiffness 
due to the onset of damage was accurately predicted and damage due to different stress 
components was successfully identified by the developed model. Ductile behaviour was 
captured correctly and stable softening curves could be obtained. The importance of 
accurate mechanical material properties as input parameter has been underlined. 
Numerical problems were noted specifically in elements directly underneath the dowels 
where spurious energy modes developed that distorted these elements excessively. The 
strongly distorted elements could not transfer loads to neighbouring elements that were 
still intact. In order to optimise the developed model, the spurious energy modes of the 
highly stressed elements need to be addressed in further research. 

In addition to the comparison of modelling outcomes, the tests were also analysed to 
identify optimisation potential of timber joints using very high strength steel dowels. The 
embedment tests completed as part of this work have contributed a considerable amount 
of performance data on high density wood species. The test series on joints has shown 
that hss dowels can be replaced by vhss dowels. Ductile failure modes with one or two 
plastic hinges per shear plane could be obtained also with the joints with very high 
strength steel dowels. The feasibility of joints with high strength steel dowels and 
hardwood species has been demonstrated in this thesis. Especially the combination of 
high-density timber with very high strength steel dowels gives promising performance 
levels and is recommended as an area for further research. 
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SAMENVATTING 

Het meeste onderzoek naar gedrag en modellering van houtverbindingen is gedaan voor 
naaldhout. De kennis over loofhoutverbindingen is beperkt. Het gebruik van loofhout en 
het gebruik van sterkere stalen stiftvormige verbindingsmiddelen (d.w.z. zachte stalen 
stiften worden vervangen door zeer hoge sterkte stalen (vhss) stiften) kan de sterkte van 
de verbinding aanzienlijk verhogen. De mogelijke optimisatie door de combinatie 
loofhout en zeer hoge sterkte stalen stiften wordt niet vaak toegepast vanwege een gebrek 
aan kennis en betrouwbare gegevens. 

Betrouwbare houtverbindingen zijn essentieel voor houtconstructies. Het mechanisch 
gedrag van een houtverbinding onder verschillende belastingen is echter complex en laat 
zich moeilijk voorspellen. De huidige rekenmodellen nemen de anisotropische  aspecten 
van hout niet volledig in beschouwing. Om de sterkte van een houtverbinding te 
voorspellen is het echter noodzakelijk een 3D materiaalmodel toe te passen in de 
berekening van het kracht-verplaatsingsgedrag. 

In dit proefschrift wordt een 3D materiaalmodel voor toepassing op houtverbindingen 
beschreven. Daarnaast worden de experimenten beschreven die zijn gedaan op loofhout 
verbindingen met stalen stiften met verschillende materiaalkwaliteit. Het voorspelde 
mechanische gedrag (gebaseerd op het ontwikkelde 3D model) wordt vervolgens 
vergeleken met de resultaten van de experimenten. 

Het complexe gedrag van houtverbindingen wordt veroorzaakt door de sterk variërende 
en onderling afhankelijke eigenschappen van de afzonderlijke houten delen. Hout is een 
sterk anisotropisch materiaal. Onder druk is hout plastisch en onder trek- en 
schuifspanningen gedraagt het zich als een bros materiaal. Rondom de 
verbindingsmiddelen komen al deze spanningstoestanden voor en dit leidt tot een 
complex driedimensionaal gedrag. Het in dit rapport ontwikkelde materiaalmodel voor 
hout combineert sterke anisotropie, verschillende bezwijkmechanismen en de combinatie 
van ductiel en bros gedrag. 

De continuum damage mechanics (CDM) methode werd gekozen als basisaanpak voor 
het 3D materiaalmodel. CDM is een niet-lineaire elastische benadering die de 
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stijfheidsmatrix aanpast om het niet-lineaire gedrag van het materiaal in rekening te 
brengen. De bezwijkcriteria zijn gedefinieerd per spanningsquadrant. Hierdoor is het 
mogelijk om de bezwijkmechanismes te identificeren en om de beschadiging van het 
materiaal vast te stellen. Beschadiging treedt op wanneer het bezwijkcriterium 
overschreden is. Het mechanische gedrag wordt gedefinieerd door twee regels: (i) 
elastisch-perfect plastisch bij druk en (ii) lineaire verslapping bij trek- en 
schuifspanningen. 

Een materiaalsubroutine is ontwikkeld die toegepast kan worden in bestaande FE 
programma’s. De subroutine is getest op simpele, theoretische modellen om de 3D 
materiaal aannames te verifiëren en om de onafhankelijkheid van de elementgrootte en de 
mesh vast te stellen. Vervolgens zijn materiaaltests gesimuleerd waarbij de de spanningen  
zijn gevarieerd ten opzichte van de vezelrichting. De uitkomsten zijn in lijn met de 
gegevens in de literatuur. In de laatste stap is het gedrag van meer complexe stuikproef- 
en verbindingsmodellen geanalyseerd. De resultaten, berekend op basis van het 
ontwikkelde model zijn vergeleken met de uitkomsten van experimenten. Stuikproeven 
waar het hout in de vezelrichting is belast zijn uitgevoerd. Verder zijn er 180 
experimenten uitgevoerd op houtverbindingen met één, drie en vijf stiften in een rij. Deze 
verbindingen zijn getest met drie verschillende houtsoorten (vuren, beuken en azobé). 
Daarnaast zijn twee sterkten staal (hoge sterkte staal (hss) en vhss) gebruikt. 

De uitkomsten uit het model zijn vergeleken met de experimentele resultaten. De reductie 
van de stijfheid door beginnende beschadiging werd correct voorspeld en de schade 
vanwege de verschillende spanningscomponenten kon met succes vastgesteld worden in 
het ontwikkelde model. Het plastische gedrag is goed weergegeven en een stabiele 
verslapping is aangetoond in de simulatie. Daarbij is vastgesteld dat het belangrijk is de 
juiste mechanische materiaalparameters te gebruiken. Numerieke problemen ontstaan in 
die elementen die zich direct onder de stiften bevinden. In deze elementen ontstaan 
artificiële energie modi die tot excessieve schade van de elementen leiden. Deze zwaar 
‘beschadigde’ elementen dragen geen belasting meer over op de naastliggende elementen 
die nog wel intact zijn. Om het ontwikkelde materiaalmodel te optimaliseren, moet in het 
model de afhandeling van de artificiële energie modi worden verbeterd. 

Naast de vergelijking tussen model en experimentele uitkomsten zijn deze laatste ook 
gebruikt om vast te stellen welke optimalisaties van houtverbindingen mogelijk zijn 
wanneer vhss stiften worden gebruikt. De stuikproeven die in het kader van dit onderzoek 
zijn uitgevoerd hebben een uitgebreide hoeveelheid data over houtverbindingen met hoge 
volumieke massa toegevoegd. De verbindingsproeven hebben laten zien dat ook met vhss 
stiften ductiele bezwijkmechanismes kunnen worden bereikt. Speciaal de combinatie van 
vhss stiften met hout met hoge volumieke massa toont een aanzienlijke verhoging van de 
sterkte van houtverbindingen. Het verdient aanbeveling om dit terrein verder te 
onderzoeken. 

 



 

 VII

 
NOMENCLATURE 

Conventions 

L    longitudinal direction 

R    radial direction 

T    tangential direction 

Material axes of FE models: 1 = X = L,   2 = Y = R,   3 = Z = T  

Order of stresses/strains:  11 22 33 12 13 23
T
ij        

 

Greek letters 

    angle between force direction and grain direction 

ij    6x6 strain tensor 

    yield function 

    fictitious viscous parameter 

    history parameter 

    friction coefficient OR mean value 

Θ    energy dissipation rate 

Θ    strain energy density 

    density 

ij    6x6 stress tensor 

ij Poisson’s ratios with tension in i-direction and  
perpendicular contraction in j-direction 
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Latin letters 

ALLSE   dissipated strain energy 

ALLCD   dissipated energy due to viscous regularisation 

C; Cijkl    compliance matrix 

D; Dijkl    stiffness matrix 

dM    damage variable 

dt    time increment 

F; FM    failure criterion 

fmax    maximum force 

fh,0    embedment strength parallel-to-grain 

fM    material strengths 

fu    tension strength of steel 

fy    yield strength of steel 

Gf    fracture energy 

gf    characteristic fracture energy 

h    characteristic element height 

J    Jacobian 

Kser    joint stiffness 

M    damage operator 

My    bending moment of steel dowels 

n    number of fasteners 

nef    effective number of fasteners 

Rm    ultimate strength of steel 

Rp,0.2    proof strength of steel at 0.2% extension 

UMAT    subroutine of developed material model (ABAQUS®) 

vmax    maximum displacement 

v(Fmax)    displacement at maximum force 

YM    thermodynamic forces 
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Indices 

Lower indices 

0    direction parallel-to-grain 

90    direction perpendicular-to-grain 

    angle to the grain 

c    compression 

k    characteristic properties 

roll    rolling shear 

t    tension 

V    viscous stabilisation 

v    longitudinal shear 

Placeholder M:  XM = (Xt,0   Xc,0   Xt,90R   Xc,90R   Xt,90T   Xc,90T   XvR   XvT   Xroll) 

If not stated otherwise: Xt,90R = Xt,90T = Xt,90 (tension perpendicular-to-grain) 

    Xc,90R = Xc,90T = Xc,90  (compression perpendicular-to-grain) 

    XvR = XvT = Xv   (longitudinal shear) 

 

Upper indices 

ef    effective tensor 

el    elastic property 

dam    damaged tensor 

t    increment 

t-1    previous increment 
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ACRONYMS 

 

CDM    Continuum damage mechanics 

COV    Coefficient of variation 

CT    Compact tension (test) 

EYM    European yield model 

FE    Finite element 

FM    Failure mode 

hss    High strength steel (tension strength = 400-600 MPa) 

LEFM    Linear elastic fracture mechanics 

m.c.    Moisture content 

MoE    Modulus of elasticity 

MoR    Modulus of rupture 

NLFM    Nonlinear fracture mechanics 

RVE    Representative volume element 

SENB    Single-edge notched bending (test) 

SLA    Sequentially linear analysis 

vhss    Very high strength steel (tension strength = 700-1100 MPa) 
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1  
INTRODUCTION 

In this thesis, a 3D material model for wood has been developed. In order to verify the 
constitutive model, an extensive testing series has been carried out. Apart from the model 

verification, the tests also serve to prove the suitability and reliability of innovative 
timber joints using different wood species and very high strength steel dowels. This 

introduction motivates the research done in the thesis and outlines its structure. 

1.1 RESEARCH MOTIVATION 

1.1.1 Problem description 

Everybody who ever went to the Netherlands for cycling passes hundreds of bridges in 
order to cross canals and dykes in this incredibly water-rich country. A lot of these 
bicycle bridges outside cities are made of wood such as the one shown in Figure 1-1. The 
passing cyclists induce loads on the bridges for which they must be designed. However, 
wood, or better, structural-size timber, does not make it easy for designers. Wood is 
anisotropic, heterogeneous and not always durable. Its properties are dependent on 
moisture content and load duration and usually timber joints are weaker than the timber 
members. 

If non-constructive aspects such as durability are left out and the focus is set on short-
term structural issues at a moisture content of 12%, the importance of timber joints as the 
generally weakest link is clear. It is a prerequisite for successful design that the 
mechanical performance of timber joints can be predicted reliably. At the same time, 
designers are interested in obtaining high-performance joints. Especially if they want to 
build a bridge in the Netherlands that is used by thousands of cyclists every day. 

Some cyclists passing the bridge may even realise that the used wood species will most 
certainly not be spruce or larch, but tropical hardwood. Predictive models should hence 
be able to cover different wood species and not only commonly used spruce. 



Chapter 1 Introduction 

 2

   
Figure 1-1: Azobé bridge in the Netherlands with detail of joint (fotos: J.W.G. van de Kuilen) 

 

Therefore, two main tasks have to be achieved, both valid also for other species than 
softwoods: 

 Development of reliable analysis techniques and models to predict the mechanical 
behaviour of timber joints; 

 Development of high-performance joints to improve the versatility and 
competitiveness of timber in the construction sector. 

1.1.2 State-of-the-art 

Modelling 

The modelling of timber joints with dowel-type fasteners presents a major challenge to 
wood researchers. This challenge is due to several parameters. When modelling, it must 
be decided whether a 2D model is sufficient or a 3D model needs to be developed. For 
timber joints failing in a combination of embedment and fastener bending, the mechanical 
behaviour over the thickness of the timber members cannot be neglected. Furthermore, 
the fastener bending must be modelled properly. Due to the fastener bending, the stress 
distributions over the thickness are thought to have an important influence on the global 
mechanical behaviour. Another challenge is the proper modelling of the timber-steel 
interface, i.e. friction between the different joint components. However, all parameters 
mentioned above can be solved with up-to-date Finite Element software. Contact 
modelling, material modelling of steel and complex 3D models are all implemented in 
standard software. So why is it still a challenge to model timber joints? 
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The mechanical behaviour of the last, not yet discussed component timber is the big 
challenge. Timber with its complex properties cannot be covered by a single approach. 
Above all, two timber properties are responsible for the difficulties: 

 Anisotropy with large differences of the mechanical properties parallel- and 
perpendicular-to-grain and different properties for tension and compression; 

 Ductile and brittle failure modes occurring at the same time, i.e. ductile behaviour 
in compression and brittle behaviour in tension and shear. 

Usually, customised models are developed for different problem classes. Joints, where 
the timber members are loaded perpendicular-to-grain for instance, can be modelled 
using fracture mechanics whereas single-dowelled joints having members loaded parallel-
to-grain are often modelled applying the flow theory of plasticity. Other models make use 
of standard Finite Element (FE) programmes and apply cohesive elements to model the 
splitting planes in joints, all embedded in a plasticity framework. 

However, to the author’s knowledge no comprehensive models exist that are able to 
combine the above-mentioned difficulties in one single material model.  

 

High-performance joints 

A large database of tests on timber joints exists (e.g. Gehri and Fontana, 1983, Ehlbeck 
and Werner, 1992b, Jorissen, 1998) where a large variability of joints is covered. 
Different fasteners such as dowels, screws or bolts were used and the layout of the joints 
ranged from different fastener diameters over different number of fasteners in a row to 
different number of rows. Timber-to-timber joints and steel-to-timber joints were tested 
with different numbers of shear planes. Why then is it necessary to carry out more tests? 

Only few of these tests have been performed with other species than softwood species 
and in most cases, mild steel dowels were used. However, a large potential lies in the 
replacement of mild steel dowels with very high strength steel (vhss) dowels, certainly in 
combination with high-density wood species. More efficient joints should be possible 
which require less use of materials (through less dowel diameter, timber cross sections or 
number of fasteners) while having the same load carrying capacity as equivalent joints 
with mild steel dowels. However, it must be verified if this type of high-performance 
joints can be used reliably. In order to do so, tests are indispensable. Also other issues 
such as effective number of fasteners or joint stiffness can be and need to be investigated 
for different species and steel grades. 

A further main motivation of the tests is the verification of the developed constitutive 
model of the material wood. 
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1.1.3 Research questions 

Key question 

Which material models are able to reliably simulate the mechanical behaviour of 
innovative timber joints with very high strength steel dowels using different timber 
species? 

Subpart experiments 

Is it possible to replace mild steel dowels with very high strength steel dowels and is the 
load carrying capacity higher? 

Can any new information regarding the effective numbers of fasteners nef be found or 
does another viewing point help to further understand the effective numbers of fasteners? 
What about the joint stiffness? 

To what extent do the wood species and the steel grade influence the joint behaviour? 

Subpart modelling 

Is there a novel approach to model wood joints that is able to model ductile and brittle 
failures? 

Is it possible to implement such an approach as material subroutine into commercial finite 
element programmes such that the material input parameters are clear and easy to identify 
without the need to programme a complete finite element code? This should lead to a 
subroutine that can easily be used and optimised also in future. 

1.1.4 Research programme 

In view of the key question, the research programme has been developed. After a 
thorough literature study presenting comprehensive approaches for timber joint modelling, 
the continuum damage mechanics (CDM) framework was chosen to develop a 3D 
material model for wood. This 3D model was then used as constitutive law in numerical 
simulations with the aim to model and to understand embedment tests and joint behaviour. 
Material tests, i.e. tension and compression tests were modelled and analysed. The next 
step involved embedment models where also interaction between timber and fasteners 
was modelled. Lastly, the most complex models, joint models, were developed. Double-
shear timber models with slotted-in steel plates and with one, three and five dowels in a 
row were simulated.  

The numerical models were verified in order to judge the quality of the material model. 
Literature was used to verify essential model characteristics. Extensive test series were 
carried out whose outcomes could be compared with the modelling results. High-
performance joints were tested where high strength mild steel (hss) dowels were replaced 
by very high strength steel (vhss) dowels and where other species than softwoods were 
used. By doing so, it was also possible to analyse the feasibility of high-performance 
joints. However, the fundamental idea was to replace mild steel dowels with vhss dowels. 
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This strategy could not be followed as the ordered mild steel dowels did not correspond 
to S235 or S355, but were high strength steel dowels (hss) with a tension strength above 
540 MPa. Further aspects of the mechanical behaviour, i.e. the effective number of 
fasteners, the influence of wood species, the steel grade and the joint stiffness were 
discussed. The single scope of model verification was thus broadened by more general 
investigations into the mechanical performance of joint systems. Preparative component 
tests, tension tests on steel dowels and embedment tests completed the experimental part. 
The used wood species for joint tests were spruce, beech and azobé (also known as ekki), 
and five species for embedment tests, spruce, beech, azobé, cumaru and purpleheart. 

1.2 STRUCTURE OF THE THESIS 

Figure 1-2 shows a flow diagram that outlines the thesis. The thesis can be divided in four 
parts: reviewing – modelling – testing – comparing. 

The first part is focused on the material wood and how experimental results can be 
transferred into input values needed for modelling. The other chapter of part one 
comprises an extensive review on modelling techniques used to develop numerical joint 
models. The choice of continuum damage mechanics for developing a material model is 
motivated.  

The second part is dedicated to the development of a 3D material model for wood using 
the concepts of continuum damage mechanics. The theoretical background is explained 
and the developed routine is verified. The second chapter of part two presents structural 
models where the developed material model is applied. The structural models range from 
simulations of uniaxial material tests over embedment tests to joint models. 

The third part presents the experimental results which covered component tests on the 
steel dowels and embedment tests. These two testing series served as fundamental tests 
for the preparation of joint tests. The second chapter of part three shows and analyses 
joint tests using high strength steel dowels (instead of mild steel dowels) and very high 
strength steel dowels and three different wood species. 

In the fourth part, consisting of only one chapter, the modelling outcomes are compared 
with the experimental outcomes in order to judge the quality of the developed 3D 
material model. Furthermore, a parameter study is performed matching test results with 
model prediction capacity. 

The closure finally contains conclusions and recommendations for further research. 
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Figure 1-2: Flow diagram of the thesis 
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2  
MATERIAL WOOD 

Macroscopic and microscopic failure modes of wood are discussed. The different failure 
modes of wood are depending on the type and direction of loading as wood is a cellular 

material composed of longitudinal fibres assembled in annual rings. It is inhomogeneous, 
anisotropic and has different strengths in tension and compression, showing quasi-brittle 

failure in tension and shear and ductile failure modes in compression. The focus of this 
chapter lies on problems connected with the transfer of experimental results into 

mathematical models. Only short-term loading issues at constant moisture content are 
treated. 

2.1 INTRODUCTION 

In order to understand the mechanical behaviour of wood and to develop mathematical 
models, the anatomy of wood, 3D strength and stiffness properties and the various failure 
modes under different loadings must be known. Information about these topics can be 
taken from literature concerning material testing under uniaxial and multiaxial loading. 
Here, a relevant summary is presented. For more information, the comprehensive 
literature on these subjects can be consulted. (e.g. Kollmann and Côté, 1984, Grosse, 
2005, Persson, 2000, Poulsen, 1998, Keenan, 1973, Eberhardsteiner, 2002, Franke, 2008, 
Smith et al., 2003). As a preamble it is emphasised that most research is focussing on 
softwood.  

In this chapter, firstly the uniaxial behaviour of wood is presented before multiaxial 
loading and its effect is discussed. As all mathematical methods rely on test results that 
are delivering the necessary material properties for the models, the reliability of testing 
methods and their outcomes are emphasised. Also because in the author’s opinion, in the 
modelling literature the applicability of test results on numerical models is not always 
adequately discussed. Furthermore, the herein presented results serve to understand the 
chosen modelling approach presented in chapter 4. 
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The anatomy of wood with a focus on the differences between different wood species is 
shortly explained. This section on anatomical issues is considered to be important 
because here, not only softwood is treated but also European and tropical hardwoods. 

Moreover, the natural variability of the mechanical properties will be shortly recalled. For 
timber, this scatter is significant and has to be considered when deciding for a modelling 
approach. Too sophisticated approaches requiring precise material parameters do not 
seem to be relevant if these parameters are not only difficult to establish but are also 
subject to large scatter. 

Material properties such as stiffness and strength are derived from test results. These 
material properties describe a constitutive model – the relationship between the stress of a 
material and the associated strain. With the help of such relationships, finite element (FE) 
programmes can calculate stresses from deformations and thus strains. If simple uniaxial 
tests are carried out from which uniaxial strengths are derived for mathematical models, 
in reality multiaxial stresses and strains will already have developed although these 
phenomena are not measured during the test. The measured values will enter the model, 
the non-measured will not. With increasing complexity of test setups (biaxial tests, for 
instance), this problem of measuring certain specified values but neglecting others is 
getting bigger. 

Test outcomes depend also largely on the geometry of the specimen, its moisture content 
and the boundary conditions. Sometimes, failure modes are developing that are not 
relevant for practice. Another important factor is the measuring equipment. For instance, 
when carrying out uniaxial compression tests, some researchers measure the deformations 
directly on the wood using extensometers or strain gauges whereas others measure the 
displacement of the testing machine in relation to the test specimen. The resulting load-
slip curves will look differently. In the last case, the influence of the supports and the 
machine’s inaccuracies will be included in the test results. Another important factor is the 
location of measurement. It is not always clearly indicated where experimental results 
such as load-slip curves were measured on the specimens 

Therefore, already at this first crucial step of modelling that is the determination of the 
constitutive relationship, inaccuracies are becoming a component of the mathematical 
representation of a structure. A finite element model is just a mere mathematical 
idealisation of a complex reality where inaccurate datasets enter the modelling at an early 
stage. This is not a problem per se, but it is crucial to be aware of the limitations in order 
to produce reliable modelling outcomes for different purposes. 

Lastly, the mechanical behaviour of timber used in joints with dowel-type fasteners is 
discussed. In joints, the loading of the material wood is not as clear as during pure 
material tests. The dowel diameters and the number of dowels have an influence and they 
are also rotating inside the wood if a plastic hinge is developing. These more complex 
actions on wood complicate the investigation of the failure modes. The 
phenomenological failures on the anatomic scale are combinations of the failures under 
uniaxial stresses, the stress states causing joint failures are complex. All this illustrates 
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the challenge of understanding the mechanical behaviour of timber joints in order to 
properly model it and of the difficulty to determine valuable mechanical properties. 

2.2 UNIAXIAL TESTS 

Modern timber design codes are based on the approach of partial safety factors. The 
characteristic values for material strength are charged with safety factors and in the case 
of timber, also with a factor considering the nonlinear viscoelastic moisture-dependent 
nature of wood. The characteristic values are determined with material tests. However, it 
is impossible to determine all relevant values such as modulus of elasticity (MoE), 
modulus of rupture (MoR), compression and tension strength parallel and perpendicular 
to the grain and shear strength with one single test. Usually, a large number of four-point 
bending tests deliver regression equations. By means of these equations, a correlation 
between MoE and MoR can be derived that is needed for the strength-grading of wood. 
Other properties such as compression, tension and shear strength are derived from the 
MoR or determined experimentally. (CEN, 2004a, CEN, 2003). The methods mentioned 
above also mean that no material tests need to be carried out to establish the mechanical 
properties available in standards, but that empirical relations between density and MoE 
and a certain property such as compression perpendicular-to-grain define the strength 
values. In other words, the mechanical properties used for structural modelling and 
design are not necessarily derived from pure material test results. Furthermore, the test 
specimens should be of structural size to take the natural variation of timber into account. 
The natural scatter of material properties cannot be captured by tests on small clear 
specimens. Furthermore, the measured mechanical properties will be much higher for 
defect-free wood. 

Despite these requirements, most of the available uniaxial testing data are derived from 
tests carried out on small clear specimens. This, together with the mentioned problems 
arising from the test setup and difficulties in measuring all occurring phenomena, 
illustrates how difficult it is to accurately represent the complex nature of wood by means 
of a mathematical model. Other test series investigate only the mechanical behaviour up 
to a certain level of deformation which is usually quite low. For instance, compression 
specimens parallel-to-grain may be loaded only up to the peak stress but not further. On 
the other hand, the crack growth of specimens loaded in tension must be controlled in 
order to establish reliable properties such as fracture energy Gf. Many different values for 
the fracture energy will be found also due to the difficult test setup. This all complicates 
the decision which input values to choose to create a good mathematical model. 

In the following, typical results for uniaxial tests are shown. Usually, three main 
directions, longitudinal L, radial R and tangential T, are distinguished as shown in Figure 
2-11. For instance, the MoE for softwood in longitudinal direction is approximately 20 

                                                 
1 This definition is consistently used throughout the thesis. 
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times bigger than the MoE in radial direction which is about 2 times the MoE in 
tangential direction (Neuhaus, 1994). As a common approach, wood is hence considered 
as being transversely isotropic. The radial and tangential directions are summed up as the 
direction perpendicular-to-grain. In fact, many tests in literature do not specify the 
orientation of the annual rings, but report results parallel and perpendicular to the grain. 

 

Longitudinal
X, L, 1

Tangential
Z, T, 3

Radial
Y, R, 2

 
Figure 2-1: Definition of material directions 

 

2.2.1 Tensile strength 

Tension strength parallel-to-grain of wood is usually tested with dog bone shaped 
specimens. The setup for tension tests perpendicular-to-grain is more complicated. Some 
researchers used cleavage specimens, but these specimens have predetermined failure 
planes and the stresses are not uniformly distributed in the stresses section and thus do 
not represent the ultimate tension stress. More appropriate test specimens are again dog 
bone shaped specimens that are avoiding predefined failure planes. These specimens are 
difficult to produce though. For this reason, Poulsen (1998) glued specimens onto a 
testing rig (reproducing the dog bone shape with glue in order to avoid failure of the glue 
line). Usually, tests are carried out at 12% moisture content (m.c.) unless defined 
otherwise. 

As shown in Figure 2-1, two different perpendicular planes can be defined, the LT- and 
the LR-plane. Tension perpendicular-to-grain can thus be applied in the R-direction, but 
also in the T-direction leading to tension failures in the LT- or the LR-plane respectively. 
However, henceforth the terminology ‘perpendicular-to-grain’ is used including both 
directions as often no difference is made between both. (Table 2-2 confirms this. No 
significant difference can be observed for the LT- or LR-plane) If more information on 
the material orientation is given in literature, it will be indicated. 

Figure 2-2 shows typical load-displacement curves of tension tests parallel-to-grain of 
spruce (Picea abies) carried out on (asymmetric) dog bone shaped specimens 2 x 20 mm 
in the LR-plane of clear wood (Franke, 2008). Figure 2-3 shows typical test results in 
terms of stress-strain of uniaxial tension tests in the tangential direction of small 
(20 x 20 mm) clear Norway spruce (Picea abies) specimens (Poulsen, 1998).  
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Figure 2-2: Tension parallel-to-grain of Picea 

abies, 5kN  12.5MPa (Franke, 2008, Fig. 4-3) 

 
Figure 2-3: Tension perpendicular-to-grain of 

Picea abies (Poulsen, 1998, Fig. 5.3) 

 

The brittle failure modes can be clearly seen in Figure 2-2 and Figure 2-3. In tension 
perpendicular-to-grain, wood is quasi-brittle as can be seen in Figure 2-3. After a slight 
plastic deformation, the wooden pieces are splitting and a sudden drop in load carrying 
capacity occurs. The general form of the graph does not differ between tests parallel and 
perpendicular to the grain, but the ultimate load carrying capacity is different. The tensile 
strength perpendicular-to-grain is 1%-5% of the tensile strength parallel-to-grain when 
speaking in terms of characteristic strength values (CEN, 2009). Furthermore, the 
strength is different between clear and structural-size specimens due to the natural 
variability (due to knots, grain angle, etc.). Kollmann and Côté (1984) give a table where 
this can be clearly seen, Table 2-1. Already the presence of a few small knots reduces the 
tensile strength by 51 percent. 

 
Table 2-1: Influence of knots on tension strength (Kollmann and Côté, 1984) 

[MPa] reduction

clear 500 76.5

few, small knots 530 37.7 51%

many, large knots 570 11.7 85%

pinewood
density         

[kg/m3]

tensile strength

 
 

Figure 2-3 also shows the difficulties associated with tension tests. As the failure mode is 
brittle, it is nearly impossible to carry out stable tests whose parameters such as fracture 
energy Gf are easily transferred into mathematical models. Even more so, the strain is 
often not measured up to failure. The crack growth is difficult to control even with 
displacement-controlled test methods.  
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Another way to analyse the brittle behaviour in tension is to investigate the fracture 
behaviour by doing mode I tests2 in terms of fracture mechanics (for instance, compact 
tension (CT) tests (Boström, 1994) or single-edge notched bending (SENB) tests (Larsen 
and Gustafsson, 1989)). The aim of these tests is to establish the fracture energy Gf. 
Fracture energy is one of the few available parameters to simulate softening behaviour 
under tension loading if the post-peak behaviour should be modelled. Table 2-2 is taken 
from Grosse (2005) and reproduces some data from literature for the fracture energy Gf in 
mode I in tension perpendicular-to-grain. When looking at Table 2-2, the scatter of the 
test results is evident. 

 
Table 2-2: Values for fracture energy Gf in mode I as cited in Grosse (2005), Tabelle B.6 

Aicher (1997) SENB spruce 280  -

m.c.=8% 460 550

m.c.=10% 445 500

m.c.=13% 535 460

m.c.=26% 515  -

m.c.=? 380 405

CT 206  -

spruce 220 160

fir 210 157

spruce 220 164

h=45mm 251 157

h=67&100mm  - 160

spruce 180 230

beech 540 730

spruce 337 213

pine 422 422

spruce and fir

splitting testFrühmann (2002)

Reiterer (2002) splitting test

GF [N/m]       

RL-system

GF [N/m]       

TL-system
species

Daudeville (1999) SENB

Boström (1987) pine

test setup

notch on one 
side

Author

 

On the microscopic scale, two different failure modes can be observed when testing 
parallel-to-grain. The first mode is occurring generally within thin earlywood3 cells and 
consist of a net tension failure of the cells whereas thick-walled latewood cells often 

                                                 
2 There are three possibilities to load a specimen in order to enable crack propagation: 
Mode I: Opening mode with a tension load acting perpendicular to the crack plane 
Mode II: In-plane shear mode with a shear load acting parallel to the crack plane and perpendicular to the 
                crack front 
Mode III: Out-of-plane shear mode with a shear load acting parallel to the crack plane and parallel to the 
                 crack front 
3 Please recall that only wood from temperate climate regions has annual rings; tropical hardwoods have 
growth rings, but no early- or latewood. However, phenomenologically, the failure modes are similar. 
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rather fail in shear along the cells having no crack running through the cells, but around 
them. 

For tension perpendicular-to-grain, failures can be observed where the cell walls are 
breaking and the cracks are going through the cells, so-called transversal failures. The 
other failure mode is independent from the strength of the cell walls, but again is 
occurring between neighbouring cells. This failure mode is an intercell failure where the 
middle lamellae is detached or an interwall failure where the S1-layer is being peeled of 
from the S2-layer (S1 and S2 are layers of the cell wall). 

Generally, it must be said that often mixed modes are occurring when a specimen is 
failing in tension parallel or perpendicular to the grain. The manifold combination 
possibilities of failure modes underline the difficulties associated with the transfer of test 
results to mathematical models. The test results need to be smeared over a ‘tension 
strength perpendicular-to-grain with a certain fracture energy Gf’ in order to make the 
properties manageable in mathematical models. 

2.2.2 Compressive strength 

A couple of problems concerning the test setup must be resolved before undertaking 
compression tests. With too small, usually cubic specimens, the boundary conditions, i. e. 
the fixing of the specimens in the testing rig, have a big influence on the failure mode and 
ultimate stresses. The specimens must be high enough to ensure a homogeneous stress 
distribution over the section and at the same time stocky enough to avoid bending and 
instability. Other researchers also propose dog bone shaped specimens (Dinwoodie, 1968) 
to overcome these problems. This illustrates how difficult it is to carry out a valid test, 
even a seemingly simple pure compression test. Analogous to tensile strength, also for 
compression perpendicular-to-grain different failure planes, LT and LR, can be identified, 
but are not always recorded. 

Figure 2-4 and Figure 2-5 show typical results in terms of stress-strain. Figure 2-4 shows 
results of compression tests parallel-to-grain done on 25 x 25 x 5 mm specimens. The 
chosen specimen height by François and Morlier (1993) was small with 5 mm. The 
reason to choose such a low height was to avoid kink bands (see Figure 2-8) as the 
authors argued that in presence of kinking, no pure compression tests are carried out 
because of instability and buckling of the cells. The hardening branch at the end of the 
test visible in Figure 2-4 indicates however that the test rig was tested rather than the 
wood. Moreover, compression strength parallel-to-grain should include kink bands in the 
author’s opinion as this is also observable in structures. Other authors use 10 x 10 mm 
specimens with a height of 20 mm (Reiterer and Stanzl-Tschegg, 2001) to establish the 
compression strength parallel-to-grain. Also those are small specimens, the results look 
similar with a yield drop but the hardening branch is missing. Poulsen (1998) tested 
20 x 20 mm clear specimens with a height of 70 mm. In his compression tests parallel-to-
grain, he also obtained a distinct yield drop with a subsequent steady plateau. His results 
are shown in Figure 2-5 for clear Picea abies specimens with different heights. 
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Figure 2-6 shows results for compression perpendicular-to-grain done by Franke (2008) 
on 40 x 40 x 40 mm clear cubes for three different annual ring orientations, in the LT- 
and LR-plane and with 45° inclined annual rings ( = NO-90). 

 

Figure 2-4: Compression parallel-to-grain of 
different species (François and Morlier, 1993) 

Figure 2-5: Compression parallel-to-grain of 
Picea abies (Poulsen, 1998, Fig. 2.11) 

 

 
Figure 2-6: Compression perpendicular-to-grain of Picea abies (Franke, 2008, Fig. 4-19) 

 

The typical load-slip behaviour in compression parallel-to-grain with a yield drop and 
subsequent steady plateau is changing when the angles of the grain are modified. At 
angles to the grain of about 10° to 45°, the failure modes are brittle due to the activated 
transverse tension and shear. The larger then the angle to the grain ( > 45°), the more 
the failure mode is approaching a pure compression perpendicular-to-grain failure with 
distinctive densification as shown in Figure 2-6. Tests in compression at different angles 
to the grain are also well illustrating the creation of multiaxial stress states in formally 
uniaxial tests as shown in Figure 2-7. The test setup from Figure 2-7 is quite important 
for researchers who want to investigate into the interaction between shear and transverse 
compression.  
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Figure 2-7: Transformation into principal stresses 

 

The failure modes in compression are completely different from the quasi-brittle results 
in tension. Wood in compression is ductile with a distinct plastic behaviour. In 
compression parallel-to-grain, the cells are structurally acting as columns which are 
failing by kinking – a (inclined) kink band is developing, Figure 2-8. In Figure 2-5, the 
incipient kinking of the fibres is expressed by the yield drop after reaching the maximum 
stress. The nonlinearity before the decrease in strength is due sliding and microscopic 
buckling phenomena. After the incipient kinking, a steady plateau is developing where 
the material is yielding without gaining higher stresses (Poulsen, 1998). Figure 2-8 shows 
the kink band angle on the tangential face of specimens of different size loaded in 
compression parallel-to-grain. The cell buckling is usually starting in earlywood, as there 
the cell walls are thinner and the cells have bigger lumens and thus are more susceptible 
to stability problems. In reality, the failure mechanism in compression parallel-to-grain is 
much more complex, first damage occurs in the S2 layer and small slipping is happening 
between the cells before the buckling starts. 

Another possible microscopic failure mode is basically the pushing of the cells into each 
other, a telescopic-kind of failure as shown in Figure 2-9.  

 

 

Figure 2-8: Kink band angle,  = 0°  
(Poulsen, 1998, Fig. 2.25) 

 
Figure 2-9: Telescopic failure  

(Gibson and Ashby, 1997, Fig. 10.11b) 

 

Figure 2-6 shows results for compression tests perpendicular-to-grain. The onset of 
plasticity is at a low level of deformation and after a steady yielding without increase in 
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stress, the densification starts leading to high stresses without increase in deformation. 
Microscopically, the behaviour in compression perpendicular-to-grain is easily 
understood when one recalls that the wood cells are hollow and are similar to 
honeycombs. A compression force on these hollow cells will lead to a folding of the 
hollow sections (see Figure 2-10). Micromechanically, the failure behaviour in radial 
compression is different to that in tangential compression. Radially, the wood cells are 
stacked transferring the forces directly over the walls parallel to the force which are 
failing in buckling (Figure 2-10). In tangential direction, the cell walls are assembled in a 
‘stretcher bond’ leading to a much smoother passage between elastic and plastic region 
(Figure 2-11). The reason for this smooth transition is the additional bending of the 
horizontal cell walls that is preceding the buckling of the vertical cell walls. 
Phenomenologically though, there is no real difference in the load-slip curves of both 
tests - except for the smoother transition between elastic and plastic region of the 
tangentially loaded specimens. However, slightly different load carrying capacities are 
reached as can be seen in Figure 2-6. 

In comparison to tensile strength (Table 2-1), compressive strength is certainly much less 
susceptible to the influence of knots as can be seen in Table 2-3.  

 

     
undeformed                                    average strain ≈ 8%                     average strain at failure ≈ 12% 

Figure 2-10: Radial compression (Persson, 2000, Fig. 3.19) 
 

Figure 2-11: Tangential compression 
(Gibson and Ashby, 1997, Fig. 10.6) 

 
Table 2-3: Influence of knots on compression strength (Kollmann and Côté, 1984) 

[MPa] reduction

clear 500 39.5

few, small knots 530 35.4 10%

many, large knots 570 30.8 22%

pinewood
density         

[kg/m3]

compressive strength

 
 

An interesting testing series is reported in Figure 2-12 taken from Graf (1921) as cited in 
Kollmann and Côté (1984). Load-slip diagrams of compression tests perpendicular-to-
grain carried out on cubes compared to cuboids are shown where only part of the whole 
surface was loaded. The behaviour of the ‘same’ wood with different geometries is 
completely different. This can be explained by two mechanisms. Firstly, the load 
distribution will be different. Secondly, cells have a longitudinal form that could be 
described as a static system of a beam which can take also tension forces in its axial 
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direction. When only part of the surface is loaded, the longitudinal cells are even more 
acting as beams that are increasing the load carrying capacity and at the same time are 
reducing the deformation.  

 

 
Figure 2-12: Load-slip diagrams comparing different compression loadings 

(Kollmann and Côté, 1984, Fig. 7.73) 

 

The difficulties associated with the transfer of mechanical properties to constitutive 
relations are clear. Analogous to failures under tensile loading, also failures under 
compressive loading are caused by different micromechanical effects and usually, only 
small clear specimens are tested. The question of what actually should be modelled with a 
mathematical simulation must be answered carefully knowing about boundary conditions 
in testing. Also the decision whether localised failure phenomena like buckling of fibres 
under compression parallel-to-grain shall be modelled or not must be taken carefully. 

2.2.3 Shear strength 

Probably the most difficult uniaxial tests are shear tests, if it is possible at all to properly 
carry out this type of test. In Grosse (2005), a good review is given of the different testing 
methods and specimen geometries – the most popular one being the ASTM shear block. 
Unfortunately, one must be cautious when using shear block test results. As Moses and 
Prion (2004) could show by means of a numerical model, it may not be the actual shear 
strength one is measuring. The ASTM shear block suffers from stress peaks causing a 
premature failure before the actual shear strength is reached. The stress distribution is not 
uniform. Another problem is that usually, the failure planes are predefined. The material 
does not have the possibility to follow its own failure plane as it happens in reality. 
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Another test setup is beams with a low span-to-depth ratio. Keenan (1973) stated that the 
shear strength of beams is usually much higher than the shear strength of ASTM block 
specimens. Furthermore, “beam shear strength is not constant but decreases with an 
increase in the shear span to depth ratio” (Keenan, 1973). Therefore, depending on the 
test setup, different mechanical properties will be found. In general, it can be said that it 
is inevitable to introduce parasitic stresses when doing a shear test. It is rather difficult to 
decide which results are reliable and useable for mathematical models and which are not. 

Van de Kuilen and Blaß (2005) carried out shear tests on structural-size I-beams of azobé 
(Lophira alata) and not on small clear wood. The test setup was five-point bending tests 
with a short span to trigger shear failure, accepting that parasitic stresses were also 
developing. The same typology of tests were used by Van de Kuilen and Leijten (2002) 
for other tropical hardwood species and also for spruce. 

Discussing the influence of the test setup on shear strength values, it is sufficient to look 
at three examples for spruce taken from the above-mentioned literature to understand the 
magnitude of the problem. Van de Kuilen and Leijten (2002) for instance give a mean 
shear strength of 9.1 MPa. On the other hand, mean values taken from Table B.5 in 
Grosse (2005) give values of 6.3 MPa (bow-tie shaped, Liu, 1983, as cited in Grosse, 
2005), 6.7 MPa and 8.3 MPa (Riberholt, 1991, as cited in Grosse, 2005) or 11.3 MPa 
(Slip-block, Poulsen, 1997, as cited in Grosse, 2005). Denzler and Glos (2007) carried 
out tests according to EN 408 (CEN, 2003) with glued-on steel plates. They found mean 
values between 3.3 and 4.4 MPa. Obviously, the variation of test results is rather high 
with values ranging between 3.3 MPa and 11.3 MPa. 

Generally, shear failures are explosive brittle failures just like tension failures. Shear test 
results look hence similar to tension tests as shown in Figure 2-3. Shear failure, mode II 
failure in terms of fracture mechanics (see footnote 2), always happens in the LT- or LR-
plane and usually follows the annual rings. Shear failure across cells due to shear stresses 
in the LR- or LT-plane does not happen. If the failure mechanism is allowed to choose its 
own failure plane, then it generally follows the annual ring separating earlywood from 
latewood as this is the weakest part. But, as the tangential shrinking is the highest, typical 
shrinking flaws are forming in radial direction. These flaws offer a natural path for shear 
cracks. Accordingly, common shear failures show a zigzag curve, following the 
tangential plane and then jumping in radial direction to another tangential plane (Figure 
2-13). Microscopically, shear failures show the same rupture mechanisms as tension 
perpendicular to the grain. Interwall (middle lamellae are failing) and intercell failures 
(S1 layer is detached from S2 layer) can be observed as well as breaking of cell walls – 
so-called transversal failures. 
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Figure 2-13: Zigzagging of a shear 

crack failure, ring angle = 30° 
(Riyanto and Gupta, 1996) 

     
       undeformed                                   average strain ≈ 7%                    average strain at failure ≈ 10% 

Figure 2-14: Microscopic shear deformation in RT-plane 
(Persson, 2000, Fig. 3.21) 

 

Another shear failure mode is the so-called rolling shear failure – not a longitudinal shear 
failure, but a failure caused by the shear stresses in the RT-plane. Cell bundles may fail 
just like a bundle of straws that are rolling off one upon the other – see Figure 2-15. 
However, rolling shear failure is not relevant for most loading cases as it is not activated 
easily. Rolling shear usually occurs in cross-laminated timber plates and not often in 
joints. 

 

Figure 2-15: Rolling shear failure 

 

Bocquet (1997) carried out an interesting testing series to investigate the importance of 
shear strength. He performed an ASTM embedment test (half-hole test on spruce, Picea 
abies, ASTM, 2007) perpendicular-to-grain, drilling a hole directly underneath the bolt 
leaving just a 1 mm band of wood cells between the hole and the bolt. He additionally cut 
this band of cells to avoid that the remaining layer of cells will be loaded in tension. As 
can be seen in Figure 2-17, there is no significant difference between the two tests up to 
the proportional limit. The only difference is a softer plastic branch of the test with the 
hole. The importance of shear for the load carrying capacity perpendicular-to-grain was 
confirmed as no tension forces could develop and no material underneath the bolt was 
available to give support. 
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Figure 2-16: Test specimen perpendicular-to-

grain (Bocquet, 1997, Fig. 1.23) 

 
Figure 2-17: Load-displacement curve  

(Bocquet, 1997, Fig. 1.22a) 
 

2.3 MULTIAXIAL TESTS 

Multiaxial tests are necessary to investigate in interactions between stresses. Tests 
applying two (or even three) normal stress components are generally a bit easier to carry 
out than combinations between normal stresses and shear. However, the last combination, 
in the form of perpendicular compression combined with shear, has always been of great 
interest to many researchers because they argument that a high perpendicular 
compression should activate friction along the cells and thus the longitudinal shear 
strength should augment. Other researchers decline the contribution of friction, assuming 
instead an arrest of shear crack propagation due to strong layers (the crack propagation 
can only occur in longitudinal direction) that leads to an equivalent hardening effect 
rather than friction (Van der Put, 1993). 

In Grosse (2005), a valuable summary is presented which gives a clear overview over 
most biaxial tests carried out in timber research (Grosse, 2005, Table 5.1). Especially 
tests on specimens with oblique grain are common (Figure 2-7). Similar to uniaxial tests, 
most of these tests are carried out on small clear specimens. 

2.3.1 Combination of normal stresses 

An extensive test series on biaxial testing has been carried out by Eberhardsteiner (2002) 
on cruciform test specimens (LR-plane) of clear spruce wood (Picea abies). Also 
Hemmer (1985) developed tests with combinations of multiaxial stresses on tube-shaped 
specimens (LT-plane) of white fir (Abies alba) that can be also loaded in torsion. Figure 
2-18 shows their test results with an angle to the grain  = 0° in a 2D stress space. It can 
be seen that material strength is decreasing under multiaxial loads in comparison to 
uniaxial strength values. 
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Figure 2-18: Results biaxial tests – combination of normal stresses,  = 0° 

 

Eberhardsteiner (2002) varied the angle to the grain  of his test specimens. Furthermore, 
as the specimens were thin, a plane stress situation could be obtained. Fleischmann (2005) 
extended the testing programme to specimens with knots and the LT-plane. With contact-
free measurement methods, they were able to record the resulting 3D strain. Therefore, 
not only the maximum stresses were measured, but also the evolution of stresses during 
the test as given in Figure 2-19 (The results are the same as shown in Figure 2-18). Stress 
evolution was linear up to failure for tension stress combinations (e.g. first quadrant), but 
nonlinear for compression stress combinations (e.g. third quadrant).  

 

 
Figure 2-19: Results biaxial tests with stress evolution,  = 0° ((Eberhardsteiner, 2002), Fig. 4.22) 

 

Hemmer (1985) was able to introduce also longitudinal stresses together with torsional 
and transversal stresses. Therefore, some of his results in Figure 2-18 actually have a 
third (measured) component that expands the 2D stress space into 3D. 

Other biaxial and triaxial compression tests were carried out for instance by Ashkenazi et 
al. (1973). 
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2.3.2 Combination of normal and shear stresses 

In literature, different outcomes on biaxial tests with transversal compression and shear 
can be found. Mandery (1969) carried out ASTM shear block tests with additionally 
applied compression perpendicular-to-grain and tests on beams with notches. He found a 
linear relationship between compression stresses and shear stresses as can be seen in 
Figure 2-20. Tests carried out by Poulsen (1998) on oblique-grain specimens and 
Hemmer (1985) on tube-shaped specimens (that can be loaded in torsion) instead show a 
non-linear relationship where initially, the shear strength is augmenting when transversal 
compression is present but later, with higher transversal compression, the shear strength 
is decreasing. Also Franke (2008) carried out tests with oblique angles to the grain. His 
outcomes however do not confirm the assumption of higher shear strength with higher 
transversal compression (Figure 2-20). However, considering Figure 2-20, it is evident 
that not enough test results are available to properly analyse the influence of compression 
perpendicular-to-grain on the shear strength. It is also possible that the maximum 
compression level of the tests given in Figure 2-20 was too low with 6 MPa.  
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Figure 2-20: Results biaxial tests with transversal compression and shear 

 

Another large testing series was carried out by Keenan (1973). Maybe the most 
interesting aspect of his work is the fact that he used different test setups to investigate 
the shear strength of glulam beams. The outcomes on oblique angle specimens are also 
shown in Figure 2-20. Keenan stated that all his failure modes were shear failures except 
for a combined shear and transversal compression failure observed when compression 
perpendicular-to-grain was highest. The results of the two other test series in terms of 
shear stress versus transversal compression stress are shown in Figure 2-21 and Figure 
2-22. When considering the results of the test on ASTM shear block specimens (Figure 
2-21), the trend discussed earlier is confirmed. Especially when the failure surface is in 
the LT-plane (radial failure surface), a hardening of the shear strength due to compression 
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perpendicular-to-grain is visible. This is different when the failure surface is tangential. 
Then the trend line is rather horizontal and no hardening can be observed. The data from 
Mandery (1969) is also inserted. He did however not record the orientation of his 
specimens. 
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Figure 2-21: ASTM shear block test  
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Figure 2-22: Tests on tube-shaped specimens 

 

When considering Figure 2-22 where the results of tests on tube-shaped specimens are 
shown (Keenan, 1973, Hemmer, 1985), a completely different situation can be observed. 
Instead of increasing shear strength with increasing transversal compression, a decrease 
in shear strength after a first short increase can be observed. A possible explanation for 
this is that the ASTM test defines the failure plane whereas during a torque test on a tube, 
this shear failure plane is not determined. Keenan (1973) stated that the tests on ASTM 
shear blocks individuate the tangential plane as the weakest plane as then no increase of 
shear stress could be seen. In tube-shaped specimens, the shear cracks should happen 
again in the tangential plane which was however not the case. He concluded that rolling 
shear failures (hence no longitudinal shear slip, but a shear distortion between earlywood 
and latewood in an annual ring) were determining the shear strength in his tube-shaped 
specimens.  

Spengler (1982) carried out tests on lamellae of spruce wood he assembled directly from 
producers of glulam. He glued the lamellae with their long sides on steel plates and then 
introduced transversal stresses via the steel plates and shear stresses by moving the steel 
plates in opposite directions. He also found a trend of increasing shear strength with 
increasing transversal compression, but the scatter of his results was quite high. This was 
persistent for tests at different moisture contents of the lamellae. 

However, all multiaxial testing data, except for the more recent results from 
Eberhardsteiner (2002), present only ultimate strength values. The load-slip behaviour of 
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the specimens was generally not measured. This means for numerical methods that the 
mechanical behaviour before failure under multiaxial stress states is not always known. 

2.4 POISSON’S RATIOS 

Mathematical models always need the Poisson’s ratios as input. Otherwise, 2D or 3D 
stress states cannot be calculated properly. Table 2-4 lists Poisson’s ratios for spruce 
(Picea abies) from literature (Wood-Handbook, 1999, Kollmann and Côté, 1984, 
Neuhaus, 1994) where the first index defines the direction of the tension load and the 
second index the contraction in perpendicular direction. It is clear that qualitatively, the 
Poisson’s ratios are in line with each other. Usually, experiments to determine the 
Poisson’s ratios are done on small specimens. 

 
Table 2-4: Poisson’s ratios from literature on elastic properties of spruce at 12% m.c. 

source LR LT RT TR RL TL

Wood Handbook (1999) (Picea sitchensis ) 0.372 0.467 0.435 0.245 0.040 0.025

Kollmann and Côté (1984) (Picea abies ) 0.430 0.530 0.420 0.240 0.019 0.013

Neuhaus (1994) (Picea abies ) 0.410 0.554 0.599 0.311 0.056 0.035  
 

In Table 2-5 some actually used Poisson’s ratios in modelling literature are shown 
(Mackenzie-Helnwein et al., 2005, Blaß and Bejtka, 2008, Schmidt and Kaliske, 2006, 
Franke, 2008). In far most of the papers on modelling, the Poisson’s ratios are not given 
or they are only given incompletely. However, the question remains of how much 
simulation results are influenced by wrong or confounded Poisson’s ratios. In other words 
how sensitive mathematical models of joints actually are to a change of Poisson’s ratios. 

 
Table 2-5: Poisson’s ratios from modelling literature for spruce 

source LR LT RT TR RL TL

Mackenzie-Helnwein et al. (2005) 0.500 0.380 0.013

Blaß and Bejtka (2008) 0.511 0.511 0.203 0.203 0.011 0.011

Schmidt and Kaliske (2006) 0.240 0.450 0.450

Franke (2008) 0.055 0.311 0.035  
 

Another discussion point regarding the Poisson’s ratios is the symmetry of the 
compliance matrix, for instance: 

TR RT

T RE E

 
  (2-1) 

where vTR/RT = Poisson’s ratio, ET = MoE in T-direction, ER = MoE in R-direction. 
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Different researchers (Neuhaus, 1983, Garab et al., 2010) stated, based on experimental 
results, that the symmetry shown in Equation (2-1) is not the case for wood. 

Another relevant question is the evolution of the Poisson’s ratios in case of damage. It is 
unknown if the degradation follows a linear or exponential law. The only experimental 
results known to the author are given in Franke (2008) and are shown in Figure 2-23. The 
development of the Poisson’s ratio RT was measured during a compression test 
perpendicular-to-grain. A degradation of the Poisson ratio can be observed.  

 

 

Figure 2-23: Degrading Poisson’s ratio TR (here: TR) measured up to failure of a 
compression test perpendicular-to-grain (Franke, 2008, Figure 4-24) 

 

2.5 WOOD ANATOMY 

As seen in the previous sections, the anatomy of wood with its cellular structure is 
determining the mechanical behaviour under different loading cases. Failures will occur 
on a micromechanical level as transversal wall or interwall failures, but failures can also 
be observed on the meso-level where failure fronts follow annual rings for instance. 
Other issues such as the length of the cells will also have an influence on the properties as 
the ‘buckling length’ of a cell changes. Inhomogeneities such as density variations are 
caused by variations in the anatomy. Wood is also inhomogeneous on the macroscopic 
and mesoscopic scale with knots and issues related to the growing conditions. 
Furthermore, tropical hardwoods for instance may suffer from interlocked grain which 
does not occur in species from temperate climates. 

In this thesis, different wood species are used. Differences in anatomy will influence the 
mechanical behaviour. Therefore, it is important to understand how wood species differ 
in their anatomic structure. This section has been inserted to underline some major 
differences in the anatomic structure of various wood species. Again it is referred to the 
extensive literature for more detailed information than provided here, e.g. (Kollmann and 
Côté, 1984, Wagenführ, 2007).  
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All wood species consist of different cell types, namely the tracheids, rays and some 
species have resin canals. Hardwoods are more evolved and have another cell type called 
vessels. The tree grow is in rings – in softwoods and non-tropical hardwoods this is 
expressed by the annual rings. Figure 2-24 shows a drawing of a softwood and Figure 
2-25 one of a European hardwood (Nardi-Berti, 1993). The different cell types are 
indicated.  

 

 

1)    latewood tracheids 

2)    earlywood tracheids 

3)    parenchymatic rays 

4)    resin canals 
 

Figure 2-24: Anatomy of a softwood, pine, Pinus sylvestris (Nardi-Berti, 1993, Fig. 44) 

 

 

1)    latewood area 

2)    earlywood area 

3)    parenchymatic rays 

4)    vessels 

5)    axial parenchyma 
 

Figure 2-25: Anatomy of a hardwood, ash, Fraxinus excelsior (Nardi-Berti, 1993, Fig. 48) 

 

Per wood species, the cells are different in terms of length, width and thickness. Within 
wood species, these parameters may change as can be seen in Figure 2-24 for earlywood 
and latewood tracheids where latewood tracheids are thicker than earlywood tracheids. 
Also the amount and distribution of different cell types may change per wood species. 
For instance beech has a lot of rays in comparison to other species. The distribution of 
vessels is also variable. Chestnut for instance has unevenly distributed vessels which are 
also much bigger than the evenly distributed vessels in beech. Some of these differences 
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can be well observed when analysing microscopic pictures as shown in Figure 2-26 to 
Figure 2-29.  

 

 
Figure 2-26: Larch Larix decidua x51  

(Nardi-Berti, 1993, Fig. 67) 

 
Figure 2-27: Azobé Lophira alata x30 

(Wagenführ, 2007) 

 

 
Figure 2-28: Chestnut Castanea sativa x51 

(Nardi-Berti, 1993, Fig. 102) 

 
Figure 2-29: Beech Fagus sylvatica x51  

(Nardi-Berti, 1993, Fig. 124) 
 

2.6 CONCLUSIONS 

Issues related with the derivation of material properties for mathematical models were 
discussed. Two main influence groups could be distinguished, material-related issues 
such as natural scatter, anisotropy, inhomogeneity or many different available wood 
species, and test-setup related issues such as geometry and size of specimens, measuring 
location or choice of measured parameters. Furthermore, most research is based on small 
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clear (clear = defect-free) specimens of softwood while significantly less information is 
available for hardwood. 

Apart from the availability or reliability of material properties, also failure modes must be 
identified and failure criteria derived in order to complete a comprehensive mathematical 
model. However, difficulties connected with different failure modes can easily be 
illustrated. A wooden piece may already be far in the plastic region in compression 
perpendicular-to-grain, but still can carry a tension force parallel-to-grain up to its 
maximum. Also, the failure modes can be progressive. Wood may already be in the 
nonlinear regime in compression before a shear crack happens. The so-called hypothesis 
of a ‘loose bundle of fibres’ may help to understand the concept of independent failure 
modes If one splits a wood block along the grain and one is then testing this wood block 
consisting of loose bundles of cells in tension parallel-to-grain, the ultimate strength in 
tension will not be affected from the fact that the wood block is split and that therefore, 
no transverse tension strength is left. 

Another straightforward illustration of implementation problems connected with material 
parameters is the anisotropy of wood that is often not considered. The differentiation into 
two main material directions, ‘parallel-to-grain’ and ‘perpendicular-to-grain’, is already a 
simplification.  

The last point that is important enough to be recalled here is the fact that in timber joints, 
the mechanical behaviour of wood is more complex. Up to now, the discussed properties 
were material properties, uniaxial stiffness or strength values assessed by tests or 
different failure modes of wood caused by clearly defined loading. 

However, if timber joints with dowel-type fasteners are tested, the 3D stress states are 
complex (multiaxial stress states) and system parameters such as dowel diameter are 
influencing the behaviour of the timber members. Special tests have been developed to 
assess these system influences, so-called embedment tests where the dowels remain rigid. 
In joints however, dowels rotate in the timber members if a plastic hinge is developing 
and additional friction between members is contributing to the mechanical behaviour. In 
Werner (1993), different influence parameters on joint behaviour are thoroughly 
discussed. 

All this indicates how difficult it is to derive the correct mathematical representation of 
the mechanical behaviour of wood in general. A first conclusion is to develop not too 
sophisticated and complex mathematical models. It is not effective to create overly 
precise models when the input data is sometimes inaccurate and sometimes just best 
guesses. 
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3  
MODELLING TECHNIQUES 

In the last decades, many different modelling approaches have been developed in order 
to simulate the behaviour of wood and timber joints. These approaches are presented 
here to give the reader an overview on modelling techniques, their applicability and 
basic ideas. Only models considering static and short-term loading are considered. 

Finally, a promising approach is chosen and the choice is motivated. 

3.1 INTRODUCTION 

As could be seen in the previous chapter, wood is anisotropic, inhomogeneous and its 
mechanical properties are subject to large scatter. The development of mathematical 
models presents thus an interesting challenge in order to establish reliable predictive 
models. A typical problem in modelling is the need to calibrate mathematical models on 
test results instead of having ready-to-use material properties. This is related to 
difficulties in testing and measuring. Furthermore, no constitutive material model and 
necessary solution strategies seem to be available at the moment that are able to simulate 
joint behaviour including ductile behaviour in compression and brittle behaviour in 
tension and shear of the material wood. Usually, different modelling approaches are 
developed for different problem classes. Models simulating the nonlinear behaviour of 
timber joints may use classical yield theories such as the one developed by Hill (1948) for 
orthotropic materials. On the other hand, if brittle behaviour of joints loaded 
perpendicular-to-grain is to be modelled, for instance fracture mechanics may be used. If 
it is recalled that also moisture content, duration of load, temperature (to a lesser extent) 
or macroscopic features such as knots or grain deviation are influencing the mechanical 
behaviour of timber and subsequently of timber joints - issues not even considered here - 
then the complexity of modelling is becoming quite clear.  

To illustrate the difficulties of predictive modelling, results from embedment tests on 
different wood species with 16 mm dowels carried out at the TU Delft (Vreeswijk, 2003) 
are shown in Figure 3-1 to Figure 3-4. 
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Figure 3-1: Angelim Vermelho Dinizia excelsa, 

mean = 1106kg/m3, (Vreeswijk, 2003) 
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Figure 3-2: Massaranduba Manilkara 

bidentata, mean = 972kg/m3, (Vreeswijk, 2003) 
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Figure 3-3: Oak Quercus rubra,  

mean = 716kg/m3, (Vreeswijk, 2003) 
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Figure 3-4: Spruce Picea abies,  

mean = 495kg/m3, (Vreeswijk, 2003) 

 

It can be seen that, although the only difference of the single tests is the wood species, the 
specimen behaviour is different. Not only different ultimate loads are reached, but also 
the ductility differs. In Figure 3-1 and Figure 3-3, the specimens are twice as ductile as 
the specimens in Figure 3-2 and Figure 3-4. 

Generally, reliable mathematical material models are based on four basic concepts: 

 valid constitutive model that allows to correctly calculate the stresses from the 
strains; 

 failure/yield4 criterion that represents the failure mode; 

 hardening/softening rule to model nonlinear behaviour; 

 good test results that provide the necessary data input for the three items 
mentioned above. 

 

 

 

 

                                                 
4 The concept of plasticity and yield criterion is originally derived for steel. In most cases, steel is isotropic, 
generally ductile and has a distinct yield stress after which the plastic regime is starting. For wood, this is 
different. In tension, for instance, no yielding can be observed, the failure mode is quasi-brittle. Therefore, 
henceforth the expression ‘failure criterion’ is used instead of ‘yield criterion’; the mathematical function is 
the same. Here, ‘failure’ does not mean that a material has failed and that its strength is zero. A failure 
criterion identifies the onset of nonlinear behaviour instead. 
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However, if the task is to model a joint, the problem is more complex. The behaviour of 
the (min most cases) metallic fasteners and contact between wood and fasteners must be 
modelled as well. Models able to satisfyingly simulate pure material behaviour may still 
not be able to simulate joint behaviour.  

Generally, nonlinear modelling of steel is easily done and also for contact modelling, i. e. 
friction, powerful algorithms have been developed. Therefore, as a first conclusion it 
could be said that the problem of timber joint modelling can be condensed to a problem 
of wood material modelling. The problems related to reliable numerical modelling of 
timber joints are presumably due to all problems related to correct modelling of the 
material wood as mentioned above. 

This chapter is hence subdivided. Firstly approaches and problems connected with pure 
material modelling are discussed. These discussions form the major part of the chapter as 
a good constitutive model for wood is prerequisite to a good joint model. Secondly, 
issues related to joint modelling are presented. 

Many different approaches are available to simulate the mechanical behaviour of the 
material wood. The more complex the mathematical models get, the less comprehensible 
they are for users. Here, the scope lies on numerical Finite Element (FE) models and not 
on analytical approaches such as the European Yield Model (EYM, Johansen equations 
(Johansen, 1949)). 

A summary of the many various numerical approaches is given. Its aim is to introduce 
important concepts of finite element modelling to wood engineers in a straightforward 
and comprehensible way. Many of the concepts and approaches are interwoven. To 
organise the chapter as good and clear as possible, firstly FE methods in general are 
briefly discussed with its subparts continuum and discrete approaches. Subsequently, 
failure criteria are discussed. Failure criteria are necessary for all approaches to describe 
the onset of failure. These criteria can be derived from classical yield criteria or they can 
be based on concepts of fracture mechanics. Which one will be chosen is dependent on 
the problem class. Classical yield criteria are best suited for plastic behaviour whereas 
brittle behaviour is better modelled with fracture mechanics. Therefore, the choice 
depends on the post-elastic behaviour of a structure, the behaviour of a material after the 
proportional limit. Problems related to post-elastic simulations are presented 
subsequently. After the discussion about proper modelling of softening behaviour, 
fracture and damage mechanics are introduced which were developed to model softening 
behaviour. Both approaches can be implemented in continuum and discrete mechanics 
approaches. Fracture and damage mechanics are theories to analyse brittle problems and 
are independent from the basic numerical approach chosen. 

Subsequently, a section on two different innovative and practicable applications of 
continuum mechanics using standard FE packages is inserted. The step from material to 
joints and further issues related to joint modelling are then discussed in section 3.6.  

Finally, a summary is given that shows the major application fields, potentials and 
limitations of the different approaches. For any further information on the FE method, it 



Chapter 3 Modelling techniques 

 32

is referred to the expert literature, for instance Bathe (2002). Furthermore, additional 
information can be found in literature where reviews on wood material and timber joint 
modelling are available (Patton-Mallory, 1997, Kasal and Leichti, 2005, Sandhaas and 
Van de Kuilen, 2008). 

3.2 FINITE ELEMENT METHOD 

FE methods are nowadays widespread and much-used tools to model the mechanical 
behaviour of a structure on which a set of known external variables, forces or prescribed 
displacements, are acting. A set of partial differential equations are solved numerically to 
determine the values of the unknown internal variables, namely the displacements. From 
the displacements, the strains can be calculated and, e.g. in the linear elastic domain via 
Hooke’s law, also the stresses. This last step, from strains to stresses is done by applying 
a valid constitutive law. 

The modelled structure is broken down into a system of smaller, finite elements for which 
the system of equations is approximately solved. Via boundary conditions such as same 
displacements of some of the nodes, the single smaller elements are connected with each 
other and a solution for the whole system can be determined: 

 The structure as a composition of single elements is modelled; 

 The condition of equilibrium of single elements is solved, local solution; 

 The system of equations for the whole model by considering boundary conditions 
between the single elements is built; 

 The system of equations for whole model is solved, global solution. 

How the structure itself is modelled is up to the engineer who will take a decision looking 
carefully at the problem type, the ductile or brittle failure mode of the structure and the 
solution parameters he or she is interested in. Basically there are two different approaches: 

 continuum elements (section 3.2.1); 

 discrete elements (section 3.2.2). 

A discrete approach assigns mechanical behaviour to an assembly of discrete elements. 
With this approach, structural systems such as a piece of wood can be modelled by 
describing the system as a grid or lattice where wood fibre properties parallel-to-grain 
could be assigned to beam elements (e.g. one beam = one fibre) and the perpendicular 
properties could be modelled by springs connecting the beam elements. The system 
answer will be calculated exactly solving a system of finite equations. This is different in 
continuum systems where no discrete elements such as beams model single fibres, but the 
behaviour of a bundle of fibres is smeared over a continuous system of elements. Then a 
system of partial differential equations will be solved approximating the system answer. 
An exact solution of the partial differential equations that fulfils all boundary conditions 
is only possible for simple systems. Usually, numerical procedures must be used to 
approximate the system answer. This is especially valid for nonlinear problems. As 
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always in approximate methods, errors will occur which in our case means that the 
internal forces will not have exactly the same values as the external forces. Convergence 
criteria are therefore needed to judge the amount of error and to trigger new iterations in 
order to minimise the internal error and to finally find a converging solution. 

The relationship between strains and stresses in the linear elastic range needed for the 
local element solution is defined by the stiffness matrix – Hooke’s law. In order to obtain 
a reliable solution for the analysed structure, this relationship, i.e. the parameters of the 
stiffness matrix, must be defined carefully. The stiffness values and the Poisson’s ratios 
will always derive from experimental results. 

However, nearly no structure will have a purely linear behaviour where the system 
response, i.e. the deformations, is proportional to the load. Usually, structures behave 
nonlinearly where no proportionality between system response and loading is present. 
Nonlinearities have a certain impact on the finite element formulation and the solution 
strategies. Global nonlinearity of a structure not only derives from nonlinear material 
behaviour, but has basically three sources: 

 Material nonlinearity: 
Decrease of stiffness of the material (integration point level) with increasing 
loading (due to yielding, cracking, etc.); element formulation referring to global 
coordinates. 

 Geometric nonlinearity: 
Depending on their deformations, stresses are induced in the structures. Element 
formulation must be in local coordinates and the coordinates must translate and 
rotate together with the system. Further mathematical simplifications are possible 
if the strains are small. 

 Contact nonlinearity: 
Contact nonlinearity occurs, e.g. friction between two bodies of a system. Contact 
nonlinearity can also be related to material or geometric nonlinearity if for 
instance, the boundary conditions are dependent on deformations. 

Material nonlinearity, if present, is needed for the local element solution and must be 
evaluated by experiments and implemented in suitable constitutive relations. So-called 
material yield or failure criteria must be developed to describe the transition zones 
between elastic behaviour and nonlinear behaviour, the so-called proportional limit.  

Before further exploring FE methods, the terms tangent stiffness and secant stiffness are 
explained as these two expressions will be used extensively. Two levels must be 
considered. One level is the local integration point level of a finite element where the 
mechanical behaviour in terms of stresses and strains is calculated. This level requires a 
constitutive model to calculate the stresses from the strains or better, the stress rate from 
the strain rate. Such a constitutive model is often given in terms of a stiffness matrix 
which is the inverse of the compliance matrix. However, mathematically also constants or 
any type of equation could be given that link the strains to the stresses. The second level 
is the global level where the global response of the structure is calculated and where 
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certain convergence criteria must be met, e.g. internal forces equal external forces. In 
order to calculate the global response, a global stiffness matrix for the whole modelled 
structure must be assembled. 

If considering the local level at an integration point, the constitutive behaviour of a 
material must be described. This description could be based on damaging elasticity or on 
(classical) elasto-plasticity. For elastic damage models using the secant stiffness, the path 
of unloading is going back linearly to the origin as shown in Figure 3-5a. Tangent 
stiffness is always tangential to the load-displacement curve which means it is equal to 
the elastic stiffness in the elastic domain. The tangent stiffness is used when describing 
stress-strain behaviour with classical plasticity as shown in Figure 3-5b. As can be seen in 
Figure 3-5a, no permanent plastic deformations can be modelled when using secant 
unloading contrarily to the method using elastic unloading (Figure 3-5b). More advanced 
coupled elastoplastic damage models aim at combining the two modelling approaches. 

Also for the global level, i.e. the assembly of the global stiffness matrix, secant and 
tangent stiffness are important concepts. The global tangent stiffness matrix (as derivative 
of the ()-function, the so-called Jacobian) may become singular once softening 
behaviour of the material is developing, i.e. the ()-curve has a negative slope. This may 
cause convergence problems.  

 

 
                                   a)                                                                                     b) 

Figure 3-5: Stress-strain diagrams, a) damage model, b) classical plasticity with elastic unloading 

 

There are manifold numerical solution algorithms to solve the system of partial 
differential equations. Having valid constitutive relationships does not mean that models 
can be solved as also observed in Van der Meer (2010). Van der Meer stated explicitly: 
“However, carefully constructed kinematic and constitutive models are not all that is 
needed for successful simulations. When the computer crashes due to non-convergence 
before the virtual specimen has failed, the model is of no use. And when the computation 
time is high this does not encourage its use either. In order to get the model working in 
complex cases, a well-designed solution procedure is indispensable. The key targets in 
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formulating this procedure are robustness and efficiency.” (Chapter 4 of Van der Meer, 
2010). 

Usually, a certain problem class needs its own solution strategies and methods. For 
instance, nonlinear problems are usually solved with incremental-iterative methods 
(nonlinear problems cannot be solved with non-incremental methods). Incremental 
methods are subdivided in two classes: 

 Non-iterative, single-step or explicit methods (e.g. Euler forward or Runge-Kutta): 
The differential equations are solved for time t t, the state at t t+1 is predicted by 
solving for state at t t. Explicit methods may suffer from numerical instability and 
may thus require small time steps.  

 Iterative implicit methods (e.g. Newton-Raphson (Euler backward)): 
The differential equations are solved for a still unknown state at time t t+1, the 
state at t t+1 is predicted by solving for state at t t and t t+1. Implicit formulations are 
more complex but larger time steps are possible. 

In simple words, explicit methods do not need the assembling of a global stiffness matrix 
in contrast to implicit methods. Explicit methods are best suited for dynamic problems 
whereas implicit methods are good for classical continuum mechanics with plasticity. 
Especially for implicit methods, convergence criteria controlling the equilibrium must be 
included. 

Generally, systems with snapback behaviour (due to instabilities and buckling) lead to 
problems in an incremental-iterative scheme such as the Newton-Raphson method. This 
is due to the fact that in snapback problems, especially with geometric instability, the 
load control algorithm (preferably displacement-control) cannot proceed as the 
loads/displacements do not grow monotonically anymore. For this classical snapback 
behaviour other solution algorithms, so-called path-following or arc-length methods 
(Riks method) were developed that are able to trace the displacement path by choosing a 
non-fixed load increment. The Riks method thus uses the load magnitude as another 
unknown variable. The load step is taken as a variable in the solution procedure. New, 
robust and efficient arc-length methods based on thermodynamic energy principles are 
available, but they are not implemented in FE packages yet (Van der Meer, 2010).  

Softening does not always lead to the problems described above for geometric 
instabilities. Softening of materials is not always unstable. In this case, standard Newton-
Raphson schemes can be used, but then the global Jacobian (= tangent stiffness matrix) 
may still lead to convergence problems. A new solution strategy developed for continuum 
mechanics suited for problems with softening is the so-called sequentially linear analysis 
(SLA). SLA was developed to simulate fracture behaviour for use with continuum 
elements where single elements may undergo tension softening (Rots and Invernizzi, 
2004, Rots et al., 2008). Rots et al. stated that the basic idea was to create an event-by-
event strategy where brittle local failures are captured directly instead of “iterating 
around them” (Rots et al., 2008). The local brittle failures and thus the critical elements 
are identified by the principal tension stress. If the tensile strength is reached, the stiffness 
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of the elements will be reduced before starting the next sequence with a secant restart. 
This secant restart analogously to lattice models (explained in section 3.2.2) is made to 
capture the next critical element. The resulting graphs have, just like lattice models, a 
typical saw-tooth shape of the softening as shown in Figure 3-6. SLA is mesh-dependent 
and mesh regularisation techniques must be used (Rots and Invernizzi, 2004). 

 

 
Figure 3-6: SLA of notched beam (Rots et al., 2008, thick line is nonlinear reference curve) 

 

As for incremental-iterative schemes, in standard FE programmes, usually the full 
Newton-Raphson and the modified Newton-Raphson method are available. In full 
Newton-Raphson, the tangent stiffness matrix is recalculated for every iteration whereas 
in modified Newton-Raphson, this is the case only for every increment. Therefore, 
computer time is saved using modified Newton-Raphson, but convergence may be slower. 

3.2.1 Continuum approaches 

For most timber engineering problems, the commonly chosen FE approach is a 
continuum mechanics approach where a 1D, 2D or 3D structure is subdivided into 
smaller elements with a certain number of nodes and integration points. The results in 
terms of stresses and strains are calculated per integration point. Linear or quadratic 
polynoms are used to interpolate the results in between the integration points. Therefore, 
depending on the model scale, the results in a sense are averaged over the whole structure. 
It is usually difficult to model stress concentration phenomena with a continuum 
mechanics approach. For instance, in order to model splitting in wood, the required 
model scale and thus mesh size may lead to unmanageable models. In other words, 
localised failures and ruptures such like buckling of fibres under compression parallel-to-
grain or crack propagation under tension perpendicular-to-grain cannot be simulated 
easily.  

The far most common approach to model nonlinear material behaviour is classical elasto-
plasticity. Due to the extensive use, also in wood research, the formulation of failure 
criteria used in plasticity is discussed in section 3.3.1. 
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Computationally, for time-independent algorithms for nonlinear plastic materials, the 
difficulties arise from the fact that the load-slip relationship is no longer unique. This 
means that the assignment of the strains to the stresses is not unequivocal which creates 
the need of establishing more parameters that can keep track of the loading history. It also 
means that the tangent stiffness and not the secant stiffness must be used to calculate the 
stress-strain relationship (see Figure 3-5b) and to account for plastic deformations5. Three 
ingredients are necessary to re-create a clear relationship between the strains and the 
consequential stresses: 

 a yield or failure criterion F that defines the proportional limit, the transition from 
the elastic regime to the nonlinear regime; 

 a flow rule that links the plastic strain increments to the actual stress state and 
stress increments (often an associated flow rule is chosen where the failure 
criterion is used to calculate the plastic strain increments); 

 a hardening/softening rule (this is optional and only needed if the material is not 
elastic perfectly plastic or perfectly brittle). Hardening can be isotropic or 
kinematic. 

Therefore, this so-called flow theory of plasticity uses a relationship between strain rate 
and stress rate, not between strains and stresses. 

Generally, continuum models suffer from mesh dependency if softening material 
behaviour is prescribed. In section 4.3.7, mesh dependency is discussed. 

3.2.2 Discrete approaches 

Besides continuum approaches, also discrete approaches are possible techniques to 
simulate material behaviour where the mechanical behaviour is assigned to discrete 
elements such as springs or beams. Discrete lattice models are an interesting approach 
traditionally used for brittle materials. Materials are represented by a lattice structure 
where spring, or more advanced, beam elements (including bending) are used to form a 
2D or 3D grid. The elements are calibrated on the properties (stiffness and ultimate 
strength) of the material that one wants to model. This determination of the element 
properties is difficult to undertake. The algorithm used to solve these structural models 
remains linear elastic and at every step, it goes back to the origin (secant stiffness – 
Figure 3-5a). Elements are switched off (or they are assigned a low stiffness) when their 
failure strength is reached. Therefore, if no optimisation methods are used, the stiffness 
matrix must be recomposed after each load step. Afterwards, the next load step is carried 
out acting on a structure that has fewer members and thus lower stiffness. Like this, 

                                                 
5 If the constitutive model is described via a stiffness matrix. Other possibilities are constants or simple 
equations that describe the stress-strain relationship. 
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brittle structures can be modelled by switching off elements. This technique leads to 
typical saw-tooth shapes of the softening curves as shown in Figure 3-7.  

The discrete lattice concept with its beams and springs is well illustrated in Figure 3-8 
taken from Wittel et al. (2005) and in Figure 3-9 taken from Reichert (2009). 

Most lattice models use the described solution algorithm where the secant stiffness is 
recalculated from step to step (softening due to element removal) and where no 
increments are used. Therefore, up to now, lattice models are often perfectly brittle (e.g. 
Wittel et al., 2005, Snow et al., 2006) and are thus not capable of representing ductile 
(material) behaviour on the local level. However, the global structural response may still 
be ductile as shown in Figure 3-7. 

Other solution strategies exist however. Reichert (2009) developed a 3D lattice 
programme trying to include (local) nonlinear material behaviour which proved to be 
rather hard to implement. Simulation examples taken from Reichert are shown in Figure 
3-10 to Figure 3-13. The first two figures show a brittle model simulating a CT test. As 
can be seen in Figure 3-11, the modelling results are in good agreement with the test 
results except for the stiffness. This changes if looking at nonlinear behaviour. Figure 
3-12 shows a lattice model of a compression test parallel-to-grain. The modelling results 
of this test are not as good as the results for the CT test as can be seen in Figure 3-13. 

Maybe the most important lesson learned from Reichert (2009) is the fact that lattice 
models are not implemented in general FE codes. As Reichert had to write a complete FE 
code in order to run his models, also steel properties and contact algorithms had to be 
inserted in order to model timber joints. This is not a trivial task. Contact algorithms are 
difficult to develop and have a high computational cost. Reichert stated that his joint 
models took long to solve and that the algorithm stopped before reaching the maximum 
displacement. 

 

 
Figure 3-7: Typical saw-tooth load-displacement curve (Reichert, 2009, Fig. 3.12) 
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Figure 3-8: Example of lattice models with cracks (Wittel et al., 2005) 

 

 

 
Figure 3-9: Example of lattice model with annual rings (Reichert, 2009, Fig. 5.17) 

 

 

 
Figure 3-10: CT test model with crack  

(Reichert, 2009, Fig. 6.8) 

 
Figure 3-11: Experimental and model results of 

CT test (Reichert, 2009, Fig. 6.9) 
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Figure 3-12: Longitudinal compression test mode 
with failures (Reichert, 2009, Fig. 6.20) 

 
Figure 3-13: Experimental and model results of 

longitudinal compression test  
(Reichert, 2009, Fig. 6.22) 

 

Also Schlangen developed a 3D lattice model, the so-called Delft lattice model 
(Schlangen and Garboczi, 1997). He and his researchers are now extending the software 
with a user-friendly interface and nonlinear elements. Schlangen developed his models 
for concrete and rock, but as his software is well developed and advanced it is worth to be 
mentioned here due to its possible future applicability to wood. Also algorithms for 
automatic mapping of mesoscopic properties onto the lattice model are available. 
However, still contact algorithms able to model a fastener-wood system are missing. 

3.3 FAILURE THRESHOLD AND DEVELOPMENT 

In order to correctly identify the onset of failure, a valid failure criterion needs to be 
defined. This is valid for every kind of nonlinear analysis, be it for example within the 
framework of continuum mechanics or lattice models. Also the correct description of the 
post-elastic behaviour is essential for reliable modelling.  

3.3.1 Failure criteria 

A failure criterion can be expressed as follows: 

( , ) 1ij MF f  (3-1) 

 

The failure surface F is a scalar which is dependent on the 6x6 stress tensor ij and 
material resistances fM. F can be interpreted as a geometric body lying in the 6D stress 
space. The boundaries of the body indicate the failure stress. Mathematically, all stress 
vectors inside the boundary of the body are linear elastic. This means that when F < 1, 
the material is still linear-elastic. If F = 1, the material fails. F > 1 is physically not 
possible. The intersection points of the failure body with the axes are the uniaxial 
strengths of the described material. 
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The expression ‘failure surface’ should not be misunderstood. It only indicates the 
proportional limit and does not mean a material is actually failing. A material may still 
carry load after having reached the boundary of F.  

Failure criteria can be formulated in terms of strains or in terms of stresses. Both 
formulations are equivalent as they are connected through a constitutive model. There is 
one major problem associated with strain-based formulations. That is the difficult 
execution of tests that determine the material input values in terms of strains as it is 
nearly impossible to create uniaxial strain conditions. Lateral strains are complicating the 
issue considerably. Furthermore, it is more difficult to derive clear correlations between 
strain and failure than between stress and failure, certainly for brittle failures (Puck, 
1992). If recalling section 2.1, the difficulties connected with tests carried out in a stress-
based or strain-based regime are evident. Usually, tests are carried out measuring uniaxial 
stresses and displacements. What happens in the other material axes is not measured. 

The simplest example for a geometric body representing failure surfaces is a box-type 
body as shown exemplarily in a 2D stress space in Figure 3-14 for normal stresses. The 
box-type failure function represents the maximum stress criterion where no interaction 
between stresses is assumed. The stresses are constant which means that they are 
generally overestimated. Another problem is that numerically, such a surface is difficult 
to implement in finite element programmes as it has edges where no clear normal to the 
surfaces exists. (A normal is necessary to calculate the return mapping of the predictive 
values in case of an associated flow rule. One advantage of an associated flow rule is the 
maintenance of a symmetric tangent stiffness matrix which makes numerical solutions 
efficient.) 

A mathematically simple approach to model stress interaction is to choose a linear 
relationship as shown in Figure 3-14. The linear approach however usually 
underestimates the stress interactions considerably. 

An elegant and still simple approach to describe failure surfaces are quadratic, continuous, 
closed and convex surfaces such as cylinders, spheres or ellipsoids. They are 
mathematically simple single surfaces which are able to describe experimental results 
with a sufficient accuracy without being too demanding mathematically. An example is 
again given in Figure 3-14. Another advantage is that these surfaces do not suffer from 
the presence of singular points. 

An example of how mechanical behaviour may be represented through an ellipse (a 
quadratic, convex closed geometrical body) is shown in Figure 3-15, a repetition of 
Figure 2-18 with a fitting ellipse. 
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Figure 3-14: Failure surfaces 
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Figure 3-15: Results biaxial tests plus failure surface – combination of normal stresses, 

 = 0°. Results from (Eberhardsteiner, 2002, Hemmer, 1985)  

 

There is no physical reason why the stress interactions are modelled with quadratic 
functions. Already in 1980, Hashin stated that “(the quadratic approximation) is the 
simplest presentation which can fit the data reasonably well, and in view of the 
significant scatter of failure test data it hardly seems worthwhile to employ cubic or 
higher approximations.” (Hashin, 1980). This statement is certainly still valid, especially 
for wood with its inherent high scatter. 

If now also Figure 3-16 (repetition of Figure 2-19) is considered which is showing 
Eberhardsteiner’s (2002) results together with the load-displacement curves and a fitting 
ellipse, a first problem of these approaches is evident. The ellipse may not always 
represent the proportional limit as required mathematically, but the material may already 
be nonlinear within the ellipse. Wood in compression is indeed nonlinear already at small 
deformations (second and third quadrant). Only for the combination of tension stresses 
with their brittle failures the ellipse is correctly describing the onset of failure (first 
quadrant). 
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Figure 3-16: Results biaxial tests with stress evolution, = 0° 

(Eberhardsteiner, 2002, Fig. 4.22) 

 

The simplest convex, continuous, regular and closed surface is a cylinder. If one cuts 
through a cylinder, a circle or an ellipse – depending on the inclination of the cutting 
surface - is obtained. The von Mises failure criterion for isotropic materials is such a 
cylinder in the 3D stress space. Von Mises’ derivation is based on the assumption that 
hydrostatic stress states do not lead to failures as it is based on the second deviatoric 
stress invariant neglecting the first stress invariant of the stress tensor.  

The von Mises criterion can be extended for anisotropic materials. This implies 
mathematically that the failure surface must allow for different axis intercepts as the 
uniaxial failure strengths are not the same any more. A distorted cylinder, still assuming 
that a superposition of hydrostatic stresses does not change the failure boundary, is the 
consequence of such a requirement. Hill (1948) was the first to propose such a failure 
criterion. In simple words and considering only 2D, Hill extended the von Mises criterion 
from a circle to an ellipse. 

Hill’s criterion is in quadratic format. Whether a strength value is positive or negative has 
no influence on the general form of the criterion. Therefore, the Hill criterion cannot 
account for different failure strengths in tension and compression. 

This was possible with yet another mathematical addition done by Hoffman (1967) and 
Shih and Lee (1978). They extended Hill’s model with linear terms that are odd functions 
of the normal stresses to include the sign of the stresses. Hence, not only anisotropy can 
be described by this failure surface, but also different strength values in tension and 
compression. Mathematically, the ellipse is translating in the 2D stress space.  

However, there is still no way to calibrate the interaction between stresses. The uniaxial 
failure stresses needed to determine the parameters of the failure criteria are independent 
from each other. In other words the ellipses that can be created with the Hoffman 
criterion still need to be squeezed and deformed. Tsai and Wu (1971) developed a further 
extension with again another parameter that accounts for interaction of normal stresses. 
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Their failure criterion is defined as follows (in short notation6 – Fij is a fourth-order tensor) 
and it can be extended to higher-order polynomials as it has been done by Hemmer 
(1985): 

1i i ij i jF F         with   i,j = 1,2,…6 (3-2) 

 

The newly introduced interaction term is the second term of the sum (Fijij) where two 
stresses can be coupled.  

In order to understand the meaning of these failure criteria and that many limitations 
simply derive from mathematical boundary conditions, the Tsai-Wu criterion is further 
discussed as a plane problem. Then, it can be notated as follows: 

2 2 2
1 1 2 2 11 1 22 2 12 1 2 66 122 1F F F F F F                    (3-3) 

 

The next step is the determination of the factors Fi and Fij. Uniaxial tests must be done to 
determine the uniaxial strengths. Firstly, consider i = j = 1, material axis 1 parallel-to-
grain which means strengths ft,0 ad fc,0. Inserting everything in Equation (3-3) delivers: 

 

Compression: 

2
1 ,0 11 ,0 1c cF f F f      (3-4) 

 

Tension: 

2
1 ,0 11 ,0 1t tF f F f     (3-5) 

 

 

Solving for F1 and F11: 

1
,0 ,0

1 1

t c

F
f f

  and 11
,0 ,0

1

t c

F
f f


  

(3-6) 

 

Analogously, the other factors are determined. 

                                                 
6  In literature, short notation is used to avoid complex subscripts as would be required for higher-order 
tensors. Instead of double indexing, a continuous numbering from 1 to 6 is used: 1-3 indicate the normal 
stresses and 4-6 the shear stresses. Thus: 1 equals 11 whereas 4 in short notation is 12 in normal 
notation (be careful about the order of the indices in the shear parts of the stress and strain array!). 
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Furthermore, the factors Fi and Fij must hold certain conditions to ensure a closed surface: 

2
11 22 12 0F F F    (3-7) 

 

The factors Fi and Fij shown in Equation (3-6) illustrate nicely some question marks 
related to these methods. Factor F1 for instance depends on tensile and compressive 
strength in the same material direction. Obviously, the failure criterion has no physical 
meaning. 

The mathematical elegance and simplicity explain the popularity of the here presented 
failure criteria. Furthermore, the criteria are compatible. The most complex Tsai-Wu 
criterion can be reduced to lower-order criteria such as von Mises, Hill and Hoffman. 
Moreover, all above-mentioned failure criteria are in tensor formulation, they are 
symmetric and invariant when the coordinate system in which the elements are described 
is rotating. Naturally, other criteria do exist. Please refer to e.g. Edlund (1982) or Nahas 
(1986) for more information. 

The parameter F12 shown in Equation (3-3) was introduced by Tsai and Wu (1971) to 
account for interaction of normal stresses (no interaction between normal and shear 
stresses). F12 must be determined experimentally – although it is not really a 
phenomenological value, but a mere mathematical trick to distort the form of the failure 
surface such that interaction between stresses can be controlled. Therefore, the calibration 
of F12 is quite difficult as it is not possible to actually test what is mathematically needed 
(Wu, 1972). 

Rahman et al. (1991) were the first to include a multidimensional failure criterion such as 
the Tsai-Wu theory in timber modelling, assuming F12 to be zero. They were not able to 
predict damage and failure with these plastic laws. Bouchaïr and Vergne (1995) 
reformulated the Tsai-Wu polynomial as a failure surface and a plastic flow rule for 
orthotropic plasticity. Therewith the regions where the failure criterion is exceeded could 
be identified and then the material behaviour after failure could be described. The model 
only considered ductile failures. The brittle splitting failure mode of wood was not 
described. Their approach was sensitive to numerical problems when choosing a small 
enough mesh underneath the bolt to simulate the local deformation behaviour of joints. In 
Grosse (2005), the problems associated with the criterion according to Tsai and Wu 
(1971) is further discussed and examples are given. 

A main problem of the single-surface failure criteria lies in the fact that an ellipsoid or, 
when considering a 2D stress space, an elliptical closed curve must be determined which 
marks the transition between the linear-elastic range and the plastic range. As wood has 
different strength values in different material axes and as these values are also different 
for tension and compression, it is impossible to really describe an elliptical failure surface 
or an ellipsoid in 3D that wraps these strength values without leading to unrealistic 
interaction values. Figure 2-6 illustrates this problem for a 2D case (see also Van der 
Linden et al., 1994). In order to intersect the axes at the uniaxial strength values, the 
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ellipse must be of a shape that allows mathematically for even higher strengths parallel-
to-grain when some compression perpendicular-to-grain is present. 

 

 
Figure 3-17: Visualisation of elliptical surface with ‘real’ uniaxial strength values 

 

Another drawback of single-surface approaches is that usually, they cannot identify the 
failure mode. The algorithms using single surfaces are only able to determine the onset of 
failure. 

An obvious solution to this problem is to split the single failure surfaces and to develop 
multiple surfaces per quadrant. With this trick, also different failure modes can be 
identified which is not possible if one closed surface is used. So-called multi-surface 
plasticity approaches are already existing (Grosse, 2005, Schmidt and Kaliske, 2006, 
Mackenzie-Helnwein et al., 2003). They are difficult to implement and have numerical 
stability problems if the transition from one surface to another is not continuous. Often, 
their implementation is accompanied by quite sophisticated constitutive laws. 

Apart from multi-surface plasticity approaches, there is another possibility to deal with 
the fact that one single surface may not be the best representation of experiments. In the 
field of fibre composites, many approaches exist that define piecewise convex and 
continuously differentiable surfaces for the single failure modes. Mathematically this 
means that no single closed surface exists in the 6D stress space but that a case by case 
distinction must be done to assign the correct failure surface to the correct stress 
combinations. (Hashin, 1980, Puck, 1996, Juhasz, 2003). In composites for instance, two 
failure modes are distinguished, fibre failure and matrix failure. Most criteria are based 
on the invariants of the stress tensor as these invariants are not susceptible to coordinate 
changes (Hashin, 1980). As can be seen nicely in Hashin (1980) and Matzenmiller et al. 
(1995), the concept is straightforward and physically meaningful. A simple example is 
given for a plane stress case (see Matzenmiller et al., 1995): 
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Tension in 1-direction: 

 

Compression in 1-direction:  

 

Tension in 2-direction:  

 

Compression in 2-direction: 
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(3-8) 

 

Per stress component or combination of components, a failure criterion can be formulated. 
This criterion may be a simple maximum stress criterion or a quadratic criterion. Also the 
complex Tsai-Wu criterion could be chosen. As tension or compression stresses are 
identified, different failure criteria for tension and compression can be applied. Therefore, 
failure modes can be identified using piecewise defined failure criteria. Smooth 
transitions between the single surfaces analogously to multi-surface approaches are not 
needed. The piecewise definition of failure modes is a valid approach to develop more 
physically meaningful failure criteria. 

3.3.2 Post-elastic behaviour 

It is often not sufficient to simply establish the maximum stress values in order to 
accurately describe the mechanical behaviour of a material. The post-elastic behaviour, 
i.e. the mechanical behaviour after reaching the proportional limit, must be described also. 
As seen in chapter 2, the mechanical behaviour for wood is ductile for compressive loads, 
but quasi-brittle for tension or shear loads. The plastic behaviour in compression is thus 
rather easy to model. Most FE codes already contain algorithms for classical elasto-
plasticity where it is sufficient to implement the shape of the post-elastic curve into 
hardening routines. The FE programme carries out an elastic calculation until the failure 
value is reached (which lies on the boundary of the failure surface). 

If the constitutive law of the material is elastic-perfectly plastic, the algorithm will first 
predict the stresses assuming that the material is still elastic. The predicted elastic stress 
will be too high and has to be re-projected onto the failure surface. Therefore, the stresses 
are constant whereas the deformations increase, elastic-perfectly plastic behaviour.  

If isotropic hardening is assumed instead, the failure surface is expanding (Figure 3-18). 
Subsequently, also the stresses and not only the deformations increase, elastic-plastic 
behaviour with isotropic hardening.  

Another possibility to model hardening is kinematic hardening. As shown in Figure 3-18, 
the surface does not change, but it can translate in the stress space. Kinematic hardening 
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was developed to model cyclic loading of metals to capture the effect that the material 
strength will be smaller when reloading in the alternate direction (Bauschinger effect). 

 

 
 

Figure 3-18: Isotropic and kinematic hardening 
 

3.4 BRITTLE BEHAVIOUR 

Three approaches that have been developed to simulate brittle behaviour are shortly 
presented: fracture mechanics, damage mechanics and lattice models. The last concept, 
lattice models, has been already discussed in section 3.2.2 as it is a discrete modelling 
technique contrary to continuum mechanics. 

3.4.1 Fracture mechanics 

Fracture mechanics were developed to analyse the phenomenon of stress concentrations 
and subsequent cracking failure modes. These modes with high stress concentrations are 
difficult to model with continuum mechanics. However, principles from fracture 
mechanics are often applied within continuum mechanics to simulate brittle behaviour. 

In these cases, usually the failure criterion is based on a fracture mechanics approach. 
Schmid (2002) investigated in the applicability of fracture mechanics on wood whereas 
Sjödin et al. (2008) looked into the contribution of friction between dowel and wood 
using a linear elastic fracture mechanics (LEFM) failure criterion. Also Ballerini and 
Rizzi (2005) carried out extensive research using Wu’s criterion (1967) to investigate in 
the splitting strength of wood loaded perpendicular-to-grain. Wu’s criterion (1967) is a 
mixed-mode fracture criterion developed for a mixed crack opening and shear failure 
(mixed mode I and II, see Footnote 2). 
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Fracture mechanics analyse the stress and strain field at the crack tip. To describe these 
fields, linear-elastic fracture mechanics (LEFM) assume that all strain energy goes into 
the propagation of cracks. Within LEFM, stress intensity factors (evaluated for the three 
different crack opening modes I, II or III) or the strain energy release rate must be 
determined. Both are material constants and must be established with tests. Nonlinear 
fracture mechanics (NLFM) must be applied if some of the available strain energy is 
dissipated through micro-mechanisms around the crack tip, such as for instance fibre 
bridging in wood, and thus not all available strain energy goes into crack propagation. 
Vasic et al. (2005) stated that wood is rather poorly represented by LEFM and NLFM 
should be applied instead. Popular methods within NLFM are the crack tip opening 
displacement (CTOD method), R-curves or the J-integral (Smith et al., 2003). Fracture 
mechanics are mathematically complex and hence computationally expensive. 

Fracture mechanics are used to describe softening curves in classical plasticity 
approaches and they deliver failure criteria within continuum mechanics. Often, the strain 
energy release rate, or simpler fracture energy Gf, is used (see for instance Grosse, 2005). 
As the fracture energy Gf is often applied, some important specifications in view of 
computational implementation must be given. Fracture energy is the energy that is needed 
for crack formation or, differently said, fracture energy is the energy needed to create 
new crack surfaces. If material tests are given in terms of traction-separation curves, then 
the fracture energy is the area underneath the curve. If however only the stress-strain 
curve (resp. force-displacement) is known, then the facture energy as the area underneath 
the curve has the unit ‘energy per volume’ and must be transformed into a surface value 
by multiplying the area by the width (resp. the area). 

3.4.2 Continuum damage mechanics 

A simple and straightforward approach to model softening (or hardening) in materials are 
continuum damage mechanics (CDM). CDM is a nonlinear-elastic method where the 
nonlinear behaviour is obtained by modifying the stiffness matrix or its inverse, the 
compliance matrix. This is analogous to lattice models as presented in section 3.2.2. 
However, CDM can be implemented in an incremental-iterative framework. The stress 
increments are calculated from strain increments via a variable stiffness matrix. Therefore 
and as opposed to classical plasticity, damage mechanics unloads with the secant stiffness 
and not with the elastic stiffness. This approach can hence not model permanent plastic 
deformations. Figure 3-19 and Equation (3-9) show the basic idea of CDM. 

One drawback of continuum damage mechanics as of any continuum approach is that the 
models are mesh dependent when softening is modelled. Furthermore, as CDM are 
implemented in a continuum mechanics approach, problems with local failures or 
instabilities will still be persistent if the model scale is not small enough to capture these 
localised effects.  
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Figure 3-19: Basic idea of damage mechanics, linear damage function 

 

In CDM, a damage variable d, 0 ≤ d ≤ 1, is determined and inserted into the fundamental 
Hooke equation as follows: 

(1 )ij ijkl kld D    (3-9) 

If d = 0, no damage is present; if d = 1, the material has failed. 

 

In case of anisotropic damage, several damage variables need to be defined.  

In comparison to plasticity, damage is much easier to implement. No flow rules or 
hardening rules are needed. The material behaviour is completely defined by the damage 
variables. However, failure surfaces still need to be formulated to identify the onset of 
damage and a function must be developed that describes the evolution of the damage 
variable d. The models are stress - or strain-based, depending on whether they compare 
the onset of damage (d > 0) to a strain or a stress criterion. 

However, CDM are often formulated in terms of strains as this is more straightforward in 
computational mechanics. The damage variable d starts to develop after a certain strain 
threshold has been passed. Damage develops with increasing strain and is not reversible. 
As for stress-based formulations, stress is no unequivocal parameter in softening as a 
certain elastic stress level will be reached again when strain-softening develops. 
Therefore, not only a damage parameter is needed, but analogously to the flow theory of 
plasticity also a history parameter that takes the loading history into account. 

Furthermore, at every new increment t, the input values in constitutive material 
subroutines are the strains t at increment t, but the stresses t-1 at increment t-1. Within 
the subroutine, the stresses t at increment t are updated. If now the onset of damage is 
formulated in terms of stress, a prediction of the stresses t for the actual increment t 
must be evaluated with which the failure criteria can be compared. This explains why 
usually strain-based formulations are preferred. 

However, recalling the issues discussed in section 3.3.1 (stress- or strain-based failure 
criteria), it is evident that it is not trivial to obtain correct input values in terms of strain. 
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Some researchers used the concepts of damage mechanics to simulate the mechanical 
behaviour of wood. Cofer et al. (1999) used an anisotropic damage model. Unfortunately, 
it was only a preliminary study with simple assumptions to investigate into the potential 
of this approach. Also in a research project of the U.S. Federal Highway Administration 
(2007), a material model for wood using concepts from damage mechanics has been 
developed for dynamic problems. The developed model applies classical flow theory of 
plasticity to formulate ductile failure of wood in compression and damage mechanics for 
the brittle failure modes. They consider wood being transverse isotropic and the chosen 
failure criterion is the Hashin criterion. Even visco-plastic rate effects were included. In a 
special report of the U.S. Federal Highway Administration (2005), the wood material 
model was evaluated. 

Damage mechanics are widespread and well developed in the field of fibre composites 
(for instance Maimí et al., 2007, Lopes, 2009, Matzenmiller et al., 1995, Maimí, 2006, 
Feih and Shercliff, 2005b). 

3.5 INNOVATIVE APPROACHES WITHIN CONTINUUM MECHANICS 

Modern FE packages offer many tools for material modelling. Two hybrid approaches 
using these tools without the need of user subroutine programming are shown in section 
3.5.1. In section 3.5.2, an innovative hierarchical model is presented. 

3.5.1 Hybrid approaches 

A hybrid model was developed by Bocquet in 2D (Bocquet, 1997, Racher and Bocquet, 
2005) by merging two approaches, beam on foundation models and standard 2D FE 
models with elasto-plasticity. Bocquet superimposed two different element types around 
the bolt hole as can be seen in Figure 3-20 and Figure 3-21. A simple isotropic bar 
element reproduced the material behaviour parallel-to-grain. The other isotropic element 
called JOINT reproduced the behaviour perpendicular-to-grain and represented the 
typical behaviour of wood in transverse compression with plastic hardening and 
transverse tension with a cut-off criterion (Figure 3-20). Also the shear behaviour was 
modelled with the JOINT elements. If for example the capacity in tension perpendicular-
to-grain was reached, the wood split and the JOINT elements dropped out, the beam 
elements were still able to transfer load parallel-to-grain. The outer wood was modelled 
as an elastic orthotropic material. 
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Figure 3-20: Superimposed FE element and model 

(Racher and Bocquet, 2005) 

 
Figure 3-21: Properties of FE element 

(Racher and Bocquet, 2005) 

 

This means that the close-up range of the bolt has been partly discretised and modelled 
with specific timber elements (Figure 3-20). With this, Bocquet was able to represent the 
nonlinear embedding behaviour of wood and joint behaviour including brittle splitting 
phenomena due to stresses perpendicular-to-grain or shear. 

Toussaint (2009) together with Bocquet further developed the idea of superimposing two 
element types. Toussaint used a commercial FE package with two already implemented 
material models, orthotropic plastic beam elements for mechanical behaviour parallel-to-
grain and 3D solids of crushable foam that simulated the behaviour perpendicular-to-
grain (Figure 3-22). 

The main scope of this approach was to model the densification of wood under 
compression perpendicular-to-grain together with brittle failure in tension perpendicular-
to-grain. Toussaint found good agreements between models and experimental results. 

 

 
Figure 3-22: Toussaint’s superposed elements to model wood (Toussaint, 2009, Fig 175) 

 

Another hybrid approach is also using different element formulations. Besides standard 
continuum elements, most FE packages offer so-called cohesive or interface elements. 
These element types are similar to contact elements and can separate after a specified 
threshold has been passed. The separation process itself can be defined as well. It can 
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follow exponential laws for instance. The interface elements must be calibrated on test 
results, often compact tension (CT) tests which is rather cumbersome. In Figure 3-23 and 
Figure 3-24, a model loaded in tension parallel-to-grain with interface elements is shown 
(Franke, 2008). 

 

 
Figure 3-23: FE model with cohesive elements as 

splitting plane (Franke, 2008, Fig. 5-1) 

 
Figure 3-24: FE model after splitting  

(Franke, 2008, Fig. 5-4) 

 

The cohesive or interface elements must be inserted in model regions where splitting is 
expected. This is a drawback as the splitting planes are pre-defined. However, as seen in 
chapter 2, wood has preferred splitting planes and in most cases it is known beforehand 
where splitting will occur. Therefore, these approaches are well-working practical 
methods to simulate ductile and brittle behaviour of wood in an efficient way (Blaß and 
Bejtka, 2008, Campilho et al., 2009, Franke, 2008) although considerable test data is 
necessary to calibrate the cohesive elements. One challenge still is to simulate shear 
splitting. It would be especially interesting to model the phenomenon of plug and block 
shear-out in multiple-dowelled joints with these elements. 

3.5.2 Different hierarchical levels 

An important question to be answered when dealing with wood modelling is which 
hierarchical level of wood should be chosen. Different levels are for instance: 

 Chemical level modelling cellulose and lignin; 

 Microscopic level modelling cells; 

 Mesoscale where the annual rings are modelled; 

 Macroscale with clear wood; 

 Megascale of structural wood including knots and grain deviations. 

The microscopic features of wood as a structure are modelled when starting the 
modelling at the microscopic level. However, existing microscopic models are not yet 
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able to be used on an engineering scale. Nearly all microscopic structural models have a 
preliminary need to determine the failure mode. It must be known whether the wood 
structure fails under parallel or transverse tension or compression, under shear or 
combinations of those. Only then a model can be developed that allows for the identified 
failure modes. The model’s setup typically represents the microstructure of wood. It has a 
cellular structure geometrically similar to wood. Material properties are assigned to the 
model’s different components. Stupnicki (1968) for example assumed that failure occurs 
in the intercellular layer. Therefore, he developed a cell frame system made of middle 
lamellae including rectangular cells with thick walls as latewood and hexagonal cells 
with thinner walls as earlywood. The cell walls themselves were assumed to be made of 
weaker material. The model was loaded in compression parallel-to-grain. Stupnicki’s 
numerical results were 10-15 times higher than the crushing strength of wood which he 
explained with the fact that the model assumed perfectly straight middle lamellae 
whereas in reality, they are corrugated and have cavities producing stress concentrations. 

More recent multi-scale models were presented by Persson (2000) and Hofstetter et al. 
(2005). Persson used homogenising techniques scaling up different hierarchy levels of 
wood. The first level was the microfibrils level with lignin, hemicellulose and cellulose as 
homogeneous material. This homogenised level was then used to represent wall layers 
with microfibrils as homogeneous material. Persson (2000) undertook 3D FE analysis in 
uniaxial (radial and tangential) compression in the plastic range choosing Hill’s criterion 
as a failure surface. A 3D analysis in the sense that he assigned a thickness to the cell 
walls before assembling the walls to represent a piece of wood. Also the stiffness and 
hygroexpansion properties were investigated. Simulation results were given for single 
cells or small wooden pieces and effects due to moisture changes were included. Density, 
properties of the chemical constituents and microfibril angle of the S2-layer were found 
to govern the macroscopic mechanical properties. Persson stated that numerical problems 
were encountered when simulating the compression behaviour of small clear wooden 
pieces. This means that such a modelling is hardly suitable for engineering purposes at 
the current state-of-the-art. 

Hofstetter et al. (2005) developed a micromechanical, even chemical model starting with 
the properties of lignin, hemicellulose and water and then carrying out a homogenisation 
scaling up the hierarchy levels of wood. At each hierarchy level, a homogenised stiffness 
tensor (composed of the material properties of the single constituents – such as at the first 
hierarchy level lignin, hemicellulose and water) was determined. In other words, every 
constituent’s properties were represented through so-called representative volume 
elements (RVEs), the merging of the different RVEs established then the necessary 
boundary conditions in terms of deformation and stresses to create a higher organised 
element. This multistep homogenisation or determination of a homogenised mechanical 
behaviour from low organisation levels of the material up to higher levels was 
accomplished through four levels: 
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 First hierarchy level ‘polymer network’ with RVEs up to a length of 8-20 nm; 
lignin, hemicellulose, water; 

 Second hierarchy level ‘cell walls’ with RVEs up to a length of 0.5-1 μm; adding 
crystalline and amorphous cellulose; 

 Third hierarchy level ‘softwood’ with RVEs up to a length of 100-150 μm; adding 
lumen; 

 Fourth hierarchy level ‘hardwood’ with RVEs up to 2-4 mm; adding vessels. 

The model assumed ideal material, dealt only with elasticity and was dependent on the 
correct material input of the first two levels – a field for which many different values can 
be found in literature depending for instance on the extraction method of lignin or 
cellulose. A continuum micromechanical approach may in future be promising for e. g. 
wood drying simulations, but seems to be too complicated and generalising to be a 
reasonable approach for structural wood at the current state-of-the-art. 

As stated in section 3.2.2, also approaches to model the mesoscopic scale (e.g. annual 
rings) exist. Bigorgne et al. (2010) developed a subroutine to assign different mechanical 
properties to earlywood and latewood in a continuum mechanics context and Reichert 
(2009) did the same for lattice models.  

In a sense, also the natural scatter of wood properties could be interpreted as being 
dependent on the modelling scale. On any scale larger than the microscopic scale, the 
influence of growth can be observed – this ranging from annual rings to knots and grain 
deviation. Therefore, Clouston and Lam (2001) included Monte Carlo algorithms to 
randomly model a certain bandwidth of material properties in a continuum mechanics 
model. Landis et al. (2002) again did the same for lattice models.  

3.6 FROM MATERIAL MODELLING TO JOINT MODELLING 

With few exceptions, all reviewed literature up to now dealt with material modelling of 
clear wood in most cases and not with timber joint modelling. The issues related to 
timber joint modelling are additional issues to material modelling issues. 

Failure of timber joints relates to local processes around the loaded areas. A fundamental 
work to understand these localised phenomena was done by Rodd (1973). He and, based 
on his idea, Werner (1993) developed a mathematical model predicting the lateral 
resistance of a bolt that is composed of the force necessary to crush the fibres in the 
direction of the movement parallel-to-grain (embedment) and the perpendicular 
component of the force necessary to displace the fibres around the bolt. It is this 
component that causes tension perpendicular-to-grain which is related to splitting. 
Furthermore, Rodd (1973) assessed the influence of rough or smooth bolt surfaces on the 
failure modes and ultimate strength values of timber joints: The rougher the bolt, the 
higher the load carrying capacity due to the better stress distribution. This underlines the 
importance of friction and contact modelling in FE analyses. Werner’s work (1993) also 
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includes a thorough discussion of the parameters that influence the embedment strength 
and hence also the joint behaviour.  

First mathematical models of timber joints started with plane problems modelling wood 
as orthotropic linear elastic and the fastener as rigid (Rowlands et al., 1982). These 
models were slowly extended by refining the contact modelling and by inserting 
plasticity laws (Rahman et al., 1991) maintaining a rigid fastener. Already Rowlands et al. 
(1982) underlined that even though they used linear elastic material properties, the joint 
behaviour is nonlinear due to the changing contact stresses at various load levels and 
deformation states. Rahman et al. (1991) stated that using plastic material properties in 
compression, the contact stresses were reduced by 20% which may well affect the failure 
mode beneath the fastener. However, to predict damage and failure, only linear elastic 
material properties were considered. Due to computational limitations, it was not possible 
to consider 3D stress states. 

Another approach is to use a piecewise incremental method to describe nonlinear material 
behaviour instead of plasticity laws. Patton-Mallory et al. (1997) developed a 3D model 
of a single fastener joint loaded parallel-to-grain where the plastic behaviour in 
compression was approximated with a trilinear curve with lower stiffness values for 
increasing compressive strains. Also trilinear shear stiffness degradation was 
implemented in order to model the softening due to local fractures resulting from brittle 
shear failures. Tension perpendicular-to-grain was assumed to be linear because it was 
impossible to implement brittle nonlinear behaviour in the numerical programme. The 
bolt was modelled as elastic-perfectly plastic. Interaction of stresses was not considered. 
Patton-Mallory stated that the model is valid up to a joint displacement below 1 mm 
which only represents the initial stage of the load-slip curve. This is probably due to 
convergence problems. Further 3D models were developed by Cofer et al. (1999) and 
Moses and Prion (2003). Cofer et al. (1999) further developed the model by Patton-
Mallory et al. (1997) by adding a continuum damage mechanics approach to describe 
brittle failure in tension. Another 3D model was proposed by Moses and Prion (2003). 
They used the Hill criterion to simulate joint performance using bilinear stress-strain 
curves. A subroutine was written to include the size effect to account for brittle behaviour. 
The maximum stress criterion was used as a failure surface for the brittle cases which 
means that the three tension and the three shear stresses were independently compared 
against maximum strength values. The simulation did not model the complete ductile 
behaviour of the tested joints up to failure, but stopped at about 2-3 mm of displacement. 

Dias (2005) developed a 3D Finite Element model to simulate embedment tests using the 
Hill criterion to define plasticity of timber. His outcomes could trace the load-slip 
behaviour of the tested specimens of spruce, chestnut and maritime pine up to failure by 
modelling the stiffness, maximum load as well as the maximum slip correctly. Especially 
the ability of simulating joint behaviour also at higher displacement stages is a 
fundamental step in joint modelling. In view of the problem of availability of mechanical 
input parameters, Dias et al. (2010) further developed the 3D model. They developed a 
practical approach to transfer test data into material input parameters for numerical 



Chapter 3 Modelling techniques 

 57

models. Dias used Hill’s theory whose anisotropic parameters are all calculated as ratios 
between uniaxial yield stresses and equivalent tensile yield stress of an isotropic material. 
Therefore, apart from elastic properties and possible strain hardening parameters, three 
parameters are sufficient to sufficiently define the plastic behaviour of wood as a 
transverse isotropic material: the equivalent yield stress and two ratios to define the 
perpendicular normal stresses and the shear stresses. Dias derived an equation to 
determine the equivalent stress 0 as a function of the embedment strength. Through a 
comparative study with embedment test results, Dias calibrated also the transverse 
isotropic yield stress ratios. He used a trilinear law to model isotropic strain hardening 
with a low initial equivalent yield stress (16% of 0). Further comparisons of 
experimental results with models confirmed the validity of his approach. The model’s 
major advantage is that its material input can be based on a huge database of embedment 
test results.  

Many other joint models exist that combine linear elastic material properties with 
sophisticated contact modelling. Bickerdicke and Quenneville (2006) give a recent 
example where the load transmission from bolt to wood is achieved with calibrated 
nonlinear springs. Their approach is a variation of beam on foundation models which are 
genuine phenomenological models. Beam on foundation models are extensively used for 
modelling due to their simplicity and valid outcomes (Foschi, 1974, Sawata and 
Yasumura, 2003). The models are close to the actual global system behaviour, but due to 
their simplified structure it is never possible to consider all variables that are influencing 
the wood behaviour. 

As a conclusion, the statement from section 3.1 can be repeated - the problems related to 
reliable numerical modelling of timber joints are presumably due to problems related to 
correct modelling of the material wood as the mechanical behaviour of steel and, to a 
certain grade, friction effects are better represented in actual joint models. 

3.7 CONCLUSIONS 

Modelling wood is a challenging task. An anisotropic, inhomogeneous material, different 
failure modes for different loadings, large variability and scale dependency to name some 
of the properties that turn wood into a difficult material to describe with mathematical 
models. Many numerical approaches exist that describe various aspects of wood 
behaviour, models focussing on ductile behaviour or others describing splitting. Table 3-1 
shows some possible examples and chosen approaches to solve structural problems. 
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Table 3-1: Examples for different modelling approaches 

Problem type Ductile problems Brittle problems Mixed problems

Example
support - local 

compression perpendicular-
to-grain

tension members
connections loaded         

parallel-to-grain

Possible 
approaches

continuum mechanics with 
classical plasticity

continuum mechanics       
with                    

fracture mechanics

continuum mechanics with 
plasticity and interface 

elements

Possible failure 
criteria

Hill
Wu's criterion for          

mixed mode failure

1. Hill criterion for plasticity  
2. Max. tension strength 

before separation

Other 
possibilities

 -
lattice model or           

damage mechanics

continuum mechanics with 
plasticity  and             

no modelling of splitting  
 

The situation is even more complex if timber joints are modelled. Then additional effects 
from the fasteners and necessary contact modelling complicate matters. The main 
problem however remains the same. Firstly, a valid and reliable material model must be 
available to simulate the mechanical behaviour. To the author’s knowledge, there is no 
single approach able to simulate the complete mechanical behaviour of timber joints, 
including ductile and brittle behaviour and correct stiffness, load carrying capacity and 
ultimate displacement predictions. 

As hence the development of a constitutive model is the main focus of this thesis and as 
other researchers should be able to use and further develop this work, the first decision 
was to use a commercial FE package. Thereby, necessary modelling tools such as 
element definition, contact algorithms or solution methods are already implemented. The 
following list gives some more points that were considered when deciding on how to 
approach the task of developing a constitutive model: 

1. Comprehensibility of approach 

2. Transparency of input values 

3. Robustness 

4. Visualisation of results 

5. Speed 

6. Usability for others 

7. Least programming needs 

 

Focussing on the need to develop reliable numerical models to predict the mechanical 
behaviour of timber joints, the most important arguments of the main discussed 
approaches in this chapter are briefly presented in the following. This should help to 
motivate a choice for an approach with which a novel constitutive material model for 
wood is developed. 
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Classical continuum mechanics 

advantage disadvantage 

Extensive FE packages available Averaged results 

Integral approach No localised failures 

Widely used tools Multisurface plasticity implemented – no innovative 
character 

Simple implementation of constitutive models Softening difficult – convergence problems 

 

Fracture mechanics 

advantage disadvantage 

Combination with plasticity within FE code 
possible  

Only for brittle failures 

Good modelling of brittle failures Complex formulations – high computational costs 

 

Hybrid approaches 

advantage disadvantage 

Descriptive and simple models No innovative character of work 

Interface elements available for brittle failures Limited by FE formulation (e.g. cohesive elements 
only with exponential laws) 

Use of standard FE packages No stress interactions  

 

Lattice models 

advantage disadvantage 

Discrete model - wood at meso-scale Beam parameters difficult to determine 

Descriptive structural model (wood fibres) Up to now, ideally brittle only 

Densification possible High computational cost 

Beam lattice models available that include 
bending and shear 

No simple software package available 

Property scatter easily implementable Only material models, no system models (such as 
joints) that include contact formulations 

 

Sequentially linear analysis (SLA) 

advantage disadvantage 

No convergence problems when softening New solution algorithm, no Newton-Raphson 

Straightforward approach and implementation 2D, new method with no added functions 

 Not implemented yet in standard packages 
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Continuum damage mechanics (CDM) 

advantage disadvantage 

Implementable in standard FE packages No permanent deformations 

Few material parameters needed Mesh dependent 

Material model easily implementable Convergence problems when used in implicit code 

 

 

Out of the many available methods to define constitutive models, continuum damage 
mechanics were chosen as this approach is mathematically simple and the combination of 
ductile and brittle failure modes is possible. The innovative character for wood research 
is seen to be high. Also the possibility to visualise different failure modes seems to be 
promising. Furthermore, a material model based on continuum damage mechanics can be 
implemented as a subroutine in existing FE programmes. 
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4  
DEVELOPMENT OF MATERIAL MODEL 

Applying the principles of continuum damage mechanics (CDM), a 3D material model 
is developed. CDM is a simple straightforward approach that can model ductility and 

softening. Failure modes can be identified and the deformation behaviour can be 
described. The material model should be able to describe not only the load carrying 
capacity but also the deformation behaviour and failure modes of timber joints. The 
developed model is thoroughly explained, the subroutine and further programming 

issues are evaluated. Furthermore, model verifications are carried out. 

4.1 INTRODUCTION 

The purpose of this thesis is to develop a material model that is able to simulate the 
mechanical behaviour of wood. The material model should be suitable also for joint 
models. Furthermore, not only the load carrying capacity of the modelled joints should be 
satisfactorily predicted, but also the failure modes and deformation behaviour after the 
elastic regime. 

A promising approach is the methodology of continuum damage mechanics (CDM) 
which is a widespread method used in fibre-reinforced composites (e.g. Matzenmiller et 
al., 1995, Maimí, 2006, Lopes, 2009). It is computationally simple as it manipulates the 
stiffness matrix in order to account for nonlinear behaviour, thus being a nonlinear elastic 
approach. It can be implemented in commercial FE packages by programming a material 
user subroutine that defines the constitutive relations. All other needed FE tools (such as 
element definition, contact algorithms and solution procedures) are already implemented 
and can be used for modelling purposes. This reduces the programming work to the 
constitutive material model. No complete FE programme needs to be developed.  

This chapter introduces the material model. Failure modes and corresponding failure 
criteria are defined followed by some fundamentals of continuum damage mechanics. 
Subsequently, the damage evolution laws are discussed. Lastly, the model is verified. The 
source code of the material model is given in Sandhaas (2011). 



Chapter 4 Development of material model 

 62

4.2 DEFINITIONS 

Material orientations and other conventions must be clearly defined before introducing 
the material model. Figure 4-1 shows the definition of the material directions and stress 
components. The direction ‘X, L, 1’ for instance can be found back in the index notation 
of the stresses in Equation (4-1). Strains are analogously defined. Therefore, e.g. normal 
stresses parallel-to-grain are expressed as stress components 11 and shear stresses in the 
LT-plane are expressed as stress components 13. The definition and order of the stress 
array as defined in Equation (4-1) is consistently used throughout the thesis and is the 
same as used in the finite element package ABAQUS®. 

 

Longitudinal
X, L, 1

Tangential
Z, T, 3

Radial
Y, R, 2

σ11 σ21σ12

σ13

σ33

σ31 σ32

σ23

σ22

     

Longitudinal
X, L, 1

Tangential
Z, T, 3

Radial
Y, R, 2  

Figure 4-1: Definition of stress components and material directions 

 

   11 22 33 12 13 23

T T

L R T LR LT RT             σ  

                0 90 90

T

R T vR vT roll       
(4-1) 

 

Stresses, e.g. normal stresses parallel-to-grain 11, can be positive or negative. By means 
of the Macaulay operator given in Equation (4-2), short notation is possible if a 
distinction between tension and compression is necessary. The Macaulay operator is very 
useful to define damage variables as will be seen in the next section. 

( )
:

2

a a
a


  (4-2) 

 

Lastly, stresses, failure modes or damage variables must be identified which is done by 
means of the placeholder M used as index (similarly used in Equation (4-1)): 

 ,0 ,0 ,90 ,90 ,90 ,90M t c t R c R t T c T vR vT roll (4-3) 

Where first index: t = tension, c = compression, v = longitudinal shear, roll = rolling shear; 
       second index: 0 = parallel-to-grain, 90 = perpendicular-to-grain; 
           third index: R = radial direction, T = tangential direction. 
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4.3 DAMAGE AND FAILURE OF WOOD 

A constitutive damage model suitable for wood cannot be of isotropic nature. It must be, 
in its simplest version, a transverse isotropic model as discussed previously. Transverse 
isotropy has five independent constants. From a mathematical point of view however, 
five independent constants are not sufficient to model an orthotropic material such as 
wood. In transverse isotropy, the shear modulus G23 (= rolling shear modulus) is not an 
independent constant, but it is a function of the perpendicular Young’s modulus E22 and 
the Poisson’s ratio 23. For wood, this is a wrong assumption which leads to a highly 
wrong shear modulus G23.  

Therefore, an orthotropic material model with nine independent constants was chosen. 
The single components Dijkl of the stiffness matrix (through its inverse Cijkl) are changed 
according to the degree of damage. The first question when deciding for an orthotropic 
damage model is thus which damage should be modelled and how many failure modes 
and damage parameters are needed. The effect of these parameters on the compliance 
matrix is defined afterwards. 

4.3.1 Failure mode model 

Accordingly to the discussions in chapter 2, the mechanical behaviour of wood can be 
categorised in the following failure modes I – VIII (FM I – VIII): 

 FM I: Tension parallel-to-grain 

Failure in tension parallel-to-grain is a brittle failure mode of wood which is 
caused by tensile stresses 11 parallel-to-grain. It is assumed that other stress 
components do not influence the tension strength parallel-to-grain. Damage in 
tension parallel-to-grain is supposed to have no effect on other material properties. 
Also in the case of subsequent loading in compression parallel-to-grain, the 
tension cracks close and a compression force parallel-to-grain can be transmitted 
with the virgin elastic stiffness E11. In other words, reduced tension strength does 
not lead to reduced compression strength. 

 FM II: Compression parallel-to-grain 

Failure in compression parallel-to-grain is a ductile failure mode of wood which is 
caused by compression stresses 11 parallel-to-grain. It is assumed that other 
stress components do not influence the compression strength parallel-to-grain. 
Damage in compression parallel-to-grain is supposed to have no effect on other 
material properties. However, once a wooden piece has been loaded in 
compression parallel-to-grain up to damage through buckling of fibres, it could be 
supposed that the elastic tension stiffness parallel-to-grain as well as the tension 
strength have been degraded due to compression damage. Therefore, stiffness E11 
in tension parallel-to-grain could be dependent on the damage history in 
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compression parallel-to-grain. Due to not enough experimental evidence, this was 
not implemented7. 

The transverse tension modes and shear modes have to be combined as for instance 
splitting parallel to the LR-plane can be caused by tension perpendicular-to-grain (mode 
I), shear (mode II) or a combination of both (mixed mode). It is not possible to define 
separate failure modes for each stress component as degradation of one component also 
leads to degradation of the other components. This means that damage due to longitudinal 
shear also leads to damage in tension perpendicular-to-grain even though the actual 
normal tension stress component perpendicular-to-grain may still be lower than the 
transverse tension strength. 

The transverse compression modes are more complex. A valid assumption for 
compression failure perpendicular-to-grain is to consider only normal compressive stress 
contributions without contributions of shear stresses. Considering ongoing discussions 
about the influence of transverse compression on shear strength (section 2.3.2), rather an 
increase in shear strength under increasing transverse compression may be observed. 
Therefore, an assumption of no interaction between transverse compression and shear 
may be on the conservative side. Considering the fibrous nature of wood, damage in 
shear should still allow wood to take load in compression via contact of the cell walls. 
However, shear failures can occur also under compressive stresses perpendicular-to-grain, 
i.e. if the compression load is applied under an angle to the grain creating thus high shear 
stress components. Therefore, for transverse compression, two failure modes can be 
identified. Firstly, ductile failure in compression that does not lead to shear damage and 
secondly, brittle failure due to high shear stresse components. 

 FM III: Tension perpendicular-to-grain, tangential splitting (in LT-plane) 

Failure in tension perpendicular-to-grain with splitting in LT-plane is a brittle 
failure mode of wood which is caused by tensile stresses 22 in the radial direction, 
longitudinal shear stresses 12 in the LT-plane and rolling shear stresses 23. Once 
FM III is activated, all three contributing stiffness components E22, G12 and G23 
must degrade although not all uniaxial strengths may be reached. For instance, 
FM III may be activated through longitudinal shear stresses that are higher than 
the shear strength. The positive stress component 22 may still be lower than the 
value for tensile strength. However, also damage in tension perpendicular-to-grain 
must develop in this case. 

 FM IV and FM V: Compression perpendicular-to-grain, radial direction 

Two failure modes ‘FM IV: pure transverse compression’ and ‘FM V: shear’, 
both occurring under compression perpendicular-to-grain, can be distinguished. 
Failure in compression perpendicular-to-grain is a ductile failure mode of wood 
which is caused only by compression stresses 22 in radial direction. Brittle shear 

                                                 
7 How this supposed effect could be implemented is shown in Equation (4-33). 
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failure can also occur if for instance the compression load is applied with an angle 
to the grain creating high shear stress components. 

 FM VI: Tension perpendicular-to-grain, radial splitting (in LR-plane) 

Failure in tension perpendicular-to-grain with splitting in LR-plane is a brittle 
failure mode of wood which is caused by tensile stresses 33 in the tangential 
direction, longitudinal shear stresses 13 in the LR-plane and rolling shear stresses 
23. Furthermore the same observations as for FM III are valid. 

 FM VII and FM VIII: Compression perpendicular-to-grain, tangential direction 

FM VII / FM VIII are analogous to FM IV / FM V.  

 

After having identified the failure modes, the damage variables must be defined. 
Therefore, the next question to be answered is about the type of damage that should be 
modelled and the number of damage variables.  

What type of damage? 

The main conclusion from chapter 2 is that wood is ductile in compression parallel and 
perpendicular to the grain and quasi-brittle in tension and shear. Therefore, two 
distinctive mechanical behaviours must be modelled: 

 nonlinear ductile behaviour in compression parallel and perpendicular to the grain; 

 nonlinear brittle softening behaviour in tension and shear where the shear is 
independent of the sign. 

How many damage parameters? 

A logical consequence from the above conclusions is to define nine damage parameters: 

1. dt,0 = damage in tension parallel-to-grain; 

2. dc,0 = damage in compression parallel-to-grain; 

3. dt,90R = damage in tension perpendicular-to-grain, radial direction (LT-plane); 

4. dc,90R = damage in compression perpendicular-to-grain, radial direction; 

5. dt,90T = damage in tension perpendicular-to-grain, tangential direction (LR-plane); 

6. dc,90T = damage in compression perpendicular-to-grain, tangential direction; 

7. dvR = damage in longitudinal shear, LT-plane; 

8. dvT = damage in longitudinal shear, LR-plane; 

9. droll = damage in rolling shear, RT-plane. 

 

The first two damage variables dt,0 and dc,0 are activated by the same normal stress 
component, 11 parallel-to-grain. However, the damage variables differ depending on the 
sign of the stress component. In damage mechanics, a distinction in tension (index ‘t’) 
and compression (index ‘c’) can easily be made as shown in Equation (4-4) using the 
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Macaulay operator of Equation (4-2). The two damage variables for a normal stress 
component can be combined. Damage variables dt,0 and dc,0 can thus be expressed as 
damage variable d0. 

11 11
0 ,0 ,0

11 11
t cd d d

 
 


   

22 22
90 ,90 ,90

22 22
R t R c Rd d d

 
 


   

33 33
90 ,90 ,90

33 33
T t T c Td d d

 
 


   

(4-4) 

 

4.3.2 Failure criteria 

Wood is usually considered a transverse isotropic material (FM III = FM VI; FM IV = 
FM VII; FM V = FM VIII) which would reduce the number of failure modes to four. 
However, mathematically wood cannot be considered as a transverse isotropic material as 
discussed above. Apart from a wrong rolling shear modulus, the description of wood as a 
transverse isotropic material would presumably lead to wrong locations of the failure 
planes. In transverse isotropy, assumptions (i. e. rolling shear deformation 23 = 0) must 
be taken to identify the failure plane for failures perpendicular-to-grain. This failure plane 
may thus be lying somewhere in the perpendicular planes, rotating around the 
longitudinal axis which is not realistic for wood with its clearly defined failure planes.  

In section 3.3.1, different classical failure criteria are discussed and the advantages and 
disadvantages of different criteria were assessed. It was shown that based on 
experimental evidence, the use of sophisticated criteria cannot be motivated. Therefore, 
within the scope of this thesis, the simplest approaches are chosen to show the potential 
of the CDM approach. Van der Meer (2010) further motivates the choice of simple 
criteria as he argued that the “difference between available formulations is small as far as 
failure initiation is concerned.” A minimum number of eight failure modes is established. 
For parallel failures, no interactions are assumed and maximum stress criteria are chosen. 
For the perpendicular cases however, a case distinction is made. Purely elliptic criteria 
are chosen for the tensile modes considering normal and shear stresses. Under transverse 
compression, a maximum stress criterion for the normal stress component is defined and 
a quadratic criterion for the combination of shear stress components. In Equations (4-5) 
to (4-12), the failure criteria FM I to VIII are shown (the respective damage variables that 
are triggered by the failure criteria are given in parenthesis). 
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FM I – if 1 ≥ 0 (damage variable dt,0): 

11
,0

,0

( ) 1t
t

F
f

    (4-5) 

 

FM II – if 1 < 0 (damage variable dc,0): 

11
,0

,0

( ) 1c
c

F
f

 
   (4-6) 

 

FM III – if  ≥ 0 (damage variables dt,90R, dvR and droll): 

22 2
2322 12

,90 2 2 2
,90

( ) 1t R
t v roll

F
f f f

       (4-7) 

 

FM IV – if  < 0 (damage variable dc,90R): 

22
,90

,90

( ) 1c R
c

F
f

 
   (4-8) 

 

FM V – if  < 0 (damage variables dvR and droll): 

22
2312

2 2
( ) 1vR

v roll

F
f f

     (4-9) 

 

FM VI – if  ≥ 0 (damage variables dt,90T, dvT and droll): 

2 2 2
33 13 23
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,90

( ) 1t T
t v roll

F
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FM VII – if  < 0 (damage variable dc,90T): 

33
,90

,90

( ) 1c T
c

F
f

 
   (4-11)

 

FM VIII – if  < 0 (damage variables dvT and droll): 

2 2
13 23
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( ) 1vT
v roll

F
f f

      (4-12)
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Shear failure is considered in the failure modes for normal stresses perpendicular-to-grain. 
However, separate shear damage variables, based on shear strength and mode II fracture 
energy, are formulated. Therefore, no equivalent perpendicular damage is formulated, but 
the shear damage variables develop according to their fracture energies.  

Figure 4-2 shows FM I to IV with typical values for the wood species spruce for a plane 
stress case. The quadratic form of FM III nearly vanishes due to the low tension strength 
perpendicular-to-grain. 

 

 
Figure 4-2: Graphical representation of failure modes FM I, II, III, IV, plane stress 

 

4.3.3 Remarks on failure criteria 

No single-surface failure criterion is chosen due to the inability of such a criterion to 
identify failure modes as discussed in section 3.3.1. Instead, separate criteria per failure 
mode according to Hashin (1980) are used which are defined per quadrant of the stress 
space. This requires a more complex programming as case distinctions must be defined.  

Other, especially transverse, failure criteria used within the framework of continuum 
damage mechanics are for instance given in Maimí (2006) where the LaCR04 criterion 
(Pinho et al., 2005) was used. The LaCR04 criterion focusses on the effect of transverse 
compression on the shear strength. Many other criteria used in composite mechanics are 
dealing with a possible hardening of the shear stresses under increasing compression 
stresses perpendicular-to-grain. The literature (e.g. Juhasz, 2003) gives more examples 
for the interested reader. The Hashin criteria (Hashin, 1980) based on stress invariants 
instead can be considered as classical criteria for this type of material model approach.  

Another remark is on the physical meaning of separated failure criteria and subsequent 
separation of damage parameters. The volume is not considered being constant contrarily 
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to the von Mises or Hill models as the derivation of the failure criteria is not based on the 
second deviatoric invariant of the stress tensor. 

4.4 METHODOLOGY 

4.4.1 Thermodynamic framework 

Following Allix et al. (2003) and Maimí (2006), neglecting differences in temperature 
and moisture content and assuming a constant density, a possible function  for the strain 
energy density is as follows: 

     
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3311 22
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  
  
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(4-13)

 

 

From the above shown function  for the strain energy density per unit volume, the strain 
tensor can be calculated through partial differentiation: 
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 (4-15)

 

The compliance tensor C is known from Hooke’s law and describes the linear elastic 
relationship between strains  and stresses . (see also Equation (4-20)) 
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Subsequently, the thermodynamic forces (= release rates of damage energy) can be 
calculated as: 
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(4-16)

 

The dissipation rate follows from the thermodynamic forces: 

0 0 90 /90 90 /90 / /R T R T vR vT vR vT roll rollY d Y d Y d Y d         (4-17)

 

The thermodynamic forces are always positive as can be seen in Equation (4-16). 
Therefore, the dissipation rate  is positive if the evolution of the damage variables is 
always positive: 

0d   (4-18)

 

The positiveness of the energy dissipation rate is a fundamental requirement of 
continuum mechanics models in order to avoid spurious energy dissipation that leads to 
wrong results.  

4.4.2 Continuum damage mechanics (CDM) 

In section 3.4.2, the basics of CDM were shortly presented to introduce the concept. Here, 
the fundamentals will again be explained based on a damaged compliance matrix and not 
on a damaged stiffness matrix as done in section 3.4.2. 

CDM describes nonlinear material behaviour, especially softening behaviour, as caused 
by voids, defects or microcracks which reduce the area or volume of the material that can 
transmit forces. The effective stress ef is the stress acting on the non-damaged material. 
A simple relationship between effective stresses ef and nominal stresses  is shown in 
Equation (4-19) with M being the damage operator which is composed by nine damage 
parameters dM (with index M of Equation (4-3)). As defined in Equation (4-4), the 
distinction in tension and compression is made by the Macaulay operator. Therefore, 
entries d0, d90R and d90T define two damage variables each. 
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(4-19)

 

The relationships of Equation (4-19) show a simple way to model nonlinear behaviour by 
manipulating the elastic stiffness in Hooke’s law. It is obvious that the introduction of 
orthotropic damage parameters dM ranging from 0 to 1 are able to straightforwardly 
reduce the elastic stresses in order to represent effective stresses acting on the remaining 
intact volume of the material.  

As the effective stress ef is the stress acting on the (remaining) undamaged material, it 
can also be formulated as shown in Equation (4-20) for a Hookean material with D el the 
elastic stiffness matrix. Or, in the inverse formulation with the elastic compliance matrix 
C el: 

ef elσ D ε    OR   el efε C σ  (4-20)
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Now, the damaged compliance matrix C for an orthotropic material can be modelled 
according to Equation (4-14) with the nominal stresses : 

damε C σ  (4-22)

with 
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(4-23)

 

Equation (4-22) can be reformulated for the damaged elastic compliance matrix C dam (see 
Matzenmiller et al. (1995)) which leads to the same tensor as given in Equation (4-23): 

el ef el dam  ε C σ C Mσ C σ  (4-24)

 

In finite element programmes, the inverse of the compliance matrix, the stiffness matrix 
D is needed in order to update the stresses: 

  1dam dam 
D C        damσ D ε  (4-25)

 

If the compliance matrix is positive definite and the damage variables d are less than 1, 
this inverse exists. 

However, when calculating the inverse of the damaged compliance matrix as given in 
Equation (4-23), non-diagonal, non-zero entries of the form ij(d) containing Poisson’s 
ratios and damage parameters will be obtained. The influence of the non-diagonal, non-
zero entries is discussed in the following section. 

4.4.3 Physical meaning of Poisson’s ratios 

The non-diagonal, non-zero entries of the inversed damaged compliance matrix contain 
Poisson’s ratios. By means of the Poisson’s ratios, the relationship between the normal 
stresses resp. strains is defined. Subsequently, these non-diagonal entries must also be 
adjusted taking damage into account: ij = ij(d). 

An example is given to clarify the need of adjusting also the non-diagonal components. 
Entry (1, 2) of the compliance matrix determines the contribution of 22 to the strain 11. 
On the other hand, its inverse correspondent, entry (1, 2) of the stiffness matrix, 
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determines the contribution of 22 to the stress 11. If for instance damage in entry (1, 1) 
in tension parallel-to-grain is considered, entry (1, 2) translates the effect of damage in 1-
direction on the properties in the 2-direction. If damage d0 approaches 1, stress and 
stiffness in 1-direction approach 0 and the Poisson effect on the 2- and 3-direction in 
entries (1, 2) and (1, 3) must disappear. Then the failure in tension parallel-to-grain does 
not affect the mechanical properties in the 2- and 3-direction. Physically this means that a 
wooden piece that has failed in tension parallel-to-grain still takes load in the 
perpendicular directions, may even be undamaged in the perpendicular directions. If the 
Poisson effect does not disappear, damage in 1-direction causes damage also in the 2-
direction. 

The same reasoning can be followed for the perpendicular directions. For instance, 
damage dt,90R in 2-direction with failure in tension perpendicular-to-grain does not 
degrade the mechanical properties parallel-to-grain. The analogy of a ‘loose bundle of 
fibres’ illustrates this. A wooden piece failed in tension perpendicular-to-grain (reduced 
to bundles of fibres) can still be loaded in tension parallel-to-grain. The damage effects in 
tension parallel and perpendicular to the grain are decoupled. 

However, there is no experimental evidence. Usually, specimens tested up to failure in 
tension perpendicular-to-grain are not retested under tension parallel-to-grain. 
Assumptions are taken on the influence of damage in one direction on the mechanical 
properties in the other directions. Also, nearly no research is known that investigates in 
the degradation of the Poisson’s ratios (except Figure 2-23). 

Furthermore, the whole discussion is more complex. Entry (1, 2) of the stiffness matrix as 
inverse of the compliance matrix for instance contains contributions of all three normal 
damage parameters d0, d90R and d90T. The following is valid: parameter d0 assesses the 
influence of damage parallel-to-grain on the properties perpendicular-to-grain. Parameter 
d90R determines the effect of damage perpendicular-to-grain on the properties parallel-to-
grain. To conclude, the combined effect of all these constituents on the perpendicular 
direction to the loading direction is rather undecipherable. Additionally, the symmetry of 
the constitutive tensor must be guaranteed also in the damaged state  
((1, 2) = (2, 1)). 

The shear damage parameters are automatically decoupled when calculating the inverse 
of the compliance matrix. Entry (4, 4) of the stiffness matrix contains only parameters 
G12 and dvR. However, as seen in section 4.2, damage in normal direction, i.e. transverse 
tension or compression, influences also the shear stiffness. 

All above discussed issues are especially important for wood. The large differences in 
mechanical properties parallel and perpendicular to the grain emphasise the influence of 
the Poisson’s ratios. If a wooden piece is loaded in its strong direction parallel-to-grain, 
any parallel damage will have a prominent effect on the weak directions perpendicular-
to-grain. 

As a conclusion to the discussion on the influence of the Poisson’s ratios onto stresses 
and strains, the normal damage parameters d0, d90R and d90T are considered to be 
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decoupled. A pragmatic solution is to choose low Poisson’s ratios in order to minimise 
their influence – the chosen Poisson’s ratios have the value of the damaged Poisson’s 
ratios already at the beginning of the modelling (Figure 4-3). A further improvement of 
the material model would be to insert a linear degradation of the Poisson’s ratios instead 
as shown in Figure 4-38. 

 

 
Figure 4-3: Degradation of Poisson’s ratios 

 

4.4.4 Damage parameters 

The nine damage parameters dM as defined in section 4.3.1 evolve once the damage 
within the material has initiated. Mathematically, the damage process is irreversible. This 
irreversibility is also one of the theoretical requirements within the framework of 
thermodynamics. It must be guaranteed that damage can only grow (Equation (4-18)): 

0Md   (4-18)

 

The condition of Equation (4-18) can be easily fulfilled by demanding that 

  0,
max 0, maxt incr

incr t
d d  (4-26)

which means that every damage parameter d is a solution dependent state variable that 
must be saved at every increment t. 

 

As mentioned, the range of the damage parameters is between zero and one as defined in 
Equation (4-27). If the parameters dM are equal to zero, no damage is present. During the 
damage process, the parameters dM increase until complete failure is reached. Complete 
failure is reached when the parameters dM have the value one. However, the damage 
parameters should never reach a value of one as then the stresses are equal to zero which 

                                                 
8  As a first approach, degradation of the Poisson’s ratios, i.e. of the form 

12 0 12(1 )dam d   , was 

implemented, but the degradation evolution coupled to the damage parameters is not strong enough to 
avoid a wrong Poisson effect. Therefore, it was decided to choose constantly low Poisson’s ratios. 
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may lead to numerical instabilities. Therefore, a threshold value very close to one is set as 
maximum value for dM 

9. 

0 1Md  (4-27)

 

4.4.5 Damage evolution functions 

If the failure criteria FM() > 1, the damage parameters start to grow. Two linear damage 
evolution laws are considered. One law is for elastic perfectly plastic behaviour, Figure 
4-4, and the second one for brittle behaviour, Figure 4-5. 

 

 
Figure 4-4: Stress-strain graph for  
elastic–perfectly plastic behaviour 

 
Figure 4-5: Stress-strain graph for  

softening behaviour 

 

In order to define the damage evolution functions, a history parameter or state variable 
 must be defined that keeps track of the loading history. Damage initiation functions  
(= failure criteria) trigger the onset of damage. A material is not damaged if Equation 
(4-28) holds. 

1MF  (4-28)

 

Equation (4-28) can be reformulated introducing a state variable . Speaking in terms 
of yield, the yield function  becomes a function of the yield surface FM and the state 
variable  ≥ 1: 

( , ) 0M M M MF F     (4-29)

 

 

 

 

 
                                                 
9 This threshold value is chosen to 0.9999995. 
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This principle is analogous to the flow theory of plasticity. The yield surface FM is the 
damage initiation function or failure criterion. As in classical plasticity and following 
Maimí (2006), the so-called Kuhn-Tucker conditions must hold: 

0M  ,   0M  ,   0M    (4-30)

 

In the elastic range, FM is smaller than 1 and therefore, as  ≥ 1, Equation (4-29) is 
negative, M < 0. When M = 0, the yield function is activated and the rate of the failure 
criterion 

MF  must be established in order to decide whether the response is unloading 

( 0MF  ), neutral ( 0MF  ) or loading ( 0MF  ). If indeed 
MF  is growing monotonically, 

the state variable M also grows and with it the damage parameter dM(). Therefore, the 
damage parameter dM depends on the state variable  as only then the correct damage 
evolution can develop once the failure criterion FM is exceeded. Analogously to damage, 
the state variable can only remain constant or grow (second Kuhn-Tucker condition).  

In the case of loading ( 0MF  ), the consistency criterion must be fulfilled which follows 

from the last Kuhn-Tucker condition: 

0M M MF      (4-31)

 

According to Maimí (2006), Equation (4-31) can be integrated explicitly leading to the 
following final requirements for the state variable M : 

M MF  :     0,
max 1, maxt incr

incr t
κ F  (4-32)

 

A possible further definition could be following Equation (4-33) which was not 
implemented at the current state of research as there is not enough experimental evidence. 
Equation (4-33) means that damage in compression parallel-to-grain causes damage in 
tension parallel-to-grain. This could be a correct physical assumption for wood as one 
could state that buckling of fibres under compression parallel-to-grain leads to a lower 
tension strength parallel-to-grain.  

Tension parallel-to-grain:       ,0 ,0 ,0
0, 0,

max 1, max , maxt incr incr
t t c

incr t incr t
F F

 
  (4-33)
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Finally, to sum up the mathematical requirements discussed above: 

 State variable   keeps track of the loading history; 

  = FM, but is always bigger than 1 which means that as long as FM is smaller 
than 1, the material is elastic; 

 Once FM ≥ 1, damage starts and as long as the material is loaded, FM and 
subsequently grows. At unloading, the last maximum state of   at increment 
t-1 is saved and further loading continues at this saved level of ; 

 As long as   grows, the damage parameter dM() grows. 

The damage parameter d cannot be a function of the strains . For instance, once FM III 
(= Ft,90R, splitting parallel to LT-plane) is activated due to high longitudinal shear stresses, 
the stiffnesses of all other contributing stress components (22 and 23) must degrade as 
well although the resp. uniaxial stresses 22 and 23 may still be below the uniaxial 
strengths ft,90 and froll. In such a case, a dependency of the damage parameters dt,90R and 
droll on the strains 22 and 23 may not trigger the evolution of damage in these secondary 
directions. A dependency on the history parameters t,90R and roll will enforce the 
evolution of the damage parameters dt,90R and droll instead. 

The physical reason behind the enforcing of damage although the uniaxial strengths may 
not be exceeded is obvious: once a wooden piece has failed in shear parallel to the LT-
plane, it will not be able to take any loads in tension perpendicular to the LT-plane. Of 
course another assumption is implicitly made by enforcing damage as described above if 
no separate damage evolution functions are defined. It is assumed that the mechanical 
behaviour under pure tension perpendicular-to-grain is the same as when failure in 
tension perpendicular-to-grain is only a secondary effect of failure in longitudinal shear. 
In other words, if wood fails in longitudinal shear, the degradation of the strength in 
tension perpendicular-to-grain is caused by shear failure but develops in the same way if 
it would be caused by tension stresses perpendicular-to-grain. 

A last remark is done on another possibility to define the damage parameters. The above 
explained methodology models a continuous degradation whereas also constant 
degradation could be modelled (Feih and Shercliff, 2005a). In this second approach, 
constant damage factors are defined that are not dependent on the strains (or equivalent 
strain for isotropic damage). These factors fully describe the stiffness degradation of the 
material in every direction. They are applied as soon as damage starts to develop. This 
approach needs less solution dependent state variables as for instance the history 
parameter  does not need to be saved at every increment. However, a continuous 
damage approach was favoured as this approach is physically more meaningful than one 
single constant factor for each component of the stiffness tensor. For instance, the 
damage rate can depend on the fracture energy and evolve accordingly whereas this is not 
possible with constant factors. 

Within the scope of this thesis, the simplest approaches, i.e. linear damage evolution 
functions, have been chosen. In literature, many more complex damage evolution laws 
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can be found (e.g. Maimí, 2006, Federal Highway Administration, 2007). The linear laws 
shown in Figure 4-4 and Figure 4-5 are expressed as mathematical equations in terms of 
the state variables . The derivation of the damage functions is given in Appendix C. 

The boundary conditions of the equations are known: 

( 1) 0Md   

( ) 1Md     

Brittle behaviour: ( ) 1M fd A du G      

(4-34)

 

Equation (4-35) shows the linear damage evolution function for the brittle case (Figure 
4-5). 
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g E
d f

f g E



 

     
 (4-35)

 

Equation (4-35) includes the characteristic fracture energies gf of the different modes 
related to the characteristic element size (Equation (4-41)). For instance, for the damage 
parameters dt,90R and dt,90T, the characteristic fracture energy perpendicular-to-grain 
(mode I) gf,90 is used. By replacing gf with Gf, the crack band model used to alleviate 
mesh dependency (section 4.4.7) can be deactivated. (see also Sandhaas, 2011) 

 

Equation (4-36) shows the law for the elastic perfectly plastic case (Figure 4-4). 

1
( ) 1M

M

d 


   (4-36)
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Shear damage parameters dvR/T and droll 

Shear damage variables can be triggered by different failure criteria and must be 
superposed. For instance, rolling shear damage droll may be caused by splitting in the LT-
plane (FM III) and compression in tangential direction (FM VIII). Both components to 
the rolling shear damage must be added according to Equation (4-37): 

, ,1 1 1roll roll FMIII roll FMVIIId d d           (4-37)

 

For the longitudinal shear parameters, the development is analogous. If for instance radial 
shear damage dvR developed due to a tension component 22 perpendicular-to-grain    
(FM III), subsequent loading in transverse compression 22 (FM V) may again trigger 
radial shear damage dvR where the damage variable must have memorised the previous 
damage due to ttransverse tension: 

, ,1 1 1vR vR FMIII vR FMVd d d           (4-38)

 

Further possibilities could be to couple degradation of the shear stiffness with damage 
parallel-to-grain as shown in Equation (4-39). It could be assumed that the shear stiffness 
decreases proportionally to the stiffness parallel-to-grain as the shear stiffness depends on 
the damage in parallel and in perpendicular direction. If the material is damaged only in 
tension parallel-to-grain, the shear damage parameter dv could be equal to the tension 
damage parameter parallel-to-grain dt,0. If instead the material is damaged in tension 
perpendicular-to-grain, the additional shear damage parameter d* could be calculated 
according to Equation (4-35). 

*
,01 1 1v td d d          (4-39)

with 

 * *
,90t R vRd d d            resp.            * *

,90t T vTd d d   (4-40)

 

This coupling of shear damage to damage parallel-to-grain is not activated in the current 
subroutine as it leads to fast degradation of elements which is not physically admissible. 

 

The flow diagram in Figure 4-6 summarises the approach and shows the flow of a 
material subroutine that can be implemented in commercial FE codes. 

The other parameter apart from the stresses that must be updated in the subroutine is the 
secant stiffness matrix (see section 4.4.10). 
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Figure 4-6: Flow diagram of damage model 

 

 

4.4.6 Other computational issues 

This short section summarises some computational issues which were not mentioned yet. 

Load Application 

All load is applied in displacement-control. 

Nonlinear Geometry Option 

Both small displacement and large displacement theory can be used. Large displacement 
theory takes nonlinearities deriving from large deformations into account. If not indicated 
otherwise, the large-displacement option is enabled. 

Material Orientation 

Local material orientations must always be defined in order to assign the directions of the 
wood, resp. parallel and perpendicular to the grain. The numbering system is established 
as shown in Figure 4-1. 
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Mesh Dependency (section 4.4.7) 

If not indicated otherwise, for verification and material models, the crack band option is 
activated to avoid a dependence on the finite element discretisation. However, all 
embedment and joint models are run without the crack band model. Further information 
is given in the subroutine verification section and chapter 5. 

Solution Algorithm 

The implicit full Newton-Raphson algorithm was selected. As in this thesis a 
commercially available FE package was used, it was not possible to choose more 
innovative solution procedures such as dissipation-based arc-length methods (Van der 
Meer, 2010). 

4.4.7 Mesh dependency and viscous stabilisation 

A major problem of continuum damage mechanics as of any other continuum approach 
modelling softening behaviour is the strong mesh dependency of the results. The source 
of mesh dependency is of mathematical nature as with the onset of softening, the 
previously well-posed problem has turned into an ill-posed problem. In computations, 
this results in a stiffness matrix which is no longer positive definite. The mathematical 
solution is a localisation zone of zero width without energy dissipation. The numerical 
solution tries to capture this physically inadmissible mathematical solution which yields a 
localised zone of smallest possible width, i.e. a single element in most cases. 

In Figure 4-7, the numerical development of mesh dependency is explained by means of a 
one-dimensional example. As long as the material is elastic, the stress-strain relationship 
is unique and all elements, i.e. their integration points, follow the same stress-strain curve 
(dd0). However, any type of softening behaviour involves a maximum of the ()-
curve where the derivative, the gradient of () is zero: dd0. From this point on, the 
solution problem is mathematically ill-posed which may result in loss of uniqueness, 
more than one solution is possible. A bifurcation problem arises as shown schematically 
in Figure 4-7. The element solution can follow the stress-strain curve and increase the 
element’s strains with decreasing stresses whereas a second option is to decrease stresses 
as well as strains by following the secant stiffness back to origin. A special point is the 
maximum of the stress-strain curve. There, d0 which means that d can assume any 
value. 

The bifurcation problem is consistent for increased loading and thus a stress-strain curve 
that has entered the softening branch with negative stiffness: dd0. Integration points 
can choose between two options, i.e. increase strains and follow the ()–curve or unload 
elastically to the origin. Energetically, the solution will always try to dissipate the least 
amount of energy possible (by trying to follow the mathematical solution of zero width 
with no energy dissipation). This will lead to localisation as softening behaviour will be 
concentrated in few elements. Only those few elements will have increased strains 
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whereas all other elements choose the secant stiffness and unload or cannot even enter the 
descending branch. The global answer shows softening although most elements unload 
along the secant branch. 

Energy considerations explain this localisation effect. When unloading along the secant 
stiffness, only the energy between the secant stiffness and () is dissipated which 
corresponds to the material input value fracture energy Gf

10. The dissipated energy is 
indicated by the grey-shaded area in Figure 4-7. All energy below the secant stiffness 
remains available instead. The total work done by the elements is the complete area 
underneath the ()–curve where only the part of the elastic energy remains available.  

Therefore, localisation will occur as the dissipation will be concentrated in few elements 
due to energetical optimisation. Localisation is energetically the less costly option as less 
energy is dissipated when more elements unload instead of dissipating energy by 
following the ()–curve. Energy optimisation will be best if the energy dissipation 
concentration is possible in infinitely small elements as then the least energy will be 
dissipated. In other words, the smaller the elements, the closer the softening curve to the 
elastic secant unloading as ilustrated in Figure 4-8. Therefore, numerical results will 
depend on the mesh size. (see also Needleman, 1988, Gross and Seelig, 2011). 

Figure 4-7 illustrates also another issue connected with softening behaviour which is the 
unloading of all elements except the ones that follow the global load-slip curve. This may 
lead to problems with the load transfer of damage elements to neighbouring elements. 

 

 
Figure 4-7: Graphical representation of a bifurcation problem 

 

 
Figure 4-8: Influence of mesh size  on numerical results 

                                                 
10 Please note, the fracture energy Gf is a surface value. 
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Different algorithms have been developed in order to regularise models and to deliver 
mesh-independent results. One is shortly presented in the following. In literature, more 
regularisation techniques are available (e.g. Sluys, 1992). 

 

Crack band method 

Bažant and Oh’s crack band model (1983) used in literature was developed to alleviate 
mesh dependency. Basically, the fracture energy is expressed in terms of characteristic 
element length h where h is a geometrical value in [length] containing information on a 
characteristic element size. Generally, h is a typical length of a line across an element for 
a first-order element (see ABAQUS®). 

f
f

G
g

h
  (4-41)

 

The introduction of a characteristic fracture energy gf that is correlated to the element size 
provides the transformation of the fracture energy Gf into a ‘mesh-dependent’ value. For 
instance, in a coarse mesh, h will be large and leads hence to a small characteristic 
fracture energy gf in comparison to the large gf of a fine mesh with a small characteristic 
element length h. This adjustment of the fracture energy considering the mesh size 
compensates for the trend of continuum softening models to dissipate as less energy as 
possible. Fine meshes that dissipate less energy (Figure 4-8) will have a larger value for 
the fracture energy than coarse meshes. This larger fracture energy produces a less steep 
softening curve and therefore compensates for lesser energy dissipation of fine meshes. 

However, Bažant and Oh’s model only works when one failure mode is dominating and 
when a localised solution occurs. It is valid when damage develops only in a band of 
elements and not in all elements homogeneously. A crack band can be identified with the 
following: imagine a tension beam as shown in Figure 4-9 (here with ten 3D linear brick 
elements with full integration, section 1 x 1 mm, 10 mm long). If this beam model has the 
same material properties in every element and is loaded in pure tension, no localised 
damage will be observed. The damage will develop in all elements simultaneously. 

However, a crack band can develop if one of the elements of the tension model is 
weakened, for instance by choosing a slightly lower strength for a single element as 
shown in Figure 4-9. Then, the damage will localise in this element and will not 
propagate to the other neighbouring elements – the single weakened element is the 
weakest link in the chain (Figure 4-10). If such a type of structure is modelled, mesh 
dependency can be observed which will be shown after having introduced the method of 
viscous stabilisation. 
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Figure 4-9: Tension beam with weaker material 
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Figure 4-10: Localised damage component dt,0 at 

0.5 mm maximum deformation 

 

Viscous stabilisation 

Viscous stabilisation is used in order to improve the convergence characteristics of the 
developed material model (Duvaut and Lions, 1972, as cited in Maimí, 2006). A fictitious 
viscous parameter  is introduced in the model. The bifurcation problem as described in 
Figure 4-7 vanishes when introducing this parameter. Due to the additional viscous 
component, the stiffness matrix remains generally positive definite. Therefore, viscous 
stabilisation leads to a more robust solution process with less convergence problems. 
Indeed, other researchers (Maimí, 2006) used this method purely to stabilise the solution, 
but not to alleviate mesh dependency (crack band method was used instead). 

As viscosity is a time-dependent material parameter, viscous stabilisation must be a 
function of the rate of damage. The rate of the damage variable or of the damage 
threshold (= failure criteria) may be used. Equation (4-42) shows the stabilisation as a 
function of rate of damage variables: 

 Vd d
d




  (4-42)

 

In Equation (4-42), the viscous parameter  defines the rate at which the true damage d 
and the stabilised damage dV as defined in Equation (4-43) approach each other. Equation 
(4-42) can now be discretised in time. Equation (4-43) shows the discretised equation 
based on the backward Euler algorithm to insert an artificial viscosity  that is acting on 
the damage variables (Maimí, 2006). The fictitious viscosity acts on integration point 
level. It can be seen that if  = 0, the damage variable is the same as in Equation (4-26). 

1 1max 0, ,t t t t
V V V

dt
d d d d

dt dt


 

  
    

 (4-43)

damage dt,0 
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Similar to the crack band model, also viscous stabilisation introduces a characteristic 
element length. However, this length scale is not inserted explicitly as in the crack band 
model (characteristic element length h), but implicitly (Needleman, 1988, Sluys, 1992). 
Therefore, viscous stabilisation can be also used as a regularisation method. Here, the 
viscous formulation only leads to stabilisation, but the effect is too small to regularise the 
problem. 

 

On a simple tension beam model with different meshes (the model with ten elements is 
shown in Figure 4-9), a mesh dependency study is carried out. The same model of Figure 
4-9 has been run also with 80 and 640 elements, see Figure 4-11 (Material parameters 
spruce see Table 4-1). As in Figure 4-9, a lower tension strength parallel-to-grain  
(23 MPa instead of 24 MPa) was assigned to one slice of elements. The large 
displacement theory was used. The finite elements are linear 3D brick elements with full 
numerical integration (eight integration points). 
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Z
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Y

Z

default material

weaker material

 
                  a)                                                                                         b) 

Figure 4-11: Tension beam of Figure 4-9; a) 80 elements, b) 640 elements 

 

Figure 4-12 and Figure 4-13 show the results for the two techniques in terms of load-slip 
data (sum of reaction forces in X-direction versus displacement in X-direction). In Figure 
4-12a, no regularisation technique was used. Due to convergence problems, the models 
with 80 and 640 elements did not enter the softening branch, but stopped at maximum 
load. The same was valid for Figure 4-12b where only the crack band method was used. 
However, when activating viscous stabilisation with  = 0.0001, the numerical 
calculations could finish as shown in Figure 4-13. Only viscous stabilisation was used in 
Figure 4-13a where a strong mesh dependency can be observed. As shown qualitatively 
in Figure 4-8, the coarser mesh results in more ductile behaviour. The results confirm that 
here, viscous stabilisation is purely stabilising the numerical algorithm. It is ineffective 
for alleviation of mesh dependency.  

Finally, load-slip results activating both methods are given in Figure 4-13b. It can be seen 
that mesh dependency improves considerably although it does not vanish completely.  
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As a conclusion to the findings, Bažant and Oh’s crack band model (1983) is used to 
alleviate mesh dependency whereas viscous stabilisation is always activated in order to 
improve convergence. 
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Figure 4-12: Load-slip graph of tension beams with different mesh size, please note: the models 
with 80 and 640 elements did not enter the decending branch; 

a) no regularisation method, b) crack band model 
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Figure 4-13: Load-slip graph of tension beams with different mesh size;  
a) viscous stabilisation, b) both methods 

 

4.4.8 Energy calculations 

As viscous stabilisation is applied to improve convergence, the energy output must be 
checked in order to judge the model performance and reliability, i.e. to check that 
fictitious viscosity is not influencing modelling results. To this scope, the internal energy 
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parameters ALLSE (specific elastic strain energy) and ALLCD (creep dissipation11) are 
established. The two parameters are integrated at every increment – ALLSE as the total 
dissipated energy and ALLCD as the dissipated energy associated with viscous 
regularisation. Both parameters do not have any influence on the solution. They are 
merely used for energy output, checks and postprocessing. 

The total dissipated strain energy ALLSE is calculated according to Equation (4-44). As 
the FE programme uses engineering strains, the equation for the shear components is 
different. 

For normal stress components:           1
, ,

1

2
t t

ij ij V ij V ijd   ALLSE  

For shear stress components:           1
, ,

t t
ij ij V ij V ijd   ALLSE  

(4-44)

 

The dissipated energy due to viscous regularisation ALLCD should be small and is 
calculated according to Equation (4-45). 

For normal stress components:           1 1
, ,

1

2
t t t t

ij ij V ij V ij ij ijd        ALLCD  

For shear stress components:           1 1
, ,

t t t t
ij ij V ij V ij ij ijd        ALLCD  

(4-45)

 

4.4.9 Increment size dependency 

Increment size dependency as ilustrated in Figure 4-14 may occur when applying the 
described material model. The upper figure gives the displacement history of a single 
element model of 1 x 1 x 1 mm loaded firstly in compression and then in tension. The 
figures below show the modelling results for three different maximum increment sizes. 
Obviously, when loading in tension, a maximum increment size of 0.1 is too large leading 
to an overestimation of the tension strength. A maximum increment size of 0.01 instead 
leads to a wrong stiffness in the first part of the reloading as the chosen increment is too 
big. However, in the following increment, the correct stiffness is found. A maximum 
increment of 0.001 does not exhibit errors, but is more costly. To illustrate the time 
requirements between different increments: increment 0.1 needs 23 s to terminate the 
simulation, increment 0.01 81 s and increment 0.001 1421 s. The increment size must be 
chosen carefully in order to get a perfect combination of computational efficiency and 
accuracy. 

                                                 
11 ALLCD is defined as ‘creep energy’ in ABAQUS®. Here, it is re-defined and is used to control the 
influence of viscous regularisation on the amount of dissipated strain energy. The resp. parameter ‘creep 
energy’ can be analysed in the postprocessing. ALLCD is called SCD in UMAT; ALLSE is called SSE in 
UMAT. 
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Figure 4-14: Increment size dependency, calculation with fc,0 = 21MPa, ft,0 = 14MPa 

 

4.4.10 Tangential formulation 

Generally, the Jacobian J as defined in Equation (4-46) is used as tangential formulation. 
The Jacobian is easily implementable in strain-based formulations but not as 
straightforward in stress-based formulations (last partial differentiation is on strains). 

:
d

d

  
    

  
D D d κ

J D ε D D
ε d κ ε

  (4-46)

 

Here however, the secant stiffness is considered to assemble the global stiffness matrix: 

 dam dam
ijklinv C J D  (4-47)

 

This leads to a slower convergence rate. 
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4.5 MATERIAL PARAMETERS 

As discussed in chapter 2, it is difficult to obtain useable mechanical properties to 
completely describe the 3D material model for wood – in total 17 properties are needed 
as can be seen in Table 4-1. Before focusing on the issues concerning availability of 
material parameters, other conclusions from chapter 2 concerning computational 
implementation and significance are discussed. This is considered to be important in 
order to understand the difference between phenomenological test results and 
mathematical models.  

Stiffness and strength 

Stiffness and strength properties seem to be the most straightforward and easily 
established material parameters that are needed for constitutive modelling. However, it is, 
certainly for shear strength, difficult to carry out pure uniaxial tests without secondary 
stress components. Stress interactions may occur which are even more difficult to assess. 
At this stage of the material model, an increase of shear strength with increasing 
compression perpendicular-to-grain is not considered by the material model. Especially 
for wood in compression, it is difficult to establish a ‘yield’ strength as the stress-strain 
curve is already nonlinear at an early stage. Therefore, the proportional limit is difficult to 
determine. Furthermore, the question remains whether the strength properties have been 
assessed on small clear wood specimens or on large scale specimens taking a size-effect 
into account. As for mathematical efficiency, a typical problem for wood is that the 
parallel, perpendicular and shear strength values are different from each other. 

Poisson’s ratios 

In literature, there is a rather high scatter of Poisson’s ratios and they are usually 
measured on small clear specimens. The evolution of the Poisson’s ratios in the nonlinear 
regime is unknown (see section 2.4). Any further discussion of the Poisson’s ratios is 
excluded as the values for the Poisson’s ratios are fictitious (see section 4.4.3). 

Fracture energy 

Fracture energy is needed to create new crack surfaces and is difficult to determine. A 
prerequisite is stable crack growth in tests. If fracture energy is established as the area 
underneath a stress-strain curve, then it is a volume-related parameter instead of a 
surface-related parameter. Most tests that establish fracture energy are tests on small clear 
wood, influences from heterogeneity of the material are thus not considered. Furthermore, 
fracture energy is generally assumed to be constant whereas a valid hypothesis for 
heterogeneous materials would be a non-constant fracture energy. In areas with knots for 
instance, the energy needed to create new fracture planes will certainly be different to 
areas with no knots. Furthermore, the fracture energy will be different for different modes. 
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As stated above, material parameters are difficult to obtain and are subject to large scatter. 
For softwood, extensive literature exists (e.g. thorough discussions for spruce in Franke, 
2008, and Grosse, 2005). In fact, only for softwood, all 17 parameters can be determined, 
for instance based on information given in Franke (2008). It is considerably more 
difficult to obtain necessary mechanical properties for European and tropical hardwoods. 
Especially rolling shear properties and fracture energies are not available in literature. 
However, many more data for all wood species are available from four-point bending 
tests used for strength-grading and from embedment tests.  

In view of these problems, the approach by Dias et al. (2010) discussed in section 3.6 to 
transfer test data into material input parameters for numerical models is recalled here. 
Dias et al. used the Hill criterion. They derived an equation to determine the equivalent 
stress 0 as a function of the embedment strength and could hence derive all necessary 
post-elastic material parameters from one single value, the embedment strength, of which 
a large database is available. 

Similar investigations into the transfer of test results on structural timber into useable 
material properties for mathematical modelling hence seem to be necessary to obtain 
reliable material parameters. However, fracture energies needed to model softening will 
not be obtained with such a procedure.  

The arising question is if the developed material model is already too sophisticated 
considering the difficulties connected with the derivation of the necessary 17 material 
parameters. In the author’s opinion this is not the case. Wood shows huge differences in 
strength parameters, i.e. parallel and perpendicular to the grain, longitudinal and rolling 
shear. Furthermore, wood is ductile in compression and quasi-brittle in tension and shear. 
In order to model softening, a parameter quantifying the softening rate is needed. 
Therefore, the chosen 17 parameters of the orthogonal material model are the minimum 
number of parameters in order to describe the main features of wood. The 17 parameters 
are also well-defined mechanical parameters and no smeared values whose origins are not 
clear.  

Generally, standards as EN 338 (CEN, 2009) are sources for characteristic properties of 
stiffness and strength of structural-size timber. Information on rolling shear properties 
and fracture energies are not given in EN 338. A possibility is to derive mean properties 
from the characteristic properties given in EN 338 according to Equation (4-48) assuming 
a Gaussian normal distribution: 

   ln 0.54kf

kf e
 
  


  (4-48)

where  = mean value; fk = characteristic value 

 

The used species in this research were spruce, beech and azobé. The mean densities of the 
test specimens were mean = 445 kg/m3 for spruce, mean = 715 kg/m3 for beech and 
mean = 1120 kg/m3 for azobé (see chapter 7). These densities result in strength classes 
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C24, D40 and D70 according to EN 338. Hence these three strength classes were chosen 
to derive the material properties. 

 

Analogies were applied to derive the missing parameters rolling shear and fracture energy: 

Rolling shear modulus and strength 

Information on rolling shear modulus and strength is needed for instance for certain wood 
products as cross-laminated timber. In technical approvals of these products, values are 
given for rolling shear modulus (mean value) and strength (characteristic value). All 
approvals give the same values, Groll = 50 MPa and froll = 0.5 MPa. These values are used 
for spruce. 

The ratio of longitudinal shear values over rolling shear values is calculated for spruce 
and subsequently kept constant for beech and azobé. (example: Gv/Groll(spruce) = 690/50 
= 13.8. Groll(beech) = Gv(beech)/13.8 = 810/13.8 = 59 MPa) Interesting to note is that for 
spruce, the ratio of longitudinal shear modulus over rolling shear modulus and the ratio of 
longitudinal shear strength over rolling shear strength have the same value. 

Fracture energies 

Some simplified assumptions were made. As initial parameters for spruce, the values 
given by Franke (2008, Table C-2) were used. As it was observed that his high fracture 
energy for tension parallel-to-grain of Gf,0 = 60 N/mm in combination with the low 
fracture energy for tension perpendicular-to-grain of Gf,90 = 0.18 N/mm could cause 
instabilities, these two values were adjusted to the values shown in Table 4-1. 

For beech and azobé, the resulting ratios for spruce of fracture energy and respective 
strength were kept constant. (example: ft,0/Gf,0(spruce) = 24/6 = 4. Gf,0(beech) = 41/4 = 10)  

 

The reference species was spruce because most information is available for this wood 
species. The ratios of certain material properties such as rolling shear values and fracture 
energies were extrapolated to hardwood – this is an analogous approach to EN 384 (CEN, 
2004a) where all mechanical properties are defined as ratios of easily available values as 
density, MoE parallel-to-grain and bending strength. EN 384 however is valid for 
softwood. Here, it is assumed that at the current state-of-the-art an analogous approach 
can be applied to hardwoods. Hardwoods are with their vessels, different vessel 
distributions and fibre lengths much less homogeneous than softwoods. Of course this 
leads to rough engineering estimations of material properties, but seems to be one of the 
few available approaches in order to obtain all needed mechanical properties. It cannot be 
expected that all properties, especially valid shear properties and fracture energies, will 
be established by tests in near future for all used wood species. Other ways to solve the 
problem of non-available mechanical properties must be found. Further research must 
also assess the influence of for instance the different anatomies on important issues such 
as ductility.  
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The chosen approach is consistent. However, it must be clear that the chosen material 
properties are derived from characteristic values where only the longitudinal MoE and the 
bending strength are properties derived from tests. The necessary values for the material 
model such as the transverse tension strength are only proportional values with a specific 
relation to the bending strength. For instance, Van de Kuilen and Blaß (2005) found an 
experimental mean shear strength value for azobé (Lophira alata) of 17.7 MPa which is 
much higher than the value of 8.6 MPa given in Table 4-1. Also the tension strength 
perpendicular-to-grain is rather low. For instance, Blaß and Schmid (2001) give a mean 
transverse tension strength derived from tests for spruce of 1.89 MPa which is nearly 
three times the value given in Table 4-1. 

Table 4-1 summarises the material properties used for modelling. The value of fictitious 
viscosity is chosen to be  = 0.0001. A conclusion to the discussion in this chapter is to 
carry out a well-defined parameter study changing the material properties given in Table 
4-1. 

 
Table 4-1: Material input values for all 3 wood species 

Parameter Units
Spruce           

(Picea abies )
Beech             

(Fagus sylvatica )
Azobé             

(Lophira alata )
Source

E11 11000 13000 20000

E22 = E33 370 860 1330

G12 = G13 690 810 1250

G23 50 59 91 analogies, see above

ft,0 24 (14) 41 (24) 72 (42)

fc,0 36 (21) 45 (26) 58 (34)

ft,90 0.7 (0.4) 1.0 (0.6) 1.0 (0.6)

fc,90 4.3 (2.5) 14.2 (8.3) 23.2 (13.5)

fv 6.9 (4.0) 6.9 (4.0) 8.6 (5.0)

froll 0.5 0.5 0.6 analogies, see above

Gf,0 6 10 18

Gf,90 0.5 0.71 0.71

Gf,v 1.2 1.2 1.5

Gf,roll 0.6 0.6 0.7

  - 0.0001 0.0001 0.0001 estimation

MPa

N/mm

EN 338

Equation (4-46);       
fk from EN 338        

(fk in parenthesis)

analogies, see above
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4.6 SUBROUTINE UMAT 

4.6.1 Programming issues 

For all modelling tasks, the finite element package ABAQUS® was used. Within 
ABAQUS®, it is possible to programme so-called user subroutines. For this thesis, a 
material user subroutine (called UMAT in ABAQUS®) was developed. The UMAT was 
programmed in FORTRAN. During the programming process, some main programming 
issues were identified which are mentioned here to support the future programmer. The 
UMAT is given in Sandhaas (2011). 

 Use the PARAMETER function to define constants (such as 0.5, 1 or 2); 

 Always define variables as REAL or INTEGER; 

 Most of the non-identified bugs derive from wrong equations such as impossible 
division through ZERO, non-defined variables and mismatches in the arguments. 
Other bugs and compiling/linking problems are usually described in the log file 
of ABAQUS®; 

 Use the write command to write intermediate steps to the log file such as 
certain stress or strain components or internal variables as this facilitates the 
verification of the UMAT. 

4.6.2 Verification of UMAT 

Every developed material model must be checked thoroughly before applying it on 
complex models such as joint models. The verifications are carried out on fictitious 
models where the model response can be checked easily. Verifications comprise different 
steps. The variable settings are for instance different loading cases in tension, 
compression, monotonic or cyclic loading, multiaxial loading and changing material 
orientations where not the elements are rotated but the material orientation within the 
elements.  

Furthermore, the verifications shown in this section illustrate the available tools to 
investigate the numerical results. Manifold methods from load-slip graphs over 
integration point results and contour plots exist to check numerical outputs. 

Figure 4-15 shows a cubic model with 3D linear brick elements (1 x 1 x 1 mm) with full 
integration, thus with eight integration points and linear interpolation between integration 
points. The boundary conditions are also shown in Figure 4-15. If verification results are 
given in terms of load-slip, then the indicated nodal results were used. The mesh varied 
between one, eight and 125 elements without changing the geometry or boundary 
conditions. All used material properties including the viscous parameter  are given in 
Table 4-1. For the verifications, only the properties for spruce are considered. 
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Figure 4-15: a) 1 x 1 x 1 mm model, 3D linear brick elements with full integration;  
b) different meshes of model – one element, eight elements, 125 elements 

 

Monotonic and cyclic loading 

First verifications were carried out simulating loading parallel and perpendicular to the 
grain under monotonic (tension and compression) and cyclic loading. The crack band 
model was not activated as no localisation was expected. The monotonic loading was an 
increasing deformation up to 0.5 mm whereas the cyclic loading was tension up to 
0.02 mm (to trigger nonlinearity) with subsequent compression up to 0.5 mm. Figure 
4-16 to Figure 4-19 show the load-slip graphs. The simulation results are correct: 

 Both tension parallel and perpendicular to the grain are calculated correctly  
(ft,0 = 24 MPa, ft,90 = 0.7 MPa)  

 Compression parallel and perpendicular to the grain is perfectly plastic at the resp. 
maximum strength values (fc,0 = 36 MPa, fc,90 = 4.3 MPa). 

 The two cyclic loadings also properly simulate the implemented material 
behaviour. After initiation of damage in tension, unloading is along the secant 
stiffness and the original MoE is taken when entering the compression region. 

 

It is interesting to note that the maximum increment size of the models with monotonic 
loading was 1 whereas the maximum increment size of the models with cyclic loading 
was 0.01. This has to do with the increment size dependency as discussed in section 4.4.9. 

a) 
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Figure 4-16: Monotonic loading parallel-to-grain, 

tension and compression 
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Figure 4-17: Cyclic loading parallel-to-grain  
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Figure 4-18: Monotonic loading perpendicular-to-
grain (radial direction), tension and compression 
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Figure 4-19: Cyclic loading perpendicular-to- 

grain (radial direction) 

 

An important note on these first verifications is on the mesh dependency and the crack 
band method which was discussed in section 4.4.7. As already stated, the crack band 
model was not activated. Considering the model shown in Figure 4-15, it becomes clear 
that damage can be expected to develop in all elements simultaneously as the same 
material properties are assigned to all elements. This means, no crack band or localised 
solution is expected. Then the crack band method is not valid as discussed in section 
4.4.7. Therefore, the fracture energy Gf was used in the damage formulations of Equation 
(4-35) instead of the characteristic damage energy gf, see Equation (4-41).  

The verifications shown in Figure 4-16 were repeated using the characteristic fracture 
energy gf (Equation (4-41)), activating the crack band method. Then, an artificial mesh 
dependency is created. In Figure 4-20, the results can be seen. An opposite mesh 
dependency can be observed where the inclination of the single element model is 
approximately five times the inclination of the model with five elements in a row. The 
more elements (i.e. smaller elements) are used, the more ductile the system is. This is due 
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to the definition of gf: The smaller the elements, the smaller is h and therefore, the more 
fracture energy remains available which leads to a more ductile answer. 

The conclusion of section 4.4.7 is confirmed. The crack band method should not be used 
in models where no local crack band can develop and the response is homogeneous. 
Therefore, continuum FE models that show material softening (related to the integration 
points) must be examined with regards to localised deformation bands in order to decide 
if the crack band method can be used to alleviate mesh dependency. Otherwise the crack 
band method cannot be used. 
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Figure 4-20: Monotonic loading parallel-to-grain with characteristic fracture energy gf, 

tension and compression with opposite mesh dependency 

 

Different perpendicular failure criteria 

The next verifications show the influence of different failure criteria continuing the 
discussion of section 4.3. The influence of three different formulations for the case of 
transverse compression with an angle to the grain of  = 20° is investigated. This loading 
scheme means that in the model, transverse compression and shear evolves. 

 Figure 4-21: Failure criteria as implemented (Equations (4-8) and (4-9) resp. 
(4-11) and (4-12)), with maximum stress criteria for transverse compression and 
quadratic interaction between longitudinal and rolling shear. 

 Figure 4-22: Smeared failure criteria of transverse compression and shear 
analogous to the transverse tension criteria according to Equation (4-49): 

 < 0:       
2 2

22/33 12/13 23
,90 / 2 2

,90

( ) 1c R T
c v roll

F
f f f

   
     (4-49)

 

 Figure 4-23: Maximum stress criterion for transverse compression (= Equations 
(4-8) and (4-11)), no consideration of shear in loading case transverse 
compression (22/33 < 0). 
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Figure 4-21: Failure criteria as implemented 
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Figure 4-22: Failure criteria according to  
Equation (4-49) 

 

Time

St
re

ss

−30

−25

−20

−15

−10

−5

0

5

10

P

0 0.2 0.6 0.80.4
 

Figure 4-23: Failure criteria with no transverse compression – shear interaction 

 

Two main points can be observed: 

 Figure 4-21 and Figure 4-22 do not differ much and show correct stress 
distributions with the transverse compression 22 developing analogously to the 
shear stress 12. However, Figure 4-22 with the smeared failure criterion indicates 
lower shear stresses which is logic considering the assumed interaction between 
transverse compression and shear. Subsequently, the global load-slip behaviour 
should show lower forces; 

 Figure 4-23 shows a shear stress 12 that exceeds the shear strength which is not 
realistic. The failure surface is defined by the transverse compression strength. 
Only when fc,90 is reached, failure occurs and the model starts to soften due to 
brittle longitudinal shear. 

Figure 4-24 shows the results in terms of load-slip data of the three models. The results 
for the smeared failure criterion, Equation (4-49), are lower than for the criteria as is. The 
results for the simulation with no failure criterion for shear loading under simultaneous 
transverse compression loading are wrong as can be expected after Figure 4-23.  

However, the smeared failure criterion defined in Equation (4-49) gives wrong results for 
loading with compression under an angle to the grain. Then, the combined effect of 
ductile compression stresses and brittle shear stresses lead to mixed failures between 
ductile and brittle which cannot be modelled with Equation (4-49). Using Equation (4-49), 
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these mixed failures cannot be modelled and apart from pure compression parallel and 
perpendicular to the grain, the material behaviour will be brittle (see also Figure 4-27). 
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Figure 4-24: Load-slip results with three different failure modes,  = 20° 

 

Different element types 

To investigate the influence of different element types, the bricks from Figure 4-15 have 
been replaced by tetrahedrons as shown in Figure 4-25. The boundary conditions have 
not been changed and the loading scheme is cyclic loading. As can be seen in Figure 4-26, 
the results are the same as for the model with brick elements (Figure 4-19). 
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Figure 4-25: Cube model with tetrahedrons 
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Figure 4-26: Load-slip graph under cyclic loading 
perpendicular-to-grain of model with tetrahedrons 
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Different material orientations 

The following verification involved varying material orientations and was carried out on 
the single element model of Figure 4-15. Radial stress 22 and longitudinal shear 12 were 
gradually activated with increasing rotation angle  of the material orientation (with  
 = 0° = parallel-to-grain,  = 90° = perpendicular-to-grain). The results in terms of load-
slip are shown in Figure 4-27. The calculation results are correct, namely 

 With  = 0° resp.  = 90°, the results are perfectly plastic obtaining the uniaxial 
strengths; 

 With small rotation angles °°, the results are brittle as the brittle 
behaviour of shear is dominating; 

 The more the rotation angle  is increasing, the more ductile the behaviour 
becomes (which is not the case if the smeared failure criterion shown in Equation 
(4-49) is used. Then the behaviour is brittle except for pure parallel or 
perpendicular stress. This is due to the effect of the brittle shear which develops 
simultaneously to the transverse compression in a smeared approach); 

 With large rotation angles °, the results are close to the results with 
compression loading perpendicular-to-grain. 
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Figure 4-27: Different material orientations ( = 5, 10, 20, 30, 45, 60, 70, 80, 85 degrees) 
with monotonic compression load 

 

A classical check when having different angles  to the grain is the comparison of the 
modelling results with the Hankinson equation12 (Hankinson, 1921). This comparison is 
visualised in Figure 4-28. The prediction quality is good. Major differences are observed 

                                                 

12 Hankinson equation: ,0 ,90

, 2 2

,0 ,90
sin cos

c c

c

c c

f f
f

f f
  





 



Chapter 4 Development of material model 

 100

for material orientations of 5 to 30 degrees. Especially the inflexion point between angles 
20° and 30° is remarkable. However, the maximum error is only 15% for an angle of 10°. 
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Figure 4-28: Superposition of FE results and Hankinson equation 

 

Different fracture energies 

The influence of the fracture energies is investigated on the single-element model. Three 
different values for the fracture energy Gf,0 were chosen and the loading was tension 
parallel-to-grain.  

Figure 4-29 shows the results in terms of load-slip for the chosen fracture energies 
Gf,0 = 6, 0.6 and 60 N/mm. The softening branch changes correctly depending on the 
chosen value for the fracture energy. The general trend is correct: the smaller the fracture 
energy, the more brittle the behaviour13.  
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Figure 4-29: Load-slip graphs for three different fracture energies Gf,0 

 
                                                 
13 A nice check can be done for Gf,0 = 0.6 N/mm: The integral of the load-slip curve is ½·0.05 mm·24 MPa 
= 0.6 N/mm. This is exactly the amount of fracture energy Gf,0. 
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Compression loading and subsequent shear loading 

The model from Figure 4-15 with 125 elements was loaded in compression 
perpendicular-to-grain (up to 0.015 mm in order to trigger damage) with subsequent 
loading in shear (up to 0.1 mm). The boundary conditions were changed for the case of 
shear loading: then the cube was simply clamped. 

Figure 4-30 and Figure 4-31 show typical integration point results in the time domain 
where the time step 1.0 indicates the transition from compression loading to shear loading. 
The development of the damage variables is correct. First, the damage variable dc,90 for 
compression perpendicular-to-grain develops. dc,90 is constant when the damage variable 
dvR (together with dt,90R and droll) develops under shear loading. The corresponding stress 
components are shown in Figure 4-31 and are also correct. The 1 x 1 mm cube starts to 
accumulate damage at 4.3 MPa which is the transverse compression strength and reaches 
its tension peak at less than 0.7 MPa, the transverse tension strength (it must be less as 
also shear components are present).  
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Figure 4-30: Damage variables dc,90 and dvR 
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Figure 4-31: Stress components 22 and 12 

 

Tapered beam 

The last verifications included a tapered beam model as shown in Figure 4-32 where the 
boundary conditions and the mesh can be seen. In this model, a crack band develops and 
therefore, the crack band method must be activated. The loading scheme was monotonic 
tension loading. The tapered area in the centre of the model is shaded and consists of two 
elements. 

The results at the integration points of the two elements in the tapered area are shown in 
Figure 4-33 to Figure 4-37. The maximum tension stress parallel-to-grain 11 shown in 
Figure 4-33 is 24 MPa with subsequent softening (see also the damage variable in tension 
parallel-to-grain of Figure 4-34) which is correct. The modulus of elasticity E11 is 
decreasing correctly as shown in Figure 4-35 while the strain components 11 are 
increasing monotonously as shown in Figure 4-36. The plot of the energies of Figure 4-37 
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show that the energy of the viscous stabilisation (ALLCD) is very small compared with 
the total strain energy (ALLSE) which indicates that the calculation results are not 
influenced by the fictitious viscosity of  = 0.0001. The peak of ALLCD when damage 
initiates indicates the need of fictitious viscosity in order to facilitate convergence. 

 

 
Figure 4-32: Mesh and boundary conditions (analogous to cube model from Figure 
4-15), monotonic tension load parallel-to-grain, shaded area in the centre is tapered 

 

Time
0.0 0.2 0.4 0.6 0.8 1.0

S
tr

es
s 

co
m

po
ne

nt
 S

11

0.

5.

10.

15.

20.

25.

 

Figure 4-33: Normal stress component 11 [MPa] 
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Figure 4-34: Damage variable dt,0 [ - ] 
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Figure 4-35: Modulus of elasticity E11 [MPa] 
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Figure 4-36: Elastic strains 11 [ - ] 
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Figure 4-37: Elastic strain energy ALLSE and viscous regularisation energy ALLCD  

(logarithmic scale) 

 

4.7 CONCLUSIONS 

A material model for wood was developed that can be combined with commercially 
available FE software packages. The model proved to be promising for timber modelling 
as in comparison to many available FE tools, ductile and brittle behaviour can be 
simulated within a holistic 3D orthotropic model. The failure ellipsoid is piecewise 
defined in the 6D stress space which makes it possible to model strongly orthotropic 
material with large strength differences in the single material directions. Interactions of 
stresses are considered for the failure modes ‘splitting perpendicular-to-grain’. However, 
no hardening of the shear strength under increasing transverse compression is considered. 
The failure modes can be identified as every single damage parameter can be visualised. 
No plastic deformations can be modelled as CDM is nonlinear elastic and unloading 
follows the secant stiffness. 
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The necessary material properties are immediate stiffness, strength and fracture properties. 
If the input values must be changed for calibration purposes, physically possible ‘new’ 
values for stiffness and strength can be chosen without the need to introduce artificial 
parameters. For instance, fracture energies can be adapted to calibrate the strength loss at 
increasing strains. 

As to mesh dependency, it could be shown that regularised results can be obtained by 
using the crack band method if models show localised solutions (see models in section 
5.2.1). But the crack band model should not be used in cases where the deformation is not 
localised in a small domain of a structure (see models in section 5.3 and 5.4). Viscous 
stabilisation has no influence on mesh regularisation, but it improves convergence 
considerably. Furthermore, the increment size must be chosen small enough in order to 
avoid wrong results even if the used FE software uses adaptive incrementing.  
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5  
STRUCTURAL MODELS 

The developed material model presented in chapter 4 is applied to predict the 
mechanical performance of wood and of timber joints. Material tests taken from 

literature are simulated. Embedment tests and double-shear timber joints with slotted-in 
steel plates and one, three and five dowels in a row are modelled. Three different wood 

species, spruce, beech and azobé, are considered. Major results as load-slip graphs, 
stress distributions and influence of dowel number and wood species are discussed. 

Modelling-related issues such as mesh dependency are assessed. 

5.1 INTRODUCTION 

The material model developed in chapter 4 proposed a unified approach in order to cover 
ductile and brittle modes within an implicit continuum mechanics framework. The 
developed material model was implemented in the FE software ABAQUS® via a 
subroutine called UMAT. In this chapter, the outcomes for a variety of models (from pure 
material models over embedment models to joint models) are presented. 

Firstly, pure material tests using spruce taken from literature were modelled in order to 
verify the applicability of the developed material model. Compression tests under 
different angles to the grain and tension tests parallel-to-grain were simulated. Material 
models without steel parts and contact are easier to interpret and therefore, issues related 
to the material model can be more thoroughly evaluated on these ‘simple’ examples. 

Afterwards, embedment models are simulated which are less complex models than joint 
models as dowel-bending and other contact than steel dowel - timber does not occur. A 
certain calibration of predictive joint models (i.e. calibration of the material parameters 
such as stiffness or strength values) will be always required. This calibration is usually 
carried out comparing FE models with test results. The most complex suitable test results 
on which material parameters for joint models can be calibrated are in fact embedment 
tests. Therefore, the second part of this chapter contains embedment modelling results 
using 12 mm and 24 mm steel dowels and different wood species. 
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In the third part of this chapter, timber joint models are presented. All joints were double-
shear timber joints with slotted-in steel plates. The used 12 mm and 24 mm dowels were 
high strength steel (hss) dowels and very high strength steel (vhss) dowels. The used 
wood species were spruce (Picea abies), beech (Fagus sylvatica) and azobé (Lophira 
alata). The number of steel dowels in a row was one, three and five.  

Contrarily to the material test results, the embedment and joint test results were not taken 
from literature, but from own experiments which will be presented in chapters 6 and 7. In 
chapter 8 finally, the experimental results on embedment specimens and joints will be 
compared with the FE prediction results. 

5.2 MATERIAL MODELS 

In order to verify the capability of the models to predict the mechanical behaviour of 
wood, available material tests from literature were modelled. The chosen tests were 
undertaken by Franke (2008) and comprise tension tests parallel-to-grain and 
compression tests with different angles to the grain. All tests were carried out on small 
clear spruce specimens. However, the material parameters for spruce used in the FE 
models were derived for structural-size wood and are given in Table 4-1. Steel was 
modelled as being linear elastic with a MoE of 210000 MPa and a Poisson’s coefficient 
of 0.3. The used 3D solid elements were linear bricks with full integration. 

5.2.1 Tension parallel-to-grain 

The FE model loaded in tension parallel-to-grain was modelled after Franke’s test 
specimens (Franke, 2008). Due to the asymmetric specimen, it is rather difficult to assign 
boundary conditions that do not trigger secondary stresses. If the specimen is loaded 
parallel-to-grain and secondary stresses develop due to restraints, these secondary stresses 
in the much weaker perpendicular directions can cause damage and material degradation 
before reaching the tension strength parallel-to-grain. The locally overstrained elements 
collapse completely when they are fully damaged. Collapsed elements lead to large 
element distortions, so-called spurious energy modes. Locally, convergence can be 
impeded or even impossible.  

Spurious energy modes of elements are an issue for all models. As soon as complex 3D 
stress and strain states occur, local distortions due to 3D element collapse lead to sudden 
large strains in one (or more) direction. Large strains lead to large stresses and 
subsequently, equilibrium in the 3D space is not easily obtained. 

In view of these issues, two different models were developed as can be seen in Figure 5-1. 
In the first model, called model A, Figure 5-1a, the steel dowels needed to load the test 
specimens have been modelled as well because the model should be able to rotate in 
order to avoid secondary stresses. The friction coefficient between steel and wood was 
assumed to be 0.5 (stick-slip model). The boundary conditions were applied on the steel 
dowels where the lower dowel was fixed in all three directions and the upper dowel was 
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loaded in displacement-control and did not allow for movements in Z- and X-direction. 
Analogously to the tests, the load-slip graphs were derived from the reaction forces in Y-
direction of the lower steel dowel and the deformation in Y-direction of the upper dowel. 
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Figure 5-1: Tension parallel-to-grain, a) model A, b) model B 

 

The second model, called model B, was simpler (see Figure 5-1b). The steel dowels were 
not modelled and the boundary conditions and loading were directly applied on the wood 
specimen. The boundary conditions did not correspond to Franke’s test setup. The load-
slip graphs of the simulations were derived from the displacement of the upper part of the 
model whereas the reaction forces in Y-direction of the lower part provided the force 
component of the load-slip graph. The size of the tapered region in both models is 
2 x 20 mm. 

Model A was the more accurate model. Model B served to evaluate the influence of 
different boundary conditions. The geometry of both models corresponded to Franke’s 
tension test specimens. The material model was used only in the central part of the model, 
purely linear elastic behaviour was assumed for the outer wood and for the steel. Models 
A and B are typical examples where local material orientations must be defined because 
otherwise the models are loaded perpendicular-to-grain14. The loading was displacement-

                                                 
14 In the developed material model (subroutine UMAT), the longitudinal direction is defined in X-direction, 
the radial material direction is the Y-direction and the tangential direction corresponds to the Z-direction. 
Here however, the longitudinal direction is in global Y. 

a) b) 
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controlled up to a deformation of 1 mm. The default material properties of the UMAT 
were given in Table 4-1. If not indicated otherwise, the large displacement theory was 
used. The crack band model was activated. 

The following modelling parameters were varied: 

 Material properties; 

 Boundary conditions; 

 Large and small displacement theory; 

 Mesh. 

Firstly, model B (without the optional boundary condition Uz = 0 on top) was run. Figure 
5-2 shows the development of the damage variable dt,0

15. The crack propagation can be 
clearly seen. In Figure 5-3, the load-slip graph is shown where also the increments of 
Figure 5-2 are indicated. When comparing Figure 5-2 with Figure 5-3, it can be observed 
that the nonlinear part starts approximately at increment 100 where crack initiation can be 
seen. At increment 300, the maximum load is reached where the damage already covers 
more than half of the width of the notch. Increments 350 and 400 are on the softening 
branch and at the last increment, the crack is completed and no residual load carrying 
capacity is available. A stable numerical crack growth can thus be achieved with the 
developed material model. However, many increments are needed. 
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Figure 5-2: Model B, damage variable dt,0 – at increments 100, 200, 300, 350, 400 and last 

 

                                                 
15 As the damage variables are solution dependent state variables, they are identified in the postprocessing 
via the abbreviation SDV with the following assignments: 

SDV10 = dt,0;   SDV11 = dc,0;   SDV12 = dt,90R;   SDV13 = dc,90R;   SDV14 = dt,90T;   SDV15 = dc,90T;   
SDV16 = dvR;     SDV17 = dvT;      SDV18 = droll 

100 200 300 350 400 last 
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Figure 5-3: Load-slip graph of model B 

 

Figure 5-4 shows the simulation results in terms of the strain component 11 at the last 
increment, this time the deformations are 10x exaggerated. As the specimen displaced 
considerably in Z-direction (see Figure 5-4a), additional boundary conditions to restrain 
the movement in Z-direction were applied (see Figure 5-1b optional boundary condition 
Uz = 0 on top). Figure 5-5b shows the result of this modified model in terms of 11. No 
displacement in Z-direction occurred, but the rear elements, where the crack reaches last, 
distorted considerably as can be also seen in Figure 5-6a which shows the rear side of the 
model. In Figure 5-6b, the distorted elements were removed. As can be seen, only the 
outermost elements distorted excessively. As only the boundary conditions changed, this 
must be due to secondary stresses due to the additional restraint. The reason for the 
excessive distortion and subsequent convergence problems becomes clear when looking 
at Figure 5-7 where the strain components for one of the distorted elements are shown. 
When reaching the final deformation, the strain components change significantly. It 
seems indeed as if the elements collapse in all directions as discussed in the beginning of 
this section. Spurious energy modes develop. The elements are completely damaged 
when high enough secondary stresses develop that cause failure also in other directions 
than the main loading direction. Possible improvements could be to not allow for 
complete damage or excessive strains. For instance, a threshold value could be set to limit 
damage or strains. However, such a solution would not be ideal; a smeared parameter 
without physical meaning would be introduced. 

Another drawback is that the stresses are not transferred to the next, not yet completely 
collapsed row of elements. This effect was already discussed in section 4.4.7. 
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Figure 5-4: a) Overview of deformed and 
undeformed model B; b) strain component 11 of 

model B, last increment;  
deformations 5x exaggerated 
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Figure 5-5: a) Overview of deformed and 
undeformed model B with option ‘Uz = 0’  

(see Figure 5-1b); b) strain component 11, last 
increment; deformations 10x exaggerated 
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Figure 5-6: Damage variable dt,0 at last increment at compression side of model B with option ‘Uz = 0’, 
deformations 10x exaggerated; a) Figure 5-5 turned by 180°, b) distorted elements deleted 
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Figure 5-7: Typical strain components of indicated element a, integration point 6 
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Figure 5-8 shows the simulation result for model A including the steel dowels. In Figure 
5-8a, it can be seen how the model is rotating due to the asymmetry. The compression 
stresses on the rear of the model that are created due to the asymmetry can be observed in 
Figure 5-8b. Figure 5-8c shows the damage variable dt,0 at various increments that are 
also indicated in the load-slip graph of the model in Figure 5-9. Analogously to model B, 
the crack initiation around increment 20 indicates the start of the nonlinear regime. 
Increments 100 and 122 (last increment) are part of the softening branch. Figure 5-9 
shows that model A does not fail completely what may be due to the asymmetry and 
compression stresses on the rear side which are still observable in the last increment 122. 

For comparison reasons, Figure 5-9 shows also the load-slip graph of model B. Three 
main remarks can be done: 

 The stiffness is different for both models; 

 Model A is less brittle than model B; 

 The maximum load carrying capacity is comparable (713N for model A versus 
762N for model B). 

The simulation results of models A and B underline the thoroughly discussed issues 
connected with test setups. It is difficult to design a good specimen geometry that triggers 
only the failure mode it was designed for. Secondary stresses can develop that are not 
measured, maybe not even observable, but they will be part of the real 3D stress field of 
the tests. 

 

(Avg: 75%)
SDV10

+0.000e+00
+8.333e−02
+1.667e−01
+2.500e−01
+3.333e−01
+4.167e−01
+5.000e−01
+5.833e−01
+6.667e−01
+7.500e−01
+8.333e−01
+9.167e−01
+1.000e+00

−4.051e−01

X

Y

Z
                  

X
Y

Z X

 
 

Figure 5-8: Model A at last increment, deformation 5x exaggerated; 
a) deformed model at last increment, b) stress component 11 at increment 65, 

c) damage variable dt,0 at increments 20, 40, 70 and last 
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Figure 5-9: Load-slip graph of model A and model B  

 
Table 5-1: Material input values for spruce, default values and Franke’s values 

Parameter Units Table 4-1
Franke (2008), means        

Tabelle 5-3, 5-4 and C-2
E11 11000 7000

E22 = E33 370 620
G12 = G13 690 680

G23 50 42
ft,0 24 130
fc,0 36 50
ft,90 0.7 3.0
fc,90 4.3 3.2
fv 6.9 4.6

froll 0.5 1.0
Gf,0 6 60
Gf,90 0.5 0.18
Gf,v 1.2 1.2

Gf,roll 0.6 0.6
  - 0.0001 0.0001

MPa

N/mm

 
 

Figure 5-10 shows load-slip graphs for model A where different parameters were varied. 
The mesh was changed. Furthermore, large and small displacement theory were used and 
the fracture energy Gf,0 was increased by a factor of 10 and of 100. Especially the fracture 
energy Gf,0 used for mode I failure parallel-to-grain is an important parameter as it should 
define the softening grade of the model. Furthermore, Franke’s (2008) properties for 
small clear spruce specimens were used as given in Table 5-1. 

 

 



Chapter 5 Structural models 

 113

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Displacement [mm]

Lo
ad

 [k
N

]

 

 

default model
small displacement theory
fine mesh
coarse mesh
G

f,0
 = 60 N/mm

G
f,0

 = 600 N/mm

 Franke

 
Figure 5-10: Load-slip graphs of model A with varied parameters 

 

A small difference in ultimate load carrying capacity for small and large displacement 
theory can be observed. As long as no closer look in the cause of this difference is taken, 
it is recommended to apply the theory of large displacements for further models. It is 
computationally more demanding, but it is expected that the theory of large 
displacements delivers better results.  

The models with different fracture energies in mode I parallel-to-grain Gf,0 show much 
stronger brittle behaviour than the default model A. A higher fracture energy value than 6 
N/mm should be chosen to obtain brittle failure. For Gf,0 = 60 N/mm and 600 N/mm, the 
ultimate load carrying capacity is higher than for the default model with Gf,0 = 6 N/mm. 
Both models with higher fracture energies do not differ much from each other.  

Furthermore, the value of the fictitious viscosity was changed to  = 0.0002. No 
difference could be observed between the default model ( = 0.0001) and the model with 
 = 0.0002. (The perfect overlap of the two models is not shown in Figure 5-10.) 

When the numerical results are compared with Franke’s experimental results shown in 
Figure 5-11, it can be seen that the numerical models cover the lower bound of test results. 
If the two test results with the lowest load carrying capacity are considered, the prediction 
quality is satisfactory. The maximum load and the brittle behaviour are correctly 
modelled when applying Franke’s (higher) material properties for small spruce specimens. 
As for the failure modes, especially the model with Franke’s properties did not fail in 
tension parallel-to-grain, but due to high shear and tension stresses perpendicular-to-grain 
in the roundings of the notches as shown later (Figure 5-19). It is difficult to compare 
tests and models in order to judge the quality of the failure mode prediction. Due to the 
short notch of the test specimens, it is possible that high shear stresses developed that 
initiated splitting. 



Chapter 5 Structural models 

 114

A mesh dependency can be seen although the crack band model was activated. This was 
not expected as the validation of section 4.37 showed that mesh dependency could be 
alleviated using the crack band model. In Figure 5-12 and Figure 5-13, the mesh and the 
results at the resp. last increments in terms of stress component 11 and damage variable 
dt,0 are given for model A. The model with the finest mesh shows again strong distortion 
patterns of the elements. It is the author’s opinion that the observed mesh dependency is 
strongly correlated to the problems with element distortions due to complex 3D stress 
fields rather than to problems connected with the applied regularisation method. The 
spurious energy modes are the most important problem to deal with in further research. 
Interesting for this discussion is again a closer look in the strongly distorting elements.  
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                                                       a)                                                                         b) 

Figure 5-11: a) Test results from Franke ((2008), Abb. 4-3) on small clear spruce wood; one test 
result highlighted; b) modelling results of Figure 5-10 on same scale as test results 
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Figure 5-12: Model A, stress component 11 for 
three meshes at respective maximum 

load carrying capacity 
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Figure 5-13: Model A, damage variable dt,0 for 
three meshes; detail of fine mesh with 

deformed elements 
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Figure 5-14: Model B, detail of fine mesh 
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Figure 5-15: Outer element indicated in Figure 

5-14, stress components 11 and 33 
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Figure 5-16: Inner element (Figure 5-14) 

stress component 11 and  
damage variable dt,0  
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Figure 5-17: Inner element (Figure 5-14) 

stress component 33 and  
damage variable dt,90 

 

Figure 5-14 shows a detail of model B with the fine mesh. Two elements are highlighted. 
One inner element of the curved part of the notch and an outer element on the ‘straight’ 
part of the notch. In Figure 5-15, the results for an integration point of the outer element 
is given. The element failed in tension parallel-to-grain. This is completely different for 
the inner element as can be seen in Figure 5-16 and Figure 5-17. The inner element did 
not fail in tension parallel-to-grain, but in tension perpendicular-to-grain. This was due to 
the perpendicular stress component caused by the rounded notch. The stress fields were 
complicated already at an early stage of the numerical calculations. Some elements had 
no perpendicular and shear stiffness left before the parallel damage could start properly. 

Another observation can be made for model A with Franke’s material parameters. Franke 
used higher mechanical properties for small test pieces of clear wood where the ratio of 
tension strength parallel-to-grain over shear strength was much higher than for structural-
size wood, see Table 5-1. Indeed the ultimate load carrying capacity was the highest of all 
models. However, the numerical model did not fail in tension parallel-to-grain at all, but 

Inner element

Outer element
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in shear and tension perpendicular-to-grain in the rounded region of the notch. Figure 
5-18 shows damage variable dt,0 at increment 70. Figure 5-19 shows damage variable dv 
at the same increment. The specimen started to fail in shear. Longitudinal tension stresses 
never reached the strength threshold at which damage in tension parallel-to-grain would 
have started. This is a realistic prediction as the notched region was rather short which 
triggered firstly shear failure before actually failing in tension parallel-to-grain. 

Finally, typical energies ALLSE and ALLCD for the default model B are shown in Figure 
5-20 (the other models show similar relationships between ALLSE and ALLCD). ALLCD 
represents the dissipated energy due to viscous regularisation whereas ALLSE gives the 
total dissipated energy. Logically, ALLCD must be much smaller than ALLSE (see also 
section 4.4.8). Figure 5-20 proves that the chosen viscosity for regularisation  = 0.001 is 
not too high as ALLCD is considerably smaller than ALLSE.  
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Figure 5-18: Model B, Franke’s properties, 

damage variable dt,0, increment 70 
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Figure 5-19: Model B, Franke’s properties, 

damage variable dv, increment 70 
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Figure 5-20: Energies for model B, default parameters 
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5.2.2 Compression with different angles to the grain 

The next models simulated compression tests with different angles to the grain again 
taken from Franke (2008). The tests were carried out by placing the test specimen of 
40 x 40 x 40 mm between two steel plates that transmitted the loading. These steel plates 
need to be modelled to include the effect of friction on the test results. Friction between 
wood and steel was modelled with a stick-slip model ( = 0.5). This friction is restraining 
the lateral deformation of the wood block. The specimens were tested and simulated 
parallel-to-grain, perpendicular-to-grain and at angles to the grain of 22.5° and 45° 
respectively. 

Franke (2008) discussed the influence of friction between the wood block and steel plates 
on the modelling results for compression parallel-to-grain. He used the Hoffman (1967) 
criterion and stated that the lateral constraint led to a localised plastic region directly 
underneath the steel plates which he stated was not realistic. The model could not 
describe kinking as observed in tests and therefore, the global load-slip curve could not 
be simulated satisfyingly according to Franke. Franke stated that the mechanical 
behaviour was not sensitive to changes of the material properties. Franke’s conclusion 
was that more precise material models, which are able to define all regions of the 
experimental load-slip curves, should be used. Therefore, Franke used also Grosse’s 
(2005) multi-surface plasticity material model in order to simulate compression tests 
parallel-to-grain. However, this proved not to be possible in combination with friction. 
Franke stated that problems with friction were observed only for the case parallel-to-grain. 
The compression tests perpendicular-to-grain and at angles to the grain of 22.5° and 45° 
respectively showed more homogeneous failures. This led to less numerical problems 
with both the Hoffman criteria and Grosse’s model. As for the quality of Franke’s 
numerical simulations using Grosse’s model, the prediction of the load-slip curves for the 
perpendicular-to-grain loading was a perfect overlap of the test results. The simulations 
for compression with an angle to the grain did not result in satisfying load-slip curves. 

In the following it will be investigated if similar problems can be observed for analogous 
models that are run with the developed material model. It is expected that the elements 
directly underneath the steel plates cause problems. Due to the complex 3D stress and 
strain states of these elements, the FE programme could have problems with convergence 
in this localised band of elements due to spurious energy modes as discussed previously. 
These will be important observations because also in embedment and joint models, 
similarly strained elements (in compression) will occur directly underneath the dowel.  

Figure 5-21 shows the compression model where local material orientations must be 
assigned in order to simulate tests parallel-to-grain, perpendicular-to-grain and at angles 
to the grain of 45° and 22.5°. The following model variations will be undertaken: 

 Mesh (64, 512 and 3375 elements where 512 elements is the default mesh); 

 Small and large displacement theory; 

 Different material properties (fracture energies). 
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The default material properties of the UMAT were given in Table 4-1. If not indicated 
otherwise, the large displacement theory was used. The load-slip graphs were evaluated 
with the reaction forces in X-direction and the loading (= displacement) in X-direction. 
The crack band model was activated. 
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Figure 5-21: Compression with an angle to the grain, model with boundary conditions, 

materials and mesh; here with 512 elements 

 

Compression parallel-to-grain 

The model parallel-to-grain did not show the same problems with friction as discussed by 
Franke (2008). This can be seen in Figure 5-22b. Because the material model does not 
model constant volume, the elements are simply squeezed together and the correspondent 
load-slip graphs are elastic perfectly plastic as seen in Figure 5-22a. No difference can be 
seen for different meshes and for small and large displacement theory as can be expected.  

Specimens loaded in compression parallel-to-grain develop kink bands as discussed in 
section 2.2.2. The developed material model does not represent these localised failures. 
However, it is in the author’s opinion that proper modelling of kink bands is not relevant 
for embedment and joint models. Only material models that aim at accurately 
reproducing test results on wood pieces need to be able to simulate kinking. 

The reached ultimate load carrying capacity of 57.6 kN is correct. Divided by the surface 
area of 40 x 40 mm, an ultimate compression stress of 36 MPa can be calculated. 
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                                                          a)                                                                                             b) 

Figure 5-22: Compression model parallel-to-grain; a) load-slip graphs, b) stress component 11 

 

Compression perpendicular-to-grain 

Also compression perpendicular-to-grain did not cause any major problem. The results 
were exactly the same as for compression parallel-to-grain – except that an ultimate stress 
of 4.3 MPa was reached (see also Figure 5-23). In comparison to test results, no 
densification with an increase in stress at large deformations can be modelled as the 
constitutive law implemented in the material model is elastic perfectly plastic. 

Compression with different angles to the grain (22.5°, 45°) 

More interesting are the results for compression with an angle to the grain of 22.5° and 
45°. Complex 3D stress states develop due to the activation of shear and tension 
perpendicular-to-grain together with friction between wood block and steel plates.  

Figure 5-23 shows the load-slip graphs of all four models, tests in compression parallel- 
and perpendicular-to-grain and with an angle to the grain of 22.5° and 45°. The different 
global constitutive behaviour of the wood blocks is evident. For 22.5°, the wood block is 
more brittle than for 45°. The ultimate load carrying capacity also shows logic differences 
with 22.5° having a higher capacity than 45°. In order to understand the influence of the 
fracture energies on the mechanical behaviour, two more models were run with an angle 
to the grain of 22.5°. Different fracture energies for shear failure were used as shown in 
Figure 5-24. When using half the default fracture energy, the numerical results do not 
differ much. The models are not sensitive to minor changes of the fracture energies. A 
change of a magnitude of 10x changes the material behaviour completely. No brittle 
failure can be observed. In Figure 5-25, the modelling results using large and small 
displacement theory are shown. No significant difference can be observed. The need for 
small increments in the softening part can be observed as well. 

0
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Finally, the mesh size was varied. Figure 5-26 shows the results for an angle to the grain 
of 22.5° and 45°. Similar to the tension test results, also here a mesh dependency can be 
observed. However, the single results differ much less from each other than the ones 
shown in Figure 5-10. 
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Figure 5-23: Load-slip graphs for  = 0°, 90°, 22.5°, 45° 
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Figure 5-24: Load-slip graphs for  = 22.5°, different fracture energies Gf,v 
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Figure 5-25: Load-slip graphs for  = 22.5° and 45°, small and large displacement theory 
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Figure 5-26: Load-slip graphs for three different mesh sizes; a)  = 22.5°, b)  = 45° 

 

 
Figure 5-27: Results from Franke (2008)  

for  = 0° 

 
Figure 5-28: Results from Franke (2008)  

for  = 90° 
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Figure 5-29: Results from Franke (2008)  

for  = 22.5° 

 
Figure 5-30: Results from Franke (2008)  

for  = 45° 

 

Before discussing numerical issues, the modelling results are compared with test results. 
Figure 5-27 to Figure 5-30 show Franke’s (2008) test results for an angle to the grain of 
 = 0°, 22.5°, 45°, 90°. The respective modelling results were shown in Figure 5-23 
(please note that the scale of the x-axis is different from the test results). The qualitative 
constitutive behaviour could be captured. 

Comparison compression parallel-to-grain 

The constitutive relationship of the material subroutine models elastic perfectly plastic 
behaviour. This could be found back in the numerical results. The load carrying capacity 
was with 60 kN smaller than the experimental results. This could be expected as the tests 
were done on small clear wood with higher mechanical properties than the ones 
considered for the models. The experimental load-slip graph as shown in Figure 5-27 
could not be reproduced. However, other test results look different from Figure 5-27 – 
see for instance Figure 2-5 where the wood block continued yielding after the yield drop 
and no softening could be observed. Therefore, the numerical post-elastic behaviour 
agreed better with the experimental results shown in Figure 2-5. However, additional 
modelling of kinking is not expected to increase the prediction quality of joint models.  

Comparison compression perpendicular-to-grain 

The mechanical material model for compression perpendicular-to-grain is the same as for 
compression parallel-to-grain. The predicted load carrying capacity of 7 kN is higher but 
still a good fit to the test results. This is obvious when considering the governing material 
property fc,90 which was assumed to be 4.3 MPa for the numerical model whereas Franke 
(2008) found a mean value from the tests of 3.2 MPa. As for the prediction quality of the 
load-slip curve, densification at high deformations cannot be modelled. However, again it 
is discussable whether densification is an important effect for joint models. 

Comparison compression with an angle to the grain of 22.5° and 45° 

The qualitative load-slip behaviour could be satisfyingly predicted with the numerical 
models. The models with an angle to the grain of 22.5° are more brittle in comparison to 
the test results. The load carrying capacity of the specimen with an angle to the grain of 
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45° could be predicted well. For the specimens with an angle to the grain of 22.5°, the 
predicted load carrying capacity is lower which is due to the chosen lower mechanical 
properties for structural-size wood. Localised failures observed in tests such as buckling 
of fibres cannot be modelled. Furthermore, the predicted stiffness is too high.  

The strong element distortion observed in the tension models was also observable in the 
compression models under an angle to the grain as then, brittle failures due to transverse 
tension and shear were activated in the elements directly underneath the steel plates. 
Figure 5-31 shows exemplarily the numerical results for the model with compression 
under 45° at different increments. The collapse of the element rows directly underneath 
the steel plates can be seen. The load slip graph with the increments is given in Figure 
5-32a. Figure 5-32b shows the stress components 22 and 12 and the corresponding 
damage variables dc,90 and dv. The elements lost rapidly their shear stiffness with 
subsequent collapse. Instead of continuing the load transfer to the next row of elements, 
the calculation stopped. With the unloading of the first row of elements underneath the 
steel plates due to shear stiffness degradation16, also the second row was unloaded and 
did not take any more loading (see also Figure 5-42).  The reason for this was already 
explained in section 4.3.7, Figure 4-7. However, the obtained global load-slip curve was 
satisfying at the current state-of-the-art. The difference between tests with an angle to the 
grain of 22.5° and 45° can be clearly seen. With an angle to the grain of 22.5°, the global 
load-slip behaviour is more brittle than with 45°.  
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Figure 5-31: Compression with  = 45°, at increments 50, 70, 75, 77, 80 and last 

 

                                                 
16Shear damage is coupled to transverse tension damage; a degradation of shear stiffness also leads to a 
degradation of the perpendicular MoE. Therefore, the element looses not only shear stiffness, but also 
perpendicular MoE. 

Element 
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Figure 5-32: Compression with  = 45°; a) load-slip graph, b) stress components 22, 12 and 
conjugated damage variables dc,90 (SDV13) and dv (SDV16) 

 

5.2.3 Conclusions 

The examples described above have shown that the material model is able to identify 
different failure modes. Stable softening curves are possible and also ductile behaviour is 
modelled properly within one single material model.  

From the modelling outcomes and numerical problems, the following conclusions for the 
next step of modelling, embedment modelling, can be drawn: 

 Take Gf,0 = 60 N/mm for spruce as 6 N/mm leads to too ductile material 
behaviour. 

 Elements are susceptible to spurious energy modes due to 3D collapse. Especially 
directly underneath the bolt, element distortion and subsequent convergence 
problems can be expected which may lead to a calculation stop. 

 Unloading of elements leads to secant unloading of neighbouring elements. 
Therefore, if one row of elements fails (and distorts excessively), the 
neighbouring elements do not take over the load as they are already unloading. 

 Further research must take a closer look into the problems connected with element 
distortion, subsequent mesh sensitivity and the unloading of neighbouring 
elements.  

However, generally it can be said that observed problems such as the sensitivity to 
different meshes and boundary conditions are not expected to be as prominent in more 
complex models such as embedment models. In that sense, embedment models should be 
easier to handle as secondary stresses are less probably introduced. 

For clarity reasons, Table 5-2 gives again all used material parameters that are used by 
default in all following models. The issues discussed in section 4.5 concerning the 
reliability of the chosen material properties are still valid.  

 

a) b) 
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Table 5-2: Default material properties, all wood species 

Parameter Units spruce beech azobé

E11 11000 13000 20000
E22=E33 370 860 1330
G12=G13 690 810 1250

G23 50 59 91
ft,0 24 41 72
fc,0 36 45 58
ft,90 0.7 1.0 1.0
fc,90 4.3 14.2 23.2
fv 6.9 6.9 8.6

froll 0.5 0.5 0.6
Gf,0 60 100 180
Gf,90 0.5 0.71 0.71
Gf,v 1.2 1.2 1.5

Gf,roll 0.6 0.6 0.7
  - 0.0001 0.0001 0.0001

MPa

N/mm

 
 

5.3 EMBEDMENT MODELS 

The extensive discussion of material models was necessary to understand the innovative 
contribution of the material model developed in this thesis. This model is able to model 
stable crack growth while at the same time developing elastic perfectly plastic stress 
curves for compression loads. It was also important to clarify the problems still connected 
with the material model, especially the spurious energy modes and the lack of load 
transfer from fully damaged element to neighbouring elements.  

After the material tests, embedment tests were modelled. Numerical models using three 
species, spruce, beech and azobé, and two different steel dowel diameters were 
simulated17. The material properties were given in Table 5-2. Figure 5-33 shows the 
embedment models with the most relevant information. The friction coefficient between 
timber and steel dowel was assumed to be 0.5. The symmetry of the model with regards 
to the width and the thickness is used and only a quarter is modelled. All models were run 
with the theory of large displacements. The used 3D elements were linear Gaussian 
bricks with eight integration points and full integration.  

As for mesh regularisation techniques, it was decided to deactivate the crack band model 
as no localisation is expected. The crack band model could lead to opposite mesh 
dependency as discussed in section 4.6.2, Figure 4-20. However, the effect of the crack 

                                                 
17 As the developed material model is a homogenised continuum model, no difference for different dowel 
diameters is expected. 



Chapter 5 Structural models 

 126

band method on the model results was checked. No difference could be observed for the 
models with and without crack band method, see exemplarily Figure 5-34.  

Other model variations than wood species and dowel diameter were carried out: 

 Mesh: 
The default mesh was refined or coarser in order to get an idea on how mesh 
sensitive the models are.  

 Different material properties (only section spruce): 
The values for the fracture energies are changed to investigate their influence on 
the modelling result. This also because it is assumed that the fracture energies are 
the major calibration values of the models. Other values such as the MoE are not 
changed.  

 Different threshold value for damage variables in UMAT18 (only section spruce): 
In the previous section, the problems of collapsing elements was discussed. One 
idea to improve the element behaviour is to increase the damage threshold in 
order to avoid a complete 3D stiffness reduction. By doing so, a residual stiffness 
in all directions is maintained which should reduce the uncontrolled collapse of 
elements 19 . However, this is not an ideal solution as it introduces a non-
controlable parameter into the material model that has no physical meaning. It is 
done here anyway to investigate the causes of artificial softening. 

 High strength and very high strength steel dowels20 (only section beech): 
This should not have any influence on the modelling results as the dowels are not 
bending in this test setup. 

 Different friction coefficient (only section azobé). 

The load-slip data were derived from the displacement of the dowel and the reaction 
forces of the timber piece. 

All geometrical data of the models such as thickness and width can be taken from chapter 
6 where the experimental results will be presented. 

 

                                                 
18 A threshold value for the damage variables is given in order to avoid that the variables assume values 
equal or even lower than zero. This threshold value is put to 0.9999995 being the maximum value of the 
damage variables dM (thus never dM = 1). The variations carried out here assumed threshold values of 0.99 
and 0.8. 
19 Another approach could be to introduce a maximum value of the strain components to avoid the sudden 
increase of strains once a material direction is completely damaged. However, this is probably difficult due 
to equilibrium requirements.  
20 Young’s modulus and strength properties see Table 6-1; Poisson’s ratio  = 0.3. 
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Figure 5-33: Quarter of embedment model; a) with boundary conditions, materials and  

default mesh, b) detail coarse mesh, c) detail default mesh, d) detail fine mesh 

 

5.3.1 Spruce 

Firstly, the simulations were run with the material properties of spruce – just as the 
verification models in chapter 4 and the material models of the previous section. 
Embedment models with 12 mm and 24 mm dowels were developed. Figure 5-35 shows 
simulation results in terms of embedment strength versus displacement. Different model 
variations were overlapped to the default spruce model (with default mesh and material 
properties as indicated in Table 5-2). Generally it could be observed that the models are 
too brittle which however is a purely artificial brittleness. A higher deformation capacity 
than 1 mm can be expected. This unloading was due to excessive distortion of the first 
row of elements directly underneath the dowel and the fact that the second row of 
elements started to unload simultaneously to the first row. Once the first row of elements 
collapsed completely, the second row was not able to take over the load and continue the 
‘yielding’ of the specimen. A realistic outcome of the models is the yield drop that can be 
seen in Figure 5-35. 

 

a) 

b) 

d) 

c) 
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Different material properties 

The model was not susceptible to major changes of fracture energies. No difference could 
be observed between the default model and a model with Gf,0 = 6 N/mm. The model with 
Gf,90 = 0.05 N/mm and Gf,v = 0.12 N/mm showed a slightly lower load carrying capacity, 
but the same deformation behaviour inclusive the yield drop. 

Different mesh 

The fine mesh showed a slightly lower load carrying capacity than the default mesh, but 
with similar post-peak behaviour. As expected, the numerical problems with embedment 
models were less prominent than with material models (Figure 5-10 shows a much 
stronger mesh dependency than Figure 5-35). The coarse mesh showed more ductile 
behaviour than the default mesh.  

Different threshold values for damage variables 

An increase of the threshold value influenced the collapsing behaviour of the elements 
directly underneath the dowel considerably. Even more, with a threshold value of 0.8, the 
fixed damage variables that kept a residual constant stiffness of 20% led to a hardening 
with increasing strains which is a similar behaviour as densification. This densification 
was so strong that no ductile behaviour could be observed anymore. A threshold value of 
0.8 is not realistic. Interestingly enough, with a threshold value of 0.8, the numerical 
model finished the calculation up to the required displacement of 5 mm in one third of the 
calculation time. 

A threshold value of 0.99 confirmed the assumption that the observed softening of the 
models is a numerical effect of the excessive distortion of the first row of elements 
underneath the dowel and the unloading of the second row of elements. This second row 
of elements could not take higher loads once the first row collapsed. Through a threshold 
value for the damage variables and a resulting constant residual value of all stiffness 
properties, the first row of elements did not collapse completely. The softening was less 
strong than with the default model. For instance, the strain components 33 were smaller 
than with the default model as shown in Figure 5-36. Furthermore, the deformations of 
the model with a threshold value of 0.99 were different from the default model. 

However, the insertion of such an uncontrollable artificial parameter with no physical 
meaning is not wished in the final subroutine. As already stated, it is done here anyway to 
investigate the causes of the discussed artificial softening. A higher threshold value will 
not be used in further modelling. 
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Figure 5-34: Embedment model spruce with 24 mm dowels;  

default model withand without crack band model 
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Figure 5-35: Embedment model spruce with 24 mm dowels; stress-slip graphs with varied 

parameters, overlap of default model and model with Gf,t,0 = 6 N/mm 

 

A closer look is taken into the default model spruce with 24 mm hss dowels. Figure 5-37 
shows the damage variable dc,0 and dt,90 at the last increment. The timber underneath the 
dowel was completely crushed (Figure 5-37a) and splitting was initiated (Figure 5-37b). 
The stress components 11 at different increments are shown in Figure 5-39 (increments 
see Figure 5-40). The stress components 11 developed correctly. Directly underneath the 
dowel, compression stresses developed which were evenly distributed over the thickness. 
Also the damage development in transverse tension and shear is correct as can be seen in 
Figure 5-38: element a as indicated in Figure 5-37b starts to fail in longitudinal shear 
whereas element b starts to fail due to high tension stresses perpendicular-to-grain. 
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For the element directly underneath the dowel identified in Figure 5-39, strain 
components and some damage variables are shown in Figure 5-41. The reason for the 
unrealistic stress development was extensive element distortion as can be seen in Figure 
5-41a. This is analogous to the material models (Figure 5-7). For instance, the damage 
variable in compression parallel-to-grain, SDV11, developed realistically until the 
element distortion started that caused a sudden increase in damage perpendicular-to-grain 
and in shear. Another unrealistic development was that the element was later also failing 
in tension parallel-to-grain, SDV10, although it had already failed in all other directions 
and in compression parallel-to-grain. 
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Figure 5-36: Strain component 33; a) default model, b) model with threshold value of 0.99 
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Figure 5-37: Embedment model spruce with 24 mm dowels; a) damage variable dc,0; 
b) damage variable dt,90 and indication of elements a and b 
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Figure 5-38: Stress components 22 and 12; a) element a; b) element b (see Figure 5-37) 

 

 X
YZ

(Avg: 75%)
S, S11

−3.600e+01
−3.100e+01
−2.600e+01
−2.100e+01
−1.600e+01
−1.100e+01
−6.000e+00
−1.000e+00
+4.000e+00
+9.000e+00
+1.400e+01
+1.900e+01
+2.400e+01

−8.053e+01

+5.342e+01

X
Y Z      

(Avg: 75%)
S, S11

−3.600e+01
−3.100e+01
−2.600e+01
−2.100e+01
−1.600e+01
−1.100e+01
−6.000e+00
−1.000e+00
+4.000e+00
+9.000e+00
+1.400e+01
+1.900e+01
+2.400e+01

−4.934e+01

+1.345e+02

X
Y Z

X
YZ           

 

 X
YZ

(Avg: 75%)
S, S11

−3.600e+01
−3.100e+01
−2.600e+01
−2.100e+01
−1.600e+01
−1.100e+01
−6.000e+00
−1.000e+00
+4.000e+00
+9.000e+00
+1.400e+01
+1.900e+01
+2.400e+01

−1.056e+02

+5.036e+01

X
Y Z       

(Avg: 75%)
S, S11

−3.600e+01
−3.100e+01
−2.600e+01
−2.100e+01
−1.600e+01
−1.100e+01
−6.000e+00
−1.000e+00
+4.000e+00
+9.000e+00
+1.400e+01
+1.900e+01
+2.400e+01

−8.298e+01

+7.305e+01

X
Y Z

X
YZ      X

YZ

(Avg: 75%)
S, S11

−3.600e+01
−3.100e+01
−2.600e+01
−2.100e+01
−1.600e+01
−1.100e+01
−6.000e+00
−1.000e+00
+4.000e+00
+9.000e+00
+1.400e+01
+1.900e+01
+2.400e+01

−9.223e+01

+7.861e+01

X
Y Z  

 

Figure 5-39: Embedment model spruce with 24 mm dowels (quarter); stress component 11; 
at increments 50 (with indication of element), 115, 120, 130, 140, 300 
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Figure 5-40: Embedment strength – displacement of embedment model spruce with 24 mm dowels  

 

 

EE13

EE11EE22

EE12 EE33

    

SDV15

SDV11

SDV14

SDV12
SDV10

 
 

Figure 5-41: a) Strain components of indicated element in Figure 5-39 (increment 50) 
b) damage variables of indicated element in Figure 5-39 (increment 50) 

 

 

To illustrate the incapability of the model to transfer stresses to the next row of elements 
once one row has collapsed and distorted excessively, integration point results in terms of 
stress component 11 are shown in Figure 5-42 for elements in different rows underneath 
the dowel. It can be seen that once element 1 directly underneath the dowel has failed, 
element 2 does not take over the load. The stress component 11 of element 2 does not 
reach the compression strength parallel-to-grain. 

a) b) 
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Figure 5-43 finally shows the overlap of the default model for 12 mm and 24 mm dowels. 
The number of elements was the same for both models. As expected, no difference in 
load carrying capacity can be observed. The different load-slip behaviour is due to the 
different element size which start to distort excessively at smaller deformations for the 
models with 12 mm dowels which has smaller elements. 
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Figure 5-42: Spruce with 24 mm dowel, typical development of stress component 11  
(compression parallel-to-grain) for indicated elements 
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Figure 5-43: Stress-slip graph of embedment model spruce with 12 mm and 24 mm dowels 
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5.3.2 Beech 

The next models were run with the material properties for beech (Table 5-2). Two meshes 
were run, the default and the coarse mesh from Figure 5-33. Additionally, two different 
dowel steel grades, high strength steel (hss) and very high strength steel (vhss), were 
modelled21. Young’s modulus and strength properties of the steel were taken from Table 
6-1 and the Poisson’s ratio was assumed to be 0.3. No difference in load carrying 
capacity and load-slip behaviour is expected for the different steel grades as the dowels 
do not bend in embedment models. Figure 5-44 confirms this assumption. Indeed no 
difference can be observed for the models with hss and vhss. Additionally, the models 
with coarse mesh can be seen also in Figure 5-44. The same trend as with the spruce 
models can be observed (see Figure 5-35. For azobé, see Figure 5-45). All deformations 
of the default models stop at around 1 mm which is not due to failure of the timber, but to 
local failure of the elements directly underneath the dowel. The failures represent 
numerical failures that have no physical meaning. Analogously to spruce, also here 
higher deformations can be reached for the coarse mesh. 
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Figure 5-44: Stress-slip graph of embedment model beech with 24 mm dowels,  

hss and vhss dowels, default and coarse mesh 
 

5.3.3 Azobé 

Finally, default embedment models (Figure 5-35 with default mesh c) with the material 
properties for azobé from Table 5-2 were run. This time, the friction coefficient between 
timber and dowel was changed: the default coefficient  = 0.5 was used together with 

                                                 
21 Instead of hss, mild steel (S235) was ordered. However, tension tests proved that the steel grades 
corresponded to S520 or S610 and thus to hss instead. 
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values of  = 0.1 and  = 0.7. Figure 5-45 shows the results. As expected, a higher 
friction coefficient leads to higher embedment strength whereas a lower friction 
coefficient leads to lower embedment strength.  

The overlap of the default model for all three wood species is shown in Figure 5-46. 
Although the mesh was the same for all species, the beech models reached a higher 
deformation before the numerical collapse. This indicates that the chosen mechanical 
properties influence the numerical behaviour and the excessive element distortion. 
Another interesting finding is the ratio of embedment strengths of the three species. The 
ratios of embedment strengths reached in modelling do not reflect the ratios of the 
mechanical properties used for modelling. If considering the mechanical properties used 
in the models, especially the compression strength parallel-to-grain, then the beech model 
should show an embedment strength closer to the capacity of spruce. Instead, the 
embedment strength of beech is considerably closer to the result for azobé. Furthermore, 
yield drops can be seen for spruce and azobé, but not for beech. 
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Figure 5-45: Stress-slip graph of embedment model azobé with 24 mm dowels, 

three different friction coefficients 
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Figure 5-46: Stress-slip graph of default embedment models  

spruce, beech and azobé, all 24 mm dowels 

 

5.3.4 Conclusions 

The developed material model is able to properly simulate the (initial) nonlinear ductile 
behaviour of embedment models which is caused by crushing of fibres underneath the 
dowel. Also initiation of splitting is indicated correctly by perpendicular and shear 
damage. Different wood species reach different ultimate loads. 

However, numerical problems are persistent. The most important issues from the material 
tests were observed again. All load-slip graphs of the embedment models show initial 
ductile behaviour. When the first row of elements underneath the dowel distorts 
excessively, a sudden drop in load carrying capacity occurs after which the models 
continue to ‘yield’. This brittle softening is not due to material failure, but due to failure 
of a localised band of elements. It represents a numerical failure with no physical 
meaning other than that the wood underneath the dowel is collapsed completely being 
thus an artificial softening. When the elements directly underneath the dowel reach their 
ultimate 3D load carrying capacity and fail in all material directions, they start to distort 
excessively leading to a calculation stop. One fundamental problem connected to the 
excessive distortions is the fact that once the first row of elements is unloading, also all 
other elements are unloading. These unloading elements do not take higher loads after the 
collapse of the first row of elements although they did not yet reach their ultimate 
capacity. In a certain sense the loading is not transferred to the next row of elements, no 
stress redistribution takes place. Therefore, the localised band of elements directly 
underneath the dowel governs the global load-slip behaviour. 

Mesh dependency seems to be a direct result of this behaviour. Element distortion could 
be considered as being a ‘geometrical’ effect depending on the element size. The bigger 
the elements, the bigger the sustainable displacements before collapse. This could be also 
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observed for the tension models of section 5.2.1 where the models with coarse mesh 
failed later than the models with fine mesh thus reaching a higher load carrying capacity 
(Figure 5-10). 

The most urgent further research effort must be put into element distortion control and a 
proper transfer of loads once one band of elements has failed. This transfer of loads is 
expected to lead to a more ductile behaviour.  

5.4 JOINT MODELS 

The final modelling steps are 3D joint models. Double-shear timber joints with slotted-in 
steel plates and with one, three and five dowels in a row were modelled. Three different 
wood species, spruce, beech and azobé, and two different dowel diameters, 12 mm and 
24 mm, were simulated. Symmetry planes were used and only a quarter was modelled. 
The model for a joint with one dowel is shown in Figure 5-47. The models for joints with 
three and five dowels are analogous and are shown in Figure 5-48. The crack band model 
was deactivated. 

Sensitivity studies with different mesh and problem analyses have been done with the 
previous material and embedment models. Therefore, the focus of the joint models lies in 
running all chosen variations as indicated in Figure 5-49. This was done with view of the 
experimental programme carried out later and whose outcomes can then be compared 
with the predictions presented here. 

The mesh was kept constant for all models and was the same as for the default 
embedment models22. Also the models with 12 mm and 24 mm dowels had the same 
number of elements which means that the elements of the models with 12 mm dowels 
were half the size of the elements of the models with 24 mm dowels.  

The load-slip graphs of the models are derived as indicated in Figure 5-47a with the force 
being the sum of the reaction forces in X-direction of the model and the displacement 
being the displacement in X-direction of the indicated node on the upper outer end of the 
slotted-in steel plate. 

The nomination is as follows: 
 First letter indicates wood species: S = spruce,  B = beech,  A = azobé; 
 First number indicates dowel diameter: 12 = 12 mm dowel,  24 = 24 mm dowel; 
 Second letter indicates steel grade: C = hss, no C = vhss; 
 Second number after dash indicates number of dowels: 

1 = 1 dowel,  3 = 3 dowels,  5 = 5 dowels. 

 

                                                 
22 Of course, the number of elements over the thickness was different. 
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Ux = 20mm

symmetry plane
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wood,
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load-slip curve

Ux = Uy = Uz = 0,
reaction force for
load-slip curve

       
 

Figure 5-47: Typical model with one dowel, default mesh and boundary conditions;  
a) overview, b) symmetry plane in width, c) symmetry plane in thickness 

 

 
Table 5-3: Number of elements of wood specimen around dowels 

Number of elements in 
quarter model

dowel diameter 12

in thickness, Z-direction 13

in width, Y-direction 4

in length, X-direction 12
 

 

 

     

Displacement for
load-slip curve

 
 

Figure 5-48: Typical models for joints with three (A24-3) and five dowels (B24C-5) 

 

a) b) c) 
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Species:
1. Spruce
2. Azobé
3. Beech

hss
dowels

mild steel
dowels

12mm

1, 3, 5 
dowels 
in a row

24mm 12mm 24mm

1, 3, 5 
dowels 
in a row

1, 3, 5 
dowels 
in a row

1, 3, 5 
dowels 
in a row

 
Figure 5-49: Flowchart of model variations 

 

The main modelling parameters are summarised below: 

 Steel: 
Von Mises plasticity with properties from Table 6-1 for high strength steel and 
very high strength steel, Poisson’s ratio  = 0.3.  

 Wood:   
Only an inner region around the dowel (with half the width of the timber 
specimen and a height of 3 times the dowel diameter) is modelled applying the 
developed material model. The outer timber is modelled as linear elastic. Material 
input values are given in Table 5-2. 

 Friction: 
Between timber and steel parts  = 0.5; between steel parts  = 0.3. The stick-slip 
model with penalty formulation was used. 

 Element type: 
3D linear blocks with eight integration points were used. 

The theory of large displacements was activated. The initial increment size was chosen to 
0.001 and automatic incrementation was used. The number of increments was limited to 
500. 

All geometrical data such as height, dowel spacing or timber member thickness can be 
taken from chapter 7 where the experimental results will be presented. 

 

5.4.1 Joints with one dowel 

Figure 5-50 and Figure 5-51 show the results for all joint models with one dowel where 
the hss dowels are represented with dotted lines. The increase in load carrying capacity 
between hss and vhss dowels can be seen. The transition between the elastic and the 
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plastic regime occurred slower for vhss dowels. Until the initiation of plastification of the 
hss dowels, the stiffness was the same and increased from spruce over beech to azobé – 
according to the higher elastic properties of the hardwoods. The load carrying capacity 
differed for the wood species as expected with azobé reaching the highest load carrying 
capacity. The observed ‘artificial softening’ started at different displacements which 
could be assigned to the effect of the different mechanical properties on element collapse. 
The mesh remained the same for all models. 

Representatively for all joint with hss, the results in terms of damage variable dc,0 of the 
spruce model with one 24 mm hss dowel are shown in Figure 5-52a where the fibre 
crushing underneath the dowel can be observed. Figure 5-52b shows the stress 
component 33 to visualise the dowel bending. 
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Figure 5-50: a) Load-slip graphs for all models with one 24 mm dowel;  
b) detail of graph 
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Figure 5-51: a) Load-slip graphs for all models with one 12 mm dowel;  
b) detail of graph 
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Figure 5-52: Spruce joint with one 24 mm hss dowel at last increment;  
a) damage variable dc,0, b) Stress component 33 

 

The damage variable dt,90 for the beech joint with one 12 mm vhss steel dowel is shown 
in Figure 5-53. The stress components 22 and 12 of the indicated elements are given in 
Figure 5-54 and Figure 5-56. The damage variable dt,90 is coupled to dv and droll;. The 
shown damage is thus a smeared damage that can be triggered by high transverse tension 
stresses or high shear stresses. The indicated elements started to fail due to high 
transverse tension or shear, depending on their location. Element a started to fail in 
transverse tension whereas element b failed in longitudinal shear. These are correct 
predictions. Element b which is located on the side of the dowel developed high 
transverse compression stresses at higher dowel displacements. Also this is correct. The 
dowel induces compression stresses perpendicular-to-grain when it is embedding in the 
timber member. In Figure 5-53, also the initiation of splitting can be observed. For 

a) b)

a) b) 
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instance, at increment 10, damage dt,90 (and, coupled, dv) started whereas no damage due 
to compression parallel-to-grain, dc,0, was observed yet.  

 

(Avg: 75%)
SDV12

+0.000e+00
+8.333e−02
+1.667e−01
+2.500e−01
+3.333e−01
+4.167e−01
+5.000e−01
+5.833e−01
+6.667e−01
+7.500e−01
+8.333e−01
+9.167e−01
+1.000e+00

−1.047e−01

+1.018e+00

X
Y

Z

        

Element a
Element b

 
 

Figure 5-53: Beech joint with one 12 mm vhss dowel at a) increment 10 and  
b) last increment 184; damage variable dt,90; elements a and b indicated 
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Figure 5-54: Stress components 22 and 12 of beech joint with one 12 mm vhss dowel;  
a) element a - 22 governs, b) element b - 12 governs, elements indicated in Figure 5-53 

 

Joints with one dowel are more ductile than joints with more than one dowel in a row. 
The global load-slip behaviour can be influenced tremendously by the chosen material 
parameters. Especially the fracture energies should have a considerable influence on the 
joint behaviour. A change in material properties should also change the distortion 
behaviour of the weakest row of elements. A short study modifying material properties 
for beech joints was done to investigate the sensitivity of the joint models on certain 
material parameters. A joint with beech was chosen because usually, beech splits later 
and therefore, beech joints are usually more ductile than spruce or azobé joints (see also 
section 6.3.4). Figure 5-55 shows the results for a beech joint with one 24 mm hss dowel 
and different material properties as given in Table 5-4 where the modified material 
properties are highlighted. It can be seen how fundamentally the joint behaviour was 

a) b)

a)    10 b)    184
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changing. The model ‘iso’ with approximately isotropic properties ‘yielded’ much longer 
and behaved more stiff. This indicates that it is the low properties perpendicular-to-grain 
and in shear that led to early nonlinear behaviour. The load carrying capacity also 
changed considerably. When only the fracture energies in tension perpendicular-to-grain 
and longitudinal shear were increased (model ‘G90.v’), the global behaviour did not 
change a lot except that after the first artificial softening, a larger ductility was reached. If 
the transverse tension strength and the longitudinal shear strength were increased together 
with the fracture energies (model ‘90.v’), nearly twice the displacement could be reached. 
This behaviour was similar for the last case with modified material parameters where 
additionally, the rolling shear strength and fracture energy were increased (model 
‘90.v.roll’). 

The ‘iso’ model was repeated for the beech joint with one vhss dowel. The load carrying 
capacity was higher than for the model with the default material properties and more 
ductile. 

The shown influence of material parameters on the calculation results enhances again the 
need of further study into how the necessary mechanical properties are derived. 

 
Table 5-4: Material properties for beech joints 

Parameter Units default  'iso'  'G90.v'  '90.v'  '90.v.roll'

E11 13000 13000 13000 13000 13000

E22 = E33 860 860 860 860 860

G12 = G13 810 810 810 810 810

G23 59 59 59 59 59

ft,0 41 41 41 41 41

fc,0 45 45 45 45 45

ft,90 1.0 41 1.0 10 10
fc,90 14.2 45 14.2 14.2 14.2

fv 6.9 40 6.9 10 10
froll 0.5 40 0.5 0.5 10
Gf,0 100 100 100 100 100

Gf,90 0.71 100 50 50 50
Gf,v 1.2 100 50 50 50

Gf,roll 0.6 100 0.6 0.6 10

  - 0.0001 0.0001 0.0001 0.0001 0.0001

MPa

N/mm
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Figure 5-55: Load-slip graphs for beech model with 24 mm hss dowel and different 

material properties 

 

5.4.2 Joints with three dowels 

The models with three dowels in a row were more brittle as can be seen in Figure 5-56. 
The saw-tooth like behaviour reflected the progressive failure around the dowels. The 
first dowel with local failure in the row of elements directly underneath the dowel was the 
one close to the joint end. The simulations of the joints with azobé stopped in the elastic 
range of the steel dowels when no difference between hss and vhss dowels can be 
observed. However, damage in the timber members did already take place. This can be 
seen also in the load-slip curve where a small yield drop can be identified and the curve is 
not linear. The reason for the premature calculation exit due to convergence problems 
should be due to the different material properties for azobé. Nothing else in the model 
was changed. If considering Table 5-2, it can be observed that the ratios between the 
different material properties change considerably. For instance, the tension strength 
perpendicular-to-grain and the shear strength do not increase as much as the other 
strength values. This could lead to convergence problems for azobé, but less for spruce 
and beech. 

Figure 5-57a shows the damage variable dc,0 indicating damage in compression parallel-
to-grain for the beech model with three hss dowels. The crushing of fibres underneath the 
dowels can be nicely seen. In Figure 5-57b, the onset of splitting due to 22 can be 
observed. The interaction between the dowels led to earlier splitting. The crack initiation 
also between the dowels is a realistic prediction. If looking at the load carrying capacity 
of a beech joint with one hss dowel (= 144 kN) in comparison with the load carrying 
capacity of the same joint with three hss dowels (= 314 kN), a strong decrease in capacity 
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can be observed. The strength of a joint with three dowels is only 2.2 times the strength 
of a joint with one dowel. 

The same discussion as for the joints with one dowel is valid. Higher ductility can be 
reached by changing the material parameters where especially the fracture energy is a 
significant calibration value. Certainly the azobé joint could yield better results when the 
mechanical properties are adjusted in order to reach higher displacements and thus also 
higher load carrying capacities. 
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Figure 5-56: Load-slip graphs for all models with three 24 mm dowels 
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Figure 5-57: Beech joint with three 24 mm hss dowels at last increment; 
a) damage variable dc,0, b) damage variable dt,90 
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5.4.3 Joints with five dowels 

The results for the joints with five dowels are even more brittle. The maximum load 
carrying capacity cannot be reached at all as can be seen in Figure 5-58. Convergence 
problems led to an early exit. No dowel bending could be observed yet. However, failure 
started which led to a nonlinear load-slip behaviour as can be seen in Figure 5-58 where 
the initiation of cracks can be observed in the slightly saw-tooth shaped curves. Figure 
5-59a shows the stress component 11 that indicates the compression stresses directly 
underneath the dowels. Figure 5-59b shows the initiation of failure in compression 
parallel-to-grain.  
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Figure 5-58: Load-slip graphs for all models with five 24 mm dowels 
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Figure 5-59: Azobé joint with five 24 mm vhss dowels at last increment; 
a) stress component 11, b) damage variable dc,0 
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5.5 CONCLUSIONS 

A major advantage of the developed material model is the possibility to visualise damage 
due to different failure mechanisms. For instance, the crushing of fibres underneath the 
dowel is caused by compression parallel-to-grain and can be identified with the damage 
variable dc,0. The other major advantage is the possibility to reproduce ductile behaviour 
under compression stresses and brittle behaviour under tension and shear not only for 
uniaxial states of stress, but also for complex 3D structures. These innovative features of 
the developed mathematical model can be used to thoroughly analyse damage 
mechanisms that occur during experiments. 

The developed material model needs a limited number of material parameters when 
compared to other approaches (e.g. Grosse, 2005, Fleischmann, 2005) to provide insight 
in the mechanical behaviour of wood. Furthermore, the used parameters are well-defined 
mechanical properties that can be derived from experimental results. The material model 
works in combination with contact algorithms (i.e. friction) and other material models.  

The transition from the linear elastic to the nonlinear elastic regime with distinct ductile 
behaviour due to compression stresses parallel-to-grain is seen in the model predictions. 
However, the observed load drop at small deformations is not expected to reflect the 
failure of the timber in splitting or shearing which is expected at higher deformations. 
This early load drop seen in the model is caused by complete failure of the row of 
elements directly underneath the dowels and the subsequent lack of load transfer and 
stress redistribution to the still intact next row of elements. The collapsed elements show 
spurious energy modes and eventually lead to calculation exit.  

As the spurious energy modes are strongly connected to the 3D strength and damage 
onset of the material model, the modification of the material parameters towards more 
‘isotropic’ material with less strength differences in the different material directions lead 
to a more robust calculation reaching higher model deformations. 

Further research should deal with improvements with regards to the spurious energy 
modes and the load transfer and stress redistribution between elements. Better element 
formulations or progressive element deletion could be possible solutions in order to reach 
higher ductility of the models. 
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6  
COMPONENT TESTS 

The two material parameters that are needed for the design of timber joints are 
embedment strength of the timber members and bending capacity of the steel fastener. In 
this chapter, the necessary component tests to establish the two needed input values are 

presented. Tension tests on the two dowel steel grades used for joint tests are undertaken. 
Furthermore, dowel embedment tests parallel-to-grain with spruce, beech, azobé, cumaru 

and purpleheart are carried out. Three of these species are also used for the joint tests. 
Embedment tests enhance understanding of the mechanical behaviour of the system 

timber-dowel. 

6.1 INTRODUCTION 

In order to design timber joints with semi-rigid fasteners, two material parameters are 
needed. Firstly, the bending capacity of the steel fasteners is needed. The first part of this 
chapter will discuss tension tests on the same steel dowels that are later used for joint 
tests. Two steel grades were used, high strength steel dowels and very high strength steel 
dowels with a mean tension strength of about 1200 MPa. 

The second part deals with embedment tests. Just like the tension tests on steel dowels, 
the embedment tests were carried out as pretests for joint tests. Embedment tests are less 
complex tests than joint tests and it is thus simpler to understand the contribution of 
certain aspects such as wood species, steel grade or dowel diameter to the global 
mechanical behaviour. This also explains the importance of embedment tests for 
modelling. The model control and calibration is straightforward. The validity and 
reliability of models are verified more easily. 

The equations given in the European timber design code EC5 (CEN, 2004b) for different 
dowel-type fasteners such as nails, bolts and dowels are valid for all timber species and 
depend on the fastener diameter and the material (characteristic) density.  
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In previous research (Whale and Smith, 1986b, Whale and Smith, 1986c, Ehlbeck and 
Werner, 1992b, Hübner et al., 2008, Vreeswijk, 2003), tests were carried out on softwood, 
European and tropical hardwoods. Own test results on the wood species spruce, beech, 
azobé, cumaru and purpleheart were added to this already existing database. The 
extended database was analysed with regards to equations for joint design. Differences 
between wood species and steel grades are discussed more thoroughly as this may be 
relevant also for joint analyses. A thorough discussion of the embedment test results can 
be found in Sandhaas et al. (2010).  

6.2 TENSION TESTS ON STEEL DOWELS 

The ordered 12 mm dowels were of steel grade 12.9 (vhss) and galvanised S235 (mild 
steel). The 24mm vhss dowels were obtained through a thermal treatment from 
42CrMoS4 alloy steel (CEN, 2006) whereas the 24 mm galvanised mild steel dowels 
were made from 11SMnPb30 (CEN, 2008), a free-cutting steel grade. Standard tensile 
tests have been carried out and the results can be seen in Table 6-1. All results, graphs 
and steel certificates are given in Appendix A.  

 
Table 6-1: Results of tension tests on steel dowels 

Steel 
grade 

diameter 
number of 
specimens 

MoE [MPa] Rp0.2 [MPa] Rm [MPa] strain at failure [%] 
(number of 
specimens) mean COV mean COV mean COV 

vhss 
12 5 219242 3.8% 1324 9.4% 1399 9.5% 7.29 (2) 

24 7 210883 2.2% 1297 1.6% 1379 1.0% 11.54 (2) 

hss 
12 6 199851 9.9% 609 19.4% 638 16.3% 9.96 (2) 

24 3 215367 10.0% 517 16.2% 541 14.9% 12.72 (2) 

 

For the vhss dowels, a mean proof strength at 0.2% extension of Rp0,2 = 1311 MPa and an 
ultimate strength of Rm = 1389 MPa was found. The ordered mild steel did not 
correspond to mild steel grades, but to hss grades with mean values of Rp0,2 = 563 MPa 
and Rm = 590 MPa. Obviously, their mechanical properties are considerably higher than 
the values for S235 which was the ordered steel grade. 

For a lesser quantity of specimens, extensometers were used to record the strain at failure. 
As can be seen in Table 6-1, around 10% strain at failure could be reached for vhss. 
However, the strength values found for 12 mm and 24 mm dowels were quite different. 
For the hss dowels, the steel grade was simply different for the two diameters (even 
within the diameters – see Table A-1 results for 12 mm hss dowels). As for the vhss 
dowels, the 24 mm dowels were produced by thermal treatment from steel 42CrMoS4. 
Standard bolts M12 12.9 were used as 12 mm dowels instead. This explains the 
differences in results. The two dowel diameters were of different origin. 
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Especially the results for the ‘mild steel’ dowels did not meet the expectations. S235 was 
ordered for the 12 mm dowels, but the actual strength values are much higher and are 
corresponding to hss. Furthermore, no hardening could be observed at all (for this, please 
refer to Figures A-1 to A-5 where the stress-strain curves of the tension tests are given). 
The difference between Rp0,2 and Rm was much less than expected which is an important 
finding. It seems that the dowels had undergone a mechanical and/or thermal treatment 
which completely changed their mechanical properties.  

A closer look was given to the surface roughness. Since the surface roughness is an 
important parameter influencing the embedment strength as shown by Rodd (1973), the 
roughness of the used dowels was measured at eight points per dowel. Table 6-2 gives the 
results. However, no significant difference could be measured between hss galvanised 
and black vhss steel dowels. Quite the contrary, the hss dowels had a slightly rougher 
surface than the vhss dowels. Therefore, also Vickers hardness tests were carried out. The 
vhss steel dowels were more than twice as hard as the hss dowels. 

 
Table 6-2: Surface roughness measurements on dowels 

 
hss dowels (galvanised), 

n = 56 
vhss dowels (black), 

n = 64 

Mean diameter 23.94 / 11.96 mm 23.97 / 11.78 mm 

mean surface roughness Ra 0.88 m 0.80 m 

COV of Ra 34.8% 30.1% 

Mean Vickers hardness 221 HV 492 HV 

 

As stated in the beginning, the plastic bending capacity of the steel dowel is needed in 
order to design timber joints. Therefore, this issue is discussed more thoroughly in the 
following. 

Two equations are available for the calculation of the bending capacity of a dowel. The 
yield moment of the dowels can be calculated with Equation (6-1) from mechanics for the 
full plastic capacity or with the empirical regression equation (6-2) from EC5 (CEN, 
2004b). 

3

, 6y y k

d
M f  (6-1) 

2.6
,0.3y u kM f d (6-2) 

where My = plastic moment in [kNm], d = dowel diameter in [mm], fu,k = characteristic ultimate strength in 
[MPa], fy,k = characteristic yield strength in [MPa]. 

 

The background of Equation (6-2) is explained in Blaß et al. (2000). It is assumed that 
dowels reach their full plastic capacity at bending angles of 45°. However, observed 
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bending angles of dowels in joints are much less than 45° (Jorissen, 1998). This means 
that only the outer areas are under plastic strain and that subsequently not the full plastic 
capacity is used. The activated bending moment of the dowel will lie between the elastic 
and the fully plastic capacity. 

EN 26891 (CEN, 1991) states that joints should be tested up to ultimate load or up to a 
deformation of 15 mm. A slip of 15 mm however means that thin dowels approach a full 
plastic hinge whereas thick dowels will not as they will have to deform much less to 
reach a global joint deformation of 15 mm. Equation (6-2) was derived based on the 
above considerations as it was argued that the theoretical Equation (6-1) is not safe 
enough as the calculated theoretical bending capacity of the dowels is too high. 

Furthermore, Equation (6-2) uses the ultimate strength fu of the dowels by arguing that 
the ratio of fy / fu, the strain hardening, has a certain value. The yield strength fy is 
substituted as a percentage of the ultimate strength fu. Blaß et al. (2000) stated explicitly 
that such a derivation of the effective bending capacity is conservative for a high tension 
strength of the fasteners and a low density of the wood. 

However, nowadays high performance vhss dowels are available that show considerable 
yielding without brittle behaviour. The ratio of fy over fu is significantly changing for vhss 
in comparison to mild steel. There is a smaller difference between ultimate and yield 
strength for vhss. Basically the yielding plateau is not existent and as can be seen in Table 
6-1, the ratio of fy over fu is around 0.94 whereas it is around 0.65-0.70 for mild steel of 
grades S235 and 355. Equation (6-2) was derived for mild steel dowels and is punishing 
for vhss dowels (Figure 6-1). Furthermore, as shown in Figure 6-1, the influence of the 
fastener diameter is getting more significant for bigger diameters.  

The difference of ordered steel grades and actually delivered steel grades points out an 
important issue for timber design. Maybe not only minimum, but also maximum 
properties of the steel fasteners should be given. Failure modes of joints could completely 
change if much higher steel grades with higher bending capacities are used.  

In this research, also the most unfavourable combination ‘vhss and 24 mm dowels’ was 
used. The argumentation above motivates the choice of Equation (6-1) in order to predict 
the load carrying capacity of the timber joints. Generally, the prediction using Equation 
(6-2) from EC5 should be better for the thinner 12 mm dowels and for mild steel. 
Equation (6-1) instead should deliver better predictions for the thicker 24 mm dowels and 
vhss – provided that the deformation of the joint at failure is big enough. 

Figure 6-2 illustrates another reason why the theoretical Equation (6-1) should be chosen. 
It can be seen that the plastified region is fastly increasing with increasing deformation 
angles of a 12 mm dowel (definition of increase of plastification x is given in Figure 6-3). 
This means that apparently even with small deformation angles a large section of the 
dowel is already plastified.  
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Figure 6-1: Relationship between steel grades, diameter and yield moment of the dowel 

(values for fy and fu given in Table 6-1) 
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Figure 6-2: Increase of plastification for a 12 mm dowel with increasing deformation angle 

 

An important remark is on the influence zone as defined in Figure 6-3. This influence 
zone is needed to derive the outer strains depending on the bending angle. Here, an 
influence zone of half the diameter was chosen. However, this is a simplified assumption. 
Per steel grade for instance, the influence zone will change. 

Figure 6-4 finally shows the development of the ‘true’ moment of a 12 mm dowel of mild 
steel and vhss with increasing bending angles and thus increasing plastification. The 
value of the moment at x = 0 is the elastic moment Mel and at x = r = 6 mm it is the fully 
plastic moment Mpl (Equation (6-1)). 

The development of the ‘true’ moment is gradual. The full plastic moment is only 
reached at about 85% of the radius. But as seen, a plastification of about 85% of the 
radius is reached already at small bending angles. 

hss 

vhss 
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Figure 6-3: Geometrical definitions 
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Figure 6-4: Development of true moment with increasing plastification, 12 mm dowel 
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6.3 EMBEDMENT TESTS 

6.3.1 Literature review 

The European method to determine embedding strength described in EN 383 (CEN, 2007) 
was developed by Whale and Smith (1989). The existing design rules used in EC5 (CEN, 
2004b) are based on their research results (Whale and Smith, 1986a) and those of 
Ehlbeck and Werner (1992a). The test range (Whale and Smith, 1986b, Whale and Smith, 
1986c, Ehlbeck and Werner, 1992b) was from softwood over European hardwood to 
tropical hardwood. Recent experimental research was performed by Sawata and 
Yasumura (2002) on Japanese pine and Hübner et al. (2008) on clear specimens of 
European hardwood. Both studies resulted in especially large databases with 1000 and 
2187 specimens, respectively. In Hübner et al. it is stated explicitly that 30 specimens 
should be tested per series in order to create statistically reliable databases. Furthermore, 
Hübner et al. investigated the embedment behaviour of specimens with different moisture 
content. Vreeswijk (2003) carried out embedment tests focussing however on tropical 
hardwood. 

A remark is given at this stage on the testing method as defined in EN 383. The European 
test is a full-hole test whereas for instance the relevant American standard ASTM D5764-
97a (ASTM, 2007) also provides a scheme for a half-hole test. There are ongoing 
discussions about these two testing setups. Some researchers prefer the half-hole tests in 
order to surely avoid fastener bending. However, it is the author’s opinion that half-hole 
tests are not correctly representing embedment as the influence of the wood on the side 
and above the fastener is not taken into account. If looking at numerical modelling of 
embedment tests for instance, all wood material around the fastener is stressed and can 
therefore not be neglected (Figure 4-50 in Schoenmakers (2010) gives a good example 
for a test perpendicular to the grain). Furthermore, by choosing a thin enough specimen, 
fastener bending is not considered as being of relevance. Unfortunately, no comparative 
studies seem to be available where tests applying both protocols were done. 

The sampling of the specimens was similar for Whale and Smith (1986b), (1986c) and 
Ehlbeck and Werner (1992b) who sampled based on density considerations. Ehlbeck and 
Werner for instance sampled respecting the following two conditions. Firstly, the mean 
density of all specimens of one wood species had to lie between 1.05 and 1.25 times the 
5%-fractile of the density (calculated assuming a Gaussian normal distribution). Secondly, 
the density of every single specimen should not be less than 90% or more than 110% of 
the mean density of the test series. In Hübner et al. (2008) tests were performed on clear 
wood whereas in Vreeswijk (2003), the sampling was random. 

All above-mentioned research was carried out according to EN 383 and the results may 
therefore be compared. For the assembling of the database however, only embedment 
properties parallel-to-grain were considered. The test results of Sawata and Yasumura 
(2002) and Hübner at al. (2008) were not considered. Whale and Smith (1986b), (1986c) 
and Ehlbeck and Werner (1992b) used tension and compression test specimens, the tests 



Chapter 6 Component tests 

 156

in Vreeswijk (2003) were carried out only in compression. In Ehlbeck and Werner, it was 
concluded that compression tests usually led to lower embedment strength values. In the 
database of Whale and Smith, the same trend could be observed with a maximum 
difference between tension and compression results of 9% for the tests with 20 mm 
dowels on Sitka spruce, where the compression test results themselves already had a 
coefficient of variation (COV) of 18.6%. Therefore, no distinction was made between 
tension and compression tests. 

A difference laid in different specimen geometries as shown in Figure 6-5. The low width 
of the specimens of Whale and Smith with 3d is remarkable. 

 

 

     

 Whale and Smith 
(1986b), (1986c) 

Ehlbeck and 
Werner (1992b) 

Vreeswijk (2003) 

 B 3d 6d 6d 
 T 2d 2d 1.5d 
 H1 7d 7d 7d 
 H2 7d 3d 7d 

    

Figure 6-5: Embedment test specimens and geometry 

 

The tests were carried out up to different maximum deformations by the different authors. 
Whale and Smith stopped the tests at a maximum displacement of 2.1 mm, but not all 
specimens reached this deformation limit. In Ehlbeck and Werner, tests were carried out 
up to 5 mm displacement. Also here not all specimens reached the limit before splitting. 
Vreeswijk instead continued testing up to final splitting. All authors used wood from a 
20/65 climate chamber. Whale and Smith and Vreeswijk measured the moisture content 
at testing. Further conclusions were given in Ehlbeck and Werner. They concluded that 
the dowel diameter did not influence embedment strength of azobé (Lophira alata). They 
also observed quite different deformation behaviour of beech (Fagus sylvatica) in 
comparison to other European hardwoods. In general, wood with higher densities (most 
tropical hardwoods) was more susceptible to splitting than European hardwood with 
lower density values. 

The final remark on past research concerns the equations with whom the embedding 
strength is determined and which are different in different standards. 

In EC5, the characteristic embedding strength of dowelled or bolted joints is determined 
according to Equation (6-3): 

 ,0, 0.082 1 0.01h k kf d    (6-3) 

where fh,0,k = characteristic embedding strength parallel-to-grain in [MPa], d = dowel diameter in [mm] and 
k = characteristic density in [kg/m3]. 
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As already stated, Equation (6-3) was derived from research by Whale and Smith (1986a) 
and Ehlbeck and Werner (1992a) depending on diameter and density. Steel type and 
moisture content were not varied. The step from mean values to characteristic values was 
done by replacing mean density by characteristic density. The regression coefficients 
were not changed. 

6.3.2 Test setup and specimens 

The tests were carried out at Karlsruhe University according to EN 383 (CEN, 2007), the 
European standard for embedment tests. The test setup shown in Figure 6-6 basically 
corresponded to the embedment tests of Ehlbeck and Werner (1992b). Two transducers 
were measuring the displacement of the wooden specimen with respect to the test rig. In 
order to do so, a pin was inserted in a small hole 37 mm above the loaded zone (see 
Figure 6-6b). By inserting the pin through the wood, asymmetry could be avoided. An 
even more precise method is described in Vreeswijk (2003), where tests were carried out 
by actually measuring the displacement of the bolt with respect to the wooden specimen 
leading to a more complex test setup, but also to more precise results because then, all 
external influence was avoided and the real behaviour of the steel-timber system was 
measured.  

 

          
                                                     a)                                                               b) 

Figure 6-6: Setup embedment test, a) specimen in rig with transducers, b) drawing 

 

All embedment tests were carried out parallel to the grain with dowel diameters of 12 mm 
and 24 mm of two different steel grades. The same dowels were used in the joint tests 
later on. The dimensions of the test specimens were the same as in Vreeswijk (2003) (see 
Figure 6-5) except for the thicknesses which were rounded: 20 mm for the tests with  
12 mm dowels and 40 mm for the tests with 24 mm dowels. The distance between the test 
rig and the specimen (indicated with an ellipse in Figure 6-6) was varied due to different 
embedment behaviour of the species with a maximum distance of 5 mm on each side. 
However, the dowels remained straight ensuring thus an approximately uniform stress 
distribution. Another variation of the tests was an insertion of a Teflon strip between 
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load-transferring steel plate and timber specimen. No statistically relevant difference, not 
even in the length of the ductile branch, could be observed with and without Teflon. 

In Table 6-3, all test specimens are listed together with their densities and moisture 
contents. The number of specimens is given and the varied parameters during the test 
such as steel grade of the dowels.  

The spruce and beech test specimens were stored in a climate chamber at normal climate 
20/65. The tropical hardwood instead was stored in a 20/85 climate chamber except for 
11 azobé specimens which were stored in a fog chamber. The tropical hardwood 
specimens were sawn from beams which had undergone four-point bending tests. The 
static MoE and MoR is thus known. 

 
Table 6-3: Embedment test specimens 

Wood species 
Density [kg/m3] 

Moisture content 
[%] 

Dowel diameter 

12 mm 24 mm 

mean COV mean COV hss vhss hss vhss 

Spruce 
(Picea abies) 

465 7.9% 12.7 8.5% 7 6 5 5 

Beech 
(Fagus sylvatica) 

683 7.3% 11.9 4.8% 5 5 5 5 

Purpleheart 
(Peltogyne sp) 

881 14.6% 14.8 5.2% 5 7 5 5 

Cumaru Peru 
(Dipteryx odorata) 

918 4.8% 14.6 5.1% 7 7 5 5 

Cumaru Brasil 
(Dipteryx odorata) 

1166 2.3% 13.0 5.3% 3 8 - - 

Azobé 
(Lophira alata) 

1067 4.6% 20.5 11.1% 7 11 5 5 

Azobé wet 
(Lophira alata) 

1226 2.8% 43.3 7.2% - 6 - 5 

 

The grain direction and position of the annual rings of the test specimens was observed. 
For beech, the position of the annual rings may, at least partially, explain the behaviour of 
the specimens as will be discussed in section 6.3.4. The spruce specimens were of low 
density with annual ring widths of up to 7 mm. Azobé had interlocked grain. The 
maximum observed slope of grain was about 8° of one azobé specimen which constitutes 
a low value. The main grain direction of the rest of the specimens was parallel to the 
force direction. 

Not all the test specimens reached 5 mm displacement before splitting. In order to be sure 
that embedment tests were carried out and no splitting tests, a reinforcement as shown in 
Figure 6-7 was glued onto some specimens, at a distance of 1.5d from the hole to exclude 
stress field interferences. The maximum force did not change. The displacement 
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capability was increased by the reinforcement as could be expected (see Figure 6-8). The 
specimens were thus not separated in further analysis. 

 

    
Figure 6-7: Purpleheart specimen with reinforcement, 12 mm vhss dowel 
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Figure 6-8: Purpleheart, 12 mm vhss dowel 

 

6.3.3 Test results 

In total 139 tests were carried out with at least five specimens per series. Table 6-4 lists 
the test results and the theoretical embedding strength calculated with Equation (6-3) 
where the measured density of the test specimens was used instead of the characteristic 
density. The results are listed separately for the two steel grades. A trend can be 
observed: the tests with vhss dowels reached higher load carrying capacities than the tests 
with hss dowels. As the dowels remained elastic and Young’s modulus is the same for 
both steel grades, an explanation from literature is the influence of different surface 
roughnesses (Rodd, 1973). However, no different surface roughness was measurable as 
shown in Table 6-2 and therefore, it cannot be the reason for the different behaviour. The 
only measurable difference between hss and vhss steel dowels was a different hardness. It 
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is astonishing how clearly the trend of different embedment strengths for different steel 
grades can be seen, even considering the scatter of the test results. 

In literature, the moisture content of the specimens was not varied, except for Hübner et 
al. (2008), where embedment tests on ash specimens were carried out with mean moisture 
contents of 4.4%, 16.3% and 18.9%. A decrease of the embedment strength parallel-to-
grain between 4% and 21% with increasing moisture content could be observed. This 
trend is confirmed with the test results for azobé. The specimens stored at 20/85 with a 
mean m.c. of 21% reached a mean embedding strength of 75 MPa. The specimens 
coming from the fog chamber had a mean m.c. of 43% and a mean embedding strength of 
63.5 MPa which results in a strength decrease of about 2% for 1% moisture content 
increase if linearly interpolated up to fibre saturation point. 

The following graphs show mean load-deformation data per series. The graphs were 
averaged until the first specimen of one series failed. The ultimate deformation may thus 
be different for the single test results (see Appendix). Figure 6-9 shows mean load-
deformation curves for the azobé series. The difference between vhss and hss and also 
between dowel diameters can be seen.  
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Figure 6-9: Mean stress-deformation curves per series, azobé 

 

Figure 6-10 shows mean load-displacement graphs for all specimens with 12 mm dowels 
of vhss steel. Interesting is the difference of the cumaru wood from two different sources 
as can be also seen in Table 6-4. The differences in ductility between species with similar 
densities such as azobé and purpleheart are pronounced. Figure 6-11 shows two typical 
specimens after testing. 
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Figure 6-10: Mean stress-deformation curves per series, 12 mm vhss dowel 

 

 

        
                                        a)                                                                       b) 

Figure 6-11: a) Azobé, b) Purpleheart, 24 mm vhss dowel 

 

The graph of density versus embedment strength at time of test is shown in Figure 6-12, 
no adjustments to 12% moisture content were made. The regression line is nearly 
identical with Equation (6-3) from EC5 (CEN, 2004b) for 12 mm dowels. The group 
changing the regression much is the series with wet azobé. If a multiple linear regression 
is performed with the variables density, dowel diameter and m.c., then R2 is improving 
considerably as can be seen in Figure 6-13. Of course, this is just an indication for further 
research because only few wet specimens were tested. But it shows that for tropical 
hardwood, the influence of moisture content should be better assessed because these 
species are generally used under wet climate and in waterworks. It must be kept in mind 
however that in such a climate a lower kmod is applied in design calculations. 
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Figure 6-12: Density versus embedment strength 
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Figure 6-13: Linear regression model versus test results 

 

Figure 6-14 shows a boxplot of ratio fh,0 over diameter d for all species. A mean equation 
similar to Equation (6-3) from EC5 (CEN, 2004b) was derived from the 139 test results. 
It can be seen from the equation indicatively shown in Figure 6-14 that the dowel 
diameter has less influence (a factor of 0.0082 instead of 0.01). This was already stated in 
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Ehlbeck and Werner (1992b). However here, merely trends are shown as too few test data 
were available in order to perform a significant statistical analysis. 

 

 
Figure 6-14: Boxplot of all data, wet azobé included 

 

6.3.4 Ductility of beech 

Special attention is given to the embedment tests with beech due to the observed high 
ductility. In Figure 6-15, the results for the series beech with 24 mm vhss steel dowels are 
shown. In the load-displacement graphs, a slight yield drop can be seen at the beginning 
of the plastic part. This behaviour could not be observed for instance for the azobé 
specimens. In Figure 6-16, a photo of a beech specimen with a 12 mm hss dowel is 
shown. The specimen sustained a displacement of 15 mm without splitting. Beech has 
many rays which reinforce the wood in radial direction (MoEradial significantly bigger 
than MoEtangential). As a direct result, splitting of beech in radial direction within the many 
rays may be easier than splitting in tangential direction. This fact may explain the results 
observed in the embedment tests as shown in Figure 6-16 and Figure 6-17. In Figure 6-16, 
the annual rings are oriented at about 45°. The reinforcement of the rays may have helped 
to avoid splitting whereas in Figure 6-17, the annual rings are oriented perpendicular to 
the dowel axis. The rays could therefore not reinforce the timber for tension stresses 
perpendicular to the grain that develop during the embedment tests. 

This is an interesting finding also for joints as an (theoretical) optimal orientation of the 
annual rings could also improve ductility of a joint. 

 

,0 0.085(1 0.0082 )hf d


 

n=139 

12mm dowel: 

mean=0.075 

COV=18.8% 

24mm dowel: 

mean=0.07 

COV=14.5% 
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Figure 6-15: Results for beech, 24 mm vhss dowel 

 

 

    
Figure 6-16: Beech, 12 mm hss dowel, 45° annual rings 

 

 

    
Figure 6-17: Beech, 12 mm hss dowel, 0° annual rings 

 

Yield drop 
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6.4 COMPARISON WITH DATABASE 

To complete the chapter on the embedment tests, the test results were included in a 
database taken from literature (Whale and Smith, 1986b, Whale and Smith, 1986c, 
Ehlbeck and Werner, 1992b, Vreeswijk, 2003). Hübner and Schickhofer (2007) published 
only mean values for ash (Fraxinus excelsior, clear wood) which were included. Figure 
6-18 shows a density histogram of all the specimens of the available test results on solid 
wood parallel-to-grain. 
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Figure 6-18: Density histogram of database 

 

In order to compare test results from different sources, the densities as reported in Table 
6-4 and related to the moisture content at time of test are adjusted to a relative moisture 
content of 12%. This is not defined in EN 383 (CEN, 2007) and also an adjustment of the 
strength properties is not mentioned. However, it was chosen to also adjust the 
embedment strengths according to EN 384 (CEN, 2004a), where the compression 
strength parallel to grain should be reduced by 3% for every percentage point difference 
in moisture content. As stated earlier, the results for wet azobé gave a reduction in 
strength of about 2% for every percentage point difference in moisture content which 
confirms the above-mentioned approach. Uncertainties are connected with the results in 
Ehlbeck and Werner (1992b) as they did not measure the moisture content during the test. 
For their results, a moisture content of 12% is assumed. 

Figure 6-19 shows a classical density versus embedment strength graph of all 809 results. 
The density values are adjusted to 12% moisture content and also the embedment strength 
values are adjusted as explained in EN 384 (CEN, 2004a). It can be seen that for a 
general applicability of design equations such as Equation (6-3), the density range of the 
timber must be large enough. The new testing series is a valuable completion of the 
database. Due to the adjustments, the wet azobé comes into line with the test results. The 
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regression lines for the softwood and tropical hardwood are similar and have a R2-value 
of 0.533 for softwood and 0.652 for tropical hardwood. For European hardwood, 
however, the R2-value is lower with 0.319.  
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Figure 6-19: Density versus embedment strength, all adjusted 

 

The dotted vertical lines in Figure 6-19 show the characteristic density values for 
different strength grades from C18 to D70 (CEN, 2009). In EN 338 (CEN, 2009), the 
strength classes are divided into rather small density increments as can be seen by the 
small distance between the vertical lines, each representing a different strength class. 
These small increments seem to be rather artificial in comparison to the scatter and the 
benefit resulting from small increments. Embedment strength is much more dependent on 
local properties of timber than strength grading procedures that assess full boards. 
Furthermore, Van de Kuilen (1999) has already shown that there is no correlation 
between density and load carrying capacity of timber joints. Design however is carried 
out using the strength properties given in EN 338 (CEN, 2009). 

If now plotting the test results versus Equation (6-3) from EC5 (CEN, 2004b) with a 
density adjusted to 12% m.c. as done in Figure 6-20, one can see that the predictions are 
good for softwood, but less so for wood with higher densities as also stated in Ehlbeck 
and Werner (1992a) where a regression equation for hardwood is given with a higher 
regression coefficient than Equation (6-3): 

 ,0 0.102 1 0.01hf d         (Ehlbeck and Werner, 1992a) (6-4) 

where fh,0 = embedding strength parallel-to-grain in [MPa], d = dowel diameter in [mm] and  
 = density [kg/m3]. 
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Figure 6-20: EC5 Equation (6-3) versus adjusted test results 

 

If a linear multiple regression analysis with density and diameter as independent 
parameters is carried out, an equation similar to Equations (6-3) and (6-4) can be derived: 

 ,0 0.095 1 0.0089hf d    (6-5) 

where fh,0 = embedding stress parallel-to-grain in [MPa], d = dowel diameter in [mm] and 
 = density in [kg/m3]. 

 

The corresponding graph of the model versus the adjusted test results is shown in Figure 
6-21. Equation (6-5) is confirming the findings from Ehlbeck and Werner (1992b) and 
own observations as discussed earlier. The dependence on the dowel diameter is less 
pronounced (0.0085 instead of 0.01) and the regression value of 0.082 is increased to 
0.095.  

At this stage it is remembered that in EC5 (CEN, 2004b) the transfer of the regression 
equation was done by simply applying the characteristic density instead of the mean 
density. However, Whale and Smith (1986a) and Ehlbeck and Werner (1992a) chose the 
embedment test species under certain density criteria whereas here, the assembling was 
purely random.  
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Figure 6-21: Linear regression model versus adjusted test results 
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Figure 6-22: Adjusted test results and results for Equation (6-3) for softwood and 

hardwood, versus density at 12% m.c., d = 12 mm 

 

Figure 6-22 shows another interesting finding. It shows embedment test results for a 
dowel diameter of d = 12 mm over the density, both values adjusted to 12% m.c. 
Additionally, the results of Equation (6-3) were inserted with d =  12 mm and the 
characteristic density of all softwood and hardwood strength classes (CEN, 2009).  

It would be expected that the results for Equation (6-3) are lying underneath the 
regression line. This is not the case for softwood, especially not for the lower strength 
classes. An explanation may be that the lower strength classes have inherent not visible 
local defects (that is why they are assigned to lower classes) that govern during 

0.095(1 0.0089 )y d  
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embedment tests. This again would confirm the dependency of embedment strength on 
local timber properties. 

6.5 CONCLUSIONS 

Steel 

The same dowels and steel grades were used for the embedment and the joint tests. As 
expected, the strength of the vhss dowels corresponded to the steel grade vhss. However, 
the ‘mild steel’ dowels had significantly higher mechanical properties than ordered and 
corresponded to hss instead. Furthermore, no hardening at all could be observed. 
Therefore, the plastic bending capacity of the dowels needed to calculate the load 
carrying capacity of the joints (Chapter 7) was derived using the theoretical equation 
from mechanics.  

Embedment tests 

Considerable differences in embedment strength using the two different steel grades 
could be observed. This could not be motivated by different surface roughness of the 
dowels. However, no friction tests were carried out to investigate the friction coefficient 
for the two dowel types on wood. 

The used wood species showed different ductility which at least for beech could be 
satisfactorily explained with different anatomical features. 

The current EC5 equation to determine the embedment strength is overly conservative for 
high density wood species. Furthermore, the observed influence of the dowel diameter on 
the embedment strength seems to be lower than assumed in EC 5. 
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7  
JOINT TESTS 

Tests on double-shear timber joints with timber members loaded parallel-to-grain and 
slotted-in steel plates have been carried out. One, three and five dowels in a row have 

been used with diameters of 12 mm and 24 mm and two different steel grades. Three 
different wood species were chosen, spruce, beech and azobé. Apart from proving that 

very high strength steels can be used as dowels in timber joints, these tests are needed to 
verify the validity and reliability of the developed material model. Furthermore, the test 

results give new insights in the influence of different wood species and steel grades, in the 
effective number of fasteners and joint stiffness. 

7.1 INTRODUCTION 

Tests have been carried out on double-shear timber joints with slotted-in steel plates with 
very high strength steel dowels using species with densities between 350 and 1100 kg/m3. 
Comparative tests were done on the same joints, but with hss dowels. The number of 
dowels varied between one, three and five in a row. The dowel diameters were 12 and 
24 mm. Different aspects can be checked and motivate these experiments: 

 Validity of developed material model; 

 Potential of using very high strength steel dowels; 

 Influence of different wood species; 

 Effective number of fasteners; 

 Stiffness of joints. 

In timber joints with dowel-type fasteners, the preferred failure mode is combined failure 
of the fastener (one or two plastic hinges per shear plane) and the timber (embedment). 
Apart from the geometry, the load carrying capacity is therefore defined by the 
embedment strength of the timber and the yield moment of the dowel type fastener. 
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The utilisation of very high strength steels vhss with subsequent higher bending 
capacities is promising in order to optimise joints and obtain high performance joints. 
Thinner dowels and thinner member sections should lead to the same load carrying 
capacity as thicker hss dowels with bigger member cross sections – as long as failure 
mode 2 or 3 is reached. Another option is that with the same dimensions, fewer dowels 
could be used to obtain the same strength performance. As for the deformation capacity 
of the joints, very high strength steels available nowadays are able to ensure a good 
overall ductile behaviour without brittle failure modes. 

This is especially valid and even more advantageous for high density timber. The 
embedment strength of species with high densities is higher. Therefore, less member 
thickness would be needed when using vhss dowels in comparison to softwood in order 
to reach a ductile failure mode. In the Netherlands, tropical hardwood with high densities 
is used for bridges and waterworks such as lock gates or mooring posts. The practical 
applicability is hence guaranteed.  

7.2 LITERATURE REVIEW 

Many test results on timber joints with timber members loaded loaded parallel-to-grain 
and dowel-type fasteners, both dowels and bolts, are available. Generally, it is difficult to 
build-up a database where the single results can be compared. The test setup was different, 
timber-to-timber or steel-to-timber joints with different geometries and materials were 
tested. Often, not all testing parameters were known or not everything (for instance 
measuring positions) was given. It can be stated however that most of the research was 
focussed on softwood and only some research was done with hardwood (Werner, 1993, 
Gehri and Fontana, 1983). 

Within the scope of this thesis, this short literature review is limited to research carried 
out using vhss dowels as the substitution of mild steel dowels is promising for practice. In 
previous research, vhss dowels were mainly used to ensure brittle failure modes in joints 
(Schmid, 2002) with few exceptions (Gehri and Fontana, 1983). Especially Gehri and 
Fontana’s tests (1983) are interesting as they carried out large-scale joint tests with 
different wood species and steel grades. In 2006, first tests were undertaken at TU Delft 
to investigate the applicability of hss dowels in double-shear timber-to-timber joints with 
one dowel (Hieralal, 2006). Azobé and spruce joints were assembled with steel dowels of 
grade S690 and diameters of d = 8, 16, 24, 30 mm. Failure mode 3 with 2 plastic hinges 
per shear plane was expected to occur in all specimens, but did not occur in the spruce 
specimens. The ductility of all joints was high with deformations at maximum load of at 
least vmax = 15 mm in most cases with a distinctive plastic branch. The ratio of vmax over 
dowel diameter was decreasing with increasing diameter. 

Further tests using vhss dowels were carried out on double-shear timber joints with 
slotted-in steel plates, e.g Groesen and Kranenburg, 2007, Langedijk, 2007, Van de 
Kuilen and De Vries, 2008, Islamaj, 2009), Van de Kuilen, (2009). Tests were carried out 
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with spruce and 8 mm vhss dowels of grade 12.9 with one, three and five dowels in a row. 
Two series of joint tests with three dowels were designed. A first series was undertaken 
with three dowels exactly in a row. In the second series, the middle dowel was shifted by 
1d leading to a staggered dowel pattern. The authors stated that plastic hinges could 
develop and that all joints showed a ductile failure. The deformation at maximum load 
decreased with increasing number of dowels. No difference could be observed in the two 
series with three dowels in a row. 

Islamaj (2009) carried out tests on double-shear timber joints with slotted-in steel plates 
with tropical hardwoods and very high strength and high strength steel dowels. The 
dowel diameter was again 8 mm. One, three and five dowels in a row were used. As for 
the effective number of dowels nef, a higher effective number was observed for the joints 
with hss dowels. In other words, the influence of more dowels in a row is reducing the 
capacity of joints with vhss more than the capacity of joints with hss dowels which could 
nearly reach a full load carrying capacity (nef = n). Islamaj’s tests were the same tests as 
the tests carried out within the scope of this thesis. Therefore, for the analysis of the 
experiments his results can be compared with the own results. 

7.3 EXPERIMENTAL PROGRAMME 

7.3.1 Type of joints 

Double-shear timber joints with timber members loaded parallel-to-grain and slotted-in 
steel plates were tested at Stevinlab II of University of Technology Delft. Three different 
wood species were used: spruce glulam as a (reference) softwood species, beech glulam 
as a European hardwood and azobé as a tropical hardwood. All three species are used for 
structural purposes with beech glulam being a rather new product (Frese, 2006) where 
nearly no joint tests were carried out yet. Azobé is frequently used especially for 
waterworks and bridges where large sections are needed. 

The steel dowels had a diameter of 12 mm and 24 mm. The choice of the diameter was 
based on the following considerations. 12 mm dowels were used widely in literature 
(Jorissen, 1998) and are also often applied in practice. 24 mm dowels seem to be big, but 
they are used for high-strength members with large sections as typical for azobé 
structures. Half of the tests were carried out with vhss dowels. Comparative tests were 
done on the same joints, but with hss dowels. The number of dowels in a row was one, 
three and five. This is because one dowel is needed at least and in practice, five dowels 
are usually the maximum number of dowels in a row. To interpolate, three dowels in a 
row were chosen. No variation was done on the number of rows. 

The end and edge distances listed in Table 7-1 were the same for all specimens and 
correspond to the minimum distances specified in EC5. It should be noted that the 
fastener spacing a1 was smaller than the end distance a3,t. The spacing a1 is different in 
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many tests from literature and hence care should be taken when comparing the ductility 
of joints of different research projects. 

 
Table 7-1: Spacing, edge and end distance 

Loaded end a3,t 7d 

Spacing a1 5d 

Edge distance a4 3d 

 

Figure 7-1 shows a drawing of the three different specimens. Of both joints shown in 
Figure 7-1, one joint was tested. The other joint only served to append the specimen and 
was designed to be much stronger than the joint to be tested. An exception to this are the 
test series A24-1, A24-3 and B24-1 (nomination see next page) with identical upper and 
lower joints. Therefore, during the test, both joints were tested and measured. The 
maximum force of the joint that failed first was considered. 
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Figure 7-1: Drawings of test specimens 
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Figure 7-2 shows a flowchart of the tests. Per series, five specimens were tested which 
led to a total of 180 tests. 

 

 
Figure 7-2: Flowchart of joint tests, five specimens per series 

 

 

The nomination of the specimens was as follows: 

 

A24C-1-x 

 

 

 

 

 

7.3.2 Used materials 

Wood 

The ordered spruce glulam (Picea abies) was of quality GL28h according to EN 1194 
(CEN, 1999) and was from Northern German origin. GL28h means that the quality of the 
lamellae should be C30 with a mean density of 460 kg/m3 according to EN 338 (CEN, 
2009). All specimens were produced and assembled at TU Delft. The wood was stored in 
a 20/65 standard climate. Grain angle and annual ring width were not measured also 
because the ring width is not correlated to the load carrying capacity according to 
Jorissen (1998). 

number of dowels 

dowel diameter (if followed by index C: hss; otherwise: vhss) 

wood species (S=  spruce, B = beech, A = azobé) 

specimen numbering 1 to 5 
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Beech glulam (Fagus sylvatica) was sawn and assembled at TU Delft with a rather big 
hole clearance. The glulam was produced at the University of Technology Munich by 
using planks that were intended for furniture producers. Therefore, the quality of the 
planks was not assessed by strength grading methods known for structural timber, but by 
other visual assessment rules. Virtually no knots were present. The quality was high. The 
specimens were not stored in a climate chamber, but have always been stored inside. 
Grain angle and annual ring width were not measured. 

Azobé (Lophira alata) is an African wood species and was from certified origin (FSC). 
The smaller specimens with 12 mm dowels were produced and assembled at TU Delft. 
These specimens were stored in a 20/85 climate. The specimens with the 24 mm dowels 
inclusive the assembling was done by a specialised company. They were not stored in a 
climate chamber but simply inside and visual grading was carried out (NEN, 2009). The 
grain angle was not measured. Azobé can suffer from interlocked grain, but this 
parameter was not evaluated. 

Steel 

The dowels were of steel grade 12.9 (vhss) and galvanised high strength steel instead of 
S235 as ordered. Standard tensile tests have been carried out and were presented and 
discussed in chapter 6. For the vhss dowels, a mean proof strength at 0.2% extension of 
Rp0,2 = 1311 MPa and an ultimate strength of Rm = 1389 MPa was found. The galvanised 
hss dowels instead had values of Rp0,2 = 563 MPa and Rm = 590 MPa. 

The steel plates were of S690 and were 12 mm thick. 

7.3.3 Design of test specimens 

As in previous research, the joints were designed with the Johansen equations (EYM), 
without considering the factors deriving from the partial safety approach in EC5 (CEN, 
2004b). 

The geometry was chosen according to the minimum distances required by EC5 which 
were given in Table 7-1. The timber member thickness was chosen such that the failure 
mode of the joints with vhss was lying on the boundary between failure mode 2 and 3 
with one or two plastic hinges per shear plane respectively. 

The bending capacity of the dowels was calculated with the theoretical Equation (6-1) as 
was motivated in section 6.2 – Equation (6-1) is repeated here: 

3

, 6y y k

d
M f  (7-1) 

 

The embedment strength was calculated according to Ehlbeck and Werner (Ehlbeck and 
Werner, 1992a) as the embedment strength equation in EC5 was considered to yield too 
conservative results. The mean densities were used to calculate the embedment strength 
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(spruce 445 kg/m3, beech 715 kg/m3, azobé 1120 kg/m3). Equation (7-2) resulted from a 
regression analysis of embedment test results on hardwoods: 

 ,0 0.102 1 0.01h meanf d   (7-2) 

where fh,0  =  embedment strength parallel to grain in [MPa], d = dowel diameter in [mm],  
mean = mean density in [kg/m3]. 

 

The fabrication process of the specimens was not controlled with regard to the drilling 
of the holes. During the tests, varying conditions could be observed. Some of the 
specimens were hard to assemble, others easy which indicated differences in bolt holes. 
As for the azobé specimens, the 12 mm specimens were assembled at TU Delft whereas 
the 24 mm specimens were assembled by a company. Therefore, the assembling of the 
24 mm specimens was carried out more precisely than the one of the 12 mm specimens. 
The preciseness of assembling is another issue to remember as the fabrication tolerances 
may influence the strength (Jorissen, 1998) and it certainly influences the stiffness Kser. 
The layout of the wooden members with regard to density, orientation of annual rings, 
knots etc was random except for the spruce specimens where the two wood members of 
one joint had comparable densities. 

7.3.4 Testing protocol and setup 

The tests were carried out according to EN 26819 (CEN, 1991). The test protocol is 
shown in Figure 7-3. The estimated load carrying capacity cannot be established 
unambiguously. Usually, a first test is needed to give an estimate. In this research, usually 
a lower value than 40% of Fest was chosen for the big specimens as any damage in the 
first loop that serves to settle the specimens should be avoided. 

 

 
Figure 7-3: Test protocol according to EN 26819 (CEN, 1991) 

 

Due to the big range of expected load carrying capacities (15 kN to 1400 kN), two 
different testing rigs have been used. For the smaller tests, a Dowty Rotel with 250 kN 
capacity was used. The loading scheme was force-controlled up to 70% of the estimated 
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maximum force and afterwards displacement-controlled up to failure. The velocity of the 
tests was hence calculated by the machine. The transition point between force-controlled 
and displacement-controlled (70% of maximum force) had to be reached at 500 s. The 
tests with an estimated load carrying capacity above 250 kN were carried out with a 
specially assembled testing rig equipped with a 2500 kN hydraulic jack. This Meccano 
machine was controlled manually in displacement control. The testing velocity was also 
chosen manually and varied between 0.03 mm/s and 0.04 mm/s, depending on the test 
pieces. All joints failed between 5 to 15 min with few exceptions of joints where high 
deformations were reached. 

An overview of the test rigs is shown in Figure 7-4. 

 

       
                                            a)                                                                    b) 

Figure 7-4: The two test rigs, a) 250 kN Dowty Rotel, b) 2500 kN Meccano 

 

Figure 7-5 shows a technical drawing of a specimen with one dowel with the position of 
the transducers. The deformation measurements were taken with four LVDTs (one LVDT 
on front and rear of both timber members). They were measuring the displacement of the 
timber members relative to the steel plate. The distance DLVDT between the fixing of the 
transducers (on the wood members) and the steel angles serving as transducer support (on 
the steel plates) was recorded and was changing between tests with 12 mm and 24 mm 
dowels. This distance DLVDT is given in Appendix B. The measuring distance was rather 
short and did not cover the complete joint. The elastic elongation of the steel plate was 
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hence neglected. Except for local embedment around the hole due to stress peaks, no 
plastic deformation was observed23. 

Finally, the technical specifications of the test setup are given in Table 7-2. 

 

 
Figure 7-5: Position of transducers, same on rear side 

 

 

 
Table 7-2: Specifications of testing equipment 

Control programme
frequency control input: 5 ms
frequency readout: 1 s

Meccano machine Dowty Rotel
instrument range resolution instrument range resolution
load cell 2500 kN 1.22 kN load cell 300 kN 0.15 kN

LVDT's no.1-6 50 mm 0.013 mm LVDT's no.1-8 40 mm 0.019 mm
LVDT's no 7-8 200 mm 0.051 mm  

                                                 
23 Numerical models proved that the elastic elongation is small; the local plastic embedment deformations 
of the steel plates were measured with the test setup. 

DLVDT 

Steel angles as support 
of transducers, 
fastened to steel plate 
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7.4 TEST RESULTS 

7.4.1 General results 

A total of 179 tests were carried out. First of all, pure test results in terms of load-slip 
curves and load carrying capacities are presented. The subsequent interpretation part of 
the results discusses special aspects as influence of density, wood species and steel grade, 
ductility, effective number nef or joint stiffness Kser. All results and descriptive statistics 
can be found in Appendix B. 

Both density and moisture content of the specimens was measured directly after the tests. 
The moisture content of the specimens was measured with the oven-dry method. The 
pieces taken from the timber members to carry out these measurements were situated 
directly above the failed joint (location indicated in Figure 7-1). 

Figure 7-6 to Figure 7-7 show the mean load-displacement graphs of the tests – please 
note that the curves are averaged per series until the first failure within one series 
occurred. (For instance, a spruce specimen with one 12 mm hss dowel failed early due to 
a large knot cluster directly at the dowel having thus much less ductility than the other 
results of the series, see Figure B-28). The plastic branches per test specimen may be of 
different length as can be seen in Table 7-3 where the mean results of the displacements 
and their COVs are given. 

The graphs show clearly the trend of less ductile behaviour of joints with multiple dowels. 
Also the increase in load carrying capacity when using more dowels is visible. 

The higher load carrying capacity of joints with vhss dowels can also be seen except for 
the tests of spruce with three 24 mm dowels (Figure 7-7a). When looking at the graphs, it 
can be seen that the nonlinear regime of the joints with hss dowels started earlier. 

Another interesting finding is the similar load carrying capacity between beech and azobé 
although the respective densities at test are quite different with mean(azobé) = 1120 kg/m3 
and mean(beech) = 715 kg/m3. It must be recalled though that the m.c. was quite different 
for beech (mean m.c. = 9%) and azobé (mean m.c. = 21%). Azobé was wet and had thus 
lower mechanical properties than beech that was dry. Especially the compression strength 
is significantly depending on the moisture content. If both wood species would have had 
the same m.c., the test results would be different. A bigger difference in terms of load 
carrying capacity between beech and azobé would be expected.  
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In Table 7-3, all results are given. Per parameter, the main points are identified: 

 Density: 
The mean values are 445 kg/m3 for spruce, 715 kg/m3 for beech and 1120 kg/m3 
for azobé. Generally, the COV is low. The single high value of the COV for 
spruce with one 24 mm hss dowel derives from one single specimen and is 
probably a measuring error. Please consider that these are the densities during the 
test. The values may need an adjustment to 12% m.c. for further evaluations. 

 m. c.: 
The mean m. c. is 12% for spruce, 21% for azobé and 9% for beech. 

 Density at 12% m.c.: 
The measured density (at measured m.c.) is adjusted to a moisture content of 12%. 

 Fmax: 
Generally, the COV is unexpectedly low. The specimens with vhss reach higher 
load carrying capacities except for the spruce specimens with three 24 mm vhss 
dowels. The increase of the vhss specimens in comparison to the hss specimens is 
between 10% and 69%. Please consider that the m.c. was varying. 

 Failure modes: 
The expected failure modes did not always occur. The joints with vhss dowels 
were designed to lay on the boundary between FM 2 and 3 which means for the 
joints with hss dowels that they should clearly lie in FM 3. However, not all joints 
with hss dowels failed in FM 3 (see Table B-7). 

 v(Fmax) and vmax: 
The COV is high (expectedly) and the displacement measured at Fmax is in most 
cases only slightly bigger than the maximum displacement, even for the tests with 
one dowel. This indicates that the load-slip curve was still increasing when the 
specimens failed. The specimens with one dowel are more ductile than the 
specimens with multiple dowels. The ratio between displacements at maximum 
load over the dowel diameters v(Fmax)/d decreases considerably with bigger 
diameters as was also observed by Hieralal (2006). 

 Kser: 
The COV is high. The expectation of a higher Kser when more dowels in a row are 
used is not observable. Kser for three and five dowels is often similar and 
sometimes even no increase between one and more dowels could be observed. 
This is probably a strong indication on how manufacturing influences the value of 
Kser (definition of Kser see Figure 7-25). 
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When dealing with timber joints, the load carrying capacity is not only determined by the 
geometry, the bending capacity of the fasteners and the embedment strength, but is also 
influenced by other factors. Otherwise the results cannot be explained satisfyingly. This 
is especially valid for joints with multiple dowels. If joints split early, the load carrying 
capacity will be often lower than for joints that deformed more (an exception to this is a 
joint with knots in the dowelled region – see Figure B-28). A reason for this could be that 
the load may not have been distributed evenly over all dowels. Therefore, the effective 
number nef will also be influenced by the failure modes, i.e. whether a joint splits early or 
fails at large deformations where load redistributions have taken place. If two extreme 
cases are considered, this becomes obvious: in a joint that fails only in embedment, 
redistribution will have taken place, high deformations and thus high load carrying 
capacities will be reached, nef will be approximately equal to n. On the other hand, when 
a joint splits immediately, no redistribution of the loads will have taken place with a 
subsequent low nef and low deformation and load carrying capacity. Whether a joint splits 
early or not may depend on the wood species, the dowel diameter and the steel grade 
among others. Of course minimum end and edge distances and spacings must be 
maintained as they have significant influence on the failure modes. In chapter 6 and 
Sandhaas et al. (2010) it could be seen that indeed different ductility could be reached 
with different wood species. Further research into the influence of wood species and how 
to measure this influence (e.g. with MoE, density, hardness, anatomical features as 
parameters) would maybe help to improve the available criteria. Good numerical models 
should also be able to support this type of research. 

7.4.2 Density versus load carrying capacity 

A correlation between load carrying capacity and density could not be found as can be 
seen in Figure 7-8. No trend of increasing strength with increasing density analogously to 
embedment strength can be seen. This confirms earlier research by Van de Kuilen (1999). 
As only few test results were available, also the tests with multiple dowels were 
considered by assuming that the maximum load is distributed evenly over individual 
dowels.  
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Figure 7-8: Density versus load per dowel, a) spruce, b) beech, c) azobé 
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7.4.3 Influence of wood species – ductility and splitting 

Firstly, the tests using spruce glulam and the series with 24 mm dowels must be 
particularly addressed. The joints with three or five vhss dowels of 24 mm failed in 
failure mode 1 without developing plastic hinges as predicted with Johansen. The same 
joints with three and five hss dowels of 24 mm failed in failure mode 2 with a bending 
angle of only 0.5 to 1 degrees, virtually nothing. The reason for this is probably the poor 
quality of the ordered GL28h spruce glulam. Annual rings with widths of up to 11 mm 
were measured and big knots and knot clusters were present. Ringshake failure occurred 
frequently. The low quality of the spruce wood was also noted during the embedment 
tests. The joint tests, except the ones with one 24 mm dowel seemed to be splitting tests 
rather than joint tests and not all failed within the joint that was to be tested. Therefore, 
the series with three vhss dowels was reinforced laterally at the supports to avoid 
premature splitting outside the joint itself. The results, however, were brittle failures with 
even lower results for the joint strength than the same joints with hss dowels. This effect 
was mentioned in section 7.4.1 and can be seen in Table 7-3 and Figure 7-7a. The results 
for the spruce specimens with three 24 mm vhss dowels must subsequently be handled 
with care. Even more, considering the poor quality of the spruce glulam, also all other 
experiments with spruce must be treated carefully. On the other hand one could say that 
the tests represented a realistic image of glulam used in practice. For analysing and 
comparing purposes however, this fact complicates matters. 

Before discussing the test results for the different wood species, it should be recalled that 
important mechanical properties for splitting are the tension strength perpendicular-to-
grain and the shear strength. These two values are higher for hardwoods, and among 
hardwood species, they are higher for tropical hardwoods with higher densities. A more 
ductile behaviour can thus be expected from joints with hardwood due to the higher 
resistance in splitting. As will be shown however, this is not all – azobé has higher 
transverse tension and shear strength than beech, but it still shows less ductility. Also 
Ehlbeck and Werner (1992b) stated that tropical species were more susceptible to 
splitting than European hardwoods with lower densities. 

Table 7-4 shows the load carrying capacities for the three wood species. The azobé 
specimens can take between 42% and 137% higher loads than the same spruce specimens. 
At the same time, the displacements at Fmax are similar. During the tests, the observed 
failures of the spruce specimens were more sudden than the failures of the azobé 
specimens. The spruce specimens split completely and fell apart whereas the azobé 
specimens did not split due to the interlocked grain. 
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Table 7-4: Load carrying capacities for different species (all mean values) 

spruce beech azobé spruce beech azobé

vhss 44 70 72 1.63 1.59 1.03 15.1 15.9 7.9

hss 32 59 57 1.79 1.86 0.97 9.8 15.5 11.1

vhss 115 173 183 1.58 1.50 1.05 5.6 6.5 4.8

hss 90 157 128 1.42 1.75 0.81 5.0 5.9 3.7

vhss 169 294 281 1.66 1.74 0.96 3.6 5.3 2.9

hss 136 240 233 1.72 1.77 0.97 3.3 4.5 4.0

vhss 165 300 306 1.85 1.82 1.02 11.2 20.0 5.3

hss 110 208 181 1.64 1.89 0.87 5.2 23.8 15.2

vhss 297 659 706 2.37 2.22 1.07 2.6 4.2 4.2

hss 324 510 539 1.66 1.58 1.06 3.9 6.0 5.0

vhss 570 927 1128 1.98 1.63 1.22 3.6 4.1 3.5

hss 482 823 867 1.80 1.71 1.05 3.6 6.5 4.9
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Fspruce
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The load carrying capacities of the spruce and beech specimens showed the same ratios 
than spruce and azobé, but the deformation capacities of the beech specimens were higher. 
The beech specimens failed at similar or even higher loads than the azobé specimens. 
This is an unexpected finding considering the different densities of the two wood species 
(mean(azobé) = 1120kg/m3 and mean(beech) = 715kg/m3 with a mean m.c. of 21.0% and 
8.7% respectively) 24 . This is due to the higher deformation capacity of the beech 
specimens. At this stage, it is interesting to recall the results of the embedment tests 
where beech showed a high ductility. When looking at the embedment test results given 
in Table 6-4, the results for the embedment strength for beech were between 21% and 
40% lower than for azobé at similar m.c.. The ductility instead was higher for beech with 
25.5 in comparison to azobé with 15.6 as given in Sandhaas et al. (2010) which can be 
explained with the high number of radial rays in beech that reinforce the wood structure. 
Neglecting differences in m.c., azobé has a higher density and higher embedment strength 
and still the joint strength is similar to beech. In comparison to beech, the ductility was 
less for azobé also for the joint tests.  

Table 7-5 shows the results from Islamaj (2009). His results were similar for both wood 
species. The load carrying capacity for azobé and cumaru was not different with a 
maximum of 9% for the tests with one dowel. For the tests with one dowel however, the 
COV for the tests with cumaru was much higher than for all other tests. 

 

 

 

                                                 
24 In section 7.4.6, the measured load carrying capacities are adjusted to a m.c. of 12%. The adjusted values 
for Fmax are given in Table B-8. 
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Table 7-5: Results from Islamaj (2009) (all dowels 8 mm, mean values) 

Cumaru COV [%] Azobé COV [%]

vhss 41 14.6 45 6.5 1.09

hss 24 22.6 26 7.8 1.09

vhss 92 6.7 93 5.3 1.01

hss 69 2.2 70 5.7 1.02

vhss 138 6.4 145 6.5 1.05

hss 103 7.2 106 5.7 1.03

3

5

FAzobé/ 

FCumaru

Azobé        
F(vhss)/ F(hss)

number of 
dowels

grade
F max  [kN]

1 1.72

1.32

1.37

Cumaru    
F(vhss)/ F(hss)

1.71

1.33

1.34

 

Figure 7-9 shows an example of a beech joint with one vhss dowel 24 mm. The crushing 
of the fibres with the zigzagging of the rays can be clearly seen. The high ductility of 
beech probably also influences the effective number of fasteners nef as will be discussed 
in section 7.4.5. 

In Table B-7, the bending angles and failure modes in terms of Johansen are listed. 

 

    

    
Figure 7-9: Beech with 24 mm vhss dowel and 6.3x magnification, specimen B24-1-5 

 

Figure 7-10 to Figure 7-13 show again mean load-slip curves, but this time the test series 
are shown not per wood species but per dowel type. All above mentioned points can be 
found back in the figures. 

 

500m 

500m 
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Figure 7-10: Test series with 12 mm hss dowels 
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Figure 7-11: Test series with 12 mm vhss dowels 
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Figure 7-12: Test series with 24 mm hss dowels 
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Figure 7-13: Test series with 24 mm vhss dowels 

 

7.4.4 Influence of steel grade 

Except for the already discussed series with three 24 mm vhss dowels in spruce, all 
specimens with vhss dowels reached a higher load carrying capacity in comparison with 
hss dowels. Not only the load carrying capacity was higher with vhss dowels, but also 
using vhss dowels, ductile failure modes could be reached (see Table 7-3) which is an 
important finding for practice. But also for the series with three 24 mm dowels in spruce, 
the higher theoretical load carrying capacity is evident when looking at the detail in 
Figure 7-7a: the load-slip curve for the series with hss dowels had an earlier transition 
from linear to nonlinear regime. The joints with hss dowels bend earlier than the joints 
with vhss dowels. 

The increase in capacity between hss and vhss dowels ranges from 13% to a maximum of 
69% as can be seen in Table 7-6. The only surprising values are the ratios for the beech 
specimens with 12 mm dowels. They seem to be lower than expected. In order to 
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consider all possible issues including the dowels, more tension tests were carried out on 
12 mm dowels. The hss dowels used in spruce, beech and azobé were tested to establish 
the load carrying capacity. Indeed, as can be seen in Table A-1, differences could be 
observed. The dowels used for the beech specimens had higher mechanical properties. 
This explains why the trend of about 30% higher load carrying capacity with vhss dowels 
cannot be found for the 12 mm beech specimens. 
 

Table 7-6: Ratios Fmax(vhss) over Fmax(hss) 

12 mm dowel 24 mm dowel

1 1.38 1.50

3 1.29 0.92

5 1.25 1.18

1 1.18 1.44

3 1.10 1.29

5 1.22 1.13

1 1.26 1.69

3 1.43 1.31

5 1.21 1.30

F(vhss)/ F(hss)

spruce

beech

azobé

number of 
dowels

 
 

Islamaj’s (2009) results show the same trends. He found an increase in capacity between 
32% and 72% with similar results for the species cumaru and azobé.  

As already stated, the bending capacity of different steel grades is expected to be different 
due to the considerably higher strength of vhss. Therefore, joints with vhss dowels should 
deform less and are supposed to fail in failure modes with less plastic hinges than joints 
with hss dowels, always assumed that the dowel diameters remain the same. These 
assumptions could be confirmed in the tests. The deformation angles were measured (for 
failure mode 3 only central bending angle as indicated in Figure 6-3) and are indeed 
lower for vhss (Table B-7). As also stated in Jorissen (1998), bending angles of 45° were 
never reached. Two typical results are shown in Figure 7-14 and Figure 7-15 (please note 
that in the test series beech with one 24 mm vhss dowel both joints were tested – double 
tests with identical upper and lower joint). 

 
 

 
Figure 7-14: 24 mm hss dowel, test B24C-1-3 

 
Figure 7-15: 24 mm vhss dowel, test B24-1-2 
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Also for the embedment tests, different strengths were found for hss and vhss dowels 
(Table 6-4). As stated, this increase of embedment strength for vhss dowels could not be 
explained with different surface roughness of the dowels. Therefore, apart from a 
different bending capacity of the dowels, there must be also another effect that leads to an 
increase in load carrying capacity. 

7.4.5 Effective number nef of fasteners 

A lot of research effort has been put into the development of correct prediction equations 
for the load carrying capacity of dowelled joints. The mechanics-based models are in 
most cases based on the Johansen equations (European Yield Model EYM, 1949) which 
were developed per shear plane per dowel for ductile failures due to embedment or a 
combination of embedment and dowel bending. Three failure modes (FM) are possible 
according to Johansen: pure embedment failure (FM1), one plastic hinge in the dowel per 
shear plane (FM2), two plastic hinges in the dowel per shear plane (FM3). However, also 
other failure modes can occur as identified in Quenneville and Mohammad (2000). These 
other failure modes such as row shear-out, group tear-out or splitting are brittle failure 
modes that occur often in joints with multiple dowels or in joints with dowels that have a 
low slenderness ratio. An effect of these brittle failure modes is that the load carrying 
capacity of a joint with multiple dowels is less than the sum of the load carrying capacity 
of the single dowels.  

EC5 (CEN, 2004b) deals with this fact by introducing an effective number nef of fasteners: 

_joint ef SP per SPF n n F   (7-3) 

where Fjoint = strength of joint with n dowels; nef = effective number of fasteners; nSP = number of shear 
planes; Fper_SP = strength of joint per shear plane according to Johansen.  

 

The current equation in EC5 to estimate the effective number nef is given in Equation 
(7-4). As can be seen, this equation is solely based on geometrical considerations and its 
main message is that only when the distance a1 between fasteners is at least 17d, then 
nef ≈ n. No other influences such as material properties or slenderness ratios are 
considered. 

0.9 14
min

13

ef

n

n a
n

d


 



 (7-4) 

 

Another approach was chosen by Quenneville (2008). Instead of basing predictions on 
the Johansen equations and then reducing the obtained load carrying capacities with nef to 
account for brittle failures, Quenneville developed equations for each possible failure 
mode. The strength of a joint is then calculated by taking the minimum of each single 
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joint resistance as shown in Equation (7-5) (assuming thus that the brittle failure modes 
are uncoupled). 

_

_

min

embedment

row shear

tear outd

net tension

splitting

R

R

RR

R

R





 




 
(Quenneville, 2008) (7-5) 

 

Quenneville’s equations for the single failure modes are derived from test results and are 
based on geometric considerations together with mechanical properties of wood 
(embedment, tension and shear strength) and steel (plastic bending capacity). Compared 
to Equation (7-4) from EC5, Quenneville’s equations consider not only the spacing a1 
and the dowel diameter, but a laborious combination of all end distances, spacings, 
number of rows and number of dowels per row. The derivation of the empirical equations 
for the single failure modes is based on a huge database of tests where many parameters 
were varied: among others dowel diameters, slenderness ratios, edge and end distances, 
spacings, member thicknesses or single- and double-shear timber-to-timber and steel-to-
timber joints. Implicitly, Quenneville included also the slenderness ratio of the dowels 
into his empirical equations. 

Equation (7-4) from EC5 was determined by Jorissen (1998) through a regression 
analysis of about 1000 test results. Equation (7-4) results in characteristic values. 
Jorissen’s tests were double shear timber-to-timber joints with timber members loaded 
parallel-to-grain. The wood species was spruce and exclusively 12 mm dowels were used. 
The thickness of the middle and side members was varied in order to change the 
slenderness ratio keeping however the dowel diameter constant. Jorissen stated that other 
dowel diameters should be taken into account to better describe joint behaviour. He 
concluded that of all influence parameters, the slenderness ratio was the least determining. 
This is the reason why the slenderness ratio was not considered in the simplified design 
rules for EC5 shown in Equation (7-4).  

One aspect plays a role when looking into a possible additional influence of the dowel 
diameter and the subsequent different slenderness ratio. The slenderness ratio cannot be 
taken into account by simply changing the thickness of the member. The dowel diameter 
itself will have an influence as it has on the embedment strength. An additional parameter 
to adjust Equation (7-4) could be a slenderness parameter that is established investigating 
dowel diameter effects or the incorporation of more geometrical data analogously to 
Quenneville (2008). 

Another potential additional parameter could aim at taking a possible influence of the 
steel grades into account. One approach could be to introduce the ratio of the yield 
strength fy and ultimate strength fu which is different for the different steel grades or 
maybe the different hardness has an influence. 



Chapter 7 Joint tests 

 193

Before further analysing the test results shown in Figure 7-16 and Figure 7-17, it must be 
underlined that not enough test results are available to reliably propose changes in 
Equation (7-4). Mere ideas can be given based on the here presented tests with different 
wood species, steel grades and dowel diameters. As the test series carried out by Islamaj 
(2009) is comparable to the own test series, his results are also considered. The effective 
number nef was established as the ratio of the mean maximum load Fmax of the joint series 
with multiple dowels over the mean Fmax of the respective joint series with one dowel. 

Figure 7-16 shows the effective number calculated from the test results for all test series 
with three dowels including the results from Islamaj (2009). The black line indicates the 
effective number nef = 2.12 as calculated according to Equation (7-4). The first 
observation is that nef as defined by EC5 is on the safe side except for the already 
discussed tests on spruce specimens with 24 mm vhss dowels and for Islamaj’s azobé 
series with 8 mm vhss dowels. Furthermore, there seems to be a trend that joints with 
vhss have a lower nef than joints with hss. This is especially valid for the tests with 8 mm 
and 24 mm dowels. This difference seems to be lower for the beech series. An influence 
of the dowel diameter on the other hand cannot be observed.  
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Figure 7-16: Effective number of fasteners, joint series with 3 dowels 

(results 8 mm dowels from Islamaj, 2009), nef,EC5 = 2.12 

 

Figure 7-17 shows the effective number for the test series with five dowels with  
nef = 3.35 according to EC5. Again, nef is on the safe side except for the beech series with 
24 mm vhss dowels and for Islamaj’s azobé series with 8 mm vhss dowels. 

A possible explanation for the beech series is the high deformation state and subsequent 
high load carrying capacities reached in the joints with one dowel. The trend of less 
difference between joints with vhss and hss dowels can be observed for all beech series, 
12 mm and 24 mm dowels, three and five dowels in a row. Here, it is interesting to 
remember that the displacement at Fmax v(Fmax) was often close to the ultimate 
displacement vmax which indicates that the joints could have still taken higher loads if 

2.12 
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they would not have failed in splitting before. The ductility however decreases 
considerably when multiple dowels are used. Therefore, a high deformation capacity of 
joints with one dowel leads to a low nef. 
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Figure 7-17: Effective number of fasteners, joint series with 5 dowels  

(results 8 mm dowels from Islamaj, 2009), nef,EC5 = 3.35 

 

The trend observed in Figure 7-16 can be confirmed in Figure 7-17. The effective number 
nef tends to be lower for joints with vhss dowels, especially for 8 mm and 24 mm dowels. 
A tendency of a lower nef for vhss can be expected based on the following consideration: 
hss has a lower strength and starts yielding at an earlier stage than vhss. This means that 
hss dowels start deforming at lower loads which helps to avoid splitting at low 
deformations. Vhss dowels are more rigid and they bend later in comparison to hss 
dowels. The stress redistribution will therefore be better for joints using hss dowels. 

In the same line of discussion, a difference should be seen between the different wood 
species as their strength differs a lot. The ratio of the strength of the dowel and of the 
strength of the wood will therefore have an influence on nef. A closer look into the 
combination of a ‘performance class’ of the timber and the steel grade would be 
interesting. Spruce (low performance class) combined with vhss or azobé (high 
performance class) combined with hss should act differently on nef. 

Moreover, there seems to be an influence of the wood species. As discussed above, beech 
for instance shows high ductility when testing joints with one dowel. The subsequent 
reduction of deformation capacity for multiple-bolted joints leads to lower nef for ductile 
wood species. The effective number is always referred to the load carrying capacity of a 
joint with one fastener what makes it a dependent parameter, nef(Fone dowel). Joints with 
high density and less ductile wood species on the other hand split already at an early 
stage even with only one dowel which led to different nef. Often, for these wood species, 
a joint deformation of 15 mm or a deformation of 5 mm of embedment tests cannot be 
reached. This effect leads to a low load carrying capacity of the joints with one dowel and 

3.35 
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subsequently to high values for nef. The observed results in terms of load carrying 
capacity for azobé and beech confirm this. Although azobé has a higher density, the 
beech specimens had a similar load carrying capacity (m.c. of azobé was higher). 
Obviously, redistribution effects also depend on the failure modes of the joints. If no 
embedment took place, the effective number will be low as no load redistribution 
occurred.  

The observed bending angles (Table B-7) confirm the discussed issues on influence of 
steel grade and ductility of the joints with one dowel. For the joints with one dowel, the 
observed bending angles are big (mean 10°) with the biggest angles for the beech joints 
(mean 15°). The bending angles of the 12 mm dowels are comparable for both steel 
grades whereas a bigger difference can be observed between 24 mm hss and vhss dowels. 
The bending angles are decreasing considerably when testing joints with three or five 
dowels (between 1° and 5°). For these multiple dowelled joints, the bending angles of the 
hss dowels are consistently bigger than the angles for vhss dowels. 

Considering the above discussion, Equation (7-4) from EC5, which is based on purely 
geometrical considerations, should also depend on material properties such as steel grade 
and wood species together with a dependence on a slenderness ratio evaluated with 
different dowel diameters.  

7.4.6 Predictions - Johansen equations 

After having carried out all tests, the predictions as described in section 7.3.3 can be 
repeated, but using now the measured properties of the test specimens, i.e. measured 
geometrical data such as thickness and dowel diameter and measured material properties 
such as density and yield strength. As the moisture content was measured, both 
predictions and test results were adjusted to a moisture content of 12%. This was done 
analogously to the embedment test results. The measured densities were calculated for a 
m.c. of 12% and the load carrying capacities were reduced by 3% for every percentage 
point difference in moisture content. The empirical Equation (6-5) to calculate the 
embedment strength was used instead of Equation (7-2) from Ehlbeck and Werner 
(1992a). Equation (6-5) is shown again below: 

 ,0 12%0.095 1 0.0089h measuredf d   (7-6) 

where fh,0 = embedment strength parallel to grain in [MPa], dmeasured = measured dowel diameter in [mm], 
12% = measured density in [kg/m3] at 12% m.c.. 

 

The effective bending capacity of the dowels was established with theoretical Equation 
(7-1). The values for the yield strength of the dowels were taken from Table 6-1. For the 
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12 mm hss dowels, a difference per wood species was observed. Therefore, the proper 
yield strength per test series was applied25. The measured dowel diameters were used.  

As for the bending capacity of the dowels, a more precise discussion can be carried out as 
the deformation angles were measured. With this information, the outer strain can be 
calculated and the true bending moment of the dowels can be determined which will lie 
between the fully elastic and the fully plastic moment (see section 6.2).  

Figure 7-18 shows the calculated ‘true’ moments of the dowels (deformation angles see 
Table B-7) together with the elastic moment (equation given in Figure 6-3), the plastic 
moment according to Equation (6-1) and the bending moment according to Equation 
(6-2) from EC5. First of all, it can be seen that the prediction from EC5 is even lower 
than the elastic moment for 24 mm dowels. As expected, the true moments lie between 
the elastic and the plastic value. However, it can be seen that the measured values are 
much closer to the values for the plastic moment. This confirms the findings from section 
6.2 and the decision of establishing the bending moment with Equation (6-1).  
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                                                a)                                                                                 b) 

Figure 7-18: Bending moments of steel dowels, a) 12 mm dowels, b) 24 mm dowels 

 

The two graphs in Figure 7-19 show the measured maximum load carrying capacities 
versus the predicted results (both adjusted to a m.c. of 12%). No effective number was 
applied to predict the load carrying capacity, the load carrying capacity per dowel per 
shear plane was simply multiplied with number of shear planes and dowels. The 
agreement between measurements and predictions is surprisingly good with a less good 
agreement for the 12 mm dowel series. For comparative reasons, Figure 7-20 shows the 
measured versus the predicted results where the measured input values were used, no 
adjustment to a m.c. of 12% was done. No significant difference can be seen. The R2-
value is not improving. However, the regression line is closer to the diagonal y = x when 
using the adjusted values which still indicates a better prediction. 
 

                                                 
25 24mm dowels: fy,vhss = 1324MPa, fy,hss = 517MPa;    12mm dowels: fy,vhss = 517MPa, 
Table A-1: 12mm hss dowels in azobé fy = 490MPa, in beech fy = 760MPa, in spruce fy = 560MPa. 
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                                          a)                                                                     b) 

Figure 7-19: Measured versus predicted load carrying capacities – all adjusted to 12% m.c.,  
a) 12 mm dowels, b) 24 mm dowels 
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                                         a)                                                                     b) 

Figure 7-20: Measured versus predicted load carrying capacities – no adjustments to 12% m.c., 
a) 12 mm dowels, b) 24 mm dowels 

 

If now the adjusted predicted results are corrected with an effective number nef, the 
results are shifting towards a safer direction with lower values for measurements 
compared to predicted load carrying capacities. Figure 7-21 and Figure 7-22 show the 
graphs where the predictions were corrected with nef from EC5 (Equation (7-4)). Figure 
7-23 and Figure 7-24 instead show the results with nef calculated from the test results (see 
Figure 7-16, Figure 7-17 and Tables B-5 and B-6). Speaking in terms of mean values and 
not of characteristic values, the predictions applying nef from EC5 yield conservative 
results. Nearly all test results have higher load carrying capacities. The predictions 
applying the measured nef give better results. This is certainly valid for 12 mm dowels 
where the diagonal y = x is close to the regression line. No difference in prediction 
quality can be observed for the different steel grades or wood species.  
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Figure 7-21: Measured versus predicted load carrying capacities reduced with nef from EC5  

all adjusted to 12% m.c., 12 mm dowels 
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Figure 7-22: Measured versus predicted load carrying capacities reduced with nef from EC5  

all adjusted to 12% m.c., 24 mm dowels 
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Figure 7-23: Measured versus predicted load carrying capacities reduced with nef from tests  

all adjusted to 12% m.c., 12 mm dowels 
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Figure 7-24: Measured versus predicted load carrying capacities reduced with nef from tests  

all adjusted to 12% m.c., 24 mm dowels 
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7.4.7 Stiffness Kser  

Figure 7-25 shows the used testing protocol from EN 26891 (CEN, 1991) in terms of 
load-slip. Important measuring points of the resulting load-slip curve are defined. By 
means of these measuring points, the stiffness Kser per joint can be calculated. According 
to EN 26891, the slips at points 01 and 04 must be taken as then the actual stiffness of the 
joints is determined. The purpose of the initial loop (points 01 to 11) is to settle the test 
specimen before carrying out the experiment up to failure. 

Among others, Kser is susceptible to manufacturing processes and a rather large scatter 
can be expected. An example that illustrates a cause of scatter due to fabrication 
tolerances is shown in Figure 7-26 were different drilling qualities are shown. 

 

 
Figure 7-25: Test protocol according to EN 26819 (CEN, 1991) with determination of Kser 

 

           
                                                    a)                              b)                             c) 

Figure 7-26: Examples of drilling differences: a) spruce – b) beech – c) azobé 

 

For each specimen, the stiffness Kser as defined in Figure 7-25 was determined. Apart 
from an expected variation due to the natural scatter of wood or fabrication issues, the 
determination of stiffness values is also heavily influenced by the test execution, mainly 
by two issues: 

 Estimated load carrying capacity Fest: 
Only after a first test, the chosen value for Fest can be verified. Therefore, Fest may 
change during a test series or may not correspond to the actual reached load 
carrying capacity. Furthermore, in order to not damage the specimens, a lower 
value for Fest may be chosen. This is certainly necessary for big specimens that 
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reach a high load carrying capacity as then, 40% of Fest may damage the joint 
locally. 

 Measuring locations: 
In the standards that define testing protocols such as EN 26891, no provisions are 
given as to where the testing data should be measured. For instance, whether the 
measuring instruments should be fastened in the barycentre lines of the joints or 
whether they should cover the whole joint by measuring outside the joint. 

 

In EC5, an empirical regression equation is given to determine a value for Kser per shear 
plane per fastener based on mean density and dowel diameter. Equation (7-7) is based on 
test results on timber-to-timber joints (just like nef) that failed in failure mode 3 with two 
plastic hinges per shear plane. It is defined that the obtained value should be multiplied 
by two for steel-to-timber joints. 

1.5

23ser mean

d
K   (7-7) 

where Kser = stiffness in [N/mm], d = dowel diameter in [mm], mean = mean density in [kg/m3]. 

 

Equation (7-7) was used to predict Kser where the measured dowel diameters and 
densities were employed. Analogously to the other analyses of experimental results, Kser 
was predicted two times, firstly with the measured densities and secondly with the 
densities that were adjusted to a m.c. of 12% 26 . Moreover, the prediction of Kser 
according to Equation (7-7) will show a large scatter. All measured and predicted 
stiffness values are given in Appendix B. 

The following graphs show measured values of Kser and Fmax per dowel where it is 
assumed that stiffness and strength is distributed evenly (which may not be the case for 
specimens that split early without significant deformations as discussed previously). 
Consequently, the values per dowel are obtained by simply dividing through the number 
of dowels. The values shown are thus per two shear planes of a steel-to-timber joint. 

Figure 7-27 shows the measured values for Kser per dowel over the measured density at 
test. It should be expected that the values of Kser increase with increasing density as 
Equation (7-7) proposes this. This trend is very low in Figure 7-27 (if all three wood 
species are combined, the regression equation is slightly inclined with a R2-value of 0.04). 
The dependence from the dowel diameter which is linear in Equation (7-7) and thus 
should lead to a factor 2 between 12 mm and 24 mm dowels is clearer, at least for the 
joints with one dowel. For joints with more dowels this effect vanishes. No difference 
could be found for different steel grades. 

                                                 
26 If not otherwise indicated, the graphs show the predicted stiffness Kser,pred determined with the measured 
density that was not adjusted to 12% m.c. The results between adjusted predictions and the predictions 
using the measured densities without adjustment do not differ significantly. 
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                             a)                                                b)                                                c) 

Figure 7-27: Kser per dowel (with two shearplanes) versus density, a) spruce, b) beech, c) azobé 
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                                         a)                                                                        b) 

Figure 7-28: Kser per dowel versus Fmax per dowel, a) 12 mm dowels, b) 24 mm dowels 
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                                           a)                                                                       b) 

Figure 7-29: Measured value of Kser versus prediction with measured values for all steel grades, 
a) 12 mm dowels, b) 24 mm dowels 
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Figure 7-28 shows the measured values of Kser and Fmax per dowel. When looking at the 
R2-value from the linear regression, it is obvious that the correlation is low for both 
dowel diameters. Again no difference could be found for vhss and hss. 

Figure 7-29 shows the comparison between predicted values according to Equation (7-7) 
and measured values per joint, thus per two shear planes and one, three or five dowels. It 
is clear that the prediction quality for multiple dowel joints is rather bad. The measured 
values are consequently lower than the predicted values. If looking at joints with one 
dowel, the prediction quality for 12 mm dowels in spruce and beech is better than for 
azobé. With 24 mm dowels instead, the stiffness is underestimated for spruce and also for 
beech whereas for azobé with a large scatter in the measured values, the prediction is 
better. 

It seems that an effective number nef could be also applied to Kser. The observation of 
such a nef seems logical. Kser is sensitive to initial slip which is mainly caused by 
fabrication tolerances. If more than one dowel is used, the probability of fabrication 
inaccuracies is increasing. 

7.5 CONCLUSIONS 

A comprehensive joint test series including the wood species spruce, beech and azobé has 
been carried out using two different steel grades, vhss and hss. The experimental results 
have been discussed in this chapter and are summarised below: 

 In timber joints, hss dowels can be replaced by vhss dowels. Joints with vhss 
reached higher loads than the same joints with hss dowels. 

 Joints with spruce have a lower load carrying capacity than joints with beech and 
azobé. No large difference in load carrying capacity could be observed between 
joints with beech and azobé. However, the used azobé had a higher moisture 
content than the beech wood. Therefore, a higher difference in load carrying 
capacity is expected when both wood species are used at the same moisture 
content. 

 No strong correlation could be found between density of the wood and load 
carrying capacity of the joints using one wood species.  

 The failure modes can be predicted with the Johansen equations. This is valid also 
for different steel grades and wood species. 

 Ductile failure modes with one or two plastic hinges per shear plane were possible 
also when using vhss dowels as modern vhss steel grades possess enough 
deformation capacity. 

 Compared to hss dowels, the failure modes of the joints with vhss dowels were 
shifted towards failure modes with less plastic hinges. Furthermore, the bigger the 
dowel diameters, the more a shift towards modes with no plastic hinges or one 
plastic hinge per shear plane could be observed. 
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 The observed effective number nef for more dowels in a row showed a trend to be 
lower for the joints with vhss dowels. The difference between nef for hss and vhss 
dowels was smaller for beech. This may be due to the higher deformation 
capability of beech and hence higher ultimate loads in the joints with one dowel. 

 On wood species level, the stiffness Kser is not strongly related to the density of 
the used wood species and only weakly to the dowel diameter. An effective 
number nef could be used for Kser.  
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8  
COMPARISON TESTS - MODELS 

This chapter compares the modelling results obtained in chapter 5 with test results 
given in chapters 6 and 7. The global load-slip curves are discussed and the observed 
failure modes are compared with the predicted failure modes. The prediction quality, 

especially regarding global load-slip curves and failure modes, is evaluated. 
Conclusions as to how numerical models could be improved are given. 

8.1 INTRODUCTION 

Simulation results (chapter 5) based on the developed material model (chapter 4) are 
compared with experimental results. Two basic groups of models and tests are covered: 

 Embedment models – experimental results are given in chapter 6; 

 Joint models – experimental results are given in chapter 7. 

The comparisons between pure material models and experimental results taken from 
literature were already shown in chapter 5. The models and the test specimens are not 
presented in this chapter. All necessary information on geometry, boundary conditions etc. 
were already given in the relevant chapters 5, 6 and 7. 

However, more simulations will be carried out varying the material properties if the 
comparison between model and experiment is not satisfying. This means that a 
calibration is carried out after knowing the experimental outcomes and the models loose 
their predictive character. Properties such as elastic stiffness, strength values or fracture 
energies can be easily changed without the need to introduce artificial or non-realistic 
values. Recalling section 4.5 where the difficulties related to the determination of the 
mechanical material parameters were exhaustively discussed, modifications of material 
input values are admissible. The used initial properties are defective and no absolute 
values so that they can be changed within the large range of experimental results.  
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8.2 EMBEDMENT SPECIMENS 

The comparions between models and tests were carried out for three wood species. 
Although more wood species were used in the experimental part, only the three wood 
species spruce, beech and azobé were modelled as these three species were later used for 
the joint tests and models. The default material parameters as used in chapter 5 are given 
in Table 8-1. Moreover, a parameter study for azobé was undertaken where the MoE 
parallel-to-grain and the strength properties and fracture energies for tension 
perpendicular-to-grain and shear were increased. The modified material parameters for 
azobé are given in the last two columns of Table 8-1. 

 
Table 8-1: Default material properties and modified values, all wood species 

Parameter Units
spruce         
default

beech         
default

azobé         
default

azobé         
'90.v.roll'

azobé         
'all.E11'

E11 11000 13000 20000 20000 15000
E22=E33 370 860 1330 1330 1330
G12=G13 690 810 1250 1250 1250

G23 50 59 91 91 91
ft,0 24 41 72 72 72
fc,0 36 45 58 58 58
ft,90 0.7 1.0 1.0 2.0 2.0
fc,90 4.3 14.2 23.2 23.2 23.2
fv 6.9 6.9 8.6 12 12

froll 0.5 0.5 0.6 1.0 1.0
Gf,0 60 100 180 180 180
Gf,90 0.5 0.71 0.71 5 5
Gf,v 1.2 1.2 1.5 7 7

Gf,roll 0.6 0.6 0.7 1 1
  - 0.0001 0.0001 0.0001 0.0001 0.0001

MPa

N/mm

 

 

Figure 8-1 to Figure 8-3 show the overlap between test results and model predictions for 
the spruce, beech and azobé specimens with 24 mm dowels.  

The prediction for the spruce specimen, shown in Figure 8-1 with default material 
parameters is good in terms of embedment strength. However, the stiffness is too high. It 
is already known from literature that the stiffness is often too high when modelling (Dias 
et al., 2010). Therefore, the elastic stiffness parallel-to-grain E11 was reduced as indicated 
in Figure 8-1. In Figure 8-1b, a detail of the stiffness is shown. The modelling results 
were offset by 0.05 mm in order to account for the slip in the experimental results. The 
model with E11 = 5000 MPa forms the upper bound and the one with E11 = 3000 MPa the 
lower bound of the test results. The two stiffness values are much smaller than the default 
stiffness of E11 = 11000 MPa. Furthermore, the early entrance in the nonlinear regime can 
be seen in Figure 8-1b where the load-slip curves have a slight bend between 0.1 and 
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0.2 mm deformation. The reason for this bend could be the onset of damage in tension 
perpendicular-to-grain.  

The brittle strength drop, the artificial softening, of the models was already discussed in 
chapter 5 and is due to spurious energy modes and does not reflect the actual splitting of 
the timber member. 
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                                          a)                                                                                     b) 

Figure 8-1: Embedment specimens spruce with 24 mm dowel; a) test results and models with default 
parameters and reduced longitudinal MoE, E11; b) detail of stiffness 
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Figure 8-2: Embedment specimens beech with 24 mm dowel, test results and default model 

 

The predicted stiffness for the beech specimen, Figure 8-2, with default material 
properties is much better than for spruce and the load carrying capacity is also satisfying 
whereas the observed yield drop in the tests could not be reproduced. A possible, future 
improvement of the material model in order to avoid artificial softening would be very 
valuable for such a ductile wood species as beech. The prediction of the displacements is 
not valuable yet. 
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The predictions for the azobé specimen, Figure 8-3, with default properties are the best 
predictions in terms of embedment strength-deformation behaviour. Again, the obtained 
displacements of more than 5 mm during tests could not be predicted with the models. 
The default model has a higher elastic stiffness than the test results, the obtained 
embedment strength is satisfying, but the artificial softening leads to failure already at 
about 0.8 mm. As a consequence, the MoE parallel-to-grain was decreased and the 
strength values and fracture energies of the brittle failures transverse tension and shear 
were increased, see Table 8-1. The modifications can be also justified by experimental 
outcomes. For instance, Van de Kuilen and Blaß (2005) found a mean shear strength for 
azobé (Lophira alata) of 17.7 MPa which is higher than the chosen value of 8.6 MPa. 

The last modification of increasing the perpendicular ‘brittle properties’ should help to 
avoid spurious energy modes at an early stage at small deformations. If the perpendicular 
properties are increasing, an element that has already failed parallel-to-grain can 
withstand higher deformations than with lower perpendicular properties. The first 
modification of a lower MoE parallel-to-grain should decrease the intitial stiffness of the 
model. However, the stiffness does not only depend on the MoE parallel-to-grain, but 
also on the stiffness values in the other material directions. 

A better choice of the used material properties should help to improve the prediction 
quality considerably as it is the mechanical properties which define element failure. This 
statement can be verified when looking at Figure 8-3. The decrease of the MoE parallel-
to-grain has nearly no effect on the model outcomes. This may be due to a too small 
reduction from 20000 MPa to 15000 MPa as for instance, the MoE parallel-to-grain of 
the spruce model was reduced by more than factor 2 (Figure 8-1). Another cause could be 
the contribution of the other stiffness components perpendicular-to-grain and in shear 
which were not reduced. 

The increase of strength and fracture energy values for tension perpendicular-to-grain, 
longitudinal and rolling shear (model ‘90.v.roll’) instead showed an immediate effect as 
can be seen in Figure 8-3. The model ‘90.v.roll’ is a good fit to the upper bound 
experimental curve and indeed reaches a higher ductility with a deformation of about 
2 mm before artificial softening occurs. 

Figure 8-4 shows exemplarily the experimental and the model results for spruce in terms 
of damage in compression parallel-to-grain (dc,0, Figure 8-4a) and tension perpendicular-
to-grain (dt,90 which is coupled to dv and droll, Figure 8-4b). The increase of damage due 
to compression parallel-to-grain reflects the crushing of wood fibres underneath the 
dowel during an embedment test. The coupled damage in tension perpendicular-to-grain 
and shear as shown in Figure 8-4b reflects the transverse tension and shear cracking. 
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Figure 8-3: Embedment specimens azobé with 24 mm dowel, test results and models 
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Figure 8-4: Embedment specimen spruce with 24 mm dowel, test result 
and model in terms of a) dc,0 ; and b) dt,90 (see Figure 5-37) 

 

8.3 JOINTS 

8.3.1 Spruce joints 

Figure 8-5 shows the comparison between the test results and the model for a spruce joint 
with one 24 mm vhss dowel. The numerical results are offset by 0.5 mm to exclude the 
initial slip observed in tests. The model prediction is good in terms of load carrying 
capacity, stiffness and ductility. However, the calculations stopped too early due to the 
extensively discussed spurious energy modes and the reached ductility is hence less than 
the one observed in tests. Especially the stiffness prediction is surprisingly good after the 
observations made for the embedment tests. 

In Figure 8-6, the comparison for the joints with three 24 mm vhss dowels are shown. 
The model predicts the tests outcomes satisfyingly well, both in terms of load carrying 
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capacity and shape of the load-slip curve with the saw-tooth shape indicating damage in 
the perpendicular and shear directions. The predicted stiffness is too high. If a 
longitudinal stiffness value of E11 = 4000 MPa is taken, which was the best fit for the 
embedment models, the stiffness prediction quality improves. However, the prediction of 
the load carrying capacity decreases. 

Figure 8-7 finally shows the numerical and test results for the spruce joints with five 
24 mm vhss dowels in a row. The FE model stopped at an early stage due to convergence 
problems and could not predict load carrying capacity at all. However, the predicted 
stiffness is good. 
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Figure 8-5: Spruce joints with one 24 mm vhss dowel, test results and model 
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Figure 8-6: Spruce joints with three 24 mm vhss dowels, test results and model 
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Figure 8-7: Spruce joints with five 24 mm vhss dowels, test results and model 

 

Figure 8-8 shows the model results of a spruce joint with one 24 mm vhss dowel in terms 
of damage due to compression parallel-to-grain together with a photo of a tested 
specimen. The damage is indicated correctly. However, it seems as if shear and 
perpendicular damage starts at too small deformations as can be seen in Figure 8-9. The 
test series S24-1 reached an average maximum displacement of vmax = 13.5 mm which is 
much higher than the deformations of the model with vmax = 2.6 mm before calculation 
exit due to convergence problems. This means that the shown shear and perpendicular 
damage is too high for a deformation of only 2.6 mm. On the other hand, wood enters the 
plastic regime at low deformations already which can be also seen when analysing the 
models (Dias et al., 2010). As discussed in section 5.4.3 for joints with five dowels and 
shown in Figure 8-1b for embedment models, early damage that is expressing itself in a 
slight saw-tooth shape of the load-slip curve is a realistic prediction and leads to 
nonlinear behaviour already at low deformations. 
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Figure 8-8: Spruce joint, one 24 mm vhss dowel, test with vmax = 18 mm and model result in terms of 
dc,0 and with vmax = 2.6 mm 
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Figure 8-9: Spruce joint, one 24 mm vhss dowel, model result in terms of dv  
and with vmax = 2.6 mm, inner side (steel plate side) of model 

 

8.3.2 Beech joints 

The numerical and experimental results for the beech joints with 24 mm hss dowels in 
terms of load-displacement are shown analogously to the spruce results. Firstly, Figure 
8-10 shows the overlapping curves for the joints with one dowel, then the comparison for 
the joints with three dowels is shown in Figure 8-11 and lastly, the joints with five dowels 
are presented in Figure 8-12. For the joints with one dowel, the prediction is acceptable 
apart from the fact that the model is not ductile enough. The artificial softening led to an 
abortion of the numerical calculations befor the physical failure of the joint is reached, 
both numerically and phenomenologically. Beech is a ductile wood species reaching high 
deformations. The poor quality of the model with five dowels can be seen immediately. It 
did not even reach the load level of the model with three dowels. This is in line with the 
results for spruce. However, the models with three dowels in a beech joint are worse than 
the one for a spruce joint. Not only the slip is underestimated, but also the reached 



Chapter 8 Comparison tests - models 

 213

maximum load is far too low. The softening starts at approximately half the experimental 
load carrying capacity. The reached load carrying capacity of the model is similar to the 
capacity reached by the spruce models (Figure 8-6). This is a reasonable result 
considering that the tension strength perpendicular-to-grain and the shear strength do not 
differ a lot between spruce and beech (Table 5-2). 
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Figure 8-10: Beech joints with one 24 mm hss dowel, test results and model 
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Figure 8-11: Beech joints with three 24 mm hss dowels, test results and model 
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Figure 8-12: Beech joints with five 24 mm hss dowels, test results and model 

 

The model with three dowels was re-run with different material properties with the aim to 
increase the ductility and the load carrying capacity of the model. The results in terms of 
load-displacement are shown in Figure 8-13. Figure 8-14 shows a different scale of 
Figure 8-13 in order to clarify the initial behaviour. Table 8-2 gives the used default and 
modified material properties of beech. This investigation is done analogously to section 
5.4.1 where similar modifications were carried out to influence the load-slip behaviour of 
a beech joint with one dowel. When using nearly isotropic properties as given in Table 
8-2 (variation ‘A’, variation ‘iso’ in Table 5-4), the behaviour is indeed more ductile. The 
joint reached a displacement of 6 mm before calculation exit due to convergence 
problems. However, the prediction quality of the stiffness decreased considerably. Model 
variation ‘A’ has the same elastic stiffness than the default model, but the load-
displacement graphs of the two models separate at around 0.45 mm deformation (see 
Figure 8-14). The brittle mechanisms in transverse tension and shear of the default model 
led to an earlier entry in the nonlinear range in comparison to the nearly isotropic model 
‘A’. In order to further improve the model in terms of higher load carrying capacity and 
more ductile behaviour without loosing the effect of early damage in transverse tension 
and shear, the default properties were again modified in order to understand the influence 
of different material properties on the global load-displacement behaviour. First of all, the 
properties of the nearly isotropic case ‘A’ were reduced in model variation ‘B’. However, 
the global load-slip curve remained qualitatively the same, but a lower load carrying 
capacity was reached as the lower transverse and shear properties led to an earlier 
transition into the nonlinear range. An increase in tension strength perpendicular-to-grain 
and longitudinal shear without changing the fracture energies did not change the load-slip 
curve. An increase of the strength in rolling shear together with an increase of the fracture 
energies in transverse tension, longitudinal and rolling shear (model variation ‘C’) instead 
led to a different behaviour. The load carrying capacity increased in compratison to the 
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default model while damage still decreased the stiffness of the joint at higher 
deformations. However, also here, the calculation stopped earlier due to convergence 
problems. Variations ‘D’, ‘E’ and ‘F’ further improved the default model results in terms 
of load carrying capacity and ductility (not variation ‘F’). In all model variations, the 
fracture energies and strength values for transverse tension and shear were increased, but 
less strong than in variation ‘A’, the nearly isotropic case. Variation ‘F’ combined 
increased strength properties and fracture energies with a decrease in longitudinal elastic 
stiffness E11. With this modification, it was tried to obtain a lower stiffness closer to the 
experimental results. However, the resulting load-slip graph of variant ‘F’ is not 
satisfying. The lower longitudinal stiffness can be seen only in the detail, Figure 8-14, 
and not in the global load-displacement curve. An additional decrease of the longitudinal 
elastic stiffness E11 did not lead to better predictions. 

All discussed material modifications led to a better prediction quality of load carrying 
capacity and ductility in comparison to the default model, but the stiffness prediction 
quality decreased due to less influence of brittle failures in transverse tension and shear. 
Another option to reach higher load carrying capacities without loosing the effect of 
perpendicular damage should be to increase the compression strength parallel-to-grain. 
This was done in model variation ‘G’. Variation ‘G’ reached indeed a higher load 
carrying capacity, but the dutility and stiffness prediction did not improve. If lastly, the 
rolling shear properties were increased as done in variation ‘H’, the global load-slip curve 
approached again the variations ‘A’ and ‘B’. 

 
Table 8-2: Default material properties and variation ‘A’ to ‘H’ for beech joints with three dowels 

Parameter Units default  'A'  'B'  'C'  'D'  'E'  'F'  'G'  'H'

E11 13000 13000 13000 13000 13000 13000 10000 13000 13000

ft,0 41 41 41 41 41 41 41 41 41

fc,0 45 45 45 45 45 45 45 70 45

ft,90 1.0 41 20 1.0 4 10 10 10 10
fc,90 14.2 45 14.2 14.2 14.2 14.2 14.2 14.2 14.2

fv 6.9 40 20 6.9 9 12 12 12 12
froll 0.5 40 20 10 1.0 1.0 1.0 1.0 20
Gf,0 100 100 50 100 100 100 100 100 100

Gf,90 0.71 100 50 100 10 10 10 10 10
Gf,v 1.2 100 12 100 12 12 12 12 12

Gf,roll 0.6 100 12 100 1 1 1 1 12

MPa

N/    
mm
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Figure 8-13: Beech joints with three 24 mm hss dowels, different model input values 
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Figure 8-14: Detail of Figure 8-13 
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8.3.3 Azobé joints 

The joint models with azobé were run with the default material properties and with the 
calibrated properties from the embedment models (Table 8-1, model variation = ‘all.E11’). 
In Figure 8-15 showing the overlap for the joint with one 24 mm vhss dowel, it can be 
seen that the prediction quality improved when using the model variation ‘all.E11’. A 
considerably higher ductility was reached for the joint with one dowel. The joint with 
three 24 mm vhss dowels could reach a higher load carrying capacity when using model 
variation ‘all.E11’ as can be seen in Figure 8-16. However, the predictions of the joint 
with five dowels as given in Figure 8-17 are unuseable. As with spruce and beech, the 
calculations stopped at low deformations due to convergence problems. However, similar 
to the models of the joints with five dowels using spruce and beech (Figure 8-7 and 
Figure 8-12 respectively), the stiffness is predicted satisfyingly well. The joint with azobé 
given in Figure 8-17 started to fail at a displacement of around 0.8 mm where the first 
saw-tooth in the load-displacement graph can be seen. 
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Figure 8-15: Azobé joints with one 24 mm vhss dowel, test results and model 
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Figure 8-16: Azobé joints with three 24 mm vhss dowels, test results and model 
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Figure 8-17: Azobé joints with five 24 mm vhss dowels, test results and model 

 

 

 

 

 

 

 

 



Chapter 8 Comparison tests - models 

 219

8.4 CONCLUSIONS 

The comparison of the load-displacement curves of numerical and experimental results 
has shown the capability of the developed material model to simulate the early onset of 
damage already at low deformations as observed also during embedment and joint tests. 
The models were able to model nonlinear behaviour caused by two effects, elastic 
perfectly plastic behaviour in compression parallel-to-grain and brittle damage due to 
transverse and shear stresses. The latter manifested in saw-tooth shapes of the load-
displacement curves.  

The predictions of the load carrying capacity of joints with one dowel using the 
developed material model are satisfying until the spurious energy modes of the elements 
directly underneath the dowels are reached. When joints with three or five dowels are 
simulated, the prediction quality is rather poor except for spruce joints with three dowels. 
The poor prediction quality is due to early calculation exit caused by convergence 
problems in the large models with three and five dowels. The stiffness of the joints is 
overestimated when compared to experimental results. 

Generally, it can be said that the results for embedment models were better than for joint 
models. Also, the calibration (changing the used mechanical material properties) of the 
embedment models to the experimental curves was better than for the joint models. This 
could be due to the minor complexity of the embedment specimens that have rigid dowels. 

The parameter study modifying the material properties has shown the sensitivity of the 
model to changes of these properties. It seems that the performance of the model 
improves if the ratio between the parallel and perpendicular strength and shear values is 
decreasing. This could also be an explanation why the spruce joints with three dowels 
gave better results as the chosen material properties showed less difference between 
tension strength parallel and perpendicular to the grain for instance in comparison to 
beech and spruce.  

The difficulties with deriving material properties for wood have been already discussed. 
For instance, the tension strength values perpendicular-to-grain for beech and azobé are 
rather lower bound values, an increase would thus be admissible without leading to 
unrealistic values. Therefore, a persisting problem is the determination of material 
properties. 

All numerical calculations were aborted due to observed spurious energy modes in the 
completely collapsed elements directly underneath the dowels. This abortion took place 
before the numerical models failed ‘physically’. In other words, the models failed due to 
local numerical problems in the elements underneath the dowels without which the 
calculations would have carried on providing a continuation of the load-displacement 
curve up to global model failure. The models were not able to transfer the loading from 
the failed elements to the neighbouring elements. These numerical problems must be 
addressed in future research in order to improve the quality of the load-displacement 
behaviour in comparison to test results. 
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9  
CLOSURE 

The two main tasks of the thesis are addressed in this closure. One task was to develop 
reliable analysis techniques and models to predict the mechanical behaviour of timber 

joints with a specific focus on wood species with large density differences and vhss 
dowels. The other task was to develop high-performance joints to improve the versatility 
and competitiveness of timber. Here, it is discussed to which extent these two main tasks 

have been achieved. Recommendations for further research are given. 

9.1 CONCLUSIONS 

This study covered the development of a material model, its application within finite 
element simulations and an extensive testing series to which the modelling outcomes 
have been compared. Therefore, conclusions can be drawn with regards to modelling and 
experimental results. 

Modelling 

In order to be able to predict the load carrying capacity, numerical models for embedment 
testing and steel-to-timber joints have been developed. For this, a thorough literature 
survey has been conducted. Shortcomings in existing models have been discussed such as 
the fact that generally, models are able to simulate either ductile or brittle behaviour. The 
lack of a valid constitutive material model for the proper modeling of failure has been 
identified as being a major drawback of existing approaches. Therefore, a more 
comprehensive 3D material model has been developed, based on the principles of 
continuum damage mechanics (CDM).  

It was shown that ductile and brittle failures could be combined in one single approach. 
Different failure modes could be identified and damage caused by different stress 
components was correctly simulated with the developed material model. The large 
differences in strength parallel and perpendicular to the grain, typical for wood, could be 
captured without creating unadmissible stess interactions. The material model was able to 
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properly simulate initial nonlinear ductile behaviour in joints which is caused by crushing 
of the wood fibres directly underneath the dowel. Also, a stable softening curve could be 
found when simulating a brittle model response. What has become clear is the difference 
between Young’s modulus parallel-to-grain E11 and the actual stiffness of a joint whose 
timber members are loaded parallel-to-grain. In all models where E11 has been taken on 
the basis of the expected value for the wood species, a lower stiffness was found in the 
tests, confirming results from literature (Dias, 2005). However, the material model was 
able to indicate a correct stiffness reduction caused by damage in the (weak) 
perpendicular directions and shear while still showing an increasing load-slip curve. 

The mechanical material parameters needed for the constitutive relationship are clearly 
defined and represent physically significant values such as elastic properties, load 
carrying capacities and fracture energies. It has been shown that physically possible 
‘new’ values, e.g. higher tension strength perpendicular-to-grain, can be chosen for 
calibration purposes. A lack of knowledge on material parameters exists for tension 
strength perpendicular to the grain, shear strength as well as fracture energy values. 
Values obtained from standardized tests cannot be used one-to-one when modelling 
material properties around fasteners. In addition, only values for spruce are available 
whereas beech and azobé are different species with different cell wall structures. 

However, the implemented material model is based on a smeared approach that, 
depending on the selected mesh size, cannot always predict the mechanical behaviour of 
heterogeneous materials, when the microstructure has a dominant effect on the failure 
mode. Also, an increased shear strength under transverse compression has not been 
implemented. In order to solve mesh dependency, it was shown that regularised results 
can be obtained by using the crack band method if models show localised solutions. 

The predictions of the load carrying capacity of joints with one dowel using the 
developed material model were satisfactory until spurious energy modes (i.e. excessive 
3D distortion) of the elements directly underneath the dowels were observed. When joints 
with three or five dowels are simulated, the prediction quality is rather poor and an early 
calculation exit could be observed. All numerical calculations were aborted due to 
observed spurious energy modes in the completely collapsed elements directly 
underneath the dowels. This abortion took place before the numerical models failed 
‘physically’. In other words, the models failed due to local numerical instabilities in the 
elements underneath the dowels without which the calculations may have continued 
resulting in a continuation of the load-displacement curve up to global failure. No stress 
redistribution took place and the still intact elements did not take over the load. 

Experiments 

In this research, a comparison has been made between timber joints with slotted-in steel 
plates using high strength steel (hss, fu = 400 - 600 MPa) and very high strength steel 
(vhss, fu = 700 - 1100 MPa) dowels. The comparison has shown that the load carrying 
capacity can be increased by a percentage between 10% and 69% when using vhss 
dowels, depending on the geometry, fastener diameter and wood species. Beech seems to 
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be particularly favourable where brittleness is concerned as beech proved to be a highly 
ductile wood species. On wood species level, no correlation between density and load 
carrying capacity of the joints could be found which confirmed earlier findings from 
literature (Van de Kuilen, 1999). Similar observations were found for the correlation 
between density and stiffness Kser. 

A comparison between the test results and current Eurocode 5 design rules has shown a 
difference between actual and predicted resistance in terms of mean values. This is 
caused by two important factors. Firstly, the yield moment of the fasteners as currently 
given in EC5 is conservative for vhss dowels with diameters of 12 mm and more. The 
yielding and plastic deformation capacity of vhss is such, that also with relatively thick 
dowels (12-24 mm) full plastic hinges can develop at the steel-wood shear plane. The 
second important parameter is the embedment strength. On the basis of a number of tests 
and literature data, a better prediction model for the embedment strength has been derived. 
This prediction model together with the equation for the bending capacity of a circular 
dowel with a fully developed plastic section modulus improved the prediction of the load 
carrying capacity applying the Johansen equations. 

Based on the embedment tests, it could also be concluded that the used steel grade had a 
strong influence because higher embedment strengths between 11% and 35% were 
obtained when vhss dowels were used. According to literature (Rodd, 1973), this 
difference is caused by different friction coefficients. Even though friction tests have not 
been carried out, measurements of the surface roughness showed no difference between 
the two steel grades. In addition, even though the absolute value of the embedment 
strength is dependent on the wood density, wood yielding below the fastener and final 
splitting is also greatly dependent on the species.  

Finally, the influence of the number of fasteners in a row has been studied, both for load 
carrying capacity and stiffness of timber joints. As current code rules take only the 
number of fasteners into account and not the steel grade, this effect has been studied for 
the three species and the used steel grades. Here, no clear influence of the steel grade, the 
wood species or the diameter could be found, but effective numbers seem to be higher by 
around 17% for joints using hss in comparison to joints using vhss. The effective number 
of fasteners established by the tests is higher by 3% to 43% in comparison to code 
prescriptions. Also, the joint stiffness seems to be dependent of the number of fasteners in 
a row. 

9.2 RECOMMENDATIONS 

Modelling 

The first and foremost problem that should be solved is the spurious energy modes of the 
completely collapsed elements under compression directly underneath the dowel. The 
excessive mesh distortion must be controlled in order to avoid artificial softening effects 
and to obtain numerical stability beyond local failure of the first row of elements below 
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the fastener. Furthermore, stress redristribution between neighbouring elements must be 
enabled. Once the most stressed elements have completely failed, the neighbouring 
elements should take over. Possibilities to deal with spurious energy modes could be the 
development of new element formulations that allow for total failure without excessive 
distortions. Another option is to allow for deletion of the collapsed elements with a 
subsequent reset of the model and calculation restart. Furthermore, additional remeshing 
within the framework of large deformations (arbitrary Lagrangian-Eulerian (ALE) 
approaches) could be a possible tool to solve the lack of load transfer and to control 
excessive mesh distortion (e.g. Rodríguez-Ferran et al., 2002). 

Finally, the uncertainty connected with the derivation of valuable material parameters for 
timber must be addressed. In this thesis it was found in compliance with literature (Dias, 
2010) that a proper derivation of mechanical properties needed for timber joint modelling 
based on data from literature is difficult. Also, the Poisson effect and consequential stress 
and damage interactions in different material directions should be investigated further. 
Better defined material properties could remove one source of uncertainty of the 
modelling. 

Once satisfying solutions for the numerical issues, i.e. the spurious energy modes, are 
implemented, the developed material model is a valid alternative for timber engineers. In 
order to obtain an even more general material model useable also for other models than 
joints, the subroutine could be extended with viscosity formulations to account for the 
influence of moisture content and load duration. Random assignment of stochastic 
material properties similar to Frese (2006) could further broaden the model applicability. 
Finally, the subroutine could be inserted in more innovative FE environments where 
state-of-the-art FE tools such as dissipation-based arclength methods (Van der Meer, 
2010) are available in order to improve computational robustness and convergency.  

Experiments 

The test series should be completed using mild steel dowels which was one of the starting 
ideas of this research. The observed difference in embedment strength using hss and vhss 
dowels should be investigated further as a deeper understanding of this effect should also 
help to better understand joint behaviour where the same effect is expected.  

The analysis of possible influences of wood species, steel grades or slenderness ratios on 
timber joint behaviour should be deepened. A special focus of further research should be 
the verification if the effective number of fasteners is indeed higher for joints using lower 
steel grades. 

Another important evaluation of the testing data is the static ductility ratio which has not 
been established here. Also, a cyclic testing series on joints with vhss dowels should be 
redone in order to gain important insights about the feasibility of these joints in seismic 
regions for instance. A minor point for further research is the corrosion sensitivity of vhss 
in relation to different species. 
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A 
COMPONENT TESTS 

A.1 TENSION TESTS ON STEEL DOWELS 

Table A-1: Results of tension tests on steel dowels 

tests with strain gauges
227414 1460 1551  -

228952 1450 1529  -

212669 1270 1365  -

212824 1280 1363  -

tests with extensometer
210785 1280 1349 7.39%
213211 1190 1258 7.19%
210587 1290 1366 11.57%
209355 1300 1382 11.51%
201567 1320 1382  -
213385 1330 1399  -
197064 750 761 8.37%
198500 510 544 11.54%
196684 560 587 12.32%
239014 420 448 13.11%

tests with strain gauges
12mm 215846 1240 1310  -
24mm 215791 1290 1393  -
12mm 206919 585 625  -
24mm 210404 570 589  -

tests with strain gauges length used in
163234 490 536  - 150mm azobé
217822 760 771  - 180mm beech
215566 560 593  - 200mm spruce

Rm       

[MPa]
Young's 

modulus [MPa]
strain at 
failure
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It was not possible to trace the batches except for the 12 mm 12.9 steel bolts where the batches were 
indicated. No certificates were available for the 12 mm dowels. No satisfying explanations connected to the 
test setup or test procedure were found to explain the differences in the test results. 
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Figure A-1: Tests with extensometers, 
  12 mm dowels 

0

200

400

600

800

1000

1200

1400

1600

0% 2% 4% 6% 8% 10% 12% 14%

strain [-]

st
re

ss
 [M

P
a

]

hss mild
 

Figure A-2: Tests with extensometers, 
  24 mm dowels 
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Figure A-3: Tests with strain gauges 31.03.2011, 
                        12 mm dowels 
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A.2 STEEL CERTIFICATES 

Certificate for 24 mm hss dowels 
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Certificates for original 24 mm steel dowels, vhss dowels 

These steel bars were treated thermally in order to obtain a higher strength equivalent to 
bolt grade 12.9 
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A.3 NAMING EMBEDMENT TESTS 

 

 

 

 

 

 

 

A.4 DESCRIPTIVE STATISTICS EMBEDMENT TESTS 

Table A-2: Descriptive statistics for moisture content 

n mean stdev COV [%] max min 5% 95%
vhss 11 19.2 1.75 9.1 21.3 17.2 16.1 22.4
hss 7 19.7 1.76 8.9 21.2 17.1 16.4 23.1

Azobé wet vhss 6 43.6 3.07 7.0 48.3 40.3 37.6 49.6
vhss 5 11.8 0.10 0.8 11.9 11.7 11.6 12.0
hss 5 11.8 0.11 0.9 11.9 11.6 11.6 12.0
vhss 8 13.3 0.67 5.0 13.9 12.2 12.0 14.5
hss 3 12.4 0.17 1.4 12.5 12.2 12.0 12.8
vhss 7 14.3 0.82 5.7 15.0 13.0 12.8 15.9
hss 7 14.2 0.61 4.3 14.6 13.1 13.0 15.3
vhss 7 14.6 0.63 4.3 15.3 13.6 13.4 15.7
hss 5 14.0 0.54 3.8 14.5 13.4 12.9 15.1
vhss 6 12.7 1.38 10.9 14.0 11.0 10.0 15.4
hss 7 13.3 1.38 10.4 14.4 11.1 10.7 15.9
vhss 5 21.6 2.42 11.2 23.2 17.4 16.7 26.5
hss 5 23.3 0.43 1.8 24.0 22.8 22.5 24.2

Azobé wet vhss 5 43.0 3.54 8.2 46.7 38.6 35.9 50.1
vhss 5 12.0 0.94 7.8 13.6 11.1 10.1 13.9
hss 5 12.1 0.73 6.1 13.3 11.4 10.6 13.5
vhss 5 15.1 0.64 4.2 16.1 14.5 13.8 16.4
hss 5 15.0 0.43 2.9 15.6 14.4 14.1 15.9
vhss 5 15.4 0.44 2.9 15.8 14.9 14.5 16.3
hss 5 15.5 0.35 2.3 16.1 15.2 14.8 16.2
vhss 5 12.4 0.30 2.5 12.8 12.0 11.8 13.0
hss 5 12.3 0.38 3.1 12.5 11.6 11.5 13.0

m.c. [%]

24
m

m
 d

ow
el

Azobé

Beech

Cumaru Peru

Purpleheart

Spruce

12
m

m
 d

ow
el

Azobé

Beech

Cumaru Brazil

Cumaru Peru

Purpleheart

Spruce

 
 

 

 

 

 

 

 
 

 

 

 

 

A12_hss_1_mV 

With reinforcement (laterally glued plywood) 

Specimen numbering 

Steel grade: hss or vhss 

Dowel diameter; 12 mm or 24 mm 

Wood species: A =Azobé, B = Beech, CP = Cumaru from Peru, 
                        CB = Cumaru from Brazil, P = Purpleheart, S = Spruce 
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Table A-3: Descriptive statistics for density 

n mean stdev COV [%] max min 5% 95%
vhss 11 1071 43.92 4.1 1124 1026 992.5 1150.2
hss 7 1094 39.16 3.6 1126 1035 1019.8 1168.2

Azobé wet vhss 6 1229 34.71 2.8 1264 1180 1161.9 1296.8
vhss 5 633 18.91 3.0 658 609 594.7 670.9
hss 5 644 9.67 1.5 655 631 624.5 663.5
vhss 8 1156 23.74 2.1 1201 1134 1111.5 1199.8
hss 3 1192 6.81 0.6 1200 1187 1176.3 1208.4
vhss 7 893 41.13 4.6 956 862 814.9 970.8
hss 7 919 59.64 6.5 1014 879 805.7 1031.7
vhss 7 949 26.69 2.8 977 898 898.0 999.1
hss 5 955 22.43 2.3 979 921 910.0 1000.4
vhss 6 444 54.96 12.4 485 345 336.7 550.3
hss 7 482 31.64 6.6 511 413 422.3 542.2
vhss 5 1042 59.00 5.7 1145 1002 923.1 1160.9
hss 5 1045 53.79 5.1 1140 1011 937.0 1153.8

Azobé wet vhss 5 1222 37.96 3.1 1269 1182 1145.9 1298.9
vhss 5 730 17.67 2.4 750 710 694.8 766.0
hss 5 725 30.77 4.2 761 698 663.0 787.0
vhss 5 933 19.92 2.1 959 911 892.7 972.9
hss 5 938 30.69 3.3 973 903 876.0 999.6
vhss 5 801 170.11 21.2 1043 675 457.8 1143.4
hss 5 792 153.12 19.3 991 665 483.3 1100.3
vhss 5 463 13.77 3.0 487 452 435.4 491.0
hss 5 469 27.69 5.9 503 437 413.6 525.2

density [kg/m3]
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Table A-4: Descriptive statistics for embedment strength 

n mean stdev COV [%] max min 5% 95%
vhss 11 86.8 7.21 8.3 98.9 79.2 73.8 99.7
hss 7 73.1 5.14 7.0 80.0 64.7 63.4 82.9

Azobé wet vhss 6 64.0 6.04 9.4 72.2 53.6 52.3 75.8
vhss 5 52.2 3.49 6.7 57.6 48.8 45.2 59.3
hss 5 46.5 7.92 17.0 59.1 39.7 30.5 62.5
vhss 8 107.7 3.93 3.6 116.1 103.5 100.4 115.0
hss 3 91.1 8.00 8.8 100.1 84.8 72.3 109.9
vhss 7 74.4 6.35 8.5 83.8 67.5 62.3 86.4
hss 7 66.9 10.77 16.1 87.8 55.6 46.5 87.3
vhss 7 87.0 3.61 4.2 92.6 82.3 80.1 93.8
hss 5 70.0 11.94 17.1 90.2 59.9 46.0 94.1
vhss 6 31.4 4.36 13.9 36.5 25.9 22.9 39.8
hss 7 24.6 3.65 14.8 29.3 19.7 17.7 31.5
vhss 5 74.1 3.83 5.2 80.8 71.0 66.4 81.8
hss 5 65.7 6.39 9.7 76.2 59.1 52.9 78.6

Azobé wet vhss 5 62.8 4.83 7.7 69.1 57.4 53.1 72.6
vhss 5 58.6 1.35 2.3 59.7 56.7 55.9 61.3
hss 5 49.8 1.33 2.7 52.0 48.6 47.2 52.5
vhss 5 74.5 2.96 4.0 77.7 71.7 68.5 80.4
hss 5 63.6 5.78 9.1 71.9 55.7 51.9 75.2
vhss 5 65.1 16.71 25.7 88.8 51.8 31.5 98.8
hss 5 52.4 14.43 27.5 69.9 39.0 23.3 81.4
vhss 5 38.0 3.20 8.4 42.4 34.8 31.6 44.5
hss 5 28.2 2.35 8.3 30.7 24.9 23.4 32.9

24
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Note: 5% and 95% fractiles calculated with Student’s t-distribution as only few specimens were 
available. 
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A.5 LOAD-SLIP GRAPHS OF EMBEDMENT TESTS 
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Figure A-6: Azobé, 12 mm vhss dowel 
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Figure A-7: wet Azobé, 12 mm vhss dowel 
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Figure A-8: Azobé, 24 mm vhss dowel 
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Figure A-9: Azobé, 12 mm hss dowel 
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Figure A-10: wet Azobé, 24 mm vhss dowel 

 

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

Displacement [mm]

E
m

be
dm

en
t s

tr
en

gt
h 

[M
P

a]

 

 

mean
A24.1
A24.2
A24.3
A24.4
A24.5

 
Figure A-11: Azobé, 24 mm hss dowel 
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BEECH 
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Figure A-12: Beech, 12 mm vhss dowel 
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Figure A-13: Beech, 24 mm vhss dowel 
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Figure A-14: Beech, 12 mm hss dowel 
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Figure A-15: Beech, 24 mm hss dowel 
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CUMARU 
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Figure A-16: Cumaru Peru, 12 mm vhss dowel 
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Figure A-17: Cumaru Brazil, 12 mm vhss dowel 
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Figure A-18: Cumaru Peru, 24 mm vhss dowel 
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Figure A-19: Cumaru Peru, 12 mm hss dowel 
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Figure A-20: Cumaru Brazil, 12 mm hss dowel 
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Figure A-21: Cumaru Peru, 24 mm hss dowel 
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PURPLEHEART 
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Figure A-22: Purpleheart, 12 mm vhss dowel 
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Figure A-23: Purpleheart, 24 mm vhss dowel 
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Figure A-24: Purpleheart, 12 mm hss dowel 
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Figure A-25: Purpleheart, 24 mm hss dowel 
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SPRUCE 
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Figure A-26: Spruce, 12 mm vhss dowel 
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Figure A-27: Spruce, 24 mm vhss dowel 
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Figure A-28: Spruce, 12 mm hss dowel 
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Figure A-29: Spruce, 24 mm hss dowel 
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Table A-10: Four-point bending tests of original beams 

species original beam
rho_beam 

[kg/m3]
mc_beam Edyn_wet

MoE_static        
global            
[MPa]

MoE_static        
local             
[MPa]

MoR [MPa]

31 1289 42.5 21213.6 17416.1 23649.6 103.7

44 1138 42.1 15262.2 11316.9 12870.1 64.5

44 1138 42.1 15262.2 11316.9 12870.1 64.5

52 1165 14.7 22380.4 21188.9 27117.5 134.4

94 1175 17.4 21954.4 19686.7 22601.5 138.1

2 1011 14.5 18335.7 15266.6 17116.7 64.2

23 924 15.6 18937.5 13510.6 92.0

32 962 16.1 20738.2 15209.6 13194.4 103.9

39 975 15.8 18134.0 13804.1 18832.1 97.1

46 968 14.7 18782.5 13234.2 15463.8 75.6

9 1233 52.4 16816.2 11967.6 17778.9 59.6

20 691 36.8  - 13783.0 15704.2 81.4

22 1201 34.2 20078.8 15634.2 19903.6 96.3

23 1226 35.8 21452.4 17044.3 18890.4 75.3

41 1114 39.8 15635.9 12366.2 16029.2 80.0

44 1138 42.1 15262.2 11316.9 12870.1 64.5

12 976 16.1 21678.3 17243.4 22874.4 88.3

28 951 17.1 21112.8 15809.5 19530.9 89.0

32 683 17.1 16651.8 12144.2 14888.4 79.1

33 954 17.4 20070.7 14575.5 17843.5 55.5

36 853 17.9 20667.6 16296.4 19850.3 48.4

41 687 17.4 17964.9 13301.1 16186.3 84.9

Purpleheart

A_wet

Cumaru_B

Cumaru_P

Azobé

 
Legend: 

 rho_beam = density at test 
 mc_beam = moisture content at test 
 Edyn_wet = dynamic MoE at test 
 MoEstatic_global = global MoE of four-point-bending test 
 MoEstatic_local = local MoE of four-point-bending test 
 MoR = MoR of test 
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B.1 NAMING 
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Number of dowels 

Dowel diameter (if followed by index C: hss; otherwise: vhss) 

Wood species (S=Spruce, B=Beech, A=Azobé) 

Specimen numbering 1 to 5 
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B.2 DESCRIPTIVE STATISTICS AND MEASURED PARAMETERS 

Table B-1: Descriptive statistics for moisture content 

n mean stdev COV [%] max min 5% 95%
vhss 5 12.1 0.2 1.6 12.3 11.8 11.7 12.5
hss 5 11.9 0.3 2.4 12.4 11.7 11.4 12.5
vhss 5 12.4 0.3 2.4 12.7 12.0 11.8 13.0
hss 5 12.7 0.2 1.6 12.9 12.4 12.3 13.1
vhss 5 12.6 0.2 1.5 12.8 12.3 12.2 13.0
hss 5 12.5 0.2 1.9 12.8 12.1 12.0 12.9
vhss 5 8.7 0.3 3.1 8.4 9.1 8.1 9.2
hss 5 8.6 0.3 3.4 8.2 8.9 8.0 9.2
vhss 5 8.7 0.1 1.4 8.9 8.6 8.4 8.9
hss 5 8.5 0.1 0.7 8.6 8.4 8.4 8.6
vhss 5 8.5 0.1 1.0 8.5 8.3 8.3 8.6
hss 5 8.8 1.1 12.6 10.8 8.2 6.6 11.0
vhss 5 22.0 0.3 1.4 22.5 21.6 21.3 22.6
hss 5 21.4 0.3 1.4 21.8 21.1 20.8 22.0
vhss 5 22.9 0.7 3.1 23.6 22.1 21.4 24.3
hss 5 21.8 0.2 0.9 22.1 21.6 21.4 22.2
vhss 5 17.2 0.4 2.4 17.9 16.9 16.4 18.1
hss 5 21.7 0.2 0.8 21.8 21.5 21.3 22.0
vhss 5 12.0 0.2 1.8 12.2 11.7 11.5 12.4
hss 5 12.2 0.2 1.9 12.7 12.1 11.8 12.7
vhss 5 11.8 0.2 1.7 12.0 11.6 11.4 12.2
hss 5 11.9 0.1 1.1 12.1 11.8 11.6 12.1
vhss 4 12.5 0.3 2.3 12.9 12.3 11.9 13.1
hss 5 12.4 0.2 1.7 12.7 21.1 12.0 12.8
vhss 5 8.5 0.2 2.0 8.7 8.2 8.1 8.8
hss 5 8.7 0.7 8.0 10.0 8.1 7.3 10.1
vhss 5 8.3 0.1 1.3 8.4 8.1 8.0 8.5
hss 5 8.4 0.1 0.8 8.5 8.3 8.3 8.5
vhss 5 9.4 0.4 4.5 9.8 9.0 8.5 10.2
hss 5 9.8 0.3 2.9 10.1 9.4 9.3 10.4
vhss 5 21.5 0.7 3.1 22.7 20.9 20.1 22.8
hss 5 21.5 1.3 5.9 23.6 19.8 18.9 24.0
vhss 5 21.3 1.4 6.6 23.0 19.3 18.5 24.1
hss 5 22.6 2.4 10.7 25.7 19.7 17.8 27.5
vhss 5 15.9 2.5 15.7 18.8 13.6 10.9 20.9
hss 5 22.5 1.5 6.9 24.4 20.5 19.4 25.6

m.c. [%]
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Table B-2: Descriptive statistics for density (at test) 

n mean stdev COV [%] max min 5% 95%
vhss 5 457.4 26.6 5.8 494 422 403.8 511.1
hss 5 455.8 16.5 3.6 481 441 422.5 489.1
vhss 5 485.0 12.9 2.7 496 465 458.9 511.0
hss 5 462.5 32.3 7.0 499 418 397.5 527.5
vhss 5 477.9 9.2 1.9 492 469 459.4 496.3
hss 5 459.8 25.8 5.6 492 430 407.9 511.7
vhss 5 722.2 17.8 2.5 737 700 686.5 758.0
hss 5 719.9 11.5 1.6 734 709 696.7 743.0
vhss 5 732.1 35.3 4.8 775 699 660.9 803.2
hss 5 729.9 16.0 2.2 749 705 697.8 762.1
vhss 5 702.6 16.1 2.3 731 691 670.2 735.0
hss 5 718.0 22.0 3.1 753 694 673.5 762.4
vhss 5 1114.6 26.0 2.3 1144 1083 1062.2 1167.0
hss 5 1115.4 25.5 2.3 1144 1089 1063.9 1166.8
vhss 5 1131.0 45.1 4.0 1184 1063 1040.1 1221.9
hss 5 1117.1 16.2 1.4 1139 1102 1084.5 1149.7
vhss 5 1129.8 43.6 3.9 1200 1087 1041.9 1217.8
hss 5 1115.3 18.1 1.6 1139 1094 1078.8 1151.9
vhss 5 412.8 17.5 4.2 439 393 377.5 448.1
hss 5 424.1 45.6 10.8 474 377 332.2 516.1
vhss 5 409.6 14.4 3.5 422 385 380.6 438.5
hss 5 418.4 15.4 3.7 442 400 387.3 449.5
vhss 4 438.8 20.5 4.7 465 418 395.2 482.5
hss 5 436.4 19.4 4.4 459 411 397.3 475.5
vhss 5 709.5 7.4 1.0 718 699 694.5 724.5
hss 5 718.5 15.6 2.2 742 701 686.9 750.0
vhss 5 723.9 6.3 0.9 733 718 711.2 736.6
hss 5 710.5 12.0 1.7 729 695 686.3 734.8
vhss 5 695.2 16.2 2.3 714 672 662.7 727.8
hss 5 700.7 7.3 1.0 707 692 685.9 715.5
vhss 5 1154.2 21.5 1.9 1186 1128 1110.9 1197.5
hss 5 1122.5 34.3 3.1 1167 1087 1053.5 1191.5
vhss 5 1115.7 21.7 1.9 1141 1088 1072.1 1159.4
hss 5 1103.8 25.6 2.3 1129 1069 1052.2 1155.4
vhss 5 1100.8 13.8 1.3 1123 1087 1073.1 1128.5
hss 5 1118.1 27.1 2.4 1152 1081 1063.4 1172.7
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Table B-3: Descriptive statistics for load carrying capacity 

n mean stdev COV [%] max min 5% 95%
vhss 5 44.1 1.5 3.4 46.6 42.7 41.0 47.1
hss 5 32.0 2.7 8.4 35.7 28.8 26.6 37.4
vhss 5 115.5 7.2 6.3 124.0 107.4 100.9 130.0
hss 5 89.6 8.4 9.4 101.1 77.7 72.7 106.6
vhss 5 169.3 26.6 15.7 199.7 136.7 115.6 223.0
hss 5 135.7 12.6 9.3 153.3 121.2 110.3 161.1
vhss 5 70.0 4.2 6.0 74.4 64.4 61.5 78.5
hss 5 59.4 2.1 3.6 62.5 57.2 55.1 63.8
vhss 5 173.4 8.4 4.9 182.8 163.5 156.4 190.5
hss 5 157.3 7.2 4.6 167.6 148.9 142.8 171.7
vhss 5 294.0 7.3 2.5 303.5 285.2 279.2 308.7
hss 5 240.2 6.1 2.5 249.0 233.8 228.0 252.5
vhss 5 72.0 1.9 2.7 73.5 68.8 68.1 76.0
hss 5 57.3 3.7 6.5 60.9 51.4 49.8 64.9
vhss 5 182.6 14.4 7.9 193.8 158.1 153.6 211.6
hss 5 127.7 9.7 7.6 140.4 116.8 108.3 147.2
vhss 5 280.8 37.0 13.2 307.1 215.7 206.3 355.3
hss 5 233.0 32.8 14.1 278.3 203.5 167.0 299.0
vhss 5 165.1 6.9 4.2 172.0 155.6 151.2 179.0
hss 5 110.0 13.4 12.2 126.9 92.7 83.0 137.1
vhss 5 297.4 53.4 18.0 369.3 253.5 189.7 405.0
hss 5 323.7 16.6 5.1 341.2 296.2 290.3 357.1
vhss 4 570.1 53.8 9.4 624.0 496.0 455.3 684.9
hss 5 482.1 44.8 9.3 522.8 429.0 391.8 572.5
vhss 5 299.8 7.3 2.4 305.9 291.3 285.2 314.4
hss 5 208.0 7.4 3.6 218.2 199.1 193.0 222.9
vhss 5 659.1 33.8 5.1 700.8 619.1 590.9 727.2
hss 5 510.4 25.4 5.0 541.1 479.0 459.2 561.6
vhss 5 927.0 32.4 3.5 949.4 871.4 861.6 992.3
hss 5 822.6 43.9 5.3 882.4 769.0 734.2 911.1
vhss 5 305.9 19.5 6.4 327.8 291.4 266.7 345.2
hss 5 180.7 19.2 10.6 208.7 166.1 142.0 219.4
vhss 5 706.1 39.0 5.5 753.2 654.5 627.5 784.8
hss 5 538.7 39.0 7.2 596.0 491.1 460.1 617.2
vhss 5 1128.0 180.0 16.0 1265.0 844.6 765.4 1490.7
hss 5 867.5 95.3 11.0 978.6 737.3 675.5 1059.4

Fmax,test [kN]
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Table B-4: Descriptive statistics for stiffness Kser 

n mean stdev COV [%] max min 5% 95%
vhss 5 20 6.4 32.6 29 13 7 32
hss 5 21 7.4 34.5 32 12 7 36
vhss 5 51 4.3 8.4 56 46 42 60
hss 5 51 10.7 20.9 64 42 30 73
vhss 5 68 4.4 6.5 72 62 59 77
hss 5 52 6.3 12.3 61 44 39 64
vhss 5 49 22.8 44.2 86 29 3 95
hss 5 36 14.2 40.6 49 19 7 64
vhss 5 67 5.3 8.4 71 58 57 79
hss 5 61 17.3 28.8 91 46 27 97
vhss 5 129 13.7 13.3 150 105 99 154
hss 5 110 4.7 4.2 114 102 101 119
vhss 5 53 6.4 12.4 62 44 40 66
hss 5 45 13.6 29.5 64 27 18 73
vhss 5 64 6.0 11.2 73 54 52 76
hss 5 39 2.8 6.7 41 35 36 47
vhss 5 158 10.9 22.1 217 124 119 163
hss 5 132 7.2 6.0 143 124 117 145
vhss 5 118 16.3 13.8 133 93 85 151
hss 5 126 34.6 27.5 176 81 56 195
vhss 5 122 8.1 6.6 135 113 106 138
hss 5 127 28.3 22.3 163 105 70 184
vhss 4 247 108.7 44.0 410 187 15 479
hss 5 137 8.4 6.1 149 126 121 154
vhss 5 157 8.5 7.7 170 143 141 176
hss 5 114 24.7 20.4 134 75 67 166
vhss 5 205 7.2 2.9 213 198 189 218
hss 5 202 35.4 17.2 241 160 126 268
vhss 5 192 12.1 6.3 209 178 169 218
hss 5 171 12.5 7.2 191 156 145 195
vhss 5 201 31.7 17.5 249 164 135 263
hss 5 103 15.4 15.1 115 77 71 133
vhss 5 246 33.5 13.8 275 197 180 314
hss 5 186 62.2 33.3 249 96 61 311
vhss 5 374 152.8 40.9 610 231 67 682
hss 5 321 53.7 16.8 385 241 209 425

Kser,test [kN/mm]
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Note: 5% and 95% fractiles calculated with Student’s t-distribution as only few specimens were 

available. 
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Table B-5: Effective numbers for specimens with 12 mm dowels (a1 = 60 mm) 

species grade
number of   

dowels
F max            

[kN]

n ef               

tests

n ef              

EC5

n ef (tests)/ 

n ef (EC5)

n ef (hss)/ 

n ef (vhss)
1 32 - - -
3 90 2.80 2.12 1.32
5 136 4.24 3.35 1.27
1 44 - - -
3 115 2.62 2.12 1.24 1.07
5 169 3.84 3.35 1.15 1.10
1 59 - - -
3 157 2.65 2.12 1.25
5 240 4.04 3.35 1.21
1 70 - - -
3 173 2.48 2.12 1.17 1.07
5 294 4.20 3.35 1.25 0.96
1 57 - - -
3 128 2.23 2.12 1.05
5 233 4.06 3.35 1.21
1 72 - - -
3 183 2.53 2.12 1.20 0.88
5 281 3.90 3.35 1.16 1.04

hss

vhss

spruce

beech

azobé

hss

vhss

hss

vhss

 
 
Table B-6: Effective numbers for specimens with 24 mm dowels (a1 = 120 mm) 

species grade
number of   

dowels
Fmax       
[kN]

n ef               

tests

n ef              

EC5

n ef (tests)/ 

n ef (EC5)

n ef (hss)/ 

n ef (vhss)
1 110 - - -
3 324 2.94 2.12 1.39
5 482 4.38 3.35 1.31
1 165 - - -
3 297 1.80 2.12 0.85 1.63
5 570 3.45 3.35 1.03 1.27
1 208 - - -
3 510 2.45 2.12 1.16
5 823 3.96 3.35 1.18
1 300 - - -
3 659 2.20 2.12 1.04 1.12
5 927 3.09 3.35 0.92 1.28
1 181 - - -
3 539 2.98 2.12 1.41
5 867 4.80 3.35 1.43
1 306 - - -
3 706 2.31 2.12 1.09 1.29
5 1128 3.69 3.35 1.10 1.30

hss

vhss

spruce

beech

azobé

hss

vhss

hss

vhss
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Table B-7: Predicted failure modes using test properties (density adjusted to 12% m.c.) and from 
                   tests, deformation angles 

number of 
dowels

grade FMtest FMpred
mean deformation 

angles
remarks on test results

vhss 2 2 11 FM2
hss 2/3 3 9 FM2 with FM3 on one side
vhss 1/2 2 3 test 5 in FM1
hss 2/3 3 4 test 4 in FM3
vhss 1/2 2 1 test 1+3 in FM1
hss 2 3 3 FM2
vhss 2 2 16 FM2
hss 3 3 17 all in FM3
vhss 2 2 5 FM2
hss 3 3 4 all in FM3
vhss 2 2 3 FM2
hss 2/3 3 2 all slightly in FM3
vhss 2 2 8 FM2
hss 3 3 12 all in FM3
vhss 2 2 5 FM2
hss 2/3 3 5 test 1 in FM3, rest FM2
vhss 1/2 2 1 test 1 in FM1, rest FM2
hss 2/3 3 5 test 2+5  in FM2, rest FM3
vhss 1/2 2 4 test 5 in FM1, rest in FM2
hss 2 2/3 4 FM2
vhss 1 2 - FM1
hss 2 2/3 1 FM2
vhss 1 2 - FM1
hss 2 2/3 1 FM2
vhss 2 2 9 FM2
hss 3 3 19 FM3
vhss 2 2 1 FM2
hss 2/3 2 4 test 2+3 in FM3, rest in FM2
vhss 1/2 2 1 test 2+4 in FM2, rest in FM1
hss 2/3 2 4 test 1+2 slightly in FM3, rest in FM2
vhss 2 2 2 FM2 
hss 3 3 16 all in FM3
vhss 1/2 2 1 test 1 in FM1
hss 2/3 3 3 test 1+2 in FM2, rest FM3
vhss 1/2 2 1 test 2+5 in FM2, rest FM1
hss 2/3 3 3 test 1+5 in FM3, rest FM2
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Table B-8:  Measured and predicted values load carrying capacities, all adjusted to 12% m.c. and  
                    prediction with measured nef (see Tables B-5 and B-6) 

Ftest,12% [kN]

mean COV [%] mean

vhss 457 5.8 44 45 45 1.03 2
hss 456 3.5 32 35 35 1.08 2/3

vhss 483 2.4 117 141 123 1.05 1/2
hss 460 6.8 91 104 97 1.07 2/3

vhss 475 1.8 172 232 178 1.04 1/2
hss 458 5.4 138 174 147 1.07 2

vhss 744 2.4 63 58 58 0.92 2
hss 742 1.6 53 50 50 0.93 3

vhss 754 4.8 156 177 146 0.93 2
hss 754 2.2 141 153 135 0.96 3

vhss 726 2.2 263 287 241 0.92 2
hss 739 3.8 217 253 204 0.94 2/3

vhss 1024 2.2 85 70 70 0.83 2
hss 1029 2.1 68 49 49 0.72 3

vhss 1031 3.5 215 212 179 0.83 2
hss 1027 1.5 151 146 108 0.72 2/3

vhss 1080 4.1 324 366 285 0.88 1/2
hss 1027 1.6 275 243 197 0.72 2/3

vhss 413 4.1 165 149 149 0.91 1/2
hss 423 10.6 111 119 119 1.08 2

vhss 410 3.4 295 446 268 0.91 1
hss 419 3.7 323 358 351 1.09 2

vhss 437 4.8 579 776 536 0.93 1
hss 435 4.4 488 608 533 1.09 2

vhss 733 1.1 183 212 212 1.16 2
hss 741 2.3 119 158 158 1.33 3

vhss 749 0.9 562 667 489 0.87 2
hss 734 1.7 550 473 387 0.70 2/3

vhss 712 2.3 904 1034 640 0.71 1/2
hss 715 1.1 909 774 613 0.67 2/3

vhss 1064 1.6 234 256 256 1.10 2
hss 1035 2.4 150 190 190 1.27 3

vhss 1030 0.7 690 750 577 0.84 1/2
hss 1008 3.5 444 557 553 1.25 2/3

vhss 1064 2.9 1142 1279 943 0.83 1/2
hss 1022 2.0 745 933 896 1.20 2/3

mean 0.96
COV 17.7
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Table B-9: Kser,test and Kpred, prediction adjusted to 12% m.c. 

COV
vhss 20 20 32.6 20 1.02 457 12.1 44 44
hss 20 21 34.5 21 0.95 456 11.9 32 32
vhss 65 51 8.4 17 1.28 483 12.4 115 38
hss 62 51 20.9 17 1.20 460 12.7 90 30
vhss 106 68 6.5 14 1.57 475 12.6 169 34
hss 102 52 12.3 10 1.98 458 12.5 136 27
vhss 42 49 44.2 49 0.85 744 8.7 70 70
hss 42 36 40.6 36 1.18 742 8.6 59 59
vhss 128 67 8.4 22 1.92 754 8.7 173 58
hss 128 61 28.8 20 2.10 754 8.5 157 52
vhss 202 129 13.3 26 1.57 726 8.5 294 59
hss 208 110 4.2 22 1.89 739 8.8 240 48
vhss 68 53 12.4 53 1.28 1024 22.0 72 72
hss 69 45 29.5 45 1.52 1029 21.4 57 57
vhss 205 64 11.2 21 3.23 1031 22.9 183 61
hss 206 39 6.7 13 5.22 1027 21.8 128 43
vhss 366 158 22.1 32 2.32 1080 17.2 281 56
hss 343 132 6.0 26 2.60 1027 21.7 233 47
vhss 35 118 13.8 118 0.30 413 12.0 165 165
hss 36 126 27.5 126 0.29 423 12.2 110 110
vhss 104 122 6.6 41 0.85 410 11.8 297 99
hss 107 127 22.3 42 0.85 419 11.9 324 108
vhss 191 247 44.0 49 0.77 437 12.5 570 114
hss 189 137 6.1 27 1.38 435 12.4 482 96
vhss 83 157 7.7 157 0.53 733 8.5 300 300
hss 84 114 20.4 114 0.74 741 8.7 208 208
vhss 262 205 2.9 68 1.28 749 8.3 659 220
hss 248 202 17.2 67 1.23 734 8.4 510 170
vhss 395 192 6.3 38 2.06 712 9.4 927 185
hss 397 171 7.2 34 2.32 715 9.8 823 165
vhss 145 201 17.5 201 0.72 1064 21.5 306 306
hss 140 103 15.1 103 1.36 1035 21.5 181 181
vhss 414 246 13.8 82 1.68 1030 21.3 706 235
hss 401 186 33.3 62 2.16 1008 22.6 539 180
vhss 723 374 40.9 75 1.93 1064 15.9 1128 226
hss 682 321 16.8 64 2.12 1022 22.5 867 173

Ftest 

[kN]

Ftest/ 

dowel

Kser/ 

dowel

Kpred/ 
Kser

density at 
12% m.c. 

[kg/m3]

m.c. 
[%]

Kpred,12%
Kser [kN/mm]n° 
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grade
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B.3 LOAD-SLIP GRAPHS 

AZOBE 
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Figure B-1: Azobé, one 12 mm vhss dowel 
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Figure B-2: Azobé, three 12 mm vhss dowels 
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Figure B-3: Azobé, five 12 mm vhss dowels 
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Figure B-4: Azobé, one 12 mm hss dowel 
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Figure B-5: Azobé, three 12 mm hss dowels 
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Figure B-6: Azobé, five 12 mm hss dowels 

A12C_5_1 slip measurement defective 

Strange course between 
20 and 40kN; unknown why 
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Figure B-7: Azobé, one 24 mm vhss dowel 
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Figure B-8: Azobé, three 24 mm vhss dowels 
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Figure B-9: Azobé, five 24 mm vhss dowels 
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Figure B-10: Azobé, one 24 mm hss dowel 

 

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

Displacement (mm)

Lo
ad

 (
kN

)

 

 

mean
A24C.3.1
A24C.3.2
A24C.3.3
A24C.3.4
A24C.3.5

 
Figure B-11: Azobé, three 24 mm hss dowels 
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Figure B-12: Azobé, five 24 mm hss dowels 
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BEECH 
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Figure B-13: Beech, one 12 mm vhss dowel 
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Figure B-14: Beech, three 12 mm vhss dowels 
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Figure B-15: Beech, five 12 mm vhss dowels 
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Figure B-16: Beech, one 12 mm hss dowel 
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Figure B-17: Beech, three 12 mm hss dowels 
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Figure B-18: Beech, five 12 mm hss dowels 
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Figure B-19: Beech, one 24 mm vhss dowel 
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Figure B-20: Beech, three 24 mm vhss dowels 
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Figure B-21: Beech, five 24 mm vhss dowels 

 

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

Displacement (mm)

Lo
ad

 (
kN

)

 

 

mean
B24C.1.1
B24C.1.2
B24C.1.3
B24C.1.4
B24C.1.5

 
Figure B-22: Beech, one 24 mm hss dowel 
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Figure B-23: Beech, three 24 mm hss dowels 
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Figure B-24: Beech, five 24 mm hss dowels 

 

 

 

 

 

B24C_3_4 slip measurement defective 

B24_5_2 slip measurement defective 

B24_3_2 slip measurement defective 
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SPRUCE 
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Figure B-25: Spruce, one 12 mm vhss dowel 
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Figure B-26: Spruce, three 12 mm vhss dowels 
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Figure B-27: Spruce, five 12 mm vhss dowels 
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Figure B-28: Spruce, one 12 mm hss dowel 

 

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

Displacement (mm)

Lo
ad

 (
kN

)

 

 

mean
S12C.3.1
S12C.3.2
S12C.3.3
S12C.3.4
S12C.3.5

 
Figure B-29: Spruce, three 12 mm hss dowels 
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Figure B-30: Spruce, five 12 mm hss dowels 

 

S12_1_4 slip measurement defective 

S12C_1_4 knot in dowelled region 
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Figure B-31: Spruce, one 24 mm vhss dowel 
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Figure B-32: Spruce, three 24 mm vhss dowels 

 

0 1 2 3 4 5
0

100

200

300

400

500

600

700

Displacement (mm)

Lo
ad

 (
kN

)

 

 

mean
S24.5.2
S24.5.3
S24.5.4
S24.5.5

 
Figure B-33: Spruce, five 24 mm vhss dowels 
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Figure B-34: Spruce, one 24 mm hss dowel 
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Figure B-35: Spruce, three 24 mm hss dowels 
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Figure B-36: Spruce, five 24 mm hss dowels 
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Table B-16: Four-point bending tests of original beams of series azobé with 12 mm dowels 

original          
beam

rho_beam       

[kg/m3]
mc_beam Edyn_wet

MoE_static       
global           
[MPa]

MoE_static       
local            
[MPa]

MoR            
[MPa]

34 1214 35.3 22809.9 16600.3 20918.2 90.2

45 1147 45.5 14579.5 10797.3 11883.1 69.3

46 1102 42.9 16631.5 12286.5 15536.1 65.8

47 1285 48.5 18058.2 12245.6 13918.0 58.1

48 1193 53.7 17617.7 13203.1 14717.5 87.6

49 1224 47.9 16934.7 13134.6 16864.6 84.0

50 1118 44.0 15967.8 12218.6 15922.3 92.0

52 1219 17.4 15224.0 11605.7 15039.1 61.9

53 1165 44.8 15342.1 11245.3 15729.2 56.3

59 1150 43.8 17829.5 13629.4 14056.7 74.9

60 1079 41.3 15416.5 11493.6 16079.4 73.3

61 1153 39.5 17259.7 13655.7 15585.0 66.9

62 1206 42.1 20257.1 16224.0 22325.3 89.1

64 1149 38.8 17751.5 13759.4 14771.8 72.8

66 1196 44.3 16485.8 12737.4 16246.0 75.9

67 1168 38.2 18051.6 12458.8 16699.6 72.2  
Legend: 

 rho_beam = density at test 
 mc_beam = moisture content at test 
 Edyn_wet = dynamic MoE at test 
 MoEstatic_global = global MoE of four-point bending test 
 MoEstatic_local = local MoE of four-point bending test 
 MoR = MoR of test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix B Joint tests 

 282

 

 

 

 



 

 283

C 
MISCELLANEOUS 

C.1 DERIVATION OF DAMAGE VARIABLES 

Ductile Law 

 

 
Figure C-1: Ductile damage evolution 

 

 

 

 



Appendix C Miscellaneous 

 284

Definitions of variables:  ,el n
n

cf


         
, n cel n f   

, nel n E   

 1dam d E    

Derivation:   
 

,

1
el n c

n
n

f
E d E


  


 

    
 1

n c c

n

f f
E d E

 


       11n
n

d    

 

Check:     1 0d       AND   lim 0d


  

 

 

 

Brittle Law 

 

 
Figure C-2: Brittle damage evolution 
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Definitions of variables:  1
2 tf ultG f         2 f

ult
t

G
f

   

,el ult ultE   

,
2

2 fel ult ult
ult

t t t

G EE
f f f

      

, nel n E   

 1dam d E    

Equation for line a:   
2

2

2

2
t tf

t f

Ef G Ef

f G E


 





 

Equation for line b:     1 d E     

Derive intersection point of lines a and b and solve for d: 

   (iii)  
22

2 2

2
1

2 2
tft

t tf f

G ffd
f G E f G E

   
 

 

The last step is to define d as a function of the history parameter : 

 At increment i:  ,el i
i

tf


   

    
, ti iel i E f     

        ti
i

f
E

   

 Insert in (iii):  2
2

21( ) 1
2

f
t

t f

G E
d f

f G E
 

 
 
 
 

  


 

 

Check:    1 0d       AND   
2

2
0f

t

G E
d

f

 
 
 
 

   
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C.2 DESIGNATION OF SOLUTION-DEPENDENT STATE VARIABLES 

 

Damage variables (no viscous 
stabilisation): 

SDV1 = dt,0_nr 

SDV2 = dc,0_nr 

SDV3 = dt,90R_nr 

SDV4 = dc,90R_nr 

SDV5 = dt,90T_nr 

SDV6 = dc,90T_nr 

SDV7 = dvR_nr 

SDV8 = dvT_nr 

SDV9 = droll_nr 

 

 

Stabilised damage variables: 

SDV10 = dt,0 

SDV11 = dc,0 

SDV12 = dt,90R 

SDV13 = dc,90R 

SDV14 = dt,90T 

SDV15 = dc,90T 

SDV16 = dvR 

SDV17 = dvT 

SDV18 = droll 

 

 

 

 

 

 

 

Damaged stiffness matrix (is not needed 
for calculation and can be changed easily 
in the UMAT): 

SDV19 = Cdam(1,1) 

SDV20 = Cdam(2,2) 

SDV21 = Cdam(3,3) 

SDV22 = Cdam(4,4) 

SDV23 = Cdam(5,5) 

SDV24 = Cdam(6,6) 

SDV25 = Cdam(1,2) 

SDV26 = Cdam(1,3) 

SDV27 = Cdam(2,3) 

 
History parameter : 
SDV28 = t,0 

SDV29 = c,0 

SDV30 = t,90R 

SDV31 = c,90R 

SDV32 = t,90T 

SDV33 = c,90T 

SDV34 = vR 

SDV35 = vT 
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C.3 NEEDED INPUT MATERIAL PARAMETERS - PROPS 

 

ELASTIC PROPERTIES 

E0 = PROPS(1)  parallel-to-grain 

E90 = PROPS(2)  perpendicular-to-grain 

G = PROPS(3)  shear modulus 

Groll = PROPS(4)  rolling shear modulus 

12 = PROPS(5)  Poisson's ratios 

13 = PROPS(6) 

23 = PROPS(7) 

 

ULTIMATE STRENGTH PROPERTIES 

fc,0 = PROPS(8)  Compression parallel-to-grain 

ft,0 = PROPS(9)  Tension parallel-to-grain 

fc,90 = PROPS(10)  Compression perpendicular-to-grain 

ft,90 = PROPS(11)  Tension perpendicular-to-grain 

fv = PROPS(12)  Longitudinal shear 

froll = PROPS(13)  Rolling shear 

 

DAMAGE PROPERTIES 

Gf_t,0 = PROPS(14)  Fracture energy tension parallel-to-grain 

Gf_t,90 = PROPS(15)  Fracture energy tension perpendicular-to-grain 

Gf_v = PROPS(16)  Fracture energy longitudinal shear 

Gf_roll = PROPS(17)  Fracture energy rolling shear 

 

VISCOSITY FOR VISCOUS STABILISATION 

 = PROPS(18) 
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Und natürlich auch für Stefanie 
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