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The building industry is facing increasing demands for sustainable and efficient maintenance practices, driven by
advancements in Industry 4.0 technologies. Maintenance 4.0 emphasizes proactive maintenance strategies,
including Condition-based Maintenance (CbM) and Predictive Maintenance (PdM), significantly enhanced by
Digital Twin (DT) technology. DT enables the real-time monitoring, simulation, and optimization of building
assets, offering substantial improvements in asset management, energy efficiency, and system longevity. How-
ever, integrating these technologies into the building industry’s maintenance processes remains a challenge. This
paper provides a comprehensive review of current research on DT-enabled Maintenance 4.0, presenting a con-
ceptual framework that integrates enabling technologies and outlines their technological pipelines. It discusses
the state-of-the-art methodologies, challenges, and future directions for the implementation of Maintenance 4.0
in the building sector, highlighting the potential of DT systems in optimizing maintenance strategies and
enhancing decision-making. The study identifies key areas for further research, including data standardization,
Al integration, and hybrid modeling approaches.

maintaining, and optimising building-related assets. DT leverages and
integrates a variety of advanced technologies, including the Internet of
Things (IoT), Artificial Intelligence (AI), and Building Information
Modelling (BIM) [5], enabling the digitalisation of building assets and
lifecycle management [6]. It shows robust potential in the establishment

1. Introduction

The building industry has become a priority in sustainability effi-
ciency initiatives due to its substantial energy consumption and envi-
ronmental impact [1], while the maintenance costs constitute

approximately 65% of the annual facility management expenses [2].
Maintenance 4.0 represents a significant evolution in the maintenance
industry, integrating condition-based and predictive procedures to
enhance system sustainability and operational efficiency [3]. In the
building industry, this approach is grounded in the evaluation of both
occupant comfort and building performance, aiming to develop
advanced operational schedules for structures, facilities, and indoor
environments [4].

Condition-based Maintenance (CbM) and Predictive Maintenance
(PdM) exemplify transformative approaches within Maintenance 4.0,
seamlessly integrating with the capabilities of Digital Twin (DT) tech-
nology. As one of the representative technologies of Industry 4.0, DT is
regarded as a comprehensive solution for demonstrating, operating,
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https://doi.org/10.1016/j.buildenv.2025.113997

of the Maintenance 4.0 Platform, allowing for real-time bi-directional
data integration, high-quality model visualisation, and various function
coordination. Maintenance and management notifications are provided
on the virtual twin platform, while the data and information are ac-
quired through the physical system [7]. This emerging paradigm un-
derscores a significant shift towards more proactive and data-driven
maintenance practices, allowing a timely and advanced schedule of
maintenance operations, significantly reducing unplanned downtimes
and optimising the use of both technological and human resources [8].

Recent advancements in the automated platform and data-driven
functions have broadened the scope, enabling the implementation of a
more proactive maintenance paradigm in the building industry. How-
ever, achieving intelligent building management is still a complex issue
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because comprehensive information is required (e.g., operating data,
maintenance records, metadata, etc.), and multiple technologies will be
adopted (e.g., sensors, scanners, cameras, etc.). Keeping data interop-
erability and system integrity is the key challenge during the practical
deployment. Firstly, the requisite data typically resides within siloed
systems that are neither thoroughly utilised nor integrated [9,10]. Be-
sides, most existing studies and solutions are developed for single sys-
tems, while data and platforms are not well-integrated or analysed.
Single data collection systems can support multiple functions when in-
tegrated with different algorithms. Consequently, this paper aims to
address this gap by providing a state-of-the-art survey of the conceptual
framework and enabling technologies necessary for the achievement of
Maintenance 4.0 in the building industry from a DT perspective.
Furthermore, a unified framework has been formulated within the DT
structure to integrate enabling technologies and facilitate the pipeline
deployment. Finally, potential challenges and future directions are
identified from technology maturity and commercialised perspectives.

The structure of this paper is organised as follows: Section 2 details
the article searching process and analyses current research trends. Sec-
tion 3 explores the benefits and adoption of DT architecture for Main-
tenance 4.0 in the building industry. Section 4 develops a conceptual
framework highlighting the technological pipeline and systematic
integration methodology. Section 5 evaluates the technological maturity
and deployment feasibility based on the systematic review. Finally,
Section 6 concludes by summarising the contributions of this work and
discussing future directions.

2. Research methodology

This study conducts a systematic review (SR) of DR-enabled Main-
tenance 4.0 solutions within the building industry, encompassing sur-
veys, frameworks, case studies, and implemented applications. A
systematic review differs from a narrative review by employing a
transparent, reproducible, and auditable process that minimises selec-
tion bias and ensures traceable synthesis of evidence [11]. The publi-
cations between 2019 and October 2025 are used for evidence synthesis,
while older materials are cited for theoretical support, thereby
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improving interpretability and transparency. The review process follows
the PRISMA guidelines [12], integrating bibliometric and qualitative
synthesis to reveal the technological, methodological, and conceptual
progress of DT-enabled PdM in the built environment. Because PdM and
DT concepts originated in manufacturing and cyber-physical domains,
this cross-industry adaptation requires both theoretical synthesis and
evidence-based mapping of enabling technologies.

2.1. Publications identification process

Literature search and screening were conducted to ensure compre-
hensive and up-to-date coverage, encompassing publications from 2019
to 2025.10 on DT-related advancements in building maintenance.
Following the PRISMA protocol (Fig. 1), the Web of Science (WoS)
served as the primary database owing to its rigorous indexing and topic-
based query capability, while Scopus was concurrently employed as a
complementary source to enhance retrieval completeness and cross-
validation accuracy.

e The Pseudo-code for keyword combination search was as follows:
(“Predictive Maintenance” OR “Condition-based Maintenance”) AND
(“Digital Twin” OR “Cyber-Physical System) AND (“Building Industry”
OR “Construction Industry™).

e Search filters were applied as follows: (Time Span = 2019-2025.10),
(Language = English), (Source = Journal OR Conference)

Subsequently, the abstract and full text were examined using the
following inclusion criteria to ensure the searching rigor and maintain
thematic relevance.

o Relevance of domain: Studies addressing DT-driven PAM or CbM for
building structures, building facilities, or indoor environmental
systems.

e Technological contribution: Presence of DT-related enabling tech-
nologies, such as IoT-based data acquisition, BIM integration, Al
algorithms, and virtual simulation.

Scopus Web of Science Other Sources
)
=
o
S
8 Records identified by Records identified by
= keywords from: Scopus keywords from: WoS
e + (n=1248) (n = 1136)
()
S
l |
Vo
Records screened for title, Records screened for title,
keywords, and abstract: keywords, and abstract:
« (n=432) * (n=357)
l l Studies added based on
g’ citation analysis
‘£ Full-text screened for Full-text screened for * (n=9)
8 eligibility: eligibility:
S + (n=312) «  (n=289)
(2]
Studies selected for Studies selected for
eligibility: eligibility:
+ (n=90) * (n=87)
o) l
T
Q
el Studies included in analysis :
= . =99
3 (n = 99)
=
—

Fig. 1. PRISMA diagram for the systematic review.
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e Evidence type: Conceptual frameworks, architecture proposals,
prototype demonstrations, and validated case studies.

e Transparency: Explicit methodological description allowing repli-
cation of the proposed workflow or architecture.

e Publication quality: Indexed peer-reviewed journals or reputable
conferences with verifiable DOI.

Finally, the above thorough search process led to the identification of
99 related articles for in-depth analysis.

2.2. Bibliometric analysis

The bibliometric analysis complements the systematic review by
providing a quantitative overview of research dynamics in DT-enabled
Maintenance 4.0. Based on the latest searching, Fig. 2 shows a sus-
tained increase in annual outputs, with 19 papers already identified for
2025. The dash projection further indicates that the final 2025 total is
expected to reach approximately 23 to 25 publications, highlighting the
continuing growth of DT and PdM research in the building sector that
aligns with the global momentum of Construction 4.0 research.

A total of 99 core studies were identified across 49 peer-reviewed
journals and conferences. As summarised in Table 1, Buildings
emerged as the leading publication outlet, contributing seven papers.
This was followed by Automation in Construction, Energy and Buildings,
Journal of Building Engineering, and Sustainability (Switzerland), each
publishing four articles. Additionally, Frontiers in Built Environment and
Scientific Reports contributed three papers each. Collectively, these dis-
tributions highlight the multidisciplinary nature of the research, span-
ning domains such as the built environment, construction automation,
energy efficiency, and sustainability.

Fig. 3 presents the distribution of publications across various
research fields, showcasing the interdisciplinary nature of the studies.
Engineering dominates with 38%, followed by Computer Science at 18%,
underscoring their leading roles in technological development and sys-
tem integration. Other notable fields include Social Sciences (8%), Energy
(6%), Materials Science (5%), and Environmental Science (4%). In addi-
tion, studies focusing on structural components such as facade durability
and pavement performance emerge from more specialized domains,
including Earth and Planetary Sciences, Chemical Engineering, and Mate-
rials Science, each contributing 3% or less to the total body of research.

Geographically, as illustrated in Fig. 4, the research exhibits a strong
concentration in Europe, led by Italy and the United Kingdom, each
contributing 16 studies. Other major contributors include the United
States (11), Australia and Germany (9 each), followed by Sweden (8),
and Denmark and Norway (6 each). These regions are characterised by
mature infrastructure systems, well-established maintenance standards,
and advanced digitalisation strategies. In contrast, emerging contribu-
tions from Asia, notably China (5), Singapore and Japan (3 each), and
South Korea (1), reflect a rapid shift toward data-driven and
maintenance-intensive digital transformation. The growing participa-
tion from developing regions, including South Africa, Brazil, and
Malaysia, further underscores the expanding global relevance of DT and

=—&— No. of Citation = = = Predicted Citation

20 19

Publication Count
o

0 2)
2019 2020 2021 2022 2023
Years

2024 2025

Fig. 2. Number of publications (2019-2025.10).
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Table 1
Highest sourced journals presented in the review.

Journal Counts

Buildings

Automation in Construction
Energy and Buildings

Journal of Building Engineering
Sustainability Switzerland
Frontiers in Built Environment
Scientific Reports

IR N NN

PdM research in the built environment.

Collectively, these bibliometric findings delineate the global land-
scape, disciplinary diversity, and regional evolution of DT-enabled
Maintenance 4.0 research. They underscore the expanding academic
recognition of this field and provide a foundation for the structured,
evidence-based synthesis developed in the subsequent sections.

2.3. Evidence coding and analytical dimensions

All 99 selected studies were systematically examined using a struc-
tured five-dimensional coding framework designed to ensure method-
ological transparency and reproducibility. As shown in Table 2, each
publication was analysed across the following dimensions: asset type,
data stream, algorithmic approach, and technology readiness level
(TRL), collectively representing the technological scope, methodological
depth, and practical maturity of DT-enabled maintenance research in
the building industry. The coding process involved a comprehensive
review of each article to extract and categorise key features within these
dimensions, enabling consistent cross-study comparison and supporting
future quantitative or meta-analytical synthesis. The evidence map re-
veals that most studies focus on facility-level or environmental assets
supported by sensor-based and BIM-integrated data, while deep-
learning and hybrid algorithms dominate PAM modelling. However,
few works have progressed beyond prototype validation, indicating that
DT applications in building maintenance remain at an early-to-
intermediate maturity stage.

2.4. Risk-of-bias and quality appraisal

To enhance methodological rigour and ensure the reliability of this
systematic review, a risk-of-bias and quality appraisal was performed for
all included studies using the Mixed Methods Appraisal Tool (MMAT,
2018). The MMAT provides a structured approach for evaluating
methodological soundness across diverse empirical designs, which is
particularly relevant to interdisciplinary research integrating engineer-
ing, computer science, and building management perspectives.

Each of the 99 reviewed studies was independently assessed against
five quality criteria:

o Clarity of research objectives — whether the study articulates a pre-
cise and coherent research aim.

e Adequacy of data collection - the suitability and transparency of IoT,
BIM, or experimental datasets used.

e Transparency of analytical methods — completeness of algorithmic,
simulation, or modelling descriptions.

e Validity of findings — robustness of results supported by verification,
cross-validation, or comparative benchmarking.

o Replicability of the DT framework — accessibility and reproducibility
of data, models, or workflow documentation.

Each criterion was rated on a five-point ordinal scale (1 = poor, 5 =
excellent). Mean scores were calculated for each study, and inter-
reviewer agreement exceeded 90%, indicating strong reliability of
evaluation. The results (Table 3) reveal that most studies achieved high
methodological quality, with notable strengths in research clarity and
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Fig. 3. Publication distribution of research field.
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analytical transparency. However, common weaknesses remain in data
availability and replicability, particularly among Al-driven case studies
relying on proprietary or closed datasets.

These results confirm that the reviewed literature exhibits moderate
to high methodological quality, demonstrating coherent objectives and

credible analytical approaches. Nonetheless, future DT-enabled main-
tenance research should place greater emphasis on open data accessi-
bility, transparent algorithmic documentation, and standardised
evaluation protocols to further reduce potential bias and strengthen
cross-study comparability.
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Table 2
Analytical dimensions.

Coding Description Typical Examples
Dimension
Asset Type Physical or functional Structure, HVAC, facade, road,
building components pavement, indoor environment.
targeted by the DT
solution.
Data Stream Origin of input data used 10T sensors, BIM models,
in the DT loop. historical records, maintenance
logs.
Algorithm Type Analytical or predictive ML (LSTM, CNN, Autoencoder),
technique employed. statistical regression, rule-based
model, hybrid AL
Technology Practical maturity of the TRL3-prototype, TRL5—
Readiness technology. demonstration, TRL7-pilot.
Level (TRL)
Table 3

MMAT-based quality assessment summary.

Quality Criterion Average No. of Key Observations
Score Studies
Clarity of research 4.5 89 (90.0 Aims are generally well
objectives %) defined and contextualised.
Adequacy of data 4.2 72 (72.7 IoT/BIM datasets are robust
collection %) but not always fully disclosed.
Transparency of 4.4 77 (77.8 Algorithms and model
analytical %) workflows are clearly reported
methods in most papers.
Validity of findings 3.9 71 (71.7 Cross-validation is used in
%) several studies but not
consistently.
Replicability of DT 3.8 59 (59.6 Limited sharing of data or
framework %) code restricts reproducibility.

3. Pattern analysis

This section presents a comprehensive technical practice analysis
based on the systemic review, classifying existing studies into review,
survey, framework, prototype system, and case study according to their
technological maturity. The study provides insight into the practicality
and applicability of DT-enabled Maintenance 4.0 technologies in the
building industry and highlights trends and patterns within the research
community.

3.1. Category definitions

To facilitate a clear understanding, the existing studies are cat-
egorised by following benchmarks, and the distribution of collected
studies is presented in Fig. 5.

Review
15%

Case study
27%

Survey

A Framework
Prototype system 30%

22%

= Review = Survey Framework Prototype system = Case study

Fig. 5. The distribution of article categories.
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Review: A review study synthesises existing research on a particular
topic, identifying key themes, gaps, and future directions to provide
a comprehensive overview of the current knowledge and state-of-
the-art technologies.

Survey: Survey studies collect and analyse data from a specific group
of respondents to gather insights, opinions, or behaviours related to
the research topic, facilitating the understanding of the adoption,
challenges, and potential of new technologies

Framework: Framework studies propose structured approaches or
models for implementing or understanding specific technologies or
processes, which often include theoretical constructs and practical
guidelines.

Prototype System: Prototype system studies involve the develop-
ment and testing of preliminary versions of new technologies or
systems, which are used to validate concepts, functionalities, and
performance before industrial deployment. The DT systems in these
studies are generally at the laboratory stage compared with case
study research.

Case Study: Case studies provide in-depth examinations of specific
instances where a technology or process has been applied. They often
involve real-world implementations and provide detailed insights
into practical applications, benefits, and challenges.

3.2. Analysis and patterns

Based on the above benchmarks, Table 4 summarises the technical
practice of existing studies. A significant observation is that most studies
fall into the framework and case study categories, which are essential for
establishing foundational principles and methodologies that guide the
development and application of DT technologies in building mainte-
nance. The high number of studies in this category indicates active
experimentation and innovation, reflecting the industry’s efforts to
transition from theoretical models to practical applications.

In contrast, review and survey studies remain relatively limited

Table 4
Overview of studies distribution on technical practice.
Type Reference distribution
Review [13-25]
Survey [26-31]
Framework [4,32-59]
Prototype [60-79]
system
Case study A school building, Sungkyunkwan University, South Korea [80],

I4Helse and Tvedestrand building, Norrway [81],

A transport network, Salerno, Southern Italy [82],

Institute for Manufacturing building, University of Cambridge, UK,
[831,

A conference room, Pythagoras AB company, Stockholm, Sweden
[84],

Montana Creek Bridge, USA [85],

Austrian federal railways [86],

500 kV Wujiaochang substation project, China [87],

Engineering 4.0 campus, Pretoria, South Africa [88],

A building complex, Brazilian University, Brazil [89],

Conveyor system, Dalrymple Bay Coal Terminal, Queensland,
Australia [90],

Zhongcheng Village Bridge, Zhejiang Province, China [91],

Xinyi Line, Taipei Metro, Taipei [92],

The building facade, an office building, Aalto University, Finland
[931,

The Alan Reece building, University of Cambridge, UK [94],

The port, Ventotene, Italy [95],

Humanitas Hospital, Milan, Italy [96],

Rione Rinascimento complex, Rome, Italy [97],

Mohammed VI Bridge, Morocco [98],
Scandinavian-Mediterranean Connecting Europe Facility corridor,
Italian highway A24, Italy [99]

Snow galleries, Iron Ore railway, Northern Sweden [100]
Concrete plant Negonje, Slovenia [101]
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compared with technical and case-based research. Review papers syn-
thesise existing knowledge, identify research gaps, and guide future
directions. Although their overall number is modest, the proportion of
reviews has increased in recent years (2024-2025), reflecting the
maturation of the field and the accumulation of sufficient empirical
evidence to support systematic synthesis and framework development.
This trend is further driven by the growing integration of Al, BIM, and
IoT within digital twin research, prompting scholars to consolidate and
categorise emerging knowledge. On the other hand, survey studies
collect insights from specific respondent groups, offering valuable evi-
dence on the adoption, challenges, and potential of DT technologies.
Their scarcity suggests an opportunity for more industry-oriented sur-
veys to capture real-world implementation perspectives and support
evidence-based advancement.

Case studies provide essential insights into the real-world imple-
mentation of Digital Twin (DT) technologies. As summarised in the
accompanying table, most identified cases originate from Europe,
reflecting the region’s extensive infrastructure and advanced mainte-
nance requirements. A consistent pattern is observed in that nearly all
these studies are supported by universities or government initiatives,
indicating that DT applications in the built environment largely remain
in the experimental or pilot stage. Besides, recent publications demon-
strate a notable shift toward practical industrial applications. For
example, a study on a mid-sized concrete plant illustrates how a DT
system integrating sensor data, real-time monitoring, and predictive
analytics can enhance operational efficiency, reduce waste, and improve
maintenance forecasting [101]. Such emerging cases signal a gradual
transition from research-led prototypes to industry-driven deployments,
suggesting that DT technologies are moving closer to commercial
viability and large-scale adoption within the construction sector.

4. Concepts and embracement of digital twin

This section introduces the development of DT technology, detailing
its progression from the initial stage to advanced applications. Besides, it
explores the integration of DT for Maintenance 4.0 in the building in-
dustry, highlighting how these innovations are transforming mainte-
nance practices.

4.1. Concept evolution of digital twin

The concept of DT was first proposed in 2002 by Grieves[102] during
his presentation of product family design. Although various definitions
exist, the DT system contains physical and digital counterparts with their
interconnections system [103]. Originally utilised as an economical
method for the simulation of NASA rockets under different conditions,
DT has undergone significant technological advancements and broad-
ened its range of applications. According to current literature,
DT-related enabling technologies have grown exponentially over time,
with their concepts continuously evolving and transforming [103].
Notably, some projects labelled as DT do not fully adhere to the main-
stream definition [104], instead falling into three categories, as shown
in Fig. 6: digital model, digital twin, and intelligent digital twin [105]. A
digital model represents a static digital replica of a physical object or
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system primarily used for design and analysis [106]. As ICT developed,
the DT energy developed with its dynamic nature, real-time data in-
teractions, and bidirectional information communication [107]. Finally,
the intelligent DT incorporates data-driven models such as advanced
analytics and Al to enhance the decision-making process. This progres-
sion reflects the increasing complexity and capabilities of DT systems,
transforming from basic representations to sophisticated, intelligent
systems that drive significant improvements in various industries.

4.2. Embracement of digital twin for maintenance 4.0 in the building
industry

The emerging maintenance paradigm during Industry 4.0 is con-
ceptualised as Maintenance 4.0 [108]. Advanced strategies derived from
Industry 4.0, such as fault detection, failure prediction, energy optimi-
sation, etc, are implemented and assimilated to CbM and PdM when they
suggest maintenance activities. As depicted in Fig. 7, the adoption of
Maintenance 4.0 in the building industry marks a transformative shift
over the whole building lifecycle with unique requirements on data
scope, methodology, and virtual modelling [109]. The DT framework
serves as the cornerstone in this context to facilitate proactive mainte-
nance strategies and ensure timely interventions. Unlike manufacturing,
the virtual replica of the building system accommodates intricate in-
teractions between structural, mechanical, electrical, and environ-
mental systems [110,111]. By integrating diverse data streams from
sensor systems and maintenance records, the methodology emphasises
long-term asset management, safety, and sustainability, which are
developed to improve maintenance performance. Finally, the dynamic
solution is generated from the digital model based on data analysis and
an intelligent algorithm to provide guidance for physical operation and
schedule planning.

Embracing DT technology for Maintenance 4.0 in the building in-
dustry requires a synergistic approach that leverages advancements in
communication, virtualisation, and computation [112]. These in-
novations enable more efficient, accurate, and proactive maintenance
strategies, ultimately enhancing the longevity and performance of
building assets. By integrating these cutting-edge technologies, the in-
dustry can achieve significant improvements in asset management,
operational efficiency, and sustainability. The reference summary in
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Table 5
Technology stack for DT embracement.
Structure Facilities Environment
Virtualisation e An interactive DT visualisation for life cycle asset o Integrated video surveillance system and DT- o Integrated BIM and terrain model, including

Computation .

Communication e

monitoring [60];

Time consumption reduction during DT model
creation depending on reliable quality measures
[61];

360° inspections depending on high-resolution 3D
models and aerial imagery [85];

Continuous road condition visualisation using data
from LiDAR, photogrammetry, and drone video
[881;

DT model integrated BIM and inspection system
[91];

Comprehensive infrastructure DT updated with
multisource and multitemporal data [98];
Uncertainty-aware point cloud segmentation
[118].

Robust and automated facade segmentation using
point cloud data [80];

Four-stage holistic assessment for maintenance
planning [86];

Extended DT creation in building life cycle
management [93];

Classic ML model comparison study on PdM
performance on track structure [53];

Al clustering and hazard index calculation-based
decision support techniques for road maintenance
[991;

Improved decision making based on the integration
of SHM data and 3D digital model [100];

Robust decision-making support for multi-criteria
ready-mix concrete supply chain effective man-
agement [78].

Unified data storage and retrieval leveraging
multiple blueprints [43];

Integrated data collection architecture [44];
Low-power and lightweight monitoring [70];
Low-cost data exchange between cyber and
physical [71];

DT-oriented Industrial IoT Network covering
sensors and actuators [39];

Low-cost IoT design for concrete structure
vibration monitoring [68].

related subsystem [87];

Combine historical data and synthetic data into
situ simulation [90];

BIM and GIS integration model for energy
consumption and carbon footprint [92];

BIM integration with IoT alert system for
condition and facility visualisation [46];
EU-funded IoTwins platform facilitating hybrid
DT system [47];

Modelling approach with little hardware
resources requirement [67];

Graph-based virtual representation of legacy
systems and digital models [76].

Operation errors removal through feature
extraction and ML techniques [4];

Ensemble ML model for malfunction expedite
detection [81];

Automated risk detection and mitigation,
including obstacles and human activity [40];
Maintenance schedule prioritisation through
hidden risk analysis [66];

Systemic empirical knowledge-enhanced neu-
ral network model for automatic failure man-
agement [42];

Reinforcement learning approach improving
maintenance schedule based on tack inspection
[69];

RNN-based surrogate model for dynamic
maintenance optimisation [52];

Explainable unsupervised deep learning model
for failure detection [41];

Semi-supervised model for failure prediction
[120];

Ontology-based decision support model [77].
Automated data stream ageing feature
extraction during remote monitoring[62];
Data provenance model on a blockchain-based
DT for improved reliability and trustworthiness
[841;

Information centralisation enabled by BIM and
IoT [89];

Evogy Simon monitoring for result-oriented
product service system [96];

Knowledge graph-based data management
workflow [45];

Introduces system dynamics into “Traintrack
interaction [48];

Blockchain-based digital twin data provenance
[121].

design information and routine updates [82];
As-built BIM model incorporates IoT and Al
[341;

Georeferenced photographs-based infrastruc-
ture digital model [95];

Modelling framework and component design
on PdM solution [49];

Immersive AR digitalised platform to enhance
user experience and presentations [50];
Cloud-based life-cycle monitoring and visual-
isation of carbon intensity and resource con-
sumption [63];

AR-enhanced DT system focusing on indoor
climate [83];

Galata-driven environmental factors
monitoring system [119];

Multi-dimensional model and interactive
simulation [58];

Pre-made BIM model and DT protocols [101].
Predict and optimise occupant’s comfort by
combining statistic and ML models [32];
Al-driven reasoning and service process for
automatic building management system [36];
Ensemble classifier learning algorithm tailored
for imbalance scenarios during three-stage
CBM [64];

Ensemble failure prediction algorithm for
indoor air quality [65];

Combination of clustering ML and rule-based
strategies for malfunction reduction [97].

Novel IFC-based data structure, including
operational data [33];

Data access with digital building logbook using
semantic web technology [94];
Heterogeneous data integration architecture
supporting intelligent data query [51];

e Copula data generation method [72];
e Blockchain and Al driven integrated

management system [79].

Table 5 is according to the core concern and innovation focus of the
reference, and the survey and review paper are excluded.

4.2.1. Virtualisation

Heterogeneous data and domain knowledge gathered from the on-
site operation, as well as the decision support information generated
after the intelligent computation, need to be modelled and delivered
through the virtual platform [113]. As indicated in Table 5, BIM tech-
nology is employed as the key enabler to centralise the modelling across
different building-related assets, while virtualisation advancements for
structure, facilities, and environments show various requirements on
technical specifications and design preferences.

For the building industry, visualisation and inspection serve as
fundamental activities underpinning more advanced capabilities. With

the development of ICT, diverse data collection methods such as IoT
systems, aerial photography, and LiDAR technology are utilised to
enrich the information for the establishment and updating of digital
layers [88]. Furthermore, integrating historical and synthetic data helps
address data deficiencies during the modelling process [90]. A more
comprehensive and high-fidelity 3D model can be generated in the DT
solution depending on continued and accurate data exchange [98,85].
Besides, efficient and cost-effective modelling has garnered significant
interest from researchers. For instance, Vassilev et al. [61] introduced
reliable quality measure metrics to reduce time consumption, while
Carotenuto et al. [67] developed innovative modelling techniques with
lower hardware requirements.

Additionally, various functions like life cycle management are
implemented across different assets, including building structures [60],
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facilities [87], and environment [63], leveraging virtualisation plat-
forms. As a pivotal technology for DT in the building industry, BIM is
mainly utilised as the centralised platform for virtualising related assets
and different technologies are integrated to provide a comprehensive
digital target [91]. BIM-IoT integration for condition and facility visu-
alisation is the most common method [46], while further advancements
include BIM-GIS integration for building sustainability improvement
[92], BIM-terrain model combination [82], and a hybrid DT system
platform facilitated by EU-funded initiatives [47]. Sadri et al. [34]
enhanced the as-built BIM with IoT and Al technologies, providing a
new modelling perspective to establish DT systems for existing buildings
without an as-designed model. Apart from BIM, emerging technologies
such as georeferenced-based digital models [95] and immersive
AR-enhanced systems [50,83] are explored to improve user experience
and presentation. Overall, virtualisation enables the seamless integra-
tion and simulation of physical and digital assets, facilitating real-time
monitoring, analysis, and optimisation of various processes and systems.

4.2.2. Computation

The computational aspect of the DT system is employed for data
analytics and solution generation, facilitating intelligent decision-
making and customised service [34]. As illustrated in Table 5, most
research focuses on building facilities due to their similarity to
manufacturing processes, which have been extensively studied.
Conversely, research on structural and environmental applications is
less prevalent, as these represent unique scenarios in the building in-
dustry. Extracting practical knowledge from heterogeneous data is
challenging, making it essential to identify appropriate methodologies
and tools for achieving and optimising the target function, which is
crucial to DT construction.

Classical ML models, such as clustering and regression algorithms,
are commonly applied to fundamental tasks like occupants’ comfort
improvement [32], building management automation [36,93], and
maintenance scheduling [53,99]. Furthermore, advanced functions
utilised deep learning methods, including explainable unsupervised
models [41], RNN-based methods [52], and reinforcement learning
[69]. Besides, M. Jasiulewicz-Kaczmarek and A. Gola [4] enhanced the
feature extraction process to reduce the operation errors, while Lin et al.
[64] developed an ensemble learning method tailored for imbalance.
Failure prediction commonly demands higher algorithmic and analyt-
ical ability than management optimisation because of its real-time
reliability requirements. Existing studies on failure reduction are
mainly implemented on facilities [40,81] and environment [65,97],
with structural-related studies focusing more on the management opti-
misation level [80]. Integrating the data-driven and model-driven
methods enhances the failure management performance. For example,
Weerapura et al. [42] incorporated empirical knowledge into the neural
network design, while S. Agostinelli and F. Cumo [97] combined ML
solutions and rule-based strategies. Employing robust and automated
computational algorithms in building maintenance and management
ensures comprehensive evaluation, improves predictive accuracy, and
supports proactive decision-making.

4.2.3. Communication
Communication in DT architecture contains data acquisition and
transmission, enabling seamless data exchange and integration across
physical and virtual twins [114]. Existing studies aim to enhance the
collection, storage, retrieval, and exchange of data information,
covering the system architecture, communication protocols, and cloud
platforms. Innovative studies and experiments are mainly achieved
through unified implementation and the integration of a multi-sourced
pipeline [115]. According to Table 5, communication-related research
is evenly distributed across three types of assets in the building industry,
demonstrating its cornerstone function during the establishment of the
DT system.
Significant include both the macro-full

advances process
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improvement of the entire data stream and the tailored upgrading of
subsystems. Sophisticated data processing capabilities are required for
DT implementation in the building industry due to the increasingly
complex and diverse data sources. As the technical basement, the unified
data processing pipeline got the primary attention of the academic area,
covering integrated architecture for data collection [20], storage and
retrieval [21] process, and intelligent data query solutions [51]. Spe-
cifically, Lu et al. [33] integrated operational data into the proposed
IFC-based data structure, while Fialho et al. [89] developed an inno-
vative information centralisation architecture combining BIM and IoT
systems. Furthermore, emerging technologies such as blockchain, se-
mantic modelling, and knowledge graphs are being utilised to enhance
data security [25], optimise data management [26], and facilitate data
access [94]. Additionally, Machine Learning (ML) techniques are being
integrated into the data stream process to enhance feature extraction
[62,116] and data augmentation [72], further optimising the efficiency
and effectiveness of data analysis in the building industry [117]. For
hardware improvement, notable efforts include the development of
low-power and sustainable sensor systems [48,70,71], as well as a new
design paradigm for communication systems, particularly oriented from
DT and results service perspectives [39,96]. The above development and
implementation of advanced communication systems ensures robust
data transfer and integration across various components of the DT
system.

5. Application in the building industry
5.1. Concept of building industry

The building industry involves the building lifecycle and building-
related assets. The framework specifically targets the maintenance
stage and seeks to enhance the entire building lifecycle by applying the
identified intelligent solutions and improvements. As shown in Table 6,
the building lifecycle starts from the initial design phase, progresses
through the on-site construction, extends into the operation and main-
tenance, and ultimately ends with demolitions.

5.2. Implementation in building industry

Regarding the associated assets and systems, the framework con-
siders various implementations identified through a comprehensive
literature review. Application scenarios include the building structure,
mechanical, electrical, and plumbing (MEP) components, transport
infrastructure, HVAC system, lighting systems, indoor comfort, indoor
air quality, and building complex, while functions ranging from condi-
tion monitoring to resource optimisation are implemented on the above
targets. The detailed distribution of these assets and functions is pre-
sented in Table 7. To ensure the accuracy of the description, only studies
that explicitly identified the assets and functions were included in the
summary. For example, studies that mentioned facilities or in-
frastructures without clear explanations were excluded [49,50,52].

Table 6
Building lifecycle.
Life stage Definition
Design Conceptualisation, planning, and detailed design of the
building, encompassing architectural, structural, and
engineering considerations.
Construction Actual construction activities on the site involve the

assembly of building materials, installation of systems, and
coordination of various trades.

Operation & Daily management, use, and ongoing upkeep of the building,

maintenance as well as regular repair and optimisation to maintain
functionality, safety, and performance standards.
Demolition Systematic deconstruction and removal of the building at the

end of its useful life, including recycling and disposal of
materials.
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Table 7
Summary of assets and functions.
Categories Application Refs. Function
assets
Facility Water supply [66] Failure conditions assessment
system
HVAC system [96] Energy management
[45] Energy system monitoring and
maintenance services
[4] Automatic fault detection and
diagnostics
[79] Automated, blockchain-enabled
smart facility management
[76] Remaining Useful Life (RUL)
tracking
Pump system [33] Anomaly detection
[35] Predictive maintenance
[83] Temperature abnormalities
monitoring
Lighting system [89] Lighting performance information
delivering and anticipation
Drilling robot [40]1 Safety improvement and real-time
monitoring
Structure Bridge structure [60] Structural health monitoring
[271 Inspection and maintenance
[61] Condition monitoring
[90] Real-time structural performance
monitor
[91] Vulnerability assessment and risk-
based maintenance planning
[85] Condition inspection
[91] Vulnerability assessment and risk-
based maintenance planning
Railway track [53] Track geometry parameters
prediction and railway track
maintenance
[86] Condition assessment and life cycle
analysis
[92] Sustainability and resilience
improvement
[48] Long-term rail surface damage
prediction
[69] Maintenance activities reduction
Road pavement [98] Real-time monitoring and
maintenance
[99] Road inspection and maintenance
[122] Unbound road pavement
management
Reinforced [68] Structural health monitoring and
concrete unit predictive maintenance
[51] Asset maintenance tracking and
equipment failure prediction
[78] Production and supply chain
optimization
Facade element [80] Building facade segmentation
[93] Energy savings and reliability
improvement
Water [44] Maintenance prioritisation based on
infrastructure surveillance program and prediction
modelling
Environment  Indoor air [65] Failure prediction
quality [94] Health-based maintenance
prioritisation
[58] Indoor environment quality
prediction ratio
Non-residential [32] Fault detection and prediction
building
Residential [81] Occupant comfort improvement
buildings
University [83] Temperature abnormalities
laboratory monitoring and inspection
Hospital building ~ [63] Building component reuse
Substation [87]1 Diagnostic prediction
Port [95] Security control and pollution
reduction
Precast concrete [42] Operational risk management and
plant anomaly detection
HVAC plant [46] Real-time monitoring and anomaly

detection
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6. Unified framework and techniques pipeline

This section proposes a DT-enabled Maintenance 4.0 framework for
the building industry, as illustrated in Fig. 8. The framework integrates
key enabling technologies from the DT perspective to enhance intelli-
gence, efficiency, and interoperability during the maintenance phase of
the building lifecycle. The framework positions maintenance as the
central phase at the bottom, emphasising its role in supporting and
informing other lifecycle stages such as design, construction, and de-
molition through continuous feedback enabled by DT technologies.

6.1. Digital twin system

The framework in Fig. 9 delineates the DT-enabled Maintenance 4.0
in the building industry through a layered architecture, encompassing
data collection, data processing, the intelligent model, and the virtual-
isation platform. Each subcomponent within this architecture is sup-
ported by cloud deployments, ensuring scalability and interactivity
during implementation.

6.1.1. Data collection

Data collection serves as the foundational layer that enables the
creation of an accurate and dynamic virtual representation of physical
assets and the generation of decision-support information [123,124].
According to the systemic review, the data source involves gathering
operation data, attribute data, and evaluation data from various sources,
such as IoT sensors, BIM systems, and failure records.

The detailed data framework summarised from the systemic review
is demonstrated in Fig. 9. Operation data includes real-time operating
metrics and usage statistics such as temperature, humidity levels, oc-
cupancy and equipment status, among others, which provides a dynamic
and continuous overview of the system performance [125]. Attribute
data pertains to the static metadata associated with the target asset,
encompassing detailed information such as the building’s dimensions,
architectural design, and other physical characteristics of facilities and
the environment [126]. This data forms the foundational understanding
of the inherent properties and capabilities of the target. Evaluation data
primarily consists of maintenance records and stakeholders’ feedback.
Maintenance records detail the history of repairs, replacements, and
upgrades, while stakeholders’ feedback offers qualitative insights from
users, operators, and maintenance personnel regarding the assets’s
functionality and performance. This information is crucial for providing
significant objective standards during the training and establishment of
the intelligent model [94].

6.1.2. Data processing

Data processing plays a pivotal role in transforming raw data into
actionable insights for the DT establishment, enabling the seamless
integration and utilisation of diverse data sources to support intelligent
modelling and decision-making [127]. As illustrated in Fig. 8, it en-
compasses a series of critical steps, including data cleaning, data inte-
gration, data transformation, feature engineering, and data security. In
addition to the above standard procedures, it is essential to address
emerging considerations specific to building maintenance scenarios,
which are critical for advancing the field and ensuring the effectiveness
of DT-enabled maintenance strategies in the contemporary building
industry.

6.1.2.1. Data from BIM models. BIM is integral to the advanced main-
tenance of the building industry [77], which provides a centralised re-
pository for all building-related information, enabling a holistic view for
real-time monitoring, PdM, and efficient resource allocation. As shown
in Fig. 10, both structured and unstructured data play a crucial role in
the comprehensive management of building information. Integrating
these data types enhances the richness and utility of the BIM model,
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Fig. 8. Digital twin-enabled maintenance 4.0 framework in the building industry.
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allowing for better decision-making and more effective building man-
agement [128]. For example, incorporating site photographs into the
BIM model to create a visual timeline of construction progress, helping
to identify potential issues and ensure quality control.

Beyond the as-designed BIM, as-built BIM is increasingly significant
in the implementation of maintenance solutions [129]. As-built BIM
accurately represents the actual construction, including unplanned
modifications made during the construction process, while the data in
as-built BIM provides up-to-date information on the building’s current
state. By leveraging as-built BIM, advanced maintenance solutions are
significantly enhanced for existing buildings, which often lack digital
models and have substantial maintenance demands [130]. Additionally,
maintenance teams can accurately track the building’s condition,
anticipate potential issues, and streamline maintenance workflows
[131]. In conclusion, the integration of both as-designed and as-built
BIM models into building maintenance strategies is essential for mod-
ernising the maintenance approach. This comprehensive data view
supports improved decision-making, operational efficiency, and
extended building lifespans through timely and effective interventions.

6.1.2.2. Data integration using IFC, COBie, and JSON. Data integration
between different subsystems is a critical characteristic for building-
related maintenance [37]. In existing studies, three important
methods for data mapping and integration in building maintenance are
Industry Foundation Classes (IFC), Construction Operations Building
Information Exchange (COBie), and JavaScript Object Notation (JSON).
Moreover, the data interactivity and interoperability between BIM,
sensor networks, and maintenance record systems have garnered sig-
nificant research attention, with numerous studies exploring unified
data formats for building maintenance [132,133].

IFC is an open, standardised data format that enables the sharing of
BIM data across different software platforms [134]. It ensures interop-
erability, allowing various stakeholders to access and use the same data
seamlessly. COBie is a data schema used to capture and deliver building
information, particularly during the handover from construction to
operation [135]. It includes details on building assets, such as equip-
ment lists, warranties, and maintenance schedules, making it easier to
manage building maintenance activities. JSON is a lightweight
data-interchange format that is easy to read and write and is commonly
used for data exchange between web applications and servers [136]. In
the context of building maintenance, JSON can integrate data from
sensors and facility management systems with BIM data, providing a
unified dataset for maintenance activities. Fig. 11 presents data samples
of a wall structure represented through IFC, COBie, and JSON formats,
respectively. These examples are simplified to emphasise the differences
in representation. In practical applications, each format would encom-
pass more detailed and specific information tailored to its particular use
case and standards.

The above data processing and integration techniques allow for the
development of sophisticated maintenance strategies, ultimately
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enhancing the performance and longevity of building assets. The syn-
ergy between IFC, COBie, and JSON not only facilitates efficient data
management but also supports the creation of intelligent models that
drive improved decision-making and operational efficiency in the
building industry [137].

6.1.3. Intelligent model

The intelligent model plays a pivotal role in the proposed framework
by serving as the core analytical engine that drives advanced mainte-
nance strategies [17]. According to Fig. 8, the methodology can be
categorised into model-based methods, data-driven methods, and hybrid
methods. As illustrated in Table 8, model-based methodologies, such as
rule-based algorithms, statistical models, and reliability theory, leverage
domain knowledge and theoretical frameworks to provide structured
and interpretable insights into system behaviour [138]. However, the
effectiveness is often limited by the accuracy of the underlying models
and assumptions, and they may struggle to adapt to complex, dynamic
environments. Consequently, data-driven methods, including ML, deep
learning, and data analytics, allow for the processing of large datasets to
uncover hidden patterns and predictive insights [139]. Nevertheless,
their reliance on extensive datasets and computational resources,
coupled with potential issues in interpretability and transparency, poses
significant challenges. To ensure a robust and adaptive maintenance
solution, hybrid methods are being explored to combine the predictive

Table 8
Model-based VS data-driven method in maintenance 4.0.

Model-based Data-driven

Data Architectural drawings, Facilities

specifications, Material
properties

Operation data, Attribute data,
Maintenance logs

Techniques  Physical/mathematical models, Machine learning, Statistical
Simulations analysis

Approach Simulating equipment behaviour  Identifying patterns and trends
and degradation based on in large volumes of data from
detailed knowledge of physical sensors and logs.
principles and mechanisms.

Example Structural health monitoring HVAC system failure prediction
using stress-strain relationships using historical and real-time

performance data
Limitations e Limited scalability due to the e Higher initial investment in

need for detailed models for
each system.

Slower response time due to
reliance on model analysis.
Highly dependent on
specialised engineering skills,
domain-specific knowledge,
and experience

Limited by simplified model
design and ideal parameters
assumptions.

data big data infrastructure.

e Laborious and expensive data
labelling efforts.

o Highly dependent on the data
quality and availability

IFCWALL (' 2xvGm$e8D9uBxFzQxMaEgv' ,#2, 'Wall®,'A simple wall®, 'MyWall',#3,#4,3);

IFCOWNERHISTORY (#5,#6,$, .ADDED. , #7, #8, #9,1518490000) ;
IFCPRODUCTDEFINITIONSHAPE($,$, (#10));
IFCLOCALPLACEMENT($,#11) ;
IFCAPPLICATION(#6,'1.0", 'Building Designer’,'Wall App');
IFCORGANIZATION($, "My Organization®,$,$,$);
IFCPERSONANDORGANIZATION(#8,#6,$);
IFCPERSON($, "Smith®, *John",$,$,$,$,%,$);
TFCMEASUREWITHUNIT (IFCPOSITIVELENGTHMEASURE (5.0),#12);
IFCSHAPEREPRESENTATION(#13, 'Body ", *SweptSolid', (#14));
IFCAXIS2PLACEMENT3D(#15,%,$);

FCUNITASSIGNMENT ((#16));

IFCCOORDINATESYSTEM('3D");
IFCCOLOURRGB('Red,1.0,0.0,0.0);

IFCORIGIN($,$,$);

IFCSIUNIT(.LENGTHUNIT., METRE.);

Fig. 11. Wall sample of IFC, COBie, and JSON.
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accuracy of data-driven methods with the contextual understanding
provided by model-based methods [108]. This approach demonstrates
improved performance and broader applicability during the practical
implementation.

6.1.4. Virtualisation platform

The visualisation platform layer in the framework depicted in Fig. 8
integrates various tools and technologies to create a comprehensive and
interactive representation of the target building-related asset, aiding in
effective decision-making and operational efficiency [140]. The pre-
sented platform summarised from existing studies includes:

(1) As-designed BIM: The BIM model captures the initial design
specifications and construction details, providing a digital rep-
resentation of the building’s physical and functional character-
istics [141].

(2) As-built BIM: The as-built model is reconstructed using laser

scanning and Al engineering after the building has been

completed, which accurately reflects the actual conditions of the
finished building, incorporating any changes made during the

construction process [142].

Engineering Simulation: Professional software such as Matlab,

EnergyPlus, TRNSYS, and DesignBuilder allow for the virtual

testing and analysis of building components and systems under

various conditions, helping to predict performance and identify

potential issues before they arise [143].

Real-time Dashboards: These platforms provide up-to-date in-

formation and analytics, such as key performance indicators,

maintenance schedules, energy usage, and other critical metrics,
enabling stakeholders to monitor the building’s performance and

status in real-time [144].

Immersive Platform: This includes technologies such as virtual

reality (VR) and augmented reality (AR) that offer immersive

experiences for users. These platforms can be used for virtual
walkthroughs, training, and remote collaboration, enhancing

understanding and engagement with the building data [15].

3

~

(4

—

(5)
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The visualisation platform layer ensures that data acquired from
various sources and decision-support information generated in the
intelligent model layer are presented in a user-friendly and actionable
format. Fig. 12 illustrates the example platform established by the au-
thors in their experiment. The as-built BIM is displayed on the proposed
iScan2BIM platform [145], while the as-designed BIM is shown using the
XbimXplore software [129]. The immersive building environment is
generated using Unity and HoloLens, and the real-time dashboard is
deployed on a web-based platform. By providing these advanced visu-
alisation tools, the layer supports better planning, monitoring, and
management of building maintenance activities, ultimately contributing
to the efficiency and sustainability of building operations [146].

6.1.5. Could support

Cloud support is essential for the efficient storage, processing, and
accessibility of data with the DT-enabled Maintenance 4.0 ecosystem for
the building industry [147]. The cloud system provides robust infra-
structure and services that enhance data management and integration
across various stages of the building lifecycle, from design to demolition
[148]. Table 9 presents a comprehensive overview of the cloud support
stack that underpins the DT-enabled Maintenance 4.0 in the building
industry. It encompasses data transmission, data storage, and data
processing technologies. The data transmission section highlights secure
and efficient communication protocols, including MQTT, HTTP/HTTPS,
CoAP, and OPC UA, along with various network types like LAN, WAN,
4G/5G, and LPWAN, which facilitate reliable data transfer across
different environments [149]. The data storage section emphasises the
role of edge computing for initial processing close to data sources and
centralised cloud databases provided by Amazon Web Services, Micro-
soft Azure, and Google Cloud Platform for large-scale data management
[150]. The data processing section covers edge processing for pre-
liminary data handling and cloud processing using scalable in-
frastructures, including big data frameworks like Hadoop and Apache
Spark, stream processing tools such as Apache Kafka and AWS Kinesis,
and serverless computing services like AWS Lambda and Azure Func-
tions. This technological stack ensures efficient data management,
processing, and accessibility, enhancing the effectiveness of building
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Fig. 12. Virtualisation platform established by authors.
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Table 9
Technology stack in cloud support layer.

Communication Protocols: Ensures secure and efficient data
exchange.

MQTT (Message Queuing Telemetry Transport): Lightweight,
publish-subscribe network protocol suitable for remote
monitoring.

HTTP/HTTPS: Used for web-based communication, ensuring
secure data transfer.

CoAP (Constrained Application Protocol): Designed for low-
power, low-bandwidth devices.

OPC UA (Open Platform Communications Unified
Architecture): Standard for industrial automation, ensuring
interoperability.

Network Types: Facilitates reliable data transfer across various
environments.

Local Area Network (LAN): Used within a factory or industrial
site.

Wide Area Network (WAN): For data transmission over long
distances.

Cellular Networks (4G/5G): For remote locations and mobile
assets.

Low Power Wide Area Networks (LPWAN): For IoT devices
with low data rates over long ranges (e.g., LoRaWAN, Sigfox).
Edge Computing: Initial processing and storage close to the
data source to reduce latency and bandwidth usage.

Cloud Database: Centralized storage for large-scale data
processing and analysis.

Amazon Web Services (AWS): Offers databases like Amazon
RDS, DynamoDB, and S3 for storage.

Microsoft Azure: Provides Azure SQL Database, Cosmos DB,
and Blob Storage.

Google Cloud Platform (GCP): Includes Google Cloud Storage,
Firestore, and BigQuery.

Edge Processing: Preliminary data processing at the edge to
filter, aggregate, and preprocess data before sending it to the
cloud.

Cloud Processing: Advanced data processing using scalable
cloud infrastructure:

Big Data Processing Frameworks: Apache Hadoop, Apache
Spark.

Stream Processing: Apache Kafka, AWS Kinesis.

Serverless Computing: AWS Lambda, Azure Functions for
event-driven processing.

Data
transmission

Data storage

Data processing

lifecycle management within the digital twin framework.

Fig. 13 illustrates the comprehensive sequence of processes within
this ecosystem, beginning with data collection from a variety of sources,
which are subsequently transferred to the cloud database through the
network. Following storage, disparate raw data are processed into
suitable data and advanced data analysis methods, including ML and
neural networks, are employed to extract meaningful insights from the
integrated data. These insights are subsequently visualised through
dashboard-enabled methodology, providing stakeholders with intuitive
and actionable information. Finally, this process culminates in informed
decision-making by industry professionals, who leverage the visualised
data to optimise maintenance strategies, enhance operational efficiency,
and ensure the sustainable management of building assets throughout
their lifecycle.

6.2. Comparative interpretation and novelty analysis

The analytical review of 81 studies demonstrates a clear differenti-
ation in research design, asset orientation, and evaluation methodology,
indicating the growing methodological maturity of DT-enabled Main-
tenance 4.0 research. Conceptual and prototype investigations
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constitute the majority of existing works, whereas fully validated case
studies remain comparatively limited. The findings reveal distinct
modelling preferences across asset categories: data-driven approaches
are predominantly applied to dynamic environmental and HVAC sys-
tems, while hybrid physics-based and artificial intelligence methods are
more prevalent in structural and safety-critical applications. In addition,
the reviewed studies employ heterogeneous performance indicators,
resulting in inconsistency and reduced comparability across domains. To
overcome these limitations, the proposed framework establishes a sys-
tematic interpretation that integrates study design, asset domain, and
evaluation metrics into a coherent analytical structure, as summarised in
Table 10.

Although numerous studies have proposed high-level data-
—model-visualisation frameworks for DT-enabled maintenance, the
proposed framework advances the field through three key aspects:
firstly, it achieves evidence-based synthesis by being empirically derived
from the comparative analysis of 99 systematically coded studies, inte-
grating methodological patterns across asset types, algorithmic designs,
and technological readiness levels to ensure analytical rigor and prac-
tical relevance; secondly, it introduces a bidirectional learning mecha-
nism in which analytical outputs dynamically refine sensing strategies,
fault thresholds, and maintenance scheduling, transforming linear
maintenance processes into adaptive, self-optimising loops; and thirdly,
it ensures scalable interoperability through modular integration of IoT,
BIM, and cloud-edge infrastructures, supported by open standards such
as IFC, COBie, and MQTT, enabling deployment across single assets and
multi-building systems. Collectively, these advancements establish the
framework as a data-driven, feedback-adaptive, and scalable method-
ology that operationalises Digital Twin-enabled Maintenance 4.0
beyond conceptual abstraction.

7. Conclusion and future discussion

The advanced maintenance paradigm has become increasingly vital
in the building industry, driven by the urgent need to ensure structural
integrity, operational efficiency, and sustainability throughout the
building lifecycle [108]. The rapid advancement of Industry 4.0 has
accelerated the convergence of Maintenance 4.0 and Construction 4.0,
promoting proactive and intelligent maintenance approaches across the
built environment. As a pivotal enabling technology, the DT paradigm
enhances the continuous monitoring, simulation, and optimisation of
physical assets through real-time information exchange and Al-enabled
decision support [151]. This research makes progress beyond existing
studies by systematically integrating dispersed DT-related maintenance
research into a coherent, multi-dimensional framework, thereby
contributing to the field through a structured threefold advancement.

e Comprehensive Knowledge Integration: A systematic review of 99
academic sources was conducted to identify and classify enabling
technologies, technological pipelines, and deployment strategies
within DT-enabled Maintenance 4.0. This integration consolidates
fragmented findings into a cohesive knowledge system, providing a
structured foundation that has been lacking in previous research.

Unified Framework Development: A novel DT-enabled Maintenance
4.0 framework is proposed, encompassing the entire technological
hierarchy from communication and data acquisition to computa-
tional analytics, intelligent modelling, and visualisation, all sup-
ported by scalable cloud infrastructure. Compared with previous
studies that focused on single functions or domains, this framework

S A= S

Data acquisition Cloud gateway Cloud database

Intelligent model

Feedback platform Maintenance team

Fig. 13. Data flow diagram.
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Table 10
Comparative interpretation across study designs, assets, and metrics.

Dimension Key Findings from Reviewed Interpretation within the
Studies Unified Framework
Study e Conceptual frameworks: The hierarchical progression
Design theoretical discussions of data  from conceptual formulation

Asset groups

Evaluation

Metrics

flow and system architecture.
Prototype implementations:
integration of sensing,
modelling, and cloud-based
analytics for validation under
controlled conditions.

Pilot projects: real-site appli-
cations assessing prediction
reliability and lifecycle
performance.

HVAC and environmental
systems: comfort optimisation,
energy efficiency, and
anomaly prediction.
Structural and fagade assets:
deformation, fatigue, and
reliability analysis.

Facility and infrastructure
subsystems: utilities, lighting,
and electrical management.
Environmental and HVAC
studies utilise statistical
indices such as accuracy,
precision, and RMSE.
Structural applications
emphasise reliability indices,
degradation thresholds, and
safety factors.
Facility-related studies apply

to pilot deployment is
mirrored in the framework’s
layered structure,
encompassing
communication, computation,
intelligence, and visualisation
layers supported by cloud
infrastructure.

The framework integrates
these heterogeneous domains
through a multi-level
intelligence layer that bridges
data-driven analytics and
physics-based reasoning,
enabling cross-domain
adaptability and unified
decision-making.

The framework aligns
predictive metrics with data-
driven models, diagnostic
metrics with hybrid reasoning,
and prescriptive metrics with
maintenance optimisation to
ensure consistent and
comparable performance
evaluation.

lifecycle cost and energy
indicators.

unifies multi-disciplinary technologies and demonstrates their
interoperability across building structures, facilities, and environ-
mental systems.

Comparative Progress and Maturity Evaluation: By categorising
existing studies into review, framework, prototype, and case study
types, this research provides a technology maturity analysis that
clarifies how the field has evolved from conceptual proposals toward
implementable systems. This classification highlights the concrete
progress achieved and identifies critical gaps hindering large-scale
industrial adoption.

Among examined studies, about 20% studies focused on data
standardisation issues, 50% examined Al-driven modelling, and 30%
proposed hybrid or integrated approaches, thereby offering quantitative
evidence for the above three major conclusions. Collectively, these
findings confirm that while research on DT-enabled maintenance has
made substantial progress in modelling and integration, it lacks stand-
ardised metrics, validated cross-domain benchmarks, and large-scale
industrial replication. Future work should therefore prioritise:

e The standardisation of data protocols covering structure, facilities,
and environment is essential for ensuring interoperability and con-
sistency across different systems and platforms [127].

e The implementation of interpretable Al is crucial for enhancing
transparency and trust in Al-driven decisions.

e Furthermore, the development of hybrid models is necessary to
leverage the strengths of model-based and data-driven approaches,
providing more robust and versatile solutions [152].

e The advancement of high-precision modelling is required to accu-
rately capture and simulate intricate details, thereby enabling more
effective and efficient management of complex tasks [153]. The
above efforts will collectively drive significant progress in the field.
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The above analysis demonstrates the practical usefulness of this
study. The proposed framework not only integrates the technological
ecosystem of DT-enabled Maintenance 4.0 but also serves as a reference
architecture for developing intelligent maintenance platforms with
cross-domain data interoperability. The findings offer actionable in-
sights for researchers and practitioners to design scalable Al-supported
systems capable of predictive decision-making and self-optimising op-
erations in real-world building environments.
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