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A B S T R A C T

The building industry is facing increasing demands for sustainable and efficient maintenance practices, driven by 
advancements in Industry 4.0 technologies. Maintenance 4.0 emphasizes proactive maintenance strategies, 
including Condition-based Maintenance (CbM) and Predictive Maintenance (PdM), significantly enhanced by 
Digital Twin (DT) technology. DT enables the real-time monitoring, simulation, and optimization of building 
assets, offering substantial improvements in asset management, energy efficiency, and system longevity. How
ever, integrating these technologies into the building industry’s maintenance processes remains a challenge. This 
paper provides a comprehensive review of current research on DT-enabled Maintenance 4.0, presenting a con
ceptual framework that integrates enabling technologies and outlines their technological pipelines. It discusses 
the state-of-the-art methodologies, challenges, and future directions for the implementation of Maintenance 4.0 
in the building sector, highlighting the potential of DT systems in optimizing maintenance strategies and 
enhancing decision-making. The study identifies key areas for further research, including data standardization, 
AI integration, and hybrid modeling approaches.

1. Introduction

The building industry has become a priority in sustainability effi
ciency initiatives due to its substantial energy consumption and envi
ronmental impact [1], while the maintenance costs constitute 
approximately 65% of the annual facility management expenses [2]. 
Maintenance 4.0 represents a significant evolution in the maintenance 
industry, integrating condition-based and predictive procedures to 
enhance system sustainability and operational efficiency [3]. In the 
building industry, this approach is grounded in the evaluation of both 
occupant comfort and building performance, aiming to develop 
advanced operational schedules for structures, facilities, and indoor 
environments [4].

Condition-based Maintenance (CbM) and Predictive Maintenance 
(PdM) exemplify transformative approaches within Maintenance 4.0, 
seamlessly integrating with the capabilities of Digital Twin (DT) tech
nology. As one of the representative technologies of Industry 4.0, DT is 
regarded as a comprehensive solution for demonstrating, operating, 

maintaining, and optimising building-related assets. DT leverages and 
integrates a variety of advanced technologies, including the Internet of 
Things (IoT), Artificial Intelligence (AI), and Building Information 
Modelling (BIM) [5], enabling the digitalisation of building assets and 
lifecycle management [6]. It shows robust potential in the establishment 
of the Maintenance 4.0 Platform, allowing for real-time bi-directional 
data integration, high-quality model visualisation, and various function 
coordination. Maintenance and management notifications are provided 
on the virtual twin platform, while the data and information are ac
quired through the physical system [7]. This emerging paradigm un
derscores a significant shift towards more proactive and data-driven 
maintenance practices, allowing a timely and advanced schedule of 
maintenance operations, significantly reducing unplanned downtimes 
and optimising the use of both technological and human resources [8].

Recent advancements in the automated platform and data-driven 
functions have broadened the scope, enabling the implementation of a 
more proactive maintenance paradigm in the building industry. How
ever, achieving intelligent building management is still a complex issue 
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because comprehensive information is required (e.g., operating data, 
maintenance records, metadata, etc.), and multiple technologies will be 
adopted (e.g., sensors, scanners, cameras, etc.). Keeping data interop
erability and system integrity is the key challenge during the practical 
deployment. Firstly, the requisite data typically resides within siloed 
systems that are neither thoroughly utilised nor integrated [9,10]. Be
sides, most existing studies and solutions are developed for single sys
tems, while data and platforms are not well-integrated or analysed. 
Single data collection systems can support multiple functions when in
tegrated with different algorithms. Consequently, this paper aims to 
address this gap by providing a state-of-the-art survey of the conceptual 
framework and enabling technologies necessary for the achievement of 
Maintenance 4.0 in the building industry from a DT perspective. 
Furthermore, a unified framework has been formulated within the DT 
structure to integrate enabling technologies and facilitate the pipeline 
deployment. Finally, potential challenges and future directions are 
identified from technology maturity and commercialised perspectives.

The structure of this paper is organised as follows: Section 2 details 
the article searching process and analyses current research trends. Sec
tion 3 explores the benefits and adoption of DT architecture for Main
tenance 4.0 in the building industry. Section 4 develops a conceptual 
framework highlighting the technological pipeline and systematic 
integration methodology. Section 5 evaluates the technological maturity 
and deployment feasibility based on the systematic review. Finally, 
Section 6 concludes by summarising the contributions of this work and 
discussing future directions.

2. Research methodology

This study conducts a systematic review (SR) of DR-enabled Main
tenance 4.0 solutions within the building industry, encompassing sur
veys, frameworks, case studies, and implemented applications. A 
systematic review differs from a narrative review by employing a 
transparent, reproducible, and auditable process that minimises selec
tion bias and ensures traceable synthesis of evidence [11]. The publi
cations between 2019 and October 2025 are used for evidence synthesis, 
while older materials are cited for theoretical support, thereby 

improving interpretability and transparency. The review process follows 
the PRISMA guidelines [12], integrating bibliometric and qualitative 
synthesis to reveal the technological, methodological, and conceptual 
progress of DT-enabled PdM in the built environment. Because PdM and 
DT concepts originated in manufacturing and cyber-physical domains, 
this cross-industry adaptation requires both theoretical synthesis and 
evidence-based mapping of enabling technologies.

2.1. Publications identification process

Literature search and screening were conducted to ensure compre
hensive and up-to-date coverage, encompassing publications from 2019 
to 2025.10 on DT-related advancements in building maintenance. 
Following the PRISMA protocol (Fig. 1), the Web of Science (WoS) 
served as the primary database owing to its rigorous indexing and topic- 
based query capability, while Scopus was concurrently employed as a 
complementary source to enhance retrieval completeness and cross- 
validation accuracy. 

• The Pseudo-code for keyword combination search was as follows: 
(“Predictive Maintenance” OR “Condition-based Maintenance”) AND 
(“Digital Twin” OR “Cyber-Physical System”) AND (“Building Industry” 
OR “Construction Industry”).

• Search filters were applied as follows: (Time Span = 2019-2025.10), 
(Language = English), (Source = Journal OR Conference)

Subsequently, the abstract and full text were examined using the 
following inclusion criteria to ensure the searching rigor and maintain 
thematic relevance. 

• Relevance of domain: Studies addressing DT-driven PdM or CbM for 
building structures, building facilities, or indoor environmental 
systems.

• Technological contribution: Presence of DT-related enabling tech
nologies, such as IoT-based data acquisition, BIM integration, AI 
algorithms, and virtual simulation.

Fig. 1. PRISMA diagram for the systematic review.
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• Evidence type: Conceptual frameworks, architecture proposals, 
prototype demonstrations, and validated case studies.

• Transparency: Explicit methodological description allowing repli
cation of the proposed workflow or architecture.

• Publication quality: Indexed peer-reviewed journals or reputable 
conferences with verifiable DOI.

Finally, the above thorough search process led to the identification of 
99 related articles for in-depth analysis.

2.2. Bibliometric analysis

The bibliometric analysis complements the systematic review by 
providing a quantitative overview of research dynamics in DT-enabled 
Maintenance 4.0. Based on the latest searching, Fig. 2 shows a sus
tained increase in annual outputs, with 19 papers already identified for 
2025. The dash projection further indicates that the final 2025 total is 
expected to reach approximately 23 to 25 publications, highlighting the 
continuing growth of DT and PdM research in the building sector that 
aligns with the global momentum of Construction 4.0 research.

A total of 99 core studies were identified across 49 peer-reviewed 
journals and conferences. As summarised in Table 1, Buildings 
emerged as the leading publication outlet, contributing seven papers. 
This was followed by Automation in Construction, Energy and Buildings, 
Journal of Building Engineering, and Sustainability (Switzerland), each 
publishing four articles. Additionally, Frontiers in Built Environment and 
Scientific Reports contributed three papers each. Collectively, these dis
tributions highlight the multidisciplinary nature of the research, span
ning domains such as the built environment, construction automation, 
energy efficiency, and sustainability.

Fig. 3 presents the distribution of publications across various 
research fields, showcasing the interdisciplinary nature of the studies. 
Engineering dominates with 38%, followed by Computer Science at 18%, 
underscoring their leading roles in technological development and sys
tem integration. Other notable fields include Social Sciences (8%), Energy 
(6%), Materials Science (5%), and Environmental Science (4%). In addi
tion, studies focusing on structural components such as façade durability 
and pavement performance emerge from more specialized domains, 
including Earth and Planetary Sciences, Chemical Engineering, and Mate
rials Science, each contributing 3% or less to the total body of research.

Geographically, as illustrated in Fig. 4, the research exhibits a strong 
concentration in Europe, led by Italy and the United Kingdom, each 
contributing 16 studies. Other major contributors include the United 
States (11), Australia and Germany (9 each), followed by Sweden (8), 
and Denmark and Norway (6 each). These regions are characterised by 
mature infrastructure systems, well-established maintenance standards, 
and advanced digitalisation strategies. In contrast, emerging contribu
tions from Asia, notably China (5), Singapore and Japan (3 each), and 
South Korea (1), reflect a rapid shift toward data-driven and 
maintenance-intensive digital transformation. The growing participa
tion from developing regions, including South Africa, Brazil, and 
Malaysia, further underscores the expanding global relevance of DT and 

PdM research in the built environment.
Collectively, these bibliometric findings delineate the global land

scape, disciplinary diversity, and regional evolution of DT-enabled 
Maintenance 4.0 research. They underscore the expanding academic 
recognition of this field and provide a foundation for the structured, 
evidence-based synthesis developed in the subsequent sections.

2.3. Evidence coding and analytical dimensions

All 99 selected studies were systematically examined using a struc
tured five-dimensional coding framework designed to ensure method
ological transparency and reproducibility. As shown in Table 2, each 
publication was analysed across the following dimensions: asset type, 
data stream, algorithmic approach, and technology readiness level 
(TRL), collectively representing the technological scope, methodological 
depth, and practical maturity of DT-enabled maintenance research in 
the building industry. The coding process involved a comprehensive 
review of each article to extract and categorise key features within these 
dimensions, enabling consistent cross-study comparison and supporting 
future quantitative or meta-analytical synthesis. The evidence map re
veals that most studies focus on facility-level or environmental assets 
supported by sensor-based and BIM-integrated data, while deep- 
learning and hybrid algorithms dominate PdM modelling. However, 
few works have progressed beyond prototype validation, indicating that 
DT applications in building maintenance remain at an early-to- 
intermediate maturity stage.

2.4. Risk-of-bias and quality appraisal

To enhance methodological rigour and ensure the reliability of this 
systematic review, a risk-of-bias and quality appraisal was performed for 
all included studies using the Mixed Methods Appraisal Tool (MMAT, 
2018). The MMAT provides a structured approach for evaluating 
methodological soundness across diverse empirical designs, which is 
particularly relevant to interdisciplinary research integrating engineer
ing, computer science, and building management perspectives.

Each of the 99 reviewed studies was independently assessed against 
five quality criteria: 

• Clarity of research objectives – whether the study articulates a pre
cise and coherent research aim.

• Adequacy of data collection – the suitability and transparency of IoT, 
BIM, or experimental datasets used.

• Transparency of analytical methods – completeness of algorithmic, 
simulation, or modelling descriptions.

• Validity of findings – robustness of results supported by verification, 
cross-validation, or comparative benchmarking.

• Replicability of the DT framework – accessibility and reproducibility 
of data, models, or workflow documentation.

Each criterion was rated on a five-point ordinal scale (1 = poor, 5 =
excellent). Mean scores were calculated for each study, and inter- 
reviewer agreement exceeded 90%, indicating strong reliability of 
evaluation. The results (Table 3) reveal that most studies achieved high 
methodological quality, with notable strengths in research clarity and Fig. 2. Number of publications (2019-2025.10).

Table 1 
Highest sourced journals presented in the review.

Journal Counts

Buildings 7
Automation in Construction 4
Energy and Buildings 4
Journal of Building Engineering 4
Sustainability Switzerland 4
Frontiers in Built Environment 3
Scientific Reports 3
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analytical transparency. However, common weaknesses remain in data 
availability and replicability, particularly among AI-driven case studies 
relying on proprietary or closed datasets.

These results confirm that the reviewed literature exhibits moderate 
to high methodological quality, demonstrating coherent objectives and 

credible analytical approaches. Nonetheless, future DT-enabled main
tenance research should place greater emphasis on open data accessi
bility, transparent algorithmic documentation, and standardised 
evaluation protocols to further reduce potential bias and strengthen 
cross-study comparability.

Fig. 3. Publication distribution of research field.

Fig. 4. Publication count categorized by countries.
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3. Pattern analysis

This section presents a comprehensive technical practice analysis 
based on the systemic review, classifying existing studies into review, 
survey, framework, prototype system, and case study according to their 
technological maturity. The study provides insight into the practicality 
and applicability of DT-enabled Maintenance 4.0 technologies in the 
building industry and highlights trends and patterns within the research 
community.

3.1. Category definitions

To facilitate a clear understanding, the existing studies are cat
egorised by following benchmarks, and the distribution of collected 
studies is presented in Fig. 5. 

• Review: A review study synthesises existing research on a particular 
topic, identifying key themes, gaps, and future directions to provide 
a comprehensive overview of the current knowledge and state-of- 
the-art technologies.

• Survey: Survey studies collect and analyse data from a specific group 
of respondents to gather insights, opinions, or behaviours related to 
the research topic, facilitating the understanding of the adoption, 
challenges, and potential of new technologies

• Framework: Framework studies propose structured approaches or 
models for implementing or understanding specific technologies or 
processes, which often include theoretical constructs and practical 
guidelines.

• Prototype System: Prototype system studies involve the develop
ment and testing of preliminary versions of new technologies or 
systems, which are used to validate concepts, functionalities, and 
performance before industrial deployment. The DT systems in these 
studies are generally at the laboratory stage compared with case 
study research.

• Case Study: Case studies provide in-depth examinations of specific 
instances where a technology or process has been applied. They often 
involve real-world implementations and provide detailed insights 
into practical applications, benefits, and challenges.

3.2. Analysis and patterns

Based on the above benchmarks, Table 4 summarises the technical 
practice of existing studies. A significant observation is that most studies 
fall into the framework and case study categories, which are essential for 
establishing foundational principles and methodologies that guide the 
development and application of DT technologies in building mainte
nance. The high number of studies in this category indicates active 
experimentation and innovation, reflecting the industry’s efforts to 
transition from theoretical models to practical applications.

In contrast, review and survey studies remain relatively limited 

Table 2 
Analytical dimensions.

Coding 
Dimension

Description Typical Examples

Asset Type Physical or functional 
building components 
targeted by the DT 
solution.

Structure, HVAC, facade, road, 
pavement, indoor environment.

Data Stream Origin of input data used 
in the DT loop.

IoT sensors, BIM models, 
historical records, maintenance 
logs.

Algorithm Type Analytical or predictive 
technique employed.

ML (LSTM, CNN, Autoencoder), 
statistical regression, rule-based 
model, hybrid AI.

Technology 
Readiness 
Level (TRL)

Practical maturity of the 
technology.

TRL3–prototype, TRL5– 
demonstration, TRL7–pilot.

Table 3 
MMAT-based quality assessment summary.

Quality Criterion Average 
Score

No. of 
Studies

Key Observations

Clarity of research 
objectives

4.5 89 (90.0 
%)

Aims are generally well 
defined and contextualised.

Adequacy of data 
collection

4.2 72 (72.7 
%)

IoT/BIM datasets are robust 
but not always fully disclosed.

Transparency of 
analytical 
methods

4.4 77 (77.8 
%)

Algorithms and model 
workflows are clearly reported 
in most papers.

Validity of findings 3.9 71 (71.7 
%)

Cross-validation is used in 
several studies but not 
consistently.

Replicability of DT 
framework

3.8 59 (59.6 
%)

Limited sharing of data or 
code restricts reproducibility.

Fig. 5. The distribution of article categories.

Table 4 
Overview of studies distribution on technical practice.

Type Reference distribution

Review [13–25]
Survey [26–31]
Framework [4,32–59]
Prototype 

system
[60–79]

Case study A school building, Sungkyunkwan University, South Korea [80], 
I4Helse and Tvedestrand building, Norrway [81], 
A transport network, Salerno, Southern Italy [82], 
Institute for Manufacturing building, University of Cambridge, UK, 
[83], 
A conference room, Pythagoras AB company, Stockholm, Sweden 
[84], 
Montana Creek Bridge, USA [85], 
Austrian federal railways [86], 
500 kV Wujiaochang substation project, China [87], 
Engineering 4.0 campus, Pretoria, South Africa [88], 
A building complex, Brazilian University, Brazil [89], 
Conveyor system, Dalrymple Bay Coal Terminal, Queensland, 
Australia [90], 
Zhongcheng Village Bridge, Zhejiang Province, China [91], 
Xinyi Line, Taipei Metro, Taipei [92], 
The building façade, an office building, Aalto University, Finland 
[93], 
The Alan Reece building, University of Cambridge, UK [94], 
The port, Ventotene, Italy [95], 
Humanitas Hospital, Milan, Italy [96], 
Rione Rinascimento complex, Rome, Italy [97], 
Mohammed VI Bridge, Morocco [98], 
Scandinavian-Mediterranean Connecting Europe Facility corridor, 
Italian highway A24, Italy [99]
Snow galleries, Iron Ore railway, Northern Sweden [100] 
Concrete plant Negonje, Slovenia [101]
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compared with technical and case-based research. Review papers syn
thesise existing knowledge, identify research gaps, and guide future 
directions. Although their overall number is modest, the proportion of 
reviews has increased in recent years (2024-2025), reflecting the 
maturation of the field and the accumulation of sufficient empirical 
evidence to support systematic synthesis and framework development. 
This trend is further driven by the growing integration of AI, BIM, and 
IoT within digital twin research, prompting scholars to consolidate and 
categorise emerging knowledge. On the other hand, survey studies 
collect insights from specific respondent groups, offering valuable evi
dence on the adoption, challenges, and potential of DT technologies. 
Their scarcity suggests an opportunity for more industry-oriented sur
veys to capture real-world implementation perspectives and support 
evidence-based advancement.

Case studies provide essential insights into the real-world imple
mentation of Digital Twin (DT) technologies. As summarised in the 
accompanying table, most identified cases originate from Europe, 
reflecting the region’s extensive infrastructure and advanced mainte
nance requirements. A consistent pattern is observed in that nearly all 
these studies are supported by universities or government initiatives, 
indicating that DT applications in the built environment largely remain 
in the experimental or pilot stage. Besides, recent publications demon
strate a notable shift toward practical industrial applications. For 
example, a study on a mid-sized concrete plant illustrates how a DT 
system integrating sensor data, real-time monitoring, and predictive 
analytics can enhance operational efficiency, reduce waste, and improve 
maintenance forecasting [101]. Such emerging cases signal a gradual 
transition from research-led prototypes to industry-driven deployments, 
suggesting that DT technologies are moving closer to commercial 
viability and large-scale adoption within the construction sector.

4. Concepts and embracement of digital twin

This section introduces the development of DT technology, detailing 
its progression from the initial stage to advanced applications. Besides, it 
explores the integration of DT for Maintenance 4.0 in the building in
dustry, highlighting how these innovations are transforming mainte
nance practices.

4.1. Concept evolution of digital twin

The concept of DT was first proposed in 2002 by Grieves[102] during 
his presentation of product family design. Although various definitions 
exist, the DT system contains physical and digital counterparts with their 
interconnections system [103]. Originally utilised as an economical 
method for the simulation of NASA rockets under different conditions, 
DT has undergone significant technological advancements and broad
ened its range of applications. According to current literature, 
DT-related enabling technologies have grown exponentially over time, 
with their concepts continuously evolving and transforming [103]. 
Notably, some projects labelled as DT do not fully adhere to the main
stream definition [104], instead falling into three categories, as shown 
in Fig. 6: digital model, digital twin, and intelligent digital twin [105]. A 
digital model represents a static digital replica of a physical object or 

system primarily used for design and analysis [106]. As ICT developed, 
the DT energy developed with its dynamic nature, real-time data in
teractions, and bidirectional information communication [107]. Finally, 
the intelligent DT incorporates data-driven models such as advanced 
analytics and AI to enhance the decision-making process. This progres
sion reflects the increasing complexity and capabilities of DT systems, 
transforming from basic representations to sophisticated, intelligent 
systems that drive significant improvements in various industries.

4.2. Embracement of digital twin for maintenance 4.0 in the building 
industry

The emerging maintenance paradigm during Industry 4.0 is con
ceptualised as Maintenance 4.0 [108]. Advanced strategies derived from 
Industry 4.0, such as fault detection, failure prediction, energy optimi
sation, etc, are implemented and assimilated to CbM and PdM when they 
suggest maintenance activities. As depicted in Fig. 7, the adoption of 
Maintenance 4.0 in the building industry marks a transformative shift 
over the whole building lifecycle with unique requirements on data 
scope, methodology, and virtual modelling [109]. The DT framework 
serves as the cornerstone in this context to facilitate proactive mainte
nance strategies and ensure timely interventions. Unlike manufacturing, 
the virtual replica of the building system accommodates intricate in
teractions between structural, mechanical, electrical, and environ
mental systems [110,111]. By integrating diverse data streams from 
sensor systems and maintenance records, the methodology emphasises 
long-term asset management, safety, and sustainability, which are 
developed to improve maintenance performance. Finally, the dynamic 
solution is generated from the digital model based on data analysis and 
an intelligent algorithm to provide guidance for physical operation and 
schedule planning.

Embracing DT technology for Maintenance 4.0 in the building in
dustry requires a synergistic approach that leverages advancements in 
communication, virtualisation, and computation [112]. These in
novations enable more efficient, accurate, and proactive maintenance 
strategies, ultimately enhancing the longevity and performance of 
building assets. By integrating these cutting-edge technologies, the in
dustry can achieve significant improvements in asset management, 
operational efficiency, and sustainability. The reference summary in 

Fig. 6. Concept revelation of digital twin.

Fig. 7. Maintenance 4.0 in the building industry.
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Table 5 is according to the core concern and innovation focus of the 
reference, and the survey and review paper are excluded.

4.2.1. Virtualisation
Heterogeneous data and domain knowledge gathered from the on- 

site operation, as well as the decision support information generated 
after the intelligent computation, need to be modelled and delivered 
through the virtual platform [113]. As indicated in Table 5, BIM tech
nology is employed as the key enabler to centralise the modelling across 
different building-related assets, while virtualisation advancements for 
structure, facilities, and environments show various requirements on 
technical specifications and design preferences.

For the building industry, visualisation and inspection serve as 
fundamental activities underpinning more advanced capabilities. With 

the development of ICT, diverse data collection methods such as IoT 
systems, aerial photography, and LiDAR technology are utilised to 
enrich the information for the establishment and updating of digital 
layers [88]. Furthermore, integrating historical and synthetic data helps 
address data deficiencies during the modelling process [90]. A more 
comprehensive and high-fidelity 3D model can be generated in the DT 
solution depending on continued and accurate data exchange [98,85]. 
Besides, efficient and cost-effective modelling has garnered significant 
interest from researchers. For instance, Vassilev et al. [61] introduced 
reliable quality measure metrics to reduce time consumption, while 
Carotenuto et al. [67] developed innovative modelling techniques with 
lower hardware requirements.

Additionally, various functions like life cycle management are 
implemented across different assets, including building structures [60], 

Table 5 
Technology stack for DT embracement.

Structure Facilities Environment

Virtualisation • An interactive DT visualisation for life cycle asset 
monitoring [60];

• Time consumption reduction during DT model 
creation depending on reliable quality measures 
[61];

• 360◦ inspections depending on high-resolution 3D 
models and aerial imagery [85];

• Continuous road condition visualisation using data 
from LiDAR, photogrammetry, and drone video 
[88];

• DT model integrated BIM and inspection system 
[91];

• Comprehensive infrastructure DT updated with 
multisource and multitemporal data [98];

• Uncertainty-aware point cloud segmentation 
[118].

• Integrated video surveillance system and DT- 
related subsystem [87];

• Combine historical data and synthetic data into 
situ simulation [90];

• BIM and GIS integration model for energy
• consumption and carbon footprint [92];
• BIM integration with IoT alert system for 

condition and facility visualisation [46];
• EU-funded IoTwins platform facilitating hybrid 

DT system [47];
• Modelling approach with little hardware 

resources requirement [67];
• Graph-based virtual representation of legacy 

systems and digital models [76].

• Integrated BIM and terrain model, including 
design information and routine updates [82];

• As-built BIM model incorporates IoT and AI 
[34];

• Georeferenced photographs-based infrastruc
ture digital model [95];

• Modelling framework and component design 
on PdM solution [49];

• Immersive AR digitalised platform to enhance 
user experience and presentations [50];

• Cloud-based life-cycle monitoring and visual
isation of carbon intensity and resource con
sumption [63];

• AR-enhanced DT system focusing on indoor 
climate [83];

• Galata-driven environmental factors 
monitoring system [119];

• Multi-dimensional model and interactive 
simulation [58];

• Pre-made BIM model and DT protocols [101].
Computation • Robust and automated façade segmentation using 

point cloud data [80];
• Four-stage holistic assessment for maintenance 

planning [86];
• Extended DT creation in building life cycle 

management [93];
• Classic ML model comparison study on PdM 

performance on track structure [53];
• AI clustering and hazard index calculation-based 

decision support techniques for road maintenance 
[99];

• Improved decision making based on the integration 
of SHM data and 3D digital model [100];

• Robust decision-making support for multi-criteria 
ready-mix concrete supply chain effective man
agement [78].

• Operation errors removal through feature 
extraction and ML techniques [4];

• Ensemble ML model for malfunction expedite 
detection [81];

• Automated risk detection and mitigation, 
including obstacles and human activity [40];

• Maintenance schedule prioritisation through 
hidden risk analysis [66];

• Systemic empirical knowledge-enhanced neu
ral network model for automatic failure man
agement [42];

• Reinforcement learning approach improving 
maintenance schedule based on tack inspection 
[69];

• RNN-based surrogate model for dynamic 
maintenance optimisation [52];

• Explainable unsupervised deep learning model 
for failure detection [41];

• Semi-supervised model for failure prediction 
[120];

• Ontology-based decision support model [77].

• Predict and optimise occupant’s comfort by 
combining statistic and ML models [32];

• AI-driven reasoning and service process for 
automatic building management system [36];

• Ensemble classifier learning algorithm tailored 
for imbalance scenarios during three-stage 
CBM [64];

• Ensemble failure prediction algorithm for 
indoor air quality [65];

• Combination of clustering ML and rule-based 
strategies for malfunction reduction [97].

Communication • Unified data storage and retrieval leveraging 
multiple blueprints [43];

• Integrated data collection architecture [44];
• Low-power and lightweight monitoring [70];
• Low-cost data exchange between cyber and 

physical [71];
• DT-oriented Industrial IoT Network covering 

sensors and actuators [39];
• Low-cost IoT design for concrete structure 

vibration monitoring [68].

• Automated data stream ageing feature 
extraction during remote monitoring[62];

• Data provenance model on a blockchain-based 
DT for improved reliability and trustworthiness 
[84];

• Information centralisation enabled by BIM and 
IoT [89];

• Evogy Simon monitoring for result-oriented 
product service system [96];

• Knowledge graph-based data management 
workflow [45];

• Introduces system dynamics into “Traintrack 
interaction [48];

• Blockchain-based digital twin data provenance 
[121].

• Novel IFC-based data structure, including 
operational data [33];

• Data access with digital building logbook using 
semantic web technology [94];

• Heterogeneous data integration architecture 
supporting intelligent data query [51];

• Copula data generation method [72];
• Blockchain and AI driven integrated 

management system [79].
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facilities [87], and environment [63], leveraging virtualisation plat
forms. As a pivotal technology for DT in the building industry, BIM is 
mainly utilised as the centralised platform for virtualising related assets 
and different technologies are integrated to provide a comprehensive 
digital target [91]. BIM-IoT integration for condition and facility visu
alisation is the most common method [46], while further advancements 
include BIM-GIS integration for building sustainability improvement 
[92], BIM-terrain model combination [82], and a hybrid DT system 
platform facilitated by EU-funded initiatives [47]. Sadri et al. [34] 
enhanced the as-built BIM with IoT and AI technologies, providing a 
new modelling perspective to establish DT systems for existing buildings 
without an as-designed model. Apart from BIM, emerging technologies 
such as georeferenced-based digital models [95] and immersive 
AR-enhanced systems [50,83] are explored to improve user experience 
and presentation. Overall, virtualisation enables the seamless integra
tion and simulation of physical and digital assets, facilitating real-time 
monitoring, analysis, and optimisation of various processes and systems.

4.2.2. Computation
The computational aspect of the DT system is employed for data 

analytics and solution generation, facilitating intelligent decision- 
making and customised service [34]. As illustrated in Table 5, most 
research focuses on building facilities due to their similarity to 
manufacturing processes, which have been extensively studied. 
Conversely, research on structural and environmental applications is 
less prevalent, as these represent unique scenarios in the building in
dustry. Extracting practical knowledge from heterogeneous data is 
challenging, making it essential to identify appropriate methodologies 
and tools for achieving and optimising the target function, which is 
crucial to DT construction.

Classical ML models, such as clustering and regression algorithms, 
are commonly applied to fundamental tasks like occupants’ comfort 
improvement [32], building management automation [36,93], and 
maintenance scheduling [53,99]. Furthermore, advanced functions 
utilised deep learning methods, including explainable unsupervised 
models [41], RNN-based methods [52], and reinforcement learning 
[69]. Besides, M. Jasiulewicz-Kaczmarek and A. Gola [4] enhanced the 
feature extraction process to reduce the operation errors, while Lin et al. 
[64] developed an ensemble learning method tailored for imbalance. 
Failure prediction commonly demands higher algorithmic and analyt
ical ability than management optimisation because of its real-time 
reliability requirements. Existing studies on failure reduction are 
mainly implemented on facilities [40,81] and environment [65,97], 
with structural-related studies focusing more on the management opti
misation level [80]. Integrating the data-driven and model-driven 
methods enhances the failure management performance. For example, 
Weerapura et al. [42] incorporated empirical knowledge into the neural 
network design, while S. Agostinelli and F. Cumo [97] combined ML 
solutions and rule-based strategies. Employing robust and automated 
computational algorithms in building maintenance and management 
ensures comprehensive evaluation, improves predictive accuracy, and 
supports proactive decision-making.

4.2.3. Communication
Communication in DT architecture contains data acquisition and 

transmission, enabling seamless data exchange and integration across 
physical and virtual twins [114]. Existing studies aim to enhance the 
collection, storage, retrieval, and exchange of data information, 
covering the system architecture, communication protocols, and cloud 
platforms. Innovative studies and experiments are mainly achieved 
through unified implementation and the integration of a multi-sourced 
pipeline [115]. According to Table 5, communication-related research 
is evenly distributed across three types of assets in the building industry, 
demonstrating its cornerstone function during the establishment of the 
DT system.

Significant advances include both the macro-full process 

improvement of the entire data stream and the tailored upgrading of 
subsystems. Sophisticated data processing capabilities are required for 
DT implementation in the building industry due to the increasingly 
complex and diverse data sources. As the technical basement, the unified 
data processing pipeline got the primary attention of the academic area, 
covering integrated architecture for data collection [20], storage and 
retrieval [21] process, and intelligent data query solutions [51]. Spe
cifically, Lu et al. [33] integrated operational data into the proposed 
IFC-based data structure, while Fialho et al. [89] developed an inno
vative information centralisation architecture combining BIM and IoT 
systems. Furthermore, emerging technologies such as blockchain, se
mantic modelling, and knowledge graphs are being utilised to enhance 
data security [25], optimise data management [26], and facilitate data 
access [94]. Additionally, Machine Learning (ML) techniques are being 
integrated into the data stream process to enhance feature extraction 
[62,116] and data augmentation [72], further optimising the efficiency 
and effectiveness of data analysis in the building industry [117]. For 
hardware improvement, notable efforts include the development of 
low-power and sustainable sensor systems [48,70,71], as well as a new 
design paradigm for communication systems, particularly oriented from 
DT and results service perspectives [39,96]. The above development and 
implementation of advanced communication systems ensures robust 
data transfer and integration across various components of the DT 
system.

5. Application in the building industry

5.1. Concept of building industry

The building industry involves the building lifecycle and building- 
related assets. The framework specifically targets the maintenance 
stage and seeks to enhance the entire building lifecycle by applying the 
identified intelligent solutions and improvements. As shown in Table 6, 
the building lifecycle starts from the initial design phase, progresses 
through the on-site construction, extends into the operation and main
tenance, and ultimately ends with demolitions.

5.2. Implementation in building industry

Regarding the associated assets and systems, the framework con
siders various implementations identified through a comprehensive 
literature review. Application scenarios include the building structure, 
mechanical, electrical, and plumbing (MEP) components, transport 
infrastructure, HVAC system, lighting systems, indoor comfort, indoor 
air quality, and building complex, while functions ranging from condi
tion monitoring to resource optimisation are implemented on the above 
targets. The detailed distribution of these assets and functions is pre
sented in Table 7. To ensure the accuracy of the description, only studies 
that explicitly identified the assets and functions were included in the 
summary. For example, studies that mentioned facilities or in
frastructures without clear explanations were excluded [49,50,52].

Table 6 
Building lifecycle.

Life stage Definition

Design Conceptualisation, planning, and detailed design of the 
building, encompassing architectural, structural, and 
engineering considerations.

Construction Actual construction activities on the site involve the 
assembly of building materials, installation of systems, and 
coordination of various trades.

Operation & 
maintenance

Daily management, use, and ongoing upkeep of the building, 
as well as regular repair and optimisation to maintain 
functionality, safety, and performance standards.

Demolition Systematic deconstruction and removal of the building at the 
end of its useful life, including recycling and disposal of 
materials.

W. Hu et al.                                                                                                                                                                                                                                      Building and Environment 288 (2026) 113997 

8 



6. Unified framework and techniques pipeline

This section proposes a DT-enabled Maintenance 4.0 framework for 
the building industry, as illustrated in Fig. 8. The framework integrates 
key enabling technologies from the DT perspective to enhance intelli
gence, efficiency, and interoperability during the maintenance phase of 
the building lifecycle. The framework positions maintenance as the 
central phase at the bottom, emphasising its role in supporting and 
informing other lifecycle stages such as design, construction, and de
molition through continuous feedback enabled by DT technologies.

6.1. Digital twin system

The framework in Fig. 9 delineates the DT-enabled Maintenance 4.0 
in the building industry through a layered architecture, encompassing 
data collection, data processing, the intelligent model, and the virtual
isation platform. Each subcomponent within this architecture is sup
ported by cloud deployments, ensuring scalability and interactivity 
during implementation.

6.1.1. Data collection
Data collection serves as the foundational layer that enables the 

creation of an accurate and dynamic virtual representation of physical 
assets and the generation of decision-support information [123,124]. 
According to the systemic review, the data source involves gathering 
operation data, attribute data, and evaluation data from various sources, 
such as IoT sensors, BIM systems, and failure records.

The detailed data framework summarised from the systemic review 
is demonstrated in Fig. 9. Operation data includes real-time operating 
metrics and usage statistics such as temperature, humidity levels, oc
cupancy and equipment status, among others, which provides a dynamic 
and continuous overview of the system performance [125]. Attribute 
data pertains to the static metadata associated with the target asset, 
encompassing detailed information such as the building’s dimensions, 
architectural design, and other physical characteristics of facilities and 
the environment [126]. This data forms the foundational understanding 
of the inherent properties and capabilities of the target. Evaluation data 
primarily consists of maintenance records and stakeholders’ feedback. 
Maintenance records detail the history of repairs, replacements, and 
upgrades, while stakeholders’ feedback offers qualitative insights from 
users, operators, and maintenance personnel regarding the assets’s 
functionality and performance. This information is crucial for providing 
significant objective standards during the training and establishment of 
the intelligent model [94].

6.1.2. Data processing
Data processing plays a pivotal role in transforming raw data into 

actionable insights for the DT establishment, enabling the seamless 
integration and utilisation of diverse data sources to support intelligent 
modelling and decision-making [127]. As illustrated in Fig. 8, it en
compasses a series of critical steps, including data cleaning, data inte
gration, data transformation, feature engineering, and data security. In 
addition to the above standard procedures, it is essential to address 
emerging considerations specific to building maintenance scenarios, 
which are critical for advancing the field and ensuring the effectiveness 
of DT-enabled maintenance strategies in the contemporary building 
industry.

6.1.2.1. Data from BIM models. BIM is integral to the advanced main
tenance of the building industry [77], which provides a centralised re
pository for all building-related information, enabling a holistic view for 
real-time monitoring, PdM, and efficient resource allocation. As shown 
in Fig. 10, both structured and unstructured data play a crucial role in 
the comprehensive management of building information. Integrating 
these data types enhances the richness and utility of the BIM model, 

Table 7 
Summary of assets and functions.

Categories Application 
assets

Refs. Function

Facility Water supply 
system

[66] Failure conditions assessment

HVAC system [96] Energy management
[45] Energy system monitoring and 

maintenance services
[4] Automatic fault detection and 

diagnostics
[79] Automated, blockchain-enabled 

smart facility management
[76] Remaining Useful Life (RUL) 

tracking
Pump system [33] Anomaly detection

[35] Predictive maintenance
[83] Temperature abnormalities 

monitoring
Lighting system [89] Lighting performance information 

delivering and anticipation
Drilling robot [40] Safety improvement and real-time 

monitoring
Structure Bridge structure [60] Structural health monitoring

[27] Inspection and maintenance
[61] Condition monitoring
[90] Real-time structural performance 

monitor
[91] Vulnerability assessment and risk- 

based maintenance planning
[85] Condition inspection
[91] Vulnerability assessment and risk- 

based maintenance planning
Railway track [53] Track geometry parameters 

prediction and railway track 
maintenance

[86] Condition assessment and life cycle 
analysis

[92] Sustainability and resilience 
improvement

[48] Long-term rail surface damage 
prediction

[69] Maintenance activities reduction
Road pavement [98] Real-time monitoring and 

maintenance
[99] Road inspection and maintenance
[122] Unbound road pavement 

management
Reinforced 
concrete unit

[68] Structural health monitoring and 
predictive maintenance

[51] Asset maintenance tracking and 
equipment failure prediction

[78] Production and supply chain 
optimization

Facade element [80] Building facade segmentation
[93] Energy savings and reliability 

improvement
Water 
infrastructure

[44] Maintenance prioritisation based on 
surveillance program and prediction 
modelling

Environment Indoor air 
quality

[65] Failure prediction
[94] Health-based maintenance 

prioritisation
[58] Indoor environment quality 

prediction ratio
Non-residential 
building

[32] Fault detection and prediction

Residential 
buildings

[81] Occupant comfort improvement

University 
laboratory

[83] Temperature abnormalities 
monitoring and inspection

Hospital building [63] Building component reuse
Substation [87] Diagnostic prediction
Port [95] Security control and pollution 

reduction
Precast concrete 
plant

[42] Operational risk management and 
anomaly detection

HVAC plant [46] Real-time monitoring and anomaly 
detection
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Fig. 8. Digital twin-enabled maintenance 4.0 framework in the building industry.

Fig. 9. The systemic overview of data distribution in digital twin-enabled maintenance 4.0 in the building industry.

Fig. 10. Data from BIM models.
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allowing for better decision-making and more effective building man
agement [128]. For example, incorporating site photographs into the 
BIM model to create a visual timeline of construction progress, helping 
to identify potential issues and ensure quality control.

Beyond the as-designed BIM, as-built BIM is increasingly significant 
in the implementation of maintenance solutions [129]. As-built BIM 
accurately represents the actual construction, including unplanned 
modifications made during the construction process, while the data in 
as-built BIM provides up-to-date information on the building’s current 
state. By leveraging as-built BIM, advanced maintenance solutions are 
significantly enhanced for existing buildings, which often lack digital 
models and have substantial maintenance demands [130]. Additionally, 
maintenance teams can accurately track the building’s condition, 
anticipate potential issues, and streamline maintenance workflows 
[131]. In conclusion, the integration of both as-designed and as-built 
BIM models into building maintenance strategies is essential for mod
ernising the maintenance approach. This comprehensive data view 
supports improved decision-making, operational efficiency, and 
extended building lifespans through timely and effective interventions.

6.1.2.2. Data integration using IFC, COBie, and JSON. Data integration 
between different subsystems is a critical characteristic for building- 
related maintenance [37]. In existing studies, three important 
methods for data mapping and integration in building maintenance are 
Industry Foundation Classes (IFC), Construction Operations Building 
Information Exchange (COBie), and JavaScript Object Notation (JSON). 
Moreover, the data interactivity and interoperability between BIM, 
sensor networks, and maintenance record systems have garnered sig
nificant research attention, with numerous studies exploring unified 
data formats for building maintenance [132,133].

IFC is an open, standardised data format that enables the sharing of 
BIM data across different software platforms [134]. It ensures interop
erability, allowing various stakeholders to access and use the same data 
seamlessly. COBie is a data schema used to capture and deliver building 
information, particularly during the handover from construction to 
operation [135]. It includes details on building assets, such as equip
ment lists, warranties, and maintenance schedules, making it easier to 
manage building maintenance activities. JSON is a lightweight 
data-interchange format that is easy to read and write and is commonly 
used for data exchange between web applications and servers [136]. In 
the context of building maintenance, JSON can integrate data from 
sensors and facility management systems with BIM data, providing a 
unified dataset for maintenance activities. Fig. 11 presents data samples 
of a wall structure represented through IFC, COBie, and JSON formats, 
respectively. These examples are simplified to emphasise the differences 
in representation. In practical applications, each format would encom
pass more detailed and specific information tailored to its particular use 
case and standards.

The above data processing and integration techniques allow for the 
development of sophisticated maintenance strategies, ultimately 

enhancing the performance and longevity of building assets. The syn
ergy between IFC, COBie, and JSON not only facilitates efficient data 
management but also supports the creation of intelligent models that 
drive improved decision-making and operational efficiency in the 
building industry [137].

6.1.3. Intelligent model
The intelligent model plays a pivotal role in the proposed framework 

by serving as the core analytical engine that drives advanced mainte
nance strategies [17]. According to Fig. 8, the methodology can be 
categorised into model-based methods, data-driven methods, and hybrid 
methods. As illustrated in Table 8, model-based methodologies, such as 
rule-based algorithms, statistical models, and reliability theory, leverage 
domain knowledge and theoretical frameworks to provide structured 
and interpretable insights into system behaviour [138]. However, the 
effectiveness is often limited by the accuracy of the underlying models 
and assumptions, and they may struggle to adapt to complex, dynamic 
environments. Consequently, data-driven methods, including ML, deep 
learning, and data analytics, allow for the processing of large datasets to 
uncover hidden patterns and predictive insights [139]. Nevertheless, 
their reliance on extensive datasets and computational resources, 
coupled with potential issues in interpretability and transparency, poses 
significant challenges. To ensure a robust and adaptive maintenance 
solution, hybrid methods are being explored to combine the predictive 

Fig. 11. Wall sample of IFC, COBie, and JSON.

Table 8 
Model-based VS data-driven method in maintenance 4.0.

Model-based Data-driven

Data Architectural drawings, Facilities 
specifications, Material 
properties

Operation data, Attribute data, 
Maintenance logs

Techniques Physical/mathematical models, 
Simulations

Machine learning, Statistical 
analysis

Approach Simulating equipment behaviour 
and degradation based on 
detailed knowledge of physical 
principles and mechanisms.

Identifying patterns and trends 
in large volumes of data from 
sensors and logs.

Example Structural health monitoring 
using stress-strain relationships

HVAC system failure prediction 
using historical and real-time 
performance data

Limitations • Limited scalability due to the 
need for detailed models for 
each system.

• Slower response time due to 
reliance on model analysis.

• Highly dependent on 
specialised engineering skills, 
domain-specific knowledge, 
and experience

• Limited by simplified model 
design and ideal parameters 
assumptions.

• Higher initial investment in 
data big data infrastructure.

• Laborious and expensive data 
labelling efforts.

• Highly dependent on the data 
quality and availability
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accuracy of data-driven methods with the contextual understanding 
provided by model-based methods [108]. This approach demonstrates 
improved performance and broader applicability during the practical 
implementation.

6.1.4. Virtualisation platform
The visualisation platform layer in the framework depicted in Fig. 8

integrates various tools and technologies to create a comprehensive and 
interactive representation of the target building-related asset, aiding in 
effective decision-making and operational efficiency [140]. The pre
sented platform summarised from existing studies includes: 

(1) As-designed BIM: The BIM model captures the initial design 
specifications and construction details, providing a digital rep
resentation of the building’s physical and functional character
istics [141].

(2) As-built BIM: The as-built model is reconstructed using laser 
scanning and AI engineering after the building has been 
completed, which accurately reflects the actual conditions of the 
finished building, incorporating any changes made during the 
construction process [142].

(3) Engineering Simulation: Professional software such as Matlab, 
EnergyPlus, TRNSYS, and DesignBuilder allow for the virtual 
testing and analysis of building components and systems under 
various conditions, helping to predict performance and identify 
potential issues before they arise [143].

(4) Real-time Dashboards: These platforms provide up-to-date in
formation and analytics, such as key performance indicators, 
maintenance schedules, energy usage, and other critical metrics, 
enabling stakeholders to monitor the building’s performance and 
status in real-time [144].

(5) Immersive Platform: This includes technologies such as virtual 
reality (VR) and augmented reality (AR) that offer immersive 
experiences for users. These platforms can be used for virtual 
walkthroughs, training, and remote collaboration, enhancing 
understanding and engagement with the building data [15].

The visualisation platform layer ensures that data acquired from 
various sources and decision-support information generated in the 
intelligent model layer are presented in a user-friendly and actionable 
format. Fig. 12 illustrates the example platform established by the au
thors in their experiment. The as-built BIM is displayed on the proposed 
iScan2BIM platform [145], while the as-designed BIM is shown using the 
XbimXplore software [129]. The immersive building environment is 
generated using Unity and HoloLens, and the real-time dashboard is 
deployed on a web-based platform. By providing these advanced visu
alisation tools, the layer supports better planning, monitoring, and 
management of building maintenance activities, ultimately contributing 
to the efficiency and sustainability of building operations [146].

6.1.5. Could support
Cloud support is essential for the efficient storage, processing, and 

accessibility of data with the DT-enabled Maintenance 4.0 ecosystem for 
the building industry [147]. The cloud system provides robust infra
structure and services that enhance data management and integration 
across various stages of the building lifecycle, from design to demolition 
[148]. Table 9 presents a comprehensive overview of the cloud support 
stack that underpins the DT-enabled Maintenance 4.0 in the building 
industry. It encompasses data transmission, data storage, and data 
processing technologies. The data transmission section highlights secure 
and efficient communication protocols, including MQTT, HTTP/HTTPS, 
CoAP, and OPC UA, along with various network types like LAN, WAN, 
4G/5G, and LPWAN, which facilitate reliable data transfer across 
different environments [149]. The data storage section emphasises the 
role of edge computing for initial processing close to data sources and 
centralised cloud databases provided by Amazon Web Services, Micro
soft Azure, and Google Cloud Platform for large-scale data management 
[150]. The data processing section covers edge processing for pre
liminary data handling and cloud processing using scalable in
frastructures, including big data frameworks like Hadoop and Apache 
Spark, stream processing tools such as Apache Kafka and AWS Kinesis, 
and serverless computing services like AWS Lambda and Azure Func
tions. This technological stack ensures efficient data management, 
processing, and accessibility, enhancing the effectiveness of building 

Fig. 12. Virtualisation platform established by authors.
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lifecycle management within the digital twin framework.
Fig. 13 illustrates the comprehensive sequence of processes within 

this ecosystem, beginning with data collection from a variety of sources, 
which are subsequently transferred to the cloud database through the 
network. Following storage, disparate raw data are processed into 
suitable data and advanced data analysis methods, including ML and 
neural networks, are employed to extract meaningful insights from the 
integrated data. These insights are subsequently visualised through 
dashboard-enabled methodology, providing stakeholders with intuitive 
and actionable information. Finally, this process culminates in informed 
decision-making by industry professionals, who leverage the visualised 
data to optimise maintenance strategies, enhance operational efficiency, 
and ensure the sustainable management of building assets throughout 
their lifecycle.

6.2. Comparative interpretation and novelty analysis

The analytical review of 81 studies demonstrates a clear differenti
ation in research design, asset orientation, and evaluation methodology, 
indicating the growing methodological maturity of DT–enabled Main
tenance 4.0 research. Conceptual and prototype investigations 

constitute the majority of existing works, whereas fully validated case 
studies remain comparatively limited. The findings reveal distinct 
modelling preferences across asset categories: data-driven approaches 
are predominantly applied to dynamic environmental and HVAC sys
tems, while hybrid physics–based and artificial intelligence methods are 
more prevalent in structural and safety-critical applications. In addition, 
the reviewed studies employ heterogeneous performance indicators, 
resulting in inconsistency and reduced comparability across domains. To 
overcome these limitations, the proposed framework establishes a sys
tematic interpretation that integrates study design, asset domain, and 
evaluation metrics into a coherent analytical structure, as summarised in 
Table 10.

Although numerous studies have proposed high-level data
–model–visualisation frameworks for DT-enabled maintenance, the 
proposed framework advances the field through three key aspects: 
firstly, it achieves evidence-based synthesis by being empirically derived 
from the comparative analysis of 99 systematically coded studies, inte
grating methodological patterns across asset types, algorithmic designs, 
and technological readiness levels to ensure analytical rigor and prac
tical relevance; secondly, it introduces a bidirectional learning mecha
nism in which analytical outputs dynamically refine sensing strategies, 
fault thresholds, and maintenance scheduling, transforming linear 
maintenance processes into adaptive, self-optimising loops; and thirdly, 
it ensures scalable interoperability through modular integration of IoT, 
BIM, and cloud–edge infrastructures, supported by open standards such 
as IFC, COBie, and MQTT, enabling deployment across single assets and 
multi-building systems. Collectively, these advancements establish the 
framework as a data-driven, feedback-adaptive, and scalable method
ology that operationalises Digital Twin–enabled Maintenance 4.0 
beyond conceptual abstraction.

7. Conclusion and future discussion

The advanced maintenance paradigm has become increasingly vital 
in the building industry, driven by the urgent need to ensure structural 
integrity, operational efficiency, and sustainability throughout the 
building lifecycle [108]. The rapid advancement of Industry 4.0 has 
accelerated the convergence of Maintenance 4.0 and Construction 4.0, 
promoting proactive and intelligent maintenance approaches across the 
built environment. As a pivotal enabling technology, the DT paradigm 
enhances the continuous monitoring, simulation, and optimisation of 
physical assets through real-time information exchange and AI-enabled 
decision support [151]. This research makes progress beyond existing 
studies by systematically integrating dispersed DT-related maintenance 
research into a coherent, multi-dimensional framework, thereby 
contributing to the field through a structured threefold advancement. 

• Comprehensive Knowledge Integration: A systematic review of 99 
academic sources was conducted to identify and classify enabling 
technologies, technological pipelines, and deployment strategies 
within DT-enabled Maintenance 4.0. This integration consolidates 
fragmented findings into a cohesive knowledge system, providing a 
structured foundation that has been lacking in previous research.

• Unified Framework Development: A novel DT-enabled Maintenance 
4.0 framework is proposed, encompassing the entire technological 
hierarchy from communication and data acquisition to computa
tional analytics, intelligent modelling, and visualisation, all sup
ported by scalable cloud infrastructure. Compared with previous 
studies that focused on single functions or domains, this framework 

Table 9 
Technology stack in cloud support layer.

Data 
transmission

Communication Protocols: Ensures secure and efficient data 
exchange.
MQTT (Message Queuing Telemetry Transport): Lightweight, 
publish-subscribe network protocol suitable for remote 
monitoring.
HTTP/HTTPS: Used for web-based communication, ensuring 
secure data transfer.
CoAP (Constrained Application Protocol): Designed for low- 
power, low-bandwidth devices.
OPC UA (Open Platform Communications Unified 
Architecture): Standard for industrial automation, ensuring 
interoperability.
Network Types: Facilitates reliable data transfer across various 
environments.
Local Area Network (LAN): Used within a factory or industrial 
site.
Wide Area Network (WAN): For data transmission over long 
distances.
Cellular Networks (4G/5G): For remote locations and mobile 
assets.
Low Power Wide Area Networks (LPWAN): For IoT devices 
with low data rates over long ranges (e.g., LoRaWAN, Sigfox).

Data storage Edge Computing: Initial processing and storage close to the 
data source to reduce latency and bandwidth usage.
Cloud Database: Centralized storage for large-scale data 
processing and analysis.
Amazon Web Services (AWS): Offers databases like Amazon 
RDS, DynamoDB, and S3 for storage.
Microsoft Azure: Provides Azure SQL Database, Cosmos DB, 
and Blob Storage.
Google Cloud Platform (GCP): Includes Google Cloud Storage, 
Firestore, and BigQuery.

Data processing Edge Processing: Preliminary data processing at the edge to 
filter, aggregate, and preprocess data before sending it to the 
cloud.
Cloud Processing: Advanced data processing using scalable 
cloud infrastructure:
Big Data Processing Frameworks: Apache Hadoop, Apache 
Spark.
Stream Processing: Apache Kafka, AWS Kinesis.
Serverless Computing: AWS Lambda, Azure Functions for 
event-driven processing.

Fig. 13. Data flow diagram.
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unifies multi-disciplinary technologies and demonstrates their 
interoperability across building structures, facilities, and environ
mental systems.

• Comparative Progress and Maturity Evaluation: By categorising 
existing studies into review, framework, prototype, and case study 
types, this research provides a technology maturity analysis that 
clarifies how the field has evolved from conceptual proposals toward 
implementable systems. This classification highlights the concrete 
progress achieved and identifies critical gaps hindering large-scale 
industrial adoption.

Among examined studies, about 20% studies focused on data 
standardisation issues, 50% examined AI-driven modelling, and 30% 
proposed hybrid or integrated approaches, thereby offering quantitative 
evidence for the above three major conclusions. Collectively, these 
findings confirm that while research on DT-enabled maintenance has 
made substantial progress in modelling and integration, it lacks stand
ardised metrics, validated cross-domain benchmarks, and large-scale 
industrial replication. Future work should therefore prioritise: 

• The standardisation of data protocols covering structure, facilities, 
and environment is essential for ensuring interoperability and con
sistency across different systems and platforms [127].

• The implementation of interpretable AI is crucial for enhancing 
transparency and trust in AI-driven decisions.

• Furthermore, the development of hybrid models is necessary to 
leverage the strengths of model-based and data-driven approaches, 
providing more robust and versatile solutions [152].

• The advancement of high-precision modelling is required to accu
rately capture and simulate intricate details, thereby enabling more 
effective and efficient management of complex tasks [153]. The 
above efforts will collectively drive significant progress in the field.

The above analysis demonstrates the practical usefulness of this 
study. The proposed framework not only integrates the technological 
ecosystem of DT-enabled Maintenance 4.0 but also serves as a reference 
architecture for developing intelligent maintenance platforms with 
cross-domain data interoperability. The findings offer actionable in
sights for researchers and practitioners to design scalable AI-supported 
systems capable of predictive decision-making and self-optimising op
erations in real-world building environments.
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