
 

 

 

  



  



Abstract 
Connectivity mapping with resting state functional magnetic resonance imaging (rs-fMRI) is rapidly 

developing and has shown great promise for clinical applications. Before successful implementation 

in clinical setting, it is key to evaluate the long-term reproducibility of the functional connectivity 

profiles. To this end, the reproducibility of rs-fMRI data is studied in this work. The main research 

question revolves around the improvement of the overall reproducibility by selectively omitting 

single components (either nodes or elements) from BOLD rs-fMRI connectivity matrices (CM’s). The 

scans of the subjects are parcellated using four different schemes, which are all analysed throughout 

this work. A reproducibility study is carried out on a dataset of 37 subjects that are scanned twice 

within 2 weeks on average. The inter-subject intraclass correlation coefficient (ICC) is used to 

quantify component reproducibility within the dataset. An algorithm is designed to quantify which 

component has the lowest inter-subject ICC, which is then eliminated from all CM’s in the dataset. 

After every single component elimination, the intra-subject ICC is computed for every subject to 

quantify the reproducibility, and a matching accuracy (MA) test is performed on the set to quantify 

the distinctive power of the CM’s. 

The order in which components are eliminated and its effect on the overall reproducibility is tested 

by applying this to a larger test set of longitudinal data. To this end, a dataset of 521 subjects is used 

to quantify the reproducibility of the CM’s after iteratively removing components in the order that is 

found in the reproducibility study. This larger dataset of 521 subjects is analysed, along with 4 

subsets, namely: sex based, age based, interscan time based and based on the grounds for exclusion. 

The latter is a subset where the quality of the rs-fMRI scans could not be assured due to pathologies 

or excessive motion during image acquisition. No significant difference is found within the sex-based 

subsets, and no relation between the reproducibility and the interscan time (within the range that is 

assessed in this work, namely 5 years) is found. Significantly lower intra-subject ICC’s are found for 

the subjects whose scan quality was subpar, due to excessive motion or pathology. For the age-

based subset analysis, it is reported that reproducibility decreases with age.  

The node removal algorithm clearly outperforms the element removal algorithm when looking at the 

intra-subject ICC. As the element removal algorithm can increase the intra-subject ICC by roughly 

0.1, whereas the node removal algorithm manages to increase the intra-subject ICC of roughly 0.3. 

The MA, which is used as to quantify the distinguishing power between various CM’s, is seen to 

increase from 82.4% to the maximum of 98.7% correctly matched subjects for the RSS100 

parcellation scheme within the reproducibility study. Aside from the element removal within the 

reproducibility study, the matching accuracy is not improved for any of the other analyses. The 

component elimination algorithm can increase the intra-subject ICC’s of the subjects of the 

longitudinal set. The MA is not found to increase with the component elimination algorithm.  
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Preface 
In the past 20 years, the field of neuroimaging has become a mayor area of research. This is mostly 

due to increased imaging capabilities, pushing the boundaries of what was thought possible. This is 

especially the case with respect to imaging function of the brain. For a lot of people strongly identify 

with the brain. (i.e. ‘I am my brain’) This public interest appears to be interested in the concept of 

‘consciousness’ which is widely described in main-stream ‘popular’ science outlets. As everybody 

seems to experience it daily, but what is exactly is remains extremely hard to explain.  

There is also societal necessity to deepen the knowledge of the brain to address the numerous 

pathologies associated with it. With the senior population steadily growing through the years, and 

the general life expectancy increasing as well, it is essential to develop better treatment for age-

related neurodegenerative pathologies. Understanding the brain is crucial to do so.  

In this thesis an effort will be made to broaden the knowledge of the functional connectome, as to 

help improve future neurodegenerative treatment options. This work, and the master thesis are 

performed at the faculty of Applied Physics at the Technical University Delft as part of the master 

education Biomedical Engineering. 

  



 

  

  



1. Introduction 
In an adult human male of 30 years, the brain accounts for roughly 2% of the body mass, while 

consuming 20% of the energy intake. In children the brain accounts for 50% of total energy intake 

[1]! Increased neuronal signalling due to cognitive task paradigms is not more than 5% of the total 

energy intake [2], which is surprisingly small. So how is this energy used by the brain?  

One of the first people to get an insight into this energy expenditure of the human brain is Hans 

Berger, who in 1924 used his newly invented electroencephalogram (EEG) device to make arguably 

the first ever recording of brain activity. Importantly, the readout of the electrical activity appeared 

to be ever ongoing, so not only related to the processing of external stimuli, but also responsible for 

making sure the body works appropriately. The understanding of these signals remained very crude 

as the only means of interpretation was attained from cognitive task paradigms. It was only in the 

last 20 years or so, that further investigation of the brain revealed more about the workings of the 

brain, mainly brought about by new imaging technologies. The CT scan, invented by sir Godfrey 

Hounsfield was revolutionary, as it was now possible to look inside the brain without the need for 

risky surgeries. Both magnetic resonance imaging (MRI) and positron emission tomography (PET) 

were introduced a few years later. With PET it became possible to image function, by introducing 

radioactively labelled sugar molecules into a subject and see where the biggest uptake of the sugar 

arose within the brain. While MRI was initially used to make remarkably detailed anatomical images 

of the brain, it also harboured the potential to image function of the brain. A promising tool to 

investigate this function more in-depth with, is by means of resting state functional MRI (rs-fMRI), 

which is a type of MRI scan that gives insight into the functional behaviour of the brain. The use of 

rs-fMRI has great potential for clinical applications pertaining to various neuropathology’s.   



2. Theory 

2.1. In vivo neuroimaging 
There are two main types of tissue that can be distinguished in the brain: Grey matter and white 

matter. The grey matter largely forms the outer shell of the brain, and the white matter is 

predominantly located on the inside of the brain. Both tissue types contain parts of brain cells or 

neurons, the difference being that the grey matter consists of the cell bodies, while the white matter 

consists of the axons covered by the myelin sheath. 

 
Figure 1 A diagram of a typical neuron with several parts and the direction of impulse labelled [3]. 

The distinction in colour is brought about by the myelin sheath covering the axons of the neurons, 

which is a fatty layer that speeds up the action potential. The signal exchange between various 

neurons brings about the computational power of the brain, which is mainly done in the grey 

matter. The white matter is mainly concerned with connecting various parts of the brain to itself and 

to the rest of the body. Using modern MRI techniques, it is not only possible to make extremely 

detailed anatomical images of the brain, but also allow for the investigation of brain function. 

Diffusion tensor imaging (DTI) shows the white matter structure, and complementary is fMRI which 

images the oxygen consumption of the grey matter, thus indirectly imaging the activity of the grey 

matter. 

DTI measures the diffusivity of water in the brain in three directions [4]. As the water molecules 

move around the axons by means of diffusion, their movement is restricted by the presence of the 

white matter tracts’ cell walls. Diffusion through the white matter tracts is obstructed by the tissue, 

while movement along the white matter tracts is not. It is this anisotropic diffusivity within white 

matter tissue that forms the basis of DT imaging [5]. By connecting the orientations of the largest 

diffusivity in voxels the structure of the white matter tracts is visualised. This type of imaging is 

called tractography, and it is used to study the brain’s structural architecture. 



With fMRI, the focus is placed on imaging the activity of the grey matter. The primary technique of 

fMRI used, is blood-oxygen-level dependant (BOLD) fMRI which reflects the cerebral blood flow 

(CBF) [6]. Because a neuron does not have an energy reserve in the form of oxygen or sugar, it is 

solely dependent on the CBF for all its metabolic needs required for appropriate functioning. Local 

neuronal activity evokes a haemodynamic response to supply the tissue with increased quantities of 

oxygen and nutrients. The haemodynamic response basically consists of local vasodilation, enlarging 

the surface area between brain tissue and vascular tissue. An increased amount of oxygenated 

haemoglobin (oxy-Hb) is delivered to the neuron, leading to a decrease of the ratio between 

deoxygenated haemoglobin (deoxy-Hb) and oxy-Hb in the respective voxel [7][8]. Deoxy-Hb is 

paramagnetic and oxy-Hb is diamagnetic [9][10][11]. The resulting relatively lowered concentration 

of deoxy-Hb produces magnetic inhomogeneities that increase the dephasing of the hydrogen atoms 

in a region which is approximately two times the radius of the capillary [12]. This disturbance leads 

to a reduced MR signal, which indirectly reflects brain activity. 

Interpretation of BOLD data has, for the most part, been similar to that of other neurological data. 

By administering a stimulus to a subject, or letting a subject undergo a cognitive task paradigm, a 

neurological response is evoked which is recorded by the measuring device. This approach has been 

very successful, so much so that a large portion of what is currently known about brain function 

comes from this type of research [13]. An example of such a study is shown in Figure 2. A subject 

was given a task to open and close the eyes at specific intervals in time. By subtracting the average 

signals of the ‘eyes-open’ state from the ‘eyes-closed’ state, it can clearly be seen that the biggest 

neurological response is evoked in the visual cortex. Averaging of the signal is performed because of 

relatively large fluctuations that are present in the BOLD signal. At the time, these so-called 

spontaneous fluctuations were considered to be noise. 

 

Figure 2 Shown in magenta is the unaveraged change in BOLD signal as taken from a region in the primary visual cortex. 
The subject was given the cognitive task paradigm to open and close the eyes at fixed intervals in time. In blue is the 
average change of the BOLD signal within the specific time interval. By subtracting the two states a clear activation can be 
seen in the primary visual cortex, as shown in the right-hand side of the image [13]. 

2.2.  Acquisition and analysis of BOLD data 
In the first paper studying the connectivity of the motor cortex in humans using BOLD fMRI, it was 

observed that there was a specific correlation between brain activity arising in the left and right 

motor cortex, even in the absence of a specific task [14]. One of the conclusions of this work was 

that these spontaneous fluctuations are not just random noise, but harbour function. This paper 

implicitly initiated a new way of interpreting neurological data: by means of analysing the correlation 

of BOLD signals. But before the BOLD signal can be analysed, pre-processing must be performed. 

The raw BOLD data acquired with fMRI consists of a 4-dimensional dataset, namely a time series for 

each voxel in the brain. Pre-processing entails the sequential application of spatio-temporal image 

processing steps applied to the data. These pre-processing steps address issues that arise from 

(among others): Head motion, magnetic field inhomogeneities and within-volume slice-timing 



differences [15]. Additionally, to facilitate comparison between fMRI data of successive scans of the 

same subject and scans of different subjects, the data is often mapped to an atlas. There is an 

abundance of algorithms and/or techniques employed to address these issues, all of which have 

certain benefits and drawbacks [15]. 

Next should be determined what type of the frequency spectrum from the BOLD fMRI data should 

be used. It is known that the power spectral density function of a BOLD fMRI data exhibits a 1/f 

relation in the frequency domain, meaning there is more activity in the lower frequencies [16][17]. 

The higher frequencies of the BOLD fMRI data are related to cardiac and respiratory signals [18], 

Therefore a cut-off frequency of <0.1 Hz or 0.08 Hz tends to be used. There appears to be no 

decisive literature about a lower limit to the frequency spectrum that contributes to the spatially 

specific correlations [13]. This is in-part because the acquisition of very low frequency fMRI data 

would take longer to acquire than a regular scan. 

A wide-spread method to process the BOLD data is a seed-based analysis. In this technique a region 

of interest is selected a priori, after which the correlation to all other voxels is determined. The 

technique was inspired by the work of Biswal [14] and enabled researchers to investigate the 

relation of the seed region to all other regions in the brain [19]. Apart from the ease of 

implementation, an apparent drawback of seed-based analysis is the restriction to only investigate 

the relation of a single region. It is possible to generalize the seed-based analysis to the entire brain, 

by extending the technique. This is made possible by applying a hierarchical clustering on the 

extracted time series, and thus producing a hierarchical tree or topological map that reflect the 

relations of multiple brain regions with one another [13]. In any case, both techniques still rely on 

the a priori definition of seed regions and is thus heavily influenced by the user.  

Another means of analysing the BOLD fMRI data is by means of independent component analysis 

(ICA). This technique requires no a priori definition of seed regions, but instead aims to decompose 

the data into independent components via maximization of mutual independence among these 

components [19]. Each component is accompanied with a spatial map, that can either reflect a noise 

component or a neurological system. It is up to the discretion of the researcher to interpret the 

components. Additionally, the outcome is influenced by the number of components, which is a 

parameter set by the researcher [13]. 

2.3. Grasping intrinsic activity  
With a means of analysing the raw data as outlined in the previous section, the next step is 

representing the data in a manner that is both comprehensive and informative. Graph theory 

delivers promising tools to study the functional architecture of the human brain, and how it effects 

emotion and cognition [20][21][22]. Graph theory governs the study of network clustering and 

hierarchies, the study of network hubs, (the nodes of modular groups that are interconnected to 

other modular groups) studying general network efficiency and deriving network summary statistical 

measures such as the degree or shortest path length [23]. The most general implementation of 

graph theory on fMRI data is by means of cross-correlation matrices, or connectivity matrices (CM’s). 

An example of a CM is given in Figure 3. 



 
Figure 3 A connectivity matrix displaying Pearson’s correlation coefficients between various nodes shown as a heat-map, 
along with the spatial coordinates on the right of the matrix and the name of the regions on the left. The matrix is 
rearranged in order to group regions with similar spatial correlations. On the far right-hand side are the names of 7 ICN’s 
along with an image of the brain regions that they respectively consist of [25]. 

Figure 3 shows a connectivity matrix with a heatmap overlay, along with the location of the nodes 

and the names of a few intrinsic connectivity networks (ICN’s). Every row and column represent a 

node, and every element represents the correlation between the respective nodes and is generally 

called an edge. As two identical timeseries have a correlation of 1, the diagonal of the CM only 

contains ones.  

The group of nodes that exhibit integrated and coherent behaviour with one another is referred to 

as an ICN [19]. The BOLD signals of these ICN’s fluctuate in a synchronous manner [24], while the 

relation between ICN’s can be positively or negatively correlated. What should also be noted is that 

these networks even persist in the absence of a specific task paradigm, continuing to behave in an 

integrated manner, both within the ICN as well as between various ICN’s [25]. Further studies 

revolving around the finer architecture of the human brain network have found that the brain 

exhibits a high degree of modularity [26][27], which can be altered by mental disease, (e.g. 

schizophrenia, Alzheimer’s disease, ADD/ADHD) [28][29][30][31] is affected by age and sex 

[32][33][34] and can undergo rapid plastic changes [35][36]. 

One way to try and understand this type of spontaneous, yet coherent, activity is by using an 

orchestra as a metaphor. Generally, orchestras contain a brass, strings, percussion and woodwind 

section. Even though these groups of instruments play a different tune, the sum of all their 

interactions form a piece of music. The brain works similarly, with a degree of modularity within the 

architecture giving rise to emergent function [37]. 

  



2.4. Reproducibility 
A key issue with fMRI data is reproducibility. Due to the highly dynamic nature of the brain, it is 

important to be able to quantify the reproducibility of the data. A common metric used to quantify 

the reproducibility of BOLD fMRI data is the intra-class correlation coefficient (ICC), which informs on 

the ability of fMRI to assess the differences in brain activation between subjects [38]. 

There are three types of ICC, each with a two-fold choice about the type of data that can be used 

[39]. Apart from the widespread adaptation of the ICC for fMRI reproducibility studies, there appears 

to be no consensus on what type of ICC should be used to quantify fMRI reproducibility [40]. Overall, 

the studies that employ the two-way random effect model report lower overall reproducibility 

[41][42] than studies employing a one-way random effect model [43][44][45]. The main reason for 

this apparent effect, is that the one-way random effects model assumes that the only source of 

variance arises from the systematic variances brought forth by the subjects, whereas the two-way 

model also assumes that variance arises both from systematic variance of the subjects and the 

session [46]. The ICC that will be used throughout this work is ICC3, which is the version that 

quantifies the consistency of data. Due to the dynamic nature of the brain no two fMRI scans of the 

same subject will be identical. Additionally, due to errors in data acquisition and data parcellation, 

no two nodes will ever encompass the exact same region of the brain. For these reasons, quantifying 

the consistency of the data is more meaningful than quantifying its absolute agreement0 [46]. ICC3 is 

shown in equation 1. Throughout the rest of this work, ICC3 will be referred to as the ICC. 

 

 𝐼𝐶𝐶3  =  
𝑀𝑆𝑝 − 𝑀𝑆𝑒

𝑀𝑆𝑝 + (𝑘 − 1)𝑀𝑆𝐸
 (1) 

 

The way the ICC works is by having two sets of data, referred to as targets. Here, 𝑀𝑆𝑝 denotes 

between target (participant) mean sum of squares, 𝑀𝑆𝑒 denotes the error mean sum of squares and 

𝑘 denotes the amount of numbers in a target. See Appendix A for a detailed derivation of the ICC 

and its components as shown in equation 1. The way the output of the ICC is interpreted is shown in 

Table 1. 

 Table 1 Interpretation of ICC values [47]. 

ICC value Interpretation of the reproducibility  

1 > ICC ≥ 0.80 Outstanding 

0.80 > ICC ≥ 0.60 Substantial 

0.60 > ICC ≥ 0.40 Moderate 

0.40 > ICC ≥ 0 Poor 

 

 

 

  



2.5. The resting state 
Throughout this work fMRI data is acquired from subjects without a task paradigm, also known as 

the resting state. Even though requiring subjects to perform a task during image acquisition has 

been the obvious approach for the longest time.  Biswal and colleagues were the first to observe 

that during rest, the left and right hemispheric regions of the primary motor cortex exhibit a high 

degree of high correlation of the BOLD fluctuations [14]. Aside from establishing a new way of 

interpreting BOLD fMRI data by means of correlating (groups of) voxels, the research also laid the 

foundation of analysing the resting state. As this result suggested that even during rest, the brain 

continues process information and exhibits functional connectivity [18][48]. Further support in 

favour of a neuronal basis of resting state fMRI comes from observing energy consumption in the 

brain. As mentioned in the introduction: the brain requires 20% of all energy uptake to function in 

the resting state, and an additional 5% is necessary to perform certain cognitive task paradigms. 

[1][2] If only the effects of the cognitive task paradigm are of interest, you effectively consider 80% 

of your fMRI signal to be noise. As the resting state accounts for the biggest energy consumption, 

analysing the function is of the resting state is essential for understanding neuroanatomy.  

  One ICN specific to the resting state is the default mode network (DMN). The network 

originally referred to as a group of brain regions that include the hippocampus, posterior cingulate, 

medial prefrontal and inferior parietal cortex [49]. The DMN is specific to the resting state because 

the network experiences reduced activity during cognitive task activation [50], while experiencing 

enhanced metabolism during internal cognitive processes [51]. The function of the DMN has been 

related to mind wandering [52], episodic memory [53], personality [54] and conceiving the 

perspective of others (i.e. mentalizing) [55]. In addition, changes in the DMN have been observed in 

ageing subjects [56] and in neurodegenerative diseases such as Alzheimer’s disease [57]. 

Aside from determining whether CM’s are reproducible on the group level, it is also important to 

determine if inferences of the individual subject can be formed based on their CM. In a study by Finn 

[58] this was the central question. In the study, a group of 126 subjects were scanned twice with a 

two-day interval. The Pearson’s correlation coefficient was computed of each CM of one day to all 

other CM’s of the other day. The CM that gave the highest correlation was labelled as a ‘match’. 

Among the results of the study, the highest matching accuracies (MA’s) were found for the matching 

tests of the resting state scans (as there were also a handful of task paradigms) with an accuracy of 

93.7%. The conclusion of the study was that it is plausible to draw inferences about single subjects 

based on their functional connectivity profile. An additional consideration postulated in the work 

was that the MA test was performed on scans of subjects with only two days apart, but it remained 

unclear is to what degree these individual connectivity profiles are consistent over bigger periods of 

time, as it is known that the functional connectivity decreases with age [59].  

 

 

 

 

 

 



2.6. Research motivation 
Numerous studies have been performed on how the functional connectivity profile changes with 

varying pathologies or conditions, an overview of which is shown in Table 2. Mapping functional 

connectivity through resting state fMRI is rapidly developing, and the technique has already shown 

potential for clinical applications. Before successful implementation of rs-fMRI in the clinical 

practice, it is essential to assess the long-term reproducibility of the functional connectivity profiles. 

Therefore, the reproducibility of different components of the CM’s need to be quantified, as well as 

the overall reproducibility between successive scans. The robustness of the reproducibility study is 

assessed by applying the results of a reproducibility study on a test set. Aside from looking at the 

reproducibility of the data, the distinguishing power of the CM’s is also of interest. To this end a MA 

test is performed along with the reproducibility study. The resulting research question is two-fold, 

namely: 

Can the reproducibility of functional connectivity profile be improved by selectively eliminating 

spatially dependant components from the connectivity matrices? 

Can the order in which the selective component elimination is performed lead to improved 

generalized reproducibility for a longitudinal test set? 

Table 2 Group differences in rs-fMRI patterns observed in various brain diseases or conditions. Salience network: includes 
regions in the dorsal anterior cingulate and bilateral fronto/insular cortices; dACC = dorsal anterior cingulated cortex; PIB = 
PIB = Pittsburg compound B, a marker of amyloid plaque accumulation in the brain. PTSD = post-traumatic stress disorder; 
ALS = amyotrophic lateral sclerosis; ADHD = attention deficit hyperactivity disorder. 

Pathology/condition Findings 
Alzheimer’s Decreased correlations within the DMN including hippocampi, decreased 

anticorrelations with the DMN, and reduced local connectivity as reflected in 
clustering coefficients 

PIB positive Decreased correlations within the DMN 

Mild cognitive impairment Decreased correlations within the DMN and decreased anticorrelations with the 
DMN. 

Fronto-temporal dementia Decreased correlations within the salience network 

Healthy aging Decreased correlations within the DMN 

Multiple sclerosis Decreased correlations within the somatomotor network 

ALS Decreased connectivity within the DMN and within the somatomotor network 
(esp. premotor cortex) 

Depression Variable: Decreased corticolimbic connectivity (esp. with dorsal anterior 
cingulate), increased connectivity within the DMN (esp. subgenual prefrontal 
cortex), decreased connectivity between DMN and caudate 

Bipolar Decreased corticolimbic connectivity 

PTSD Decreased connectivity within the DMN 

Schizophrenia Variable: Decreased or increased correlations within the DMN. Decreased, 
increased or unchanged correlations and anticorrelations between the DMN and 
other systems. 

Schizophrenia 1° relatives Increased connectivity within the DMN 

ADHD Variable: reduced connectivity within the DMN, reduced anticorrelations with 
the DMN, increased connectivity in the salience network 

Autism Decreased connectivity within the DMN (although hippocampus is variable, and 
connectivity may be increased in younger patients) 

Tourette syndrome Delayed maturation of task-control and cingulo-opercular networks 

Epilepsy Variable: decreased connectivity in multiple networks including the medial 
temporal lobe, decreased connectivity within the DMN (esp. in patients with 
generalized seizures) 

Blindness Decreased connectivity within the visual cortices and between visual cortices and 
other sensory and multimodal regions 

Chronic pain Variable: Increased/decreased connectivity within the salience network, 
decreased connectivity in attention networks 

Neglect Decreased connectivity within the dorsal and ventral attention networks 

Coma/vegetative state Progressively decreased DMN connectivity with progressive states of impaired 
consciousness 

Generalized anxiety disorder increased connectivity between amygdala and frontoparietal control network 
and decreased connectivity between amygdala and salience network 



 

  



3. Methods & Materials 
CM’s will be used as the representation of the functional connectivity profiles and are used in all 

quantitative analyses. Firstly, the data acquisition will be discussed and what programs are used for 

data analyses. Next, the different data sets that are used are briefly discussed as well as the metrics. 

A reproducibility study is carried out to answer the first research question, and next the longitudinal 

set is analysed, using parts of the component order as found in the reproducibility study to answer 

the second research question.  

3.1. Data acquisition and means of analysis 
All computation required for this work has been carried out on MATLAB 2015b and 2017b. The CM’s 

that are required have been obtained through the Erasmus Medical Centre in Rotterdam, which is 

leading the Rotterdam Scan Study (RSS). The RSS is initiated as a part of the Rotterdam study with 

the goal to gain a greater insight into neurological diseases by obtaining data in a prospective 

population study [61]. Because of the sensitive nature of this data, it is required to do all 

computation with the CM’s in the Erasmus MC. The data was accessed on the cluster of the Erasmus 

MC through PuTTY and WinSCP.  

A 1.5T MRI unit (General Electric Healthcare, Milwaukee, USA, software version 11x) is used as part 

of the ongoing Rotterdam Scan Study. The unit is fitted with an 8-channel head coil. BOLD rs-fMRI 

data is required for this work. An overview of the MRI protocol used is given in Table 3. All studies 

make use of the echo planar imaging (EPI) scanning protocol. EPI is a type of gradient echo 

sequence, where multiple spin echoes are acquired by using rephasing gradients. Here, the 

frequency encoding gradient is rapidly reversed, causing multiple gradient echo’s drastically 

reducing imaging time compared to traditional MR imaging sequences. This technique allows for 

rapid imaging which is required to image the BOLD fluctuations. 

Table 3 rs-fMRI acquisition protocol used in the Rotterdam Scan Study.    

Readout 
module  

Time 
(min:sec) 

TR/TE 
(ms) 

BW 
(kHz) 

Flip Angle 
(degrees) 

Number 
of slices 

Slice thickness 
(mm) 

FOV 
(cm2) 

Matrix 

EPI 7:44 2900/66 7.81 90 31 3.3 21 64 x 64 

 

Pre-processing is performed at the Erasmus MC by use of the FMRIB software library (FSL). FSL is a 

software library used for the image analysis and statistical analysis of functional, structural and 

diffusion MRI data. Registration of the rs-fMRI volumes to the subjects structural and standard space 

is carried out by FNIRT. ICA is used to decompose the fMRI data into various ICN’s. To distinguish 

noise components from actual components, Xnoisefier (FIX) is used. MCFLIRT and temporal filtering 

is used to account for low frequency drift and motion components.  

Each subject that had taken part in the Rotterdam Scan Study was scanned twice with varying 

interscan times. Four different parcellation schemes are applied to the scans: The RSS100 scheme, 

the UKBiobank scheme, the HCP820 d100 scheme and the HCP820 d200 scheme. The RSS scheme 

was developed in-house at the Erasmus MC, as part of the Rotterdam scan study. The two HCP820 

schemes are provided by the Human Connectome Project, an international initiative which aims to 

gain greater insight into the workings of the human brain. The UKBiobank scheme has been obtained 

from the UK Biobank, which is a large biobank based in the UK that is involved in various 

epidemiologic studies.  



3.2. Data sets and metrics 
The pre-processing and parcellation procedures ultimately result in a CM for every single scan. The 

CM’s form the data on which all further analyses are performed on. Datasets from 2 cohorts of the 

RSS are used: The Reproducibility (Repro) set and the longitudinal set. Both sets consist of 2 scans 

for every subject. The Repro set is a relatively small set, consisting of 37 subjects with an average 

interscan time of 2 weeks. This set is ideal for reproducibility studies due to the small interscan 

times. The longitudinal set is a larger set of 521 subjects, whose subjects have more varied interscan 

times. These interscan times vary from 3 months to slightly over 5 years. 

All the elements in the CM’s contain Pearson’s correlation coefficients between the two respective 

nodes. The correlation of two identical time signal is 1, so the diagonal of the CM will therefore 

always consist solely of ones. As the correlation between two nodes is the same in both directions, it 

follows that the CM’s are symmetrical. This entails that the number of unique elements is described 

by Equation (2).  

 𝐸𝑢 =
𝑁(𝑁 − 1)

2
 (2) 

 

With 𝐸𝑢 the number of unique elements and 𝑁 the number of nodes of the respective parcellation 

scheme. When performing computations involving elements, only the unique elements are used. 

This reduces computation times significantly. The number of elements, nodes and unique elements 

for all parcellation scheme are given in Table 4. 

Table 4 Overview of the dimensions of the used parcellation schemes. The number of elements is equal to the square of the 
number of nodes. The number of unique elements is equal to half the number of nodes multiplied to the number of nodes 
minus 1. 

Parcellation scheme Number of nodes Number of elements Number of unique elements 

RSS100 50 2500 1225 

UKBiobank 53 2809 1378 

HCP820 d100 58 3364 1653 

HCP820 d200 97 9409 4656 

 

 

 

 

 

 

 

 

 

 

 

 



The components of the CM as defined here, can either entail whole nodes or individual elements. 

Quantifying the reproducibility of these two requires a small reformatting procedure on the dataset. 

The ICC is computed for a set of data, generally called a target. The way the targets are formatted 

thus determines what ICC is computed. The quantification of the reproducibility of a single element 

of a CM is referred to as an inter-subject element ICC. The reformatting procedure required to 

compute the inter-subject element ICC is illustrated in Figure 4. 

 
Figure 4 An illustration of the inter-subject element ICC. All elements 5,1 of the first scanning round are concatenated in 
target X, and the same elements of the second scanning round are concatenated in target Y. The ICC of targets X and Y 
quantifies the reproducibility of a single element as seen in the dataset seen in the left-hand side. 

The left-hand side of Figure 4 shows a dataset of CM’s with 2 scans per subject. As only the 

reproducibility of the unique elements are required, the top half of all CM’s are omitted from the 

inter-subject element ICC calculation. The diagonal of the CM’s contains only ones, therefore these 

are also not considered to be unique elements. Figure 4 only shows the concatenation of element 

5,1, but when the inter-subject element ICC is computed for all elements in the set, the 

reproducibility of all the single elements is found.  

  



To quantify the reproducibility of all nodes in a set of CM’s, the inter-subject node ICC is performed. 

Again, targets X and Y need to be defined in a slightly different as seen in Figure 4. This time target X 

consists of a concatenation of a single node from the CM’s of the first scan round, and target Y 

consists of a concatenation of a single node from all CM’s of the second scan round. Calculating the 

ICC on targets X and Y as shown on the right-hand side of Figure 5, results in a quantification of the 

reproducibility of that specific node. 

 

Figure 5 An illustration of the inter-subject node ICC. On the left-hand side of the picture, node 2 of all subjects is selected. 
All the nodes from the first scan round are concatenated in target X, and all nodes from the second scan round in target Y. 
Calculating the ICC on targets X and Y results in a quantification of the reproducibility of node 2 as seen in the dataset on 
the left-hand side.  

As will be explained in Section 3.3, it will be necessary to remove nodes from the set of CM’s. When 

a node is removed, this results in the deletion of a row and column. When a node is removed in this 

way, all other nodes will also be affected because they will lose the specific connection to that node. 

What follows, is that the inter-subject node ICC will also be different after that node is removed. 

Therefore, the inter-subject node ICC will have to be recalculated for every removed node in order 

to determine the least reproducible node in the set. 

 

 

 

 

 



The main metrics that is used throughout this work to quantify the overall reproducibility is the 

intra-subject ICC. Calculating the overall reproducibility by means of the intra-subject ICC requires 

minimal reformatting of the data. With the intra-subject ICC, targets X and Y consist of successive 

scans of the same subject.  

 
Figure 6 An illustration of the intra-subject ICC. 2 successive scans of the same subject are taken, one scan is labelled target 
X and the other target Y. The ICC is computed on targets X and Y, thus producing the reproducibility of the FC profile of a 
single subject.  

The intra-subject ICC is thus determined for every subject in the respective dataset. The intra-subject 

ICC’s as shown in the result section are the means of the intra-subject ICC’s. The error bars give the 

associated standard error of the mean, as shown in Equation (3). 

 

 𝜎𝐼𝐶𝐶 =
𝑠𝐼𝐶𝐶

√𝑛
=  √

1

𝑛(𝑛 − 1)
∑(𝐼𝐶𝐶𝑖 − 𝐼𝐶𝐶̅̅ ̅̅ ̅)2

𝑛

𝑖=1

 

 

(3) 

 

Where 𝑛 represents the number of subjects in the respective set, 𝐼𝐶𝐶𝑖 the intra-subject ICC of the 

subjects and 𝐼𝐶𝐶̅̅ ̅̅ ̅ the average intra-subject ICC. 

Another metric used is the MA. When a MA test is performed the subject ID’s are removed from one 

of the two scan sessions (either from all subjects from scan 1 or from scan 2). One of the unknown 

subjects’ CM is taken, and the Pearson’s correlation coefficient between the unknown CM and the 

CM’s of the other scan session are calculated. Pearson’s correlation coefficient is shown in Equation 

(4). 

 



 
𝑟 =  

∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝐿
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝐿
𝑖=1 √∑ (𝑥𝑖 − 𝑥̅)2𝐿

𝑖=1

 
(4) 

 

Where 𝑥𝑖 are all elements of the CM of the first scan round, and 𝑦𝑖  all elements of the CM of the 

second scan round. 𝑥̅ and 𝑦̅ are the averages of all elements in their respective CM. The summation 

goes to L, the number of elements in the CM’s. After quantifying the correlation between all CM’s, 

the unknown subject is matched to the subject ID whose CM gave the highest correlation coefficient.  

The result of the MA test is a percentage of subjects whose scans were rightfully matched. The test 

is performed twice, where during the second test the subject ID’s from the other scan session is 

removed. The average matching accuracy is then the average of the two rightfully matched subjects. 

In this way, only a single MA percentage is found for an entire set.  

3.3. Reproducibility study 
The first research question requires selective data elimination from the CM’s to see how the overall 

(intra-subject) reproducibility is affected. This is where the difference between the intra-subject ICC 

and the inter-subject node and element ICC becomes apparent: The two versions of the inter-subject 

ICC allows for the quantification of the components of the CM’s of the set, whereas the overall 

reproducibility is quantified by the intra-subject ICC. A distinction is made between a node removal 

approach and an element removal approach.  

In the node removal algorithm, the inter-subject node ICC is computed and the node with the lowest 

inter-subject ICC score is eliminated from the CM’s of the dataset. Elimination of the node entails 

eliminating the specific row and column of that node from all CM’s in the dataset.  

After the node is successfully removed from the dataset, both the intra-subject ICCs are calculated, 

and a MA test is performed on the set. As the elimination of the node also removed an element of 

that node in all other nodes, the inter-subject node ICC needs to be computed after every node 

elimination. This process is repeated until the CM’s only consist of a single node, after which the 

intra-subject ICC can’t be computed anymore, because there is no within target variation to be 

quantified on a single value. The order of the nodes that have been removed is saved in vector 𝑄𝑛.  

The element removal algorithm works similarly to the node removal algorithm. The clear distinction 

being, that single elements are removed as opposed to whole nodes. Quantification of the 

reproducibility of the elements is performed by calculating the inter-subject element ICC for all 

elements of the CM’s in the set. As the removal of a single element from the CM’s in the set does 

not affect the inter-subject element ICC of the other remaining elements, the inter-subject element 

ICC only has to be computed once. The order of the elements to be removed in determined from the 

inter-subject element ICC’s, and after the removal of an element the intra-subject ICC is computed, 

and the MA test is performed. This process continues until there is only a single element left in the 

CM’s, after which the intra-subject ICC becomes undefined, just like in the node removal algorithm. 

The order in which the elements of the CM’s is removed is saved to vector 𝑄𝑒. An overview of the 

component removal reproducibility study algorithm is shown in Figure 7. 

The number of iteration that need to be performed before the CM’s are reduced till the point that 

the intra-subject ICC can no longer be performed, is determined by the number of unique elements 

or nodes in that parcellation scheme (as shown in Table 2). To facilitate the comparison between the 

different parcellation schemes, the number of elements or nodes removed is represented in the 

result section as a fraction of the total number of elements or nodes in that parcellation scheme. 



The outcome of the element or node removal algorithm is thus a function of the fraction of 

elements or nodes removed, which is always a value between 0 and 1.  

This reproducibility study is carried out on the Repro set. The Repro set is the most obvious choice, 

as the subjects are scanned with the shortest interscan time. Therefore, this set should give the most 

apparent overview of the reproducibility of the nodes and elements that form the CM’s.  

 
Figure 7 Flowcharts of the algorithm used in the component removal reproducibility study 

 



3.4. Scaling and error estimation of the matching accuracy 
There are two issues with the MA that need to be addressed before starting the longitudinal set 

analyses.  

  The first issue has to do with error quantification: as the MA is calculated for the entire set, 

only a single value is found for every iteration of the node- or element removal algorithm. The node- 

or element removal order will not change after completing the reproducibility study, therefore 

repetitions of the script will give identical MA outcomes. Therefore, it is required to make an 

estimate of the errors found in with the MA test.  

  The second issue that becomes apparent has to do with comparing MA’s of subsets with 

varied sizes. Because the MA is based on the correlation between different CM’s, a larger subset will 

have more potential matches whose difference in correlation coefficients become smaller with 

increasing subset size. The MA’s of a smaller subset will therefore give higher outcomes overall. 

Therefore, scaling matrices are employed to compare MA’s of varied subset sizes. A resampling 

technique is employed to address both issues. 

A random training sample (with overlap) of the scans of 37 subjects from the longitudinal set are 

taken, on which the inter-subject element ICC is performed. The element order 𝑄𝑒 is derived from 

the inter-subject element ICC and is applied to a random test sample (with overlap) from the 

longitudinal set. The number of subjects in the test set is varies, consisting of 16, 22, 31, 37, 59, 78, 

118 and 470 subjects. The number of subjects in the test set is based on subset sizes used in the 

longitudinal set analyses. 11 fixed fractions of the elements were removed from the test set, at 

every iteration the MA test was performed on the set. These 11 removed fractions of elements were 

0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1 of the total amount of unique elements in the 

parcellation scheme. This resampling procedure is repeated 250 times. By resampling both the 

training- and test sets, the element order 𝑄𝑒  will vary with every iteration. The means and the 

standard deviation is computed for the resulting MA’s.  

  To find a scaling factor to compare the MA’s of different subset sizes, all mean MA’s as 

found in the resampling technique are divided by one another for every fraction of elements 

removed. The resulting 11 scaling factor are averaged again, as to form a single scaling factor that 

can be used to scale an entire MA curve. The scaling factors are computed for every subset size 

combination and are displayed in a scaling matrix. Every element in the scaling matrix is used as a 

scaling factor to go from the subset size as shown in the rows, to the subset size as represented in 

the column. 

  The standard deviation is used as an estimate for the variance of the population of the 

various subset sizes. As every other analysis takes a single sample from the population, the standard 

deviation as found in the method as described here serves as an estimation of the standard error of 

the mean, see Equation (3). These estimated errors are used as indications of the variation 

throughout the longitudinal set analyses. 

 

 

 

 

 



3.5. longitudinal set analyses 
The second research question was concerned whether it is possible to improve the overall 

reproducibility by removing the components whose inter-subject ICC is anticipated to be minimal 

from the reproducibility study. The anticipated minimally reproducible nodes or elements are 

ordered in the vectors 𝑄𝑛 and 𝑄𝑒, respectively. The order of 𝑄 is applied to the longitudinal dataset, 

computing the intra-subject ICC of the subjects in the set and the MA for the entire set at every 

iteration.  

Several subgroups were formed from the longitudinal set on which the order of 𝑄 is applied to see 

whether the reproducibility of different subgroups is affected differently. To this end, four different 

subgroup categories were analysed, based on: grounds for exclusion, sex, interscan time and age.  

After fMRI image acquisition, the data is pre-processed as described earlier. The quality of the fMRI 

scans is also determined at this stage. During the quality control stage, certain factors may come to 

light that impair image quality. Head motion during image acquisition is a commonly occurring 

problem. A threshold of maximum head motion is defined, and when this threshold is exceeded the 

subject’s scans given the ‘Motion’ label. When a type of pathology is discovered during quality 

control stage, such as mild cognitive impairment or early symptoms of Alzheimer’s disease, the 

subject’s scans are given the ‘Pathology’ label. These pathologies could hamper the quality of the 

analyses performed on the CM’s of the set, in the same way that the subjects with the ‘Motion’ 

labels do. When the scan is of low quality without a clear cause, the scans are given the label 

‘Unclear’. If none of these three grounds for exclusion are found on a scan, they are given the 

‘Included’ label, as these scans can are of sufficient quality and taken from healthy subjects. The 

collection of these labels is referred to as the exclusion parameters. The total number of subjects 

with each of the exclusion parameters that are contained in the longitudinal set is given in Table 5. 

Table 5 Overview of exclusion parameters as found in the subjects of the longitudinal set. 

Parameter Number of subjects 

Included 470 

Pathology 16 

Motion 22 

Unclear 13 

Total 521 

 

Both the Pathology subgroup and the Motion subgroup are compared to the included group, to 

quantify the extent of the inclusion parameters on the reproducibility of the CM’s. In all following 

analyses of the longitudinal set, only the scans of the subjects that have the Included label are used.  

The second subset to be analysed is based on the sex of the subjects: The scans with the Included 

label are split in an all-male subgroup and an all-female subgroup. The all-male subgroup consists of 

221 subjects, and the all-female subgroup consists of 249 subjects.  

The third subset of the longitudinal set to be analysed is based on the interscan time of the scans. 

The included subjects are divided into four subgroups of nearly equal size: two of 117 subjects and 2 

of 118 subjects. By constructing the IST subgroups in such a way that they almost have the same 

number of subject, the comparison of the MA’s of the subgroups with one another becomes more 

reliable. A consequence of constructing the subgroups in this way, is that the IST range of the 

subsets are not equal with one another.  



The fourth and final subset of the longitudinal set is based on the age of the subjects during the first 

scan. Just like with the IST based subgroup, 4 subgroups are constructed: two of 117 subjects and 2 

of 118 subgroups.  

All subsets were analysed for the four parcellation schemes, for both the node removal approach 

and the element removal approach, the order of which determined by the vector 𝑄 derived from the 

reproducibility study. An overview of the longitudinal set analysis is shown in Figure 8. 

 
Figure 8 Longitudinal set component removal analysis flowchart.  



4. Results 
The average intra-subject ICC and MA of the whole CM’s are computed and serve as a base of 

comparison, see Table 6.  

Table 6 Average Intra-subject ICC and MA test of the unaltered repro set of four different parcellation schemes 

Parcellation scheme Average ICC ± σd MA12 (%) MA 21 (%) MAavg (%) 

RSS100 0.59 ± 0.12 81.1 83.8 82.4 

UKBiobank  0.59 ± 0.11 89.2 75.7 82.4 

HCP820 d100 0.53 ± 0.11 73.0 73.0 73.0 

HCP820 d200 0.49 ± 0.10 78.4 86.5 82.4 

 

The average MA is the mean of the MA of scan 1 to 2, and scan 2 to 1. When talking about the MA, 

the average MA is meant. Taking Table 6 as a starting point, the following section will show how the 

intra-subject ICC and MA will be affected when different components of the CM will be removed 

from the data.  

 

4.1. Reproducibility study – Element removal 
For the reproducibility study, the algorithm as seen in figure 7 is used. Starting off the with element 

removal approach, the inter-subject element ICC’s are computed first. A histogram of the inter-

subject element ICC is shown of parcellation scheme RSS100 in Figure 9. 

 
Figure 9 Histogram of the inter-subject element ICC for parcellation scheme RSS100 

Note that the average inter-subject element ICC of 0.25 is smaller than the average intra-subject ICC 

of RSS100 as found in table 2. Additionally, multiple negative inter-subject element ICC’s are found. 

The inter-subject elements ICC’s are sorted in an ascending order, and the indices of the elements 

are saved in vector 𝑄𝑒 . Elements are removed in the order dictated by 𝑄𝑒, at each iteration the 

average intra-subject ICC is calculated and the MA of the set. Figure 10 shows these results for all 4 

parcellation schemes.  



  
Figure 10 (left) Intra-subject ICC of the repro set for the four different parcellation schemes along with the standard error of 
the mean. (right) MA of the repro set for the four different parcellation schemes as a function of the fraction of removed 
elements. 

Figure 10 shows that both the MA and the intra-subject ICC increase for the range of 0 to 0.8 

removed fraction of elements. For all parcellation schemes, the ICC seems to increase at least 0.1 

until a removed fraction of 0.9 of the elements. Between a removed fraction of elements of 0.9 to 1 

it is seen that the ICC graph becomes rather erratic, before dropping to zero. As more elements are 

removed, the influence of single elements on the reproducibility of the remaining data increases, 

which explains the erratic behaviour.  

With the MA curves, the overall matching accuracy of all parcellation schemes increases compared 

to the baseline as seen in Table 6. The highest MA’s found for every parcellation scheme are: 98.7 % 

for the RSS100 and UKBiobank parcellation, 97.3% for HCP820 d200 and 96.0% for HCP820 d100. 

Just like with the ICC graphs, it is seen that the MA goes to zero when the removed fraction of nodes 

goes to 1. When the CM’s are completely empty it becomes impossible to match corresponding 

scans to one another.  

 

4.2. Reproducibility study – Node removal 
The reproducibility study built upon node removal is comparable to the element removal procedure. 

The baseline values as found in table 2 are also the same. The clear difference being that nodes are 

removed iteratively, as opposed to single elements. A difference is that the inter-subject ICCs have 

to be computed at every step when a node is removed from the CM’s, as the elements that are part 

of the removed node are still part of the remaining nodes. This can be seen when making a 

histogram of the inter-subject node ICC at different numbers of removed nodes: not only are the 

lowest nodes removed from the histogram, it can also be seen that the number of counts of nodes 

with a high inter-subject node ICC, is increased, as shown in Figure 11. 

 

 

 



  
Figure 11 Histogram of inter-subject ICCs of the RSS100 scheme in the Repro set. Left shows the histogram when zero nodes 
are removed, and the right shows the histogram when 30 nodes are removed. The number of nodes in the bin of 0.65 has 
increased from 6 to 14 counts.  

The order of the node indices that are removed from the Repro set is saved in vector 𝑄𝑛, for the 

analysis of the longitudinal dataset. When removing the nodes from the CM’s whose inter-subject 

node ICC values were the lowest of the remaining nodes, an intra-subject ICC and a MA test was 

performed at each iteration. The results are shown in Figure 12.  

  
Figure 12 (left) Intra-subject ICC of the repro set for the four different parcellation schemes along with the standard error of 
the mean. (right) MA of the repro set for the four different parcellation schemes as a function of the fraction of removed 
nodes.  

The left graph of Figure 12 shows the intra-subject ICC curves. All these curves follow an upward 

trend similar to its element removal counterpart as shown in Figure 10. The clear difference being 

that these curves are steeper than those of figure 10 for all parcellation schemes, thus a similar 

fraction of the total data removed yields higher reproducibility when whole nodes are removed. 

The MA curves as depicted in the right of Figure 12 vary from that of its element removal 

counterpart: Whereas there is a clear upward trend to be seen in Figure 10, this is absent in Figure 

12. One might argue that for the first fraction 0.25 nodes removed, the MA is somewhat stable. But 

a clear improvement as seen in the element removal MA curves is simply not present. It appears 

counter-intuitive that the intra-subject ICC increases faster while the MA goes down. 

  



4.3. Matching accuracy scaling and error estimation 
The error of the MA test is estimated by resampling the longitudinal set. To estimate the error of the 

MA for various subset sizes, a random training set of 37 subjects was sampled from the longitudinal 

set on which the inter-subject element ICC determined the element order to be removed. This order 

of elements to be removed is applied to a test set of sizes 16, 22, 31, 37, 59, 78, 118 and 470 

subjects sampled from the longitudinal set, which was repeated for 250 times. Table 7 shows the 

standard deviation of RSS100 that serve as an estimate for the error for the MA’s for the various 

subset sizes and for a certain fraction of elements removed. The error estimates of the other three 

parcellation schemes are shown in Appendix B.  

Table 7 standard deviation found on the resampled test set of RSS100. The rows represent different set sizes, whereas the 
columns represent different fraction of elements removed 

RSS100 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

16 8.76 8.75 8.73 8.73 8.71 8.86 8.72 8.82 8.88 9.74 

22 7.55 7.52 7.32 7.53 7.51 7.61 7.69 7.68 7.91 8.83 

31 6.32 6.30 6.17 6.23 6.32 6.45 6.32 6.43 6.67 7.02 

37 6.27 6.26 6.26 6.31 6.36 6.35 6.48 6.43 6.64 6.65 

59 4.96 4.90 4.92 4.91 4.96 5.07 5.07 4.92 5.08 5.36 

78 4.33 4.34 4.15 4.18 4.23 4.30 4.36 4.38 4.36 4.58 

118 3.56 3.63 3.64 3.70 3.69 3.66 3.69 3.72 3.8 3.99 

470 1.54 1.53 1.50 1.44 1.50 1.39 1.48 1.46 1.56 1.48 

 

For the construction of the scaling matrices, the means of the resampled MA’s were used. The MA 

curves for various set sizes are divided by one another for every fraction of elements removed, after 

which an average is taken of all 10 fractions of elements removed. This result is used as a scaling 

factor used to compare MA’s of different set sizes. Table 8 shows the scaling matrix used to compare 

the MA’s of different subset sizes for various sub set sizes of the RSS100 parcellation scheme. The 

scaling matrices of the other three parcellation schemes are shown in Appendix C. 

Table 8 MA scaling matrix of parcellation scheme RSS100 from the longitudinal set 

Set size 16 22 31 37 59 78 118 470 

16 1 0.96 0.82 0.88 0.83 0.79 0.72 0.45 

22 1.05   1 0.96 0.92 0.87 0.82 0.75 0.47 

31 1.09 1.04 1 0.96 0.90 0.86 0.78 0.49 

37 1.13 1.08 1.04 1 0.94 0.89 0.81 0.51 

59 1.21 1.16 1.11 1.07 1 0.95 0.87 0.54 

78 1.27 1.21 1.16 1.12 1.05 1 0.91 0.57 

118 1.40 1.34 1.28 1.23 1.16 1.10 1 0.63 

470 2.23 2.13 2.04 1.97 1.84 1.75 1.59 1 

 

To give a small example for the usage of the scaling matrix: to compare the MA’s of two subsets, one 

with 16 subjects, and the other with 470 subjects. Multiply the 470-subject curve with 2.23 to 

compare it to the 16-subject MA curve.  

 

 



4.4. Longitudinal set subset analysis 
For the analysis of the various subsets of the longitudinal set, the algorithm as described in Figure 8 

was employed. Several subsets of the longitudinal set are explored in this section, for both the 

element removal and node removal processes. First, the subsets based on the grounds of exclusion 

are investigated, where both the Pathology subset and the Motion subset will be compared to the 

Included subset. Figure 13 shows the intra-subject ICC and the MA’s of Included subset and the 

Motion subset. A corrected motion subset curve is also shown for the MA curves to compare it to 

the Included subset. Additional results of the Motion subset analysis of the other three parcellation 

schemes are found in appendix D. 

  

  
Figure 13 Motion subset analysis of element removal on RSS100 parcellation scheme. The errors as shown in the intra-
subject ICC curves are the standard errors of the mean. (Top right) Intra-subject ICC of element removal (Top right) Intra-
subject ICC as a function of node removal. (Bottom left) MA as a function of element removal. (Bottom right) MA as a 
function of node removal.  

In the top two graphs of Figure 13, it is seen that higher intra-subject ICCs are found for the included 

group. As the subjects move during image acquisition, the reproducibility between the two 

successive scans of that subject is expected to be less compared to the subject that does not exceed 

the motion threshold. It can also be seen that for the last fraction of elements or nodes remaining, 

the difference between the two subgroups becomes less. As more elements and nodes are removed 

from the dataset, the more reproducible elements and nodes remain part of the CM’s.  

In the bottom two graphs the MA curves are shown of the motion subgroup, the included group and 

the adjusted motion group. The adjusted motion group is constructed by using the corresponding 

scaling factor as found in Table 8.  



Figure 14 shows the included subgroup along with the Pathology subgroup for the RSS100 

parcellation scheme. In the graphs with the MA curves, a corrected pathology curve is also shown, 

which allows for comparison of the Pathology subset with the Included subset. Additional results of 

the Pathology subset analysis of the other three parcellation schemes are found in appendix E. 

  

  
Figure 14 Pathology subset analysis on RSS100. The error shown in the intra-subject ICC curves represent the standard 
errors of the mean (Top left) intra-subject ICC of element removal. (Top right) Intra-subject ICC as a function of node 
removal. (Bottom left) MA as a function of element removal. (Bottom right) MA as a function of node removal. 

Just like with the motion subgroup, the ICC of the included group is higher than the pathology group, 

but as more elements or nodes are removed, the difference between the two becomes smaller. The 

MA curves are also similar to the motion group in the sense that the included group should have 

higher MA values, which is the case after a correction with the scaling factor. 

The next subset is constructed by dividing the included group in two, based on the sex of the 

subjects. This gives an all-male and an all-female subset. Results of the RSS100 parcellation scheme 

are shown in Figure 15. Additional results of the subset based on sex of the other three parcellation 

schemes are found in appendix F. 



  

  
Figure 15 Men vs women longitudinal subset analysis of RSS100. The errors shown in the intra-subject ICC curves represent 
the standard errors of the mean. (Top left) intra-subject ICC as a function of removed elements, men vs women. (Top right) 
intra-subject ICC as a function of removed nodes, men vs women. (Bottom left) MA as function of elements. (Bottom right) 
MA as a function of removed nodes.   

 The intra-subject ICC curves of both the node and the element removal nearly overlap. The 

matching accuracy is slightly higher for the men in both the node removal and element removal 

curves. 

The next subset to be analysed is that of the interscan times. To get an impression for the range of 

the interscan times that are present in the subsets, see Figure 16.  

 
Figure 16 Histogram of the interscan times in the longitudinal set 



The interscan time of the subjects of the longitudinal group will be divided into subsets of equal size. 

As the scaling matrices only give an indication of the difference in MA between sets of different 

sizes, it is of course better to have sets that are equally sized. Each of the IST subsets consist of 

either 117 or 118 subjects. These equally sized subsets do cause the range of the bins of the 

interscan time to vary as seen in the legend of Figure 17. Figure 17 shows the intra-subject ICC and 

MA for the different subsets based on IST of the RSS100 parcellation scheme. The results on the 

other three parcellation schemes are shown in Appendix G. 

  

  
Figure 17 Four interscan time subset of the longitudinal set of the parcellation scheme RSS100. The errors as shown in the 
intra-subject ICC curves are the standard errors of the mean. (Top left) intra-subject ICC as a function of removed elements. 
(Top right) intra-subject ICC as a function of removed nodes. (Bottom left) MA for element removal. (Bottom right) MA for 
node removal.   

There appears to be no direct relation between interscan times (IST) and reproducibility, as the 

highest ICCs are found for the IST range of 1.23 to 1.51 years. Additionally, this smaller time window 

also does not give a smaller error, as can be seen from the standard deviation. What is of note, is 

that the longest IST range, of 1.78 to 5.1 years, gives both the lowest intra-subject ICC scores, as well 

as the lowest MA results.   

The last subset that is to be analysed is that of the age subgroups. To start, a histogram is given in 

Figure 18 to show the spread of the ages of the subjects at the time of the first scan.  



 
                    Figure 18 Histogram of the age of the subjects in the longitudinal set at the time of the first scan 

 Just like with the IST, the histogram does not give an equally distributed set. This entails that when 

making subgroups that have the same number of subjects, the size age range of that set varies. See 

Figure 19. Additional results of the age subset analyses of the remaining three parcellation schemes 

are found in Appendix H. 

  

  
Figure 19 Four age-based subsets of the longitudinal set parcellation scheme RSS100. The errors as shown in the intra-
subject ICC curves are the standard errors of the mean. (Top left) intra-subject ICC as a function of removed elements. (Top 
right) intra-subject ICC as a function of removed nodes. (Bottom left) MA for element removal. (Bottom right) MA for node 
removal.   

 



The results of Figure 19 do suggest a relation between intra-subject ICC and age. It can be seen that 

the reproducibility decreases for aging subjects. Moreover, the component removal algorithm 

appears to enhance the reproducibility for all ages. This relation is not found as clearly in the MA 

curves though. To make the relation between the intra-subject ICC and the age of the subjects in the 

longitudinal set clearer, the top left image of Figure 19 is represented in another way in Figure 20. 

 
 Figure 20 Intra-subject ICC development with age for RSS100. 4 curves depict 4 different fractions of the elements removed. 

Figure 20 illustrates the relation between intra-subject ICC and age: as the subjects grow older, the 

intra-subject ICC goes down. Furthermore, for an increasing number of elements removed, the intra-

subject ICC increases.  

4.5. ICN Analysis of node and element order 
Retaining the predicted optimally reproducible components, in order to enhance the overall 

reproducibility, is one of the main focusses of this work. This entails the isolation of certain 

elements/nodes and eliminating others. Although the method presented here is data-driven, 

another obvious way of partitioning the CM’s is by isolating certain ICN’s. To check the effectiveness 

of the method presented in this work, the reproducibility’s of the different ICN’s of the longitudinal 

set are also quantified. Table 9 shows the intra-subject ICC’s along with the MA’s of the included 

subject group of the longitudinal set. ICN analyses of other parcellation schemes is shown in 

Appendix I. 

 

 

 

 

 



Table 9 Intra-subject ICC along with standard error of the mean (SEM) and MA of the included subjects of the RSS100 
parcellation scheme. The CM’s were divided based on their ICN. 

Intrinsic connectivity 
network (ICN) 

Number of nodes 
in ICN 

ICC ± SEM 
 

MA (%) 

DAN 6 0.65 ± 0.0083 3.3 

DMN 12 0.65 ± 0.0061 21 

FPN 5 0.62 ± 0.0096 1.9 

SMN 8 0.52 ± 0.0091 5.4 

Subcort 2 0.50 ± 0.0187 .11 

Temp 5 0.44 ± 0.0113 2.7 

VAN 5 0.66 ± 0.0089 .64 

Visual 7 0.66 ± 0.0079 4.6 

 

The highest intra-subject ICC’s are found for the visual and VAN network, closely followed by the 

DAN and DMN networks of values 0.66 and 0.65 respectively. Higher intra-subject ICC’s of included 

group of the longitudinal set are found using both the element- and node removal approaches. 

Figure 21 shows to which ICN the elements and nodes belong whose inter-subject ICC is the highest. 

Histogram of the other parcellation schemes is shown in Appendix J. The average number of nodes 

in each ICN as shown in Table 6 is rounded to 6, therefore the origin of the 6 nodes with the highest 

inter-subject node ICC is shown. 6 nodes correspond to 15 unique elements according to Equation 

(2). 

  
Figure 21 ICN origin of the 15 elements (left side) and 6 nodes (right side) with the highest expected inter-subject ICC for 
parcellation scheme RSS100. As every element is the connection between two nodes, the 15 best elements harbour the 
connection between two nodes, and thus ICN’s. The total number of counts on the left figure should thus be 2 times 15 
which equals 30 ICN’s. 

The node removal approach determined that the 6 most reproducible nodes originated from the 

DMN and the visual networks. The reproducibility is partially reflected in Table 6, as these networks 

produce the highest intra-subject ICCs. In the data-driven method presented in this work in appears 

that when considering the connections between these networks, higher intra-subject ICC’s can be 

found compared to looking at each network separately. In the element removal approach, the 

results are more varied, as all ICN’s are represented. The DMN proved to have the highest number of 

counts. 

 

 



Table 9 also shows the MA’s from the different ICN’s. These results vary significantly, with the lowest 

MA of 0.11% in the subcort network. The highest MA is found in the DMN where 21% of the scans 

were matched to the correct counterpart. The MA as found in the longitudinal analysis for the 

included group starts off slightly higher than 50%, which is significantly higher than any of the MA’s 

found for the ICN based node groupings.   



5. Discussion 
For the inter-subject element ICC, several negative values were found. In theory the ICC can’t be 

negative [62]. A negative ICC can be found when the numerator of equation (1) is smaller than 1, so 

𝑀𝑆𝑝 is smaller than 𝑀𝑆𝑒. 𝑀𝑆𝑒 scales with the difference of the within target sum of squares and the 

between rater sum of squares. This can only lead to negative inter-subject element ICC’s when the 

variance of an element taken within successive scans of the same subject is bigger than the variance 

between elements of different subjects. In other words: The variance between subjects’ elements is 

smaller than the variance within a subject’s element. If there is no connection between the two 

targets, the variance between the target and within the targets should have the same size which 

should give a reproducibility of zero. The negative ICC’s should thus be interpreted as being poorly 

reproducible. Negative ICC’s were only encountered when calculating the inter-subject element 

ICC’s, and since the calculation was only performed to compute the order of the elements, it did not 

have a significant impact on the rest of the work.  

  When examining the MA’s of the repro study, it can be seen that the MA test outcome 

appears to make ‘jumps’ from one percentage to the next. These jumps can be explained by the 

limited number of subject that the Repro set consists of. As there are only 37 subjects that can be 

matched in two directions (from scan 1 to scan 2 and vice versa) this effectively gives MA’s as 

fractions of 2 times 37 is 74. 72 out of 74 is 97.3%, 73 out of 74 is 98.6% and 71 out of 74 is 96.0%. 

Also note the apparent disjoint between Figures 10 and 12: These figures show the results of the 

reproducibility study of both the node and element removal algorithms. It appears counter-intuitive 

that for the element removal a moderate increase is found for the intra-subject ICC, while the MA 

climbs to percentages of over 90%. While in the node removal algorithm, the ICC goes beyond values 

of 0.9, and the MA does not appear to increase at all. As the order in which the elements or nodes 

are removed are determined based on their inter-subject ICC, it is to be expected that the intra-

subject ICC is increased for both sets. The suspected cause for the larger intra-subject ICC increase 

for the node removal approach is because the within target variation for the intra-subject ICC of the 

node removal approach is smaller, as nodes act in a more synchronous matter compared to 

individual elements. It is this line of reasoning that also causes the MA to be better for the element 

removal compared to the node removal: As more and more elements are removed with larger 

variation, it leads to a greater distinguishing power, because in the node removal algorithm the CM’s 

are to similar.   

The longitudinal set analysis is mainly concerned with the second research question, which is 

focussed around the intra-subject reproducibility of the predicted optimal removal of nodes and 

elements as found in the reproducibility study.  

  The first thing that should be noted is that with all the subsets the intra-subject ICC 

development is similar to that of its corresponding counterpart with the reproducibility study. It 

appears the predicted element- and node orders as found in the reproducibility study are able to 

increase the overall reproducibility of the longitudinal group, which served as the test set. 

  Perhaps the biggest discrepancy when going from the reproducibility study to the 

longitudinal set analysis, is the difference found in the MA of the element removal algorithm. As 

MA’s upward of 90% are found in the reproducibility study for the element removal algorithm, 

results that have not been approximated in the longitudinal study. It appears that the MA test based 

on the inter-subject element ICC of the same set is highly successful, but the algorithm lacks 

predictive power. Finn [58] found an average MA of 93.7% for a MA consisting of 126 subjects. 

When the scaling matrix is used to compare the results of this work with Finn’, it turns out that the 

results of Finn are still better than those presented in this work. Though a different parcellation 



scheme is used in his work (one with 268 nodes). Moreover, a 3T MRI scanner was used for the 

research of Finn et all. This increase in magnetic field strength results in MRI images with a higher 

resolution. Therefore, it can be expected that Finn’s results are better than those presented here. 

Moving on to the longitudinal set analysis, the use of the scaling matrices immediately proved useful 

when analysing the Motion and Pathology subsets: As the quality of the fMRI scans is impaired by 

the motion of the subjects, or any apparent pathologies, it can be expected that the MA of these 

sets to be lower than the included subset. This proved to be the case. It is also interesting to see to 

what extent the ICC’s are affected in these subsets. The use of the scaling matrices allowed for a 

comparison of MA’s of subsets of varied sizes, but it remains an approximation. Ideally, MA’s should 

be compared to subsets of the same size, because then the subset size will not influence the 

outcome. A recommended approach would be to take a sample of the larger subset, equal to the 

size of the smaller subset and perform a MA test on both. 

The test that compared the reproducibility of functional connectivity profiles of men to women, 

proved to be highly similar. There is nearly a complete overlap of the intra-subject ICC’s of both the 

node and element removal algorithms, and a slightly higher MA for men. Using the MA estimate, it 

can be seen that these results are significant (assuming both sets have roughly the same size). It 

appear that the functional connectivity profiles of men are slightly more distinctive than women’s.  

With the subgroups based on their interscan time, no relation between the interscan time and the 

intra-subject ICC development or the MA was found. As the included subgroup of the longitudinal 

set consisted of healthy subjects, the reproducibility study should not result in extreme deviations in 

intra-subject ICC outcome. On the other hand, 5 years is a relatively long time. To see no (degree of) 

change in reproducibility over this period of time is somewhat surprising. It is suggested to research 

even longer periods of interscan time to see if longer periods of time do result in changes in 

reproducibility. 

As for the subgroups based on the age of the subjects: It has been reported the functional 

connectivity is diminished with aging [59]. This diminished functional connectivity is reflected in the 

decreasing reproducibility as found in this study. The element and node removal algorithms can 

increase the reproducibility of the scans by selectively omitting data as predicted from the 

reproducibility set.  

Lastly, a comparison is made between the performance of the node removal algorithm, and node 

selection based on ICN grouping. The MA of the subgroup based on ICN turned out higher for all 

ICN’s. This is to be expected, as one of the requirements is that the node exhibit high correlation 

with the other nodes of the ICN. The reproducibility was considerably higher for the node removal 

algorithm. A notable result, as the reproducibility was predicted based on the Repro set.  

In the end a comparison is made between the longitudinal set component removal algorithm and a 

division of the CM’s based on their ICN. When comparing all parcellation schemes, there proved to 

be no single network that consistently appeared to be among the most reproducible fraction of 

nodes or elements. The intra-subject ICC’s found using the longitudinal set component removal 

algorithm (for roughly the same number of nodes and elements as the average ICN size) are higher 

than any of the intra-subject ICC’s found using the ICN’s. It appears that the component order as 

determined in the reproducibility study is able to obtain higher a higher reproducibility compared to 

the ICN partitioning. The MA’s of the ICN’s turned out to be higher in the ICN partitioning compared 

to the longitudinal set component removal algorithm. This is to be expected, because the internal 

variation within an ICN is required to be small in order to be grouped together in an ICN.  



  



6. Conclusions 
The two-fold research question as posted in subsection 2.6. are as follows: 

Can the overall reproducibility of brain connectivity profiles be improved by selectively omitting parts 

of the FC profiles? 

Can this selective data reduction improve the predicted reproducibility for a population study? 

The reproducibility study forms the basis of the answer of the first research question, as it showed 

that it is indeed possible to enhance the MA by selectively omitting elements that have the lowest 

inter-subject element ICC. With the RSS100 parcellation scheme, the matching accuracy is increased 

from an unaltered CM of 82.4% to 98.7%. All other parcellation schemes also saw increased MA for 

the element removal algorithm. The overall reproducibility of the repro set is enhanced in both the 

node removal and element removal algorithms. The node removal approach proved to be better at 

enhancing the intra-subject reproducibility, as the intra-subject ICC was higher than 0.8 which is 

indicative of ‘outstanding’ reproducibility. The element removal algorithm was able to enhance the 

reproducibility of all parcellation schemes from ‘moderate’ to ‘substantial’. 

With the second research question, the robustness of the predicted optimal element/node order 

removal was explored. The elements/nodes of the longitudinal set were iteratively removed in the 

order as found in the repro set. At every iteration the intra-subject ICC and the MA were computed 

to see how the overall reproducibility is affected. This algorithm was applied to various subsets of 

the longitudinal set based on: sex, age, interscan time and taking the grounds for exclusion into 

account. The development of the reproducibility is not affected by the sex of the subject, or the 

interscan time (within the range explored in this work, namely 5 years). When the subjects crossed a 

predetermined motion threshold, a clear decrease in reproducibility is seen. With the subjects who 

possessed a certain pathology a similar decrease in reproducibility is seen. The algorithm did 

accurately predict that the intra-subject ICC of the age subsets did reduce as the subjects grew older. 

Furthermore, the algorithms is able to enhance the reproducibility for all age groups as more nodes 

and elements were removed from the set. 

Lastly, what followed from the comparison between the node removal algorithm and the 

comparison with the ICN MA’s, was that the MA’s of the ICN’s turned out to be higher than the node 

removal algorithm. But the node removal algorithm is able to reduce the datasets in a way that they 

retain a greater degree of the reproducibility compared to the division based on ICN’s. 

In the end a comparison drawn between the longitudinal set component removal algorithm and a 

partitioning of the CM’s based on their ICN. It is reported that the longitudinal set component 

removal algorithm is able to produce a reduced CM that has a higher reproducibility compared to 

the ICN partitioning intra-subject ICC outcomes. The MA’s of the ICN partitioning are higher than the 

longitudinal set component removal algorithm.  
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Appendix A – ICC derivation 
Acquisition of a BOLD fMRI scan can be modelled by Equation (5). 

 

 
𝑟 =   𝑌𝑖𝑗 = µ + 𝑝𝑖 + 𝑡𝑗 + 𝑒𝑖𝑗 ,       1 ≪ 𝑖 ≪ 𝑛,   1 ≪ 𝑗 ≪ 𝑘 

 

(5) 

Where Yij represents the acquired time series of subject number i, as taken during scan number j. 

Therefore, n represents the total number of subjects, and k the total number of successive scans. µ 

is a fixed variable, p represents the participants effect, t is the systematic error and e is the 

measurement error. All sources of error in this model are independent random effects with mean 

zero. Definition of the ICC is then given in Equation (6). 

 

 

𝐼𝐶𝐶 =
𝜎𝑝

2

𝜎𝑝
2 + 𝜎𝑡

2 + 𝜎𝑒
2 

 

(6) 

 

For ICC3 the standard deviation in the systematic error t (or the scanning occasion effect) is assumed 

to be zero, giving the specific form of ICC3 in Equation 7. 

 

 

𝐼𝐶𝐶3 =
𝜎𝑝

2

𝜎𝑝
2 + 𝜎𝑒

2 

 
 

(7) 

Now two sums of squares can be computed from the components of equation 2, see Equations 8 to 

10. 

 

 
𝑆𝑆𝑝 = 𝑘 ∑ (𝑌̅𝑖.

𝑛
𝑖=1 − 𝑌̅..)

2   

 

(8) 

 

 

 

𝑆𝑆𝑒 = ∑ ∑ (𝑌̅𝑖𝑗
𝑛
𝑖=1 − 𝑌̅𝑖.−𝑌̅.𝑗+𝑌̅..)

2𝑘
𝑗=1   

 

(9) 

 

 

 

𝑌̅𝑖. =
∑ 𝑌𝑖𝑗

𝑘
𝑗=1

𝑘
,   𝑌̅.𝑗 =

∑ 𝑌𝑖𝑗
𝑛
𝑖=1

𝑛
,   𝑌̅.. =

∑ ∑ 𝑌𝑖𝑗
𝑛
𝑖=1

𝑘
𝑗=1

𝑛𝑘
 

 

(10) 

 

The expectation values of 𝑀𝑆𝑝 = 𝑆𝑆𝑝/(𝑛 − 1) and 𝑀𝑆𝑒 = 𝑆𝑆𝑒/(𝑛 − 1)(𝑘 − 1) are dσp
2 + σe

2 and 

σe
2 respectively. The estimators of the standard deviation are thus given by Equations 11 and 12. 

 

 



 

 

𝜎̂𝑝
2 =

𝑀𝑆𝑝 − 𝑀𝑆𝐸

𝑘
 

 

(11) 

 
 

𝜎̂𝑒
2 = 𝑀𝑆𝑒 

 
(12) 

When combining Equations (11) and (12) with Equation (7), an expression for ICC3 is found. See 

Equation 13. 

 

 

𝐼𝐶𝐶3 =
𝜎̂𝑝

2

𝜎̂𝑝
2 + 𝜎̂𝑒

2 =  
𝑀𝑆𝑝 − 𝑀𝑆𝑒

𝑀𝑆𝑝+(𝑘 − 1)𝑀𝑆𝑒
 

 

(13) 

 

This derivation is constructed using [18][38][45]. 

  



Appendix B – longitudinal set MA error estimates for varying set sizes 

of other parcellation schemes 
 

UKBiobank  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

16 8.53 8.37 8.36 8.32 8.25 8.15 8.19 8.26 8.94 9.15 

22 7.26 7.19 7.02 6.98 6.98 7.08 7.03 7.43 7.50 8.00 

31 6.40 6.50 6.64 6.51 6.41 6.46 6.58 6.69 7.01 7.33 

37 6.23 6.28 6.24 6.27 6.40 6.35 6.25 6.40 6.48 7.09 

59 4.82 4.83 4.80 4.67 4.71 4.77 4.85 4.92 5.11 5.32 

78 4.28 4.27 4.32 4.31 4.41 4.50 4.46 4.48 4.60 4.76 

118 3.57 3.62 3.63 3.63 3.73 3.73 3.77 3.74 3.85 4.01 

470 1.49 1.55 1.47 1.47 1.53 1.53 1.54 1.75 1.75 1.74 

 

HCP820 
d100 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

16 8.93 8.81 8.73 8.56 8.62 8.64 8.74 8.72 9.07 9.91 

22 7.77 7.64 7.43 7.45 7.55 7.50 7.71 7.75 8.18 8.39 

31 6.99 7.03 7.09 6.83 7.01 7.02 6.90 7.06 7.29 7.51 

37 6.40 6.38 6.22 6.33 6.45 6.42 6.61 6.76 6.83 6.93 

59 4.97 5.09 5.08 5.16 5.06 5.12 5.13 5.28 5.41 5.38 

78 4.47 4.49 4.45 4.46 4.53 4.50 4.51 4.49 4.85 5.26 

118 3.50 3.57 3.63 3.62 3.67 3.67 3.64 3.65 3.84 3.82 

470 1.43 1.50 1.32 1.35 1.36 1.50 1.59 1.62 1.63 1.65 

 

HCP820 
d200 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

16 8.26 8.15 8.21 8.04 7.96 7.93 7.83 7.82 7.99 7.92 

22 7.49 7.32 7.29 7.16 7.07 7.21 7.28 7.32 7.54 7.76 

31 6.61 6.69 6.53 6.48 6.38 6.36 6.32 6.42 6.34 6.69 

37 5.70 5.73 5.79 5.82 5.86 5.71 5.79 5.83 5.97 6.22 

59 4.86 4.83 4.73 4.92 4.88 4.89 4.78 4.95 5.12 5.17 

78 4.35 4.42 4.32 4.31 4.35 4.43 4.41 4.53 4.59 4.82 

118 3.35 3.29 3.24 3.26 3.27 3.29 3.30 3.31 3.38 3.54 

470 1.29 1.22 1.24 1.31 1.34 1.38 1.35 1.39 1.52 1.49 

 

  



Appendix C – longitudinal set MA scaling matrices of other 

parcellation schemes 
 

UKBiobank 16  22 31 37 59 78 118 470 

16 1 0.96 0.93 0.91 0.85 0.82 0.75 0.49 

22 1.04 1 0.97 0.94 0.88 0.85 0.77 0.50 

31 1.07 1.03 1 0.98 0.81 0.87 0.80 0.52 

37 1.10 1.06 1.03 1 0.94 0.90 0.82 0.53 

59 1.17 1.13 1.09 1.07 1 0.96 0.87 0.57 

78 1.23 1.18 1.14 1.12 1.05 1 0.91 0.60 

118 1.34 1.30 1.25 1.22 1.14 1.09 1 0.65 

470 2.07 1.99 1.92 1.88 1.76 1.68 1.54 1 

 

 

HCP820_d100 16  22 31 37 59 78 118 470 

16 1 0.95    0.91   0.89   0.81 0.77  0.70 0.43 

22 1.05 1 0.95 0.93  0.85    0.81   0.74 0.46 

31 1.11    1.05 1 0.98 0.90 0.85 0.77 0.48 

37 1.13 1.08 1.02 1 0.92 0.87 0.79 0.49 

59 1.23 1.17 1.12 1.09 1 0.95 0.86 0.53 

78 1.30 1.24 1.18 1.15 1.06 1 0.91 0.56 

118 1.43 1.36 1.29 1.27 1.16 1.10 1 0.62 

470 2.31 2.20 2.09 2.04 1.87 1.77 1.62 1 

 
HCP820_d200 16  22 31 37 59 78 118 470 

16 1 0.97 0.93 0.91 0.85 0.81 0.75 0.49 

22 1.03   1 0.96 0.94 0.88 0.84 0.78 0.50 

31 1.08   1.05 1 0.98 0.92 0.88 0.81 0.53 

37 1.10 1.07 1.02 1 0.94 0.90 0.83 0.54 

59 1.18 1.14 1.09 1.07 1 0.96 0.88 0.57 

78 1.23 1.19 1.14 1.12 1.05 1 0.92 0.60 

118 1.33 1.29 1.23 1.21 1.13 1.08 1 0.65 

470 2.05 1.99 1.90 1.86 1.74 1.67 1.54 1 

  



Appendix D – Motion subset figures of other parcellation schemes  
 

 

 

 

  

 

 



 
 

  

   

 

  



Appendix E – Pathology subset figures of other parcellation schemes  

 

 

  

  



 
 

 

 

   

 

 



Appendix F – Figures of other parcellation schemes of men vs. women 

subset 

 

 

  

   



 

 

 

  

   

 



Appendix G – IST based subset figures of other parcellation schemes 

 

 

  

  



 
 

 

 

   

 

 



Appendix H – Age based subset figures of other parcellation schemes 

 

 

  

   



 
 

  

   

  



Appendix I – ICN intra-subject ICC and MA of other parcellation 

schemes. 
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Appendix J – histogram ICN origin of best number of nodes and 

elements for other parcellation schemes 
 

 

 

  

  


