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Abstract
The problem of optimally scheduling the charging
demand of electric vehicles within the constraints
of the electricity infrastructure is called the charge
scheduling problem. The models of the charging
speed, horizon, and charging demand determine the
computational complexity of the charge scheduling
problem. We show that for about 20 variants the
problem is either in P or weakly NP-hard and dy-
namic programs exist to compute optimal solutions.
About 10 other variants of the problem are strongly
NP-hard, presenting a potentially significant obsta-
cle to their use in practical situations of scale. An
experimental study establishes up to what parame-
ter values the dynamic programs can determine op-
timal solutions in a couple of minutes.

1 Introduction
Renewable sources for the generation of electricity are inter-
mittent, but the amount of power generated needs to equal the
amount of power consumed at all times. Because it is expen-
sive to store electricity, there is an incentive to make part of
the demand flexible and controllable. For example, electric
vehicle owners can get a discount on their electricity bill if
they allow their provider to charge their car flexibly [Garcı́a-
Villalobos et al., 2014]. Specifically, car owners may have a
deadline by which they would like the vehicle charged (say,
by 8:00 in the morning), and they may allow the provider to
charge anytime before the deadline. Meanwhile, the supply
(bought by the provider) or the network capacity for provid-
ing electricity at a given time may be limited [de Nijs et al.,
2015; Philipsen et al., 2016], requiring providers to intelli-
gently utilize capacity over time.

The problem of deciding when to charge under a common
constraint gives rise to a new class of scheduling problems.
The defining difference from the traditional scheduling litera-
ture [Brucker, 2007; Pinedo, 2012] is that such charging jobs
are more flexible: not only can they be shifted in time, but
the charging speed can also vary over time. Additionally, the
charging resources (“the machines” in ordinary scheduling)
may vary over time. Further, providers that control flexible
demand will need to solve such scheduling problems repeat-
edly. Therefore, it is important to understand when such prob-

lems can be solved optimally within the time limits required,
and what aspects make the problem intractable. We refer to
this class of problems as the charge scheduling problem.

In this paper, over 30 variants are identified, their compu-
tational complexity is proven, and for the easy problems a
polynomial algorithm is provided.

First, we provide a general model of scheduling flexible
demand in a smart grid. Then we discuss the relation to the
traditional scheduling literature. Our main results for classi-
fying all restrictions of the general model can be found in the
section thereafter. Finally, we demonstrate the performance
of the new algorithms on problem instances of various sizes.

2 The Charge Scheduling Problem
We consider a supply of perishable resources (e.g., network
capacity or available power) which varies over time. We dis-
cretize time into intervals T = {1, . . . , |T |}. The availability
of the joint resource supply at time (period) t ∈ T is repre-
sented by a value mt ∈ R. This resource supply is allocated
to a set of n agents, and the allocation to agent i is denoted
by a function ai : T → R such that

∑
i ai(t) ≤ mt for ev-

ery t ∈ T . The value of an agent i for such an allocation
is denoted by vi : [T → R] → R. This value function for
schedules can represent both (time-of-use) prices of charging
in certain time slots as well as user preferences for when their
vehicle is charged. In this paper, we focus on problems where
the valuation function of agent i can be represented by triples
of a value vi,k, a deadline di,k and a resource demand wi,k,
such that the value vi,k is obtained if and only if the demand
wi,k is met by the deadline di,k. This allows the agent (app)
to represent user preferences such as: “I value being able to
go to work at $100, I must leave for work at 8am, and it re-
quires 25 kWh to complete the trip.” By adding a second
deadline, the user could express: “I might suddenly fall ill,
so I value having at least the option to take my car to urgent
hospital care at 10pm at $20, and it would require 10 kWh to
complete that trip.” If so, the scheduler could make sure that
the car is charged up to 10 kWh before 10pm and complete
the remaining 15 kWh of charge in the rest of the night, for
the full $120 of value; alternatively, the scheduler may decide
that $20 is too low given others’ high evening demands and
charge the full 25 kWh later in the night for just $100.

We denote the total amount of resources allocated to an
agent i up to an interval t by āi (t) =

∑t
t′=1 ai (t′). Then
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the valuation function vi(ai) =
∑

k vi(ai, vi,k, di,k, wi,k),
for value-deadline-demand triples k, where

vi(ai, vi,k, di,k, wi,k) =

{
vi,k if āi (di,k) ≥ wi,k

0 otherwise

When we say (for some variants) that the resource supply
mt, values vi,k, or demands wi,k are polynomially bounded
by the size of the input, we mean that there exists a polyno-
mial function p(·) such that for all t, mt ≤ p(n, |T |), or, for
all i, k, vi,k ≤ p(n, |T |), or wi,k ≤ p(n, |T |), respectively.
We aim to find an allocation that maximizes social welfare
subject to the resource constraints, i.e.,

max
∑

i vi(ai)

subject to
∑

i ai(t) ≤ mt for every t

The inequality in the constraint implies free disposal, which
in many situations, such as network capacity, is realistic. This
problem has n·T decision variables. In this paper we consider
variants of this problem along the following dimensions.

Each agent i has a maximum charging speed si and for all
t and i, ai(t) ≤ si. We consider three variants of such a con-
straint, namely fixed / unbounded / gaps: fixed means that the
maximum charging speed is the same at all times, unbounded
means that there is no bound on the charging speed for each
individual agent, and gaps means that the only bound on max-
imum charging speed is 0 for some time steps, for example
because other use of the household connection (e.g. electric
cooking, heat pump) prohibits charging for some periods.

The number of periods T may be constant or polynomi-
ally bounded: constant means that there is an a-priori known
number of periods for all instances of the problem, denoted
by O(1), while polynomially bounded means that the num-
ber of periods may be large, but is bounded by a polynomial
function of the input size, denoted by O (nc).

The model of the demand wi,k may be one of constant /
polynomial / unbounded, where constant means that wi,k ≤
D for all i, k, and that this D is an a-priori known constant,
polynomial means that each wi,k is bounded by a polynomial
function of the input size, and unbounded means that there is
no bound on the demand size.

We can have either a single deadline per agent, k = 1, or
multiple deadlines where there may be more than one value-
demand-deadline triple which combine into a total value in
the way discussed earlier. In the case of k = 1 we simply
write vi, di, wi to denote vi,1, di,1, wi,1.

3 Relation to Known Scheduling Problems
An important generalization of scheduling problems al-
lows for including resource constraints as well, i.e., the
so-called resource-constrained project scheduling problem
(RCPSP) [Hartmann and Briskorn, 2010]. The charge
scheduling problem can be seen as a special case if addi-
tionally the problem is extended to deal with continuously
divisible resources [Blażewicz et al., 2007, Ch.12.3], a vary-
ing availability of resources with time [Klein, 2000], and the
possibility to schedule subactivities of the same activity in
parallel, called fast tracking [Vanhoucke and Debels, 2008].

An initial investigation shows that for one resource, with-
out preemption, the problem of minimizing the make-span
is strongly NP-hard even if there are only three processors
available [Blazewicz et al., 1983]. This NP-hardness result,
however, does not apply to the charge scheduling problem,
mainly because of the difference in the objective, but also be-
cause in charge scheduling preemption is allowed.

However, there are some directly applicable results on
some variants of the single-deadline charge scheduling prob-
lem. First, we observe that with a unit charging speed
and a unit supply of resources this problem is equivalent
to single machine scheduling with preemption. This vari-
ant is in P when values are assumed to be polynomially
bounded [Lawler, 1990].

For non-unit (but fixed, mt = m) supply, the charge
scheduling problem is equivalent to a multi-machine problem
where all agents have an identical charging speed si = s and
the supply is a multiple of the charging speed. From this we
immediately obtain a dynamic program and that this variant
is weakly NP-hard [Lawler, 1983; Lawler and Martel, 1989].

When there is some control of the supply, the problem is
known as speed scaling or sprinting [Barcelo et al., 2015].
In this setting processors may run at higher speed until the
device becomes too hot. However, there are a number of
differences that make it impossible to map scheduling with
speed scaling to charge scheduling, or vice versa: First, speed
scaling involves deciding on when to sprint which proces-
sors, so hardness results for speed scaling do not translate to
charge scheduling. Second, in charge scheduling the speed of
a task is determined independently of the available resources
(as long as their sum is within the limit), while in speed scal-
ing the speed of a task depends on the speed of the processor
it is assigned to. Algorithms for speed scaling therefore do
not directly work for charge scheduling.

In summary, when supply (i.e., the number of machines)
varies over time, or when charging speeds (i.e., the maximum
number of machines allowed for a single job) differ per agent,
the existing literature does not readily provide an answer to
the question of the charge scheduling problem complexity.

4 Complexity of Charge Scheduling
First we analyze the complexity of the charge scheduling
problem with single deadlines (Table 1). The verification of
a schedule can in all cases be done in polynomial time, so:
Proposition 1. (The decision version of) the charge schedul-
ing problem is in NP for all variants.

By a reduction from the knapsack problem (reducing the
knapsack to the available capacity at time 1), we argue that
single-deadline charge scheduling is weakly NP-hard.
Proposition 2. The (single-deadline) charge scheduling
problem with unbounded demand is (weakly) NP-hard, even
when |T | = 1.

We next consider single-deadline charge scheduling for
multiple periods T , a supply per period t of mt ≤ M , n
agents, and demand (and/or charging speed) per agent of at
most L. The optimal solution for this problem is denoted by
OPT (m1,m2, . . . ,m|T |, n), and this is defined by the fol-
lowing recursive function that returns the best we can do with
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gaps fixed charging speed unbounded charging speed

|T | demand
con-
stant

demand
polyno-

mial

demand
un-

bounded
O(1) PT1 PT1 weak

NP-cT1

O (nc) strong
NP-cT3

strong
NP-cT3

strong
NP-cT3

demand
con-
stant

demand
polyno-

mial

demand
un-

bounded
PT1 PT1 weak

NP-cT1

? ? ?
NP-cP2

demand
con-
stant

demand
polyno-

mial

demand
un-

bounded
PT1 PT1 weak

NP-cT1

PT2 PT2 weak
NP-cT2

Table 1: Problem complexity of variants with a single deadline per agent, where Tx refers to Theorem x, Px to Proposition x, and ‘? NP-c’
means that the problem variant is NP-complete, but it is an open problem whether this is strong or weak.

the first i agents only.

DP1 : OPT (m1,m2, . . . ,m|T |, i) ={
0 if i = 0

max
{
OPT (m1,m2, . . . ,m|T |, i− 1), o

}
otherwise

where o =

max
a1,.,a|T |

{
OPT (m1 − a1, . . . ,m|T | − a|T |, i− 1) + vi (a)

}
.

For ease of notation, instead of considering allocation func-
tions ai(t), we use here a to denote the complete allocation
to all agents i and over all time steps 1, . . . , |T |, and at to
denote the vector of allocations to all agents at time t. In
this formulation, gaps and charging speed limits can be incor-
porated with additional constraints on the possible allocation
a. A dynamic programming implementation of this recursive
function gives an algorithm that solves this problem in poly-
nomial time if both maximum supply and maximum demand
are polynomially bounded and the number of periods is con-
stant. We denote this dynamic program by DP1.1

Proposition 3. The single-deadline charge schedul-
ing problem can be solved in O

(
M |T |) space and

O
(
n ·M |T | · L|T |) time using DP1 where M ≤ n · L

is the maximum supply, and L is the maximum demand (or
maximum charging speed).

In the gaps and fixed charging speed problem variants, the
maximum charging speed may be very large, and therefore
the reduction from knapsack (Proposition 2) applies. How-
ever, when the maximum charging speed is polynomially
bounded, then also the number of alternatives at for a sin-
gle period t is polynomially bounded, and so is the maximum
supply. Moreover, if either demand or supply is polynomially
bounded then effectively the other is as well. Therefore, in
that case, and with a constant number of periods, the problem
is in P.
Theorem 1. With a constant number of periods, the single-
deadline charge scheduling problem is weakly NP-complete.

1An iterative implementation needs only the results for the pre-
vious agent (i − 1) to compute the optimal values for the ith agent,
so a factor of n in space can be saved by maintaining optimal values
of subproblems for at most two agents.

If furthermore the demand, supply, or maximum charging
speed is polynomially bounded, the charge scheduling prob-
lem is in P.

Next, we provide an algorithm for single-deadline schedul-
ing for a polynomially bounded number of periods, but only
for the case where there is no bound on the charging speed,
i.e., a charging task can complete in one period if sufficient
supply is available, denoted by DP2.

1. Sort all charging task triples on deadline (increasing,
with arbitrary tie-breaking).

2. Let M1,M2, . . . ,Mn be the cumulative supply at
the deadlines of tasks 1, 2, . . . , n—that is, Mi =∑di

t=1 mt—and let M0 = 0.
3. Run a DP based on the following recursion (where m

denotes the remaining cumulative supply available for
the first i tasks):

OPT (m, i) =
0 if i = 0

OPT (min {m,Mi−1} , i− 1) if m < wi

max {OPT (min {m,Mi−1} , i− 1) ,

vi +OPT (min {m− wi,Mi−1} , i− 1)} otherwise

where the first call is OPT (Mn, n).
4. Recover the set of tasks that get allocated and match this

to resources to find a concrete possible allocation.
This DP is similar to the standard one for knapsack in the
special case in which all deadlines are equal.

The runtime of DP2 for general single-deadline charging
problems depends mostly on the cumulative supply. The
memory bound is a factor n less, using the same optimiza-
tion as for DP1.
Proposition 4. The single-deadline charge scheduling prob-
lem with unbounded charging speed can be solved in O (Mn)
space and O (n ·Mn) time using DP2.

Combining the above results, we conclude the following.
Theorem 2. The single-deadline charge scheduling problem
with unbounded charging speed is weakly NP-complete. If
furthermore the demand or supply are polynomially bounded,
the charge scheduling problem is in P.

However, gaps make the problem hard.
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Theorem 3. The single-deadline charge scheduling problem
with polynomially-bounded periods and gaps is strongly NP-
complete, even with constant demand and all deadlines at T .

Proof. This proof is based on the following reduction from
exact cover by 3-sets. Let a set X , with |X| = 3q and q ∈ N,
and a collection C of 3-element subsets of X be given. As-
sume w.l.o.g. that the elements in X are {1, 2, . . . 3q}. De-
fine the following charge scheduling problem: let |T | = 3q
and the supply be 1 per time period. For each ci ∈ C with
ci = {x1, x2, x3}, define an agent with a value of vi = 1, a
deadline di = T , and demand wi = 3, who can only charge
during times x1, x2 and x3 (by making all other time slot
gaps, i.e., setting the charging speed to 0 at those slots). It is
possible to attain an objective value of q if and only if C con-
tains q non-overlapping subsets, for the following reasons. If
it contains q such subsets, we can satisfy the corresponding
agents’ demands for an objective value of q. Conversely, to
obtain q objective value, we need to satisfy q agents, who
must correspond to nonoverlapping subsets for us to be able
to simultaneously satisfy them. Since exact cover by 3-sets is
strongly NP-hard and the reduction is polynomial, the charge
scheduling problem with unbounded periods, gaps, and con-
stant demand is also strongly NP-hard. This trivially extends
to polynomially bounded and unbounded demand.

The above results are summarized in Table 1. Furthermore,
when supply is polynomially bounded, the variants with un-
bounded demand that are weakly NP-complete attain mem-
bership in P. Only for the variants with non-constant num-
bers of periods T and fixed charging speed is the complex-
ity still open. Dynamic program DP1 can be used for these
cases, but has exponential runtime Ω(M |T |); DP2, however,
does not apply, because it schedules taking only supply con-
straints into account, ignoring any charging speed constraints.
Conversely, the hardness result from Theorem 3 relies on be-
ing able to set the charging speed to zero in selected periods,
which is not possible with fixed charging speed.

4.1 Multiple Deadlines
In this section, we consider the variants with multiple dead-
lines; see Table 2. Obviously, this is a harder setting than the
single-deadline case.

Proposition 5. Any problem with multiple deadlines is as
hard as the corresponding variant with a single deadline.

In fact, any problem variant with more than two dead-
lines and a non-constant number of periods is strongly NP-
hard, which we show by another reduction from exact cover
by 3-sets. Intuitively, this hardness is due to the fact that
the charges for the different deadlines are not indepen-
dent: charging ahead of the first deadline (for an unexpected
evening trip) also contributes to a second deadline (having the
car ready in the morning). This is why one cannot for exam-
ple separate the deadlines into multiple agents.

Theorem 4. The charge scheduling problem with multiple
deadlines and polynomially bounded periods is strongly NP-
hard, even with just three deadlines per agent, constant de-
mand, and no bound on charging speeds.

Proof. Let a set X , with |X| = 3q, and a collection C of
3-element subsets of X be given. Assume w.l.o.g. that the
elements in X are {1, 2, . . . 3q}. Define the following charg-
ing problem: let |T | = 3q and the supply be 1 per time pe-
riod. For each ci ∈ C with ci = {x1, x2, x3} ⊆ X , define
a valuation function vi such that a value of 3q − x1 + 1 is
obtained if a charge of 1 takes place before time x1, an ad-
ditional 3q − x2 + 2 if an additional charge of 1 takes place
before time x2, and an additional value of 3q − x3 + 3 if an
additional charge of 1 takes place before time x3. Then:

Lemma. Any feasible schedule has a value of at most 9
2q

2 +
9
2q, and this value is attained if and only if there are q agents
that have all three of their deadlines met, each just in time
(with the charge arriving exactly at the deadline).

Proof. For a slot i to contribute value, it needs to contribute
to a deadline xk with i ≤ xk. Letting k ∈ {1, 2, 3} denote
whether it is the corresponding agent’s first, second, or third
deadline, holding k fixed, the maximum value that i can con-
tribute is if xk is in arg maxx {3q − x + k | i ≤ x} = {i},
for a value of 3q − i + k. That is, ideally, every slot is used
just in time for a deadline.

Furthermore, focusing on optimizing the k terms, there can
be at most q slots that are used for a deadline with k = 3,
because for each of these there must be one slot used for a
deadline with k = 2 and one for a deadline with k = 1. Sim-
ilarly, there can be at most 2q slots that are used for deadlines
with k = 3 or k = 2. Hence, ideally, there are q agents that
have all three of their deadlines met.

We thus conclude that all schedules have a value of at most∑3q
i=1 (3q − i) +

∑q
i=1 (1 + 2 + 3) = 9q2 − 1

23q(3q + 1) +

6q = 9
2q

2 + 9
2q, and this value is attained only under the

conditions of the lemma.

To continue our reduction, we show that the optimal charging
schedule has value 9

2q
2 + 9

2q if and only if C contains q non-
overlapping subsets.

1. If C contains q non-overlapping subsets {x1, x2, x3},
then for each of these, the respective agent’s charges
can be feasibly scheduled exactly in slots {x1, x2, x3},
leading to a value of (3q − x1 + 1) + (3q − x2 + 2) +

(3q − x3 + 3) and thus a total value of
∑3q

i=1 (3q − i)+∑q
i=1 (1 + 2 + 3) = 9

2q
2 + 9

2q, which is optimal (ac-
cording to the above lemma).

2. If the optimal charging schedule has value 9
2q

2+ 9
2q, then

this can only be because q agents have been allocated
three slots each, all exactly at their respective deadlines,
according to the above lemma. Because all slots are al-
located at the respective deadlines, and there is only one
deadline per slot, the sets of deadlines are not overlap-
ping, and hence the q agents whose deadlines are met
correspond to an exact cover.

Since the reduction is polynomial and exact cover by 3-sets is
strongly NP-hard, so is the charge scheduling problem with
multiple deadlines, polynomially bounded periods, constant
demand and no bound on charging speeds. This also directly
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gaps fixed charging speed unbounded charging speed

|T | demand
con-
stant

demand
polyno-

mial

demand
un-

bounded
O(1) PC1 PC1 weak

NP-cC1

O (nc) strong
NP-cT4

strong
NP-cT4

strong
NP-cT4

demand
con-
stant

demand
polyno-

mial

demand
un-

bounded
PC1 PC1 weak

NP-cC1

strong
NP-cT4

strong
NP-cT4

strong
NP-cT4

demand
con-
stant

demand
polyno-

mial

demand
un-

bounded
PC1 PC1 weak

NP-cC1

strong
NP-cT4

strong
NP-cT4

strong
NP-cT4

Table 2: Problem complexity of variants with multiple deadlines per agent, where Tx refers to Theorem x and Cx refers to Corollary x.

implies strong NP-hardness in the case where demand is poly-
nomial or unbounded and in the case where charging speeds
may have gaps or are fixed.

While Theorem 4 indicates that (assuming P6=NP) it is im-
possible to solve the charge scheduling problem with multi-
ple deadlines over an arbitrary horizon in polynomial time, in
many cases, it may be sufficient to examine only a relatively
short period. Specifically, a grid manager may only be able
to optimize over a single upcoming day due to uncertainty in
longer term power production and uncertainty in consumers’
preferences over longer horizons. The following corollary
indicates that in this setting, solving the charge scheduling
problem may still prove feasible in practice, using DP1.

Corollary 1. With constant number of periods, the charge
scheduling problem with multiple deadlines is weakly NP-
complete. If the demand, supply, or maximum charging speed
is polynomially bounded, then the problem is in P.

With this result, we have established the computational
complexity of all problem variants with multiple deadlines,
as can be seen in Table 2.

5 Experimental Evaluation
The theoretical complexity results do not tell us exactly what
the runtimes of the dynamic programs are for concrete prob-
lem instances and how they depend on the “constants” in the
analysis, such as the time horizon or maximum supply. In
particular, in the following experimental analysis we aim to
establish when runtimes are sufficiently large that there is sig-
nificant value in researching faster (but possibly non-optimal)
algorithms instead of straightforwardly using the proposed
dynamic programs.

5.1 Experimental Setup
We identify the maximum size of optimally solvable prob-
lems using the proposed dynamic programs on a standard
desktop computer (in our case containing an i7-6700 3.4Ghz
quad core processor with 32GB of memory) within limited
time (e.g., in about 300 seconds). We implemented both
DP1 and DP2 in python using a single threaded tabulation ap-
proach. In the experiments, we simulate the charge schedul-
ing problem of a number of electric vehicles behind the same
substation. We assume that all other demand is inflexible and
that an upper bound on the aggregated load profile over time

is given, together with the constant limit on the capacity of the
substation. The supply is then defined by the remaining ca-
pacity of the substation after subtracting the aggregated load.

The value for charging demand is generated randomly: for
each agent we generate a (number of) triple(s) of demand—
uniformly random between 1 and a maximum demand; value
(similarly uniform); and a random deadline within the time
horizon. In the experiments the maximum charging speed of
all electric vehicles is assumed to be the same (with DP1), or
unbounded (with DP2).

5.2 Bounded Charging Speeds
For the first set of experiments, where charging speed is
bounded and where we expect DP1 to scale exponentially,
we start with relatively small problem instances, using the
following default settings (unless stated otherwise): there are
4 agents, the horizon is 6 time steps, supply at each time step
is scaled into the range of 3 times the maximum charging
speed, and the maximum demand per vehicle is equivalent to
charging 3 time steps at full speed. The number of deadlines
is either 1 (single) or 3 (multiple deadlines). We evaluate the
effect of the time horizon, the maximum supply, the number
of agents, and the number of deadlines on the runtime.

As expected, DP1 scales exponentially in both horizon
(Figure 1a) and supply (Figure 1b), both for instances with
1 and with 3 deadlines. These results show that problem in-
stances up to 11 time steps (with a maximum supply of 3)
or up to a maximum supply of 9 (with 6 time steps) can
be solved in about 5 minutes, but any increase beyond this
approximately doubles the required computation time. Al-
though it follows directly from the theoretical analysis of the
runtime, given this exponential behavior in terms of supply
and horizon it is good to be able to confirm (from Figure 1c)
that the number of agents influences the runtime only linearly.

In practical settings, the maximum supply needs to be
around the same order of magnitude as the number of agents;
in fact, the total supply over the horizon needs to be at least
the total demand, i.e., the number of agents times the average
demand. A maximum supply (per time step) of 9, with 6 time
steps can thus accommodate approximately 20 agents, with a
runtime of approximately 1000 seconds with our implemen-
tation on our machine. We therefore conclude that this DP1
could be a good basis for implementing charge scheduling
of about 20 electric vehicles (e.g., in a rolling horizon set-
ting of 6 time steps). This implies optimal solutions can be
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increase exponentially (i.e. for
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DP2 can solve instances up to 20
agents within 5 minutes.

Figure 1: Runtime analysis with varying parameters

found quickly only if the percentage of (participating) elec-
tric vehicles in a neighborhood is relatively small. For exam-
ple, a typical scenario would be a constraint in a substation in
the range of 300–1000kVA for a neighborhood with 200–500
houses and prices that differ per 15 minutes. So if more than
10% of the households owns an electric car, or if we aim to
optimize with a look-ahead of more than one-and-a-half hour,
this would require significant changes to the algorithm.

5.3 Results with Unbounded Charging Speeds
When the constraint on the charging speeds is ignored, with a
constant horizon, the problem remains in the same complex-
ity class. However, the runtime of DP2 depends linearly on
the cumulative supply, instead of the supply to the power of
the horizon in DP1. Ignoring the charging speed may obvi-
ously lead to infeasible solutions, but these may still be in-
teresting starting points for producing solutions for instances
where it would be impossible to use DP1.

For this second set of experiments we use parameter val-
ues that are more realistic: unless stated otherwise, we in-
clude 100 agents, a horizon of 64 time steps (e.g., model-
ing 16 hours ahead with 15 minute resolution), and a maxi-
mum demand for vehicles of 70 (kWh). The supply assumes
a network capacity limit of 1000 (kVA) from which inflex-
ible demand is subtracted: to model this, we use load mea-
surements of a household with 15 minute resolution from the
PecanStreet dataset [Pecan Street Inc., 2017]. The deadlines
for the demand triples are chosen randomly using a normal
distribution with standard deviation of 2 hours and mean of
7am, while the starting time of the simulation is 5pm the day
before.

Again, we evaluate the effect of both the time horizon and
the number of agents on the runtime. These results confirm
the runtime depending linearly on these parameters, consis-
tently with very little noise across a large set of instances.
For example, problem instances with 64 time steps and 100
agents take about 1.2s and with 500 agents around 6.8s. With
100 agents and 300 time steps they takes 6.3s. In sum-
mary, problems with hundreds of agents and time steps can
be solved in a few seconds.

However, Theorem 2 indicates that the problem is (weakly)
NP-hard when the supply is not polynomially bounded. The
aim of the final experiment is to establish this experimentally.
We set the maximum supply and demand both to be 2n. The
runtime for a range of values for n can be found in Figure 1d.
This indeed confirms the exponential behavior, but also shows
that the runtime is reasonably within 5 minutes, up to demand
and supply in the order of 220.

Because of the nature of the iterative implementation of the
dynamic programs (nested for-loops) the runtime results only
rely on the size of the input, not on the values themselves (and
all computed outcomes are optimal). We therefore conclude
that DP2 is capable of handling realistically-sized problem
instances. However, as noted, charging speeds of the resulting
schedules may exceed physical limits.

6 Discussion and Future Work
The detailed analysis of the complexity of charge scheduling
and the dynamic programs provide an important step towards
practical applicability. However, a number of questions are
still open.

First, the hardness results for instances with three deadlines
extend to any constant number of deadlines at least three, and
we have separate results for most of the single-deadline cases.
However, it is open exactly what happens with two deadlines
(except that it is at least as hard as with one deadline).

Second, as we have demonstrated, if the number of time
periods is constant and valuations are polynomially bounded,
the charge scheduling problem is computationally tractable.
However, as shown in the experiments, if these constants
are too large, the dynamic program DP1 does not scale to
realistically-sized problem instances, while DP2 does, but
without taking charging speed limits into account. There-
fore, a relevant direction for future work is to develop other
approaches, for example using disjunctive MIP models, con-
straint programming [Ku and Beck, 2016], or fast heuristic
algorithms, e.g., based on DP2.

Third, the results presented are realistic if good predictions
for future supply and demand are available (such as based on
weather predictions and historical charging patterns, which
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can be quite accurate for larger groups). If these predictions
are only somewhat good, it becomes important to explicitly
think about charge scheduling as an online problem [Albers,
2009], where we will want to re-solve the offline problem at
each point in time. Although our hardness results still ap-
ply, this opens new questions, such as the competitive per-
formance of on-line algorithms (compared to off-line). For
deterministic algorithms we can conclude from [Bar-Noy et
al., 1995] that if realized charging speeds needs to be either
the maximum or 0, no constant competitive algorithm exists.
However, algorithms exist for other variants, e.g., without the
supply constraint [Tang et al., 2014] or with a weak supply
constraint [Yu et al., 2016], and there exist randomized al-
gorithms for other variants of on-line scheduling [Koren and
Shasha, 1995]. It remains an open question which of these
can be effectively applied to an on-line variant of the charge
scheduling problem and how they would perform against sim-
pler heuristics.
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