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Chapter 1

Introduction

Travel demand modeling has been a key topic in transportation science and practice for many
decades. Estimating and predicting travel demand is fundamentally challenging because many
aspects of travel demand, especially detailed origin-destination flows, are rarely measured di-
rectly. Instead, travel demand models often rely on other types of data, such as counts of
vehicles at specific locations, surveys of travel behavior, and information about economic and
demographic factors that can influence travel demand.

Despite this challenge, reliable estimates and predictions of travel demand are essential for
many transportation policies and measures to operate effectively. For example, Transportation
Demand Management (TDM) strategies aim to reduce congestion and environmental impacts
by encouraging the use of alternative modes of transportation, such as public transit, cycling,
or walking (Ferguson, 1990). Accurate travel demand estimates help identify areas and times
where interventions like increasing public transit frequency, adding new transit routes, or ex-
tending operation hours for public transit, as well as improving cycling infrastructure, will be
most effective.

Similarly, infrastructure improvements designed to reduce congestion require precise knowl-
edge of where and when travel demand exceeds capacity (Antipova & Wilmot, 2012). This
ensures that investments in new roads or transit lines are made where they will have the greatest
impact, thereby optimizing resource allocation and avoiding unnecessary costs.

Land use planning uses travel demand data to promote sustainable urban development
(Cervero, 1996). By understanding how land use patterns influence travel behavior, planners
can design mixed-use developments that reduce the need for long-distance travel and encourage
the use of alternative transportation modes.

The deployment of vehicle technologies, such as electric or low-emission vehicles, depends
on understanding travel patterns to strategically place charging stations and assess potential
environmental benefits (van der Vooren & Alkemade, 2012).

Finally, Intelligent Transportation Systems (ITS), including traffic signal coordination and
real-time traffic information systems, rely on accurate and timely travel demand data to manage
traffic flow efficiently (Srinivasan et al., 2006). By predicting where congestion is likely to
occur, ITS can dynamically adjust traffic signals or provide route recommendations to drivers,
reducing delays and improving overall network performance.

In all these cases, having a clear understanding of people’s movements is essential for these
tools to be effective. As such, this thesis aims to contribute to a better understanding of the
spatial and temporal patterns of travel demand. Spatial and temporal patterns of travel demand
refer to the patterns, trends, and variations in travel demand over time and space. Many factors
influence these patterns: the timing of travel, spatial aggregation level and features, and the
characteristics of the individuals making the trip. Studying these spatial and temporal patterns
of travel demand is essential in understanding the complex interactions between transportation
systems, land use, and population demographics.

While traditional travel demand models often focus on long-term average patterns or rely on
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static socio-demographic characteristics derived from infrequent surveys, these methods may
not adequately capture the dynamic nature of travel behavior influenced by real-time factors
such as time of day, day of the week, special events, or unexpected disruptions. Traditional
models might miss short-term variations and spatial heterogeneity in travel demand. Under-
standing detailed spatial and temporal patterns provides insights into how travel demand fluc-
tuates throughout the day, week, or year, and across different geographic areas. This knowl-
edge allows for more responsive and adaptive transportation planning, enabling strategies like
real-time traffic management, dynamic transit scheduling, and targeted demand management
interventions.

In addition to spatial and temporal dimensions, travel demand is influenced by other factors
such as travel purpose, mode choice, and individual preferences. Recent advancements in travel
demand modeling, such as activity-based models and agent-based simulations, have focused
on capturing individual-level behaviors and inter-personal differences. These models aim to
provide a more detailed and behaviorally realistic representation of travel demand by consid-
ering the sequence of activities and trips made by individuals, as well as their preferences and
constraints.

However, while disaggregate models offer valuable insights into individual travel behav-
ior, they often require extensive data and computational resources, which may not be readily
available for all contexts. In contrast, analyzing aggregate patterns at the population level can
provide practical insights for transportation planning and policy-making, especially when lever-
aging large-scale data sources such as GSM mobile phone data. By focusing on spatial and
temporal patterns at an aggregate level, we can identify general trends and variations in travel
demand that are essential for optimizing transportation systems.

Our research aims to contribute to the understanding of travel demand by exploring spa-
tial and temporal patterns in aggregate travel data. By focusing on these dimensions, we can
capture the collective behavior of travelers, which is critical for infrastructure planning, service
scheduling, and policy interventions. Additionally, spatial and temporal analyses are well-suited
for leveraging big data sources, enabling us to uncover patterns that may not be evident at the
individual level.

For instance, by analyzing temporal patterns, planners can identify peak travel times and
implement measures such as staggered work hours or increased public transit frequency dur-
ing those periods. Spatial pattern analysis helps in recognizing areas with high demand, en-
abling targeted infrastructure development or service provision. Furthermore, utilizing GSM
mobile phone data offers real-time, large-scale data collection, which surpasses the limitations
of traditional survey methods in terms of sample size and temporal granularity. This approach
facilitates a more detailed and timely understanding of travel demand, essential for effective
policy-making and transportation system optimization.

In this introductory chapter, we first provide the background information in 1.1 to identify
knowledge gaps in 1.3. Next, we formulate our overarching research question in 1.4 followed
by the research overall approach (1.5) and sub-questions (1.6). Thereafter, we introduce the
scientific contributions and societal relevance in 1.7 and 1.8. Finally, we present an overview
of the book’s structure in in 1.9. This doctoral research is a part of the MiRRORS project
(Multi-scale integrated tRaffic obseRvatory fOr large Road networkS), funded by the Dutch
Research Council (Nederlandse Organisatie voor Weteschappelijk Onderzoek or NWO). The
overall objectives of MiRRORS are “To develop a new hybrid multi-scale travel demand and
supply estimation and prediction methods”. The objective of this thesis, as a component of
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the MiRRORS project, is to develop a new data-driven framework for exploring the spatial
and temporal patterns inside travel demand. Moreover, this research explores the sensitivity of
travel demand patterns to spatiotemporal scales and aggregated socio-spatial characteristics of
the population.

1.1 Background

Travel demand shows people’s travel and activity patterns in time and space. By knowing how
much travel to expect at different times of day, on different roads, and in different areas of the
city, planners can design and operate transportation systems that are efficient, effective, and safe.
This can help reduce congestion, improve road safety, and make transportation more accessible
for everyone. A reliable estimation and prediction of travel demand can lead to optimization in
network use, which also benefits users in their daily trips. Additionally, understanding travel
demand patterns can help city officials make informed decisions about infrastructure develop-
ment, public transit, and other transportation-related issues.

Travel demand estimation and prediction are used to reconstruct and forecast the demand
for travel between different locations. Travel demand estimation refers to the process of deter-
mining the demand for travel based on available data. It is used to understand and quantify the
past or current demand for travel between different locations. Travel demand estimation meth-
ods use various data such as census or travel survey data, and GPS or GSM data (e.g., Fekih
et al. (2022)). Travel demand Prediction, on the other hand, refers to the process of forecasting
future demand for travel based on historical data and other factors that may affect travel de-
mand. It is used to anticipate and plan for future travel demand. Predictions can be made using
statistical models or machine learning techniques that are trained on historical data. There are
various factors that can influence the prediction of travel demand patterns, including the time of
the day, day of the week, level of aggregation, population demographics, and spatial land use
characteristics.

The travel demand is commonly aggregated into origin-destination (OD) matrices. An OD
matrix is a table showing the number of trips that originates from each zone (or origin) and ends
at each other zone (or destination) in the region. The conventional four-step model is a com-
monly used approach for demand modeling in transportation planning (Levin et al., 2019). It
involves four steps of trip generation, trip distribution, mode choice, and route choice steps; the
first two relate to travel demand. In the trip distribution step, a gravity model is commonly used
to estimate (or predict) the OD matrix (Ortizar & Willumsen, 2011c). These models estimate
travel demand between two locations based on the size of the locations and the distance between
them. The assumption posits that travel demand between two locations is directly proportional
to the size of the locations (e.g., population or employment) and inversely proportional to the
distance separating them.

Gravity models for OD matrix estimation rely on trip “production” and “attraction” to pre-
dict flows between locations. Trip production refers to the ability of a location to generate trips,
while trip attraction refers to the ability of a location to attract trips. While the OD matrix rep-
resents the number of trips made between each origin and destination pair, it doesn’t show the
underlying factors that influence the decision to make a trip (i.e., trip production) and to select
where to go (i.e., trip attraction). This can be done by analyzing the demand at a more aggregate
level; first finding patterns in producing trips at origins (and attracting trips at destinations), as
investigated in Chapter 3 , and then exploring the relationships between such demand patterns
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and various characteristics of the area, as studied in Chapter 5.

Trip production (and attraction) can sometimes be measured directly from observed data,
such as traffic counts or surveys, but these measurements may be limited in scope, outdated,
or not available for all areas of interest. However, the production and attraction of a location
can vary over time due to changes in economic conditions, built environment, population de-
mographics, and other factors. This variation makes it challenging to accurately predict travel
demand between locations using gravity models, as they often rely on data that may not be read-
ily available or may be outdated, which can affect the reliability of the travel demand estimates.

Therefore, to accurately predict travel production and attraction for a short-term period, it
is crucial to collect data on the relevant factors that influence them and to take into account the
specific spatial and temporal context in which the model is being used. The influential factors
may involve population distribution and demographics, built environment, economic activity,
accessibility, and other factors. Using statistical techniques to explore this data and identify
patterns in the flow of people between locations will allow for more accurate estimation and
short-term prediction of travel demand using a gravity model.

Spatial context affecting demand estimation and prediction relates to the spatial charac-
teristics of the associated area. Spatial context also includes the spatial scale in OD matrix
prediction, referring to the geographical area over which the modeled movements are defined.
The spatial scale can significantly impact the accuracy and reliability of the OD matrix predic-
tion, as different spatial scales may capture different patterns of movement and may be subject
to different factors influencing these movements (Ortizar & Willumsen, 2011a). For example,
a prediction at a fine spatial scale (e.g., at the level of individual streets or buildings) may be
more accurate in capturing local variations in movement patterns within a day, day-to-day, and
between people. However, it may also be more sensitive to measurement error or other sources
of uncertainty. On the other hand, a prediction at a coarser spatial scale (e.g., at the level of
entire cities or regions) may be less sensitive to these sources of uncertainty but may also be
less able to capture the fine-grained details of individual movement patterns. Therefore, it is
essential to carefully consider the appropriate spatial scale for an OD matrix prediction based
on the specific context and objectives of the modeling effort (as explained in Chapters 4 and 5).

The classic gravity model estimates travel demand between locations based on trip produc-
tion and attraction, and a deterrence function typically related to distance or travel impedance.
While the deterrence function can be calibrated using observed travel behavior and may in-
corporate factors like travel time or cost, the gravity model operates at an aggregate level and
may not fully capture individual-level factors influencing travel behavior, such as personal pref-
erences, income, or the specific attractiveness of destinations beyond general measures. To
address these limitations, more advanced models, including disaggregate trip distribution mod-
els like destination choice models and agent-based models, have been developed (see Ortizar
& Willumsen (2011c¢,b)). These models simulate the decision-making processes of individual
travelers or households, allowing for a richer representation of travel behavior by considering
individual characteristics, preferences, and accessibility to different destinations. This approach
enables the estimation of the impact of changes in land use and transportation infrastructure on
travel behavior with greater detail.

Despite the advantages of disaggregate models in providing a more detailed and accurate
representation of travel behavior by considering the characteristics of individual agents, ag-
gregate models such as the gravity model are still widely used for large-scale travel demand
modeling (Ortizar & Willumsen, 2011a). This is because they are relatively simple and easy to
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implement, and require less data and computational resources than disaggregate models. The
gravity model, for example, only requires data on the total number of trips between different
zones or areas, which is often readily available, and does not require data on individual agents
or households. Additionally, aggregate models can provide a good first approximation of the
origin-destination flows and are often used as a benchmark for more complex models (e.g.,
Calabrese et al. (2011)).

Regarding the data sources for travel demand estimation and prediction, GSM mobile phone
data has several potential advantages over traditional travel survey methods. It can provide a
more comprehensive and accurate picture of travel patterns, as it captures information on trips
made by a large number of individuals, rather than relying on self-reported data from a smaller
sample of respondents. Additionally, GSM data can be collected in real-time, allowing for more
up-to-date analysis of travel patterns. These advantages have led to the increasing use of GSM
mobile phone data in transport planning (e.g., Calabrese et al. (2011); Tolouei et al. (2017)).

One can use GSM mobile phone data in the four-step model of transport as follows:

* In the trip generation step, by analyzing the location data of mobile phones to identify the
trips originating from a specific location and the time of day to determine the frequency
of such trips.

* In the trip distribution step, by analyzing the GSM data to identify the destinations of
trips and develop the “prior” origin-destination matrix.

* In the modal split step, we can infer the mode of transportation used for each trip from
GSM data by analyzing the travel distance, duration, and stay at specific locations.

* In the traffic assignment step, by analyzing the GSM traces to assign the trips to the
transportation network by matching the location data to the network.

Estimating OD patterns using GSM mobile phone data can effectively show human mobility
and behavior. However, the accuracy of the estimates will depend on several factors. One
important factor is the availability and quality of the data. Mobile phone data can infer OD
patterns by tracking the locations of devices as they move around. However, the accuracy of
these estimates will depend on the tracking (i.e., polling) frequency and the location accuracy
of the devices in the data. Another factor affecting the accuracy of OD estimates using mobile
phone data is the method used to analyze the data. Different methods use different assumptions
to infer OD patterns, and the choice of method can significantly impact the accuracy of the
estimates. Overall, the accuracy of OD estimates using mobile phone data will depend on the
availability and quality of the data and the method used to analyze it (as explained in Chapter
2).

It is worth noting that GSM data is not the only data that can be used in a four-step model,
and it’s not always possible to have all the data for each step. Furthermore, GSM data is usually
only available for a subset of the population that might not represent the whole population. To
overcome such limitations, it is essential to use a combination of data sources and carefully
consider the sample’s representativeness when interpreting the results.

1.2 Literature review

Figure 1.1 provides an overview of travel demand data and analysis across aggregate and disag-
gregate levels. The term aggregate refers to data or analysis conducted at broader scales, such
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Figure 1.1: Conceptualization of travel demand at aggregate and disaggregate levels.

as zones, neighborhoods, cities, or provinces, while disaggregate pertains to data or analysis
at the individual or household level. The complexity with which spatial urbanization, socio-
economic factors, travel characteristics, and travel demand are represented varies significantly
between these levels of data and analysis. According to Figure 1.1, individuals make trips at
the lowest level of abstraction. Then on one end of the spectrum, at the disaggregate level,
choice models and activity-based analyses center around individuals or households. While on
the opposite end, aggregate studies employ average characteristics of cities or zones.The ana-
lytical techniques employed differ across these levels, spanning from basic correlation tests to
the estimation of theoretically grounded behavioral models (Handy, 1996).

Traditional travel demand analysis often relies on survey data, which can be time-consuming
to collect, limited in sample size, and may not accurately reflect real-time travel behavior due
to recall bias or infrequent updates. In contrast, using GSM mobile phone data enables the
collection of large-scale, real-time information on people’s movements, capturing both spatial
and temporal variations in travel demand. This approach allows for more accurate and timely
analysis, which is crucial for designing responsive transportation policies and interventions.

By focusing on spatial and temporal patterns, our research addresses the limitations of tradi-
tional methods and provides a deeper understanding of travel demand dynamics. This enhanced
understanding can inform more effective transportation planning and policy decisions, such as
optimizing public transit schedules to match actual demand patterns, improving traffic manage-
ment strategies, and guiding infrastructure investments to areas with growing travel needs.

Disaggregate travel behaviors are collected through surveys and travel diaries. The behav-
iors are observed in relation to contextual information such as land-use, socio-economic factors,
and personal preferences. Models at this level hold significant policy implications since they
enable estimation of the potential impact of minor policy changes on people’s decision-making
processes. Moreover, the application of disaggregate modeling techniques enables the connec-
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tion of individual-level attributes to system-level characteristics, encompassing household and
societal-level factors (Ghasri et al., 2017). Agent-based, activity-based and choice models are
typically applied to study individual travel behavior at this level.

While disaggregate models offer the advantage of a more detailed and accurate representa-
tion of travel behavior by accounting for individual agent characteristics, aggregate models like
the gravity model remain widely utilized for large-scale travel demand modeling (Ortizar &
Willumsen, 2011a). This preference arises from their simplicity, ease of implementation, and
lower requirements for data and computational resources compared to disaggregate models.
For instance, the gravity model only requires data on the total number of trips between differ-
ent zones or areas—information that is often readily available—without necessitating data on
individual agents or households. Furthermore, aggregate models can serve as a reliable first
approximation of origin-destination flows and are frequently used as benchmarks for evaluating
more sophisticated models (e.g., Calabrese et al. (2011)).

In this thesis, we focus on exploring travel demand patterns at the aggregate level using
large-scale data sources, such as GSM mobile phone data. While we recognize the value of
disaggregate models in capturing individual-level behaviors, our approach leverages the advan-
tages of aggregate models to analyze population-level patterns in travel demand. This focus
allows us to address practical challenges in transportation planning that require understanding
collective travel behaviors across regions, especially when individual-level data may be limited
or unavailable.

Despite significant advancements in computational capabilities, simulation cost remains a
crucial issue associated with disaggregate models (Pendyala et al., 2010). Furthermore, the ex-
pense of substantial data gathering and model development is a challenging factor, particularly
for small regions with limited funding resources (Stopher et al., 2003). In an effort to overcome
these limitations, Ghasri et al. (2017) have presented a preliminary demand modelling frame-
work that utilizes the concept of transferability demand models and evaluates its effectiveness.
The key feature of their approach is their focus on replicating data structures at a highly dis-
aggregated level, explicitly pertaining to individuals and households. By utilizing a bottom-up
approach that captures individual behavior, the proposed framework allows for effective policy
analysis. Furthermore, this framework is computationally efficient when compared to activity-
based models.

At the aggregate level, collective travel patterns of individuals at a large scale are investi-
gated. Analysis at this level provides insights for transport planners and policy-makers, but these
insights are not behaviorally intensive as disaggregate models (Axhausen & Gérling, 1992).
Travel demand data collected at this level is either collected at an aggregated level or has been
collected at the disaggregate level but later aggregated. For example, GPS and mobile phone
data are typically aggregated due to privacy concerns.

The travel demand field encompasses various levels of abstraction, ranging from individual
trips to collective travel patterns at a large scale. The accuracy of models used at each level
depend on various factors, such as data accuracy and resolution, the computational resources
available, and the objective. Understanding the relationships and interplay between the different
levels of analysis can inform transportation planning and policy-making.

In this regards, the literature has identified two primary perspective of travel demand analy-
sis: AD and DA. In AD, the main input data and results are at the disaggregate level, investigating
travel behavior features of individuals. However, data from the aggregate level has been used to
provide a broader context for individual travel behavior.
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For instance, the article by Zhou et al. (2022) explores the relationship between travel de-
mand patterns and demographic information, and land-use characteristics in older adults. The
study highlights that older adults have distinct travel patterns compared to younger adults, char-
acterized by more out-of-home activities, longer trips for medical purposes, and frequent trips
accompanying their grandchildren. The study also underlines the importance of considering
land-use characteristics in understanding travel demand patterns. The built environment is
found to significantly shape the travel patterns of older adults, particularly with regard to prox-
imity to recreational facilities and active travel behavior. These findings emphasize the need to
take demographic information and land-use characteristics into account in understanding travel
demand patterns and improving accessibility and quality of life for older adults.

In contrast, DA approach studies the travel demand on a large scale. Analysis at this level
primarily relies on aggregate data’ although data from the disaggregate level, such as built
environment and demographics, are used to help identify travel demand patterns and trends.
Moreover, many studies use aggregate data sources, which have been available for less than
two decades, to analyze large-scale travel demand estimation and prediction. The emergence
of these novel data sources, such as GPS and mobile phone records, has facilitated the moni-
toring of the variation of urban travel demand, thus aiding in the development or adjustment of
transportation planning and policies.

Leveraging mobile phone signaling data for travel demand modeling and transportation
planning offers a cost-effective opportunity for practitioners, planners, and policymakers, es-
pecially given the increasing complexity of transport networks. Ensuring the quality and accu-
racy of data is essential for making reliable analyses that inform investment and transport policy
decisions. In this regard, Fekih et al. (2021a) propose a cell phone activity indicator-based filter-
ing pipeline to process signaling data to make it useful for mobility and transportation purposes,
which could serve as a preliminary guideline that can be tailored to the specific case study. Ad-
ditionally, the authors emphasize the significance of examining how the location accuracy of
signaling data affects components like home location identification and trip detection, as well
as analyzing travel patterns such as travel time and their consistency with travel survey data.
The authors propose potential enhancements to the suggested pipeline, such as conducting a
more in-depth analysis of the stationary time threshold and the assumptions underlying the trip
expansion method, based on the identified home locations derived from the signaling data of
a single operator. Finally, as mobile phone usage continues to rise, cell network-based traces
are anticipated to generate higher-frequency data, encompassing a larger portion of the popu-
lation. This advancement enables the estimation of movements with finer temporal granularity
compared to traditional travel survey data. These emerging individual-based big data offer op-
portunities to deepen the understanding of less-explored mobility patterns, particularly during
special periods and events.

Another study by Bonnel et al. (2015) focuses on the potential and limitations of using pas-
sive mobile phone data to construct origin-destination matrices. The study used data collected
from the mobile phone network of Orange in the Ile-de-France region in 2009. Despite be-
ing able to generate matrices from the data collected from the Orange mobile phone network,
the validity of these matrices has not been thoroughly investigated. Because they plot census
commuting data against their home-based work mobile phone trips. Then they use only the
R2 of the analyses as an indicator of quality. Later, the authors compare the matrices with the
results from a household travel survey; however, they find limited results and a high degree of
dispersion in the comparison. The authors note that a more detailed analysis may improve the
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comparability and that identifying home and work locations from mobile phone data is crucial
in enhancing the matrices. The authors also acknowledge that further research is necessary to
validate the use of mobile phone data in transport modeling and planning based on journey
purpose split, distribution over time of day, or trip length distribution. They also find that the
results are highly sensitive to the assumption of a minimum stationary time of one hour and
suggest that this assumption should be refined and varied based on the characteristics of each
location area.

In another study, Burkhard et al. (2020) investigate the impact of spatial accuracy and tem-
poral granularity on transport mode detection using passively sensing mobile phone data. The
study applies commonly used methods for mode classification and evaluates the results for dif-
ferent levels of spatial uncertainty and temporal granularity. The results are based on a dataset
collected over half a year from 130 users who annotated their data. The authors found that
the level of accuracy required for mode detection depends on the chosen classification scheme.
The study also highlights that the reduction in classification quality is approximately linear with
the standard deviation of the sampling error. Furthermore, contextual information can mitigate
the effect of quality deterioration, while temporal sparsity is found to be more detrimental than
spatial uncertainty. The authors suggest that improvements in passive data collection should
prioritize increasing the sampling rate to a range of 30 seconds to a minute while addressing
spatial accuracy with lower priority, particularly when temporal granularity is high.

Another area of active research in transportation using DA approach is focused on investigat-
ing the correlation between contextual information such as built environment, socioeconomic
variables, special events, and specific times, as well as the analysis resolution on travel demand.
For instance, the study of Liu et al. (2022) explores the impact of spatiotemporal granularity on
the demand prediction of dynamic ride-hailing. The authors observe that travel demand exhibits
a strong spatiotemporal correlation, with temporal factors such as rush hours, weekends, and
holidays influencing demand in a highly periodic manner. Moreover, the demand for a specific
region is shaped not only by variables within that region but also by factors across the entire
network.

Zhao et al. (2022) focuses on predicting short-term bus travel demand, considering both the
spatial-temporal influence of the built environment and graph deep learning. They conclude that
given the ability of deep learning to capture spatial and temporal dependencies, the prediction
performance of these models can be further improved by considering the dynamic influence of
the built environment on bus travel demand. In this study, the authors used a time-dependent
geographically weighted regression model to explicitly capture the dynamic influence of the
built environment on bus travel demand. The results showed that this approach improved the
prediction accuracy compared to a model that only considered the built environment as static
features.

Finally, Xu et al. (2022) conduct a detailed analysis of how natural environmental and so-
cioeconomic factors affect urban travel demand. They contend that relying solely on the spatial-
temporal characteristics of traffic data is inadequate for accurately predicting urban travel de-
mand. Instead, they advocate for a more comprehensive approach that incorporates the complex
patterns shaped by environmental and socioeconomic influences. The study highlights the im-
portance of considering these factors in predicting urban travel demand, which is crucial for
effective transportation policies and strategies. The study highlights the need for continued
research in exploring environmental and socioeconomic factors affecting urban travel demand.
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1.3 Knowledge gaps

In this section, we will highlight several knowledge gaps related to the predictability of travel
demand that this thesis aims to address:

1. There is a significant knowledge gap in the standardized approaches for understanding
the temporal quality of GSM data and how it impacts the accuracy of origin-destination
(OD) estimates. Traditionally, a “stay and pass-by” model is applied to GSM data for
OD detection, which assumes that individuals either stay in a particular location for a
certain amount of time or pass through it quickly without stopping. However, different
studies have used different methods for determining when an individual is considered to
be “staying” in a location, and there is currently no consensus on the most appropriate
method. This lack of standardization encompasses not only the criteria used to define
stays and trips (such as minimum duration thresholds, distance moved, or speed) but
also the preprocessing steps, data filtering techniques, and validation methods employed.
Without standardized methodologies, it’s challenging to assess the quality and reliability
of OD estimates derived from GSM data or to compare findings across different studies
and contexts.

Additionally, GSM data is typically collected at the level of individual phone calls or
texts rather than continuously tracking an individual’s movement over time, leading to
a knowledge gap in understanding the temporal quality of this data and how it impacts
OD estimates. The infrequency of records can make it challenging to accurately estimate
the duration of an individual’s stay in a particular location or to understand the spatio-
temporal patterns of their movement.

2. There is a major knowledge gap in our understanding of spatial and temporal patterns in
the trip production . This is especially relevant for accurately estimating and predicting
OD matrices using trip distribution models. However, transportation systems are complex
and dynamic, making it difficult to accurately model and predict travel demand, even with
accurate data. This complexity and dynamics contribute to spatiotemporal heterogeneity
in trip production (and attraction), which can impact the reliability of OD matrix predic-
tion. In fact, when using the gravity model to estimate or predict the OD matrix, there is
a significant knowledge gap related to trip production variability depending on the time
of day, day of the week. For example, a region may have higher trip production during
morning peak hours compared to afternoon peak hours, or certain zones may have higher
production than others. People’s travel patterns and behaviors can also change over time,
further complicating the prediction of future trip production.

3. One potential research gap in estimating and predicting travel demand is understanding
how spatial scale—specifically, the level of spatial aggregation, such as traffic analysis
zones, cities, or regions—affects the accuracy and reliability of predictions. There is a
lack of studies that directly compare the prediction of travel demand across different spa-
tial scales. This lack of knowledge makes it difficult to determine which spatial scale best
suits a specific study objective or context.. This lack of knowledge makes it difficult to de-
termine which spatial scale best suits a specific study objective or context. Additionally,
without such comparisons, it is challenging to make reliable generalizations about the
predictability of travel demand across various spatial scales. To address this research gap
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and improve the reliability of travel demand predictions, a direct comparison of travel
demand predictions at different spatial scales is necessary. While there is a significant
amount of research on travel demand prediction at various spatial scales, it is often diffi-
cult to compare the results of these studies directly due to differences in study design and
the specific factors being considered.

4. Another potential research gap in trip production prediction is the correlation between
dominant demographic and land-use information (i.e., socio-spatial characteristics)
and travel demand patterns at different spatial scales. Collecting and exploring a large
amount of data on factors such as travel times, population density, and economic activity
can help to understand these complex relationships better and improve the accuracy of
OD matrix predictions. While demographic data is commonly used to inform trip pro-
duction models, there is a lack of understanding about how different demographic factors
impact the accuracy of these models and how they vary at different spatial scales. For
example, it is unclear how age, income, household size, or employment status affect the
patterns of trip production or whether these factors have different impacts in different
contexts. Therefore, further research is needed to understand these relationships better
and to identify the most relevant factors for predicting trip production at different spatial
scales.

1.4 Main research question

Building on the identified knowledge gaps in understanding the relationship between input data
and estimated demand, as well as the necessity of developing a data-driven framework to inves-
tigate travel demand patterns, we can now articulate the primary research question:

What are the spatial and temporal patterns of travel demand considering the input data
quality, spatio-temporal context, the objective spatial scale, and the socio-spatial characteris-
tics?

The following section outlines the primary research approach that enables us to systemati-
cally address this critical research question.

1.5 Overall research approach

This thesis employs data-driven methods to explore and predict travel demand patterns. Demand
pattern prediction methods can be broadly divided into two categories based on the balance of
data-driven and theory-based models. Mechanistic models, which use a conceptualization of
the system together with theoretical and parameterized relationships, require less data in their
calibration as these are bound by theory. Therefore, they are well-suited for non-recurring sce-
narios where enough data may not be available. However, these models require a well-proven
theory of the system we want to model. Otherwise, they may introduce invalid assumptions into
the estimation (prediction) results.

Phenomenological models, also referred to as data-driven models, on the other hand, use
agnostic and high flexible machine learning structures. Therefore, they require much more
historical data on phenomena to calibrate the appropriate statistical inferences. These data for
transport modeling include the distribution of activities, and modes of transport in time, as the
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input for machine learning methods. Extensive data availability and the minimum number of
involved assumptions have resulted in more enthusiasm for these flexible methods when no
proven theory is available. However, these methods treat the phenomena like a “black-box™ —
challenging to explain the outcome in terms of traffic theory. Besides, the nature of learning
from historical data and having no traffic theory make future decisions constrained by what it
learns from that data. In other words, it is not straightforward for the data-driven approach to
predict traffic in case of unseen incidents or accidents that are not present in the data. Since
these methods do not consider causality, they are not suitable for non-recurrent situations.

This thesis focuses on a data-driven (i.e., phenomenological) modeling approach to predict
travel demand patterns. Data-driven models offer a high level of insight into the fundamental
physical processes that shape transportation patterns, which can be helpful in situations where
more detailed, context-specific theories are not available or appropriate. As a result, these
approaches are generally more generalizable and potentially applicable to a broader range of
contexts. Our approach differs from typical phenomenological models because we don’t treat
phenomena as a black box. Instead, we perform sensitivity analyses to uncover the underlying
system theory and relationships. By studying the underlying mechanisms driving transportation
patterns, data-driven models can inform the development of targeted approaches better suited
to specific contexts, i.e, the theory . Additionally, these models are often built from the ground
up, starting with basic principles and adding complexity as needed, making them flexible and
adaptable to different situations.

By employing a data-driven modeling approach that utilizes GSM mobile phone data, we
can capture real-time, high-resolution travel behavior without relying solely on traditional sur-
vey methods, which may be limited in scope and frequency. This approach allows us to identify
emerging trends and patterns in travel demand that are critical for adaptive transportation plan-
ning and policy-making.

While the machine-learning techniques adopted in this thesis are standard within data-science
practice, their systematic tailoring to production-side demand modelling and their cross-comparisons
at several spatial scales have, to our knowledge, not been documented before for the Nether-
lands. Emphasis is thus placed less on algorithmic novelty and more on (i) methodological
transparency, (ii) reproducible benchmarking across scales, and (iii) domain-specific insights
that can be transferred to demand modelling.

Furthermore, by integrating machine learning techniques with transportation analysis, we
can develop models that are both flexible and capable of handling complex, nonlinear relation-
ships inherent in travel behavior. This results in more accurate predictions and a better under-
standing of the factors influencing travel demand, enabling policymakers to design interventions
that are responsive to current and future needs.

To unravel travel demand patterns, we employ various machine learning methods, including
pattern recognition and clustering algorithms to identify patterns in the data, as well as deep
learning models to predict future travel demand. Additionally, we use statistical methods such as
hypothesis testing and analysis of variance to validate our findings and draw robust conclusions
about travel demand patterns.

1.6 Research sub-questions

To achieve this thesis aim, we raise four research sub-questions. The following sub-questions
are associated with the four mentioned elements of the main research question and the four
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knowledge gaps we identified.

1. How do temporal aggregation and discretization of input data (indicating the input data
quality) affect the demand estimation?

2. What are the dominant temporal patterns of trip production?
3. What is the relationship between spatial scale and prediction of trip production?

4. What is the relationship between the patterns of trip production and their associated
overall socio-spatial features?

1.7 Research contributions

Our research contributes to travel demand modeling by introducing a data-driven framework
capable of quantifying the predictability of travel demand across multiple spatial and temporal
scales. This framework utilizes advanced machine learning and statistical techniques to analyze
available data sources, providing policymakers and traffic managers with valuable insights that
can aid in the decision-making process related to the transport network. The development of
this innovative modeling approach represents an advancement in the field and has the poten-
tial to improve our understanding of travel demand patterns, leading to more effective transport
planning and management. Our study offers the following contributions categorized under four
perspectives:

Spatio-temporal idiosyncrasies of input data for demand estimation

* A new data-driven framework based on Kernel density estimation and Bayesian classi-
fication for preprocessing and interpreting the raw GSM data for OD matrix estimation.
This framework adopts the minimum number of assumptions on trip patterns which re-
duces bias toward longer-duration trips or longer-duration activities. This generalization
makes it easy to compare results across studies with different contexts.

* New insight into the impact of temporal aggregation and discretization of input data on
the OD matrix reconstruction. This understanding helps transport planners identify the
appropriate context-specific polling frequency of mobile phone data and filter the more
informative traces for more accurate OD matrix estimation.

These contributions help transport planners and analysts to process and interpret GSM data
more effectively, leading to more accurate OD matrix estimations. Accurate OD matrices are
foundational for developing reliable travel demand models, which in turn inform infrastructure
planning, congestion management strategies, and service scheduling. By understanding how
temporal aggregation affects OD estimation, planners can select appropriate data collection fre-
quencies to capture essential travel behaviors, ensuring that models reflect actual travel patterns
and support effective decision-making.

Distinguishing the spatial-temporal travel demand patterns
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* A new data-driven framework that uses deep neural networks and K-means clustering to
identify dominant temporal patterns of trip production. This framework automates the trip
production pattern recognition, which reduces bias toward specific patterns and number of
underlying clusters. This generalization makes it easy to compare results across different
studies.

* A new analytical data-driven framework that makes use of a Gradient Boosting algorithm
and hierarchical clustering to find the association between dominant temporal patterns
and spatial land-use features.

* A new validation method of data consistency without ground truth which help get some
insight into the validity of processed aggregated OD data using unknown assumptions or
methods without having the ground truth.

By identifying dominant temporal patterns of trip production and their association with land-
use features, planners can understand how different areas generate travel demand throughout
the day and week. This information is critical for optimizing public transit schedules, design-
ing demand-responsive transport services, and planning infrastructure improvements that align
with actual usage patterns. For example, areas with significant afternoon peaks in trip pro-
duction may require increased transit services during those times, while areas with consistent
demand throughout the day might benefit from different strategies.

Prediction of travel demand at multiple spatial scales

* A new data-driven framework using a graph-based deep neural network to incorporate
spatial adjacency of traffic analysis zones into the trip production prediction. This insight
makes it possible to compare the results of demand prediction under multiple spatial
scales.

Developing a predictive framework that operates across multiple spatial scales enables planners
to make informed decisions at various administrative levels, from local neighborhoods to entire
regions. By incorporating spatial adjacency into demand prediction, the models can capture
the influence of neighboring zones, leading to more accurate predictions. This is particularly
valuable for regional planning efforts where coordination between adjacent areas is essential
for effective transportation system development.

Sensitivity of travel demand patterns to socio-spatial characteristics

* A new data-driven computer vision framework to identify dominant temporal patterns of
the prediction error of trip production. This framework helps improve the prediction of
travel demand using the gravity model.

* New insight into the possible spatial features to reduce the prediction error of trip pro-
duction. As such, this insight improves the prediction of spatiotemporal patterns inside
travel demand.

Understanding how socio-spatial characteristics influence prediction errors allows planners to
refine their models and address specific factors that may affect travel demand. By identifying
the key features that reduce prediction errors, such as certain land-use types or demographic
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variables, planners can enhance model accuracy and reliability. This leads to better-informed
policies that are tailored to the unique needs of different communities, ultimately improving
transportation system performance and user satisfaction.

1.8 Practical relevance

This research is particularly relevant for policymakers and planners seeking to optimize trans-
portation infrastructure to develop more effective strategies for planning and managing trans-
portation systems that better serve the needs of their communities. By providing a data-driven
framework that leverages GSM mobile phone data, this research offers advanced tools for un-
derstanding and predicting aggregate travel demand patterns in space and time.

In contrast to traditional travel demand models, which often rely on infrequent surveys and
historical averages, our research leverages large-scale, timely GSM mobile phone data to cap-
ture dynamic and fine-grained travel demand patterns. This enables transportation planners
to identify areas and times with significant fluctuations in overall travel demand, allowing for
more informed decisions regarding resource allocation and strategic planning. For example,
planners can prioritize infrastructure maintenance in high-demand areas or adjust development
plans based on observed demand trends.

Moreover, the ability to analyze travel demand at multiple spatial scales supports coordi-
nated planning efforts across different administrative levels. This ensures that local, regional,
and national transportation policies are aligned and effective, facilitating integrated transporta-
tion and land-use planning.

By identifying the key factors that influence travel demand prediction, researchers and prac-
titioners can develop more robust models that accurately forecast travel demand. This enables
the implementation of targeted transportation policies and measures, such as travel demand
management strategies, promotion of flexible work arrangements, and informed land-use poli-
cies, ultimately leading to more efficient, sustainable, and user-centric transportation systems.

Furthermore, by refining travel demand models through error pattern identification and inte-
grating socio-spatial features, planners can enhance model accuracy and reliability. This leads to
better-informed policies that are closely aligned with community needs, promoting efficiency
and user satisfaction. Recognizing error patterns also highlights areas where additional data
collection or research is needed, guiding future efforts to enhance model performance.

Overall, the practical contributions of this research are geared towards enhancing transport
planning and policy-making, anticipating and responding to actual travel behaviors, and con-
tributing to a more sustainable, efficient, and user-centric transportation system.

1.9 Thesis outline

This thesis is divided into several chapters that address the research questions posed in the
introduction. These chapters are based on articles written during the Ph.D. process. For some
chapters, the text is identical to these articles in order to avoid potential citing conflicts, which
may result in some repetition among chapters. However, in other instances, chapters are adapted
from articles and may combine or expand upon them to better fit the thesis structure.
Specifically, Chapters 3, 4, and 5 are based on two papers but are presented as three chap-
ters in this thesis. This division aligns better with the research sub-questions outlined in the
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introduction. At the beginning of each chapter, the corresponding article(s) are identified along
with their publication status. The final chapter discusses the conclusion and implications of this
research.

Exploring the Spatial and Temporal Patterns in Travel Demand

Chapter 1
Introduction

Chapter 2
Spatio-Temporal idiosyncrasies of input data for demand estimation

: : Chapter 5
Chapter 3 ! i h 4 ] |
D Distine by : ;  Chapter . ! Sensitivity of travel |
i istinguishing the : 1 Prediction of travel ! ! demand patterns to |
ispatial-temporal travel: i demand at multiple ! : socioos alt)ial charac- :
demand patterns ! : spatial scales : P :

terisitcs

Empirical study to explore trip production patterns in the Netherlands

.

Chapter 6
Conclusion

Figure 1.2: Structure of the thesis.

Figure 1.2 presents an overview of the thesis structure. Accordingly, Chapter 2 of this study
involves the use of a simulation test bed to evaluate the impact of mobile phone data quality
on the estimated origin-destination (OD) matrix. The remainder of the thesis focuses on an
empirical study of trip production in the Netherlands.

Chapter 3 identifies spatial-temporal patterns in trip production using a data-driven pattern
recognition framework. In this chapter demand patterns of traffic analysis zones are distin-
guished based on the dominant within-day and day-to-day trip production. These patterns show
correlation with spatial characteristics which are investigated in Chapter 5. Chapter 4 gives
insight into how spatial scale affects the prediction of trip production using graph-based neural
networks. Moreover, the effect of considering zone adjacency for the prediction at various spa-
tial scales are studied. Chapter 5 evaluates the sensitivity of trip production prediction to socio-
spatial characteristics under different spatial scales. To achieve all these objectives, real-world
data sources will be analyzed using machine learning and statistical techniques. By exploring
demand patterns, this research aims to improve the accuracy of trip production prediction in the
Netherlands and inform transportation planning and policy decisions.

This research offers a novel approach for exploring travel demand patterns. A new data-
driven framework is developed to find patterns of travel demand through the combination of
machine learning methods from various disciplines. The study begins by synthesizing a test
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bed to demonstrate the effects of temporal aggregation and discretization of raw data on travel
demand in Amsterdam. This is followed by an empirical analysis of dominant patterns of trip
production in time and space in the Netherlands. Another empirical study explores the trip
production patterns at different spatial scales in the Netherlands, considering the adjacency of
traffic analysis zones. Finally, another empirical study identifies dominant patterns of prediction
errors in trip production and investigates their relationship with socio-spatial characteristics.

In summary, this thesis aims to enhance our understanding of spatial and temporal travel de-
mand patterns through a data-driven approach utilizing GSM mobile phone data. By addressing
the identified knowledge gaps and developing innovative analytical frameworks, we contribute
to the advancement of travel demand modeling. The practical implications of this research offer
policymakers and planners the tools and insights needed to develop transportation systems that
are efficient, responsive, and aligned with the actual needs of communities. This work supports
the creation of transportation policies that are data-driven and adaptable, ultimately improving
mobility, reducing congestion, and promoting sustainable urban development.






Chapter 2

Spatio-Temporal Idiosyncrasies of Input data
for Demand Estimation

Building upon the foundational insights introduced in the first chapter of this thesis, this
chapter delves deeper into the nuanced intricacies of GSM data in the realm of transportation
planning. This chapter is a pivotal extension of our exploration, aiming to bridge a critical
knowledge gap: comprehending the temporal quality of raw GSM data and its consequential
impact on the accuracy of origin-destination (OD) estimates.

In pursuit of a more robust method for interpreting GSM data, this chapter proposes a novel,
data-driven approach. This initiative addresses the prevalent ambiguity in existing studies re-
garding the criteria for determining an individual’s ’stay’ duration in a location. By critically
examining the challenges and inherent limitations of GSM data, particularly concerning the in-
frequency of records, we seek to provide a clearer picture of its implications on the accuracy of
the OD matrix. A key aspect of our investigation is analyzing how varying polling frequencies
influence the integrity of the reconstructed OD matrix, a question of significant importance for
effective transport planning.

This chapter is based on the following published paper:
Eftekhar, Z., Pel, A., & van Lint, H. (2023). Effects of Periodic Location Update Polling Inter-

val on the Reconstructed Origin—Destination Matrix: A Dutch Case Study Using a Data-Driven
Method. Transportation Research Record, 2677(9), 292-313.
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Abstract

GSM data is a valuable source to understand travel demand patterns as these contain traces of
people’s consecutive locations. A major challenge however is how the polling interval (PI; the
time between consecutive location updates) affects the accuracy in reconstructing the spatio-
temporal travel patterns. Longer PIs will lead to lower accuracy, and may even miss shorter
activities or trips, when not properly accounted for. In this chapter, we analyse the effects of
the PI on the ability to reconstruct an origin-destination (OD) matrix, as well as propose and
validate a new data-driven method that improves accuracy also in case of longer PIs. The new
method first learns temporal patterns in activities and trips, based on travel diaries, that are
then used to infer activity-travel patterns from the (sparse) GSM traces. Both steps are data-
driven thus avoiding any a-priori (behavioral, temporal) assumptions. To validate the method
we use synthetic data generated from a calibrated agent-based transport model. This gives us
ground-truth OD patterns and full experimental control. The analysis results show that with our
method it is possible to reliably reconstruct OD matrices even from very small data samples
(i.e., travel diaries from a small segment of the population) that contain as little as one percent
of the population’s movements. This is promising for real-life applications where the amount
of empirical data is also limited.

2.1 Introduction

The design of transport infrastructure, services, policies and technology all start with an under-
standing of travel demand. Travel demand relates to people’s spatial and temporal patterns of
activity locations and associated trips from one location to the next, and are commonly aggre-
gated into origin-destination (OD) matrices. One data source in this i1s GSM data as it allows
to trace people (carrying the mobile phone). The time between consecutive location updates
is called polling interval, and evidently affects the accuracy with which we can reconstruct
people’s spatio-temporal travel patterns.

Traditionally, traffic planners use direct methods, including roadside and household surveys,
conducted every 5-10 years (Wang et al., 2013) for estimating the OD matrix. While these
methods are making essential contributions to the traffic demand field, exclusively using survey
data makes the estimations liable to sampling bias and reporting errors (Hajek, 1977; Kuwahara
& Sullivan, 1987; Groves, 2006). Because travel surveys provide a high level of detail (LOD)
in terms of activity and movement behavior with minimal sampling ratios. On the other hand,
mobile phones have generated a wealth of low-cost GSM data on people’s movements. These
movement traces are often of reasonable sample size but contain (much) less detail than survey
data. Generally, GSM data contain discretized traces of users without precise indicators of time
and location of the underlying activities or activity types. Therefore, only after analysis one
can use it to estimate the OD matrix. Combining travel diaries in such GSM analyses could
potentially lead to the best of both worlds; that is, the high sampling ratio of mobile phone data
combined with the high LOD (in terms of spatial and activity patterns) in travel diaries.

Fundamentally, two types of synthetic and real-world data sets are used in demand estima-
tion research. Real-world GSM data sets can offer voluminous information about millions of
mobile phone users. However, the problem with them is the privacy issue and difficulty of car-
rying out reliability and validation experiments. In fact, in the early analysis phase of research,
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Figure 2.1: An example of the GSM records of a user

using synthetic data for assisting in the operational tests and evaluation has been strongly advo-
cated (Zilske & Nagel, 2014). Conducting experiments using such data helps us to evaluate the
effects of various potential components in our models. Therefore, in this research we used syn-
thetic (travel diary and GSM) data to validate our methods. Moreover, it enabled us to produce
many ground truth training sets for statistical learning and reliability testing.

Our method addresses some key questions regarding the accuracy and robustness of OD ma-
trices estimated from GSM data related to the femporal discretization. Clearly, such discretiza-
tion errors could be reduced by choosing smaller polling intervals between records. However,
this is often not possible since, by their very nature GSM records are spatially coarse and tem-
porally infrequent ( e.g., Becker et al. (2013); Burkhard et al. (2017); Chen et al. (2018)). To
date, few studies have investigated the relationship between GSM quality and mobility pattern
detection (e.g., Calabrese et al. (2013); Chen et al. (2014)). To the best of our knowledge, no
study has looked specifically at the effects of GSM data temporal frequency on the estimated
OD matrix. This research is the first to examine these effects. To do this, we quantify the
temporal quality of the data using polling interval (PI), defined as the time interval between
consecutive records, where a record is an update on the current location of the mobile device.
(Note that the inverse of the polling interval is referred to as polling frequency.)

The fact that our temporal record of events is discretized (with the PI) has two consequences.
The first effect is that the recorded start and end times of each underlying event (an activity or
travel between activities) occur later than the actual start and end times. This discretization error
can vary from zero to the PI value. For instance, if we poll the user epsilon before the actual
event time, the interpreted time is about one P/ later.

To illustrate, Figure 2.1(a) shows several GSM records of a user. Note that while the reported
locations in the empirical GSM data belong to the antenna that receives the cell phone signal, in
this example, we assume that these records are the user’s exact locations. The spatial changes
and errors could be investigated in separate research—here, we focus on temporal effects only.
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Therefore, the person has been observed in five locations (Figure 2.1(b)) named {A, B, C, D, E}
with a constant PI of fifteen minutes. However, the actual travel diary implies that only in two of
the reported locations (A and D) activities occur (work and home); thus, understanding whether
the user is traveling or staying (engaging in an activity) in each record requires developing a
separate procedure. To decide on the event type (travel or stay), one could for instance use each
event’s starting time and duration. Moreover, based on Figure 2.1(a), the user was observed in
A from 15:35 to 16:20, but the actual traces imply that the user stayed at the mentioned location
from 715:23 to 16:15 to work; hence, due to time discretization, delay in observing the start
and end of each event is inevitable. How PIs affect the resulted OD matrix (under different
conditions) is part of this study.

The second—and related—consequence of time discretization is the discrepancy between
observed and actual activity (or travel) duration. For instance, in Figure 2.1, the perceived dura-
tion of A is 45 minutes; whereas, the actual duration is 52 minutes. This duration discretization
error ranges from -PI to PI. In fact, we may even lose a fraction of OD trips (i.e., observed with
zero duration) because the data might not capture specific trips with duration less than the PI.
For example, activities that last less than one minute could easily be missed from the GSM data
with high PI. In many cases, detecting such short-time activities is not very useful from a travel
demand perspective. However, if activities are longer (e.g., more than 15 minutes), it might be
insightful to configure them. Consider for example three activity categories: home, work, and
other, representing staying at home, working, and engaging in other types of activities, respec-
tively. One could argue that for OD matrix estimation, the distinction between stay (on a specific
location) and travel (between locations) is sufficient. Home and work are major activities from
a traffic planner’s perspective since they account for a large part of travel diaries. Additionally,
they often have aggregated daily durations of a couple of hours, making them more likely to
be captured, even with very coarse PIs. However, other encompass all activities made for less
common purposes, such as shopping, socializing, and health. These normally last much shorter.
The maximum PI (for having cell phone reception in case of no network connection) adopted
by the telecommunication company is about two hours. Consequently, there are interactions
between the mix of activity durations and PIs, whose effects on the reconstructed OD matrix
are not fully understood. It is our aim to gain a better understanding of how the reconstructed
OD matrix deteriorates by testing a range of duration-PI combinations (from one minute to two
hours).

To this end, our approach is threefold:

* Pre-processing and ground-truth analysis: First, we generate synthetic GSM data di-
rectly from a detailed set of ground-truth travel diaries. Furthermore, to train our GSM
interpretation method (for event-activity type detection), called Kernel-based approach
(KA), we select a random one percent sub-sample from the ground-truth travel diaries.

* Developing and applying KA and OD matrix determination: Second, we develop and
validate the KA algorithm by which we reconstruct the travel diary of each person for
determining the OD matrix from the interpreted GSM data.

* Comparison of OD matrices: Third, we compare the reconstructed and actual OD ma-
trices derived from the interpreted GSM data and ground-truth, respectively, where we
use multiple evaluation metrics.

This way, our analysis studies the mixed effect of the polling interval and temporal criterion.
Our method adopts this interaction (derived from the training data) to discern activities from
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trips on the reconstructed OD matrix. Hence, our results show the causes that affect the accuracy
and robustness of the estimated OD matrix using GSM traces.
In this research, the following contributions are made:

1. We propose and evaluate a data-driven method for interpreting GSM data, which does not
rely on a-priori assumptions of activity-travel behavior, and hence is applicable for both
synthetic-experimental analyses (as in this research) and empirical-practical implementa-
tion.

2. We show that even a small portion of the population could train our method for location-
activity type detection of GSM records. This method could further be trained when more
observations are available.

3. We provide an overview of the effect of the underlying PI on the resulting OD matrix. Our
analysis results also imply that the shorter the activity duration, the less its possibility to
be identified correctly.

4. We show when randomness in the OD matrices spike relatively to how frequently we poll
the users.

The research is performed with, as a case study, the data of the Amsterdam region in The
Netherlands. We assume to have GSM data of a given population (i.e., we do not deal with the
second-part problem of scaling from GSM-sample towards full population) as well as a limited
amount of travel dairies (i.e. 1% of the given population).

The remainder of this chapter is organized as follows: Section 2.2 explains fundamental
characteristics of GSM data, that need to be accounted for. Section 2.3 describes the research
data and the implemented method. In Section 2.4, we evaluate the proposed method, present
the results of applying the method on the GSM data for reconstructing the OD matrix and
comparing it with the ground-truth OD matrix. Finally, Section 2.5 concludes the chapter.

2.2 GSM data in general and as used in this study

Basically, three main types of GSM data are generated by telecommunication companies:

* The first type is Call Detail Record (CDR), which constitutes a majority of GSM data
in transport research (e.g., Calabrese et al. (2013); Chen et al. (2014)). It includes event-
based history information on the communication of a specific device, which consists of
calls, SMS (short message service), internet connections. CDRs consist of the timestamp,
call duration, type of events (voice call, SMS, data), and the cell’s code in which the event
occurs. Consequently, recording phone positions is dependent on the users’ communica-
tion behaviour. Therefore, we need to assume on how to generate synthetic CDR. For
instance, a random communication rate derived from a Poisson distribution between a
minimum and maximum rate can be assumed for each user. A more mature and complex
scenario is using discrete choice theory, which is based on utility maximization, i.e, it
couples agent’s decisions to attributes of the alternatives and agent’s environment.

* The second type is named Signaling Data which informs us of the location area (LA) of
the mobile phone on a permanent basis. Nonetheless, its spatial resolution is much lower
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than CDR because each LA includes more than a hundred base stations (Bonnel et al.,
2015). Therefore, this type of data does not seem suitable for demand estimation and
activity analysis for transportation purposes.

The third type which is called Periodic Location Update (PLU) contains anonymous
user ID code, time of the day, and location coordinates. Unlike CDR, PLU does not
involve mobile phone users for storing their records. In fact, the GSM operating system
decides on when to collect all users’ data. Additionally, the spatial resolution is the same
as CDR. Moreover, the PI is constant among all users independently from their behaviors.
Thus, the random errors of the data has been partially eradicated due to the fixed interval
of records. As a result, activity locations would be detected efficiently and by shorter
data collection time. However, compared to CDR, accessing such data is an arduous task.
Nonetheless, some research has already used them in mobility demand estimation (e.g.,
Zhang et al. (2010)).

In this study, we used PLU instead of CDR because it does not rely on a-priori assumptions

between GSM data events and activity-travel behavior (which may otherwise introduce behav-
1oral biases if not adequately addressed). Indeed PLU hence is applicable for both synthetic-
experimental analyses (as in this research) and empirical-practical implementation.

As all types of GSM data capture the movement of vehicles and people, they could be used

in estimating the travel patterns. However, one needs to deal with the new challenges of de-
veloping, and validating of models adopted for estimating the OD matrix. In fact, despite great
opportunity of using GSM traces for OD matrix estimation, several drawbacks cause obstacles
when it comes to practice:

1. Mobile phone data only observes the user’s presence at a certain point in time in a par-

ticular mobile phone cell. Whether the person was traveling then or attending an activity
cannot be directly concluded (Zilske & Nagel, 2014). Therefore, one must interpret the
GSM traces to reconstruct the travel patterns. A number of previous research has specified
a certain duration (or speed) to make a distinction between stay and pass-by locations in
the GSM records (e.g., (Igbal et al., 2014; Alexander et al., 2015; Demissie et al., 2019)).
For instance, (Igbal et al., 2014), Alexander et al., and (Demissie et al., 2019) assumed
that a trip is recorded if in the CDR, subsequent entries of the same user indicate location
change with a time difference more than 10 minutes but less than 1 hour. Wang et al.
(2020), on the other hand, assumed that if the duration between two consecutive records
be more than the sum of assumed minimum activity duration (e.g., 2h) plus time needed
to get from previous location plus time needed to get to the next location, the current
location was identified as a stay location. In another study, (Bachir et al., 2019) grouped
stay points according to a speed threshold Av < 10 km/h and a duration threshold Ar > 15
minutes; hence, a device was stationary if the duration between the first and last stay
points lasted several minutes, with a low speed. Records not fulfilling this condition were
considered as pass-by points. However, all the mentioned studies, raise a question of how
to select and validate the clear-cut duration or speed.

. Studies that intend using GSM traces are hindered by privacy protection regulations. A

conventional procedure obligates the researcher to use only the minimum of information
needed for the study in the form of aggregated results that do not focus on individual
phones (Becker et al., 2013). This kind of data is regularly achieved by decreasing time
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resolution and increasing space granularity (e.g., Bianchi et al. (2016)); Hence, the avail-
able data are spatially coarse and temporally sparse (Becker et al., 2013; Burkhard et al.,
2017; Chen et al., 2018).

. Another challenge which only results from using CDR is that mobility analyses based on

such data could be biased (Zhao et al., 2016) since recording phone positions is based
merely on the users’ communication activities, which are unevenly distributed in space
and time.

This research adopts three strategies to avoid each of the indicated issues:

» simulated test bed: Using simulation in the initial research analysis phase has been

vigorously promoted (Zilske & Nagel, 2014). This environment allowed us to set up a
coherent synthetic testbed to evaluate the effects of various potential components in our
models. This environment promises solutions to the first deficiency regarding real-world
GSM traces since users’ actual activity locations are available. Therefore, it is possible to
verify our methods of interpreting GSM data.

synthetic instead of empirical data: Synthetic data is the preferable solution for de-
veloping a new method and comparing its performance with various methods to initially
decide which models and methods to use on real-world data. Using synthetic data, no
privacy concern is involved. Moreover, to the best of our knowledge, such highly de-
tailed empirical data is hardly available, at least in the Netherlands. Therefore, using the
synthetic data is not only advised but also necessary.There is no doubt that the proposed
methods’ final evaluations and performance measurements have to be fulfilled using real
data.

PLU instead of CDR: The dependency of the demand estimation on user’s communica-
tion activities could be dealt with using the second type of cell phone data, PLU (Zhang
et al., 2010). Since PLU has constant PF for the whole participants, dependently from
their behaviours, OD estimation’s bias towards more active GSM users, specific periods,
and areas would be partially eradicated.

2.3 Material and Method

2.3.1 Experimental framework

As discussed in the previous section, to use GSM data in mobility pattern detection, we need
to deal with three issues (i.e. not reporting actual activity locations, privacy-related aggrega-
tion, and dependency of CDR on the user’s GSM activities). Considering these three strategies
mentioned in the previous section, figure 2.2 represents the overall experimental design of this
research in six steps:

1.

pre-processing and selecting the intended users; For example, due to computational rea-
sons, we only considered users with the car mode. In this step, data cleaning, reduction,
and transformation take place.

analysing the ground-truth which is twofold:
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Figure 2.2: Overall experimental framework.

(a) aggregating the travel patterns of the entire population to form the ground-truth OD
matrix;

(b) developing and evaluating our KA method in reconstructing users’ traveling patterns
from the PLU; Regarding method developing, we assumed to have PLU of all users.
Then, travel diaries of one percent of the users trained our KA method. This prior
knowledge specified the temporal routines of travels and activities, which allowed
the Bayesian Classifier in our method to make distinction between stay and pass-by.
The same way, the overall type of each activity (home, work, or other) could be
detected.

3. generating the synthetic PLU directly from the ground-truth. This is done by applying
the PF to the activity-travel patterns, in order to derive their locations at a given interval.

4. applying the KA method on the synthetic PLU to reconstruct the travel diaries,
5. determining the OD matrix from the reconstructed patterns,

6. comparing the actual and reconstructed OD matrices using several measures which are
introduced in the next part.

2.3.2 Kernel-based approach of estimating the OD matrix

In this section, the features of the proposed KA method are discussed which mainly focus
on the steps 2.b, 4, and 5 of Figure 2.2. In part 2.3.2 the fundamental concepts of Bayesian
approach is discussed. The next section 2.3.2 explains Kernel density estimation which we
used for extracting temporal routines from the training set. Section 2.3.2 explain the applied
spatial aggregation on the synthetic GSM data. The comparison measures used in step 6 are
also introduced in section 2.3.2.

As mentioned in section 2.1, PLU periodically observes each cell phone at certain places.
However, figuring out whether the person engages in an activity or simply passes by needs
further investigations. To identify location type (stay or pass-by) and activity category (home or
work or other), we use a Bayesian classifier. Bayesian inference is regularly applied to estimate
distribution parameters from data. In our research, a random one percent sub-sample from
the ground-truth data is selected to train the Bayesian classifier. Furthermore, using Bayesian
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inference, it is possible to update conclusions based on this training set by incorporating new
observations (Zhao et al., 2020).

As indicated in section 2.2, a number of studies in the literature have addressed the problem
of location type identification in GSM data. Additionally, they have mostly used a time bound-
ary to discern stay from pass-by (e.g.,Igbal et al. (2014); Alexander et al. (2015); Demissie et al.
(2019)), i.e., they impose a specific duration as a clear-cut distinction between stay and pass-by.
However, in this research, the Bayesian classifier only learned from a training sub-set, randomly
selected from the entire travel-activity patterns. In fact, the classifier infers the time boundary
from the training set’s temporal routines and applies it to the PLU to distinguish each user’s
stationary locations. Temporal routines allude to the distribution of duration and start time of
records that are intended to be classified. The major merit of Bayesian inference is that the data
in the training set are allowed to “speak for themselves” in determining location type; much
more than in the case when the location type would be detected using pre-specified duration
boundaries.

The primary logic behind selecting the duration and starting time of events as explanatory
variables is that people’s location and activity types are correlated with their temporal patterns.

For instance, trips in urban areas often have duration of less than an hour, whereas stays (i.e.,
activities) usually last for a couple of hours. Additionally, activity category of home mainly
starts in the afternoons or early evenings and takes more than six hours. Work also largely takes
more than five hours, however they normally start from the morning. Systematically considering
these differences in the distributions enabled us to recognize each event or activity from others.

To understand how we measure the observed duration and start time, consider the example
in Figure 2.1. The first record of each event (i.e stay or pass-by) is labeled as the start of
it. Accordingly, the start of A, B, C, D, and E are 15:35, 16:20, 16:35, 16:50, and 17:50,
respectively. The first record of the next event is labeled as the end of each event, thereby the
end times A, B, C, and D are 16:20, 16:35, 16:50, and 17:35, respectively. Since the duration
is the difference between the end and start time, With a constant PI (here is 15 minutes), the
durations would be multiples of PI.

Bayesian classifier

The proposed method, considering pre-specified temporal patterns, estimates the probability of
stay and pass-by or activity categories. This approach is general in that it can be applied to
diverse mobility patterns and data sources. We use the fact that people’s location and activity
types are correlated with duration and start time, i.e., events’ classes are causes that affect their
temporal patterns. Given the cause (event class), the duration and starting time are conditionally
independent (see Russell & Norvig (2016)). Hence, the full joint distribution can be written as

P(Y.Xi1,....Xy) = P(Y) [ [P(XilY), 2.1)

where Y is the event class and can be either location type, with two classes: stay and pass-
by; or activity type, with three classes: home, work, and other. Furthermore, X; is the effect and
consist of two temporal variables: duration and starting time. Such a probability distribution is
called a naive Bayes model — “naive” because it does not account for cases where the effect
variables are not truly conditionally independent given the event class. Practically, the naive
Bayes method can work surprisingly well, even when the conditional independence assumption
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is violated (Russell & Norvig, 2016).

The Naive Bayes model is sometimes called a Bayesian classifier since often Maximum a-
posteriori (MAP) estimation concept is used for classification (Demirbas, 1988), i.e., Bayesian
classifier assigns the most probable class j to the observed data X. Defining P(y|X) as the
probability of class y given that X = x,...,x,, was observed, the Bayesian classifier evaluates
the following maximization scheme (see Yair & Gersho (1990)):

n
y = argmax {P(y|X)} = argmax P(y) HP(x,-|y). (2.2)
The quantities P(y|x) are known as the a-posteriori(or class) probabilities, and the Bayesian
classifier supplies the MAP decision.

Kernel density estimation

The assessment of the a-posteriori probabilities using Bayes Rule requires an a-priori knowl-
edge about the probability density functions of the priors. The probability density function
of the priors, which are duration and start time of events (activities and trips), needs to be
estimated. Assuming that the observed data points in the training set are a sample from an
unknown probability density function, density estimation is the construction of an estimate of
the density function from the training set. In this regard, kernel density estimation (KDE) is
currently the most popular non-parametric approach for probability density estimation (Scott,
2012; Simonoff, 2012). Non-parametric density estimation is an alternative to the parametric
approach in which a model with a small number of parameters is specified and, using maximum
likelihood, the model is calibrated. However, non-parametric density estimator is aimed to es-
timate the density of a variable from a sample set without assuming any specific form for the
density function (Silverman, 1986; Wand & Jones, 1994; Simonoft, 2012; Scott, 2012). As we
generally happen to know very little about the given data, a general smoothness assumption is a
reasonable choice. Accordingly, we selected the Gaussian kernel estimation (see Smola et al.
(1998)). Hence, our proposed method is named Kernel-based approach (KA).

Given N independent observations ¥y = X1, ..., Xy from an unknown continuous probability
density function f on X , the Gaussian kernel density estimator is defined as

. 1 Y
fulx) = ¥ Y 0(x, X;;h)Vx € IR, (2.3)
i=1
where:
¢( X h) 1 . *(X;hXi)z
x,Xish) = X
l \21h P

is a Gaussian kernel with location Xi and bandwidth v/A. Many researchers have focused on the
optimal choice of A, since Bandwidth selection greatly affects the estimate obtained from the
kernel density estimation (much more than the shape of the kernel) (e.g., Jones et al. (1992);
Sheather & Jones (1991); Botev et al. (2010)). In this research, bandwidth selection was made
by a “rule of thumb” following Scott’s Rule (see Scott (2015)), which suggests that the optimal

bandwidth is n@+4 in which 7 is the number of data points and d is the number of dimensions.
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Spatial Aggregation of GSM Data

As already mentioned in section 2.1, the reported locations in the empirical GSM data generally
belong to the antenna that receives the cell phone signal. This naturally means that the highest
spatial resolution of the data is antennas’ coverage areas. Therefore, to demonstrate such spatial
aggregation effect, we used the associated OD zones instead of the exact location coordinates.
This means that each OD zone represent one antenna. Also when users only travel inside a
zone, their movements are not observed because it is like the person has stayed in one loca-
tion representing that OD zone (as shown in figure 2.3) . Under this setting, the hypothetical
antennas for each zone are shown in the figure.

Kilometers
Gk v

HERE, Garmin, FAO, METUNASA, USGS

Figure 2.3: OD zones assumed to represent the antennas’ coverage areas.

In addition to the duration and start time, the location of each activity provides information
about the activity category. A hierarchical model is applied to the locations (i.e., OD zones)
in the training set to estimate the a-priori for each spatial zone in the Bayesian model. This
hierarchical model estimates the probability of each activity category in each OD zone. The
activity category is drawn from a categorical distribution with the parameter specific to each
zone. This parameter is drawn from a Dirichlet distribution with parameter o assumed to be
unique among all the zones (we assumed it be a vector of one which is equivalent to a uniform
distribution).

Oy—1 M~ Dil’ichlel]((()(.) 2.4)

Zd=1..Mp=1..N, ~ Categoricalx(04) (2.5)
where:

z = the activity category of the observation,

o = the hyper-parameter vector of the Dirichlet prior,
M = the number of zones,

N = the number of records, and

K = the number of assumed activity categories (three here).

Section 2.4.3 investigates whether considering the spatial variable under the mentioned setting
will improve the model accuracy for our data set.
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OD matrix comparison

To evaluate the performance of the proposed method for OD matrix estimation, as well as
evaluate the effect of polling frequency hereon, a metric is needed that measures the accuracy
of the estimated OD matrix against the ground-truth OD matrix. OD matrices can be compared
in two complementary ways. Firstly, the degree to which the estimated OD matrix correctly
represents the absolute amount of demand between all individual OD pairs. Secondly, the
degree to which the estimated OD matrix correctly represents the relative demand pattern seen
across OD pairs (Behara et al., 2020a).

For the former absolute comparison, traditional measures such as mean absolute error (MAE)
(see Ashok & Ben-Akiva (2002); Lo & Chan (2003)), and R-squared (see Tavassoli et al.
(2016)) can be used. Here we use MAE to compare the OD pair values in the two matrices.

For the latter relative comparison, the geographical window-based structural similarity in-
dex (GSSI) (Behara et al., 2020b) is capable of distinguishing structural differences due to the
geographical closeness of OD zones. Here we use GSSI to compare the correlation of OD pair
values across geographical windows (where OD zones with geographical proximity belong to
the same window).

2.3.3 Method implementation

The experiments are done on daily activity plans of agents derived from the nationwide activity-
based model ALBATROSS (Arentze & Timmermans, 2004). All agents are selected for which
at least one household member use the mode car to perform at least one activity within the
Amsterdam region (Winter et al., 2020). This leads to the activity plans of 22 thousand agents
during a representative working day.

Note that we use synthetic (model-generated) activity plans in the KA step, our method es-
timates temporal patterns of location and activity types. Therefore, to ensure generalisability
of our method towards empirical travel diary data, it is important to emphasize that the ALBA-
TROSS model does not assume any a-priori (theoretical) distribution of activities, but instead
uses decision trees that are directly calibrated from travel diaries. ALBATROSS implements
a sequential decision-making process to generate an individual’s schedule. Empirical demand
data are employed to induce a decision tree for each step in the scheduling process (Timmer-
mans & Arentze, 2011). Thus, the model framework (i.e., decision tree) does not restrict the
activity’s temporal pattern to a specific distribution. Decision trees can describe discontinu-
ous impacts of discrete attribute variables on decision making. Hence the fact that our KA
step can capture the temporal distribution of location and activity types is based on the under-
lying empirical travel diaries. This is important, because otherwise in case the synthetic data
would be based on a model that adopts a (parameterized) distribution function to simulate activ-
ity patterns, then the temporal distributions might have been artificially imposed by the model
structure (i.e., a model assumption, not a model result).

The agents’ activity plans are simulated using MATSim (Zilske & Nagel, 2015), which is
an open-source agent-based transport simulation model. The MATSim model output is used to
generate synthetic PLU data as follows.

The experienced plan output contains basically the traces of each agent in our data set. This
file represents the ground-truth OD matrix. One percent of these agent traces is sampled to be
used as travel diaries in the KA step of our method (to estimate the Bayes model distinguishing
stay and pass-by locations, and detecting the activity category).
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(a) Amsterdam OD zones (b) High-level boundaries as geographical windows

Figure 2.4: Zone boundaries applied to this study.

The snapshot output contains the records of all agents per snapshot interval, which is con-
veniently used (with slight modifications regarding formatting) to generate our synthetic PLU
traces. The resulting PLU format is shown in Figure 2.1(a) in which the associated OD zone
represent the location.

The OD zoning system is an aggregated version of 4-digit postal codes in Amsterdam lead-
ing to 115 zones (Figure 2.4(a)). When computing the GSSI metric (i.e., structural similarity
between OD matrices) these are aggregated to 50 geographical windows as displayed in Figure
2.4(b).

2.4 Results and Discussion

In the following, we present the KDE results (part 2.4.1) and evaluate the KA performance in
detecting location types (part 2.4.2) and in detecting activity types(part 2.4.3). This is done for
a random training set. Part 2.4.4 then shows how robust these results are against selecting the
training set. Finally, part 2.4.5 shows the accuracy of the reconstructed OD matrices for a range
of PIs.

2.4.1 KDE results

As mentioned in the previous part, the proposed methodology is trained on a one percent sub-
sample of ground-truth, and its performance is tested on the entire ground-truth data set.

An example result of applying KDE on the training set (based on one example random
seed for selecting the training set) is in figures 2.5 and 2.6 for location and activity category
detection, respectively. For each location/activity type, two distribution of duration and starting
time is calculated. Having assumed to have two location types of stay and pass-by and three
activity categories of home, work, and other, ten distributions are fitted to the training data.
The KDE simply fits a smooth curve to the data and introduces the likelihood required for the
Bayesian classifier. As we usually happen to know very little (in our case 1% of the population)
about the ground-truth, a smoothness assumption for the training set’s density estimation is
justifiable.The smoothness assumption prevents over-fitting caused by sparse sampling when
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the training data, like in our framework, comes from a small proportion of the population. It
is worth mentioning that the smoothing assumption can be relaxed in case the training data
represents the entire population more thoroughly.
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Figure 2.5: Application of KDE for location type detection.

It can be inferred from Figure 2.5(b) and 2.5(d) that the start time pattern of trips and ac-
tivities follow a close distribution. Consequently, the KA distinguishes the event types merely
based on the duration distributions which follow different pattern in each event type. As a result
when duration patterns of activity and trip are similar, miss-prediction of location type takes
place. Considering Figure 2.5(a) and 2.5(c), miss-predictions might happen when duration is
less than 45 minutes.

For such cases, the location of the record plus temporal features might give a more precise
prediction of the event and activity category. However, this is only true if the spatial resolution
of the data is high enough to recognize different land-use types from each other. In fact, in
dense urban environments like Amsterdam, assuming high spatial resolution for GSM data is
not realistic. Because various events and activity categories take place in a small area and to
estimate a reliable probability of each, the GSM antennas have to be unnecessarily closer to
each other. Perhaps for sparsely developed urban environments, using spatial variables in the
KA model become reasonable.
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Figure 2.6: Application of KDE for activity type detection.

2.4.2 KA performance regarding location type

The performance of the KA classifier for location type detection is shown by the confusion
matrix in Table 2.1. The results show that 92% of all stay and 97% of all pass-by locations
were detected correctly, using the proposed methodology (overall, in 94.4% of the time, the
location type was distinguished correctly). Based on Table 2.1, KA underestimated the stay
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locations. Accordingly, overestimation in pass-by locations occur at the same time. Therefore,
in stay detection, we often had false-negative errors, and in pass-by detection, false-positive
errors happened the most.

Table 2.1: Confusion matrix of applying the methodology on the entire ground-truth for location
type recognition.

observed stay  observed pass-by total predicted

predicted stay 54231 (91.8%) 1799(3%) 56030(47.4%)
predicted pass-by 4822(8.2%) 57254(97%) 62076(52.6%)
total observed 59053(100%) 59053(100%) 118106(100%)

As already mentioned in section 2.4.1, due to closeness of stay and pass-by starts, duration
of events has a more significant role in differentiating them. Observing the results showed that
the minimum duration of correctly recognized stays was about 44 minutes. Therefore, it seems
that KA specifies a duration threshold to separate stays from pass-bys. Although this threshold
is selected by analysing the temporal distributions in the training set, it cannot entirely divide
stays and pass-bys due to overlaps around the threshold. In fact, our analysis shows that about
88% of activities have duration more than 44 minutes, whereas, 96% of trips endure less than 44
minutes. Thus, activities are less probable to be recognized. This justifies the underestimation
in activity detection in Table 2.1.

2.4.3 Variable selection and model performance in activity category in-
ference

In our model we included predictors that help maximize the activity category accuracy.To se-
lect the model’s explanatory variables, we considered three states: First, only spatial variable;
second, spatial and temporal variables together; third, only temporal variables.The associated
confusion matrices are shown in Tables 2.3, 2.4, and 2.5. The overall performance of the clas-
sifier for activity category detection for each of these states is in Table 2.2. The precision score
is a ratio that shows the quality of positive predictions made by the model and is defined by
the number of true positives divided by the total number of positive predictions so that 100%
precision implies no false positives. However, this typically coincides with a lower recall score,
which is defined as the number of true positives divided by the sum of true positives and false
negatives, so that 100% recall implies no false negatives. In an imbalanced classification, the
balanced accuracy is the average of the recall score obtained in each class.

The results (Table 2.2) show that considering only OD zones leads to accuracy scores as low
as 36.6%. Also, based on table 2.3, this model seems to be biased towards detecting home as
more than 80% of other categories are incorrectly labeled as home. Figure 2.7 also shows that
in most OD zones the probability of home is more than the other two.

Adding temporal variables in table 2.2 increases the overall accuracy to around 90%. How-
ever, due to the presence of the spatial variable, the results are slightly biased towards home
(Table 2.4). Table 2.5 confirms this because as the accuracy of home detection is reduced,
the accuracy of work and other increase. Overall, the highest accuracy is achieved by con-
sidering only temporal variables in Table 2.2. Therefore, using location does not improve the
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Table 2.2: Performance metrics of the three states used for activity type recognition.

state: only spatial variable both spatial and temporal variables only temporal variables
precision score 0.4211 0.9019 0.9058
recall score 0.4792 0.8931 0.8969
balanced accuracy 0.3659 0.9086 0.9144

Table 2.3: Confusion matrix of applying the method using only spatial variable on the entire

ground-truth for activity category recognition.

observed home observed work observed other total predicted
predicted home 25434 (92.8%) 10952(80%)  15242(84.8%) 51628(87.4%)
predicted work 488(1.8%) 585(4.3%) 447(2.5%) 1520(2.6%)
predicted other 1476(5.4%) 2151(15.7%) 2278 (12.7%) 5905(10%)
total observed 27398(100%)  13688(100%)  17967(100%) 59053(100%)

Table 2.4: Confusion matrix of applying the method using both spatial and temporal variables
on the entire ground-truth for activity category recognition.

observed home observed work observed other

total predicted

predicted home 22659(82.7%) 111(0.8%) 568(3.2%) 23338(39.5%)
predicted work 223(0.8%) 12899(94.2%) 217(1.2%) 13339(22.6%)
predicted other 4516(16.5%) 678(5%) 17182 (95.6%) 22376(37.9%)
total observed 27398(100%)  13688(100%) 17967(100%) 59053(100%)

Table 2.5: Confusion matrix of applying the method using only temporal variables on the entire

ground-truth for activity category recognition.

observed home observed work observed other

total predicted

predicted home 22458(82%) 52(0.4%) 175(1%) 22685(38.4%)
predicted work 289(1.1%) 12963(94.7%) 248(1.4%) 13500(22.9%)
predicted other 4651(17%) 673(4.9%) 17544(97.6%) 22868(38.7%)
total observed 27398(100%)  13688(100%) 17967(100%) 59053(100%)

overall activity category detection under the considered spatial level of aggregation, and using
only temporal variables suffices. If detecting home is of a higher priority, considering location

alongside temporal variables becomes a preference.

The results in tables 2.5 and 2.4 also roughly show that false-negative errors occur mostly
for home category. Moreover, most of the false-positives are revealed for other. Focusing on
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Figure 2.7: Average probability of each activity category based only on location OD zone.

when the method fails to detect the right activity type, Figure 2.8 presents the distribution of
false-negative error in predictions over duration for home. Since the long duration of home
discriminate this type of activity from other categories, False Negatives mostly occurs when it
comes to shorter duration (less than 5 hours). Figure 2.9 shows the actual duration distribution
of other. Similarity of the distributions in Figure 2.8 and 2.9 shed light on why the method-
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Figure 2.8: False negatives based on the duration of home.

ology might confuse home with other. Moreover, Figure 2.10 presents the distribution of false
negative error in predictions over start time for home. Figure 2.11 displays the actual start time
distribution of other. The afternoon peak in both figures give rise to confusion of home with
other activities. Thus, activity type is estimated based on the start time and duration of stay,
but under specific conditions such as short activity duration in the early evening the temporal
distributions are non conclusive i.e., due to the sporadic closeness of the temporal pattern of
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home and other, miss-prediction may occur.

2.4.4 Sensitivity of KA results to training set sampling

To evaluate the sensitivity of the randomly sampled training set (seed and size), the analyses
in the previous sections were repeated using 50 different seeds. Figure 2.12 presents the KA
performance (i.e. accuracy) in location-activity type detection across these 50 seeds.

The KA performance appears robust for different random seeds. This is further tested sta-
tistically using a Chi-square test on two random sub-samples each containing the performance
for 25 different seeds (i.e. training sets). With a significance level of 0.05, the null-hypothesis
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Figure 2.12: KA performance in location-activity detection on 50 different random seeds for
selecting the training set.

location-activity detection accuracy

that the two sub-samples belong to the same distribution could not be rejected (i.e. we cannot
conclude that the KA performance derived from different sub-samples of random training sets
would yield different distributions).

In the previous sections we evaluated the KA performance for a single random training set.
The results of the Chi-square test indicate that a sample size of 25 is robust to evaluate the KA
performance. Hence in the following section the accuracy of the reconstructed OD matrix is
evaluated based on 25 experiment runs (i.e. across 25 different random seeds for training set
sampling).

2.4.5 OD matrices comparison results

This part presents the results of applying KA on the generated PLU from the ground-truth
using MATSim. We considered 18 various PIs in generating the PLU, which are 30 and 60
seconds, every 5 minutes from 5 to 60 minutes, and every 15 minutes from 1 to 2 hours. Since
non-linearity and variation of results are high for PIs less than two hours, these interval were
selected Moreover, for more clarification on the correlation of randomness of the results and
the underlying PI, all results were calculated for 25 different random seeds (for selecting the
training data from the ground-truth). Having derived the OD matrices for the morning peak
(6:30 to 9:30) for both PLU and the ground-truth, we compared the actual and reconstructed
outcomes using two performance indicators:

1. MAE between OD pairs of reconstructed and ground-truth OD matrices, which compares
the OD pairs values, and

2. GSSI (for further information refer to Behara et al. (2020b)), which captures the structural
similarity between the two matrices.

Figure 2.14 describes the MAEs resulted from comparing the ground-truth OD cells (as the
observed values) and the reconstructed OD cells (as the predicted values) over a range of Pls. It
is reasonable to see that the average value of MAE gradually increases by reducing the PF.

On the other hand, drops and jumps in the MAE values (from 45 to 120 minutes) might be
due to the particular timing pattern of travels and activities (i.e. the context of the data result in
such changes). In fact, it seems that the reliability of the method drops after PI=45 min.
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Figure 2.13: Example traces of a user.

To clarify the reliability fall, Figure 2.13 shows an example of a user’s traces. Assuming
that the letters show the O-D zone, the user’s actual traces, in Figure 2.13(a), are {A,B,C,B}, in
chronological order. However, the traces interpreted from the PLU with PI of 1 minute (Figure
2.13(b)) are {A,B,B} which lacks the detection of C. This occur due to duration of staying in
C (30min) which was less than the duration threshold (about 45min); thus, the record was in-
terpreted as pass-by. Likewise, when PI=40 min (Figure 2.13(c)), the traces are {A,B,B}, but
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due to another reason-we lost activity C due to stay duration less than the PI value. Since travel
demand derives from people’s needs and desires to participate in activities, there could be a con-
dition to compensate for such errors: When the interpreted travel pattern include similar (close
in location coordinates) successive activities, a missed activity is assumed to be in between. It
is located in the farthest record location between the two similar activities. The start time and
duration could be derived using speed data and the distances between the locations.

Important deviations are seen in Figure 2.13(d). Since PI=45 min exceeded the duration
threshold ( 44min), any record was considered as stay and the method’s job was limited to only
cluster the similar records. Therefore, significant number of imaginary stays (i.e. activities)
were generated; hence, the traces in Figure 2.13(d) were {A,A,B,B,C,C,B} and instead of having
four activities, we detected seven. The major issue here is that the travel time between all these
activities is zero which is not feasible. Moreover, detecting and alleviating these massive errors
is complicated due to lack of information. Consequently, it is suggested not to consider users
or scenarios with PI values more than the duration threshold. Because the duration boundary is

polling interval (min)

0.4 0.6 0.8 1.0 1.2 1.4 L6
MAE

Figure 2.14: MAEs related to OD matrices resulted from 25 different random seeds over 18
different Pls.

a critical value, after which a sudden change in the performance of the KA for OD estimation
happens. A little while (about 10 minutes) after this critical value, the variance seems to drop
to values even less than before, which shows the more stability of the results against different
random seeds underlying the training set. This phenomenon happens because in PIs more than
50 minutes,the KA cannot detect short-time activities anymore. In other words, the remaining
activities are of long durations. For instance, home is more robust against random seeds since
its duration is much higher than the PIs discussed here.

As another performance measure indicator, comparing the structure of OD matrices, we
derived the GSSI for each of the PIs with 25 random seeds (Figure 2.15). Basically, GSSI
is in the range of [0,1] and the higher GSSI indicate higher structural similarity of matrices.
therefore, the gradually descending trend is perceivable (due to the inability to detect short
time activities with durations less than PIs) before the duration threshold, but high variation is
also noticeable. Regarding this, a higher PI increases the probability of missing the activity,
even when the PI is still below the activity duration. In fact, higher PIs increase the delay
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Figure 2.15: GSSI related to OD matrices resulted from 25 different random seeds over 18
different Pls.

range of detecting the start and end of activities. This increase the range of interpreted duration
consequently variation jumps up and miss-identification is more likely to happen. Apart from
the indicated rationale, errors due to the data characteristics might also produce variation in the
results.

To understand the changes in Figure 2.15, note that the interpreted duration is a multiple of
PI value. Furthermore, as mentioned in part 2.4.2, about 88% of activities have duration more
than 44 minutes (the duration threshold), whereas, 96% of trips endure less than 44 minutes.
Thus, activities are more probable to be miss-identified (i.e. stays have more false negatives
than pass-bys). However, under a special condition, activity’s false negatives decrease.
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Figure 2.16: GSSI related to OD matrices resulted from 25 different random seeds over 8 dif-
ferent Pls.

To take a closer look at the results in figure 2.15, figure 2.16 shows the GSSI only for PIs
less than the duration threshold. Since the input of KA is the interpreted duration, identification
of a stay requires to have an interpreted duration more than the duration threshold (45 min) even
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if the actual duration is less than the threshold. For instance, when PI=10min and interpreted
duration=50min, it is probable that the record be considered as stay even if its duration be in
the range of (40,45) minutes. We call this range, the fortunate range (FR), which We define
only to explain the results in figure 2.16. The length of FR causes the changes in GSSI value for
PIs less than the threshold. The FRs for our other Pls are shown in Table 2.6. Notice that once
the interpreted duration reaches the duration threshold, it is considered as stay. The longest FR

Table 2.6: FRs for PI = (5, 10, 15, 20, 25, 30, 35, 40).

PI (min) interpreted duration (min) FR (min)
3 45 (40, 45)
10 50 (40, 45)
15 45 (30, 45)
20 60 (40, 45)
25 50 (25, 45)
30 60 (30, 45)
35 70 (35, 45)
40 80 (40, 45)

belong to PI=25min. The same PI got the highest GSSI in Figure 2.16.

On the other hand, when the interpreted duration falls near the duration threshold, the vari-
ation spikes. Accordingly, PI= 5,15 min have high variances. In fact, this variation is higher
for PI=15 min due to longer FR-more stochasticity. Naturally, between three PIs of 5, 10, 20,
and 40 min that have the similar FRs, the lower PI gets the higher GSSI. PI values more than
the duration threshold are not discussed due to poor performance of KA and a large number of
unreal generated activities.

Overall, it seems that when false negatives of stays are more than that of pass-bys, the
longest FR with a minimum PI result in the highest GSSI; the most structurally similar recon-
structed OD matrix to the ground-truth matrix. In our case, with duration threshold of about 45
minutes, PI = 25min yields the highest GSSI. Basically, under the mentioned circumstances,
with duration threshold of 7, the ideal P is 7' /2 + € where € is a very small value.

2.4.6 Research limitations

This research had several strengths: It certainly adds to our understanding of the effects of
temporal characteristics of PLU data on the accuracy and robustness of the resulting OD matrix.
It also proposes a data-driven method for interpreting the raw PLU data. Nonetheless, these
findings must be interpreted with caution, and a number of limitations should be borne in mind
as follows:

* Limited synthetic data: Real-world mobile phone datasets can offer ample information
about millions of mobile phone users. Nevertheless, their limitation concerns the privacy
issue and the difficulty of carrying out reliability and validation experiments (due to the
unavailability of the ground-truth). In order to conduct operational tests and evaluations,
we used synthetic (travel diary and GSM) data, thus including the ground-truth by design
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and without any privacy concerns. However, the question is whether our findings are
generalizable toward empirical data. It is worth mentioning that the ALBATROSS model
(based on which our data is generated) does not assume any a-priori (theoretical) distri-
bution of activities but instead uses decision trees that are directly calibrated from travel
diaries. Therefore, the model structure has not artificially imposed temporal distributions.
However, a sampling bias in the original travel diary used to train ALBATROSS might be
affecting the data’s representativeness in describing the entire population.

On the other hand, the Bayesian model is naturally resistant to non-informative predic-
tors. Nevertheless, due to the naive nature of our model, incorporating the location in
addition to temporal variables in activity category detection slightly reduced the overall
accuracy. This is because, in Naive Bayesian models, different prior variables are as-
sumed to be conditionally independent. This assumption can be avoided by establishing
the correlation of prior variables, which usually require a more extensive data set than the
data available in this study. Therefore, we acknowledge a need for a future study (e.g., a
longitudinal study) to consider a fully Bayesian model to comprehensively describe the
relationship between the explanatory variables.

* Mismatch between TAZs and base station coverage zones: This research assumes
that the base station coverage area is the same as its associated TAZ. However, there is a
mismatch between the antenna’s coverage zone and TAZ in practice. But we ignored this
mismatch because the base station coverage area is typically much smaller than a TAZ.
In fact, in the urban areas, the size of a typical TAZ is about 2-5 km, and that of a base
station zone is about 50-200 m (Dong et al., 2015). To investigate further, Figure 2.17
shows the Cumulative density function (CDF) of TAZ sizes. Accordingly, the average
TAZ size is about 15km which naturally contains tens of base stations.
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Figure 2.17: Cumulative density function (CDF) of the TAZ sizes in our study.

Therefore, the influence of the size of base station areas on the quality of TAZ division
is not significant in urbanized areas (as is Amsterdam). In other areas and to generalize
the analysis, one needs base station distribution and location data to account for the errors
in the traffic activity analysis. It is worth pointing out that the TAZs seem too large to
capture short-distance trips. Figure 2.18 shows the CDF of the trip distances in our study.
Accordingly, more than 10% of the trip distances are less than 3km despite considering
only car mode. Undoubtedly, adding active modes of transport to the analysis makes this
proportion much higher. Despite the large extent, coarse-sized TAZs used for transport
planning (as used here) will inevitably eliminate such short-distance trips.
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Figure 2.18: Cumulative density function (CDF) of the trip distances in our study.

* Positioning accuracy and disturbance (ping-pong handover): Overall, OD accuracy

is affected by multiple factors, namely positioning interval, positioning accuracy, and
positioning disturbance (Ping-Pong handover). This research only discusses the effects
of positioning intervals because we assume this factor can be decoupled from the other
two and investigated in separate studies. Future studies can empirically study positioning
accuracy in the presence of positioning disturbances.

Disregarding up-scaling the sample OD matrix toward the OD matrix of the entire
population: The available GSM data typically pertains to a sample of the population.
Hence the use of GSM data to estimate OD matrices is a two-part problem (e.g., Igbal
et al. (2014); Toole et al. (2015); Mohanty & Pozdnukhov (2020)). The first part is to
go from GSM traces of the sample population to an OD matrix of that sample (usually
using zonal and temporal aggregation). The second step is to go from the OD matrix of
the sample to the OD matrix of the entire population (usually using weighted scaling). In
this research, we focus on the first part of the problem - i.e., to derive an OD matrix for
the (sampled) GSM traces - while addressing how the polling interval affects the task of
zonal and temporal aggregation.

Disregarding the mode of transport: Generally, the Bayesian classifier is sensitive in
modeling the activity pattern with a low sampled mode. This study only uses the data
belonging to users with the car mode. However, there might be some challenges to the
approach’s generalizability for practical implementation which can be a direction for fur-
ther research in the future. Although it is worth mentioning that upon analyzing a raw set
of GSM data, the mode of transport can be distinguished in two ways: 1) by adjusting
our model to detect the mode of transport within the framework and 2) by considering
the mode detection as a separate problem before our framework. The former way of ad-
dressing mode detection will increase the model errors significantly as the Kernel density
estimator uses the features of all modes, with different spatiotemporal patterns, simulta-
neously. Different modes of transport have a different distribution of features, especially
in terms of trip duration. Therefore, the Bayesian classifier adapts itself to put the cut-
ting edge between stay and pass-by on an average value for all modes, producing high
deviation relative to associated observed values.

In this regard, Huang et al. (2019) reviews the literature on transport mode detection
with mobile phone network data. Accordingly, mode detection should take place after
location type detection because the trip properties like speed, duration, start time, and stay
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location help detect the mode. However, Some studies used geographic data to extract
main transport modes based on proximity to main roads, shortest paths, or train stations
with the public transport timetable. These map-matching methods can still be applied
before location-type detection. A suggestion to improve the generalizability of the KA
method is to adapt mode detection inside KA using an iterative process. The major steps
are as follows: 1) location-type detection for the entire data (containing all the modes), 2)
applying a similar method we used for activity-type detection to extract the main modes
of transport, and 3) re-detection of location type separately for each detected mode. This
iterative process potentially leads to simultaneously detecting location types and modes
of transport. Validating the suggested iterative approach requires another research and
data available on all modes of transport.

2.5 Conclusion and Outlook

GSM data allows observing the location of users over time, but the challenge remains on dis-
cerning activity (stay) locations. For this additional information is needed. We show that a
Kernel-based approach can provide this location detection, when based on travel diaries of a
sample of as little as one percent.

The results presented in this chapter describe how temporal characteristics (i.e., aggrega-
tion and discretization) of GSM data affect the accuracy and robustness of the reconstructed
OD matrix. It seems that the PI and temporal criterion (i.e., the duration threshold to distin-
guish stay from pass-by locations in each user’s traveling traces) jointly affect the OD matrix
reconstruction.

As perhaps expected, we show that the accuracy of the reconstructed OD matrix gradually
declines with higher PI. However, we also show that the reliability of the KA accuracy declines
substantially when PI exceeds the duration threshold. Therefore, the combination of larger PI
(in data collection) than duration threshold (in OD matrix reconstruction) are best avoided.

Depending on the data context (observable in the training set), fortunate ranges exist for
activities with durations and PI less than the duration threshold. These ranges exist due to the
data temporal discretization and different interpreted and actual durations. In fact, since the
interpreted duration of events defines their type, if interpreted duration of a stay be more than
the duration threshold (even if actual duration of it be less than the duration threshold), it would
be recognized as a stay. Our results imply that an “optimal PI”” seems to exist which brings about
the most structurally similar OD matrix to the ground-truth one. This PI is the minimum value
that results in the longest FR. If the duration threshold has the value of T (it can be assumed to
be the minimum stay duration resulted from applying KA on the training set) the optimal PI is
about T /2 + €, where € is a small value. Moreover, the € better be selected in a way that the
interpreted durations not be close to the duration threshold. This increases the robustness of
the results against the random seeds adopted for selecting the training set. For instance, when
duration threshold is 45min, we assume the PI to be 25min for which the minimum interpreted
duration (more than duration threshold) is 50min.

Unavoidably, as it is inherent to GSM data, short-duration activities will remain difficult
to detect. Importantly, this study has shown how non-detection or mis-identification mainly
occurs in case of unusual activity-travel behavior, e.g. short-duration home activities during
the afternoon peak are susceptible to be confused with other activities due to similar temporal
patterns.
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Many models, particularly those which are based on regression slopes and intercepts, will
estimate parameters for every term in the model. Therefore, having non-informative variables
can add uncertainty to the model performance. However, the Bayesian model is naturally re-
sistant to non-informative predictors. Still, due to the naive nature of our model, one needs to
select the explanatory variables carefully to avoid biased inferences. Depending on the spatial
aggregation level, the location of records might help to infer the activity type. Spatial aggrega-
tion is associated with the density and distribution of antennas across the network. In our study,
the location of the records does not provide much data on the activity categories. Therefore,
incorporating the location in addition to temporal variables in activity category detection did
not significantly change the accuracy. In fact, it even slightly reduced the overall accuracy. This
may appear counter-intuitive, but is because, in Naive Bayesian models, different prior variables
are assumed to be conditionally independent. This assumption can be avoided by establishing
the correlation of prior variables, which usually require a more extensive data set than the data
available in this study.

In addition to temporal characteristics, this method could use speed and distance between
the records to decide on their type (stay or pass-by). For instance, initially, we assumed that
the travel time is the Euclidean distance between two location coordinates divided by the av-
erage speed extracted from the training data. However, this assumption did not improve our
estimations (i.e. OD matrix) due to two reasons: First, the actual speed has a variety of ranges
depending on time, space, and user’s behaviour (and mode of transport but here we only con-
sidered cars). Therefore, it seems that the average speed of the training set is not a proper
approximate for speed at various times, spaces, and users. Second, the actual route that the
user selects to get from origin to destination is generally longer than the Euclidean distance.
Thus, due to the required extra efforts, we did not modify the travel times in the data. Whereas,
depending on the data availability, future research could use either the speed with route data or
directly the travel time approximates to enhance the O-D travel times.

Future research should be undertaken to explore how we can improve OD reconstruction
accuracy through data-driven approaches. The authors suggest three ways to improve the per-
formance of KA in location-type detection. One is to simultaneously evaluate the travel motifs
of all users in training data to identify the different feature distributions for each primary ac-
tivity tour across the network. This step can be performed using Kernel density estimation and
the Bayesian modeling we used in this research. Later on, we can assign the most probable
activity motif based on the features of each individual. Another way of improving location-type
detection is to assess the repetition of visited locations at the network level (i.e., all users) and
each user. Evidently, evaluating repetition patterns per user require data for a longer period.

Another way of improving location and activity type recognition is adding different fea-
tures of TAZs to the analysis. These features include mixed land-use, population density,
road density, and dominant demographic information. For instance, a TAZ with large com-
mercial/industrial areas is more probable to be a stay locating for work activity. Adding the
mentioned spatial features also helps increase the detail level and detect activity types more dis-
aggregate. It goes without saying that higher spatiotemporal resolution might also be required
to increase the level of detail in activity category detection. For instance, given that a partic-
ular location holds an entertainment event at a particular interval, observing a close-by record
implies attending an entertainment activity more probable.

The experimental setup and newly developed method for OD matrix estimation provides
more avenues for future research. Firstly, the framework can be extended towards CDR data
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where polling intervals are irregular and endogenous (instead of regular and exogenous as with
PLU data). Secondly, the KA model can be adapted to address the effects of spatial character-
istics of GSM data (i.e. spatial accuracy of data as well as OD matrix). Thirdly, the KA model
can be adapted to address the problem of mode detection (i.e. distinguishing mode of transport
for GSM traces, based on e.g. average speed, location and time-of-day). For the latter two
studies again a sub-sample of travel diaries can be used as training set.






Chapter 3

Distinguishing the Spatial-Temporal Travel
Demand Patterns

Building on the insights gained from the previous chapter, where we explored the nuances
of GSM data in travel demand estimation, this chapter pivots from the methodological focus
of interpreting raw data. We perform a deeper analysis of the spatial-temporal heterogeneity
in trip production, particularly in the context of OD matrix estimation and prediction using
gravity models. Transportation systems, with their inherent complexity and constant evolution,
present substantial challenges in accurately modeling and predicting travel demand. This chap-
ter particularly highlights how this complexity and heterogeneity contribute to spatial-temporal
variations in trip production and attraction, influencing the predictability and reliability of OD
matrix estimations. By examining the variability in trip production at different times of day and
days of the week, we shed light on the dominant patterns that emerge among traffic analysis
zones (TAZ), providing valuable insights for more effective transportation planning and policy-
making.

This chapter is based on the following papers:

Eftekhar, Z., Pel, A., & van Lint, H. . (2023). A Cluster Analysis of Temporal Patterns
of Travel Production in the Netherlands: Dominant within-day and day-to-day patterns and
their association with Urbanization Levels. European Journal of Transport and Infrastructure
Research, 23(3), 1-29. (published)

Eftekhar, Z., Behrouzi, S., Krishnakumari, P, Pel, A., & van Lint, H. .The Role of Spa-
tial Features and Adjacency in Data-driven Short-term Prediction of Trip Production:An Ex-
ploratory Study in the Netherlands (under review)
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Abstract

This research explores temporal patterns in travel production using a full month of produc-
tion data from traffic analysis zones (TAZ) in the (entire) Netherlands. The mentioned data
is a processed aggregated derivative (due to privacy concerns) from GSM traces of a Dutch
telecommunication company. This research thus also sheds light on whether such a processed
data source is representative of both regular and non-regular patterns in travel production and
how such data can be used for planning purposes. To this end, we construct normalized ma-
trix (heatmap) representations of weekly hour-by-hour travel production patterns of over 1200
TAZs, which we cluster using K-means combined with deep convolutional neural networks
(inception V3) to extract relevant features. A silhouette score shows that three dominant clus-
ters of temporal patterns can be discerned (K=3). These three clusters have distinctly different
within-day and day-to-day production patterns in terms of peak period intensity over different
days of the week. Subsequently, a spatial analysis of these clusters reveals that the differences
can be related to (easily observable) land-use features such as urbanization levels (i.e., Urban,
Rural, and mixed-level ). To substantiate this hypothesis and the usefulness of this clustering
result, we apply an OVR-SMOTE-XGBoost ensemble classification model on the land-use fea-
tures of the TAZs (i.e., to identify their cluster). The results of our clustering analysis show that
given the land-use features, the overall production patterns are identifiable. These findings are
directly useful for data-driven estimation and prediction of demand time series. Furthermore,
this study provides further insights into people’s mobility, relevant for transportation analysis
and policies.

3.1 Introduction

Call detailed records (CDR) can show valuable insights in various contexts such as daily mo-
bility motifs (Schneider et al., 2013; Jiang et al., 2017), population movements (Antoniou et al.,
2020; Szocska et al., 2021), and disaster response (Yabe et al., 2022). While all the men-
tioned studies use raw trajectories, acquiring this type of data is difficult. Telecom operators
are banned from providing ground truth or contextual information to protect people’s privacy at
the—inevitable—expense of data utility. Usually, what is available is processed aggregated OD
matrices for which the methodology used for processing and up-scaling to the whole population
is unclear. This data is a valuable source of information on people’s mobility, but its suitabil-
ity for transportation planning remains unclear. Are these OD matrices representative of the
population demand variations and irregular patterns? In many cases, due to the limited market
share of the telecom operator, only a small and possibly behaviorally biased sample of people
is presented in the raw data; How well do they represent the whole population? Mamei et al.
(2019) raises attention to the need for more research and experiments assessing and evaluating
the OD matrices derived from these data sources.

To make these processed data useful for urban planning, we must clarify their potential bi-
ases even when facing limited data resources to test these against. In this regard, consistency
of data deals with its representativeness and correspondence to the real world. Essentially,
data consistency has two main aspects: uniformity across the dataset and alignment with ex-
pected patterns (Demchenko et al., 2013). The consistency of the data can be assessed by using
multiple sources when available, checking data credibility using various quantitative tools, and
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evaluating the internal data structure (Rubin & Lukoianova, 2013). In this chapter, we evalu-
ate the consistency of the OD matrices resulting from CDR both by assessing their associated
travel demand patterns (representing internal data structure) and by comparison with data from
an independent source, in our case, land-use characteristics.

Understanding travel demand patterns is essential for transportation planning and manage-
ment. Firstly, travel demand analysis plays a significant role in identifying the current problems
of transportation systems and helps in modeling the future traffic state (Thakuriah, 2001; Rich
& Mabit, 2012). Secondly, the demand patterns help evaluate the impact of transportation in-
frastructure and management policies and strategies, such as flexible-time work schedules and
congestion pricing (Girling et al., 2002). Thirdly, understanding demand patterns is useful for
developing better standards for evacuation plans, and responses (Pel et al., 2011; Xu et al.,
2017).

Fekih et al. proposes a framework to extract spatiotemporal travel demand patterns from
large-scale GSM traces. Their analysis focuses on within-day variations of travel demand. In
this research, we build on this work and investigate both within-day and day-to-day production
patterns of all the traffic analysis zones (TAZs) in the Netherlands. We tried to capture a more
holistic picture of temporal production patterns through normalized heatmaps. After feeding
these heatmaps to a deep convolutional neural network (DCNN) and K-means method, three
main patterns were discerned. Analysis of these patterns is one of the two methods of evaluat-
ing data consistency. The performed temporal analysis of the underlying patterns is valuable for
adjusting the demand models and prediction. Later we link these temporal patterns to spatial
urbanization levels through their land-use characteristics, which is beneficial for urban develop-
ment strategies and policymakers. In fact, this study proposes three urbanization levels for the
Netherlands: urban, rural, and other, associated with their specific land-use characteristics and
travel production patterns within the day and day-to-day, and this study explores the differences
in these patterns. This effort is the second method of assessing the data consistency. Further-
more, an OVR-SMOTE-XGBoost ensemble classification method is proposed to investigate the
relationship between land-use characteristics and temporal production patterns. Our findings
suggest that given the land-use features of each TAZ, their most probable travel production
temporal pattern is detectable. The results are beneficial for dynamic demand prediction mod-
els. Furthermore, we find indications for the data’s ability to represent both dominant patterns
and variations correctly in spite of the data’s inherent bias. This study will help planners discern
and assess the representativeness and suitability of using the processed, up-scaled derivative of
GSM traces in traffic planning.

The remainder of this chapter is organized as follows: Section 3.2 describes the research
data and the implemented method. In Section 3.3, we present and discuss the results of our
analysis on the temporal patterns found in the Netherlands. Finally, Section 3.4 concludes the
chapter.

3.2 METHODOLOGY

To understand the temporal patterns in travel production and how these might be associated
with spatial urbanization levels, we can distinguish three main research components (as shown
in the overall research framework in Figure 3.1: the data showing the spatiotemporal travel
productions, the clustering method to discern temporal patterns, and the association analysis
method to discern spatial relations. The first two components are explained one by one in the
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following subsections. The association analysis is included in section 5.2.

1) Pre-process and generate
normalized production heatmap
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Figure 3.1: Overall research framework.

3.2.1 Travel production data

This research uses the hourly production of the 4-digit postal code zones in the entire Nether-
lands during March 2017. Using 4-digit postal code zones leads to 1246 TAZs in the Nether-
lands (see Figure 3.2). Travel production of TAZ i is defined as the number of inter-zonal trips

Figure 3.2: TAZs in the Netherlands.

made by motor vehicles starting at i. The production values are derived from the GSM traces
of the Dutch telecommunication company Vodafone, whose market share is about one-third
of the Dutch population. Another company performed the processing due to privacy concerns
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regarding the raw mobile phone data. Consequently, the available data for this study, instead
of the mobile phone traces, consists of origin-destination (OD) matrices of the motor vehicles
based on TAZs in the Netherlands. These OD matrices have been initially scaled up to the entire
Dutch population. We refer the reader to Meppelink et al. (2020) for more detail on the scaling
procedure.

To begin with, we collected the (processed) data. After pre-processing and reshaping, each
zone had a heatmap of normalized production values. Normalizing the production values en-
ables fast and stable pattern comparison of various zones. The technique we applied on each
production value x for normalizing is Min-Max Scaling, i.e.,

Xnormalized — 2T Tmin (3.1)
Xmax — Xmin
where X,,ormatized 1 the normalized value, x,,i, and x4, are the minimum and maximum produc-
tion values in the (month-long) time series of that particular TAZ. Thus the resulting normalized
values range between 0 and 1.

The result is a production heatmap for each TAZ in which the horizontal and vertical axes
represent the days of the month and the hours of a day, respectively. Figure 3.3 shows an
example. This representation allows us to see the temporal patterns of production both within
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Figure 3.3: An example of production heatmap for one TAZ.

a day (comparing across rows) and between days (comparing across columns). These 1246
heatmaps of travel production are the basis for the following analyses.

3.2.2 Clustering temporal production patterns

The heatmaps of hourly travel production per TAZ are clustered based on (temporal) similarity
using K-means clustering. Due to its easy application and effectiveness, the K-means cluster-
ing method is one of the most popular algorithms for clustering analysis (Poteras et al., 2014;
Szegedy et al., 2016; Cohn & Holm, 2021; Van Gansbeke et al., 2020). The method works by
splitting the N-dimensional data set of M points (heatmaps) into K clusters such that the sum
of the pairwise Euclidean distance between the points of each cluster is minimized (Hartigan &
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Wong, 1979). In other words, this method aims to maximize the similarity between the points in
the same cluster and maximize the dissimilarity of points from different clusters. The method’s
initialization is by randomly selecting K points as the cluster centroids. The clustering process
has two significant steps:

» Assignment: assigning each point to its closest centroid. Mathematically this step refers
to partitioning the points to the Voronoi diagram (Shamos & Hoey, 1975) generated by
the centroids.

* Update: updating each cluster center to be the average of all points contained within
them.

Applying the K-means method means that the number of clusters is exogenously chosen and
thus needs to be justified. As we cannot determine how many patterns exist in advance, this is an
unsupervised learning problem. That is, there are no “true labels” or ground truth available (i.e.,
there is no a-priori behavioral hypothesis on the existence of specific patterns), and therefore
the appropriate number of clusters is best chosen by assessing the (dis)similarity within and
between clusters, for different values of K. To calculate the goodness of clustering, we used
the Silhouette index (Rousseeuw, 1987). There are several methods for clustering evaluation,
such as distortion score (Camps-Valls, 2006), Rand index (Yeung et al., 2001), adjusted Rand
index (Hubert & Arabie, 1985), and Silhouette index. The latter is particularly useful for an
unsupervised evaluation of clustering.

The Silhouette ranges between -1 and 1, where high values show a well-matched point to
its own cluster and poorly matched to the neighboring clusters. If many points have a negative

value, the number of clusters needs to be modified. The Silhouette of point i is calculated as
N x()—y()

$() = a0

larity), and y is the average distance to points of the same cluster. uster is the average s(i) of

all the points inside the cluster, and the Silhouette index for all clusters (SI) is the average s(i)
of all points in all clusters. The optimal number of clusters happens when the SI is maximum.
That is when on average, the difference between mean intra-cluster and nearest-cluster distance
is the highest. For instance, if we calculate SI for the different number of clusters (i.e., K) in the
range of 2,15 and the maximum values of SI happen when K = 3, the optimal K equals 3.

To evaluate the separateness of clusters, the inter-cluster distance is commonly used (Liu
et al., 2012). Visualizing the inter-cluster distances in two dimensions gives insight into the
relative importance of clusters. To this end, multidimensional scaling (MDS) embed multi-
dimensional cluster centers into 2-dimensional space (we refer the reader to Bengfort et al.
(2018); Kruskal (1964)). This method preserves the distance to other centers. For instance, if
cluster centers are close to each other in the original feature space, they are also close when
embedded into 2-dimensional space. In the inter-cluster distance map, the clusters are sized
according to the number of instances that belong to each cluster which in a sense reflects how
important each cluster is.

Another issue that needs to be addressed is that the K-means method is inherently a linear
algorithm (Ning & Hongyi, 2016). Therefore, it is unsuitable for complex nonlinear data dis-
tributions. To take the non-linearity of data into account, a deep convolutional neural network
(DCNN) is used for feature extraction. The DCNN transforms input heatmaps to final rep-
resentations, so-called feature vectors, which are more easily separable by a linear clustering
algorithm (van Elteren, 2018) than the original heatmap. To this end, the DCNN identifies key
(salient) features of the heatmaps for analysis and clustering, and after this transformation step,

where, x is the average distance with points in other clusters (i.e., dissimi-
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we have a set of feature vectors that are then used for K-means clustering (instead of applied
directly on the heatmaps).

As DCNN, the state-of-the-art InceptionV3 based on transfer learning is used. The In-
ceptionV3 architecture specifically improves adaptability to different scales, and overfitting is
better prevented (Kaur & Gandhi, 2020). One way in which this is done is by using transfer
learning. Transfer learning lets us transfer already trained model parameters to our new model
and therefore accelerates its training (Wang et al., 2019). After training a DCNN on a large
dataset, e.g., ImageNet, one can adopt transfer learning because the DCNN is able to learn
generic features (think of edges or other geometric shapes) that are also applicable to other im-
ages (such as heatmaps) without the need for training from scratch. Furthermore, the weights of
the DCNN, which is pre-trained on a large dataset, improve its accuracy for specific tasks such
as pattern recognition tasks in which the amount of available training data is limited (Iglovikov
& Shvets, 2018). This also holds for our data set. In this study, we thus extract feature vectors
from the demand heatmaps using the InceptionV3 deep neural network, which is pre-trained on
the ImageNet dataset consisting of millions of images used for object recognition and image
classification. For details about this dataset, we refer the reader to Deng et al. (2009).

In summary, this step transforms the 1246 heatmaps of travel production into feature vectors
that are then clustered based on (temporal) similarity, yielding K clusters with a distinct tem-
poral production pattern, and in the process, determine how many (K) of such clusters/patterns
exist.

The Supplementary data and selected hyperparameters associated with this chapter will be
presented online.

3.3 RESULTS AND DISCUSSION

The first step in our research method was to apply the DCNN to the travel production heatmaps
for feature extraction. Because we needed to use a pre-trained model (i.e., via transfer learning),
we had to resize the input to the same format the network was originally trained on, that is, 224
by 224 pixels (numbers). Subsequently, the resulting feature vector had 2242 features represent-
ing each heatmap. We clustered all these vectors of the entire 1246 TAZs in the Netherlands
and calculated SI for various K values to determine the optimal number of clusters as shown in
Figure 3.4. The scores on the y-axis are the average Silhouette index of all the features, SI, that
each TAZ includes (i.e., travel production feature vector). Accordingly, the best cluster separa-
tion occurs when K = 3 because the maximum SI belongs to the case where K = 3. It is worth
mentioning that SI for K = 3 is relatively close to that of K = 2. Still, this slight difference
cannot be treated insignificantly. After the feature extraction step, the trip production features
constitute large vectors containing many zeroes, and as the SI is the product of averaging the
euclidean distances, any difference is meaningful — indicating non-zero elements of trip pro-
duction features. Also, based on the inter-cluster distance map in Figure 3.5, the three clusters
seem to be well-separated. Clustering of the temporal patterns of production was performed
using inceptionV3 with the K-mean method.

The remainder of this section is divided into two parts: Firstly, we show and analyze the
results of clustering the travel production heatmaps in Section 3.3.1; Secondly, in Section 5.3.1,
we discuss the association between the extracted temporal clusters and spatial characteristics.
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Figure 3.5: K-means inter-cluster distance map when K=3 and MDS is used for dimensionality
reduction.

3.3.1 Travel production patterns

Examples of the three clusters of temporal heatmaps of travel production are given in Figure
3.6.

Of each cluster, two TAZ heatmaps are shown: the left images represent the closest heatmap
to the cluster centroid, and the right pictures show the furthest heatmap from the cluster centroid.

For the first cluster, as shown in Figures 3.6(a) and 3.6(b), containing 286 TAZs, we gen-
erally observe the presence of afternoon peaks between 15:00 and 19:00 in travel demand.
Therefore, this cluster is named AP. Unlike the working days, weekends do not have significant
peaks. Thus the afternoon peak could be due to more work-related areas, i.e., people tend to
leave work in the afternoon, which causes a rise in travel production. Figure 3.6(b) belongs to
the first cluster, although both its location and temporal production pattern seem to be indicat-
ing an outlier. Figure 3.7 shows the Silhouette score distribution per cluster. As negative scores
reflect poor heatmap-to-cluster matches, we can see that cluster AP contains more outliers than
the other two.

The second cluster shown by Figures 3.6(c) and 3.6(d), contains 421 TAZs, and displays
more distinct morning peaks between 06:00 and 09:00 in travel demand. Hence, this cluster is
named MP. As this morning peak is predominantly observed on working days, this could be due
to residential areas, i.e., people leaving their houses in the morning. Compared to cluster AP,
the smaller peak interval reflects more scheduled activities (e.g., starting time of work) in the
mornings and less obligation to leave on time (e.g., from work) in the afternoons. Additionally,
less regular activities like shopping and social events in the afternoon in cluster AP also trigger
the longer peak range. In Figure 3.6(d), which falls further away from the cluster centroid, the
afternoon peak starts to become more severe. In fact, a further increase in the afternoon values
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Figure 3.6: Travel production clusters.
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Figure 3.7: Silhouette score distribution per cluster.

would probably cause this TAZ to be assigned to the third cluster. According to Figure 3.7, this
cluster has higher Silhouette scores and lower outliers (i.e., negative Silhouette scores).

The third cluster, named mix, containing 539 TAZs, displays patterns other than those ob-
served in cluster AP and MP. For instance, in Figure 3.6(e), morning and afternoon peak seems
almost equally extreme with higher values and scheduled activities in the morning, which can
be a presenter of suburban areas where a mix of residential and work-related activities is estab-
lished. Figure 3.6(f), on the other hand, presents a different pattern: This TAZ seems to be a
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weekend trip producer as some peaks are observed during the weekends and Friday afternoons.
Moreover, the afternoons seem to demonstrate higher values.

Visual inspection suggests only subtle differences between heat-maps 3.6(d) and 3.6(f). We
did not apply a separate statistical test (e.g., Kolmogorov—Smirnov) because the two-stage
workflow itself already guarantees separation: Inception-V3 creates feature vectors, and K-
means then forms clusters by explicitly maximizing the distance between them. Running an
extra test would simply confirm what the clustering algorithm has already enforced.

To investigate the dominant within-day patterns per cluster, Figure 3.8(a) shows the average
normalized hourly travel production of the three clusters. To this end, for each TAZ, the hourly
travel demand is averaged across all days of the month and then is min-max normalized across
these 24-hour values. And then, for each cluster, these normalized 24-hour patterns are averaged
across all TAZs inside that cluster. This leads to the results shown in Figure 3.8(a), which indeed
confirm the earlier observations of morning peak, afternoon peak, and mixed temporal patterns.

To investigate the dominant between-day patterns per cluster, Figure 3.8(b) shows the av-
erage normalized daily travel production of the three clusters. To this end, for each TAZ, the
hourly travel demand is summed per day, and then an average daily demand is computed for
each day of the week, and then min-max normalized across these 7-day values. For each clus-
ter, these normalized 7-day patterns are averaged across all TAZs inside each cluster. This leads
to the results shown in Figure 3.8(b). The between-day patterns in all clusters demonstrate a
similar trend, although cluster AP shows slightly higher values on Sundays, compensating for
lower values during the rest of the week.
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Figure 3.8: Average of normalized travel production of the three clusters.

Figure 3.9 shows the absolute within-day travel production in each cluster. The values are
computed similarly as for Figure 3.8(a) but without normalizing. The shaded area shows the
90th and 10¢h percentile. As expected, the values are widely scattered, especially in cluster AP,
with higher average production in almost all hours of the day. In contrast, cluster MP displays
the lowest average production throughout the day. The morning and afternoon peaks of all
clusters seem to be almost in the same time range; however, their difference in the production
values are more significant during the afternoon peak. Overall, the means of clusters seem to
be significantly different.

Figure 3.10 shows the absolute between-day travel production in each cluster. The values
are computed similarly as in Figure 3.9 but without normalizing. The shaded area shows the
90th and 10th percentile.
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Figure 3.9: Average hourly production of the three clusters with 10th and 90th percentile as the
shaded area.
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Figure 3.10: Average daily production of the three clusters with 10th and 90th percentile as the
shaded area.

In the same way as hourly patterns, weekly average values seem to be well-separated. How-
ever, the Figure shows high variance meaning a widely scattered distribution of values. More-
over, the daily patterns seem very similar among all the clusters. A slight difference lies in the
days with maximum averages. These are Thursday and Tuesday for cluster AP, which indicates
working areas. The days with maximum production for cluster mix and cluster MP are Tuesday,
Thursday, and Friday, which can hint that work is not as dominant as it is in cluster AP, i.e.,
as some part-time employees do not work on Fridays, having growth in the production values
mainly indicates non-work-related trips. Furthermore, unlike Figure 3.8(b) in which cluster mix
holds the maximum mean, Figure 3.10 display highest mean for cluster AP. Once again, it im-
plies that productions in cluster mix have a smaller standard deviation (i.e., values are closer to
their maximum) which produces higher values in the normalized production plot.
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Figure 3.11: Travel production pattern clusters in the Netherlands.

Research limitations

This chapter introduces a data-driven framework to show day-to-day and within-day trip pro-
duction patterns. Our method identifies the dominant temporal patterns without prior assump-
tions on the number of patterns. The last part of this research, as subsequently described in
Chapter 5, investigates the association of the identified patterns with spatial characteristics.
Clearly, several limitations should be borne in mind when interpreting the results:

* Raw CDR can offer ample information about millions of mobile phone users. Never-

theless, their limitation concerns the privacy issue. Consequently, the data available for
conducting this study was initially processed, aggregated, and transformed into origin-
destination tables by another party. Inevitably, the level at which we receive the data
lacks details on the methodology used for deriving the resulting dataset. For instance, the
algorithms for separating motor vehicles from other modes of transport, scaling the OD
data to the entire dutch population, and mapping from the antenna Voronoi diagram to
TAZs is unclear. Despite not fully understanding how the OD matrices were created, we
used the data as given and focused on what we could learn from it. It’s important to note
that while we’ve done our best to explain the data, some of the finer details about how it
was produced aren’t clear to us. We accepted the matrices as they were, using them to
guide our research and draw conclusions.

Due to privacy reasons and ease of trip identification, the short-distance trips, mainly
occurring inside each TAZ, were initially eliminated. Consequently, the present analysis
only considers longer distance mobility with possibly more regular temporal patterns.
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* In this research, we used origin-destination tables collected over only one month. This
duration might not be sufficient to analyze the data’s temporal stability. Furthermore, the
resolution of the dataset is at the level of 4-digit postal code zones, which might be too
coarse to evaluate the effect of special events on the trip production of TAZs.

3.3.3 Research implications

An implication of this study is the possibility of assessing the effect of developing/changing an
urban area on trip production patterns. This can be particularly useful for decision and policy-
makers. One possible direction for future research is using our framework to assess the effect
of new urban areas on energy consumption and environmental footprint due to changes in tem-
poral traffic patterns. Another benefit of the present study is that it introduces a framework for
assessing the effect of special events on trip production patterns. To perform such an analysis,
we need to select the spatiotemporal resolution of the data based on the extent of the event.
Although this study focused on trip production patterns, one can apply a similar framework for
trip attraction and OD demand.

3.4 CONCLUSIONS

The present study investigated the consistency and trustworthiness of the processed aggregated
derivatives of GSM traces in the form of OD matrices. To this end, we analyzed the temporal
patterns of travel production in TAZs of the Netherlands. The travel production of different areas
reveals different temporal patterns within a day and between days. Clustering these patterns
using a DCNN based on transfer learning with the K-means method introduced three distinct
clusters in the Netherlands. One with a distinct afternoon peak, one with a distinct morning
peak, and another with a mix of both. Further evaluation of the patterns shows robust temporal
patterns in normalized production values. On the other hand, absolute values show a wider
range of values for all the clusters reflecting both the regular and irregular patterns.

Notwithstanding the relatively limited sample (one month of travel production at a specific
spatial-temporal scale), this work establishes a quantitative framework for detecting hourly and
daily temporal patterns and how spatial urbanization level helps in demand modeling. More-
over, such analysis is required before using the processed demand data for policy-making and
network development. Further research could also be conducted to determine the effective-
ness of using the land-use characteristics (on top of other variables) in improving the demand
prediction models.






Chapter 4

Prediction of Travel Demand at Multiple Spa-
tial Scales

This chapter addresses the research gap in understanding the predictability of travel demand
at different spatial scales. Despite a significant amount of research on travel demand prediction,
there is a lack of direct comparison between studies due to differences in study design and the
specific factors being considered. This chapter aims to fill this gap by directly comparing the
predictability of trip production at various spatial scales, providing insights into how different
spatial scales may impact the predictability of travel demand when using a gravity model.

This chapter is based on the following papers:

Eftekhar, Z., Pel, A., & van Lint, H. . (2023). A Cluster Analysis of Temporal Patterns
of Travel Production in the Netherlands: Dominant within-day and day-to-day patterns and
their association with Urbanization Levels. European Journal of Transport and Infrastructure
Research, 23(3), 1-29. (published)

Eftekhar, Z., Behrouzi, S., Krishnakumari, P, Pel, A., & van Lint, H. . The Role of Spa-
tial Features and Adjacency in Data-driven Short-term Prediction of Trip Production:An Ex-
ploratory Study in the Netherlands (under review)
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Abstract

Large-scale prediction of trip production is one of the minimal ingredients for OD demand esti-
mation and prediction. The main challenge in predicting trip production is its spatial-temporal
dependence and heterogeneity. Most of the studies focus on the temporal correlations in pre-
dicting the demand but usually do not consider the spatial adjacency of mobility zones (MZ).
Consequently, the effect of spatial uncertainty (associated with the spatial heterogeneity) on
the trip production prediction across different spatial scales is not fully understood. More-
over, in large-scale trip production, one needs to train one separate model for each spatial area
which requires extensive computation time and capacity. As the practicality of demand pre-
diction model complexity depends on its required computational power, the computation time
needs to be minimized. This research proposes a method that integrates graph convolutional
neural network (GCN) into the long short-term memory network (LSTM). By introducing a
nationwide graph reflecting the adjacency of MZs, spatial heterogeneity is well addressed in
the prediction process. Also, instead of training one separate prediction model for each zone,
one single prediction model is trained for the entire spatial extent. Therefore, the computational
time decreases significantly. Furthermore, We quantitatively demonstrate the effect of spatial
uncertainty on the prediction under various administrative spatial scales. The findings of this
research have important implications for improving the OD demand prediction models.

4.1 Introduction

Short-term travel demand prediction is crucial for effective policy adjustments, management,
and operations in various domains (Qian et al., 2020; Xiong et al., 2020). A critical aspect
of demand prediction is forecasting the number of trips originating from a specific location,
referred to as trip production. Although accurate trip production prediction is vital for esti-
mating and predicting origin-destination (OD) demand, it remains a challenging task due to its
complex spatial-temporal dependence and heterogeneity (Krishnakumari et al., 2019). In this
chapter, “trip production” denotes the number of outgoing trips from a particular location or
zone i.

Predicting trip production is challenging due to the heterogeneity caused by the diverse char-
acteristics of traffic analysis zones (TAZs) (Shen et al., 2020). Spatiotemporal heterogeneity
refers to the variations in the correlations or distributions of variables across different geograph-
ical regions and time intervals. Spatiotemporal heterogeneity in demand implies that the effects
of land-use properties on travel demand patterns may not be consistent across different areas or
periods. This heterogeneity within one TAZ and across TAZs originates from a range of factors,
including diverse urbanization levels, population demographics and lifestyles, economic activ-
ities, transportation accessibility, and resource distribution across areas (Fotheringham et al.,
1998). When a single TAZ encompasses a mixture of (diverse) characteristics, it can lead to
spatial heterogeneity in trip production, introducing uncertainty in predicting trip production
patterns. For example, trip production in certain parts of a TAZ may peak in the afternoon,
while in others, it may peak in the morning, and in some cases, it may follow a completely dif-
ferent pattern (Atluri et al., 2018). Considering these challenges, this chapter aims to develop
data-driven prediction models that explicitly account for spatial-temporal heterogeneity, inves-
tigate the effect of spatial scale on prediction accuracy, and examine the association between
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prediction errors, residual patterns, and socio-spatial features at different spatial scales. Under-
standing these relationships can significantly enhance the quality of trip production predictions
and contribute to more effective urban planning and transportation policy decisions.

In the temporal dimension of demand data, various patterns, such as periodicity, linear and
non-linear trends, and holiday effects, can be observed, significantly impacting the quality of
predictions. This temporal variability is particularly substantial in urban areas, where morning
and afternoon peaks contribute to nearly 50% of daily travel production (Lin & Shin, 2008).
This variability not only exacerbates the spatial heterogeneity described earlier but also has its
own effects. The coarser one discretizes the periods over which production is predicted, the
larger the prediction errors may be, depending on both this temporal variability and the chosen
period boundaries.

Numerous researchers highlight that neglecting this combined spatiotemporal heterogeneity
results in higher prediction errors and that addressing spatial-temporal heterogeneity is essential
for understanding and predicting travel production (e.g., (Anselin & Griffith, 1988; Deng et al.,
2018; Cheng et al., 2019)).

Our literature review reveals a lack of data-driven models that consider these factors. Con-
sequently, to inspire potential approaches, we first provide a brief overview of data-driven pre-
diction methods applied to traffic data (speed and flow) to address these challenges.

4.1.1 Related Work

Various studies have investigated the temporal correlation of traffic data using diverse methods
tailored to different application scenarios. Traffic forecasting approaches can be broadly divided
into two categories: traditional statistical methods and deep-learning-based methods.

Traditional statistical methods include linear regression models (Sun et al., 2003), Kalman
filtering (Yang, 2005), autoregressive integrated moving average (ARIMA) (Liu et al., 2021),
K-nearest neighbor (KNN) (Xu et al., 2020), least squares support vector machines (LS-SVMs)
(Zhang & Liu, 2009), particle filter (Wang et al., 2016), hidden Markov model (Qi & Ishak,
2014), and Gaussian process (Xie et al., 2010). These methods often rely on strict mathemati-
cal deductions and well-defined physical meanings, limiting their applicability to less complex
traffic conditions and/or smaller traffic data sets. Furthermore, most traditional methods as-
sume linearity (in their parameters) and consider stationary underlying processes generating the
data, making them less suitable for non-linear dynamics and non-recurrent situations that are
characteristic of traffic demand dynamics.

Deep-learning-based methods, the second category, include convolutional neural networks
(CNNs) and recurrent neural networks (RNNs). CNNs, along with their deeper architecture
(e.g. ResNet (Zhang, 2021)), are typically employed for spatial structure learning, while RNN's
(e.g., LSTM (Hochreiter & Schmidhuber, 1997) and gated recurrent unit (GRU) (Chung et al.,
2014)) are widely used for temporal and sequential learning. For instance, ST-ResNet (Zhang
et al., 2017) employs a residual network for spatial correlation learning and LSTM for modeling
time-series data. However, ST-ResNet and subsequent works (Zhang et al., 2017; Liang et al.,
2018; Zhang et al., 2019) mainly focus on “coarse-level” citywide traffic flow estimation using
taxi or bicycle data.

Deep-learning-based methods often require large datasets and high computational capacity
due to the large number of parameters that need to be trained. Moreover, for large-scale trip
production, separate models must be trained for each spatial area, necessitating extensive com-
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putation time and resources. When developing transportation models, it is essential to find a
balance between the complexity of the model and the available computing resources (Raadsen
et al., 2020). This is crucial because model acceptability often depends on computation time,
which must be minimized without compromising accuracy. Additionally, most non-parametric
methods mentioned above focus solely on temporal correlations without reflecting spatial het-
erogeneity.

Recent advancements in traffic prediction models have utilized deep learning techniques
to capture spatial-temporal dependencies. For example, Wu et al. (2019) proposed a Graph
WaveNet model for traffic forecasting, which integrates graph convolutional networks with
temporal convolutional networks. Similarly, Guo et al. (2019) developed an attention-based
spatial-temporal graph convolutional network (ASTGCN) for traffic flow prediction. These
studies highlight the ongoing development of models that effectively capture complex spatial-
temporal relationships.

Starting with travel demand prediction, the comparison study of Li & Axhausen (2019)
on short-term traffic demand prediction methods reveals no singularly superior model across
several time-series models, machine learning models, and three deep learning models across
multiple datasets. On the whole, statistical approaches were less effective, in contrast, machine
learning techniques and LSTM-based neural networks exhibited enhanced outcomes as mea-
sured by the SMAPE metric. Methods employing LSTM with one-hot encoding and LSTM
with embedding techniques achieved commendable performance regarding RMSE. Generally,
the LSTM-Neural Network model surpassed alternative models in comparative analyses over
diverse geographical units.

In another demand prediction study, hierarchical reconciliation approaches have been ex-
plored to enhance deep-learning methods, as demonstrated by Khalesian et al. (2024), who
emphasized the necessity of incorporating error analysis to maintain forecast accuracy within
a feasible solution space, underscoring the flexibility and applicability of these methods across
various scenarios of area-based traffic demand prediction. Similarly, deep spatio-temporal Con-
vLSTM models, like the one proposed by Wang et al. (2018), have shown great promise in
forecasting travel demand by considering comprehensive time and space factors, marking a
significant leap from traditional time-series models that often fall short in complex scenarios.

In the domain of traffic flow prediction, the spatial-temporal convolutional model introduced
by Fu et al. (2021) stands out for its application on urban crowd density prediction using mobile-
phone signaling data, demonstrating the potential of deep learning models to handle irregular-
shaped divisions and capture the intricate spatial and temporal dependencies inherent in traffic
prediction tasks. This approach aligns with the findings of Yang et al. (2018a), who utilized
deep learning to predict daily usage of Bike Sharing Systems (BSS), indicating a shift towards
data-driven models that leverage deep learning for enhanced predictive capabilities.

Furthermore, the research by Li et al. (2023) into urban rail transit (URT) underscores the
impact of spatial features on prediction accuracy, presenting a deep learning-based passenger
flow prediction method that incorporates spatial characteristics such as land use, regional lo-
cation, and intermodal access. This methodological shift towards acknowledging the role of
spatial features in prediction models offers a nuanced understanding of travel behavior and de-
mand, facilitating more accurate forecasts.

DeepSTCL, a deep spatio-temporal ConvLSTM framework for travel demand prediction
developed by Wang et al. (2018), represents another step forward, treating historical travel data
like a video stream to predict future demand. This innovative approach underscores the potential
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of deep learning in tapping into spatio-temporal features for travel demand forecasting, achiev-
ing high accuracy and efficiency. In conclusion, the integration of deep learning into travel
demand and traffic flow prediction models has facilitated a deeper understanding of complex
spatial and temporal dynamics, significantly enhancing predictive accuracy.

Recently, researchers have explored graph-theoretic approaches to model traffic data col-
lected from road sensors. The spatial correlations between traffic sensors are structured as a
directed graph, with nodes representing sensors and edge weights indicating proximity between
sensor pairs measured by road network distance. Given that sensor networks are naturally orga-
nized as graphs, recent advances in graph neural networks (Defferrard et al., 2016), particularly
graph convolution networks (Kipf & Welling, 2016), have inspired several graph-based traf-
fic prediction models (Zhang et al., 2019; Yu et al., 2017; Guo et al., 2019; Pan et al., 2019;
Diao et al., 2019). For example, (Bruna et al., 2013; Welling & Kipf, 2016) propose a method
integrating graph convolutional neural network (GCN) into the LSTM, addressing both spa-
tiotemporal dependencies and heterogeneity.

The study by Rajabzadeh et al. (2017) presents an interesting short-term traffic flow pre-
diction approach. This research acknowledges that most prediction models face limitations in
predicting local variation patterns and handling dynamic traffic due to their reliance on training
data. To address this issue, they propose a two-step approach that combines a baseline model
constructed from historical data with a time-varying Vasicek (EV) model better to capture real-
time variations in traffic flow during each day. What makes this study particularly interesting is
its use of residuals, which are the differences between actual and predicted values, as a feature
to improve traffic flow prediction. While the study does not explicitly identify and evaluate the
patterns of residuals, its objective is to enhance prediction performance by considering daily
uncertainty impacts by applying the EV model. This approach hints that evaluating prediction
residuals can provide valuable insights into prediction errors and the factors that trigger them.

Inspired by the studies discussed, we propose using the LSTM approach as our benchmark
model. To account for the spatial adjacency often overlooked in conventional forecasting meth-
ods, we then incorporate a GCN within the LSTM framework. Adjacency, in the context of
TAZs, refers to the geographical proximity between zones. Two zones are considered adjacent
if they share a boundary or are close enough to influence each other’s travel patterns. This
relationship is captured through an adjacency matrix, which encodes the connections among
zones.

This deliberate integration aims to evaluate the incremental improvements in prediction ac-
curacy afforded by considering the adjacency of zones. The LSTM model establishes a solid
baseline, enabling us to highlight the specific advantages of integrating spatial characteristics
through the GCN. Our approach does not purport to introduce a novel modeling technique per
se; rather, it illustrates the potential for enhancing prediction accuracy by integrating spatial
adjacency with established predictive models. By applying this LSTM+GCN framework to the
context of trip production prediction, our study underscores the significant role of spatial adja-
cency. While numerous studies have explored OD matrix prediction utilizing either spatial or
temporal prediction models separately, our study advances this by integrating both spatial and
temporal dimensions using a GCN combined with LSTM. This integration allows the model to
simultaneously consider the spatial adjacency of TAZs and their temporal trip production char-
acteristics, enhancing the accuracy and reliability of predictions over traditional models that
consider these aspects in isolation.

Several recent studies have proposed novel models that integrate spatial adjacency into traf-
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fic prediction. For example, Zhao et al. (2019) proposed the Temporal Graph Convolutional
Network (T-GCN), which combines GCN and gated recurrent units (GRU) for traffic fore-
casting. Similarly, Yu et al. (2017) introduced a spatio-temporal graph convolutional network
(STGCN) for traffic forecasting. These models demonstrate the effectiveness of incorporating
spatial adjacency and temporal dynamics.

Beyond T-GCN (Zhao et al., 2019) and STGCN (Yu et al., 2017), other approaches have
introduced more complex frameworks to improve GCN-based traffic prediction. These include
models that leverage dynamic graphs to capture evolving network topologies, transformer-based
GCN architectures that integrate attention mechanisms, and hierarchical GCNs (HGCNs) that
exploit spectral clustering of regions. Such methods can potentially capture evolving spatial-
temporal dependencies and multi-level spatial structures, leading to further enhancements in
prediction performance (Wang et al., 2024; Yan & Ma, 2021; Zhang et al., 2021). Our work
builds upon this foundation by integrating GCN with LSTM to capture spatial-temporal corre-
lations in trip production prediction.

4.1.2 Research Objectives and Contributions

Drawing on the existing literature on traffic data, this research delves into the emerging role
of graph knowledge in the context of travel demand prediction. We propose a method that
integrates GCN into the LSTM and aims to achieve three main objectives. First, we seek to
determine the extent to which computation time and prediction accuracy are impacted by incor-
porating the adjacency of traffic analysis zones into the prediction model. Second, we explore
the influence of spatial scale on spatial uncertainty (associated with spatial heterogeneity), as
this aspect has remained relatively unexplored in the demand prediction field. We compare the
prediction accuracy changes across multiple administrative spatial scales when using the same
model.

Our choice to focus on the LSTM model and its integration with GCN (LSTM+GCN) was
deliberate and aimed at highlighting the specific benefits of considering the adjacency of zones
in forecasting models. The LSTM model served as a robust benchmark to establish a baseline
for predictive performance. By integrating GCN, we sought to underscore how spatial char-
acteristics could enhance prediction accuracy beyond the baseline. This approach was not in-
tended to claim broad novelty in modeling techniques but rather to demonstrate the incremental
gains in prediction accuracy that can be achieved by incorporating spatial adjacency into well-
established models. Therefore, our study contributes to the field by applying the LSTM+GCN
framework to the specific context of trip production prediction, emphasizing the role of spatial
adjacency.

The integration of GCN with LSTM in a unified framework allows for the simultaneous
modeling of both spatial relationships and temporal dependencies. This dual capability is par-
ticularly advantageous in our context for several reasons. By capturing the spatial adjacency
of TAZs through GCNs and the temporal trends through LSTMs, the model can make more
informed, context-aware predictions than would be possible by considering either aspect in iso-
lation. This approach allows the model to utilize the full spectrum of available data—spatial
configurations and temporal sequences—thereby maximizing the insights gained from the data
and improving prediction robustness. Incorporating both spatial and temporal data reflects real-
world conditions more accurately, making the model’s outputs more reliable and applicable for
planning and operational purposes.
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Our proposed method offers several key contributions to the field of travel demand predic-
tion:

1. By employing a nationwide graph to integrate spatial adjacency into an LSTM-based
model, our approach simultaneously enables large-scale, national-level trip production
predictions and forgoes the need to train multiple separate models for each region or
scale. This unified framework not only broadens the spatial scope of demand predictions
but also potentially streamlines computational processes and resource allocation.

2. Our model’s incorporation of spatial adjacency information directly addresses the spatial
heterogeneity inherent in TAZs, thereby refining the accuracy of trip production forecasts.

3. Through a nuanced examination of how spatial scale influences the predictability and
uncertainty of trip production, our study sheds light on crucial considerations for transport
modelers and policymakers, particularly regarding the implications of spatial resolution
on demand forecasts.

In this study, we use processed aggregated derivatives of GSM traces in the form of motor-
vehicles OD matrices of the Netherlands in March 2017. This implies the scope of this work
pertains to motor-vehicle trip production patterns.

The remainder of this chapter is structured as follows: Section 4.2 delineates the research
data and the methodology employed. Section 4.3 presents and discusses the developed trip
production prediction models, elucidates the impact of spatial scale on spatial uncertainty and
prediction accuracy, investigates prediction errors and residual patterns, and identifies the most
pertinent socio-spatial features contributing to residual patterns across various spatial scales.
Finally, Section 4.4 offers a conclusion, summarizing the key findings and their implications.

4.2 Methodology

4.2.1 Trip Production and Socio-Spatial Data

This study utilizes hourly trip production data for the entire Netherlands during March 2017.
The data is aggregated over three spatial scales: provinces, municipalities, and 4-digit postal
code zones, resulting in 12, 390, and 1243 Traffic Analysis Zones (TAZs) throughout the Nether-
lands.

Trip production for TAZ i refers to the number of inter-zonal motor-vehicle trips origi-
nating from i. Trip production values are derived from the GSM traces of Dutch telecommu-
nications company Vodafone, which holds a market share of approximately one-third of the
Dutch population. Due to privacy concerns related to raw mobile phone data, another company
processed the data. As a result, this study utilizes origin-destination (OD) matrices of motor
vehicles based on TAZs in the Netherlands rather than mobile phone traces. These OD matrices
have been scaled up to account for the entire Dutch population. For more details on the scaling
procedure, refer to (Meppelink et al., 2020).

These OD matrices are pre-processed and reshaped to derive a vector of hourly trip produc-
tion values per TAZ for each of the three spatial scales studied here in this research. The dataset
contains over 365 million produced trips. Figure 4.1 displays the total monthly trip production
per TAZ for the three spatial scales under study.
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Figure 4.1: Total monthly trip production per TAZ for the three studied spatial scales.

It is important to note that the trip production data is derived from GSM traces of Vodafone
users, representing approximately one-third of the Dutch population. While this provides sub-
stantial coverage, there is a potential risk of user selection bias or over-representation of travel
patterns from specific demographic groups. The data may not fully capture the travel behavior
of non-Vodafone users or certain socioeconomic segments, such as elderly populations or indi-
viduals with limited access to mobile phones. This limitation is acknowledged, and the results
should be interpreted with consideration of this potential bias.

The Central Bureau of Statistics (CBS) of the Netherlands provided socio-spatial data con-
taining approximately 140 demographic and land-use variables for each TAZ (Centraal Bureau
voor de Statistiek (CBS), 2017) at each of the three aforementioned spatial scales. CBS collects,
edits, and publishes national statistics based on registers, surveys, and interviews. The variables
used in our analysis correspond to data from 2017, aligning with the trip production data.
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4.2.2 Prediction of Trip Production with LSTM

The trip production data exhibit strong seasonality effects and dynamic trends within recent
time frames. Unlike a regular RNN, which struggles to establish long-term dependencies, the
LSTM overcomes the vanishing gradient problem, enabling it to capture both short- and long-
term temporal patterns in a time series. Consequently, we employ an LSTM to investigate
the periodic (i.e., daily) dependencies and recent dynamic trends in trip production. We refer
readers to (Hochreiter & Schmidhuber, 1997) for more details on the LSTM architecture.

s e {1:5}
ze€ {1:N}
X, .. trip production for the MZ o
" zat spatial scale s »| LSTM

Figure 4.2: Experimental framework for the trip production using LSTM.

Figure 4.2 illustrates the experimental framework for predicting trip production using LSTM.
The model takes as input the time series signals X; ; representing the trip production data for
each TAZ i within the spatial scale s. The data are then fed into the LSTM network, which
consists of multiple hidden layers. Each LSTM layer is composed of three gates: input, forget,
and output gates. The gates function as follows:

* Input Gate: Determines which input information is allowed into the memory cell.
* Forget Gate: Controls which historical data should be retained in memory.

* Output Gate: Produces the final output of the memory cell and contributes a portion of
the input information for the subsequent cell.

The LSTM network learns the temporal patterns in trip production data, capturing both
short-term and long-term dependencies through these gate mechanisms. The output of the
LSTM layer is passed to a fully connected layer, which predicts future trip production val-
ues based on the learned temporal features. In this framework, the trip production signal X; ¢
i1s normalized to ensure comparability across different spatial scales and TAZs, allowing the
model to generalize better across regions.

4.2.3 Prediction of Trip Production with LSTM+GCN

Considering spatial correlation and heterogeneity between TAZs potentially improves trip pro-
duction models. To address this, we integrate a Graph Convolutional Network (GCN) into the
LSTM. We refer readers to (Bruna et al., 2013; Seo et al., 2018) for more details. A GCN is
a spatial feature extraction model applicable to any topological structure graph. To compute
the GCN at time ¢ for an M-feature matrix X; € RV*M we first generate an undirected graph
G = (Z,E,A), where the nodes Z represent the TAZs, and |Z| equals the number of TAZs, N, in
each spatial scale.
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Considering spatial correlation and heterogeneity between TAZs potentially improves trip
production models. To address this, we integrate a Graph Convolutional Network (GCN) into
the LSTM. We refer readers to (Bruna et al., 2013; Seo et al., 2018) for more details. A GCN
is a spatial feature extraction model applicable to any topological structure graph. To compute
the GCN at time ¢ for an M-feature matrix X, € RV*M we first generate an undirected graph
G = (Z,E,A), where the nodes Z represent the TAZs, and |Z| equals the number of TAZs, N, in
each spatial scale.

Nodes (Z): Each node represents a TAZ at a specific spatial scale. The total number of
nodes |Z| = N corresponds to the number of TAZs at that scale.

Edges (E): The edges represent the connections between neighboring TAZs. Two TAZs are
considered neighbors if they share a common boundary. We use shapefiles of administrative
boundaries and a spatial join operation to determine the neighbors.

The adjacency matrix A € RV*N encodes the spatial relationships between TAZs, with A; j
defined as:

1 if TAZs i and j are adjacent (i.e., share a common boundary),
Aij= 4.1)

0 otherwise.

The GCN layer operates on the graph structure defined by the adjacency matrix A, aggregating
information from neighboring TAZs to learn spatial features. The graph convolution operation
is defined as:

H = 6(AXW), 4.2)

where A = D~'/2(A+1)D~"/? is the normalized adjacency matrix with added self-connections,
D is the degree matrix of A+1, I is the identity matrix, X is the input feature matrix (trip produc-
tion data), W is a learnable weight matrix, and ¢ is an activation function such as ReLLU. This
operation allows each TAZ to aggregate information from its neighbors, effectively capturing
spatial dependencies.

1:S
A_: adjacency matrix of se {1:5)

MZs at spatial scale s

te {1:T}

X, : trip production for all MZs
attime t and spatial scale s [ GNN |—>{ LSTM

Figure 4.3: Experimental framework for the trip production using GCN+LSTM.

Figure 4.3 provides a detailed schematic diagram of the proposed model framework, illus-
trating the integration of GCN and LSTM layers for capturing spatial and temporal correlations.
We use the graph convolution operation to extract spatial features of the mobility network
and the LSTM to extract temporal features of the signal. The LSTM input consists of the
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convolutional graph features concatenated with the original signals. In other words, for each
spatial scale, the graph signals X; ; at time #, along with the adjacency matrix Ay, are used to
compute the spatial features H; ;.

As depicted in Figure 4.3, the spatial features H, ; obtained from the GCN layer are con-
catenated with the original graph signals X; ¢ to form the input thCN for the LSTM layer. This
concatenation ensures that both the spatial information from neighboring TAZs and the tempo-
ral information from the original signals are jointly utilized by the LSTM to make predictions.
Therefore, the input to the LSTM layer is:

Xt,GsCN = [Xt.,s;Ht,s]7

where [-;-] denotes concatenation along the feature dimension.
Lastly, the LSTM output serves as the input for a fully connected layer that predicts the
signal for the desired time. The process can be summarized as follows:

* Spatial Feature Extraction: Apply the GCN layer to learn spatial features (H; s) from
the graph signals (X; ;) and adjacency matrix (Ay).

* Temporal Feature Extraction: Concatenate the spatial features (H; ;) with the original
graph signals (X; ;) to form the input (X,(;CN ) for the LSTM layer.

* Trip Production Prediction: Use the LSTM Ilayer to predict future trip production val-
ues.

For further details on the architecture and implementation of our model, including the code
and data used, we have published our code repository and dataset. The code repository can be
found at Eftekhar et al. (2024a), and the dataset is available at Eftekhar et al. (2024b).

Thus, for each spatial scale, the graph signals (X; ) at time (¢) are concatenated with the
spatial features (H; ;) to form the input for the LSTM (X,?SCN ). The LSTM output then serves as
the input for a fully connected layer that predicts the signal for the desired time.

4.2.4 Experimental Design

We initially normalize the values for each TAZ to enable a fast and stable pattern comparison
across various TAZs. For instance, Figure 4.4 shows the 2-D histogram of trip production
for all the provinces in the Netherlands. As shown, the value ranges for different TAZs vary
significantly. We can focus more on recognizing the patterns by normalizing the values in each
TAZ. We later reverse the values back to their original range to evaluate prediction accuracy.
We applied the Min-Max Scaling technique to normalize each production value x, i.e.,
Xnormalized — T Smin_ 4.3)
Xmax — Xmin
where X,,,,malizeq 15 the normalized value, x,,;, and x,,,, are the minimum and maximum produc-
tion values in the (month-long) time series for that particular TAZ. Consequently, the resulting
normalized values range between 0 and 1. We then use the two proposed methods, LSTM and
LSTM+GCN, to predict trip productions in each spatial scale. Table 4.1 provides a summary of
the model parameters and hyperparameters used in this study.
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Figure 4.4: Trip production values among provinces during March 2017.

We employ two evaluation metrics at each prediction step to assess our model’s perfor-
mance: Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE). Moreover,
we compare the accuracy of the two proposed models across the studied spatial scales using
the same metrics. Furthermore, we report the computation time for each model to compare the
required computation capacity.

In our analysis, the selection of Mean Squared Error (MSE) and Mean Absolute Percentage
Error (MAPE) as pivotal metrics was guided by their respective abilities to elucidate distinct
aspects of prediction. By harnessing both MSE and MAPE, our study captures a holistic view
of the prediction models’ performance—highlighting not just the magnitude of prediction errors
but also their proportional significance relative to actual trip patterns.

MSE was chosen for its capacity to underscore and amplify the impact of larger errors in
prediction. By squaring the differences between the predicted and the actual values, MSE pe-
nalizes more significant errors, thus sensitizing us to models that may be prone to occasional
but substantial inaccuracies. This metric is especially critical in the prediction of trip produc-
tion, where outsized errors can denote critical lapses in predicting peak travel demands, a vital
consideration for transportation system planning and management.

MAPE, on the other hand, offers a normative perspective by expressing prediction errors as
a percentage of the actual values. This normalization allows for a more intuitive comprehension
of the model’s accuracy, independent of the scale of the data. MAPE’s percentage-based nature
renders it particularly insightful for comparative analyses across regions or time periods with
varying levels of trip production. It enables us to discern the relative predictive accuracy in a
manner that is agnostic to the actual trip production magnitude, thereby facilitating equitable
benchmarking across diverse scenarios. Please note that MSE is also used as the training loss
function for both models. MAPE is not a training loss but an evaluation metric used to compare
final prediction performance.

We conducted manual hyperparameter tuning to determine the optimal configurations for
the GCN and LSTM models. This involved testing various combinations of the number of
layers (1 to 3), hidden units (64, 128, 256), learning rates (0.001, 0.005, 0.01), and dropout
rates (0.2, 0.5). While an exhaustive search was not possible due to computational limitations,



4.3 Results and Discussion

75

Table 4.1: LSTM and GCN+LSTM Hyperparameters

LSTM GCN+LSTM
GC layers na 2
GC layers sizes na 16, 10
GC activations na relu
GC dropout na 0.5
GC optimizer na Adam
GC learning rate na 0.01
GC weight decay na Se-4
LSTM layers 3 3
LSTM layers sizes 128, 256, 128 | 128, 256, 128
LSTM activations relu relu
LSTM dropout 0.2 0.2
LSTM optimizer Adam Adam
LSTM learning rate 0.001 0.001
Fully Connected Layer | Linear Linear
Batch size 128 128
Number of epochs 100 100
Early stopping patience | 10 epochs 10 epochs
Loss function MSE MSE

we selected the configurations that yielded the best validation performance, balancing model
complexity and accuracy. Table 4.1 displays the settings we used for the implemented models
in this study.

The experiments were conducted on a workstation with an Intel Core 17-9700K CPU @
3.60GHz, 32 GB RAM, and an NVIDIA GeForce RTX 2080 Ti GPU. The models were imple-
mented using Python 3.8 and PyTorch 1.7.1. All computations were performed locally, and the
specifications are provided to ensure transparency and reproducibility.

4.3 Results and Discussion

In this section, we first present an initial exploration of trip production data and the predictions
generated by the LSTM and LSTM+GCN models. In the second part of this section, we ana-
lyze the prediction results of the LSTM+GCN model in more detail. Here, we aim to identify
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residual patterns at each spatial scale and associate them with the socio-spatial features of each
TAZ within the respective spatial scale.

4.3.1 [Initial Exploration and Predictions: LSTM vs. LSTM+GCN Mod-
els

In order to investigate whether adjacent zones have similar trip production patterns, a correla-
tion matrix is presented in Figure 4.5. Specifically, the matrix examines the correlation between
several municipalities (Figure 4.5(a)) and several 4-digit postal code zones (Figure4.5(b)). Each
cell in the matrix contains a value of either 1 or 0, indicating whether the two associated zones
are adjacent or not. Despite the observation that lower correlated TAZs are primarily non-
adjacent, the data indicates no significant linear correlation between adjacent zones, as evi-
denced by the accompanying figures. However, a conditional non-linear correlation may exist
between adjacent TAZs, which the linear correlation matrix fails to capture. To overcome this
limitation, non-linear models, such as deep neural networks, are employed in this study to model
complex behaviors that may exist between adjacent zones.

While the linear correlation in a narrow 0.75—1.00 band (presented in Figure 4.5 ) indicates
modest absolute differences, the figure still confirms that the lowest correlations predominantly
occur between non-adjacent TAZ pairs. Importantly, the near-uniform linear range justifies our
shift to non-linear models: weak linear separation implies that any meaningful adjacency effect
must be captured through higher-order interactions, a task for which GCN layers are well-suited.

In our modeling process, the first step was to pre-process the data to conform to the required
format for further analysis. This step acquired a normalized trip production vector for each TAZ
within one of the three studied spatial scales. We then applied the LSTM and LSTM+GCN mod-
els and evaluated the LSTM model’s predictions based on its MAPE evaluation metric. Figure
4.6 presents the worst TAZs in the three spatial scales under study, along with the LSTM+GCN
model’s predictions for those TAZs. Including adjacency data in the LSTM+GCN model seems
to improve the accuracy of predictions, particularly for TAZs where the LSTM model struggled
to capture peak trip production values. LSTM seems to produce higher errors in predicting reg-
ular peaks, especially at the municipality spatial scale, and might need larger training/validation
dataset. LSTM+GCN, on the other hand, seems to perform more accurately in predicting the
daily peaks with the same amount of training data.

Although we observe improvements in the LSTM+GCN model’s accuracy, the latent factors
contributing to these results are not immediately apparent. Further research into these models
and the properties of each TAZ in the network is necessary to gain insights into these factors.
To comprehensively evaluate the results of our two models, we examined the distribution of the
two evaluation metrics across the under-study scales, as shown in Figures 4.8 and 4.9. These
figures indicate that the LSTM+GCN model’s average MAPE and MSE of predictions are lower
than those of the LSTM model across all three scales under study.

Table 4.2 presents the summary of prediction metrics of MAPE and MSE across different
spatial scales using LSTM and LSTM+GCN model. The empirical results presented in this ta-
ble engender a thought-provoking dialogue about the expected trends in predictive performance
across varying spatial resolutions. In an intuitive sense, the forecast accuracy is anticipated to
deteriorate with the increase in spatial granularity due to the amplified noise and intrinsic vari-
ability within the travel patterns. However, the LSTM model’s performance metrics indicate an
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Figure 4.5: Correlation of trip production between TAZs under different spatial scales.

Model Metric Province (Avg £ Std) Municipality (Avg & Std) 4-digit Zones (Avg + Std)
ey MAPE 23.0% =+ 3.4% 2.6e+14% £ 5.2e+15% 1.3e+14% =+ 3.5e+15%
MSE  2.4e+08 £ 3.6e+08 5.5e+05 £ 3.5e+06 5.4e+04 £ 3.7e+05
MAPE 12.0% + 1.9% 8.7e+11% £ 1.7e+13% 1.6e+13% =+ 5.6e+14%
LSTM+GCN
MSE  5.0e+07 £ 6.7e+07 1.4e+05 £ 1.4e+06 1.5e+04 £ 9.2e+04

Table 4.2: Summary of prediction metrics across different spatial scales using LSTM and
LSTM+GCN models, with MAPE expressed in percentage units.

anomalously higher error for the municipality scale compared to the 4-digit postal code zones.
This inversion of expected error magnitude necessitates a closer examination of underlying dy-
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Figure 4.6: The worst predictions of trip production based on the lowest MAPEs in the network
among the three spatial scales using LSTM (on the left side) and their associated
prediction using LSTM+GCN (on the right side).
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namics.

One plausible explanation for this counterintuitive finding could be the heterogeneity of
socio-spatial characteristics within municipalities. The larger standard deviation in MAPE and
MSE at the municipality level suggests a wider variability in prediction performance, which
could stem from diverse commuting behaviors, land-use configurations, and transportation net-
work complexities within these larger regions. Municipalities often encapsulate a mix of urban,
suburban, and possibly rural settings, each with distinct travel demand patterns that could po-
tentially confound the LSTM model, which does not explicitly account for spatial adjacency.

Conversely, the LSTM+GCN model, which integrates spatial adjacency into its predictive
framework, exhibits a substantial improvement in MAPE for municipalities, although the MSE
remains higher than that for the 4-digit zones. The improved MAPE implies that when spa-
tial relationships are considered, the model becomes more adept at capturing the proportion-
ate variances in trip production, especially in the context of municipalities where spatial adja-
cency plays a significant role. The persistence of higher MSE, despite a lower MAPE, might
suggest that while the model is generally accurate, it is occasionally susceptible to larger er-
rors—potentially from extreme values or outliers that are more pronounced in municipal data.

These results underscore the merit of integrating spatial adjacency to enhance predictive
accuracy, especially where the spatial structure itself may be a pivotal determinant of travel
patterns. The LSTM+GCN model’s ability to leverage such spatial correlations ostensibly at-
tenuates the prediction difficulty at higher spatial scales. Nonetheless, the nuanced nature of
trip production across different spatial scales reaffirms the necessity for tailored-modeling ap-
proaches that can accommodate the unique features of each granularity level.

As we move from the province scale to lower levels of abstraction, the prediction accuracy
declines, as indicated by increasing MAPE values. This trend suggests that prediction accu-
racy is lower at lower levels of abstraction. Nonetheless, it appears that accuracy improves at
higher levels of abstraction, despite the increase in spatial uncertainty. This outcome may be
because the aggregation of trip production patterns makes them more regular and hence more
predictable. The worst predictions for both models are presented in Figure 4.6 and support our
observation that the LSTM+GCN model predicts peak trip production values more accurately
than the LSTM model. Furthermore, the worst predictions demonstrate that trip production at
the province scale is more accurately predicted than at higher resolution scales. This outcome
may be due to pattern aggregation and resolution lowering.

Our study’s results indicate that incorporating adjacency data into the LSTM+GCN model
enhances the accuracy of extreme value predictions while also significantly decreasing compu-
tation time. Figure 4.7(a) shows that the computation time distribution for the LSTM model has
an average of 40 seconds per TAZ, with a more extensive interquartile range for 4-digit postal
code zones, suggesting a more diverse range of zones. Please note that “per-TAZ” run time is
well defined only for the disaggregate-LSTM set-up. As the LSTM+GCN model is fitted once
on the whole graph, every zone shares the same training pass; presenting that as a box-plot
would reduce to a single line.

The total computation times for the LSTM and LSTM+GCN models are illustrated in Figure
4.7(b). We noticed that the LSTM model’s run time depends on the number of TAZs in the
network, whereas the LSTM+GCN model’s computation time does not fluctuate significantly
with the number of TAZs. This is because the LSTM+GCN model is only trained once, rather
than training one model for each TAZ in each spatial resolution. Therefore, changes in run time
under different spatial scales are not substantial.
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Figure 4.7: Comparative run times of LSTM models.

Considering an alternative approach, one could estimate a single LSTM model for all TAZs
without incorporating adjacency data or using the GCN model. This method would reduce com-
putation time since it would no longer scale with the number of TAZs. However, the impact on
prediction accuracy might differ between the disaggregate LSTM and aggregate LSTM+GCN
models. Lacking the spatial relationships between TAZs, the single LSTM model might expe-
rience a decrease in prediction accuracy, as it would not capture the spatial heterogeneity and
correlations among TAZs that influence trip production patterns. Regarding prediction accu-
racy, the single LSTM model without adjacency data would likely fall between the disaggregate
LSTM models, which can capture the unique characteristics of each TAZ, and the aggregate
LSTM+GCN model, which benefits from the inclusion of adjacency data to capture spatial re-
lationships better. Thus, while using a single LSTM model for all TAZs without incorporating
adjacency data offers the advantage of reduced computation time, it may involve a trade-off in
prediction accuracy compared to the other approaches.

Altogether, our findings imply that incorporating adjacency data can improve prediction
accuracy while decreasing computation time. Consequently, we analyzed and explored the
predictions made using LSTM+GCN for the remainder of our study.

It is important to note that our empirical observations indicate that using a single model
trained on the entire network may be more convenient than training separate models for each
TAZ. However, we have not performed a formal computational complexity analysis or extensive
runtime evaluations, and thus any conclusions about computation time savings remain prelimi-
nary.

4.3.2 In-Depth Analysis of LSTM+GCN Prediction Results: Residual Pat-
terns and Socio-Spatial Features

In Figure 4.10, we present the trip production and prediction results for Vlieland, a northern
island that is both a municipality and a 4-digit zone. It is worth noting that Vlieland holds the
highest MAPE among all 4-digit zones and municipalities, indicating a considerable challenge
in accurately forecasting trip production in this region.

The observed trip production pattern of Vlieland in Figure 4.10(a) is characterized by an
irregular profile with an extreme peak in the first half of the month, followed by scattered high
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Figure 4.8: MAPE for actual versus predicted trip production values per TAZ for each of the
three spatial scales, using LSTM (left) and LSTM+GCN (right) model.
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Figure 4.9: MSE for actual versus predicted trip production values per TAZ for each of the three
spatial scales, using LSTM (left) and LSTM+GCN (right) model.
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production in the last days of the month. This erratic pattern might be attributed to special
events associated with this TAZ. Figure 4.10(b) and 4.10(c) present the trip production and
prediction at the municipality and 4-digit zone levels, respectively. Accordingly, the predic-
tion performance of the models varies across different spatial scales. Although the two models
share similar hyper-parameters, they are trained on different training sets due to aggregation at a
higher level of abstraction. The municipality-level model seems to capture the time series with
more variation in the values, implying better predictions of production values influenced by
seasonality. Conversely, the 4-digit model appears to be more biased towards predicting values
closer to the average production line, hence less sensitive to extreme values in the production
but better at predicting the off-peak values. These observations suggest the importance of con-
sidering the spatial scale in trip production and prediction analysis, as it can significantly affect
the accuracy of the results.

Figure 4.11 presents the average hourly trip production and the prediction residual for var-
ious provinces in the Netherlands. This figure depicts these two variables, with Figure 4.11(a)
showing the average hourly trip production and Figure 4.11(b) displaying the average hourly
trip production prediction residual. The figure highlights that provinces such as Noord-Holland,
Zuid-Holland, and Noord-Brabant, characterized by high population density and heavy indus-
trial and commercial areas, have higher trip production values with high variability. This vari-
ability is shown in the shaded areas between the 10th and 90th percentile of the values. Figure
4.11(b) implies that residual peaks occur around the peak hours of trip production, although
with somewhat different patterns. For instance, Zuid-Holland has the highest average hourly
trip production during the afternoon rush hour, while the residual peak happens during the
morning peak, which has the highest variation in trip production. These observations suggest
that the prediction error is correlated with the variation in trip production, which holds implica-
tions for improving the accuracy of transportation demand models. However, further research
is needed to explore these correlations and their underlying causes in more detail.

To investigate the correlation between trip production prediction error and variation in trip
production among the 4-digit zones, Figure 4.12(a) plots the Mean Squared Error (MSE) against
variance. The figure reveals a reasonably linear correlation between the two variables, indicat-
ing that the prediction error is positively correlated with trip production variation. However, a
few outliers with high MSE and relatively low variance suggest high prediction errors despite
low variation in trip production. Figure 4.12 highlights these TAZs in red, pointing to the zones
with a high prediction error despite low variation in trip production. Interestingly, all the islands
are among the outliers.

The robustness of the proposed LSTM+GCN model is crucial given the diversity of ur-
ban and rural dynamics in different regions. Our model was trained and evaluated on regions
with varied geographical and traffic conditions, specifically at multiple spatial scales including
provinces, municipalities, and 4-digit zones. The model consistently demonstrated its ability to
capture spatial-temporal dynamics effectively, achieving high predictive accuracy across urban-
ized and rural regions.

Despite the expected variations in traffic patterns between densely populated urban regions
and sparsely populated rural regions, the model achieved consistent predictive accuracy in all
scenarios. This was particularly notable during rush hour periods and off-peak periods, as well
as across weekday and weekend traffic. Leveraging the complementary strengths of both GCN
and LSTM, the model could effectively capture spatial and temporal correlations even in regions
with varied urban dynamics.
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Figure 4.10: Vlieland trip production prediction under two spatial scales throughout the last
working week of March 2017.
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These results highlight the robustness and generalizability of the LSTM+GCN model, mak-
ing it suitable for trip production prediction across diverse geographical areas and traffic condi-
tions.
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Figure 4.12: MSE of trip production prediction vs. the variance of trip production among 4-
digit zones in The Netherlands.

To investigate the relative prediction error, Figure 4.13(a) explores the relationship between
Mean Absolute Percentage Error (MAPE) and Coefficient of Variation (COV) in trip produc-
tion among the 4-digit zones. The figure indicates a positive correlation between MAPE and
COV, suggesting that the prediction error increases with an increase in trip production variation.
However, some outliers with high MAPE and low COV suggest high prediction errors despite
low variation in trip production. Figure 4.13 highlights these TAZs in red. Overall, the results
suggest that the prediction of trip production becomes more challenging in certain zones due to
underlying characteristics.

MAPE (num. /num.)

(a) MAPE of trip production prediction vs. the (b) Zones with the highest
COV of trip production. MAPE/COV ratio.

Figure 4.13: MAPE of trip production prediction vs. the COV of trip production among 4-digit
zones in The Netherlands.
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4.4 Conclusion

This study presented a GCN+LSTM framework that integrates spatial adjacency into trip pro-
duction prediction across multiple spatial scales. We demonstrated incremental gains in predic-
tive accuracy by considering spatial heterogeneity and identified socio-spatial features critical
to understanding residual patterns. These findings support the development of more tailored,
accurate, and practical demand prediction models.

In this chapter, we addressed two main objectives. The first objective was to develop data-
driven short-term prediction models for trip production patterns that explicitly consider spatial-
temporal heterogeneity. To achieve this, we used GCN and added the adjacency information
of the TAZs in the network. By doing this, we reduced the computation time while increasing
the prediction accuracy. Additionally, using one model for the entire network instead of one for
each TAZ decreased the number of models required for prediction.

The second objective of this study was to investigate the effect of spatial scale on spatial
uncertainty and, consequently, on trip production prediction accuracy. We found that intro-
ducing the adjacency of the TAZs in the network decreased the prediction computation load
using GCN. Furthermore, reducing spatial resolution, i.e., going to higher levels of abstrac-
tion, showed increased prediction accuracy despite adding uncertainty to the spatial correlation
of TAZs. We attribute this increase to the aggregation of trip production patterns, which may
become more regular and, thus, more predictable.

The findings of this research have several implications for understanding how spatial hetero-
geneity affects demand prediction and for transportation planning and policy-making. The re-
sults of this study are helpful for transport modelers to consider the spatial scale in selecting the
relevant types of variables used in their models for travel demand prediction. For instance, rec-
ognizing that at lower levels of spatial abstraction, a combination of land-use and demographic
information contributes significantly to residual patterns, while at higher spatial scales, land
use plays a more critical role. This awareness allows for more tailored and accurate modeling
approaches, leading to better-informed decisions regarding resource allocation, infrastructure
development, and service planning.

Incorporating spatial adjacency into trip production prediction models using GCN has demon-
strated improvements in prediction accuracy and computational efficiency. This enhancement
enables transportation planners to efficiently handle large-scale networks without compromising
accuracy, facilitating the development of more effective transportation strategies. Understand-
ing the influence of neighboring TAZs on trip production can help in designing more efficient
transit networks and optimizing traffic management strategies that account for spatial interac-
tions between regions.

Although we focused on the prediction of trip production, the insights gained from this
study assist in OD matrix estimation and prediction. Furthermore, while our study focused
on motor-vehicle OD matrices, addressing trip production patterns specific to motor vehicles,
it is essential to note that the methodology employed in this research is mode-agnostic. This
versatility implies that our approach could potentially be adapted and applied to various other
modes of transportation, broadening the scope and impact of the findings presented in this paper.

Overall, this research lays the groundwork for developing more complex demand predic-
tion models with higher accuracy without requiring high computational capacity. By refining
models to consider nuanced socio-spatial dynamics, we enhance their predictive accuracy and
applicability, supporting the creation of more responsive and equitable transportation systems.
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The study also enhances our understanding of spatial uncertainty across multiple spatial
scales and how it affects the prediction of trip production. However, a major limitation of this
study is that the adjacency of the TAZs is the only feature used for generating the adjacency
matrix in our GCN. Other socio-spatial features, as we showed in this research, also affect the
heterogeneity of trip production in areas. For instance, the spatial urbanization level, defined
based on the combined land-use characteristics and demographics of an area, has been shown
to affect trip production patterns and cause heterogeneity. Therefore, there is a definite need
to consider other contributing spatial features for defining the adjacency matrix and compre-
hensively defining a dynamic (showing that features can change over time) adjacency matrix to
address trip production heterogeneity.

Compared to previous studies that utilized traditional time series models or standalone deep
learning models, our GCN+LSTM model demonstrates improved prediction accuracy by effec-
tively capturing spatial-temporal dependencies. For instance, studies like Zhao et al. (2019) and
Yu et al. (2017) also highlighted the benefits of incorporating spatial information. Our find-
ings align with these results and further extend them by analyzing multiple spatial scales and
focusing on trip production prediction at a national level.

As a future direction, we are committed to exploring cutting-edge methodologies in the
domain of demand prediction, with a keen focus on benchmarking an array of forecasting
paradigms. This includes delving into models that intricately weave together more sophisticated
spatial data representations alongside advanced machine learning algorithms. Our objective is
not merely to augment the predictive precision of these models but to catalyze a transforma-
tive shift in their capability to anticipate travel demand dynamics accurately. By charting this
course, we aspire to contribute to the perpetual enhancement of forecasting models, ensuring
they remain both relevant and robust in the face of evolving transportation landscapes and the
complex interplay of spatial-temporal factors they encompass.



Chapter 5

Sensitivity of Travel Demand Patterns to Socio-
Spatial Characteristics

This chapter addresses the potential research gap in understanding the relationship between
dominant demographic and land-use information (i.e., socio-spatial characteristics) and the pre-
dictability of demand patterns at different spatial scales in the context of trip production predic-
tion. The chapter proposes a data-driven approach that analyzes several data sources on factors
such as population density, collective land-use characteristics, average age, income, household
size, and employment status. The analysis aims to understand the complex relationships be-
tween these factors and the predictability of origin-destination (OD) matrix predictions. While
these socio-spatial characteristics are commonly used in trip production models, there is a lack
of understanding about how different demographic factors impact the accuracy of these models
and how they vary at different spatial scales. Therefore, this chapter aims to provide further
insights into how these characteristics affect the predictability of trip production and to identify
the most relevant factors for predicting trip production at different spatial scales.

This chapter is based on the following papers:

Eftekhar, Z., Pel, A., & van Lint, H. . (2023). A Cluster Analysis of Temporal Patterns
of Travel Production in the Netherlands: Dominant within-day and day-to-day patterns and
their association with Urbanization Levels. European Journal of Transport and Infrastructure
Research, 23(3), 1-29. (published)

Eftekhar, Z., Behrouzi, S., Krishnakumari, P., Pel, A., & van Lint, H. . The Role of Spa-
tial Features and Adjacency in Data-driven Short-term Prediction of Trip Production:An Ex-
ploratory Study in the Netherlands (under review)

89
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Abstract

Expanding upon the findings in Chapter 3, further analysis of the mixed-level areas shows a
more complex relationship between temporal heterogeneity and spatial characteristics. Popula-
tion density seems to impose additional uncertainty on the temporal patterns. All in all, feature
selection and spatial and temporal discretization play essential roles in identifying the dominant
trip production patterns. In continuation with the trip production predictions elaborated in
Chapter 4, we examine prediction errors by identifying and evaluating dominant patterns of
trip production prediction residuals. Then, we pinpoint the most critical demographic and land-
use features of TAZs contributing to their associated residual clusters and compare them across
different spatial scales. Our analysis extends beyond mere prediction errors to systematically
dissect and interpret the prevailing patterns in trip production prediction residuals. By identi-
fying the demographic and land-use characteristics most instrumental in shaping these patterns
across various TAZs, our research deepens the collective understanding of trip production vari-
ability. Such insights pave the way for the formulation of more precise and robust demand
prediction models tailored to different spatial scales.

Beyond the methodological innovation, this paper significantly contributes to the analysis
of prediction results at multiple spatial scales, examining the association between prediction
accuracy (residual patterns) and the types of built environment variables. This research ad-
vances travel demand models by systematically integrating socio-spatial characteristics, such as
land use, points of interest, and demographics, identified as key influencers of travel demand
across various scales. This allows for the creation of more effective models, tailored to the
actual needs of society. By refining models to consider these nuanced socio-spatial dynamics,
we enhance their predictive accuracy and applicability, supporting the development of respon-
sive and equitable transportation systems. This approach not only improves model accuracy
but also ensures transport planning and policies are based on a comprehensive understanding of
the factors driving travel demand, leading to more targeted and effective transport planning and
policy-making.

In this study, we use processed aggregated derivatives of GSM traces in the form of motor-
vehicles OD matrices of the Netherlands in March 2017. This implies the scope of this work
pertains to motor-vehicle trip production patterns.

5.1 Introduction

Travel demand patterns are characterized by spatial-temporal heterogeneity, as the amount of
travel differs strongly across areas as well as time-of-day and day-of-week (Shen et al., 2020).
Temporal variability is especially significant when modeling motor vehicle demand in urbanized
areas where morning and afternoon peaks account for almost 50% of daily travel demand (Lin
& Shin, 2008). Spatial heterogeneity is derived from diverse urbanization levels, economic
activities, lifestyles, transportation accessibility, and resource distribution between areas, e.g.,
Fotheringham et al. (1998). This spatial-temporal heterogeneity, including the identification of
patterns therein, is an important part of understanding travel demand.

Many studies analyze the relationship between travel demand and land-use properties us-
ing methods based on Ordinary least squares (OLS) (Yang et al., 2018b; Maat & Timmermans,
2006). OLS generally assumes homogeneous regression relationships in the data. However,
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spatiotemporal data has the basic features of both spatiotemporal dependence and heterogene-
ity (Ermagun & Levinson, 2018; Atluri et al., 2018). For instance, in the temporal dimension of
traffic data, the traffic demand of areas is typically similar to that of recent times. Moreover, they
might show periodicity, trends, and holiday effects. In the spatial dimension, the traffic state of
each road segment is often (but not always) similar to upstream and downstream traffic condi-
tions. This is an example of spatiotemporal dependence (Cheng et al., 2013). Due to complex
nonlinear variations, the traffic demand also has different distributions in different geographical
regions and time intervals. For instance, for some areas, the peak hours of travel production
happen in the afternoon, while it is in the morning for other areas. This phenomenon represents
spatiotemporal heterogeneity (Atluri et al., 2018). Overlooking spatiotemporal heterogeneity
gives rise to some errors, for instance, misinterpretation of coefficients and inaccuracy in esti-
mations (Anselin & Griffith, 1988; Deng et al., 2018; Cheng et al., 2019).

To account for spatial heterogeneity, many extended OLS-like models have been developed,
amongst which the geographically weighted regression (GWR) model (Brunsdon et al., 1996)
is widely used in transportation studies. For example, Cardozo et al. study the relationship
between transit travel demand and land use mix, bus accessibility, and road density using a
GWR model. Whereas the GWR model can sufficiently describe spatial heterogeneity, it does
not address temporal heterogeneity. Typically, days are divided into multiple periods, in which
average (proportional) values are considered for modeling.

To incorporate temporal heterogeneity, a geographically and temporally weighted regres-
sion (GTWR) method to predict transit travel demand was first applied by Ma et al. (2018).
However, little is still known about how different areas have various spatiotemporal patterns
in travel production associated with their urban development. Thus, this chapter will delve
into these uncharted territories, seeking to understand the factors that mediate the interactions
between urbanization and travel production in time and space. Through this study, we aim to
clarify how different urban factors such as land use and demographic information interact, influ-
encing travel patterns. Our findings will provide valuable insights to improve travel prediction
models. Additionally, these insights have the potential to guide urban planning decisions and
transportation policies. The sequence of analyses builds upon the previous chapters’ findings to
contribute a new layer of understanding to our study.

5.2 Methodology

This chapter outlines the methods used to explore how trip production is influenced by various
levels of urbanization, building directly on the patterns identified in Chapter 3. The methodol-
ogy employed here is two-fold. First, it examines the link between urbanization levels and trip
production patterns. This foundational analysis sets the stage for the sections that follow.

The subsequent part of this chapter takes a different angle, focusing on the examination
of trip production prediction residuals. This segment, along with the next, is grounded in the
results and discussions from Chapter 4. It involves a detailed analysis of the residuals, empha-
sizing their significance and the insights they can provide.

In the third segment, the discussion transitions into an exploration of the connections be-
tween various socio-spatial characteristics and the patterns present in the residuals. By doing
so, it integrates diverse demographic and land-use factors, assessing how they correlate with the
predictability of trip production patterns.
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Collectively, these methodological steps create a comprehensive approach to understanding
trip production in the context of urban settings.

5.2.1 Association with urbanization levels

In this step, we analyze the degree to which the K clusters, found in Chapter 3, are associated
with specific urbanization levels. That is the degree to which the urbanization level of a TAZ
can be used as a predictor for to which cluster of temporal production patterns it belongs.

Comparing the overall area of different land-use types (derived from Open Street Map
(OSM) (OpenStreetMap contributors, 2017) data) in the clusters helps relate the resulting clus-
ters (i.e., temporal production patterns) to land-use types. Assuming a non-linear relationship,
we propose a tree-based ensemble machine learning method, eXtreme Gradient Boosting (XG-
Boost) Ensemble, to model the relationship between the land-use feature and clusters. Due to
the regularization term in the loss function, one can achieve the lowest complexity with the high-
est accuracy. For more details on the XGBoost algorithm we refer the readers to appendix A.1
and Chen & Guestrin (2016). The framework of our method, called the OVR-SMOTEXGBoost
ensemble model, for our multi-class imbalanced data is shown in Figure 5.1 and the three main
steps in this algorithm are described as follows.

1. Decompose the multi-class classification problem into multiple independent binary clas-
sification problems. Traditionally, classification methods are designed for two-class (bi-
nary) problems. Furthermore, as the generality of multi-class classification problems
naturally makes learning more complex, an intuitive approach is to solve such problems
by decomposing them into several binary classification problems. In One-vs.-Rest (OVR)
strategy, one develops multiple classifiers (i.e., one classifier per class indicating being or
not being in a specific class) (Hong & Cho, 2008). Based on the OVR decomposition
method, the initial training set is decomposed into three two-class training sub-samples:
Train; for classl, Train, for classl, and Trainz for class3. Then using a binary logistic
loss function, each classifier calculates the probability of each class. Then each instance
is classified into the class of the highest probability.

2. Balance the training sets. An issue regarding the classification is the imbalanced learning
problem. Underrepresented data and class distribution skew affect the learning algorithm
performance and cause this problem (He & Garcia, 2009). The synthetic minority over-
sampling technique (SMOTE) is one of the most recognized data augmentation methods
to address the imbalanced data problem (Zhai et al., 2022). It attempts to balance class
distribution by oversampling minority class instances by randomly replicating them.

3. Use the training sets to train the SMOTE-XGBoost ensemble model for a binary class of
TAZs prediction (i.e., each of three OVR classifiers).

To avoid overfitting, we use a K-fold strategy with k = 10 for the training and testing (i.e.,
cross-validation) (Note that K here is completely unrelated to K in the earlier K-means cluster-
ing method in that these are two independent parameters, but that simply both these methods
happen to use the same letter). K-fold divides the data elements into K groups of samples, i.e.,
k folds, and the training of the model is achieved using K-1 folds, and testing is done on the
left-out fold. For instance, given a dataset of 100 samples, 90 (i.e., nine folds) are used for train-
ing and validation. However, the predictive accuracy is tested on the remaining ten (i.e., one
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Figure 5.1: The framework of the OVR-SMOTE-XGBoost ensemble model.

fold) samples. This process is iteratively repeated for all ten folds (with no overlap) to achieve
a robust accuracy in prediction.

To further investigate the main spatial patterns inside a cluster, we apply a hierarchical
clustering analysis (HCA). This step leads to several spatial sub-clusters explaining the temporal
heterogeneity observed in the temporal clusters. HCA is generally a clustering analysis method
that tries to build a hierarchy of clusters. In this study, we used an Agglomerative approach
where each TAZ starts in its own cluster (i.e., bottom of the hierarchy). At each iteration, the
similar clusters, based on their spatial characteristics, merge with others until one cluster or
N clusters are formed (i.e., top of the hierarchy). In this research, we calculate the similarity
between two clusters using Ward’s method, which is the sum of the square Euclidean distances
between the two associated clusters.
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5.2.2 Residual Analysis

To investigate prediction errors, based on the prediction of trip production in Chapter 4,
we analyze the residual heatmap of hourly trip production prediction per Traffic Analysis Zone
(TAZ). First, we predict trip production and compute the residual as the absolute difference be-
tween the predicted and actual values. To concentrate on discerning patterns, we normalize the
residuals per TAZ using Min-Max Scaling. Consequently, each zone has a heatmap of normal-
ized residual values, with each cell ranging between 0 and 1. Each heatmap’s horizontal and
vertical axes represent the days of the prediction horizon and the hours of the day, respectively.
As an example, Figure 5.2 shows the heatmap of trip production residual for a randomly selected
TAZ. This representation enables us to observe the temporal patterns of residuals within a day
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2 20 18 % 14 122 W 8 &6 4 2 0

= Monday
£ Wwednesd ay
D‘ -
- Friday
[
| | | | | |
=1 [=] [=] =1 [=] =t
= P Lo o [==] L=}

Figure 5.2: An example heatmap of trip production residual of a random TAZ.

(by comparing across columns) and between days (by comparing across rows). The heatmaps
for each under-study spatial scale serve as the foundation for subsequent analyses.

To identify patterns of residuals, we cluster heatmaps of TAZs per spatial scale based on
temporal similarity using K-means clustering. Owing to its straightforward application and
interpretability, which is crucial in exploratory analyses for generating clear, understandable
results, the K-means clustering method is a widely employed algorithm for clustering analysis
(Poteras et al., 2014; Szegedy et al., 2016; Cohn & Holm, 2021; Van Gansbeke et al., 2020; Sun
et al., 2021). The method aims to partition the N-dimensional dataset of M points (heatmaps)
into K clusters, minimizing the sum of the pairwise Euclidean distance between the points in
each cluster (Hartigan & Wong, 1979).

To identify patterns of residuals, we employed K-means clustering due to its simplicity,
efficiency, and interpretability, which are crucial for exploratory analyses. K-means is a widely
used algorithm that partitions the data into K clusters by minimizing the within-cluster sum of
squares (Lisboa et al., 2013). While other clustering methods such as hierarchical clustering or
DBSCAN could be considered, K-means provides a straightforward approach that aligns well
with the objectives of our study. Exploring other clustering methods is an avenue for future
research.

The clustering process comprises two primary steps:

* Assignment: Assigning each point to its closest centroid, mathematically referring to the
partitioning of the points to the Voronoi diagram (Shamos & Hoey, 1975) generated by
the centroids.

* Update: Updating each cluster center to be the average of all points contained within
them.
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As the K-means method requires exogenous determination of the number of clusters, we must
justify our choice. Since we cannot a priori determine the number of existing patterns, this is
an unsupervised learning problem without “true labels” or ground truth. Therefore, the optimal
number of clusters is determined by assessing the (dis)similarity within and between clusters for
various values of K. We use the Silhouette index (Rousseeuw, 1987) to measure the goodness
of clustering.

The Silhouette index ranges between -1 and 1, where high values indicate a well-matched
point to its own cluster and poorly matched to neighboring clusters. If many points have neg-
ative values, the number of clusters should be adjusted. The optimal number of clusters is
determined using the Silhouette Elbow method, which identifies the point at which the rate of
improvement in the Silhouette index slows down.

However, the K-means method is inherently linear (Ning & Hongyi, 2016) and unsuitable
for complex non-linear data distributions. To account for data non-linearity, we use a deep
convolutional neural network (DCNN) for feature extraction. The DCNN transforms input
heatmaps into feature vectors, which are more easily separable by a linear clustering algorithm
(van Elteren, 2018) than the original heatmap.

The state-of-the-art InceptionV3 based on transfer learning is employed as the DCNN in
this research. The InceptionV3 architecture is specifically designed to improve adaptability to
different scales and prevent overfitting (Kaur & Gandhi, 2020). Transfer learning allows us
to transfer pre-trained model parameters to our new model, thereby accelerating its training
(Wang et al., 2019). Utilizing a DCNN trained on a large dataset, such as ImageNet, enables the
extraction of generic features applicable to other images, such as heatmaps, without the need
for training from scratch. Furthermore, the pre-trained DCNN weights enhance the accuracy of
specific tasks, such as pattern recognition, when the available training data is limited (Iglovikov
& Shvets, 2018). In this study, we extract feature vectors from the demand heatmaps using the
InceptionV3 deep neural network pre-trained on the ImageNet dataset, which contains millions
of images for object recognition and image classification (Deng et al., 2009). The compatibility
of K-means with the linearly separable data produced by this feature extraction method, further
justifies its use, as it balances the analytical approach by complementing the complexity of
DCNN.

We use the Inception V3 architecture, pre-trained on ImageNet, to extract latent feature
vectors from these residual heatmaps. By passing the residual matrix through the Inception V3
network, we obtain a latent representation—a vector—that preserves the essential information
contained in the original matrix form. While this latent vector is not fully interpretable in terms
of direct physical meaning, it provides a lower-dimensional feature space in which the residual
patterns are more easily separable. This transformation allows us to apply K-means clustering
to identify dominant temporal residual patterns more effectively than if we clustered the raw
matrices directly.

Ultimately, this step transforms residual heat maps into feature vectors clustered based on
temporal similarity. This process yields K clusters with distinct temporal residual patterns and
determines the number of such clusters or patterns.

5.2.3 Association of Residual Patterns with Socio-Spatial Variables

In the final step, we analyze the degree to which the K clusters per spatial scale are associ-
ated with demographic and land-use variables. We assess the extent to which the socio-spatial
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characteristics of a TAZ can predict the cluster of temporal residual patterns it belongs to. We
compare the distribution of various points of interest (POI) and demographics (derived from
CBS) within the clusters to relate the resulting clusters (i.e., temporal residual patterns) to land
use and socio-economic characteristics. Assuming a non-linear relationship, we propose a tree-
based ensemble machine learning method, eXtreme Gradient Boosting (XGBoost) Ensemble,
to model the relationship between land-use features and clusters. The regularization term in the
loss function allows for achieving the lowest complexity with the highest accuracy.

To identify the most important socio-spatial features contributing to residual patterns (i.e.,
clusters), we use the “gain” metric. In XGBoost, the gain metric represents the improvement in
accuracy brought by a feature to the branches it is on. Essentially, it measures the importance
of a feature in the model by calculating how much the feature contributes to the overall perfor-
mance of the model. For more details on the XGBoost algorithm used in this study, we refer
readers to 5.2.1 and A.1 and (Chen & Guestrin, 2016).

5.3 Results and discussion

This section is structured to present the findings of our research, aligned with the methodol-
ogy outlined earlier. We begin by discussing the results that explore the relationship between
travel production patterns and spatial characteristics. This part provides a foundation for under-
standing trip patterns within different urban contexts. Following this, our attention shifts to the
patterns identified in the prediction residuals of trip production. To conclude, we focus on the
results from our assessment of the connection between these residual patterns and socio-spatial
variables. This final part synthesizes our findings, underscoring the critical socio-demographic
and land-use factors that are intertwined with variations in trip production predictability.

5.3.1 Association between travel production patterns and spatial charac-
teristics

Observing the three clusters in space suggests that zones in cluster AP which constitute a smaller
proportion of zones (as shown in Figure 3.11(b)), happen to be in more urbanized areas. In fact,
as displayed in Figure 3.11(a), out of 43, 39 city centers fall into this cluster. Moreover, the
non-metropolitan (i.e., the least urbanized) areas happen to be in cluster MP and mix. Therefore
we hypothesize that these (temporal) clusters are (spatially) associated with urbanization levels.
For instance, usually, the majority of farmlands belong to the non-metropolitan (i.e., the least
urbanized) areas, thus possibly also to clusters MP and mix.

To test this, the association of each cluster with the following land-use characteristics is
analyzed:

* population

* commercial and industrial buildings,

rail and service roads,
* cycleway and footway,

* car and bicycle parking.
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This is initially done for the province of Utrecht (as shown in Figure 5.3(a)), but the subsequent
model will be based on all 1246 TAZs in the Netherlands. Figure 5.3(b) shows the distribution
of TAZs for each cluster in the province of Utrecht.
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Figure 5.3: Share of clusters from the total area of Utrecht province.
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Figure 5.4: Share of clusters from the total population of Utrecht province.

Looking specifically at the province of Utrecht, Figure 5.4(b) shows indeed a higher av-
erage population density in cluster AP. Figure 5.5 also shows that the majority of commer-
cial/industrial areas, as a representation of urban areas, in the province of Utrecht belong to
cluster AP. Figures 5.6, 5.7(b), and 5.8(b) indicate that transportation infrastructure are densely
distributed in cluster AP. However, Figure 5.9(b) shows a high density of farm and meadow
lands in cluster MP and mix. Also, Figure 5.9 shows that 48% of farmlands which are usually
interpreted as rural areas, fall into cluster MP. Therefore, density in the mentioned characteris-
tics of each TAZ may be associated with their cluster.

To test this hypothesis at the level of all 1246 TAZs in the Netherlands, an OVR-SMOTE-
XGBoost ensemble classification model is trained in which the inputs are the land-use charac-
teristics (i.e., densities) and the output is the cluster, i.e., AP, MP, or mix. The model tries to
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Figure 5.6: Road density of clusters from the total length of service roads and railways.

reconstruct the clusters using the land-use characteristics and population density (as presented
in Figures 5.4 to 5.9) associated with each TAZ. We used a K-fold cross-validation strategy with
k = 10 to achieve robust accuracy in prediction. Accordingly, Figure 5.10 shows the confusion
matrix of the associated classification.

Note that due to our model structure, the possible bias caused by imbalanced training data
is avoided. One can imply this by considering that classification accuracy in clusters AP is the
highest (i.e., 64%), although the number of such TAZs is the lowest (i.e., 286 out of 1246). If
the model was biased toward the higher populated cluster, mix, the model accuracy would have
been around 43%, which is derived from the proportion of TAZs belonging to mix. However,
our accuracy is higher (53%). Therefore, it seems that the model is not biased due to imbalanced
data. In fact, the accuracy of identifying cluster mix seems to be the lowest. This may be due to
the similarity of patterns in cluster mix to both other clusters, i.e., cluster mix constitute mix of
clusters AP and MP. Therefore, misclassification is more probable in mix. Especially, making
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Figure 5.7: Share of clusters from the total length of foot and cycle ways.
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Figure 5.8: Share of clusters from the total area of car and bicycle parking garages.

distinction between MP and mix seems to be more difficult. This might be due to less extreme
peaks in MP than in AP; thus more difference between AP and mix. Overall, the land-use
feature we used seems to describe AP to a greater extent. To look closer, Figure 5.11 presents
the confusion matrices of all 12 provinces in the Netherlands. In almost all provinces, the
accuracy in mix is lower than in the other two. Only one province (Zeeland) shows a different
result; In fact, it has the highest accuracy for mix. The cause of this behavior needs further
analysis, but it can be related to the exceptional location of this province as a river delta situated
at the mouth of several major rivers at the country’s border(as shown in Figure 5.12).

To take a closer look at mix, Figure 5.13 shows the most extreme TAZs associated with
false negatives and positives of mix. That is, the TAZs with the highest probability to be false
positive and false negative of the mix cluster. C; ; is the most extreme TAZ whose true label is
i, and the predicted label is j, for instance. Cpjxpp shows the TAZ in the mix cluster, which
is incorrectly classified as a TAZ in MP. The normalized trip production heatmap shows the
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Figure 5.9: Share of clusters from farmland/meadow areas.
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> 409 351 506 1246

Figure 5.10: Confusion matrix for recognizing TAZs in the clusters, i.e., either AP, MP, or mix.

dominant pattern of MP. However, the irregular peak in the afternoon of Friday, March 24th,
might have triggered a miss-cluster for Sleeuwijk. What stands out is that all the other three
extreme zones in Figure 5.13 fall in Zuid-Holland, the highest-populated province in the entire
Netherlands. An explanation might be that irregularities or inconsistencies between the spatial
characteristics and normalized trip production patterns are most likely a consequence of the
high population density and the associated uncertainties.

The spatial characteristics of the extreme cases in Figure 5.13 are in Table 5.1. Comparing
these values with the mean and standard deviation of the clusters (i.e., true labels) in Table
5.2 gives insight into the miss-classification stimuli in extreme cases. For instance, the trip
production heat map of Cpx), Leiden West, in Figure 5.13 implies the dominant behavior of
cluster AP. However, despite high densities in most spatial features and thus being similar to
cluster AP, high density in Farm & Meadow triggered the miss-classification to mix.

Model structure and lack of post-analysis play a vital role in analyzing and alleviating the
errors in mix. In our probabilistic OVR classification model, we decomposed the three-class
problem into three independent binary class problems. Then, using a binary logistic loss func-
tion, we calculated the probability of each class. Each instance is then classified into the class of
the highest probability. It is worth mentioning that the correct class might be the second highest
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probability, with a slight difference from the highest class. If we aim to analyze the more severe
errors, we need to flag close probabilities and evaluate the confusion matrix afterward. Then
the analysis can focus on more significant errors. In this regard, Figure 5.14 shows that in about
43% of the missclassified TAZs, associated with mix (i.e., either actual or predicted cluster is
mix), less than 20% probability difference is observed between the first and second most proba-
ble cluster. Therefore, these edge cases need a post-analysis step to exclude them from genuine

prediction errors.

Having considered the above post-analysis, two main components seem to cause the identi-

fication errors in mix:

1. Feature selection plays a crucial task in improving the accuracy and preventing over-
fitting of pattern recognition algorithms. To obtain the most informative feature subset,
we select the important features and delete the unimportant features from the original
subset. In this research, we only considered land-use features for our classification al-
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Figure 5.13: TAZs with the highest probability to be false positive and false negative of the mix
cluster.

gorithm. Demographic information such as age, occupation, and income level is another
feature group that can partially explain travel behaviors. For instance, a student city re-
veals a different dominant departure time pattern than a city with a higher population
ratio of labor workers. As a result, the trip production pattern is also different based on
the demographic profile of the TAZ. Another challenge regarding the feature selection is
the dynamic relationships between the target classes(i.e., patterns) and candidate features.
Therefore it is also challenging to measure the relationship between candidate features,
the selected features, and target classes(i.e., patterns) in the feature selection process.

2. Spatial and temporal discretization problem is an inefficiency in the land-use data
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Table 5.1: Spatial characteristics of the extreme TAZ in Figure 5.13.

TAZ Zwijndrecht Sleeuwijk Leiden West Zoetermeer Noord
True label mix mix AP MP

Predicted label AP MP mix mix

commercial & Industrial land-use density (m? /m2) 0.074 0.005 0.062 0.014

Farm & meadow land-use density (m> / m?) 0.023 0.089 0.011 0.064

Footway & cycleway density (km/km?) 2.54 0.52 6.56 5.99

Railway & service road density (km/km?) 3.57 0.20 2.87 1.28

Parking garage density (Num/km?) 0.37 0.12 0.23 0.29

Population density (Nun/km?) 952 214 1521 1220

Table 5.2: Mean and standard deviation of Spatial characteristics of the true labels (i.e., clus-

ters).

Cluster AP MP mix

mean 0.029 0.007 0.013
std 0.047 0.010 0.019
mean 0.064 0.107 0.100
std 0.068 0.075 0.077
mean 1.57 0.80 0.98
std 1.63 096 1.17
mean 1.18 035 0.5
std 1.32 040 052
mean 0.76 0.20 0.21
std 1.67 049 0.68
mean 558 261 290
std 834 497 439

Commercial & industrial land-use density (m? / m?)

Farm & meadow land-use density (m? / m?)

Footway & cycleway density (knm/km?)

Railway & service road density (km/km?)

Parking garage density (Num/km?)

Population density (Num/km?)

causing the inability to separate the different travel behavior patterns. The discretiza-
tion step specifying the data resolution is essential for macroscopic modeling, deriving
the necessary high-level insights for traffic planning and management, and reducing the
computation time by decreasing the level of details. In this regard, two main factors must
be addressed: Firstly, how much spatial variation is observable in each TAZ. Secondly,
how often the land-use data is updated (i.e., the temporal variation)? For instance, inves-
tigating Cppmix in Figure 5.13 reveals that in west side of Zoetermeer Noord a large area,
called “De Nieuwe Driemanspolder”, has turned into recreational meadow between 2017
and 2020. This overhaul adds up to the area density of Farm&Meadow, causing the trip
production pattern to become MP. As the land-use data in this study does not seem to be
updated frequently, this major change is not reflected, leading to errors in identifying trip
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Figure 5.14: Cumulative density function (CDF) of the probability difference between the first

and second most probable cluster. This visualization is on TAZs of the false posi-
tive and false negative of the mix cluster.

production patterns. Information on spatial and temporal variations of land-use data helps
one adjust the abstraction level for drawing relevant insights and design a traffic zoning
system with a more crisp separation between different travel behaviors.

To investigate the spatial patterns of the mix cluster more closely, we applied hierarchical
clustering on the land-use densities of all TAZs. Accordingly, we identified three main clusters
with different spatial properties as shown in Figure 5.15. Sub-clusters {0, 1,2} containing 68,
171, and 300 TAZs of mix, respectively. Sub-cluster 2 is more similar to AP, owing to higher
densities of all the mentioned spatial characteristics except for Farm&Meadow. This similarity
can also be observed in Figure 5.16 and 5.17, showing the average hourly and daily patterns
in the three sub-clusters, respectively. On the other hand, sub-cluster 1 contains TAZs with a
slightly higher median density of Farm&Meadow areas. Unlike cluster MP, which also had
the highest density of Farm&Meadow, Sub-cluster 1 does not have the lowest densities in the
other five variables. These areas might refer to the sub-urban residential TAZs connecting the
metropolitan to rural areas. These areas show a morning peak indicating commuting travels
and an afternoon peak due to non-commuting activities such as shopping, recreational, and
social activities. Sub-cluster 0 shows fairly regular morning and afternoon peak with lowest
population density and the median Farm&Meadow density lower than sub-cluster /.

We recapped the overall findings of this research in Figure 5.18. The first clustering step
resulted in three dominant temporal patterns in the trip production of all TAZs. Then we per-
formed a correlation analysis to understand the association between spatial characteristics and
the dominant patterns. More complex patterns inside mix induced us to perform the second
clustering on the spatial characteristics of TAZs inside mix.

5.3.2 Association of Residual Patterns with Socio-Spatial Characteristics

In this section, we investigate the patterns and characteristics of trip production residuals. To ac-
complish this, we generated a heatmap of trip production residuals for each TAZ. The heatmap
displays the normalized prediction residual of the associated TAZ for each hour of the day
(y-axis) over the working days of the week (x-axis) as displayed in Figure 5.2 in the previ-
ous section. Each TAZ has its specific day-to-day and within-day residual patterns. To better
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Figure 5.15: Comparing the spatial characteristics of mix cluster’s sub-clusters.

understand the dominant patterns of residuals, we analyzed the heatmaps of each spatial level
separately, i.e., municipality and 4-digit zones. We employed a DCNN for feature extraction,
followed by the K-means clustering algorithm to identify the dominant patterns in each spa-
tial scale. We used the Silhouette score elbow method to determine the optimal number of
clusters. Figures 5.19(a) and 5.19(b) depict the Silhouette plots at the municipality and 4-digit
zone levels, respectively. Based on these plots, we found four and five clusters suitable for the
municipality and 4-digit zone levels, respectively.

Figure 5.20 shows the spatial distribution of identified clusters for TAZs in the Netherlands
at different spatial scales: Municipality (5.20(a)) and 4-digit zone level (5.20(b)). At the mu-
nicipality scale, clusters 0 and 1 appear to be concentrated on the west side of the Netherlands,
while clusters 2 and 3 are more prevalent on the eastern side of the country. However, at the
4-digit level, a distinct pattern is not observable by solely examining the spatial distribution.
These findings suggest that additional underlying factors might contribute to the formation of
production residual clusters and thus warrant further analysis.
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Figures 5.21 and 5.22 compare the residual patterns with the trip production patterns across
identified clusters under the municipality and 4-digit spatial scales, respectively. This analysis
aims to gain insight into the relationship between trip production and its associated prediction
residual. The results shown in Figure 5.21 indicate that the most severe within-day trip produc-
tion peak occurs commonly between all four clusters at around 6 p.m. or with a slight difference
at around 9 a.m. However, the peak of residual is different among clusters. Specifically, cluster
0 displays the highest residual among all clusters, with the residual peak occurring at 4 p.m.
and with a slight difference at 7 p.m., while the morning peak occurs at 8 a.m. In cluster 1,
residual peak is at 8 a.m., and the afternoon peak occurs at 4 p.m. For cluster 2, the morning
and afternoon peaks of the residual are equally severe, and they happen around 8 a.m. and 4
p.m., respectively. In cluster 3, the prediction residual peak is at 7 p.m., and the morning peak
occurs at 8 a.m.

Overall, the identified clusters seem to relate to the districts where their prediction residual
occurs and the severity of the morning and afternoon peaks. It is interesting to note that, unlike
the trip production pattern, whose only afternoon peak occurs at 6 p.m., the residual patterns
display a double afternoon peak at 4 and 7 p.m., i.e., 2 hours before and one hour after the
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(b) Silhouette plot for 4-digit zones.

Figure 5.19: Silhouette score elbow plots.
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(a) Municipalities.

(b) 4-digit postal code zones.

Figure 5.20: Spatial distribution of clusters for TAZs in the Netherlands.
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Figure 5.21: Comparing average hourly trip production and residuals across identified clusters
at the Municipality Scale.
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production peak in the afternoon. However, the morning peak of residual happens at the same
time, around 8 a.m., meaning one hour before the production morning peak. Cluster 0, with the
highest residual average at all hours of a day, has a double severe afternoon peak, suggesting
that high production results in more irregularities scattered before (i.e., from two hours before)
and after (i.e., to one hour after) the actual afternoon peak of production. Moreover, morning
activities seem to follow a more strict schedule, as the residual elevation is scattered in a narrow
range (i.e., from one hour before to the peak hour of trip production) among all four clusters
at this scale. Except for the peak values of residual, the residual patterns follow the discerned
patterns in the trip production.
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(a) Average hourly trip production residuals.
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(b) Average hourly trip production.

Figure 5.22: Comparing average hourly trip production and residuals across identified clusters
at the 4-digit postal code scale.

Figure 5.22 illustrates the average hourly residual clusters at the 4-digit level and compares
it with the corresponding trip production clusters. The analysis reveals that the residual patterns
differ from those identified at the municipality scale, indicating the importance of analyzing
them to gain insight into the relationship between trip production and its associated prediction
residual at different spatial scales. Specifically, the study finds that the patterns of trip pro-
duction across these clusters are similar to those identified at the municipality scale, with the
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morning and afternoon peak of trip production occurring at around 9 a.m. and 6 p.m., respec-
tively, across all clusters. However, unlike the municipality scale, the residual patterns at the
4-digit level exhibit double morning peaks occurring at 7 a.m. and 10 a.m., two hours before
and one hour after the morning peak of trip production. Additionally, the afternoon residual
peak is reduced to a single peak at around 7 p.m., one hour after the afternoon trip production
peak. Further analysis of the five clusters at the 4-digit TAZs level reveals that the severity of
the first and second morning and afternoon peaks differs between the clusters, with cluster 1
exhibiting the highest afternoon peak and cluster 4 having the most severe morning peak.

In our analysis, we employed the XGboost algorithm and used the “gain” metric to assess
the importance of demographic and land-use features associated with the identified prediction
residual clusters. “Gain” is a measure of the relative contribution of each feature to the model
calculated as the average gain of the feature when it is used in all possible splits of a tree in the
ensemble. The “gain” metric provides an intuitive measure of feature importance and identifies
the most relevant features associated with the prediction residual clusters. The higher the gain
value of a feature, the more important it is in predicting the outcome variable and the more
significant its contribution to the model identifying its residual pattern.

This section presents the results of an importance analysis conducted using the “gain” metric
in the XGboost algorithm to identify the most relevant demographic and land-use features that
distinguish residual patterns in two spatial scales, municipality, and 4-digit. Box plots of the
feature importance scores are displayed in Figures 5.23 and 5.24, where the y-axis represents the
feature value, and the x-axis shows the cluster names. It should be noted that the plot displays
the distribution of feature values among the TAZs within each cluster rather than representing
the gain value itself.

Figure 5.23 shows the results for the municipality scale, where the identified features are
mainly related to points of interest (POIs), including the average number of nearby primary
schools, cafes, restaurants, and general practices, which tend to increase the residual and make
trip production less predictable. In addition, the concentration of older or newer-built houses in
the TAZ affects the prediction error, while the proportion of younger residents appears to make
trip production more regular, as observed in cluster 0. Notably, cluster 3 exhibits a severe late
afternoon peak in residual, an hour later than the trip production peak, with a higher average
electricity consumption.

Figure 5.24 displays the importance analysis results for the 4-digit scale, where socio-
economic features become more critical in distinguishing the residual cluster of TAZs. The
first 12 most important features include residents with a non-EU immigrant parent, the per-
centage of high-income residents, residents with unemployment, social or disability benefits,
the percentage of newborn babies, and population density. Land use and urbanity features also
play an important role in distinguishing the residual cluster. For instance, the number of close
hospitals, cinemas, and performing art locations, the density of commercial/industrial areas, the
urbanity score, and the concentration of middle-aged houses are all relevant. Cluster 1, with
the highest afternoon peak in residual, seems to have more close hospitals, a higher proportion
of residents with a non-EU immigrant parent, and entertainment locations such as cinemas and
performing art venues, as well as a higher percentage of residents with social benefits.

Overall, the results suggest that the prediction of trip production relies more on demographic
information when analyzing at lower levels of abstraction, whereas, at higher levels of abstrac-
tion, spatial features such as land use and built environment variables play a more critical role
in causing irregular demand patterns.
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electricity consumumption

Figure 5.23: Box plots of the most relevant features to the identified residual clusters at the
municipality spatial scale.
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Figure 5.24: Box plots of the most relevant features to the identified residual clusters at the 4-
digit spatial scale.
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5.3.3 Research Limitations

This research, while contributing significant insights into the field of short-term trip production
prediction, acknowledges certain limitations that should be considered when interpreting the
results and applying the methodologies.

1. The primary data source for this study is derived from GSM traces provided by a ma-
jor Dutch telecommunications company, Vodafone. While these traces offer valuable
insights into travel patterns, they inherently come with significant limitations that might
affect the study’s outcomes. The data covers approximately one-third of the Dutch pop-
ulation, primarily Vodafone users. This coverage limitation potentially introduces biases,
as the user demographic may not accurately represent the wider population’s travel be-
havior, especially across different socioeconomic groups. Also, the method used to infer
trip productions from GSM data relies on assumptions about travel modes, which may
not always hold true. The accuracy of these inferences can be affected by the granu-
larity of the data and the algorithms used to interpret signal patterns, possibly leading
to misclassifications (e.g., distinguishing between travel by public transport and private
vehicles). Furthermore, the accuracy of GSM-based studies is highly dependent on the
spatial distribution and density of network cells. Areas with sparse cellular coverage or
where cell towers are unevenly distributed can lead to significant gaps in data, affecting
the reliability of trip estimations. Additionally, the data’s temporal coverage (e.g., time of
day, day of the week) can also influence accuracy. For instance, trip productions during
peak traffic hours might be overrepresented due to higher mobile phone usage, skew-
ing the understanding of typical travel patterns. Given these constraints, particularly the
black-box nature of the processed GSM data, this study acknowledges the limitations in
the accuracy and reliability of the trip production values derived.

2. The scope of this study is geographically limited to the Netherlands. While this pro-
vides detailed insights into Dutch urban and transportation network, the findings might
not directly translate to other regions with different geographic, demographic, and infras-
tructural characteristics.

3. The study adopts LSTM integrated with GCN as the primary predictive model. This
choice, while based on the model’s ability to handle spatial-temporal correlations and
variations, does not imply it is the optimum method for all trip production prediction sce-
narios. The field offers a variety of other data-driven models that might provide different
levels of effectiveness depending on specific use cases.

4. Another limitation of our study is the lack of comparison with a broader range of state-of-
the-art models. While our focus was on demonstrating the benefits of integrating spatial
adjacency into LSTM models, future research should include comparisons not only with
models like T-GCN (Zhao et al., 2019) and STGCN (Yu et al., 2017) but also with ad-
vanced graph-based architectures that incorporate dynamic graphs (Wang et al., 2024),
transformer-based GCNs (Yan & Ma, 2021), and hierarchical GCNs (HGCNs) (Zhang
et al., 2021). Such evaluations would provide a more complete perspective on how effec-
tively our approach captures spatial dependencies relative to more complex models.

5. The decision to use K-means clustering for residual analysis was guided by its simplic-
ity and effectiveness. However, this approach might not capture the intricacies of more
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complex, non-linear data distributions compared to other advanced clustering algorithms.

6. The LSTM+GCN model, though efficient in handling large-scale data, involves a certain
level of computational complexity. This aspect might limit its applicability in environ-
ments with constrained computational resources.

7. The findings and conclusions drawn from this study, particularly those related to the resid-
ual analysis and socio-spatial feature associations, are based on the specific context of the
Netherlands. The transferability of these insights to other contexts requires a separate
study.

8. A limitation of our study is the absence of more granular socioeconomic data, such as in-
come levels, education levels, and job types, in our analysis. Incorporating these detailed
socioeconomic variables could potentially enhance the model’s predictive capabilities and
provide deeper insights into trip generation patterns. Future research could explore the
integration of such data to analyze their impact on trip generation forecasts.

9. Another area for future research is the interpretability of the GCN+LSTM model. Em-
ploying techniques such as attention mechanisms, feature importance analysis, or explain-
able Al methods could provide deeper insights into the model’s decision-making process
and identify key influencing factors, enhancing transparency and trust in the model’s pre-
dictions.

10. While our model shows promise, practical deployment for real-time prediction adjust-
ments involves challenges not addressed in this study. Future work could focus on opti-
mizing the model for real-time applications, exploring techniques to improve computa-
tional efficiency, and evaluating its performance in operational environments. Addressing
these considerations would enhance the model’s practicality for policymakers and trans-
portation planners.

11. While we discuss certain computational aspects of our approach, such as training a single
model for all TAZs instead of one model per TAZ, our primary contribution lies in demon-
strating the incremental predictive accuracy gained by integrating spatial adjacency. We
did not conduct a formal theoretical computational complexity analysis or extensive run-
time evaluations. Future research could focus on detailed computational profiling, op-
timizing the method for real-time deployment, and comparing its computational perfor-
mance against more computationally efficient models.

12. Our residual analysis utilized K-means clustering to identify patterns; however, more
sophisticated methods such as hierarchical clustering, DBSCAN, or spatial econometric
approaches might provide deeper insights into residual patterns. Future research could
explore these methods to better understand the factors contributing to prediction inaccu-
racies and potentially improve upon the results of our existing analysis.

To sum it up, this study’s primary contributions lie in the multi-scale analysis of trip produc-
tion prediction and the exploration of residual patterns and socio-spatial features across differ-
ent spatial scales. While acknowledging the aforementioned limitations, the research provides
a foundational framework that can be built upon and adapted for further studies in this domain.
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Future research could address these limitations by incorporating a broader data scope, explor-
ing alternative predictive models, and adapting the methodologies to diverse geographical and
urban contexts.

5.4 Conclusion

The first purpose of this research was to assess the association between temporal production pat-
terns and spatial urbanization. Taken together, the results of this research support the idea that
using land-use characteristics can improve the task of dynamic travel production prediction. In
fact, observing trip production clusters in space and comparing them with the distribution (i.e.,
density) of land-use characteristics suggested different urbanization levels for each cluster: ur-
ban, rural, and mixed-level. An urban area mainly presents the city center with a high density of
urban facilities, reveals a sharp afternoon production peak indicating more work-related activi-
ties. While a rural area shows more distinct production values in the morning, suggesting more
residential land use. Mixed levels display other patterns in time and space. Further analysis of
the mixed-level areas shows a more complex relationship between temporal heterogeneity and
spatial characteristics. Population density seems to impose additional uncertainty on the tem-
poral patterns. All in all, feature selection and Spatial and temporal discretization play essential
roles in identifying the dominant trip production patterns.

Another objective of this study was to investigate the prediction errors, residual patterns,
and their association with socio-spatial features at different spatial scales. The study’s results
showed a correlation between production variability and prediction error. The study also found
that residuals peaked on the shoulders of production peaks rather than during peak hours. Ad-
ditionally, the residual pattern of two TAZs might differ even if they have the same production
patterns, which suggests that latent features are causing such differences. The study explored
a range of features to identify the most important socio-spatial features contributing to identi-
fying residual patterns at each spatial scale. The results indicated that under the lowest level
of abstraction, i.e., 4-digit postal code zones, a combination of land-use and demographic in-
formation contributes to their residual patterns. However, as the spatial scale increases towards
the municipality level, land use plays a more critical role in identifying the residual pattern, i.e.,
prediction errors. These findings provide valuable insights into identifying residual patterns and
the contribution of socio-spatial features to such patterns, which can inform the development of
more accurate and effective travel demand prediction models.

Our analysis of prediction errors, residual patterns, and their association with socio-spatial
features helps identify areas where certain demographic or land-use characteristics contribute to
demand variability. Policymakers can leverage this information to implement targeted interven-
tions, such as adjusting land-use policies or enhancing transportation services in areas where
prediction errors are linked to specific socio-spatial factors, ultimately better meeting the travel
demands of different regions.






Chapter 6

Conclusions, implications and recommen-
dations

In this final chapter, we reflect on the significance of the studies conducted in this thesis, ad-
dressing the main research question: ‘What are the spatial and temporal patterns of travel de-
mand considering the input data quality, spatio-temporal context, the objective spatial scale,
and the socio-spatial characteristics?” This question, stemming from the identified knowledge
gaps in the introduction, has guided our investigation and shaped the methodologies applied.
We start with a summary of our key findings. Next, we discuss the implications of our findings
for practitioners, policymakers, and society and identify potential opportunities for extending
this research. Finally, we offer recommendations for future work in this area.

6.1 Summary of Key Findings

This thesis undertook a comprehensive exploration of spatial and temporal patterns of travel
demand. By examining the interaction between data quality, spatial scale, and socio-spatial
characteristics, we have identified insights crucial for estimating and predicting travel demand.
Key findings include:

Chapter 2 demonstrates that GSM data provides a basis for understanding user locations
over time, but additional information is needed to accurately discern stay locations. A Kernel-
based approach proves effective for this, even when utilizing data from as little as one percent
of the population. The temporal resolution of GSM data was highlighted as critical, with larger
polling intervals adversely affecting the accuracy of OD matrices. This established a connection
between temporal data characteristics and the threshold for identifying stay and pass-by loca-
tions, with findings indicating that larger polling intervals (PI) should not exceed the duration
threshold for identifying stays to maintain OD matrix integrity. An optimal PI exists, enhanc-
ing structural similarity to ground-truth data, calculated to be just over half the minimum stay
duration. However, short-duration activities remain challenging to detect, and unusual travel
behaviors are prone to misclassification.

Chapter 3 describes an empirical analysis of trip production patterns using aggregated GSM
data from the Netherlands, clustered into distinct temporal patterns using deep learning meth-
ods. The study identified three primary clusters with distinctly different patterns throughout the
day and week, which correlate with urbanization levels (Urban, Rural, and Mixed). Utilizing
an OVR-SMOTE-XGBoost ensemble, the research validates how accurate trip production pat-
terns can be predicted based on land-use characteristics. These findings are key to improving
data-driven demand estimation and transportation policies. Although input data are processed
and aggregated derivatives of GSM traces due to privacy reasons, the study confirms its util-
ity to represent both regular and irregular travel patterns, providing a quantitative approach to
understanding travel behavior and aiding policy making.

119



120 6 Conclusions, implications and recommendations

Chapter 4 concludes that the integration of a graph convolutional neural network (GCN)
with a long-short-term memory network (LSTM) presents an effective method for predicting
large-scale trip production, taking into account spatial-temporal heterogeneity and adjacency of
mobility zones. This integration reduces computational demands as it uses a single model for
the entire network instead of separate models for each zone. The study found that accounting
for spatial adjacency improves prediction accuracy in all three studied spatial scales (namely
Province, Municipality, and Traffic Analysis Zone) while reducing computational time. Fur-
thermore, it observed that larger spatial scales, which aggregate data and increase abstraction,
can lead to more accurate predictions despite introducing some spatial uncertainty. This finding
suggests that aggregation may lead to more regular, and hence predictable patterns. Although
the research primarily addresses motor-vehicle trip production, the method is mode-agnostic,
suggesting wider applicability.

Building on Chapter 3, Chapter 5 presents a nuanced examination of trip production, re-
vealing that mixed-level cluster areas show intricate interplays between temporal heterogene-
ity and spatial characteristics, with population density introducing additional uncertainties in
temporal patterns. The analysis highlights the importance of careful feature selection and the
discretization of spatial and temporal data in describing the prevailing trip production patterns.
The study progresses by assessing prediction errors and residual patterns in trip production fore-
casts, linking these to key demographic and land-use characteristics of Traffic Analysis Zones
across various spatial scales. This comprehensive analysis identified specific socio-spatial fac-
tors, such as land-use diversity, employment density, and population demographics, that signifi-
cantly influence trip production variance. By quantifying the impact of these factors on different
spatial scales, the study provides insights that can be directly applied to improve the accuracy
of demand prediction models tailored to various levels of spatial aggregation. Utilizing GSM-
derived motor vehicle Origin-Destination (OD) matrices from the Netherlands in March 2017,
the research focuses on motor-vehicle trip production behaviors.

The research begins with discerning the association between temporal production patterns
and levels of urbanization. The trip production clusters observed in space, compared with the
distribution of land use types, revealed clear distinctions in urbanization between the urban,
rural and mixed clusters. Metropolitan areas showed pronounced afternoon peaks in trip pro-
duction, reflecting work-centric activity, while rural areas displayed morning peaks, suggesting
residential tendencies. Mixed-level areas, however, demonstrated varied patterns both tempo-
rally and spatially, with population density complicating the temporal trends. The critically
important roles of feature selection and the discretization of data in space and time are high-
lighted in isolating key trip production patterns.

The study also delved into the analysis of prediction errors and the patterns of residuals,
exploring their relationship with socio-spatial features at different spatial scales. It revealed that
the variability of trip production is correlated with prediction errors and that the residuals tend
to spike around, but not during, the production peaks. It was found that identical production
patterns across traffic analysis zones could yield different residual patterns, hinting at the influ-
ence of underlying latent features. At the finer spatial resolution of 4-digit postal codes, both
land-use and demographic factors were significant contributors to residual patterns. Conversely,
at broader scales such as municipalities, land-use became increasingly dominant in explaining
the residuals. These insights are instrumental in recognizing residual patterns and the influ-
ence of socio-spatial attributes on them, which could significantly enhance the relevance and
applicability of travel demand forecasting models.
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6.2 Conclusion

This thesis set out to explore the spatial and temporal patterns of travel demand by considering
the input data quality, spatio-temporal context, spatial scale, and socio-spatial characteristics.
By addressing the identified knowledge gaps, our research has advanced the understanding of
how these factors influence travel demand patterns and their estimation and prediction.

Firstly, we tackled the lack of standardized approaches for processing GSM data for origin-
destination (OD) estimation. Our findings demonstrate that the quality of travel demand esti-
mation depends not merely on data resolution or accuracy but on data that is fit for the specific
purpose. By developing a kernel-based approach for interpreting GSM data with minimal as-
sumptions (Chapter 2), we showed that appropriate preprocessing can significantly enhance the
reliability of OD matrices. While the GSM data itself was limited, the training set, based on
detailed travel diaries from a small sample of users, proved sufficient to refine and validate the
model. This insight shifts the focus from acquiring high-resolution data to ensuring that data
collection and processing methods align with the modeling objectives.

Secondly, we addressed the gap in understanding spatial and temporal patterns in trip pro-
duction. Through empirical analysis using deep learning methods (Chapter 3), we identified
distinct temporal patterns of trip production that correlate with levels of urbanization. This re-
vealed that collective travel demand exhibits regular patterns that can be systematically classi-
fied, providing insights into aggregated travel behaviors crucial for policy-making and transport
planning. This finding enhances our understanding of how urban form influences travel behav-
ior at a collective level, offering practical implications for targeted interventions in urban and
transportation systems.

Thirdly, we investigated the relationship between spatial scale and the prediction of trip
production. Our research indicates that larger spatial scales, which involve greater data aggre-
gation, can lead to more accurate trip production predictions due to the smoothing of variability
and amplification of regular patterns (Chapter 4). However, this comes at the expense of los-
ing finer spatial detail. This highlights the importance of carefully selecting the spatial scale
in travel demand modeling to strike a balance between prediction accuracy and the granularity
required for specific policy or planning objectives.

Lastly, we explored the correlation between socio-spatial characteristics and travel demand
patterns at different spatial scales. We found that land-use diversity and demographic factors
significantly influence trip production variance and prediction errors, with their impact varying
across spatial scales (Chapter 5). This finding emphasizes the necessity of integrating socio-
spatial features into travel demand models to improve their predictive capabilities and ensure
that the models remain relevant for practical applications in diverse geographic and urban con-
texts.

Reflecting on these findings, it becomes evident that while our initial research questions
were pertinent, they might benefit from reformulation in light of the complexities uncovered.
For instance, the relationship between spatial scale and socio-spatial characteristics warrants
further investigation to better capture the nuances of collective travel behaviors across different
contexts. Moreover, our work underscores that improving travel demand estimation requires
not only better data but also a deeper understanding of how factors such as urbanization, land
use, and demographics interplay to shape aggregated travel behaviors at varying spatial and
temporal scales.

In conclusion, this thesis advances the field of travel demand estimation by offering em-
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pirical evidence and novel methodologies that provide a richer understanding of spatial and
temporal travel demand patterns. By demonstrating the significance of fit-for-purpose data, un-
covering the influence of urbanization on temporal patterns, highlighting the trade-offs inherent
in spatial scale selection, and quantifying the role of socio-spatial characteristics, we contribute
a framework for enhancing the accuracy and applicability of travel demand models. These in-
sights have direct implications for transport planners and policymakers, enabling more effective,
data-driven strategies for managing and predicting travel demand in diverse urban contexts.

6.3 Limitations and Future Research Directions

Building on the insights from this thesis, we propose two impactful future research directions
that extend the application of our developed frameworks to address areas of urban sustainability
and adaptive planning for special events. These directions not only showcase the potential utility
of our research but also suggest pathways for practical implementation in urban planning and
policy formulation.

* Sustainable Urban Development Framework: Our study, by analyzing the relationship
between trip production patterns and socio-spatial characteristics, provides foundational
insights into how urban development affects travel behaviors. Specifically, we have shown
how land-use diversity and population density influence temporal patterns of trip produc-
tion. Building on these insights, future research can develop a comprehensive framework
that integrates our predictive models with energy consumption and emission factors as-
sociated with different travel patterns. By linking changes in temporal traffic patterns to
energy use and environmental impacts, this framework can help quantify the ecological
consequences of urban expansion. Policymakers can then utilize this information to de-
sign urban development strategies that promote sustainable transportation modes, reduce
reliance on private vehicles, and minimize environmental footprints.

» Adaptive Planning for Special Events: Our research introduces a methodological frame-
work that can be used to examine how special events alter typical travel behaviors and trip
production patterns. This framework arms transport planners with the ability to develop
adaptive transport strategies. These strategies can mitigate congestion and enhance mo-
bility during events, improving urban livability.

While the findings of this research represent a significant advancement in transport planning
and demand estimation, several inherent limitations must be acknowledged. These limitations
not only serve as caveats for the present work but also as potential avenues for future research.

6.3.1 Data Representativeness and Privacy Concerns

» Synthetic Data Utilization: The reliance on synthetic data, despite its utility for privacy
preservation and validation, raises questions regarding the direct transferability of the
models to real-world scenarios. Future studies should aim to apply the developed frame-
works to empirical datasets while navigating the associated privacy concerns and ethical
implications.

* Processing and Transformation Limitations: The initial processing and aggregation of
mobile phone datasets were conducted externally, which may lead to information loss.
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Detailed methodologies used by third parties for data transformation and derivation of
OD matrices were not fully transparent, potentially obscuring some underlying data char-
acteristics. Ensuring full traceability of data transformation processes will enhance the
reliability of future research outcomes.

6.3.2 Geospatial and Temporal Considerations

* TAZ and Base Station Coverage Discrepancies: Assumptions regarding the correspon-
dence between TAZs and base station coverage areas might not hold true universally. This
simplification could impact the fidelity of OD matrices, particularly in non-urban areas.
Future studies should incorporate precise base station coverage data to refine the spatial
granularity of demand estimation.

e Short-Trip Exclusion: The exclusion of short-distance trips potentially overlooks sig-
nificant urban mobility patterns. Incorporating these trips would present a more compre-
hensive view of urban dynamics and enhance model sensitivity to all forms of mobility,
including active transportation modes.

* Temporal Data Range: The study’s confinement to a single-month data collection period
limits the temporal generalizability of the findings. Longitudinal data spanning various
seasonal and event-specific contexts would be instrumental in verifying the robustness of
demand estimation over time.

6.3.3 Methodological Refinements

* Bayesian Model Simplifications: The naive approach of the Bayesian model adopted
in activity category detection could be refined. Expanding the dataset size and complex-
ity could help in transitioning towards a fully Bayesian model, capturing the intricate
correlations between variables for more nuanced inference.

* Positioning and OD Accuracy: The study focused predominantly on the impact of posi-
tioning intervals, leaving positioning accuracy and disturbances, such as ping-pong han-
dovers, less explored. Future research should aim to integrate these factors, potentially
through empirical studies, to provide a holistic understanding of their effects on OD ac-
curacy.

* OD Matrix Scaling and Transport Mode Consideration: The transition from sample
OD matrices to population-wide estimations and the mode of transport consideration were
outside the scope of this research. Further methodological advancements are needed to
incorporate comprehensive scaling techniques and mode differentiation, enhancing the
model’s practical applicability.

6.3.4 Technical and Computational Challenges

* GCN Feature Limitations: The study’s Graph Convolutional Networks (GCNs) primar-
ily utilized TAZ adjacency. Future iterations should integrate additional socio-spatial fea-
tures to account for area heterogeneity, possibly leading to more precise and contextually
informed predictions.
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* Urbanization and Heterogeneity: The impact of spatial urbanization levels on trip pro-
duction was identified as significant but not fully integrated into the predictive models.
Research expanding on these socio-spatial dynamics could yield a richer understanding
and prediction of travel demand patterns.

These limitations underscore the complex and multifaceted nature of transport planning
and demand estimation. As such, they pave the way for future research to refine these initial
models, adapt them to real-world datasets, and explore the nuances of urban mobility with
greater precision and granularity.

In sum, this thesis lays a path forward for enhancing travel demand prediction through a
meticulous investigation into the interaction between data integrity, spatial-temporal patterns,
and socio-spatial factors. The insights garnered from this study provide a strategic blueprint
for academia and industry professionals in urban and transportation planning, underscoring
the potential for data-driven methodologies to reshape the landscape of mobility analytics and
policy development. By addressing the outlined limitations and capitalizing on the identified
research avenues, future work has the opportunity to refine these predictive models further,
ultimately fostering more sustainable and efficient urban transportation systems.



Chapter A

A.1 XGBoost ensemble model

This part discusses more details on the XGBoost algorithm (we refer the readers to Chen &
Guestrin (2016) for more details).

XGBoost is an ensemble of decision trees; it consists of sequentially developed decision
trees where each tree works to improve the performance of the prior tree (Srivastava et al.,
2022). Ensemble methods generally try to reduce the bias or variance of several weak learners
by combining them into a strong learner (i.e., a learner with low bias and variance). Boosting
is an ensemble method in which weak learners are fitted sequentially and aggregated to the
ensemble model. In each step, the training set is updated to focus more on the weakness of
the current ensemble. In other words, each model in the sequence does the fitting by giving
higher weight to misclassified data points. If the weak learner of each step depends on the
gradient direction of the loss function at each step, this method is also called Gradient Boosting
Machines (GBM) (Friedman, 2002). The advantage of XGBoost over non-extreme gradient
boosting methods is the regularization term in the loss function, which helps prevent over-
fitting.

Assume our data set is ¥ = {(x;,y;) :i = 1,...,n, x; € R™, y; € R}; hence we have n obser-
vations each having m features corresponding to their associated label y. Then y; can be defined
as a result of an ensemble, with 7" additive functions, represented by the generalized model as
follows:

T
Ji=@(xi) =} filxi) (A1)
=1
where f; is a decision tree, and f;(x;) is the score given by the ¢ — th decision tree to the
i —th data point. The objective function that needs to be minimized to select the function f;
consists of two terms of training loss, L(y;,¥;) and regularization, Q(f;):

obj(®) =) L(yi,3:) + Y Q) (A2)

The training loss, L, estimates the model’s goodness of fit based on the training data. A common
form of L for classification, which is used in this research, is the logistic loss (i.e., binary
logistic) for y € {0, 1} (Bishop & Nasrabadi, 2006):

= -
M=

Liogistic = — (vilog(pi) + (1 —yi)log(1 —p;)) , (A.3)

i=1

where y; is the true value, p; € [0, 1] denotes the probability prediction, and N is the number
of samples. An ideal classifier has a logistic loss close to zero.
In order to prevent the model from becoming too complex, £ applies the penalty as follows:
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1
Q(fi) =2 + Mol (A4)

Where 7y controls the penalty for the number of leaves, T and A is the parameter for controlling
the magnitude of leaf weights ® in the decision tree. The purpose of having the regularization
term in the objective function is to simplify the model and prevent over-fitting.

Learning the tree structure is more difficult than the traditional optimization problem, where
you can simply take the gradient. In other words, training all the trees simultaneously is not a
straightforward task; therefore, XGBoost uses an additive method that optimizes the learned
tree and adds a tree at each step. In the ¢ — ¢/ iteration, we need to add the following f;, which
minimizes the objective function:

obj = ZL yi, 97 £(0) Q). (A.5)
i=1

This function can be simplified and approximated by the Taylor expansion:

" 1
obj =Y [L(yi, 5\ ") +gifi(xi) + Ehiftz(xi)] +Q(f), (A.6)
=1

Where the functions g; and 4;, the first and second order gradient of the loss function, are defined
as follows:

gt—a (t=1) (yz,y,(t 1)) (A7)
hy —aj,l Ly, ). (A.8)

We can rewrite Equation A.6 by expanding Q and find the optimal output value (i.e., weight)
®; for leaf j as follows:

Yier,; 8i
Oj=—c1—, (A.9)
J Zielj ]’ll’ —|— 7\,
Where [; is the instance set of leaf j. Replacing Equation A.9 and A.4 in A.6 gives us the
following optimal value of the loss function which is used as a similarity score for measuring

the quality of each tree structure:

Lo(X
=t i€l; gl
obj = — A.10
/ ; ZlEI h +}" YT ( )
For binary logistic loss function we use for the classification, g; = —(y; — p;) (i.e., the resid-

ual), and h; = p;(1 — p;) which can be replaced in Equation A.9 and A.10.

To simplify evaluating tree structure when adding new branches to the tree (i.e., evaluating
the split candidates), a greedy algorithm is used. This algorithm starts from one single leaf and
adds new branches to the tree iteratively. Therefore, after the tree splits from a given node, the
formula for loss reduction (i.e., gain) is as follows:

1] (Liey, 8)° n (Eierr 8)°  (Xier 80)°
2\ Yiey, hi+A Yiel hi+A Yies hi+A

Objsplit = -, (A-ll)
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Where [, and I are subsets of the available observations in the left and right nodes after
the split. I is the subset of the available observations in the current node so that I = I U Ig.
Moreover, the tree structure will continue to split if 0b js,;;; 1s positive or other criteria are met,
such as the maximum depth of a tree that users need in XGBoost parameters fine-tuning.

Equation A.11 is used for finding the best split at any node and it only depends on g;, and
h; (i.e., the first and second order gradient) of the training loss and the regularization parameter
Y. Therefore, as long as the first and second-order gradient is provided, XGBoost can optimize
any custom loss function.

XGBoost performs better than other tree boosting algorithms due to (i) having the regu-
larization term for preventing the over-fitting, (i1) downscaling of each new tree by a constant
parameter T to reduce the impact of a single tree on the final model, i.e., it gives the future
trees more space to improve the model while reducing the impact of the current tree. Moreover,
(ii1) XGBoost supports column sampling, which means each tree is built using a subset of the
columns from the training dataset.
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Glossary

The following abbreviations are used in this thesis:

AP Afternoon Peak

ARIMA Autoregressive Integrated Moving Average
CBD Central Bureau of Statistics

CDR Call Detailed Record

CNN Convolutional Neural Network

COov Coefficient of Variation

DCNN Deep Convolutional Neural Networks

FR Fortunate Range

GCN Graph Convolutional Neural Network
GRU Gated Recurrent Unit

GSM Global System for Mobile Communication
GSSI Geographical Window-based Structural Similarity Index
GTWR Geographically and Temporally Weighted Regression
HCA Hierarchical Clustering Analysis

KA Kernel-based Approach

KNN K-nearest Neighbor

KDE Kernel Density Estimation

LSTM Long Short-term Memory

LS-SVM Least Squares Support Vector Machine
MAE Mean Absolute Error

MAP Maximum a-posteriori

MAPE Mean Absolute Percentage Error

MP Morning Peak

MSE Mean Squared Error

MZ Mobility Zone

OD Origin-destination

OSM Open Street Map

OVR One-vs.-Rest

PLU Periodic Location Update

PI Polling Interval

POI Point of Interest

RMSE Root Mean Squared Error

SI Silhouette Index

SMOTE Synthetic Minority Oversampling Technique
TAZ Traffic Analysis Zone

XGBoost eXtreme Gradient Boosting
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Summary

Urban mobility and transportation systems are inherently complex and characterized by dy-
namic patterns that evolve over time. Effective management, planning, and optimization of
these systems necessitate a deep understanding of spatial and temporal travel demand patterns.
This thesis contributes to the field of transportation science by developing and applying state-
of-the-art data-driven methods to explore the spatial and temporal patterns of travel demand
within large-scale metropolitan networks. Specifically, it focuses on addressing critical chal-
lenges associated with estimating and predicting travel demand by leveraging the potential of
GSM mobile phone data.

At the core of this research lies the understanding that the quality and temporal resolution
of input data are pivotal in steering the efficacy of transportation planning and policy-making.
Central to this investigation is the formulation of an innovative, data-driven framework tailored
for the analysis of GSM data, intending to refine the accuracy in the construction of origin-
destination (OD) matrices. This novel approach meticulously examines the impact of polling
intervals (PI) on the temporal fidelity of GSM data, addressing the inherent challenges in dis-
cerning stay durations and the subsequent effects on travel demand estimation. Through the
strategic manipulation of data collection intervals, this study not only proposes an advanced
methodology for interpreting sparse GSM data but also identifies an “optimal PI” that sig-
nificantly enhances the structural accuracy of OD matrices. The integration of Kernel-based
learning from minimal travel diary samples underscores the feasibility of reconstructing reli-
able travel patterns, marking a significant leap forward in the utilization of mobile phone data
for transportation analysis. By delineating a pathway toward optimizing GSM data handling,
this research contributes substantially to the foundation of data-driven transportation planning,
ensuring the derivation of more accurate and robust travel demand models.

Building upon the foundational insights derived from analyzing GSM data for estimating
travel demand, we advance our understanding by distinguishing the spatial-temporal travel de-
mand patterns. It transitions from the foundational analysis of raw GSM data to a focused
exploration of how spatial-temporal heterogeneity influences trip production across different
traffic analysis zones (TAZs). It emphasizes the importance of recognizing spatial-temporal
variations in trip production (and attraction), which are crucial for a reliable prediction and esti-
mation of travel demand. Through a detailed exploration of the variability in trip production at
various times of the day and days of the week, significant patterns emerge among TAZs in the
Netherlands, providing critical insights for transportation planning and policy-making. By link-
ing temporal patterns of travel production with spatial urbanization characteristics, this study
offers valuable perspectives on mobility, crucial for transportation analysis and the formulation
of effective policies. It represents a significant step towards refining our approach to model-
ing (and predicting) travel demand, ensuring transportation systems are more responsive to the
needs of urban and rural areas.

Next, we delve into one of the complexities of forecasting travel demand by analyzing pre-
dictive accuracies at these different scales. This exploration is crucial for understanding the
spatial-temporal dependence and heterogeneity inherent in trip production, aspects often over-
looked in conventional forecasting approaches. The chapter uses a method that combines graph
convolutional neural networks (GCN) with long short-term memory networks (LSTM), an ap-
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proach aimed at addressing the challenge of spatial heterogeneity by creating a nationwide
graph that reflects the adjacency of mobility zones (MZ).

The key focus of the chapter is on the multi-scale aspect of travel demand prediction, where
the research underscores the importance of understanding how spatial adjacency and the scale
of analysis influence the accuracy of trip production forecasts. This approach is significant as it
moves beyond the traditional one-size-fits-all models, offering a more nuanced understanding
of how travel demand prediction can vary across different spatial scales—from provinces to
municipalities to 4-digit postal code zones. Therefore, it demonstrates that the choice of spatial
scale for analysis is not merely a technical decision but a critical factor that can significantly
influence the effectiveness of travel demand models. This insight is crucial for transportation
planners and policymakers who aim to develop targeted strategies for different urban and re-
gional contexts.

The exploration of travel demand patterns in the context of socio-spatial characteristics re-
fines our understanding of urban mobility; Hence, we delve into the sensitivity of travel demand
to the interaction of demographic and land-use attributes and we explore the intricate relation-
ships that govern trip production predictions across varying spatial scales. The research under-
scores the importance of a data-driven approach in analyzing the layers of complexity inherent
in predicting trip production, providing a methodological framework that leverages an exten-
sive range of socio-spatial data. This approach is pivotal in unraveling the impact of various
demographic factors, such as population density, average age, income levels, and employment
status, alongside collective land-use characteristics on the predictability of travel demand pat-
terns. The analysis embarks on a journey through different spatial scales, examining how the
specific socio-spatial makeup of an area contributes to or detracts from the predictability of
trip production. Through this lens, the research brings to light the variegated effects of demo-
graphic and land-use factors across spatial dimensions, offering insights into the differential
impact these variables have on travel demand forecasting.

The last segment of the study employs sophisticated analytical techniques to investigate the
prediction errors associated with trip production forecasts. By identifying and evaluating the
dominant patterns of these prediction residuals, the research delves deeper into the socio-spatial
foundations that contribute to discrepancies in travel demand forecasting. This meticulous anal-
ysis paves the way for a more refined understanding of trip production heterogeneity and the
socio-spatial determinants that shape it, thereby enhancing the accuracy of demand prediction
models.

To conclude, this thesis explores the intricate landscape of travel demand prediction, ad-
dressing how data quality, spatio-temporal context, spatial scale, and socio-spatial character-
istics can enhance forecasting accuracy. Key insights reveal the importance of temporal data
resolution, the predictive power of land-use characteristics across spatial scales, and the inte-
gration of spatial adjacency in prediction models. Despite its contributions to transport planning
and demand estimation, the research acknowledges limitations related to data representativeness
and methodological approaches, suggesting avenues for future studies to refine predictive mod-
els further. By marrying data-driven methodologies with socio-spatial interactions, this work
lays a foundational blueprint for advancing urban mobility analysis and policy-making, aiming
for more efficient, inclusive, and responsive transportation planning.



Samenvatting

Stedelijke mobiliteit en transportsystemen zijn van nature complex en worden gekenmerkt door
dynamische patronen die in de loop van de tijd evolueren. Effectief beheer, planning en op-
timalisatie van deze systemen vereisen een diepgaand begrip van de ruimtelijke en temporele
patronen van vervoersvraag. Deze thesis draagt bij aan het vakgebied van transportwetenschap
door het ontwikkelen en toepassen van geavanceerde datagedreven methoden om de ruimtelijke
en temporele patronen van vervoersvraag binnen grootschalige metropolitane netwerken te ver-
kennen. Specifiek richt het zich op het aanpakken van kritieke uitdagingen die geassocieerd
zijn met het schatten en voorspellen van vervoersvraag door het benutten van het potentieel van
GSM mobiele telefoongegevens.

In de kern van dit onderzoek ligt het begrip dat de kwaliteit en temporele resolutie van
invoergegevens cruciaal zijn in het sturen van de effectiviteit van transportplanning en beleids-
vorming. Centraal in dit onderzoek staat de formulering van een innovatief, datagedreven kader
op maat voor de analyse van GSM-gegevens, met als doel de nauwkeurigheid in de constructie
van herkomst-bestemmingsmatrices te verfijnen. Deze nieuwe benadering onderzoekt nauwge-
zet de impact van pollingintervallen (PI) op de temporele betrouwbaarheid van GSM-gegevens,
waarbij de inherente uitdagingen in het onderscheiden van verblijfsduren en de daaropvolgende
effecten op de schatting van vervoersvraag worden aangepakt. Door de strategische manipulatie
van gegevensverzamelingsintervallen stelt deze studie niet alleen een geavanceerde methodolo-
gie voor voor het interpreteren van schaarse GSM-gegevens, maar identificeert ook een “opti-
maal P” dat de structurele nauwkeurigheid van OD-matrices aanzienlijk verbetert. De integratie
van op Kernel-gebaseerd leren uit minimale reisdagboeksamples onderstreept de haalbaarheid
van het reconstrueren van betrouwbare reispatronen, wat een aanzienlijke stap voorwaarts mar-
keert in het gebruik van mobiele telefoongegevens voor transportanalyse. Door een pad uit
te stippelen naar het optimaliseren van de GSM-gegevensverwerking, levert dit onderzoek een
aanzienlijke bijdrage aan de basis van datagedreven transportplanning, waarbij zorg wordt ge-
dragen voor de afleiding van nauwkeurigere en robuustere vervoersvraagmodellen.

Voortbouwend op de fundamentele inzichten verkregen uit de analyse van GSM-gegevens
voor het schatten van vervoersvraag, verdiepen we ons begrip door de ruimtelijk-temporele ver-
voersvraagpatronen te onderscheiden. Het gaat over van de fundamentele analyse van ruwe
GSM-gegevens naar een gerichte verkenning van hoe ruimtelijk-temporele heterogeniteit de
tripproductie beinvloedt over verschillende verkeersanalysezones (TAZ’s). Het benadrukt het
belang van het herkennen van ruimtelijk-temporele variaties in tripproductie (en attractie), die
cruciaal zijn voor een betrouwbare voorspelling en schatting van vervoersvraag. Door een ge-
detailleerde verkenning van de variabiliteit in tripproductie op verschillende tijden van de dag
en dagen van de week, komen significante patronen naar voren onder TAZ’s in Nederland,
wat cruciale inzichten biedt voor transportplanning en beleidsvorming. Door temporele patro-
nen van reisproductie te koppelen aan ruimtelijke verstedelijkingskenmerken, biedt deze studie
waardevolle perspectieven op mobiliteit, cruciaal voor transportanalyse en het formuleren van
effectieve beleidsmaatregelen. Het vertegenwoordigt een significante stap naar het verfijnen van
onze aanpak voor het modelleren (en voorspellen) van vervoersvraag, zodat transportsystemen
responsiever zijn voor de behoeften van stedelijke en landelijke gebieden.

Vervolgens duiken we in een van de complexiteiten van het voorspellen van vervoersvraag

145



146 Samenvatting

door de voorspellingsnauwkeurigheden op deze verschillende schalen te analyseren. Deze ver-
kenning is cruciaal voor het begrijpen van de ruimtelijk-temporele afthankelijkheid en hetero-
geniteit die inherent zijn aan tripproductie, aspecten die vaak over het hoofd worden gezien
in conventionele voorspellingsbenaderingen. Het hoofdstuk gebruikt een methode die grafi-
sche convolutieneurale netwerken (GCN) combineert met lange kortetermijngeheugennetwer-
ken (LSTM), een aanpak gericht op het aanpakken van de uitdaging van ruimtelijke heterogeni-
teit door het creéren van een landelijk grafiek die de aangrenzendheid van verkeersanalysezones
(TAZ’s) weerspiegelt.

De belangrijkste focus van het hoofdstuk ligt op het multi-schaal aspect van vervoersvraag-
voorspelling, waarbij het onderzoek het belang onderstreept van het begrijpen hoe ruimtelijke
aangrenzendheid en de schaal van analyse de nauwkeurigheid van tripproductievoorspellingen
beinvloeden. Deze aanpak is significant omdat het verder gaat dan de traditionele one-size-
fits-all modellen, en biedt een meer genuanceerd begrip van hoe vervoersvraagvoorspelling kan
variéren over verschillende ruimtelijke schalen - van provincies tot gemeenten tot 4-cijferige
postcodezones. Daarom toont het aan dat de keuze van ruimtelijke schaal voor analyse niet
slechts een technische beslissing is, maar een kritieke factor die de effectiviteit van vervoers-
vraagmodellen aanzienlijk kan beinvloeden. Dit inzicht is cruciaal voor transportplanners en
beleidsmakers die gerichte strategie€n willen ontwikkelen voor verschillende stedelijke en re-
gionale contexten.

De verkenning van vervoersvraagpatronen in de context van socio-ruimtelijke kenmerken
verfijnt ons begrip van stedelijke mobiliteit; daardoor duiken we in de gevoeligheid van ver-
voersvraag voor de interactie van demografische en grondgebruikskenmerken en verkennen
we de complexe relaties die tripproductievoorspellingen regeren over verschillende ruimtelijke
schalen. Het onderzoek benadrukt het belang van een datagedreven aanpak bij het analyse-
ren van de lagen van complexiteit die inherent zijn aan het voorspellen van tripproductie, en
biedt een methodologisch kader dat een uitgebreid scala aan socio-ruimtelijke gegevens benut.
Deze aanpak is cruciaal bij het ontrafelen van de impact van verschillende demografische fac-
toren, zoals bevolkingsdichtheid, gemiddelde leeftijd, inkomensniveaus en werkstatus, naast
collectieve grondgebruikskenmerken op de voorspelbaarheid van vervoersvraagpatronen. De
analyse begint aan een reis door verschillende ruimtelijke schalen, onderzoekend hoe de spe-
cifieke socio-ruimtelijke samenstelling van een gebied bijdraagt aan of afbreuk doet aan de
voorspelbaarheid van tripproductie. Door deze lens brengt het onderzoek de gevarieerde effec-
ten van demografische en grondgebruiksfactoren over ruimtelijke dimensies aan het licht, en
biedt inzichten in de differenti€le impact van deze variabelen op vervoersvraagvoorspelling.

Het laatste segment van de studie maakt gebruik van geavanceerde analytische technieken
om de voorspellingsfouten te onderzoeken die geassocieerd zijn met tripproductievoorspellin-
gen. Door het identificeren en evalueren van de dominante patronen van deze voorspellings-
residuen, duikt het onderzoek dieper in de socio-ruimtelijke fundamenten die bijdragen aan
discrepanties in vervoersvraagvoorspelling. Deze nauwgezette analyse baant de weg voor een
verfijnder begrip van tripproductieheterogeniteit en de socio-ruimtelijke determinanten die deze
vormgeven, waardoor de nauwkeurigheid van vraagvoorspellingsmodellen wordt verbeterd.

Ter afsluiting verkent deze thesis het complexe landschap van vervoersvraagvoorspelling,
waarbij wordt ingegaan op hoe datakwaliteit, ruimtelijk-temporele context, ruimtelijke schaal
en socio-ruimtelijke kenmerken de voorspellingsnauwkeurigheid kunnen verbeteren. Belang-
rijke inzichten onthullen het belang van temporele dataresolutie, de voorspellende kracht van
grondgebruikskenmerken over ruimtelijke schalen heen, en de integratie van ruimtelijke aan-
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grenzendheid in voorspellingsmodellen. Ondanks de bijdragen aan transportplanning en vraag-
schatting, erkent het onderzoek beperkingen met betrekking tot gegevensrepresentativiteit en
methodologische benaderingen, en suggereert het wegen voor toekomstige studies om voor-
spellingsmodellen verder te verfijnen. Door datagedreven methodologieén te combineren met
socio-ruimtelijke interacties, legt dit werk een fundamentele blauwdruk voor het bevorderen
van stedelijke mobiliteitsanalyse en beleidsvorming, met als doel efficiéntere, inclusievere en
responsievere transportplanning.
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