

Delft University of Technology

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

Romero, David W.; Bruintjes, R.; Bekkers, Erik J.; Tomczak, Jakub M.; Hoogendoorn, Mark; van Gemert,
J.C.

Publication date
2022
Document Version
Final published version
Citation (APA)
Romero, D. W., Bruintjes, R., Bekkers, E. J., Tomczak, J. M., Hoogendoorn, M., & van Gemert, J. C. (2022).
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes. Paper presented at 10th
International Conference on Learning Representations. https://openreview.net/forum?id=3jooF27-0Wy

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://openreview.net/forum?id=3jooF27-0Wy

Published as a conference paper at ICLR 2022

FLEXCONV: CONTINUOUS KERNEL CONVOLUTIONS
WITH DIFFERENTIABLE KERNEL SIZES

David W. Romero∗,1, Robert-Jan Bruintjes∗,2,
Erik J. Bekkers3, Jakub M. Tomczak1, Mark Hoogendoorn1, Jan C. van Gemert2

1 Vrije Universiteit Amsterdam 2 Delft University of Technology 3 University of Amsterdam
The Netherlands

d.w.romeroguzman@vu.nl, r.bruintjes@tudelft.nl

ABSTRACT

When designing Convolutional Neural Networks (CNNs), one must select the size
of the convolutional kernels before training. Recent works show CNNs benefit from
different kernel sizes at different layers, but exploring all possible combinations
is unfeasible in practice. A more efficient approach is to learn the kernel size
during training. However, existing works that learn the kernel size have a limited
bandwidth. These approaches scale kernels by dilation, and thus the detail they
can describe is limited. In this work, we propose FlexConv, a novel convolutional
operation with which high bandwidth convolutional kernels of learnable kernel
size can be learned at a fixed parameter cost. FlexNets model long-term dependen-
cies without the use of pooling, achieve state-of-the-art performance on several
sequential datasets, outperform recent works with learned kernel sizes, and are
competitive with much deeper ResNets on image benchmark datasets. Additionally,
FlexNets can be deployed at higher resolutions than those seen during training.
To avoid aliasing, we propose a novel kernel parameterization with which the
frequency of the kernels can be analytically controlled. Our novel kernel parameter-
ization shows higher descriptive power and faster convergence speed than existing
parameterizations. This leads to important improvements in classification accuracy.

1 INTRODUCTION

The kernel size of a convolutional layer defines the region from which features are computed, and is
a crucial choice in their design. Commonly, small kernels (up to 7px) are used almost exclusively
and are combined with pooling to model long term dependencies (Simonyan & Zisserman, 2014;
Szegedy et al., 2015; He et al., 2016; Tan & Le, 2019). Recent works indicate, however, that CNNs
benefit from using convolutional kernels (i) of varying size at different layers (Pintea et al., 2021;
Tomen et al., 2021), and (ii) at the same resolution of the data (Peng et al., 2017; Cordonnier et al.,
2019; Romero et al., 2021). Unfortunately, most CNNs represent convolutional kernels as tensors of
discrete weights and their size must be fixed prior to training. This makes exploring different kernel
sizes at different layers difficult and time-consuming due to (i) the large search space, and (ii) the
large number of weights required to construct large kernels.

A more efficient way to tune different kernel sizes at different layers is to learn them during training.
Existing methods define a discrete weighted set of basis functions, e.g., shifted Delta-Diracs (Fig. 2b,
Dai et al. (2017)) or Gaussian functions (Fig. 2c, Jacobsen et al. (2016); Shelhamer et al. (2019);
Pintea et al. (2021)). During training they learn dilation factors over the basis functions to increase
the kernel size, which crucially limits the bandwidth of the resulting kernels.

In this work, we present the Flexible Size Continuous Kernel Convolution (FlexConv), a convolutional
layer able to learn high bandwidth convolutional kernels of varying size during training (Fig. 1).
Instead of using discrete weights, we provide a continuous parameterization of convolutional kernels
via a small neural network (Romero et al., 2021). This parameterization allows us to model continuous
functions of arbitrary size with a fixed number of parameters. By multiplying the response of the
neural network with a Gaussian mask, the size of the kernel can be learned during training (Fig. 2a).
This allows us to produce detailed kernels of small sizes (Fig. 3), and tune kernel sizes efficiently.

∗Equal contribution.

1

Published as a conference paper at ICLR 2022

Figure 1: The Flexible Size Continuous Kernel Convolution (FlexConv). FlexConv defines convo-
lutional kernels as the multiplication of a continuous convolutional kernel MLPψ, with a Gaussian
mask of local support wgauss: ψ(x, y) = wgauss(x, y;θmask) ⋅ MLPψ(x, y). By learning the parameters
of the mask, the size of the convolutional kernel can be optimized during training. See also Fig. 7.

FlexConvs can be deployed at higher resolutions than those observed during training, simply by using
a more densely sampled grid of kernel indices. However, the high bandwidth of the kernel can lead
FlexConv to learn kernels that show aliasing at higher resolutions, if the kernel bandwidth exceeds
the Nyquist frequency. To solve this problem, we propose to parameterize convolutional kernels as
Multiplicative Anisotropic Gabor Networks (MAGNets). MAGNets are a new class of Multiplicative
Filter Networks (Fathony et al., 2021) that allows us to analyze and control the frequency spectrum
of the generated kernels. We use this analysis to regularize FlexConv against aliasing. With this
regularization, FlexConvs can be directly deployed at higher resolutions with minimal accuracy loss.
Furthermore, MAGNets provide higher descriptive power and faster convergence speed than existing
continuous kernel parameterizations (Schütt et al., 2017; Finzi et al., 2020; Romero et al., 2021). This
leads to important improvements in classification accuracy (Sec. 4).

Our experiments show that CNNs with FlexConvs, coined FlexNets, achieve state-of-the-art across
several sequential datasets, match performance of recent works with learnable kernel sizes with less
compute, and are competitive with much deeper ResNets (He et al., 2016) when applied on image
benchmark datasets. Thanks to the ability of FlexConvs to generalize across resolutions, FlexNets
can be efficiently trained at low-resolution to save compute, e.g., 16 × 16 CIFAR images, and be
deployed on the original data resolution with marginal accuracy loss, e.g., 32 × 32 CIFAR images.

In summary, our contributions are:

• We introduce the Flexible Size Continuous Kernel Convolution (FlexConv), a convolution operation
able to learn high bandwidth convolutional kernels of varying size end-to-end.

• Our proposed Multiplicative Anisotropic Gabor Networks (MAGNets) allow for analytic control
of the properties of the generated kernels. This property allows us to construct analytic alias-free
convolutional kernels that generalize to higher resolutions, and to train FlexNets at low resolution
and deploy them at higher resolutions. Moreover, MAGNets show higher descriptive power and
faster convergence speed than existing kernel parameterizations.

• CNN architectures with FlexConvs (FlexNets) obtain state-of-the-art across several sequential
datasets, and match recent works with learnable kernel size on CIFAR-10 with less compute.

2 RELATED WORK

Adaptive kernel sizes. Loog & Lauze (2017) regularize the scale of convolutional kernels for filter
learning. For image classification, adaptive kernel sizes have been proposed via learnable pixel-wise
offsets (Dai et al., 2017), learnable padding operations (Han et al., 2018), learnable dilated Gaussian
functions (Shelhamer et al., 2019; Xiong et al., 2020; Tabernik et al., 2020; Nguyen, 2020) and
scalable Gaussian derivative filters (Pintea et al., 2021; Tomen et al., 2021; Lindeberg, 2021). These
approaches either dilate discrete kernels (Fig. 2b), or use discrete weights on dilated basis functions
(Fig. 2c). Using dilation crucially limits the bandwidth of the resulting kernels. In contrast, FlexConvs
are able to construct high bandwidth convolutional kernels of varying size with a fixed parameter
count. Larger kernels are obtained simply by passing more positions to the kernel network (Fig. 1).

Continuous kernel convolutions. Discrete convolutional kernel parameterizations assign an inde-
pendent weight to each specific position in the kernel. Continuous convolutional kernels, on the

2

Published as a conference paper at ICLR 2022

(a) FlexConv kernels (ours) (b) Dilation / deformation
(Dai et al., 2017)

(c) (Learnable) parametric dilation
(Pintea et al., 2021)

Figure 2: Existing approaches increase the size of convolutional kernels via (learnable) parametric
dilations, e.g., by deformation (b) or by Gaussian blur (c). However, dilation limits the bandwidth of
the dilated kernel and with it, the amount of detail it can describe. Contrarily, FlexNets extend their
kernels by passing a larger vector of positions to the neural network parameterizing them. As a result,
FlexConvs are able to learn high bandwidth convolutional kernels of varying size end-to-end (a).

(a) Ground Truth (b) Reconstructions at varying degrees of localization

Figure 3: The importance of dynamic sizes in continuous kernel convolutions. Consider a neural
network predicting pixel values at each position. If the entire image is considered, the network must
use part of its capacity to learn to predict zeros outside of the flower region, which in turn degrades the
quality of the approximation in the region of interest (b). Importantly, the better the localization of the
flower, the higher the approximation fidelity becomes. FlexNets learn the size of their convolutional
kernels at each layer during training, and thus (i) use the capacity of the kernel efficiently, (ii) converge
faster to good approximations, and (iii) are faster in execution –via dynamic cropping–.

other hand, view convolutional kernels as continuous functions parameterized via a small neural
network MLPψ ∶ RD → RNout×Nin , with D the data dimensionality. This defines a convolutional kernel
for which arbitrary input positions can be queried. Continuous kernels have primarily been used
to handle irregularly-sampled data locally, e.g., molecular data (Simonovsky & Komodakis, 2017;
Schütt et al., 2017) and point-clouds (Thomas et al., 2018; Wang et al., 2018; Shi et al., 2019).

Recently, Romero et al. (2021) introduced the Continuous Kernel Convolution (CKConv) as a tool
to model long-term dependencies. CKConv uses a continuous kernel parameterization to construct
convolutional kernels as big as the input signal with a constant parameter cost. Contrarily, FlexConvs
jointly learn the convolutional kernel as well as its size. This leads to important advantages in terms
of expressivity (Fig. 3), convergence speed and compute costs of the operation.

Implicit neural representations. Parameterizing a convolutional kernel via a neural network can be
seen as learning an implicit neural representation of the underlying convolutional kernel (Romero
et al., 2021). Implicit neural representations construct continuous data representations by encoding
data in the weights of a neural network (Park et al., 2019; Sitzmann et al., 2020; Fathony et al., 2021).

We replace the SIREN (Sitzmann et al., 2020) kernel parameterization used in Romero et al. (2021)
by our Multiplicative Anisotropic Gabor Networks: a new class of Multiplicative Filter Networks
(Fathony et al., 2021). MFNs allow for analytic control of the resulting representations, and allow us
to construct analytic alias-free convolutional kernels. The higher expressivity and convergence speed
of MAGNets lead to accuracy improvements in CNNs using them as kernel parameterization.

3 METHOD

In this section, we introduce our approach. First, we introduce FlexConv and the Gaussian mask. Next,
we introduce our Multiplicative Anisotropic Gabor Networks (MAGNets) and provide a description
of our regularization technique used to control the spectral components of the generated kernel.

3.1 FLEXIBLE SIZE CONTINUOUS KERNEL CONVOLUTION (FLEXCONV)
To learn the kernel size during training, FlexConvs define their convolutional kernels ψ as the product
of the output of a neural network MLPψ with a Gaussian mask of local support. The neural network
MLPψ parameterizes the kernel, and the Gaussian mask parameterizes its size (Fig. 1).

3

Published as a conference paper at ICLR 2022

Anisotropic Gaussian mask. Let G(x;µX, σ
2
X)∶= exp{− 1

2
σ−2X (x − µX)2} be a Gaussian function

parameterized by a mean-variance tuple (µX, σ
2
X). The anisotropic Gaussian mask is defined as:

wgauss(x, y;{µX, σ
2
X, µY, σ

2
Y}) = G(x;µX, σ

2
X)G(y;µY, σ

2
Y). (1)

By learning (µX, σ
2
X) and (µY, σ

2
Y) independently, anisotropic non-centered windows can be learned.

3.2 MULTIPLICATIVE ANISOTROPIC GABOR NETWORKS (MAGNETS)
In this section, we formalize our proposed parameterization for the kernel MLPψ. We start by
introducing Multiplicative Filter Networks (Fathony et al., 2021), and present our MAGNets next.

Multiplicative Filter Networks (MFNs). Recently, Fathony et al. (2021) proposed to construct
implicit neural representations as the linear combination of exponentially many basis functions g:

h(1) = g([x, y];θ(1)) g ∶ R2 → RNhid (2)

h(l) = (W(l)h(l−1) + b(l)) ⋅ g([x, y];θ(l)) W(l) ∈ RNhid×Nhid ,b(l) ∈ RNhid (3)

ψ(x, y) =W(L)h(L−1) + b(L) W(L) ∈ RN×Nhid ,b(L) ∈ RN (4)

where {θ(l),W(l), b(l)} depict the learnable parameters of the bases and the affine transformations,
and N,Nhid depict the number of output and hidden channels, respectively. Depending on the
selection of g, MFNs obtain approximations comparable to those of SIRENs (Sitzmann et al., 2020)
with faster convergence rate. The most successful instantiation of MNFs are the Multiplicative Gabor
Network (MGN): MFNs constructed with isotropic Gabor functions as basis g (in Eq. 2):

g([x, y];θ(l)) = exp(− γ
(l)

2
[(x −µ(l))2 + (y −µ(l))2])Sin(W(l)

g ⋅ [x, y] + b(l)g), (5)

θ(l)={γ(l) ∈ RNhid ,µ(l) ∈ RNhid ,W(l)
g ∈ RNhid×2,b(l)g ∈ RNhid}. (6)

Note that, by setting N=Nout×Nin, an MFN can parameterize a convolutional kernel with Nin input and
Nout output channels. Fathony et al. (2021) show that MFNs are equivalent to a linear combination
of exponentially many basis functions g. This allows us to analytically derive properties of MFN
representations, and plays a crucial role in the derivation of alias-free MAGNets (Sec. 3.3).

Multiplicative Anisotropic Gabor Networks (MAGNets). Our MAGNet formulation is based on
the observation that isotropic Gabor functions, i.e., with equal γ for the horizontal and vertical
directions, are undesirable as basis for the construction of MFNs. Whenever a frequency is required
along a certain direction, an isotropic Gabor function automatically introduces that frequency in
both directions. As a result, other bases must counteract this frequency in the direction where the
frequency is not required, and thus the capacity of the MFN is not used optimally (Daugman, 1988).

Following the original formulation of the 2D Gabor functions (Daugman, 1988), we alleviate this
limitation by using anisotropic Gabor functions instead:

g([x, y];θ(l)) = exp(− 1

2
[(γ(l)X (x −µ(l)X))

2

+ (γ(l)Y (y −µ(l)Y))
2

])Sin(W(l)
g [x, y] + b(l)g) (7)

θ(l)={γ(l)X ∈ RNhid ,γ
(l)
Y ∈ RNhid ,µ

(l)
X ∈ RNhid ,µ

(l)
Y ∈ RNhid ,W(l)

g ∈ RNhid×2,b(l)g ∈ RNhid}. (8)

The resulting Multiplicative Anisotropic Gabor Network (MAGNet) obtains better control upon
frequency components introduced to the approximation, and demonstrates important improvements
in terms of descriptive power and convergence speed (Sec. 4).

MAGNet initialization. Fathony et al. (2021) proposes to initialize MGNs by drawing the size of
the Gaussian envelopes, i.e., the γ(l) term, from a Gamma(α ⋅ L−1, β) distribution at every layer
l ∈ [1, ..,L − 1]. We observe however that this initialization does not provide much variability on the
initial extension of the Gaussian envelopes and in fact, most of them cover a large portion of the space
at initialization. To stimulate diversity, we initialize the {γ(l)X ,γ

(l)
Y } terms by a Gamma(αl−1, β)

distribution at the l-th layer. We observe that our proposed initialization consistently leads to better
accuracy than the initialization of Fathony et al. (2021) across all tasks considered. (Sec. 4).

3.3 ANALYTIC ALIAS-FREE MAGNETS

FlexConvs can be deployed at higher resolutions than those observed during training, simply by
sampling the underlying continuous representation of the kernel more densely, and accounting for the

4

Published as a conference paper at ICLR 2022

change in sampling rate. Consider a D-dimensional input signal fr(1) with resolution r(1). FlexConv
learns a kernel ψr(1) that can be inferred at a higher resolution r(2) (Romero et al., 2021):

(fr(2) ∗ψr(2)) ≈ (r(1)

r(2)
)
D

(fr(1) ∗ψr(1)). (9)

Note however, that Eq. 9 holds approximately. This is due to aliasing artifacts which can appear if the
frequencies in the learned kernel surpass the Nyquist criterion of the target resolution. Consequently,
an anti-aliased parameterization is vital to construct kernels that generalize well to high resolutions.

Towards alias-free implicit neural representations. We observe that SIRENs as well as uncon-
strained MFNs and MAGNets exhibit aliasing when deployed on resolutions higher than the training
resolution, which hurts performance of the model. An example kernel with aliasing is shown in Fig. 8.

To combat aliasing, we would like to control the representation learned by MAGNets. MAGNets –and
MFNs in general– construct implicit neural representations that can be seen as a linear combination
of basis functions. This property allows us to analytically derive and study the properties of the
resulting neural representation. Here, we use this property to derive the maximum frequency of
MAGNet-generated kernels, so as to regularize MAGNets against aliasing during training. We
analytically derive the maximum frequency of a MAGNet, and penalize it whenever it exceeds the
Nyquist frequency of the training resolution. We note that analytic derivations are difficult for other
implicit neural representations, e.g., SIRENs, due to stacked layer-wise nonlinearities.

Maximum frequency of MAGNets. The maximum frequency component of a MAGNet is given by:

f+MAGNet =
L

∑
l=1

max
il

⎛
⎝
⎛
⎝

max
j

W
(l)
g,il,j

2π

⎞
⎠
+
σcut min{γ(l)X,il

,γ
(l)
Y,il

}
2π

⎞
⎠
, (21)

where L corresponds to the number of layers, W(l)
g ,γ

(l)
X ,γ

(l)
Y to the MAGNet parameters as defined

in Eq. 8, and σcut=2 ⋅ stdev to the cut-off frequency of the Gaussian envelopes in the Gabor filters.
A formal treatment as well as the derivations can be found in Appx. A.1.

Effect of the FlexConv mask. The Gaussian mask used to localize the response of the MAGNet also
has an effect on the frequency spectrum. Hence, the maximum frequency of a FlexConv kernel is:

f+FlexConv = f+MAGNet + f+wgauss
, with f+wgauss

= σcut
max{σX, σY}2π

. (22)

Here, σX, σY correspond to the mask parameters (Eq. 1). Intuitively, multiplication with the mask
blurs in the frequency domain, as it is equivalent to convolution with the Fourier transform of the mask.

Aliasing regularization of FlexConv kernels. With the analytic derivation of f+FlexConv we penalize
the generated kernels to have frequencies smaller or equal to their Nyquist frequency fNyq(k) via:

LHF = ∣∣max{f+FlexConv, fNyq(k)} − fNyq(k)∣∣2, with fNyq(k) = k−1
4
. (25)

Here, k depicts the size of the FlexConv kernel before applying the Gaussian mask, and is equal to
the size of the input signal. In practice, we implement Eq. 25 by regularizing the individual MAGNet
layers, as is detailed in Appx. A.2. To verify our method, Fig. 8 (Appx. A.1) shows that the frequency
components of FlexNet kernels are properly regularized for aliasing.

4 EXPERIMENTS

We evaluate FlexConv across classification tasks on sequential and image benchmark datasets, and
validate the ability of MAGNets to approximate complex functions. A complete description of the
datasets used is given in Appx. B. Appx. D.2 reports the parameters used in all our experiments.1

4.1 WHAT KIND OF FUNCTIONS CAN MAGNETS APPROXIMATE?
Bandwidth of methods with learnable sizes. First, we compare the bandwidth of MAGNet against
N-Jet (Pintea et al., 2021) by optimizing each to fit simple targets: (i) Gabor filters of known frequency,
(ii) random noise and (iii) an a 11 × 11 AlexNet kernel from the first layer (Krizhevsky et al., 2012).
Fig. 4 shows that, even with 9 orders of Gaussian derivatives, N-Jets cannot fit high frequency signals
in large kernels. Crucially, N-Jet models require many Gaussian derivative orders to model high
frequency signals in large kernels: a hyperparameter which proportionally increases their inference

1Our code is publicly available at https://github.com/rjbruin/flexconv.

5

https://github.com/rjbruin/flexconv

Published as a conference paper at ICLR 2022

2π 8π 32π 128π

Gabor filter frequency (Hz)

0.000

0.005

0.010

0.015

0.020

M
SE

SIREN
MAGNet-S
MAGNet
N-Jet order 1
N-Jet order 5
N-Jet order 9

Target

G
ab

o
r

(1
28
π

)
R

an
d

o
m

A
le

xN
et

N-Jet order 5 N-Jet order 9 SIREN MAGNet-S MAGNet

Figure 4: Left: Final MSE after fitting each model to Gabor filters of different frequencies. N-Jets can-
not fit high frequencies. Right: Kernels learned by each model. SIREN and MAGNet can fit all targets.
MAGNet-S: a small MAGNet of size akin to N-Jets, still does well on the Gabor and AlexNet targets.

Table 1: Test accuracy and ablation studies on sMNIST, pMNIST, sCIFAR10 and npCIFAR10.
MODEL SIZE SMNIST PMNIST SCIFAR10 NPCIFAR10

DilRNN (Chang et al., 2017) 44K 98.0 96.1 - -
IndRNN (Li et al., 2018) 83K 99.0 96.0 - -
TCN (Bai et al., 2018a) 70K 99.0 97.2 - -

r-LSTM (Trinh et al., 2018) 0.5M 98.4 95.2 72.2 -
Self-Att. (Trinh et al., 2018) 0.5M 98.9 97.9 62.2 -
TrellisNet (Bai et al., 2018b) 8M 99.20 98.13 73.42 -
URLSTM (Gu et al., 2020b) - 99.28 96.96 71.00 -

URGRU + Zoneout (Gu et al., 2020b) - 99.27 96.51 74.40 -
HiPPO (Gu et al., 2020a) 0.5M - 98.30 - -

Lipschitz RNN (Erichson et al., 2020) 158K 99.4 97.3 64.2 59.0
coRNN (Rusch & Mishra, 2020) 134K 99.4 97.3 - 59.0

UnICORNN (Rusch & Mishra, 2021) 135K - 98.4 - 62.4
pLMU (Chilkuri & Eliasmith, 2021) 165K - 98.49 - -

CKCNN-2 98K 99.31 98.00 62.25 60.5
CKCNN-2-Big 1M 99.32 98.54 63.74 62.2

CKTCNFOURIER-2 105K 99.44 98.40 68.28 66.26
CKTCNGABOR-2 106K 99.52 98.38 69.26 67.37

CKTCNMAGNET-2 105K 99.55 98.57 74.58 67.52

FlexTCN-2 108K 99.60 98.61 78.99 67.11
FlexTCN-4 241K 99.60 98.72 80.26 67.42
FlexTCN-6 375K 99.62 98.63 80.82 69.87

FlexTCNSIREN-6 343K 99.03 95.36 69.24 57.27
FlexTCNFourier-6 370K 99.49 97.97 74.79 67.35
FlexTCNGabor-6 373K 99.50 98.37 78.36 67.56

FlexTCNMAGNet-6 375K 99.62 98.63 80.82 69.87

time and parameter count. MAGNets, on the other hand, accurately model large high frequency
signals. This allows FlexNets to learn large kernels with high frequency components.

Expressivity of MLP parameterizations. Next, we compare the descriptive power and convergence
speed of MAGNets, Gabor MFNs, Fourier MFNs and SIRENs for image approximation. To this end,
we fit the images in the Kodak dataset (Kodak, 1991) with each of these methods. Our results (Tab. 5)
show that MAGNets outperform all other methods, and converge faster to good approximations.

4.2 CLASSIFICATION TASKS

Network specifications. Here, we specify our networks for all our classification experiments. We
parameterize all our convolutional kernels as the superposition of a 3-layer MAGNet and a learnable
anisotropic Gaussian mask. We construct two network instances for sequential and image datasets
respectively: FlexTCNs and FlexNets. Both are constructed by taking the structure of a baseline
network –TCN (Bai et al., 2018a) or CIFARResNet (He et al., 2016)–, removing all internal pooling
layers, and replacing convolutional kernels by FlexConvs. The FlexNet architecture is shown in
Fig. 10 and varies only in the number of channels and blocks, e.g., FlexNet-16 has 7 blocks. Akin to
Romero et al. (2021) we utilize the Fourier theorem to speed up convolutions with large kernels.

Mask initialization. We initialize the FlexConv masks to be small. Preliminary experiments show
this leads to better performance, faster execution, and faster training convergence. For sequences, the
mask center is initialized at the last kernel position to prioritize the last information seen.

Time series and sequential data. First we evaluate FlexTCNs on sequential classification datasets,
for which long-term dependencies play an important role. We validate our approach on intrinsic

6

Published as a conference paper at ICLR 2022

Table 2: Test accuracy on CT, SC and SC_raw

MODEL SIZE CT SC SC_RAW

GRU-ODE 89K 96.2 44.8 ∼10.0
GRU-∆t 89K 97.8 20.0 ∼10.0
GRU-D 89K 95.9 23.9 ∼10.0

ODE-RNN 89K 97.1 93.2 ∼10.0
NCDE 89K 98.8 88.5 ∼10.0

CKCNN 100K 99.53 95.27 71.66
CKTCNFourier - 95.65 74.90
CKTCNGabor - 96.66 78.10

CKTCNMAGNet 105K 99.53 97.01 80.69

FlexTCN-2 105SK 99.53 97.10 88.03
FlexTCN-4 239K 99.53 97.73 90.45
FlexTCN-6 373K 99.53 97.67 91.73

FlexTCNSIREN-6 370K - 95.83 85.73
FlexTCNFourier-6 342K - 97.62 91.02
FlexTCNGabor-6 373K - 97.35 91.50

FlexTCNMAGNet-6 373K - 97.67 91.73

Table 3: Results on CIFAR-10. Results from *orig-
inal works and † single run.

MODEL SIZE
CIFAR-10 TIME

ACC. (SEC/EPOCH)

CIFARResNet-44 0.66M 92.9*† 22
DCN-σji 0.47M 89.7 ± 0.3* -

N-Jet-CIFARResNet32 0.52M 92.3 ± 0.3* -
N-Jet-ALLCNN 1.07M 92.5 ± 0.1* -

FlexNet-16 w/ conv. (k = 3) 0.17M 89.5 ± 0.3 41
FlexNet-16 w/ conv. (k = 33) 20.0M 78.0 ± 0.3 242

FlexNet-16 w/ N-Jet 0.70M 91.7 ± 0.1 409

CKCNN-16 0.63M 72.1 ± 0.2 68
CKCNNMAGNet-16 0.67M 86.8 ± 0.6 102
FlexNetSIREN-16 0.63M 89.0 ± 0.3 89
FlexNetGabor-16 0.67M 91.9 ± 0.2 161

FlexNetGabor-16 + anis. Gauss. 0.67M 92.0 ± 0.1 147
FlexNetGabor-16 + Gabor init. 0.67M 92.0 ± 0.2 150

FlexNet-16 0.67M 92.2 ± 0.1 127

discrete data: sequential MNIST, permuted MNIST (Le et al., 2015), sequential CIFAR10 (Chang et al.,
2017), noise-padded CIFAR10 (Chang et al., 2019), as well as time-series data: CharacterTrajectories
(CT) (Bagnall et al., 2018), SpeechCommands (Warden, 2018) with raw waveform (SC_raw) and
MFCC input representations (SC).

Our results are summarized in Tables 1 and 2. FlexTCNs with two residual blocks obtain state-of-
the-art results on all tasks considered. In addition, depth further improves performance. FlexTCN-6
improves the current state-of-the-art on sCIFAR10 and npCIFAR10 by more than 6%. On the
difficult SC_raw dataset –with sequences of length 16000–, FlexTCN-6 outperform the previous
state-of-the-art by 20.07%: a remarkable improvement.

Furthermore, we conduct ablation studies by changing the parameterization of MLPψ , and switching
off the learnable kernel size ("CKTCNs") and considering global kernel sizes instead. CKTCNs and
FlexTCNs with MAGNet kernels outperform corresponding models with all other kernel parameteri-
zations: SIRENs (Sitzmann et al., 2020), MGNs and MFNs (Fathony et al., 2021). Moreover, we see
a consistent improvement with respect to CKCNNs (Romero et al., 2021) by using learnable kernel
sizes. This shows that both MAGNets and learnable kernel sizes contribute to the performance of
FlexTCNs. Note that in 1D, MAGNets are equivalent to MGNs. However, MAGNets consistently
perform better than MGNs. This improvement in accuracy is a result of our MAGNet initialization.

Image classification. Next, we evaluate FlexNets for image classification on CIFAR-10 (Krizhevsky
et al., 2009). Additional experiments on Imagenet-32, MNIST and STL-10 can be found in Appx. C.

Table 3 shows our results on CIFAR-10. FlexNets are competitive with pooling-based methods
such as CIFARResNet (He et al., 2016) and outperform learnable kernel size method DCNs (Tomen
et al., 2021). In addition, we compare using N-Jet layers of order three (as in Pintea et al. (2021)) in
FlexNets against using MAGNet kernels. We observe that N-Jet layers lead to worse performance, and
are significantly slower than FlexConv layers with MAGNet kernels. The low accuracy of N-Jet layers
is likely to be linked to the fact that FlexNets do not use pooling. Consequently, N-Jets are forced to
learn large kernels with high-frequencies, which we show N-Jets struggle learning in Sec. 4.1.

To illustrate the effect of learning kernel sizes, we also compare FlexNets against FlexNets with large
and small discrete convolutional kernels (Tab. 3). Using small kernel sizes is parameter efficient, but
is not competitive with FlexNets. Large discrete kernels on the other hand require a copious amount of
parameters and lead to significantly worse performance. These results indicate that the best solution is
somewhere in the middle and varying kernel sizes can learn the optimal kernel size for the task at hand.

Similar to the sequential case, we conduct ablation studies on image data with learnable, non-
learnable kernel sizes and different kernel parameterizations. Table 3 shows that FlexNets outperform
CKCNNs with corresponding kernel parameterizations. In addition, a clear difference in performance
is apparent for MAGNets with respect to other parameterizations. These results corroborate that both
MAGNets and FlexConvs contribute to the performance of FlexNets. Moreover, Tab. 3 illustrates the
effect of the two contributions of MAGNet over MGN: anisotropic Gabor filters, and our improved
initialization. Our results in image data are in unison with our previous results for sequential data
(Tabs. 1, 2) and illustrate the value of the proposed improvements in MAGNets.

7

Published as a conference paper at ICLR 2022

28×28 30×30 32×32 34×34 36×36

20×20

16×16

f+ M
A

G
N

et

−5.1% −3.8% −3.9% −4.8% −4.5%

−3.0% −6.2% −4.9% −3.9% −7.4%

20×20

16×16

f+ Fl
ex

C
on

v
−0.4% −0.5% −1.4% −0.4% −0.4%

−1.7% −1.7% −3.4% −1.9% −1.9%

Accuracy change at upsampling

28×28 30×30 32×32 34×34 36×36

+6.3% +5.1% +5.7% +5.9% +5.6%

+8.6% +7.3% +4.7% +5.6% +9.3%

+1.2% +1.4% +3.0% +1.7% +1.8%

+3.2% +3.0% +5.9% +4.0% +3.8%

Accuracy change after fine-tuning

Figure 5: Alias-free FlexNet-16 on CIFAR-10. We report change in accuracy between source and
target resolutions, directly after upsampling (left) and after fine-tuning (right) (means over five runs).

4.3 ALIAS-FREE FLEXNETS

Regularizing the FlexConv mask. Though including f+wgauss
in the frequency analysis of MAGNets

is crucial for the accuracy of the derivation, including the FlexConv mask in aliasing regularization is
undesirable, as it steers the model to learn large kernels in order to minimize the loss (see Eq. 25).
However, excluding the mask from regularization could compromise the ability of FlexNet to
generalize to higher resolutions. Here, we experiment with this trade-off.

Table 4: Alias-free FlexNets on CIFAR-10.

MODEL SIZE
CIFAR-10 ACC.

16 px ∆16px 32 px

CIFARResNet-44 0.66M 85.8 ± 0.2 -31.6 ± 1.3

FlexNet-16 w/ conv. (k = 3) 0.17M 85.3 ± 0.2 -21.2 ± 1.0
FlexNet-16 w/ conv. (k = 33) 20.0M 67.7 ± 0.6 -57.1 ± 1.6

FlexNet-16 w/ N-Jets 0.70M 86.4 ± 0.2 -5.5 ± 1.3

CKCNN-16SIREN 0.63M 45.9 ± 1.0 -15.8 ± 1.2
FlexNet-16SIREN 0.63M 70.4 ± 0.8 -50.0 ± 16.9

FlexNet-16 w/o reg. 0.67M 86.4 ± 0.4 -34.4 ± 14.3

FlexNet-16 w/ reg. f+MAGNet 0.67M 86.5 ± 0.1 -3.8 ± 2.0
FlexNet-16 w/ reg. f+FlexConv 0.67M 85.1 ± 0.3 -3.3 ± 0.3

Figure 5 shows accuracy change between ten
source and target resolution combinations on
CIFAR-10, both for including and excluding
the FlexConv mask in the aliasing regulariza-
tion. We train at the source resolution for 100
epochs, before testing the model at the target
resolution with the upsampling described in
Sec. 3.3. Next, we adjust fNyq(k) to the tar-
get resolution, and finetune each model for
100 epochs at the target resolution.

We find that regularizing just f+MAGNet yields a
trade-off. It increases the accuracy difference
between low and high resolution inference, but also increases the fine-tune accuracy at the target
resolution.We therefore choose to, by default, regularize f+MAGNet only.

Results of our alias-free FlexNet training on CIFAR-10 are in Table 4. We observe that the perfor-
mance of a FlexNet trained without aliasing regularization largely breaks down when the dataset is
upscaled. However, with our aliasing regularization most of the performance is retained.

Comparatively, FlexNet retains more of the source resolution performance than FlexNets with N-Jet
layers, while baselines degrade drastically at the target resolution. Fig. 8 shows the effect of aliasing
regularization on the frequency components of FlexConv.

Training at lower resolutions saves compute. We can train alias-free FlexNets at lower resolutions.
To verify that this saves compute, we time the first 32 batches of training a FlexNet-7 on CIFAR-10.
We compare against training on 16 × 16 images (downsampled before training). On 16x16 images,
each batch takes 179ms (± 7ms). On 32x32 images, each batch takes 222ms (± 9ms). Therefore, we
save 24% training time when training FlexNets alias-free at half the native CIFAR-10 resolution.

5 DISCUSSION

Learned kernel sizes match conventional priors. Commonly, CNNs use architectures of small
kernels and pooling layers. This allows convolutions to build a progressively growing receptive field.
With learnable kernel sizes, FlexNet could learn a different prior over receptive fields, e.g., large
kernels first, and small kernels next. However, FlexNets learn to increase kernel sizes progressively
(Fig. 6), and match the network design that has been popular since AlexNet (Krizhevsky et al., 2012).

Mask initialization as a prior for feature importance. The initial values of the FlexConv mask
can be used to prioritize information at particular input regions. For instance, initializing the center
of mask on the first element of sequential FlexConvs can be used to prioritize information from the
far past. This prior is advantageous for tasks such as npCIFAR10. We observe that using this prior on
npCIFAR10 leads to much faster convergence and better results (68.33% acc. w/ FlexTCN-2).

8

Published as a conference paper at ICLR 2022

Figure 6: Learned FlexConv masks for FlexNets with 3, 5 and 7 residual blocks. FlexNets learn very
small kernels at shallow layers, which become larger as a function of depth.

MAGNet regularization as prior induction. MAGNets allow for analytic control of the properties
of the resulting representations. We use this property to generate alias-free kernels. However, other
desiderata could be induced, e.g., smoothness, for the construction of implicit neural representations.

Benefits of cropping and the influence of PyTorch. Dynamic cropping adjust the computational
cost of the convolutions on the fly. For a signal of size M and a cropped kernel size k, this incurs in
savings from O(M2D) to O(MDkD) relative to using global kernel sizes (O(M4) to O(M2k2) in 2D).
We test this theoretical speed up in a controlled environment for the Speech Commands and CIFAR-
10 datasets. Cropping reduces the per-epoch run time by a factor of 11.8x and 5.5x for Speech
Commands and CIFAR-10, respectively. Interestingly, however, both run times become similar if the
flag torch.backends.cudnn.benchmark is activated, with global kernel sizes being sometimes
faster. This is because this flag tells PyTorch to optimize the convolution algorithms used under the
hood, and some of these CUDA algorithms seem to be faster than our masking strategy on Python.

6 LIMITATIONS

Dynamic kernel sizes: computation and memory cost of convolutions with large kernels. Per-
forming convolutions with large convolutional kernels is a compute-intensive operation. FlexConvs
are initialized with small kernel sizes and their inference cost is relatively small at the start of training.
However, despite the cropping operations used to improve computational efficiency (Figs. 1, 3, Tab. 3),
the inference time may increase to up to double as the learned masks increase in size. At the cost of
more memory, convolutions can be sped up by performing them in the frequency domain. However,
we observe that this does not bring gains for the image data considered because FFT convolutions are
faster only for very large convolutional kernels (in the order of hundreds of pixels).

Remaining accuracy drop in alias-free FlexNets. Some drop in accuracy is still observed when
using alias-free FlexNets at a higher test resolutions (Tab. 4). Although more evidence is needed, this
may be caused by aliasing effects introduced by ReLU (Vasconcelos et al., 2021), or changes in the
activation statistics of the feature maps passed to global average pooling (Touvron et al., 2019).

7 CONCLUSION

We propose FlexConv, a convolutional operation able to learn high bandwidth convolutional kernels
of varying size during training at a fixed parameter cost. We demonstrate that FlexConvs are able
to model long-term dependencies without the need of pooling, and shallow pooling-free FlexNets
achieve state-of-the-art performance on several sequential datasets, match performance of recent
works with learned kernel sizes with less compute, and are competitive with much deeper ResNets
on image benchmark datasets. In addition, we show that our alias-free convolutional kernels allow
FlexNets to be deployed at higher resolutions than seen during training with minimal precision loss.

Future work. MAGNets give control over the bandwidth of the kernel. We anticipate that this control
has more uses, such as fighting sub-sampling aliasing (Zhang, 2019; Kayhan & Gemert, 2020; Karras
et al., 2021). With the ability to upscale FlexNets to different input image sizes comes the possibility
of transfer learning representations between previously incompatible datasets, such as CIFAR-10 and
Imagenet. In a similar vein, the automatic adaptation of FlexConv to the kernel sizes required for the
task at hand may make it possible to generalize the FlexNet architecture across different tasks and
datasets. Neural architecture search (Zoph & Le, 2016) could see benefits from narrowing the search
space to exclude kernel size and pooling layers. In addition, we envisage additional improvements
from structural developments of FlexConvs such as attentive FlexNets.

9

Published as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

We hope to inspire others to use and reproduce our work. We publish the source code of this work,
for which the link is provided in Sec. 4.2. Sec. 4 and Appx. D.1 detail FlexNet, its hyperparameters
and optimization procedure. The full derivation of the aliasing regularization objective is included in
Appx. A.1. We report means over multiple runs for many experiments, to ensure the reported results
are fair and reproducible, and do not rely on tuning of the random seed. All datasets used in our
experiments are publicly available. If any questions remain, we welcome one and all to contact the
corresponding author.

ACKNOWLEDGMENTS

We thank Nergis Tömen for her valuable insights regarding signal processing principles for FlexConv,
and Silvia-Laura Pintea for explanations and access to code of her work Pintea et al. (2021). We
thank Yerlan Idelbayev for the use of the CIFARResNet code.

This work is co-supported by the Qualcomm Innovation Fellowship granted to David W. Romero.
David W. Romero sincerely thanks Qualcomm for his support. David W. Romero is financed as part
of the Efficient Deep Learning (EDL) programme (grant number P16-25), partly funded by the Dutch
Research Council (NWO). Robert-Jan Bruintjes is financed by the Dutch Research Council (NWO)
(project VI.Vidi.192.100). All authors sincerely thank everyone involved in funding this work.

This work was partially carried out on the Dutch national infrastructure with the support of SURF
Cooperative. We used Weights & Biases (Biewald, 2020) for experiment tracking and visualizations.

REFERENCES

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. arXiv
preprint arXiv:1811.00075, 2018.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018a.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Trellis networks for sequence modeling. arXiv
preprint arXiv:1810.06682, 2018b.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.
com/. Software available from wandb.com.

Bo Chang, Minmin Chen, Eldad Haber, and Ed H Chi. Antisymmetricrnn: A dynamical system view
on recurrent neural networks. arXiv preprint arXiv:1902.09689, 2019.

Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong Cui, Michael
Witbrock, Mark A Hasegawa-Johnson, and Thomas S Huang. Dilated recurrent neural networks.
In Advances in neural information processing systems, pp. 77–87, 2017.

Narsimha Chilkuri and Chris Eliasmith. Parallelizing legendre memory unit training. arXiv preprint
arXiv:2102.11417, 2021.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the CIFAR datasets. CoRR, abs/1707.08819, 2017. URL http://arxiv.org/
abs/1707.08819.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship between self-
attention and convolutional layers. arXiv preprint arXiv:1911.03584, 2019.

10

https://github.com/akamaster/pytorch_resnet_cifar10
https://www.qualcomm.com/research/research/university-relations/innovation-fellowship/2021-europe
https://www.wandb.com/
https://www.wandb.com/
http://arxiv.org/abs/1707.08819
http://arxiv.org/abs/1707.08819

Published as a conference paper at ICLR 2022

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
convolutional networks. In Proceedings of the IEEE international conference on computer vision,
pp. 764–773, 2017.

J.G. Daugman. Complete discrete 2-d gabor transforms by neural networks for image analysis and
compression. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(7):1169–1179,
1988. doi: 10.1109/29.1644.

N Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and Michael W
Mahoney. Lipschitz recurrent neural networks. arXiv preprint arXiv:2006.12070, 2020.

Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. Multiplicative filter networks.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=OmtmcPkkhT.

Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing convolutional
neural networks for equivariance to lie groups on arbitrary continuous data. arXiv preprint
arXiv:2002.12880, 2020.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory with
optimal polynomial projections. arXiv preprint arXiv:2008.07669, 2020a.

Albert Gu, Caglar Gulcehre, Thomas Paine, Matt Hoffman, and Razvan Pascanu. Improving the
gating mechanism of recurrent neural networks. In International Conference on Machine Learning,
pp. 3800–3809. PMLR, 2020b.

Anders Hald. De moivre’s normal approximation to the binomial, 1733, and its generalization. A
History of Parametric Statistical Inference from Bernoulli to Fisher, 1713–1935, pp. 17–24, 2007.

Shizhong Han, Zibo Meng, Zhiyuan Li, James O’Reilly, Jie Cai, Xiaofeng Wang, and Yan Tong.
Optimizing filter size in convolutional neural networks for facial action unit recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Jorn-Henrik Jacobsen, Jan Van Gemert, Zhongyu Lou, and Arnold WM Smeulders. Structured
receptive fields in cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2610–2619, 2016.

HM Kabir, Moloud Abdar, Seyed Mohammad Jafar Jalali, Abbas Khosravi, Amir F Atiya, Saeid
Nahavandi, and Dipti Srinivasan. Spinalnet: Deep neural network with gradual input. arXiv
preprint arXiv:2007.03347, 2020.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and Timo
Aila. Alias-free generative adversarial networks. arXiv preprint arXiv:2106.12423, 2021.

Osman Semih Kayhan and Jan C. van Gemert. On translation invariance in cnns: Convolutional layers
can exploit absolute spatial location. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
for irregular time series. arXiv preprint arXiv:2005.08926, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Kodak. Kodak dataset, 1991. URL http://r0k.us/graphics/kodak/.

11

https://openreview.net/forum?id=OmtmcPkkhT
https://openreview.net/forum?id=OmtmcPkkhT
http://r0k.us/graphics/kodak/

Published as a conference paper at ICLR 2022

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep
Convolutional Neural Networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 25. Curran Asso-
ciates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent networks of
rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.
lecun.com/exdb/mnist/.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao. Independently recurrent neural network
(indrnn): Building a longer and deeper rnn. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 5457–5466, 2018.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

Tony Lindeberg. Scale-covariant and scale-invariant gaussian derivative networks. In Scale Space
and Variational Methods in Computer Vision :, volume 12679 of Springer Lecture Notes in
Computer Science, pp. 3–14. Springer Nature, 2021. ISBN 978-3-030-75548-5. doi: 10.1007/
978-3-030-75549-2_1. URL https://arxiv.org/abs/2011.14759. Not duplicate with
DiVA 1505585QC 20210317.

Marco Loog and Francois Lauze. Supervised scale-regularized linear convolutionary filters. In
Gabriel Brostow Tae-Kyun Kim, Stefanos Zafeiriou and Krystian Mikolajczyk (eds.), Proceedings
of the British Machine Vision Conference (BMVC), pp. 162.1–162.11. BMVA Press, September
2017. ISBN 1-901725-60-X. doi: 10.5244/C.31.162. URL https://dx.doi.org/10.
5244/C.31.162.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Chunjie Luo, Jianfeng Zhan, Lei Wang, and Wanling Gao. Extended batch normalization. arXiv
preprint arXiv:2003.05569, 2020.

Vittorio Mazzia, Francesco Salvetti, and Marcello Chiaberge. Efficient-capsnet: Capsule network
with self-attention routing. arXiv preprint arXiv:2101.12491, 2021.

Duc Nguyen. Robust deep learning for computer vision to counteract data scarcity and label noise.
PhD thesis, 01 2020.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 165–174, 2019.

Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and Jian Sun. Large kernel matters–improve
semantic segmentation by global convolutional network. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 4353–4361, 2017.

Silvia L Pintea, Nergis Tomen, Stanley F Goes, Marco Loog, and Jan C van Gemert. Resolution
learning in deep convolutional networks using scale-space theory. arXiv preprint arXiv:2106.03412,
2021.

David W Romero, Anna Kuzina, Erik J Bekkers, Jakub M Tomczak, and Mark Hoogendoorn. Ckconv:
Continuous kernel convolution for sequential data. arXiv preprint arXiv:2102.02611, 2021.

12

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/2011.14759
https://dx.doi.org/10.5244/C.31.162
https://dx.doi.org/10.5244/C.31.162

Published as a conference paper at ICLR 2022

T Konstantin Rusch and Siddhartha Mishra. Coupled oscillatory recurrent neural network (cornn):
An accurate and (gradient) stable architecture for learning long time dependencies. arXiv preprint
arXiv:2010.00951, 2020.

T Konstantin Rusch and Siddhartha Mishra. Unicornn: A recurrent model for learning very long time
dependencies. arXiv preprint arXiv:2103.05487, 2021.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions. In Advances in neural information processing systems, pp.
991–1001, 2017.

Evan Shelhamer, Dequan Wang, and Trevor Darrell. Blurring the line between structure and learning
to optimize and adapt receptive fields. ArXiv, abs/1904.11487, 2019.

Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li. From points to parts:
3d object detection from point cloud with part-aware and part-aggregation network. arXiv preprint
arXiv:1907.03670, 2019.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neural
networks on graphs. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3693–3702, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33, 2020.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Domen Tabernik, Matej Kristan, and Ales Leonardis. Spatially-adaptive filter units for compact
and efficient deep neural networks. International Journal of Computer Vision, 128, 09 2020. doi:
10.1007/s11263-019-01282-1.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International Conference on Machine Learning, pp. 6105–6114. PMLR, 2019.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds.
arXiv preprint arXiv:1802.08219, 2018.

Nergis Tomen, Silvia-Laura Pintea, and Jan Van Gemert. Deep continuous networks. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 10324–10335. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/v139/tomen21a.html.

Hugo Touvron, A. Vedaldi, M. Douze, and H. Jégou. Fixing the train-test resolution discrepancy. In
NeurIPS, 2019.

13

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://proceedings.mlr.press/v139/tomen21a.html

Published as a conference paper at ICLR 2022

Trieu H Trinh, Andrew M Dai, Minh-Thang Luong, and Quoc V Le. Learning longer-term dependen-
cies in rnns with auxiliary losses. arXiv preprint arXiv:1803.00144, 2018.

Cristina Vasconcelos, Hugo Larochelle, Vincent Dumoulin, Rob Romijnders, Nicolas Le Roux, and
Ross Goroshin. Impact of aliasing on generalization in deep convolutional networks. arXiv preprint
arXiv:2108.03489, 2021.

Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun. Deep parametric
continuous convolutional neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2589–2597, 2018.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv preprint
arXiv:1804.03209, 2018.

Zhitong Xiong, Yuan Yuan, Nianhui Guo, and Qi Wang. Variational context-deformable convnets
for indoor scene parsing. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

Richard Zhang. Making convolutional networks shift-invariant again. In International conference on
machine learning, pp. 7324–7334. PMLR, 2019.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

14

Published as a conference paper at ICLR 2022

(a) MLPψ output (b) g⃗([x, y];θ(l)) (c) ψ(x, y) = (a) ⋅ (b) (d) After cropping

Figure 7: Example kernels, generated step by step. FlexConv samples a kernel from MLPψ (a), which
is attenuated by an anistropic Gaussian envelope with learned parameters θ(l) (b), creating (c) which
is cropped to contain only values of > 0.1 (d).

A ALIAS-FREE FLEXCONV REGULARIZATION

In this section we provide the complete derivation and analysis for our FlexConv regularization
against aliasing. First, we derive the analytic maximum frequency component of a FlexConv kernel.
Next, we compute the Nyquist frequency of a FlexConv kernel, and subsequently show how to
combine the previous results into a regularization term to train alias-free FlexConvs.

A.1 ANALYZING THE FREQUENCY SPECTRUM OF FLEXCONV

In order to make FlexConv alias-free (Sec. 3.3), we need to compute the maximum frequency
component of the kernels generated by a MAGNet, so that we can regularize it during training. In
this section we analytically derive this maximum frequency component from the parameters of the
MAGNet.

Recall that MAGNets generate a kernel ψ(x, y) through of a succession of anisotropic Gabor filters
and linear layers (Sec. 3.2, Eqs. 2–7):

h(1) = g([x, y];θ(1)) g ∶ R2 → RNhid

h(l) = (W(l)h(l−1) + b(l)) ⋅ g([x, y];θ(l)) W(l) ∈ RNhid×Nhid ,b(l) ∈ RNhid

ψ(x, y) =W(L)h(L−1) + b(L) W(L) ∈ R(Nout×Nin)×Nhid ,b(L) ∈ R(Nout×Nin)

g([x, y];θ(l)) = exp(− 1

2
[(γ(l)X (x −µ(l)X))

2

+ (γ(l)Y (y −µ(l)Y))
2

])Sin(W(l)
g [x, y] + b(l)g)

θ(l)={γ(l)X ∈ RNhid ,γ
(l)
Y ∈ RNhid ,µ

(l)
X ∈ RNhid ,µ

(l)
Y ∈ RNhid ,W(l)

g ∈ RNhid×2,b(l)g ∈ RNhid}

To analyse the maximum frequency component f+MAGNet, we analyse the frequency components of
the Gabor filters used in MAGNet, and retain their maximum. We then plug the found frequency
component into the analysis of Fathony et al. (2021) to show how the frequency responses of Gabor
filters and linear layers interact in MFNs. Finally, we add the effect of the FlexConv Gaussian mask
to our analysis to obtain the maximum frequency component ot the final FlexConv kernel f+FlexConv.

Sine term in Gabor filters. In a Gabor filter, the sine term is multiplied with a Gaussian envelope.
The frequency (in radians) of a sine function of the form Sin(wT [x, y]+ b) is given byw. We divide
by 2π to convert the frequency units to Hertz, for compatibility with the rest of the analysis. For 2D
inputs, the maximum frequency component of the sine function correspond to the largest frequency
in the two input dimensions:

f+Sin = max
j

wj

2π
. (10)

The sine terms in MAGNets have multiple output channels: Sin(Wg ⋅ [x, y] + b(l)g). Effectively, we
compute the sine term independently for each channel:

f+Sin,i = max
j

Wg,i,j

2π
. (11)

15

Published as a conference paper at ICLR 2022

Block 3 FlexConv 0 - 17x17 log10(FFT) Kernel sampled at 65x65 log10(FFT)

(a) No regularization, block 3 of 7.

Block 4 FlexConv 0 - 17x17 log10(FFT) Kernel sampled at 65x65 log10(FFT)

(b) Regularizing f+MAGNet, block 4 of 7.

Block 4 FlexConv 0 - 17x17 log10(FFT) Kernel sampled at 65x65 log10(FFT)

(c) Regularizing f+FlexConv, block 4 of 7.

Figure 8: Example kernels from FlexNet-16 models trained (i) without regularization, (ii) with
aliasing regularization of f+MAGNet, (iii) with aliasing regularization of f+FlexConv. In the columns, from
left to right: (i) original kernel at 33×33, (ii) FFT of the original kernel, (iii) kernel inferred at 65×65,
to find aliasing effects, (iiii) FFT of the 65 × 65 kernel, with the solid line showing the Nyquist
frequency of the 33 × 33 kernel, and the red dotted line showing the maximum frequency component
as computed by our analysis. For f+FlexConv the maximum frequency matches almost exactly with
the Nyquist frequency, showing that our aliasing regularization works. For f+MAGNet, the maximum
frequency is slightly higher than the Nyquist frequency, as the FlexConv mask is not included in the
frequency term derivation. This is reflected in the slightly worse resolution generalization results
reported in Sec. 4.3. Furthermore, some aliasing effects are still apparent for the aliasing regularized
models, as discussed in Sec. 6.

16

Published as a conference paper at ICLR 2022

Gaussian term in Gabor filters. In a Gabor filter, a Gaussian envelope modulates a sine term. Let
us assume for now that the Gaussian envelope is isotropic, rather than anisotropic as in MAGNets,
and has single-channel output. By applying the convolution theorem, the sine term is equivalently
convolved with the Fourier transform of the Gaussian envelope in the frequency domain. Since
the Fourier transform of a Gaussian envelope is another Gaussian envelope, the application of a
Gaussian envelope amounts to blurring with a Gaussian kernel in the frequency domain. The size of
the envelope in the Fourier domain σF can be derived from the standard deviation of the Guassian
envelope in the spatial domain σT as follows:

σTσF = 1

2π
⇒ σF = 1

2πσT
. (12)

Gaussian blurs induce impulse signals to have a long tail. Consequently, we must define a cutoff
point for this tail in terms of standard deviations to derive the maximum added frequency induced
by the blur. We describe the cutoff point as σcut ∈ N. Typical choices for σcut are known as the
empirical, or the "68-95-99.7" rule (Hald, 2007). We choose a standard of two standard deviations,
i.e., σcut=2, which covers 95% of the mass of the Gaussian envelope.

For an isotropic Gabor filter with γ=σ−1T , the maximum frequency of its Gaussian envelope f+env is:

f+env =
σcut

2π(σT)−1
= σcutγ

2π
. (13)

Anisotropic envelopes. Our analysis so far assumes an isotropic Gaussian envelope in the Gabor
filter. However, we need to account for the anisotropic Gaussian envelopes in MAGNets. Anisotropic
filters have not one but two γ parameters: {γX, γY}. The smallest of these will contribute most to
f+env, as it will blur the most, so it is sufficient to compute f+env only using the smallest of the two γ
terms:

f+env(γX , γY) = f+env(min{γX , γY }). (14)
The other assumption we made before was to work with single-channel outputs. MAGNets however
use multi-channel outputs with independent Gaussian terms. The maximum frequency of multi-
channel Gaussian envelopes is given by:

f+env,i(γX,γY) = f+env (min{γX,i,γY,i}) =
σcut min{γX,i,γY,i}

2π
, (15)

where the subscript i indexes the channels of the multi-channel Gaussian envelopes.

Maximum frequency component of anisotropic Gabor filters. Finally, the maximum frequency
component of the i-th channel of an anisotropic Gabor filter g is given by:

f+Gabor,i = f+Sin,i(Wg) + f+env,i(γX,γY)

= (max
j

Wg,i,j

2π
) +

σcut min{γX,i,γY,i}
2π

. (16)

Figure 9 illustrates the frequency spectrum of an example Gabor filter.

Maximum frequency component of a MAGNet. Fathony et al. (2021) characterize the expansion
of each term of the isotropic Gabor layers in MFNs in the final MFN output. In Eq. 25, Fathony et al.
(2021) demonstrate that the MFN representation contains a set of sine frequencies ω given by:

ω = {sLω(L)iL
+ sL−1ω(L−1)iL−1

+⋯ + slω(2)i2
+ ω(1)i1

} . (17)

Here, the indexes i1, i2,⋯, iL−1 range over all possible indices of each hidden unit of each layer
of an MFN, and s2,⋯, sL ∈ {−1,+1} range over all 2L−1 possible binary signs. In other words,
Fathony et al. (2021) demonstrate that the representation of an MFN at a particular layer contains an
exponential combination of all possible positive and negative combinations of the frequencies of the
sine terms in each hidden unit at each layer in the MFN up to the current layer.

The original analysis uses these terms to argue that MFNs model exponentially many terms through
a linear amount of layers. For our purpose of computing the frequency response of the MAGNet
generated kernel, we can plug our derivation of the frequencies of the Gabor filter fGabor into ω to
compute the frequency spectrum of the generated kernel:

f+MAGNet = {sLf (L)Gabor,iL
+ sL−1f (L−1)Gabor,iL−1

+⋯ + s2f (2)Gabor,i2
+ f (1)Gabor,i1

} (18)

17

Published as a conference paper at ICLR 2022

f(x) = N (x|0.0, 0.1) h(x) = sin(50.3x) g(x) = N (x|0.0, 0.1) sin(50.3x)

F(f(x)) F(h(x)) F(g(x))

Figure 9: Decomposition of a Gabor filter and its frequency spectrum. Top row: a decomposition of a
Gabor filter (right) into its Gaussian term (left) and its sine term (center). Bottom row: frequency
responses for each respective filter. The Fourier transform of a Gaussian envelope is a Gaussian
envelope (blue circles show σF for h = {1,2}). The Fourier transform of a sine pattern is a collection
of symmetrical impulse signals (red box shows the Nyquist frequency). The Gaussian envelope blurs
the frequency response of the sine term (purple boxes show the frequency response for h = {1,2,3}).

As stated before, we are only interested in the maximum frequency in the frequency spectrum. We
can therefore simplify Eq. 18 in two ways. First, we simplify over MAGNet layers by taking the
maximum value of the spectrum, which is the sum over all layers using only the positive binary signs
in sL (Eq. 19). Next, we simplify over channel indices by retaining only the channel index that results
in the highest frequency (Eq. 20). The maximum frequency of a MAGNet is shown in Eq. 21:

f+MAGNet = {(+1)f+ (L)Gabor,iL
+ (+1)f+ (L−1)Gabor,iL−1

+⋯ + (+1)f+ (2)Gabor,i2
+ f+ (1)Gabor,i1

} (19)

= {f+ (L)Gabor,iL
+ f+ (L−1)Gabor,iL−1

+⋯ + f+ (2)Gabor,i2
+ f+ (1)Gabor,i1

}

f+MAGNet = max
iL

(f+ (L)Gabor,iL
) +max

iL−1
(f+ (L−1)Gabor,iL−1

)⋯+max
i2

(f+ (2)Gabor,i2
) +max

i1
(f+ (1)Gabor,i1

) (20)

=
L

∑
l=1

max
il

(f+ (l)Gabor,il
)

=
L

∑
l=1

max
il

⎛
⎝
⎛
⎝

max
j

W
(l)
g,il,j

2π

⎞
⎠
+
σcut min{γ(l)X,il

,γ
(l)
Y,il

}
2π

⎞
⎠
. (21)

Effect of the Gaussian mask in the frequency components of a FlexConv. FlexConvs attenuate
the MAGNet output with a Gaussian mask. The Gaussian mask (Eq. 1) works analogously to the
Gaussian envelope term in the Gabor filter: it blurs the frequency components of the generated kernel
with standard deviation σF. Therefore, we can reuse our derivation for the Gaussian envelope of the

18

Published as a conference paper at ICLR 2022

Gabor filter (Eq. 15). The maximum frequency component of a FlexConv kernel is given by:
f+FlexConv = f+MAGNet + f+env

= f+MAGNet +
σcut min{σ−1X , σ−1Y }

2π
= f+MAGNet +

σcut
max{σX, σY}2π

=
L

∑
l=1

max
il

⎛
⎝
⎛
⎝

max
j

W
(l)
g,il,j

2π

⎞
⎠
+
σcut min{γ(l)X,il

,γ
(l)
Y,il

}
2π

⎞
⎠
+ σcut

max{σX, σY}2π
. (22)

Visualization of regularized kernels. Fig. 8 shows example kernels from FlexNets trained with
aliasing regularization. The frequency domain plots confirm the accuracy of our frequency component
regularization.

A.2 REGULARIZING THE FREQUENCY RESPONSE OF FLEXCONV

Nyquist frequency of a FlexConv kernel. Given the sampling rate fs of the kernel, we can compute
its Nyquist frequency fNyq as:

fNyq =
1

2
fs (23)

To compute the sampling rate, we note that the kernel coordinates input to our MAGNet stretch over
a [−1,1]D domain. For a kernel of length k, we therefore sample one point in every fs = k−1

2
units.

Knowing the sampling rate in terms of the kernel size allows us to express the Nyquist frequency in
terms of the (pre-masked) kernel size:

fNyq(k) =
1

2

k − 1

2
= k − 1

4
. (24)

Note that the kernel size in a FlexConv is initialized to be equal to the resolution of the data, if it is
odd. For even resolutions, it corresponds to the resolution of the data plus one.

Constructing the regularization term. We train FlexConv with a regularization term on the fre-
quency response of the generated kernel to ensure that aliasing effects do not distort the performance
of the model when it is inferred at a higher resolution. This section details the implementation of the
regularization function.

From the parameters of each FlexConv module, we compute f+FlexConv according to Eq. 22. For the
amount of standard deviations to use in determining f+env (Eq. 15) we use h = 2. From the kernel size
k of the FlexConv module we compute fNyq(k) according to Eq. 24. We then apply an L2 regularizer
over the amount that f+FlexConv exceeds fNyq(k):

LHF = ∣∣max{f+FlexConv, fNyq(k)} − fNyq(k)∣∣2. (25)

We weight LHF by λ = 0.1 when adding it to our loss function.

Improved implementation. Eq. 25 contains a sum over the L layers of the MAGNet. In practice, we
prefer to regularize each layer l ∈ L separately, so that the gradients of the regularization of different
layers are not dependent on each other. We therefore implement the anti-aliasing regularization by
regularizing each MAGNet layer independently, and spreading the f+env term from the gaussian mask
uniformly over all MAGNet layers:

LHF,l = ∣∣max{f+MAGNet,l +
f+env

L
,
fNyq(k)

L
} −

fNyq(k)
L

∣∣2 (26)

= ∣∣max{max
il

(f+ (l)Gabor,il
) + f

+
env

L
,
fNyq(k)

L
} −

fNyq(k)
L

∣∣2. (27)

In the code, we refer to this method as the together method, versus the summed method of Eq. 25.
In preliminary experiments, we observed improved performance of anti-aliasing training when using
the together method. All of our experiments anti-aliasing experiments therefore use the together
setting.

19

Published as a conference paper at ICLR 2022

B DATASET DESCRIPTION

B.1 IMAGE FITTING DATASETS

Kodak dataset. The Kodak dataset (Kodak, 1991) consists of 24 natural images of size 768 × 512.
This dataset is a popular benchmark used for compression and image fitting methods.

B.2 SEQUENTIAL DATASETS

Sequential and Permuted MNIST. The sequential MNIST dataset (sMNIST) (Le et al., 2015)takes
the 28×28 images from the original MNIST dataset (LeCun et al., 1998), and presents them as a
sequence of 784 pixels. The goal of this task is to perform digit classification given the representation
of the last sequence element of a sequential model. Consequently, good predictions require the model
to preserve long-term dependencies up to 784 steps in the past.

The permuted MNIST dataset (pMNIST) additionally changes the order of all the sMNIST sequences
by a random permutation. Consequently, models can no longer rely on local features to construct
good feature representations. As a result, the classification problem becomes more difficult, and the
importance of long-term dependencies more pronounced.

Sequential and Noise-Padded CIFAR10. The sequential CIFAR10 dataset (sCIFAR10) (Chang
et al., 2017) takes the 32×32 images from the original CIFAR10 dataset (Krizhevsky et al., 2009) and
presents them as a sequence of 1,024 pixels. The goal of this task is to perform image classification
given the representation of the last sequence element of a sequential model. This task is more difficult
than sMNIST, as a larger memory horizon is required to solve the task and more complex structures
and intra-class variations are present in the data (Bai et al., 2018b).

The noise-padded CIFAR10 dataset (npCIFAR10) (Chang et al., 2019) flattens the images from the
original CIFAR10 dataset (Krizhevsky et al., 2009) along their rows to create a sequence of length 32,
and 96 channels (32 rows × 3 channels). Next, these sequences are concatenated with 968 entries of
noise to form the final sequences of length 1000. As for sCIFAR10, the goal of the task is to perform
image classification given the representation of the last sequence element of a sequential model.

CharacterTrajectories. The CharacterTrajectories dataset is part of the UEA time series classifi-
cation archive (Bagnall et al., 2018). It consists of 2858 time series of length 182 and 3 channels
representing the x, y positions, and the tip force of a pen while writing Latin alphabet characters in a
single stroke. The goal is to classify out of 20 classes the written character using the time series data.

Speech Commands. The Speech Commands dataset (Warden, 2018) consists of 105,809 one-
second audio recordings of 35 spoken words sampled at 16kHz. Following Kidger et al. (2020), we
extract 34975 recordings from ten spoken words to construct a balanced classification problem. We
refer to this dataset as SpeechCommands_raw, or SC_raw for short. Furhtermore, we utilize the
preprocessing steps of Kidger et al. (2020) and extract mel-frequency cepstrum coefficients from the
raw data. The resulting dataset, abreviated SC, consists of time series of length 101, and 20 channels.

B.3 IMAGE BENCHMARK DATASETS

MNIST. The MNIST hadwritten digits datset (LeCun & Cortes, 2010) consists of 70,000 gray-
scale handwritten digits of size 28×28, divided into a training and test sets of 60,000 and 10,000
images, respectively. The goal of the task is to classify these digits as one of the ten possible digits
(0,1, ..8,9).

CIFAR-10 The CIFAR-10 dataset (Krizhevsky et al., 2009) consists of 60,000 natural images from
10 classes of size 32×32, divided into training and test sets of 50,000 and 10,000 images, respectively.

STL-10. The STL-10 dataset (Coates et al., 2011) is a subset of the ImageNet dataset (Krizhevsky
et al., 2012) consisting of 5,000 natural images from 10 classes of size 96×96, divided into trainint
and test sets of 4,500 and 500 images, respectively.

ImageNet-k. The Imagenet-k (Chrabaszcz et al., 2017) dataset is derived from the ImageNet dataset
Russakovsky et al. (2015) by downsampling all samples to a resolution k ∈ [64,32,16,8]. The
dataset contains 1000 classes with 1,281,167 training samples and 50,000 validation samples.

20

Published as a conference paper at ICLR 2022

Table 5: Average PSNR for fitting of images in the Kodak dataset. Both our improved initialization
scheme, as well as the inclusion of anisotropic Gabor functions lead to better reconstructions.

MODEL # PARAMS
IMPROVED PSNRINIT

SIREN 7.14K - 25.665
MFNFourier 7.40K - 23.276

MFNGabor 7.11K
7 25.361
3 25.606

MAGNet 7.36K
7 25.791
3 25.893

Table 6: Full results on CIFAR-10. We report results over three runs per setting. CIFARResNet-44 w/
CKConv is a CIFARResNet-44 where all convolutional layers are replaced with CKConvs with k = 3.
CIFARResNet-44 w/ FlexConv is a CIFARResNet-44 where all convolutional layers are replaced with
FlexConv with learned kernel size, except for the shortcut connections of the strided convolutional
layers, which are pointwise convolutions. *Results are taken from the respective original works
instead of reproduced. †Results are from single run.

MODEL SIZE
CIFAR-10

ACC.

DCN-σji (Tomen et al., 2021) 0.47M 89.7 ± 0.3*
N-Jet-CIFARResNet32 (Pintea et al., 2021) 0.52M 92.3 ± 0.3*

N-Jet-ALLCNN (Pintea et al., 2021) 1.07M 92.5 ± 0.1*

CIFARResNet-44 (He et al., 2016) 0.66M 92.9*†
CIFARResNet-44 (He et al., 2016) (our reproduction) 0.66M 90.9 ± 0.2

CIFARResNet-44 w/ CKConv (k = 3) 2.58M 86.1 ± 0.9
CIFARResNet-44 w/ FlexConv 2.58M 81.6 ± 0.8

FlexNet-7 w/ conv. (k = 3) 0.17M 89.5 ± 0.3
FlexNet-7 w/ conv. (k = 33) 20.0M 78.0 ± 0.3

FlexNet-7 w/ N-Jet (Pintea et al., 2021) 0.70M 91.7 ± 0.1

CKCNNSIREN-3 0.26M 72.4*
CKCNNFourier-3 0.27M 83.8*
CKCNNGabor-3 0.28M 85.6*

CKCNNMAGNet-3 0.28M 86.2*
CKCNN-7 0.63M 71.7*

CKCNNFourier-7 0.63M 84.6*
CKCNNGabor-7 0.67M 87.7*

CKCNNMAGNet-7 0.67M 85.9*

FlexNetSIREN-7 0.63M 88.9*
FlexNetFourier-7 0.66M 91.6*
FlexNetGabor-7 0.67M 92.0*

FlexNet-3 0.27M 90.4 ± 0.2
FlexNet-5 0.44M 91.0 ± 0.5
FlexNet-7 0.67M 92.2 ± 0.1

C ADDITIONAL EXPERIMENTS

C.1 IMAGE CLASSIFICATION

CIFAR-10. Tab. 6 shows all results for our CIFAR-10 experiments, including more ablations.

ImageNet-32. Results for the ImageNet-32 experiment are shown in Table 7. FlexNets are slightly
worse than CIFARResNet-32 (He et al., 2016) with slightly less parameters. However, the results

Table 7: Results on ImageNet-32. *Results are taken from the respective original works instead of
reproduced. †Results are from a single run.

MODEL SIZE
IMAGENET-32

TOP-1 TOP-5

CIFARResNet-32 0.53M 26.41 ± 0.13 49.37 ± 0.15
WRN-28-1 0.44M 32.03*† 57.51*†

FlexNet-5 0.44M 24.9 ± 0.4 47.7 ± 0.6

21

Published as a conference paper at ICLR 2022

Table 8: Results for alias-free FlexNets on CIFAR-10 and ImageNet-k. ∆ denotes difference in
accuracy.

MODEL SIZE
IMAGENET-K TOP-1
k = 16 ∆k=16 k = 32

CIFARResNet-32 0.52M 16.1 ± 0.0 -11.6 ± 0.4

FlexNet-5 w/ N-Jets 0.46M 15.7 ± 0.1 -1.9 ± 0.4

FlexNet-5 0.44M 14.9 ± 0.1 -1.9 ± 1.7

Table 9: Results on MNIST. We train each model with three different seeds and report mean and
standard deviation. *Results are taken from the respective original works instead of reproduced.
†Results are from single run.

MODEL SIZE
MNIST

ACC.

Efficient-CapsNet (Mazzia et al., 2021) 0.16M 99.8*†
Network in Network (Lin et al., 2013) N/A 99.6*†

VGG-5 (results from Kabir et al. (2020)) 3.65M 99.7*†

FlexNet-16 0.67M 99.7 ± 0.0

reported by Chrabaszcz et al. (2017) for Wide ResNets (Zagoruyko & Komodakis, 2016) outperform
FlexNets by a significant margin.

Alias-free ImageNet-32. We report results for alias-free FlexNets on ImageNet-k (Chrabaszcz et al.,
2017) in Table 8, to verify the results of alias-free training at a larger scale. We find that FlexConv
and N-Jet both mostly retain classification accuracy between source and target resolution, while
CIFARResNet-32 degrades drastically.

MNIST and STL-10. We additionally report results on MNIST (Tab. 9) and STL-10 (Tab. 10.
We choose these dataset for the difference in image sizes of the training data. On MNIST, though
performance on MNIST is quite saturated, we are competitive with state of the art methods. On
STL-10 we are significantly worse than the baseline CIFARResNet from (Luo et al., 2020), though
with significantly less parameters. We were not able to prepare a more relevant baseline for this
experiment.

D EXPERIMENTAL DETAILS

D.1 FLEXNET

We propose an image classification architecture named FlexNet (Fig. 10), consisting of a stack of
FlexConv blocks followed by a global average pooling layer and a linear layer. FlexNets are named
"FlexNet-L" where L indicates the amount of layers in the architecture.

FlexBlock. Each FlexBlock consists of two FlexConvs with BatchNorm (Ioffe & Szegedy, 2015)
and dropout (Srivastava et al., 2014) (d = 0.2) as well as a residual connection. The width of a block
i is determined by scaling a base amount c by progressively increasing factors: ci = [c, c × 1.5, c ×
1.5, c × 2.0, c × 2.0](i). The default configuration of FlexNet uses c = 22. In FlexNet-N-Jet models,
we scale c to match the amount of parameters of the FlexNet in the comparison.

Table 10: Results on STL-10. We train each model with three different seeds and report mean and
standard deviation. *Results are taken from Luo et al. (2020). †Results are from single run.

MODEL SIZE
STL-10

ACC.

CIFARResNet-18 11.2M 81.0*†
FlexNet-16 0.67M 68.6 ± 0.7

22

Published as a conference paper at ICLR 2022

Figure 10: FlexNet architecture. FlexNet-L consists of L FlexBlocks, where each FlexBlock is a
residual block of FlexConvs.

FlexConv initialization. We initialize the FlexConv mask variances small, at σ2
X, σ

2
Y = 0.125. For

initializing MAGNet, we initialize the Gaussian envelopes as discussed in Sec. 3.2. We initialize
the linear layer weights by the same Gamma distribution as used for the enveloped, modulated by
a scaling factor of 25.6. We found that this value of the scaling factor, rather than a higher one,
helped in reducing the performance of alias-free models. We initialize the bias of the linear layers by
U(−π,π).

CIFAR-10. In FlexNet-16 models for CIFAR-10 we use c = 24 to approximate the parameter count
of CIFARResNets in the experiment.

D.2 OPTIMIZATION

We use Adam (Kingma & Ba, 2014) to optimize FlexNet. Unless otherwise specified, we use a
learning rate of 0.01 with a cosine annealing scheme (Loshchilov & Hutter, 2016) with five warmup
epochs. We use a different learning rate of 0.1× the regular learning rate for the FlexConv Gaussian
mask parameters. We do not use weight decay, unless otherwise specified.

Kodak. We overfit on each image of the dataset for 20,000 iterations. To this end, we use a learning
rate of 0.01 without any learning rate scheme. We observe that SIRENs diverge with this learning
rate and thus, reduce the learning rate to 0.001 for these models.

CIFAR-10. We train for 350 epochs with a batch size of 64. We use the data augmentation from He
et al. (2016) when training CIFAR-10: a four pixel padding, followed by a random 32 pixel crop and
a random horizontal flip.

ImageNet-32. We train for 350 epochs with a batch size of 2048. We use the same data augmentation
as used for CIFAR-10. We do use a weight decay of 1e−5 for ImageNet-32 training.

Sequential and Permuted MNIST. We train for 200 epochs with a batch size of 64 and a learning
rate of 0.01. We use a weight decay of 1e−5.

Sequential and Noise-Padded CIFAR-10. For sequential CIFAR-10, we train for 200 epochs with
a batch size of 64, a learning rate of 0.001 and a weight decay of 1e−5. For noise-padded CIFAR-10,
we train for 300 epochs with a batch size of 32, a learning rate of 0.01 and no weight decay.

23

Published as a conference paper at ICLR 2022

Speech Commands and CharTrajectories. We train for 300 epochs with a batch size of 32 and a
learning rate of 0.001. For CharTrajectories, we use a weight decay of 1e−5.

D.3 ROTATED GAUSSIAN MASKS

MAGNets use anisotropic Gaussian terms in the Gabor filters, which yields improvements in descrip-
tive power and convergence speed (Sec. 3.2). For the same reason, we explore making the anisotropic
FlexConv Gaussian mask steerable, by including an additional vector of learnable angle parameters
φ(l) ∈ RNhid that rotates the Gaussian masks. Although preliminary experiments show rotated masks
lead to slight additional improvements, the computational overhead required to rotate the masks is
large. Consequently, we do not consider rotated Gaussian masks in our final experiments.

24

	Introduction
	Related Work
	Method
	Flexible Size Continuous Kernel Convolution (FlexConv)
	Multiplicative Anisotropic Gabor Networks (MAGNets)
	Analytic Alias-free MAGNets

	Experiments
	What kind of functions can MAGNets approximate?
	Classification Tasks
	Alias-free FlexNets

	Discussion
	Limitations
	Conclusion
	Alias-free FlexConv regularization
	Analyzing the frequency spectrum of FlexConv
	Regularizing the frequency response of FlexConv

	Dataset Description
	Image Fitting Datasets
	Sequential Datasets
	Image Benchmark Datasets

	Additional Experiments
	Image Classification

	Experimental Details
	FlexNet
	Optimization
	Rotated Gaussian masks

