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Abstract—Current metrics for assessing the adequacy of a test-
suite plainly focus on the number of components (be it lines,
branches, paths) covered by the suite, but do not explicitly check
how the tests actually exercise these components and whether
they provide enough information so that spectrum-based fault
localization techniques can perform accurate fault isolation. We
propose a metric, called DDU, aimed at complementing adequacy
measurements by quantifying a test-suite’s diagnosability, i.e.,
the effectiveness of applying spectrum-based fault localization to
pinpoint faults in the code in the event of test failures. Our aim is
to increase the value generated by creating thorough test-suites,
so they are not only regarded as error detection mechanisms
but also as effective diagnostic aids that help widely-used fault-
localization techniques to accurately pinpoint the location of bugs
in the system. Our experiments show that optimizing a test suite
with respect to DDU yields a 34% gain in spectrum-based fault
localization report accuracy when compared to the standard
branch-coverage metric.

Keywords-Testing; Coverage; Diagnosability.

I. INTRODUCTION

This paper proposes DDU, a new metric for evaluating the

diagnosability of a test-suite when applying spectrum-based

fault localization approaches. Aimed at complementing ade-

quacy measurements that focus on maximizing error detection

of a suite, DDU provides an assessment on its efficiency

at pinpointing the root cause of failure given that an error

is detected. The proposed measurement increases the value

of having a thorough test-suite, since an optimal suite with

respect to DDU can not only act as an error detection tool but

also as an aid to widely used fault localization approaches.

Current test quality metrics quantitatively describe how

close a test-suite is to thoroughly exercising a system ac-

cording to an adequacy criterion. Such criteria describe what

characteristics of a program must be exercised. Examples of

current metrics include branch and path coverage [1], modified

decision/condition coverage [2], and mutation coverage [3].

According to Zhu et al., such measurements can act as

generators, meaning that they provide an intuition on what
components to exercise to improve the suite [4]. However, this

generator property does not provide any relevant, actionable

information on how to test those components. These adequacy

measurements abstract away the execution information of

single test executions to favor an overall assessment of the

suite, and are therefore oblivious to anti-patterns like the ice-

cream cone.1 The anti-pattern states that the vast majority of

tests is written at the system level, with very few tests written

at the unit granularity level. Even though high-coverage test-

suites can detect errors in the system, it is not guaranteed that

inspecting tests will yield a straightforward explanation for

the cause of the observed failures, since fault isolation is not

a primary concern. Our hypothesis is that a complementing

metric that takes into account per-test execution information

can provide further insight about the overall quality of a test-

suite. This way, if a regression happens, we would have a test

suite that is not only effective at detecting faults, but also aids

spectrum-based techniques to pinpoint them among the code.

Previous test-suite diagnosability research has proposed

measurements to assess diagnostic efficiency of spectrum-

based fault localization techniques. One measurement uses

the density (ρ) of a test-coverage matrix — also known as

spectrum [5]: input to all spectrum-based fault localization

techniques [6], [7] —, which encodes what software com-

ponents have been involved in each test. González-Sanchez

et al. have shown that when spectrum density approaches the

optimal values, the effectiveness of spectrum-based approaches

is maximal [8]. Another approach is one by Baudry et al., that

proposed a test for diagnosis criterion that attempts to reduce

the size of dynamic basic blocks to improve fault localization

accuracy [9].

Unfortunately, the existing diagnosability metrics rely on

impractical assumptions that are unlikely to happen in the real

world. The approach by Baudry et al. focuses on detection of

single-faults in the system. The density approach assumes that

all tests programmers write exercise a different path through

the code and therefore produce different coverage patterns. In

practice, it is common for tests to cover the same code. If one

does not account for test diversity, it is possible to skew the

test-coverage matrix to have a (supposedly) optimal density by

repeating similar test cases. It also has the assumption that all

tests cover, on average, the same number of code components.

In reality, a test-suite can encompass tests ranging from a

targeted, narrow unit test to a sweeping system test.

This paper details the optimal coverage matrix for achieving

accurate spectrum-based fault localization. In this scenario,

1Ice-cream cone software testing anti-pattern mentioned in Alister Scott’s
blog: http://goo.gl/bhXOrN (accessed February 2017).
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the test-suite contains a test case exercising every possible

combination of components in the system, so that not only

single-faults can be pinpointed but also allows for multiple-

faults – which require simultaneous activations of components

for the fault to manifest – can be isolated. Such a matrix is

reached when its entropy is maximal. This is the theoreti-

cally optimal scenario. However, this entropy-maximization

approach is intractable due to the sheer number of test cases

required to exercise every combination of components in any

real-world system.

Nevertheless, the entropy-optimal scenario helps elicit a set

of properties coverage matrices need to exhibit for accurate

spectrum-based fault localization. We leverage these properties

in our proposed metric, coined DDU.2 This metric addresses

the related work assumptions detailed above, while still ensur-

ing tractability, by combining into a single measurement the

three key properties spectra ought to have for practical and ef-

ficient diagnosability: a) density (ρ), ensuring components are

frequently involved in tests; b) test diversity (G), ensuring com-

ponents are tested in diverse combinations; and c) uniqueness

(U ), favoring spectra with less ambiguity among components

and providing a notion of component distinguishability. The

metric addresses the quality of information gained from the

test-suite should a program require fault-localization activities,

and is intended as a complement to adequacy measurements

such as branch-coverage.

To measure the effectiveness of the proposed metric, we

perform two empirical evaluations of DDU by generating test

suites for faulty software projects. Test generation, facilitated

by the EVOSUITE tool, is guided to optimize test suites

regarding a specific metric, and oracles are generated from

correct project versions. The first empirical evaluation shows

that generating tests that optimize DDU produces test-suites

that require less diagnostic effort to find the faults compared to

density. The second empirical evaluation generates test-suites

for a wide range of subjects in the DEFECTS4J collection.

It shows that optimizing a suite regarding DDU yields an

increase of 34% in diagnostic accuracy when compared to test-

suites that only consider branch-coverage as the optimization

criterion.

This paper’s contributions are:

• A description of the theoretically optimal test-suite for

fault localization: one that generates a coverage matrix

with maximal entropy. This optimal scenario is intractable

due to the sheer number of test cases needed to be

generated.

• We elicit from the optimal scenario three key properties

matrices ought to exhibit to preserve high diagnostic

accuracy: density, diversity and uniqueness.

• DDU, a new metric based on the aforementioned proper-

ties to assess a test-suite’s diagnostic ability to pinpoint

a fault in the system using spectrum-based techniques.

The metric complements adequacy measurements such

as branch-coverage.

2DDU is an acronym for Density-Diversity-Uniqueness.

t1 t2 t3 t4
1: method groundDistance () { � � �
2: if (underwater()) { � � �
3: return surfaceDistance(); � �
4: } else { �
5: return groundAltitude();}} �
6:

7: method groundAltitude () { � � �
8: if (landed()) { � � �
9: return 0; � �
10: } else { �
11: return sub(GND, ALT);}} �
12:

13: method sub (a,b) { �
14: return a - b;} �

Pass/fail status: � � � �

(a) Per-test coverage of a single-faulted system.

t1 t2 t3 t4
1: method descend (increment) { � � �
2: if (landed()) { � � �
3: return Status.STOPPED; � �
4: } else { �
5: descendMeters(increment); �
6: return Status.DESCENDING;}} �
7:

8: method ascend (increment) { � �
9: if (landed()) { � �
10: liftoff(); �
11: return Status.LIFTOFF; �
12: } else { �
13: ascendFeet(increment); �
14: return Status.ASCENDING;}} �

Pass/fail status: � � � �

(b) Per-test coverage of a multiple-faulted system.

Fig. 1: Code snippets showing test and coverage information. Test passes and
failures are represented by �and �. � indicates that the component in the
respective row was exercised.

• Empirical evidence that DDU is more accurate at assess-

ing diagnostic ability than the state-of-the-art.

• Empirical evidence that optimizing a test-suite with re-

spect to DDU yields a 34% gain in diagnostic efficiency

when compared to similarly adequate suites.

II. MOTIVATION

We present two code snippets along with runtime informa-

tion of several test cases as a motivational example demon-

strating the need for a new metric that accurately describes

the diagnostic ability of a test-suite.3

The first example, depicted in Figure 1a, shows a snippet

of code from a sensor array capable of measuring distance to

the ground both when submerged and airborne. The purpose

of groundAltitude is to measure distance to the ground

using the internal altitude sensor (ALT) and the ground ele-

vation sensor (GND). This method has a bug: it will produce

negative values if ALT is greater than GND. Line 11 should

then read return sub(ALT, GND);. Test t1 does indeed

detect the error in the system. But the problem is that no other

test also exercises the branches followed by t1 to exonerate

them from suspicion. This results in the developer having to

3We use line of code as the component granularity throughout the motiva-
tion section.
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manually inspect all components that do not appear in passing

tests. Six lines out of a total of 12 will have to be inspected,

corresponding to nearly 50% of the total code in the snippet. In

this small example, it is feasible to inspect all components, but

component inspection slices can grow to fairly large numbers

in a real world scenario. So, even though this test-suite has

100% branch-coverage, it does not provide many diagnostic

clues.

The second example, depicted in Figure 1b, contains a

snippet of code for controlling the ascent and descent of a

drone. The descend method uses meters to quantify the

amount of descent, while the ascend method uses feet.

Assuming there is no explicit check for altitude available,

testing these methods independently will not reveal the failure.

In fact, only a test that covers both methods’ else branches

may reveal it if, for instance, there is an unexpected liftoff

after a descent. Even though we have reached 100% branch

coverage, this test-suite has not managed to expose the fault

in the code. Also note that even satisfying a stronger coverage

criterion like the modified condition/decision coverage or even

a stronger intra-procedural analysis will not expose the fault.

To expose the fault in this example one would need to exercise

combinations of decisions from different methods.

III. BACKGROUND

This section describes the background work on which the

metric proposed on this paper is inspired. Namely, we cover

the concept of Spectrum-based Reasoning (SR) — which is

amongst the best performing spectrum-based fault localization

approaches [10] —and detail previous attempts to define a

diagnosability metric.

A. Spectrum-based Reasoning (SR)

SR reasons about observed system executions and their

outcomes to derive diagnoses that can explain faulty behavior

in software [11]. In SR, the following is given:

• A finite set C = 〈c1, c2, ..., cM 〉 of M system com-

ponents. Components can be any source code artifact

of arbitrary granularity such as a class, a method, a

statement, or a branch [5];

• A finite set T = 〈t1, t2, ..., tN 〉 of N system transactions,

which can be seen as records of a system execution, such

as, e.g., test cases;

• The outcome of system transactions is encoded in the

error vector e = 〈e1, e2, ..., eN 〉, where ei = 1 if

transaction ti has failed and ei = 0 otherwise;

• A N × M activity matrix A, where Aij encodes the

involvement of component cj in transaction ti.

The pair (A, e) is commonly referred to as spectrum [5].

Several types of spectra exist. The most commonly used is

called hit-spectrum, where the activity matrix is encoded in

terms of binary hit (1) and not hit (0) flags, i.e., Aij = 1 if

cj is involved in ti and Aij = 0 otherwise.

Prior approaches using spectra were based on a so-called

similarity coefficient to find a correlation between a component

cj’s activity (i.e., 〈Aij |i ∈ 1..N〉) and the observed transaction

outcomes encoded in error vector e [6], [7], [10], [12], [13].

SR relies instead on a reasoning approach that leverages a

Bayesian reasoning framework to diagnose the system. SR was

also shown to outperform similarity-based approaches [11].

The two main steps of SR are candidate generation and

candidate ranking:

1) Candidate Generation: The first step in SR is to generate

a set D = 〈d1, d2, ..., dk〉 of diagnosis candidates. Each diag-

nosis candidate dk is a subset of C, and dk is said to be valid

if every failed transaction involved at least one component

from dk. A candidate dk is minimal if no valid candidate d′ is

contained in dk. We are only interested in minimal candidates,

as they can subsume others of higher cardinality. Heuristic

approaches to finding these minimal candidates, which is an

instance of the minimal hitting set problem, thus NP-hard,

include STACCATO [14], SAFARI [15] and MHS2 [16].

2) Candidate Ranking: For each candidate dk, their fault

probability is calculated using the Naı̈ve Bayes rule

Pr(dk | (A, e)) = Pr(dk) ·
∏

i ∈ 1..N

Pr((Ai, ei) | dk)
Pr(Ai)

(1)

Pr(dk) estimates the probability that a candidate, without

further evidence, is responsible for the observed, erroneous

behavior. Typically, candidates of higher cardinality have a

lower prior probability of being faulty, since conditional

independence is assumed throughout the process [11]. The

denominator Pr(Ai) is a normalizing term that is identical

for all candidates. Lastly, Pr((Ai, ei) | dk) is used to bias

the prior probability taking observations from the program

spectrum into account. One approach to computing this term

is to use Maximum Likelihood Estimation (MLE) to maximize

the probability that each component involved in a transaction

i behaves nominally. Further details on the inner workings of

the candidate ranking step are detailed in [11].

B. Measuring Quality of Diagnosis

To measure the accuracy of fault-localization approaches,

the cost of diagnosis Cd metric is often used [10], [11],

[17], [18]. It measures the number of candidates that need

to be inspected until the real faulty candidate is reached,

given that the candidates are being inspected by descending

order of probability.4 A value of 0 for Cd indicates an ideal

diagnostic report where the faulty candidate is at the top of

the ranking and thus no spurious code inspections will occur.

Another common metric is Wasted Effort (or merely Effort),

that normalizes Cd over the total number of components in

the system so that the metric ranges from 0 (optimal value –

no developer time wasted chasing wrong leads) to 1 (worst

value – states that the whole system will be inspected until

the fault is reached) in all cases.

Effort measurements assume perfect fault understanding,

meaning that when the real faulty candidate is inspected, it is

correctly identified as such. This assumption may not always

hold [19], but there are approaches to mitigate it (e.g., [20]).

4Or likelihood score, depending on the fault-localization approach used.
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C. Diagnosability Assessment by Measuring Matrix Density

Previous work [8] has used matrix density (ρ) as a measure

for diagnosability:

ρ =

∑
i,j Aij

N ×M
(2)

The intuition is to find an optimal matrix density such that ev-

ery transaction observed reduces the entropy of the diagnostic

report set R = 〈Pr(dk|(A, e))|dk ∈ D〉. It has been previously

demonstrated that the information gain can be modeled as:

IG(tg) =− Pr(eg = 1) · log2(Pr(eg = 1))

− Pr(eg = 0) · log2(Pr(eg = 0))
(3)

where Pr(eg = 1) is the probability of observing an error

in transaction tg , conversely Pr(eg = 0) is the probability

of observing nominal behavior. Optimal information gain

(IG(tg) = 1) is achieved when Pr(eg = 1) = Pr(eg = 0) =
0.5. With the assumption that transaction activity is normally

distributed, then it follows that a transaction’s average com-

ponent activation rate equals the overall matrix density. Thus,

it can be said that Pr(eg = 1) = ρ, yielding ρ = 0.5 as the

ideal value for diagnosis using SR approaches [8]. Density

was also leveraged by Campos et al. to guide automated test

generation [17]. This work shows that density-guided test-

suites managed to reduce diagnostic effort when compared

to using branch coverage as the fitness function for the

generation.

D. Diagnosability Assessment by Measuring Uniqueness

Baudry et al. propose a diagnosability metric that tracks

the number of dynamic basic blocks in a system [9]. Dy-

namic basic blocks, which other authors also call ambiguity
groups [21], correspond to sets of components that exhibit

the same involvement pattern across the entire test-suite. For

diagnosing a system, the more ambiguity groups there are, the

less accurate the diagnostic report can be, because one cannot

distinguish among components in a given ambiguity group,

as they all show the same involvement pattern across every

transaction.

This metric, that we call uniqueness, can be used to ensure

that the test-suite is able to break as many ambiguity groups as

possible. A matrix A decomposes the system into a partition

G = g1, g2, ..., gL of subsets of all components with identical

columns in A. Then, measuring the uniqueness U of a system

can be done by

U =
|G|
M

(4)

When U = 1/M all components belong to the same ambi-

guity group. When U = 1, all components can be uniquely

identified.

IV. DIAGNOSABILITY METRIC

This section presents the DDU metric. First, we detail

a method for quantifying the exhaustiveness of a test suite

using the notion of entropy, motivated by the optimal diag-

nosability scenario. Although we use SR in our motivation,

the entropy approach can be applied to other spectrum-based

fault localization strategies as well, because it focuses on

isolating diagnostic candidates. We show that entropy may

not be suitable in practice due to the number of transactions

needed to reach an ideal spectrum. Finally, we propose the

DDU metric as a relaxed alternative, based on previous work

that uses density as an indicator for diagnosability.

A. Activity Matrix Entropy

To maximize the effectiveness of SR approaches, the ideal

activity matrix is one that contains every combination of

component activations, since it follows that every possible fault

candidate in the system is exercised. A metric that accurately

captures this exhaustiveness is entropy – the measure of

uncertainty in a random variable. Shannon Entropy [22] is

given by

H(X) = −
∑

i

P (xi) · log2(P (xi)) (5)

in this context, X is the set of unique transaction activities

in the spectrum matrix. P (xi) is the probability of selecting

a transaction t ∈ T and it having the same activity pattern

as xi. When H(X) is maximal, it means that all possible

transactions are present in the spectrum. For a system with M
components, maximum entropy is M shannons (i.e., number

of bits required to represent the test suite). Therefore, we can

normalize it to H(X)/M . Matrices with a normalized entropy

of 1.0 would, then, be able to efficiently diagnose any fault

(single or multiple) provided that the error detection oracles

that classify transactions as faulty are sufficiently accurate.

The main downside of using entropy as a measure of

diagnosability is that one would need 2M − 1 tests to achieve

this ideal spectrum (and thus a normalized entropy of 1.0).

In practice, some transaction activities are impossible to be

generated, either due to the system’s topology or due to the

existence of ambiguity groups: a set of components that always

exhibit the same activity pattern.5

B. DDU

Our DDU is detailed next. Its goal is to capture several

structural properties of the activity matrix that make it ideal

for diagnosing, while avoiding the combinatorial explosion

of the optimal entropy approach. We start by considering

activity matrix density as the basis for our approach, and then

propose the diversity and uniqueness enhancements so that the

impractical assumptions of the base approach can be lifted.

1) Density: The ρ metric captures the density of a system.

Its ideal value for minimizing the diagnostic report entropy is

0.5, as shown in the work of González-Sanchez et al. [8]. It

is also straightforward to show the optimality of the value of

0.5 for the density measurement by induction. Suppose that

we have an activity matrix A1, which is optimal for diagnosis.

Suppose also that we want to add a new component c′ to our

system. To preserve optimality, we would need to repeat the

5An example of an ambiguity group is the set of statements in a basic
block.
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optimal sub-matrix A1 both when c′ is active and when it

is inactive. Therefore, c′ involvement rate will be 0.5. Since

ρ = 0.5 is our optimal target value, we propose a normalized

metric ρ′ where its upper bound (1.0) is the actual target

ρ′ = 1− |1− 2 · ρ| (6)

and the lower bound 0 means that every cell in the matrix

contains the same value. However, this optimal target is only

valid assuming that all transactions in the activity matrix are

distinct. Such assumption is not encoded in the metric itself

(see Equation (2)). This means that a matrix with no diversity

(depicted in the example from Figure 2a) is able to reach the

ideal value for the ρ′ metric.

c1 c2 c3 c4
t1 1 1 0 0
t2 1 1 0 0
t3 1 1 0 0
t4 1 1 0 0

(a) No Test Diversity.
ρ′ = 1.0 G = 0.0

c1 c2 c3 c4
t1 1 1 0 0
t2 0 0 1 1
t3 1 1 1 0
t4 0 0 0 1

(b) Test Diversity.
ρ′ = 1.0 G = 1.0

Fig. 2: Impact of diversity on ρ′ and G.

2) Diversity: The first enhancement we propose to the ρ′

analysis is to encode a check for test diversity. In a diagnostic

sense, the advantage of having considerable variety in the

recorded transactions is related to the fact that each diagnostic

candidate’s posterior probabilities of being faulty are updated

with each observed transaction. If a given transaction is failing,

it means that the diagnostic candidates whose components are

active in that transaction are further indicted as being faulty

– so their fault probability will increase. Conversely, if the

transaction is passing, then it means that the candidates that

are active in the transaction will be further exonerated from

being faulty – and their fault probability will decrease. Having

such diversity means that more diagnostic candidates will have

their fault probabilities updated so that they are consistent with

the observations, leading to a more accurate representation of

the state of the system.

We use the Gini-Simpson index to measure diversity

(G) [23]. The G metric computes the probability of two

elements selected at random being of different kinds:

G = 1−
∑

n× (n− 1)

N × (N − 1)
(7)

where n is the number of tests that share the same activity.

When G = 1, every test has a different activity pattern. When

G = 0, all tests have equal activity. Figures 2a and 2b depict

examples of repeated and diverse test cases, respectively. We

can see that the ρ′ metric by itself cannot distinguish between

the two matrices, as they have the same density. If we also

account for diversity, the two matrices can be distinguished.

3) Uniqueness: The second extension we propose has to do

with checking for ambiguity in component activity patterns. If

two or more components are ambiguous, like components c1
and c2 from the example in Figure 3a, then they form an

c1 c2 c3 c4
t1 1 1 0 0
t2 0 0 1 1
t3 1 1 1 0
t4 0 0 0 1

(a) Component Ambiguity.
ρ′ = 1.0 G = 1.0

U = 0.75

c1 c2 c3 c4
t1 1 1 0 0
t2 0 1 1 0
t3 1 0 1 1
t4 0 0 0 1

(b) No Component Ambiguity.
ρ′ = 1.0 G = 1.0

U = 1.0
Fig. 3: Impact of component ambiguity on ρ′, G and U .

ambiguity group (see Section III-D), and it is impossible to

distinguish between these components to provide a minimal

diagnosis if tests t1 and t3 fail. As finding potential diagnostic

candidates can be reduced to a set-cover/minimal-hitting-set

problem, then two things may happen as a result of break-

ing an ambiguity group and having those components being

tested independently. One is that some diagnostic candidates

containing components from that ambiguity group can become

inconsistent with the observations and thus would be removed

from the set of possible diagnostic candidates, improving the

tractability of the bayesian update step of the SR approach.

The other is that diagnostic candidates will be of lower

cardinality, thus improving our confidence in the accuracy of

diagnosis. This happens because, as faults are considered to be

independent, then the probability of having multiple faults as

the explanation for the system’s behavior is generally several

orders of magnitude lower when compared to low-cardinality

candidates.6

We use a check for uniqueness (U) as described in Equa-

tion (4) to quantify ambiguity. Uniqueness is also used by

Baudry et al. to measure diagnosability [9]. However, we argue

that uniqueness alone does not provide sufficient insight into

the suite’s diagnostic ability. Particularly, it does not guarantee

that component activations are combined in different ways to

further exonerate or indict multiple-fault candidates. In that

aspect, information regarding the diversity of a suite provides

further insight.
4) Combining Diagnostic Predictors: Our last step is to

provide a relaxed version of entropy (which we call DDU)

by combining the three aforementioned metrics that assess the

key properties (i.e., necessary and sufficient) a coverage matrix

ought to have to ensure proper diagnosability:

DDU = ρ′ × G × U (8)

and its ideal value is 1.0. We reduce ρ′, G and U into a single

value by means of multiplication. The reason being that since

in each term the value of 0.0 corresponds to the worst-case

and 1.0 to the ideal case, we are able to leverage properties

of multiplication such as multiplicative identity and the zero

property.

V. EMPIRICAL EVALUATION

To evaluate the proposed metric with regard to its ability

to diagnose faults, we aim to address the following research

6Thus having to be supported by many observations for our confidence on
that diagnosis to increase.
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questions:

RQ1: Is the DDU metric more accurate than the state-of-

the-art in diagnosability assessment?

RQ2: How close does the DDU metric come to the (ideal

yet intractable) full entropy?

RQ3: Does optimizing a test-suite with regard to DDU

result in better diagnosability than optimizing adequacy

metrics such as branch-coverage in traditional scenarios?

RQ1 asks if there is a benefit in utilizing the proposed

approach as opposed to density and uniqueness – which have

been used in related work. RQ2 is concerned with assessing

if DDU shares a statistical relationship with entropy – the

measurement whose maximal value describes an optimal (yet

intractable and impractical) coverage matrix. RQ3 asks if us-

ing DDU as an indicator of the diagnostic ability of a test-suite

is more accurate than using standard adequacy measurements

like branch-coverage in a setting with real faults.

A. Experimental Setup

Our empirical evaluation compares DDU to several metrics

in use today. To effectively compare the diagnosability of test-

suites of a given program that maximize a specific metric, we

leverage a test-generation approach. EVOSUITE7 is a tool that

employs Search-based Software Testing (SST) approaches to

create new test cases. It applies Genetic Algorithms (GAs)

to minimize a fitness function which describes the distance

to an optimal solution. The metrics to be compared are

DDU – our proposed measurement; density and uniqueness to

be able to answer RQ1; entropy to answer RQ2 and lastly

branch-coverage for RQ3. These metrics were encoded as

fitness functions in the EVOSUITE framework. As the GA in

EVOSUITE tries to minimize the value of a function over a

test suite TS, the fitness functions for each metric M are as

follows

fM(TS) = |OM −M(TS)| (9)

where OM is the optimal value of metric M (e.g., 1.0 for the

case of branch-coverage, and 0.5 for density), and M(TS) is

the result of applying metric M to test suite TS. To account

for the randomness of EVOSUITE’s GA, we repeated each test-

suite generation experiment 10 times. EVOSUITE’s maximum

search time budget was set to 600 seconds, which follows the

setup of previous studies also using the tool [17].

EVOSUITE by itself does not generate fault-finding oracles
– otherwise, a model of correct behavior would have to be

provided. Instead, it creates assertions based on static and

dynamic analyses of the project’s source code. This means

that if we run the generated test-suite against the same source

7EVOSUITE tool is available at http://www.evosuite.org. Version 1.0.2 was
used for experiments (accessed February 2017).

code used for said generation, all tests will pass (provided the

code is deterministic8). Thus, if the source code submitted for

test-generation contains faults, no generated test oracle will

expose them.

For the experiments comparing with the state-of-the-art and

the idealistic approach (to answer RQ1 and RQ2, respec-

tively), we need a controlled environment so that oracle quality

(which in itself is an orthogonal factor) does not affect results.

Therefore, the experiment described in Section V-B mutates

the program spectrum of generated test-suites to contain

seeded faults and seeded failing tests. In each experiment a

set of components were considered as faulty, and tests that

exercise them were set as failing according to an oracle quality
probability – in our experiments, the oracle quality is 0.75,

meaning that whenever a faulty component is involved in a

test, there is a 75% chance that the test will be set as failing.

The chosen value is a compromise between perfect error

detection (i.e., oracle quality of 1) and essentially random error

detection (oracle quality of 0.5) This fault injection approach

is common practice among controlled, theoretical evaluations

of spectrum-based diagnosis [8], [24].

For assessing the applicability in real world scenarios and

to answer RQ3, we need real life bugs and fixes. Therefore,

in Section V-C we make use of DEFECTS4J9 – a software

fault catalog – to generate test-suites from fixed versions of

a program and then gather program spectra by testing the

corresponding faulty version.

Spectrum gathering was performed at the branch granularity

for both experiments, so every component in our subjects’

coverage matrices corresponds to a method branch – this

way we can fairly compare our approach to branch coverage.

Each program spectrum gathered in the previous step is then

diagnosed using the automated diagnosis tool CROWBAR.10

This tool implements the Spectrum-based Reasoning approach

described in Section III-A, and generates a ranked list of

diagnostic candidates for the observed failures.

For a given subject program, to compare the diagnosability

of a test-suite generated by the DDU criterion with the one

generated by a criterion C, we use the following metric

ΔEffort(C) = EffortC − EffortDDU (10)

where EffortDDU is the effort to diagnose using the test-

suite generated with the DDU criterion and EffortC is the

effort to diagnose with the test suite by maximizing some

criterion C. Effort takes as input the ranked list of diagnostic

candidates from CROWBAR and estimates quality of diagnosis

as described in Section III-B. The ΔEffort(C) metric ranges

from −1 to 1. Positive values of ΔEffort(C) mean that the

bug is found faster in diagnoses that use the DDU generated

8EVOSUITE also tries to replicate the state of the environment at each test-
run so that even some non-deterministic functionality such as random number
generation can be tested.

9DEFECTS4J tool is available at https://github.com/rjust/defects4j. Version
1.0.1 was used for experiments (accessed February 2017).

10CROWBAR tool is available at https://github.com/TQRG/
crowbar-maven-plugin (accessed February 2017).
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Fig. 4: Kernel density estimation of seeded fault experiment. Entropy generation criterion shows similar diagnostic accuracy when compared DDU. The
remaining generation criteria exhibit worse diagnostic performance than DDU.

test suite. Negative values mean that the faulty component is

ranked higher in the C-generated test-suite than the DDU one,

thus requiring less spurious diagnostic inspections. ΔEffort(C)
of value 0 means that the faulty component is ranked with the

same priority in both test generations.

We make use of kernel density estimation plots to show the

ΔEffort(C) values in Figures 4 and 5. Such plots estimate the

probability density function of a variable, i.e., they describe the

relative likelihood (y-axis) for a random variable (ΔEffort(C) in

our case) to take on a given value (x-axis). In our experiments,

the higher the density value at a certain value in the x-axis, the

more instances with ΔEffort(C) near that value were observed.

Note that the observed data is shown as a rug plot, with tick

marks along the x-axis (reminiscent of the tassels on a rug).

B. Diagnosing Seeded Faults

Our first experiment attempts to answer RQ1 and RQ2
by generating test-suites and seeding faults in their spectra

in a controlled way. We same set of subjects as empirical

evaluations from related work [17]. Namely, we use the open-

source projects Apache Commons-Codec, Apache Commons-

Compress, Apache Commons-Math and JodaTime. For each

subject, we generate test-suites that optimize DDU, branch-

coverage, entropy, density, and uniqueness. In total, 1050

program spectra were generated and diagnosed.

Experimental results are shown in Figure 4. When we

consider the entropy generation, we can say that the resulting

test-suites are very similar in terms of diagnosability compared

to DDU, since ΔEffort(H) is denser at the origin. For the re-

maining generation criteria, their respective ΔEffort probability

masses are shifted to ΔEffort > 0, so their diagnostic reports

perform worse at diagnosing the faults than when DDU is

utilized. In fact, our inspection of experimental results reveals

that, when optimizing branch-coverage, 78% of scenarios

showed lower diagnostic accuracy when compared to DDU.

For both the density-optimized and uniqueness-optimized test

generations – which are the state-of-the-art measurements

for test-suite diagnosability – this figure rises to 100% of

scenarios.

TABLE I: Metric results for the seeded faults experiment.

Median / Size / Correlation / Correlation p-value
Subject

H DDU ρ U BC
2.65×10−2 0.620 0.476 0.669 0.910

177 170 126 81 177

N.A. 0.957 0.658 0.902 0.793

Apache
Commons-

Codec
N.A. 2.71×10−3 1.98×10−2 3.58×10−2 2.08×10−3

4.66×10−2 0.962 0.510 0.669 0.825

108 108 30.5 29.5 126

N.A. 0.999 0.999 0.873 0.968

Apache
Commons-
Compress

N.A. 1.08×10−6 7.51×10−7 1.47×10−3 9.62×10−4
4.36×10−2 0.818 0.424 0.659 0.922

497 467 402 246 528.5

N.A. 0.989 0.905 0.725 0.885

Apache
Commons-

Math
N.A. 4.68×10−4 1.85×10−2 4.79×10−2 2.31×10−2

1.580×10−2 0.582 0.369 0.417 0.790

265 265 267 171 267

N.A. 0.976 0.674 0.921 0.654
JodaTime

N.A. 8.54×10−4 1.60×10−2 2.59×10−2 2.09×10−2

We show in Table I the dominant metric median values

for each generation criterion along with the median number

of tests generated. By dominant metric we mean the metric

which that particular test generation was trying to optimize.

Along with the median value we also show (where available)

the metric’s Pearson correlation with entropy (denoted by rH )

and the p-value of the correlation. With 95% confidence, we

can say that the correlation values shown are statistically

significant. DDU exhibits a high correlation with entropy,

having rH > 0.95 for all subjects. In all other generation

criteria, the correlation with entropy fluctuates considerably

between subjects. Also, note that for both ρ and branch-

coverage criteria, their dominant mean values approach the

theoretical optima (at 0.5 and 1.0, respectively) while ΔEffort

still shows that DDU test generation was able to produce suites

with better diagnostic accuracy.

Revisiting the first research question:

RQ1: Is the DDU metric more accurate than the state-of-

the-art in diagnosability assessment?
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A: There is a clear benefit in optimizing a suite with regard to

DDU compared to density if we consider the effort of finding

faults in a system. This is evidenced by the fact that 100%
of scenarios in our seeded fault experiment show improved

diagnostic accuracy when using DDU when compared to the

state-of-the-art density and uniqueness measurements.

If we look at the second research question:

RQ2: How close does the DDU metric come to the (ideal

yet intractable) full entropy?

A: Table I shows a strong correlation between entropy and

DDU, with a Pearson correlation value above 0.95 for all

subjects. Correlation of other metrics is much lower and varies

greatly across subjects. Thus, we can conclude that DDU

closely captures the characteristics of entropy.

The reader might then pose the question: if maximal entropy

does indeed correspond to the optimal coverage matrix, why

should one avoid using it as the diagnosability metric? While

we agree that in automated test generation settings entropy can

be plugged as the fitness function to optimize,11 for manual

test generation entropy will yield very small values for any

complex system, as one can see from Table I. In fact, for a

system composed of only 30 components, the number of tests

needed to reach entropy of 1.0 surpasses the billion mark.

This makes it difficult for developers to leverage information

out of their test-suite’s entropy value to gauge when can one

confidently stop writing further tests.

C. Diagnosing Real Faults

We used the DEFECTS4J database [25] for sourcing the

experimental subjects. DEFECTS4J is a database and frame-

work that contains 357 real software bugs from 5 open source

projects. For each bug, the framework provides faulty and fixed

versions of the program, a test suite exposing the bug, and the

fault location in the code. The idea behind DEFECTS4J is to

allow for reproducible research in software testing using real-

world examples of bugs, rather than using the more common

hand-seeded faults or mutants. In our evaluation, we generate

test suites for each of DEFECTS4J’s 357 catalogued bugs,

using both branch-coverage and DDU as EVOSUITE’s fitness

functions, and then compare the two generated suites with

regard to their diagnosability and adequacy. The experiments’

methodology is as follows. For every bug in DEFECTS4J’s

catalog, we use EVOSUITE to generate test suites for the fixed

version of the program. The test suites are executed against

the faulty program versions. This means that any test failure

is due to the bug – which is the delta between the faulty and

fixed program versions.

Out of the 357 catalogued bugs in DEFECTS4J, not all were

considered for analysis. Scenarios were discarded due to the

following reasons:

• EVOSUITE returned an empty suite;

11Because tools like EVOSUITE can be configured with a time budget as
another stopping criteria.

TABLE II: DEFECTS4J Projects.

Identifier Project Name # Scenarios Considered
1, 4, 6, 8–11, 13–15, 18, 20,Chart JFreechart 26
22, 24, 26

3, 4, 7, 9, 12, 14–17, 19, 20–28, 30

33–35, 39, 43, 44, 46–49, 51, 52

54–56, 58, 63, 65, 66, 67, 69, 71–74

76–78, 82, 85, 87, 107, 108, 110–113

115, 116, 118, 119, 124, 126, 127,

Closure Closure
Compiler

133

129–132

1–7, 9–14, 16, 17, 19, 21, 22,

24–28, 30, 31, 33, 36, 38–42,Lang Apache
Commons-Lang

65
46, 47, 49, 50–57, 59–61, 65

1–10, 14–16, 18–20, 24–27, 29,

30, 32, 34, 35, 37–42, 44–46,Math Apache
Commons-Math

106
48–56, 100, 101, 103, 105, 106

Time JodaTime 27 6, 8, 12, 15, 21, 22, 26, 27

TABLE III: Metric medians and statistical tests.

Branch-Coverage DDU
Generation Generation

Branch
Coverage

0.85 0.75

DDU 0.10 0.42

Suite
Size

291 374

Effort 0.31 0.10

W = 0.92 W = 0.85
Shapiro-Wilk

p-value = 1.70×10−8 p-value = 1.05×10−12
Wilcoxon Z = 2335.0

Signed-rank p-value = 3.50×10−13

• The generated suite did not compile or produced a

runtime error;

• No failing tests were present in either DDU or branch-

coverage criteria for generating test suites.

In total, 171 scenarios were filtered out. The remaining 186

listed in Table II are fit for analysis and their results are used

throughout this section.

Experimental results are shown in Figure 5. Results are

shown per-subject. We can see that for every subject in the

DEFECTS4J catalog, all their estimated probability density

funtions are shifted towards ΔEffort(BC) > 0, meaning that the

majority of instances have better diagnostic accuracy when test

generation optimizes DDU. In fact, our experiments reveal that

77% of scenarios (144 in total) yield a positive ΔEffort(BC).
We performed statistical tests to assess whether the gathered

metrics yielded statistically significant results. Table III shows

the relevant statistics. The first four rows show the median

values for branch-coverage, DDU, generated suite size and

diagnosis effort for both EVOSUITE test generations. As

to be expected, the median branch-coverage is higher in

the branch-coverage-maximizing generation. Conversely, the

DDU criterion yields the higher DDU. Results in the effort row

corroborate our observations from Figure 5 – the test suites

optimizing DDU take on average less effort to diagnose the

fault. In fact, our results show that the effort reduction when

considering DDU over branch-coverage is 34% on average.

However, this fact alone does not guarantee that the results are
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Fig. 5: Kernel density estimation of the ΔEffort(BC) metric for DEFECTS4J subjects. 77% of instances have a positive ΔEffort(BC), meaning that branch-
coverage generations perform worse than DDU generations.

significant, which prompted us to perform statistical tests. The

first test performed was the Shapiro-Wilk test for normality of

effort data for both generations. The results, which can be seen

in the fourth row of Table III, tell us that the distributions are

not normal, with confidence of 99%.

Given that the effort data is not normally distributed and

that each observation is paired, we use the non-parametrical

statistical hypothesis test Wilcoxon signed-rank. Our null-

hypothesis is that the median difference between the two ob-

servations (i.e., ΔEffort) is zero. The fifth row in Table III shows

the resulting Z statistic and p-value. With 99% confidence, we

can refute the null-hypothesis. Revisiting RQ3:

RQ3: Does optimizing a test-suite with regard to DDU

result in better diagnosability than optimizing adequacy

metrics such as branch-coverage in traditional scenarios?

A: Since the median effort in the DDU generation is lower –

the reduction amounting to 34% on average – we can say that

optimizing for DDU produces better, statistically significant,

diagnoses when compared to test suites that optimize for

branch-coverage.

VI. DISCUSSION

We discuss the practical implications of our findings from

the previous section, as well as outline the potential threats to

their validity.

A. Practical Implications

DDU was shown to be useful for evaluating the quality of

a test-suite. But what are the practical implications of this

finding? We outline such assessments next.

• We argue that the DDU analysis can suggest an ideal

balance between unit tests and system tests (i.e., when

DDU reaches its optimal value) due to its density term.

We are then able to compare the balanced suites to ones

created following testing practices currently established

at software development companies. For instance, Google

suggests a 70%/20%/10% split between unit, system and

end-to-end tests in a suite.12 Is this split indeed ideal in

terms of diagnostic accuracy? We believe a DDU analysis

can provide guidance as to what the answer is.

• We expect the DDU analysis to be used as the first step

of a test design strategy that aims to increase diagnostic

accuracy of a suite. For that, we envision that new test

patterns that focus on optimizing diagnosability will need

to be researched and incorporated in established test

strategy corpora such as [26].

• In coverage metrics, it is straightforward to visualize

the analysis of a system so that users know what code

components were left untested, highlighting where to

focus when writing new test cases. Is there a way to

visualize DDU analysis in a similar way? We envision

that visualization approaches for program comprehension,

such as EXTRAVIS [27] and PANGOLIN [28], will consti-

tute a solid starting point for a study on visual, interactive

and actionable ways to convey DDU information.

• We show that DDU depicts the diagnosability of

spectrum-based fault localization approaches. However,

our intuition is that DDU is general and applies to any

diagnosis technique that uses a failing test suite as the

basis for locating faults. We plan to investigate this

hypothesis as future work.

• DDU provides an assessment of the diagnostic effective-

ness of a given test suite. It remains to be seen if that can

also be said for assessing the fault finding effectiveness,

which is also a good avenue for future work. In the

meantime we consider our metric to be a complement to

adequacy metrics, and envision that testers will employ a

hybrid approach that relies on branch coverage and DDU

to assess adequacy and diagnosability, respectively.

B. Threats to Validity
The main threats to validity of this study are related to

external validity. When choosing the projects for our study,

our aim was to opt for projects that resemble a general large-

sized application being worked on by several people. To reduce

12Google Testing blog: Just Say No to More End-to-End Tests.
http://goo.gl/S5HhZ7 (accessed February 2017).
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selection bias and facilitate the comparison of our results, we

decided to use the real-world scenarios described in the DE-

FECTS4J database. Another threat to external validity relates

to the choice of test suites generated by EVOSUITE. Additional

research is needed to see how the metric behaves both with

different test-generation frameworks (such as RANDOOP [29])

and with hand-written test cases.

A potential threat to construct validity relates to the choice

of effort as indicator for diagnosability. However, as argued

in Section III-B this choice reflects the effort that a program-

mer with minimal knowledge about the system would require

to effectively pinpoint all the faults that explain the observed

failures.

The main threat to internal validity lies in the complexity

of several of the tools used in our experiments, most notably

the EVOSUITE test generator and our diagnosis tool.

VII. RELATED WORK

Related work in the assessment of the diagnosability of a

test suite has focused on three key areas: test-suite minimiza-

tion and generation strategies, and assessing oracle quality.

The topic of test-suite minimization is a prime candidate for

our approach, since it has been shown that there is a tradeoff

between reducing tests and the suite’s fault localization effec-

tiveness [30]. In minimization settings, one tries to reduce the

number of tests (and thus its overall running time) while still

ensuring that an adequacy criterion – usually branch coverage

– is not greatly affected. Current minimization strategies can

often improve the diversity score of a coverage matrix by

removing tests with identical coverage patterns [31] at the cost

of overlooking density and uniqueness, which we argue are

of key importance to assess diagnosability. The uniqueness

property is also exploited by Xuan et al., with a test-case
purification approach that separates a test-case into multiple

smaller tests [32]. This approach overlooks the fact that density

will decrease, along with the ability to diagnose a multiple-

fault scenario.

Current test-suite minimization frameworks that take ad-

equacy criteria into account could also benefit from our

approach to preserve diagnostic accuracy if a multi-objective

optimization (such as, e.g., [33], [34]) to also account for DDU

is employed. This paves an interesting avenue for future work.

On the test-suite generation front, previous work has also

started considering diagnosability as a generation criterion.

The work of Campos et al., which generated tests that would

converge towards coverage matrix densities of 0.5 [17], has

paved the way for creating improved measurements like DDU.

Checks for diversity and uniqueness were not explicitly added,

and we show when we answer RQ1 in Section V that the

density criterion produces results that are less diagnostically

accurate. Another approach to suite generation is one by

Artzi et al., that proposes an online approach that leverages

concolic analysis to generate tests that are similar to existing

failing tests in a system [35].

Lastly, we highlight some of the work targeting diagnosabil-

ity by improving test oracle accuracy. Schuler et al. propose

checked coverage as a way of assessing oracle quality [36],

[37]. Checked coverage tries to gauge whether the computed

results from a test are actually being checked by the oracle.

Wang et al. have proposed a way of addressing coincidental
correctness – when a fault is executed but no failure is

detected – by analyzing data and control-flow patterns [38].

Just et al. investigated the use of mutants to estimate oracle

quality, and compared their performance against the use of real

faults [39]. Their results suggest that a suite’s mutation score

is a better predictor of fault detection than code coverage. We

consider this topic of assessing and improving oracle quality of

critical importance towards test-suite diagnosability, but also

orthogonal to DDU in that the two would complement each

other.

VIII. CONCLUSION

This paper proposes a new metric to assess a test suite’s

diagnostic ability to detect fault using spectrum-based ap-

proaches given that there are failing tests. The intuition is that a

test suite where each test is diverse in that it exercises as many

combinations of components as possible is more exhaustive

than one that merely focuses on maximizing code coverage.

In fact, a variable number of covered elements is crucial for

good fault isolation when tests fail, as it helps techniques like

Spectrum-based Reasoning indict and exonerate both single-

component faults and multiple-component faults.

The metric, coined DDU, tries to emulate the properties

of calculating per-test coverage entropy, to ensure accurate

diagnosability. Ideal diagnostic ability can be proved to exist

when a suite reaches maximum entropy, however, the number

of tests required to achieve that is impractical as the number

of components in the system increases. DDU focuses on three

particular properties of entropy: a) ensures that test cases are

diverse; b) ensures that there are no ambiguous components;

c) ensures that there is a proportional number of tests of

distinct granularity; while still ensuring tractability.

An experiment was performed to assess DDU as a metric

for diagnosability. It used the EVOSUITE tool to generate test

suites for faulty programs from the DEFECTS4J catalog that

would optimize different metrics. We observed a statistically

significant increase in diagnostic performance of about 34%

when locating faults by optimizing DDU compared to branch-

coverage.
DDU paves the way for a more comprehensive use of test-

suites, making them not only a great tool for error detection
and requirements elicitation, but also an effective diagnostic
aid when failures arise.

SOFTWARE ARTIFACTS

We provide a fork of EVOSUITE 1.0.2 implementing every generation criterion
used in Section V at https://github.com/aperez/evosuite. A MAVEN plugin for
determining the DDU value for Java projects is available at https://github.
com/aperez/ddu-maven-plugin.
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