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TRANSITION BIFURCATION BRANCHES IN 

NON- LINEAR UATER UAUES. 

by 

E F Toro«-

College of Aeronautics, Cranfield Institute 

of Technology, Cranfield, Beds. |Y|K43 OJA 

Abstract 

We are concerned ujith the numerical computation of 

progressiv/e free surface gravity ujaues on a horizontal bed. 

They are regarded as families of bifurcation branches (A.,A)„ 

of constant discharge Q. 

Numerically we determine tuo transition values Q, 

and Q_ iijith corresponding transition bifurcation branches that 

classify uav/es into three disjoint branch sets B , B_ and B.,. 

Their members are families of waves (X,A)p, catisfaying respec

tively the conditions 0 < Q^ 4: Q?, Q^ < Q^ .<: Q| and Q| < Q^ < 

B/27. 

The bifurcation patterns are analysed in some detail 

.from the computed bifurcation diagram which shows that in B, 

bifurcation is to the left and the amplitude A increases as 

the wavelength A decreases; in B^ bifurcation is to the right 

and turning points are observed at nearly breaking point. In 

B-, bifurcation is to the right and A increases monotonically 

with A. 

^ Formerly at the University of Leeds, Department of 

Applied l^athematical Studies. 
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1. INTRODUCTION. 

The subject of numerical computation of progressive free 

surface gravity waves has made significant progress in recent 

years^ **. The wide variety of numerical techniques used in

cludes .perturbation expansions, boundary integral methods, 

finite difference, finite element and boundary element methods. 

In most formulations of the water wave problem the undis

turbed water depth is taken as an independent parameter. Results 

are thus presented as families of waves of constant depth. Also 

it is usual to perform computations in terms of non-dimensional 

wavelength( A=2Tr) . All this is well suited for boundary integral 

and perturbation expansion techniques which have proved very 

accurate for the problem of waves on a horizontal bed. 

Variational techniques^ ^ in conjunction with the Finite 

Element Method^, the Kantorovich Method^ etc., have proved 

efficient in the computation of problems of engineering interest 

in which the bed profile may not be uniform. Examples of such 

problems are critical flows over weirs^*^, flows over spillway 

crests^ ° ~-̂  ̂  , waves created by upstream obstructions-^ ̂  "-̂  ̂ , etc. 

In the variational formulation of these free surface problems 

the discharge Q and the wavelength A (or domain length) are 

independent parameters. Their relative behaviour, their inter

dependent ranges of physical significance, the question of 

multiple solutions, etc. are problems of both theoretical as 

well as of practical computational importance. 

In this paper we study numerically the relationship Q-A 

for the case of non-linear water waves on a horizontal bed. 



The work is aimed at determining two transition values Q and 

Q_ of the discharge that completely determine three disjoint 

wave regions B^, B_ and B-,. 

The problem is interpreted as a bifurcation problem in 

which we compute branches of solutios (A,A)J-, for constant Q 

bifurcating from the uniform solution of zero amplitude A. The 

transition branches corresponding to Q, and Q_ are the bound

aries between B̂  and B_ and B„ and B-, respectively. 

The bifurcation points (A,,D,) and (A^,D„) of the trans

ition branches give two transition wavelengths (A, and A_) and 

two transition asymptotic depths (D and D„). 

The regions B,, B_ and B-, are determined by the Q^-ranges 

(0,Q?^], (Q̂ .̂Q̂ j and (Q^.B/Z?) respectively. In B bifurcation 

is to the left and A increases as A decreases. In B_ bifurcation 

is to the right and a right turning point is observed which 

gives rise to multiple solutions. In B-, bifurcation is to the 

right and A is observed to increase monotonically with A. 

The numerical computations are carried out using a new 

Kantorovich algorithm the details of which are reported else

where® . 

2. COMPUTATIONAL DETAILS. 

The progressive free surface gravity waves considered in 

this paper are assumed to be two-dimensional, irrotational, 

steady, incompressible, nonviscous and with no surface tension. 

These non-linear waves are governed by a variational principle^ 

with functional 
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Jp^j^(h(x),iij(x,y)) 

A -l+h(x) 

O -1 

- yj.dxdy (1) 

with the constraints 

VIJ = O on the bed y = -l and VIJ = Q on the free surface (2) 

The position of the free surface y = -l-Hh(x) is governed 

by h(x) and the internal flow field distribution is given by 

the volumetric streamfunction ^{><.,y). The parameters Q and A 

(the discharge and domain length respectively) are prescribed 

while the unknowns h(x) and i|j(x,y) arise as the result of compu

tation . 

All quantities in (l)-(2) have been non-dimensionalised 

with respect to length Hj-, (the total head or stagnation level) 

and time (H|-./g)^, where g denotes the acceleration due to gra

vity. 

Boundary conditions at the inlet and outlet boundaries 

(which are made to coincide with a crest or trough) are those 

of normal flow and arise as natural conditions in the varia

tional formulation. 

The computations reported on in this paper were carried 

out using a Kantorovich method® based on (l)-(2). The technique 

consists of assuming an expansion for J in which ip is expressed 

as some series of functions in y with coefficients which are 

functions of x. Truncation of the series after N terms and the 

stationary conditions give a system of N non-linear ordinary 

differential equations with appropriate boundary conditions. 



Numerical solution of this boundary value problem gives the 

position of N streamlines including that of the free surface. 

The algorithm is also applicable to other free surface problems 

with arbitrary bed profile b(x) and full details of implement

ation are given in reference 8. 

For a prescribed value of the discharge Q with 0 <Q^<8/27 

and a value of A in an appropriate subinterval of (0,<») a wave 

of amplitude A may be computed. In Figure 1, as an example, we 

show a full computed wave for Q^ = 0.2691909 and A = 4.25. The 

computed amplitude is 0.2G7578. 

It is well known that for a value of Q in the given range 

there are two asymptotic solutions D and D_ which are the pos

itive roots of the cubic 

2h' 2h2 -I- Q2 = 0 (3) 

D is termed the rapid (or supercritical) solution and D|-̂  the 

tranquil (or subcritical) solution. 

In the context of the present paper we shall call D^ the 

trivial solution and will be denoted by (A,D„). The trivial 

solution can be computed for any ( positive ) value of the 

domain length A. Non-trivial solutions ( A > 0 ) will be points 

on a branch (A,A)_ bifurcating at a point (Ap,D_) as illustra

ted in Figure 2. 

The bifurcation point satisfies the linear wave theory 

relation 

AQ = 4Tr(l-DQ)/tanh(2TTDQ/AQ) (4) 



The full bifurcation branch (A,A)- is determined by comp

uting a number of points (complete wave solutions) on it, typi

cally twenty. It should be remarked that the computation of a 

single point on a branch implies a certain computational effort. 

For instance for the computed wave of Figure 1 we used a 40x120 

mesh and thus solved 4800 algebraic (non-linear) equations. 

Some of the questions arising are: (i) is bifurcation to 

the left or to the right, (ii) if the bifurcation patern changes 

where does it occur, (iii) are there turning points etc. 

The main theme of this paper is the numerical computation 

of two transition values Q, and Q_ of the discharge that deter

mine two transition branches (A,A)„ and ( A , A ) „ .These branches 
^1 ^2 

separate three wave regions B,, B„ and B-, whose bifurcation 

patterns answer the questions posed above. 

3. DETERMINATION OF THE TRANSITION BRANCHES. 

Computed bifurcation branches (A,A)_ for many values of 
U 

the discharge Q give a bifurcation diagram as illustrated in 

Figure 3. There, we have chosen three representative curves b. 

of three branch regions B. suggested by the diagram. 

Since each branch has constant discharge Q we seek a 

definition of B^, B„ and B, in terms of Q. Hence the boundary 

branches will be determined by two values Q and Q_ , 

the computation of which is best handled in terms of the 

corresponding bifurcation points (A,,D ) and (A„,D„) as illus

trated in Figure 4. As discussed previously the soght discharge 

values Q, and Q_, are related to D and D_ via equation (3) and 

these are related to Â  and A-̂  via equation (4). 
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3.1 COMPUTATION OF A,. 

We begin by considering several computed bifurcation 

branches (A,A)|-.i for several guessed values Q of the discharge. 

We seek the A-coordinate of the bifurcation point of a branch 

that is the right boundary of the region B̂  of all branches 

bifurcating to the left (see Figures 3 and 4). From the compu

ted results illustrated in the diagram of Figure 3 this value 

X appears to be about 2.5. By considering the inverse curves 

A (A) Figure 3 also indicates that the derivative dA/dA should 

change from negative to positive for a finite range (0,E) of A, 

as we pass from B, to B^. 

The computation of A, proceeds iteratively as illustrated 

by the flow chart of Figure 5. For each computed curve A (A) 

we consider its derivative dA /dA at a fixed amplitude value 

A=A|-, which is chosen arbitrarily (e.g. A„ = 0.01l). Since each 

curve is defined by a discrete set of points the numerical cal

culation of d necessitates of curve fitting and interpolation 

procedures for which the NAG routines EOIBAF, E02BBF and E02BCF 

are used. 

For each number d there is a wavelength A„ associated with 

it which is the A-coordinate of the bifurcation point of the 

branch (A,A)„i Interpolation to d=0 from the set of points 

(d »Xp) gives a new value Ap in the iteration procedure. Use 

of this new value in equation (4) gives a new asymptotic depth 

D|-. and this a new discharge value Q from equation (3). A 

new bifurcation branch (A,A)„i+l can now be computed. 

The iteration procedure is stopped if the derivative d 

is less than a preassigned small value (typically lO"^) TOL 

i + 1 



and the sought solution is taken as A, = A|-, . When computing 

a new branch we need only consider moderately large values of 

the'amplitude A to account for the local curve behaviour. Six 

points per curve are found to be sufficient. 

The computed solution for the transition wavelength A, 

is 2.53142. In Table 1 we give numerical values of points 

(d ,Ap,) used in the iteration procedure for a chosen value of 

A„. Also displayed there are the corresponding discharge values 

(squared) and the derivative values d of each curve at A = A|-.. 

Curve 

1 

•2 

3 

4 

5 

6 

7 

8 

(Q^)^ 

0.1400463 

0.2386050 

0.2497685 

0.2521845 

0.2522635 

0.2529761 

0.2560000 

0.2691909 

°j 
0.9166667 

0.8245062 

0.8093515 

0.8058132 

0.8056958 

0.8046307 

0.80G0000 

0.7771403 

ĵ 
1.04723 

2.24987 

2.47586 

2.53124 

2.53309 

2.55000 

2.62482 

3.03392 

d^ 

-0.62399 

-0.12384 

-0.02898 

-0.00046 

0.00240 

0.00829 

0.03225 

0.31845 

Table 1. Numerical values in iteration procedure for 

finding transition wavelength A,.(A„=0.01151) 

By noting that \ /D^ is approximately TT we speculate that 

A, has (from equation (4)) the exact value 

A^ = 4Tr/(4 + tanh(2)) = 2.5314856... (5) 

This is only a conjecture which remains to be rigorously checked 

through analytical methods. However, numerical evidence supports 
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expression (5) for A,. Smaller values of the fixed amplitude 

level A„ have the effect of increasing the computed value of 

A, and thus making it closer to the suggested exact value. At 

the same time it is reasonable to suppose that it is the 

smaller values of Ap. which would give the more reliable results, 

In fact direct substitution of A, from (5) gives a solution 

branch (A,A)^ that has all the features of the sought transi-
U 

tion branch to seven decimal places. Therefore we take as the 

computed solution A, = 2.5314856. From equations (4) and (3) 

we obtain D„ = 0.8057973 and Q?̂  = 0.2521952 respectively. 

We have found a transition value Q, of the discharge such 

that all bifurcation branches (A,A)|-. with Q ^ Q, bifurcate to 

the left, A increases as A decreases and a highest wave exists 

as the intersection point of a branch with the stagnation level. 

These branches are the members of the family B,. 

3.2 DETERMINATION OF A2. 

Computationally, as illustrated by the bifurcation dia

gram of Figure 3, we have found a family of branches that bi

furcate to the right and have turning points before intersec

ting the stagnation level. Also, we observe another family 

whose members bifurcate to the right and tend to a maximum 

value below the stagnation level. 

Theoretically, it is known^"*"^^ that cnoidal and shallow 

water waves may be interpreted as families of waves whose am

plitudes are bounded above by that of a solitary wave. This 

can be seen by analysing the phase-plane picture of the 

Korteweg-de-Uries equation for instance. 



One may therefore think of the transition branch (A,A) 
Q. 

as that associated with the highest solitary wave, ie. the soli-

tary wave of discharge Q^. Since we do not know the detailed 

behaviour of the branches (A,A)p. as A ^ <», or equivalently as 

Q2 ->• 8/27, there is a degree of speculation here. As before 

the determination of Q^ is carried out via the bifurcation 

point (A_>D ) of the corresponding bifurcation branch ( see 

Figure 4). 

Several numerical solutions for the limiting solitary 

wave have been published. Williams^ gives the solution 

H/D =0.833197 where H is the wave height above the (supercri

tical) asymptotic level D, More recently Hunter and Uanden-

Broeck^^ have given the solution H/D = 0.83322. 

Assuming Williams's solution in the units of this paper 

we have (l-D)/D = 0.833197, ie. D = 0.545495. Recalling that 

D is the smallest positive solution D of the cubic (3) we 

obtain 0^= 0.2704895 and therefore the tranquil asymptotic 

level D_ is 0.7745861. Sustitution of D^ into equation (4) 

gives A„ = 3.0848677. Hence the sought bifurcation point is 

A- = 3.0848677, D = 0.7745861 and the transition discharge 

value is Q^ = (0.2704895)^. 

We have thus determined the discharge values Q and Q_ 

of the transition bifurcation branches (A,A)|-, and (A,A),-, 
^1 "̂2 

together with their bifurcation points (A,,D ) and (A_,D„) 

(see Figure 4). 
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4. CONCLUDING REMARKS. 

Two transition values Q, and Q_ of the discharge Q have 

been computed which classify all water waves in terms of the 

bifurcation patterns of three branch families B,, B„ and B-,. 

Two corresponding transition branches (A,A)_ and (A,A)_ 
^1 ^2 

separate B, from B_ and B_ from B, respectively. 

The calculated bifurcation points (A,,D ) and (A_,D_) of 

these two branches may be interpreted as giving two transition 

wavelengths A,and A„ or two transition asymptotic depths D 

and D_. 

From numerical evidence the salient features of B , B_ 

and B-, have also been indicated. Branches in B.. satisfy 0 < 

Q^ <: Q^ and Q < \ 4 X-^ = 2.5314856; they bifurcate to the left 

and A increases as A decreases. B̂  may be regarded as a deep-

water wave region and A, as the transition wavelength into 

this region. 

Branches ( A , A ) „ in B_ satisfy Q^< Q^^Q^; bifurcation is 

to the rigth and for the Q-cases computed there is a turning 

point before intersecting the stagnation level. However, we 

are not certain whether the turning point persists as a fea

ture of each branch in 82 as Q^ -»• Q| = 0.2704895 ie. for 

large values of A. 

Branches (X,A)„ in B^ satisfy Q^ < Q^< 8/27 and A > A^ = 

3.0848577. Bifurcation is to the right and A increases mono

tonically with A. Unlike B.. and B_ members of 8, do not have 

a highest wave. 

Althought there is still uncertainty about the detailed 

behaviour of branches in B_ and B-, as A ••• "» the results of 
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the present paper may effectively be utilised in practical 

applications e.g. critical flows over weirs, waves due to the 

presence of upstream obstructions etc. 

The results are indeed useful when computing non-linear 

waves regardless of the method. For instance highest waves 

can only be expected for Q^ 4 Q^. Also, the features of B„ 

give a clear warning regarding the computation of the highest 

waves. It would be tempting to extrapolate from computed points 

below the turning point. 

The computed bifurcation diagram of Figure 3 also provides 

information as to which wave zones are bound to cause computa

tional difficulties, e.g. near A, and near every turning point. 

It is also apparent that the parameter A looses significance at 

large values. 

Finally, although B, may be identified with a dee-water 

wave region , B_ and B-, do no strictly represent an interme

diate and shallow-water wave region respectively, in the class

ical sense. 

This work was carried out while employed as Computer Officer 
in the Department of Applied Mathematical Studies, University 
of Leeds, England. 
The academic and financial support provided are greatfully 
acknowledged. 
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Figure 1. Computed wave of amplitude A=0.207578 for prescribed 

Q2 = 0.2691909 and A = 4.25. 
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Figure 5. Flow chart for the computation of A. 


