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Momentum theory of Joukowsky actuator discs with

swirl

Gijs A. M. van Kuik

Duwind, Delft University of Technology, Kluyverweg 1, 2629HS Delft, NL

E-mail: g.a.m.vankuik@tudelft.nl

Abstract. Actuator disc theory is the basis for most rotor design methods, be it with many
extensions and engineering rules added to make it a well-established method. However, the
off-design condition of a very low rotational speed Ω of the disc is still a topic for scientific
discussions. Several authors have presented solutions of the associated momentum theory for
actuator discs with a constant circulation, the so-called Joukowsky discs, showing the efficiency
Cp → ∞ for Ω → 0. The momentum balance is very sensitive to the choice of the vortex
core radius δ as the pressure and velocity gradients become infinite for δ → 0. Viscous vortex
cores do not show this singular behaviour so an inviscid core model is sought which removes
the momentum balance sensitivity to singular flow. A vortex core with a constant δ does so.
Applying this results in Cp → 0 for Ω → 0, instead of Cp → ∞. The Joukowsky actuator
disc theory is confirmed by a very good match with the numerically obtained results. It gives
higher Cp values than corresponding solutions for discs with a Goldstein-based wake circulation
published in literature.

1. Introduction
Although the concept of the actuator disc is more than 100 years old, it is still the basis for
rotor design codes using the blade element momentum theory developed over these 100 years,
see [1]. In recent years the behaviour of actuator disc flows with a low rotational speed has
been studied by several authors, providing several solutions depending on the type of load
that is applied, see e.g. [2]. Research has focussed on rotors and discs having a constant
circulation in the wake, known as the Joukowsky distribution [3], or the Betz distribution [4]
yielding a helicoidal wake structure moving with a uniform axial velocity. Goldstein [5] was
the first to find a solution for this wake for lightly loaded propellers, see [6] for an overview.
Both distributions were assumed to represent the circulation distribution of an ideal rotor. The
present paper considers the Joukowsky distribution and compares the results with solutions of
the Betz-Goldstein distribution modified for heavily loaded actuator discs reported in [7, 8] and
[9].

The swirl of the wake is induced by a discrete vortex at the wake centre line, leading to
an infinite azimuthal velocity and pressure for the radius r → 0. The question how to model
the discrete vortex and how this impacts the momentum balance has been studied by e.g.
[10, 11, 12, 13, 14]. All performance predictions reported in these references show a remarkable
result: in the limit to zero rotational speed the efficiency of the disc increases to infinity, which
is highly non-physical.
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Within the inviscid flow regime, the analysis in [14] is considered to be exact apart from the
choice of the vortex core at the axis of the wake. The centreline vortex is a Rankine vortex of
which the core diameter is proportional to the wake radius. The analysis shows that adding
a disturbance parameter to the momentum balance removes the non-physical result of infinite
efficiency for zero rotational speed, no matter how small this disturbance is. This is an indication
that the momentum balance is very sensitive to small deviations in the flow parameters.

A failed attempt to reproduce the results of [14] by the potential flow actuator disc code
described in [15] initiated a re-analysis of the vortex core model and its impact on the momentum
theory. In section 2 the equations of motion for Joukowsky actuator disc flows are given as well
as for the disc loading and far wake properties. Herewith the general mass, momentum and
energy balances are derived in section 3.1, followed by section 3.2 where the vortex core model
is analysed. The chosen core model is applied in section 3.3. Section 4 describes the numerical
approach, after which the results of the calculations and momentum theory are compared in
section 5.

2. The equations of motion
2.1. The equations for a disc with constant circulation
The flow is governed by the Euler equation:

1

ρ
(f −∇p) = v ·∇v (1)

in which ρ is the fluid density [kg/m3], f the force density [N/m3], p the static pressure [N/m2], v
the velocity vector [m/s] and H = p + 1

2ρv · v the total pressure [N/m2]. Also the equivalent
formulation:

f = ∇H − ρv × ω (2)

will be used. A cylindrical reference system (x, r, ϕ) is applied, with the positive x coinciding
with the downwind wake axis, and with r and ϕ the radial and azimuthal coordinate, see figure
1. For the special case of a disc flow with constant circulation induced by a free vortex Γ at the
axis of the wake the azimuthal velocity in the wake is:

Γ = 2πrvϕ. (3)

The vortex is a potential flow vortex, with a vortex core having diameter δ(x). It is common to
model the core as a Rankine vortex, characterized by solid body rotation of the flow, after which
the limit of δ → 0 is taken. Figure 1 shows (half of) the cross section through the stream-tube
in the meridian plane, with the disc and fully developed wake indicated. The disc has radius R
and area A, while A1 is the area of the far wake with radius R1. In the remainder the index
0 is used for flow variables in the undisturbed, upstream flow. The fully developed far wake is
indicated by the index 1, see figure 1. If there is no index, the variables are taken at the position
of the actuator disc.

2.2. The disc load
Only the pressure and the azimuthal velocity will be discontinuous across the infinitesimal thin
disc, so integration of the axial and azimuthal component of (1) gives:

1

ρ
F = ex

∆p

ρ
+ eϕvx∆vϕ (4)

= ex∆

(
H

ρ
− 1

2
v2
ϕ

)
+ eϕvx∆vϕ (5)
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where F denotes a surface load [N/m2], ∆ the difference between the down- and upwind side of
the disc and e the unit vector. As vϕ = 0 at the upwind side of the disc ∆vϕ = vϕ. In (5) the
Bernoulli equation integrated across the disc thickness has been used:

∆p = ∆H − 1

2
ρv2
ϕ. (6)

The local power converted by the force field f is f · v which has to be equal to the local
contribution to the torque, rfϕ, times rotational speed Ω. The converted power f · v becomes:

f · v = Ωrfϕ = (v ·∇)H. (7)

This shows that the work done by the force field is expressed in a change in the total pressure
or Bernoulli constant H. Integration of (7) across the thickness combined with the azimuthal
component of (4) gives the general expression:

∆H =
Ωr

vx
Fϕ = ρΩrvϕ (8)

and, with (3), for the Joukowsky disc:

1

ρ
∆H =

ΩΓ

2π
. (9)

The sign conventions are that the rotational speed Ω > 0 and Γ < 0 so ∆H < 0 implying that
energy is extracted from the flow.

2.3. The far wake
With the conservation of circulation:

rvϕ = r1vϕ,1 (10)

the Bernoulli equation (9) is written as:

1

ρ
(p0 − p1) =

1

2

(
v2
x,1 − U2

0 + v2
ϕ,1

)
− ΩΓ

2π
. (11)

Differentiating with respect to r and combining it with the radial pressure equilibrium in the
far wake:

∂p1

∂r1
= ρ

v2
ϕ,1

r1
(12)

it is clear that vx,1 is constant. By this (11) can be written as:

p1 − p0 = −1

2
ρv2
ϕ,1 + p∗. (13)

At the wake boundary the pressure has to be undisturbed (p0), so p∗ = 1
2ρv

2
ϕ,R1

and, with (3):

p1 − p0 = −1

2
ρv2
ϕ,1 +

1

2
ρ

(
Γ

2πR1

)2

(14)

or:
p1 − p0

ρ
=

1

2

(
v2
ϕ,R1
− v2

ϕ,1

)
=

1

2

[(
Γ

2πR1

)2

−
(

Γ

2πr1

)2
]
. (15)
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Figure 1. Pressure distributions acting in the momentum balance. The meaning of a, b, c and
d is given in the main text.

3. Momentum theory
3.1. The momentum, mass and energy balance
The momentum equation drawn on the stream-tube as control volume, see figure 1, is written
as:

T −
∫
A1

(p1 − p0) dA1 = ρ

∫
A1

vx,1 (vx,1 − U0) dA1 (16)

where T is the thrust [N] being the integrated pressure jump across the disc. It is convenient
to split A and A1 in two parts: the area inside the vortex core, so r < δ or δ1, and outside of it
δ < r < R or δ1 < r1 < R1. Irrespective of the choice for δ/δ1, in the limit δ → 0 the core area
only contributes to the momentum balance when the pressure or momentum flux is of order
O(δ2) or higher. In [14] this is analysed for the Rankine root vortex, showing that this is not
the case. The same holds for the energy balance. Consequently in the remainder of the present
analysis the flow region r < δ or δ1 is discarded, with an exception for section 3.2.

Figure 1 shows the pressure distributions appearing in the left hand side of (16) including
the thrust:

a) constant pressure jump across the disc giving the jump in Bernoulli parameter H according
to the first term at the right hand side of (6).

b) pressure distribution due to jump in vϕ according to the second term at the right hand side
of (6).

c) the same pressure distribution in the far wake due to the vϕ distribution according to the
first term at the right hand side of (14).

d) constant pressure to achieve p1 − p0 = 0 according to the second term at the right hand
side of (14).

When these contributions are expressed in Γ by (3) and (8), integrated, subjected to lim δ → 0,
substituted in (16) and divided by the disc surface πR2 the result is:

ΩΓ

2π
− 1

2

(
Γ

2πR

)2

−
(

Γ

2πR

)2
 R∫
δ

dr

r
−

R1∫
δ1

dr1

r1

 = vx,1 (vx,1 − U0)

(
R1

R

)2

(17)

where the left hand side terms give the contribution of a, d, b and c. The mass balance is:

vx
vx,1

=

(
R1

R

)2

(18)
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with the bar above vx indicating that it is the average value. The energy balance follows from
the combination of (11) and (15):

ΩΓ

2π
− 1

2

(
Γ

2πR1

)2

=
1

2

(
v2
x,1 − U2

0

)
. (19)

Mixing (17) and (18) simplifies the right hand side of the momentum balance yielding:

ΩΓ

2π
− 1

2

(
Γ

2πR

)2

−
(

Γ

2πR

)2
 R∫
δ

dr

r
−

R1∫
δ1

dr1

r1

 = vx (vx,1 − U0) . (20)

The non-dimensional tip speed ration λ = ΩR
Uo

, and non-dimensional vortex q = −Γ
2πRUo

are
introduced. As Γ < 0 q > 0. Furthermore from here on vx and vx,1 indicate the dimensionless
value vx

U0
respectively

vx,1
U0
. Herewith (9) becomes:

1

ρ

∆H

U2
0

= −λq, (21)

and the momentum balance:

2λq + q2 + 2q2

[
ln
R

δ
− ln

R1

δ1

]
= 2vx (1− vx,1) (22)

as well as the energy balance:

2λq + q2

(
R

R1

)2

=
(
1− v2

x,1

)
. (23)

These equations can be solved for vx once the term within the square brackets is known or more
precisely: when the vortex core development is known. When vx is known the power coefficient
Cp = P/(1

2ρU
3
0πR

2) follows by integration of (7) on the disc area:

Cp = 2λqvx. (24)

The thrust coefficient CT = T/(1
2ρU

2
0πR

2) contains the contributions a and b shown in figure 1,
here denoted as ∆H respectively ∆ϕ:

CT = CT,∆H + CT,∆ϕ = 2λq + q2 ln

(
R

δ

)2

. (25)

3.2. The choice of the vortex core model
The momentum theory results are very sensitive to the choice of δ and δ1 because of the
logarithmic singularity in (22) for δ, δ1 → 0. In [14] it is assumed that the core diameter
scales with the radius of the wake because of mass conservation, so δ/R = δ1/R1. The two
terms within the square brackets of (22) cancel each other so only pressure distributions a and
d appear in the momentum balance. This holds for δ → 0 as well as for δ 6= 0. However, this
choice assumes that vx,core = vx, which is is not correct. The distribution vx(r) is known from
calculations like in [15] showing that for small r vx > vx. As the velocity at both sides of the
core radius are equal, vx,core > vx which invalidates the assumption δ/R = δ1/R1.

Because of the singular flow behaviour for δ → 0, it is questionable whether the Euler flow
equations are able to represent this flow with infinite pressure and velocity gradients, as it is not
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Figure 2. Qualitative sketch of the inviscid distribution of vϕ and the partly inviscid, partly
viscous distribution.

a priori clear whether viscous effects may be ignored. Therefore the question is posed: which
inviscid core model represents best the behaviour of a viscous vortex core?

To allow for other distributions of vϕ than (3) plus the Rankine vortex core, first the third
term at the left hand side of (20) is reformulated in terms of vϕ:

− 1

R2

 R∫
0

v2
ϕrdr −

R1∫
0

v2
ϕ,1rdr

 =
1

R2

 R1∫
R

v2
ϕ,1rdr −

R∫
0

(
v2
ϕ − v2

ϕ,1

)
rdr

 (26)

with the lower bound of the integrals set to 0. In [16] the development of a viscous vortex core is
treated. Diffusion and stretching-compression of vorticity modify the potential flow behaviour.
For a specific accelerating vortex flow, the Burgers vortex, the diffusion and stretching counteract
in such a way that the distribution of vϕ(r) is invariant, see [16], so vϕ = vϕ1. For a decelerating
vortex such a solution is not known. The vortex is compressed giving a similar vorticity spreading
effect as diffusion. Figure 2.8 in [16] shows the development over time of vϕ due to diffusion.
Asuming that time may be replaced by downstream distance divided by velocity, figure 2 shows
qualitatively the development of vϕ from disc to wake, both for inviscid and viscous flows. The
viscous distribution does not show a singular behaviour. As it is not known what vϕ,max/vϕ1,max

and δ/δ1 are, the difference-integral in (26) cannot be evaluated without detailed calculations.
However, as viscosity keeps the pressure and vϕ limited the second integral in the right hand
side of (26) will not not contribute when δ, δ1 � R,R1. Then the first integral remains so, in
dimensionless form:

− 1

R2

 R∫
0

v2
ϕrdr −

R1∫
0

v2
ϕ,1rdr

 = q2 ln
R

R1
. (27)

The same result is obtained in the inviscid model of a potential vortex plus Rankine vortex
core by assuming δ = δ1, as is clear by (22). This model has the drawback that the flow
inside a decelerating core with constant but non-zero δ does not satisfy the continuity equation.
However, this drawback is removed for δ → 0. Consequently an inviscid core with an infinitely
small but constant radius represents best the behaviour of a viscous vortex core. This model
will be applied in the next section.
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3.3. The JMT:Joukowsky actuator disc momentum theory with swirl
With δ = δ1 → 0 contribution b is cancelled by c<R which is the part of c up to r1 = R. Now
the pressure fields a, c>R and d appear in the momentum balance. With the term with square
bracket in (22) becomes:

−2q2 ln

(
R1

R

)
= −q2 ln

(
R1

R

)2

(28)

and the momentum balance, making use of (18):

2λq + q2

(
1− ln

(
vx
vx,1

))
= 2vx (1− vx,1) . (29)

The energy balance (23) is unchanged.
By mixing (23) and (29) the velocity at the disc can be written as:

vx =
1

2
(vx,1 + 1)

λq + 1
2q

2

(
1 + ln

(
R
R1

)2
)

λq + 1
2q

2
(
R
R1

)2 . (30)

As (1 + ln (R/R1)2) < (R1/R)2 for R < R1 the ratio is < 1. Consequently vx < 0.5 (vx,1 + 1).
The ratio in (30) is the ratio between the left hand side of the momentum balance (22) and
energy balance (23) or, in other words, between the total load exerted on the flow in the stream-
tube control volume and the non-conservative load which is the load performing work. By this,
(30) is equivalent to equation 6 of [15], where the distinction between the conservative and non-
conservative loads is used to explain the results of the momentum theory applied to an annulus
of the stream-tube.

An analytical solution of (23) and (29) is not found. An implicit expression of vx,1 in the
independent variables λ, q is obtained by writing (23) as an expression for vx with the help of
(18) and substitute this in (29):

(1− vx,1) vx,1q
2

1 + 2λq − v2
x,1

=

(
qλ− 1

2
q2

(
1− ln

(
q2

1 + 2λq − v2
x,1

)))
. (31)

This can be solved numerically for vx,1. The wake expansion follows by (23) and the velocity
at the disc by (29). Finally Cp is given by (24).

3.4. JMT limit values for λ→ 0 and λ→∞
For large values of λ the wake angular momentum should go to 0, and the momentum theory
should become the one-dimensional theory yielding the well-known Betz-Joukowsky maximum
value for Cp. According to (21) q is inversely proportional to λ for constant ∆H or λq. In the
balances (23) and (29) the q2 terms vanish for λ→ 0 with which indeed the momentum theory
without wake swirl is recovered.

For the limit λ → 0 flow states with λq = constant are studied first. The energy balance
(23) shows that, provided R/R1 6= 0, the highest value for q2 is obtained for vx,1 = 0, giving:

2λq + q2

(
R

R1

)2

= 1. (32)

The right hand side of the momentum balance (29) is 0 for vx,1 = 0, see (17), by which it
becomes, using (18):

2λq + q2

(
1− ln

(
R1

R

)2
)

= 0. (33)
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Figure 3. Streamlines with ∆ψ = 0.1∆ψwake and isobars with ∆p = 0.1∆H for ∆H/(1
2ρU

2
0 ) =

−0.8888 and λ = 0.73. Ticks at the axes are at a 1R interval.

Elimination of q2 from (32) and (33) gives the wake expansion for the highest q - lowest λ:(
R1

R

)2
(

1− ln

(
R1

R

)2
)

=
2λq

2λq − 1
. (34)

As an example, 2λq = 8/9 results in R1
R = 2.77, q = 0.924 by (32) and λ = 0.48. The assumption

R/R1 6= 0 is satisfied, showing that both vx and vx,1 are 0, but the ratio of vx
vx,1
→ 7.69. This

flow state is characterized by a full blockage by the disc, creating a wake with azimuthal flow
only, so there is no change in axial momentum. The associated pressure distributions in the
wake and at the disc balance each other. A lower value of λ is not possible for this value of λq.
For λq = 0 (34) gives R/R1 = 1, (32) gives q = 1, by which λ = 0 and Cp = 0.
Cp,max(λ) is obtained by optimizing the solutions for fixed λ varying q.

4. Potential flow calculations
The computer code described in [15] has been adapted to include wakes with swirl. Axial and
radial velocities are calculated by summation of the induction by each of the several thousand
vortex rings which constitute the wake boundary. The azimuthal velocities are calculated by
(3). The shape and strength of the vortex rings are adapted in the convergence scheme to satisfy
the two boundary conditions: zero pressure jump across the wake boundary, and zero cross flow.
The first boundary condition ∆pwake−boundary = 0 is expressed in |v| and input parameter ∆H:

∆(1
2ρ |v|

2) − ∆H = 0. In [15] v only had an axial and radial component, now the azimuthal
component enters the boundary condition. The strength of the vortex at the axis follows from
(21) expressed in H and the second input parameter λ: q = −∆H/(ρU2

0λ). Apart from these
changes the code is unmodified. The results satisfy the same accuracy requirements as described
in [15]. Figure 3 shows the streamlines, expressed in the stream-function Ψ, and isobars of the
disc flow with ∆H/(1

2ρU
2
0 ) = −0.8888 and λ = 0.73. The pressure at the upstream side of the

disc is constant, confirming one of the conclusions in [15] that the velocity in the meridian plane,
{vx, vr}, is constant. The isobars in the wake show the pressure gradient due to the swirl.

5. Results
Figure 4 shows the comparison of the JMT and the potential flow results. The marker indicating
the lowest Cp for ∆H/(1

2ρU
2
0 ) = −0.8888 corresponds to the flow in figure 3. The correspondence

between the JMT and Potential Flow calculations is excellent. A comparison with the Cp,max−λ
curve for rotors with an infinite number of blades having a modified Betz-Goldstein distribution
of the circulation is shown in figure 5. As shown by [7, 8] the original Betz-Goldstein solution
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Figure 4. The Joukowsky momentum theory results compared with potential flow calculations.

resulted in Cp,max = 1, as the pitch of the helicoidal wake was based on the undisturbed velocity.
With the pitch based on the velocity in the rotor plane, [8] showed that Cp,max reaches the well
known Betz-Joukowsky maximum 16/27 for high λ. The Cp,max − λ curve of this corrected
solution expanded to a rotor with an infinite number of blades is shown in figure 3 of [8]. An
alternative solution is published in [9] where the Goldstein formulation is adapted to allow for
non-zero torque when λ→ 0. A comparison of the Joukowsky momentum theory and the Betz-
Goldstein-Okulov/Wood curves is given in figure 5. The Joukowsky distribution gives higher
Cp,max than the Betz-Goldstein based distributions, with the difference vanishing for higher λ.
This is confirmed by [17] where rotors with a finite number of blades having a Joukowsky and
Betz-Goldstein based distribution have been compared.

6. Conclusions
• An actuator disc momentum theory including wake swirl has been developed resulting in

the physically plausible result that Cp → 0 in the limit λ → 0. For high λ the theory
reproduces the results of the classical momentum theory without swirl.

• The novelty in the method is the removal from the momentum balance of the singular
behaviour of the pressure near the wake centreline vortex, giving rise to non-physical results
in several previously published methods.

• This removal is done by applying a vortex core with constant diameter δ. Support for this
is found in the absence of singular flow when viscous core development is considered.

• The momentum theory results are very accurately confirmed by potential flow field
calculations.

• The Joukowsky momentum theory results are higher than the equivalent results for rotors
with an infinite number of blades optimized for modified Betz-Goldstein solutions.
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