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E N T R O P Y AND R I V E R MEANDER PLANFORM 

A D R I A A N J. TEULING 

MSc student, Wageningen University, The Netherlands 

ABSTRACT: This study departs from the hypothesis that the often striifing geometric 
similarity and regularity of meanders is the result of the second law of thermodynamics 
applied to open dissipative systems. It is argued that along a meandering river the continuous 
production of entropy is as low and as uniform as possible. An expression of entropy 
production in a moderately meandering river is derived. A dimensioniess form of Odgaard's 
Meander flow model (1986a) is used to evaluate this expression along different meander 
bends described by the class of third order sine-generated curves. The results show a 
minimum variance of entropy production for a fattened curve with upvalley skewing, 
indicating that meander asymmetry described by Carson and Lapointe (1983) is in 
correspondence with the Theory of minimum variance (Langbein and Leopold, 1966). 

It is pleasant to have been to a place the way a river went. 
- Henry David Thoreau (1817-1862) 

I . INTRODUCTION 

The typical winding path of lowland rivers raised the 

interest of many scientists, amongst whom famous 

scientists as Lord Kelvin (1876) and Einstein (1926). This 

winding, named meandering after the river Büyülanenderes 

in Turkey, is shown in Figure 1. The absence of straight 

reaches in natural rivers indicates that meandering is 

inherent to the flow processes in a river. Although 

extensive research throughout the past decades has lead to a 

good understanding of these processes, one of the most 

intriguing questions is still unanswered, namely why do 

different meanders often exhibit the same shape regardless 

of scale? In this paper a physical explanation is proposed. 

Figure 1. Meandering river (source unknown). 

Meandering is not restricted to natural rivers or fixed 

boundaries. Meanders have also been reported in laboratory 

conditions (Langbein and I^opold, 1966, Schumm et al., 

1972, Smith, 1998), ocean currents (Leopold, 1995, his 

Figure 4.5, Ikeda et a l , 1989), water rivulets on glass plates 

(Mizumura and Yamasaka, 1997), supraglacial streams 

(Ferguson, 1973, Dozier, 1976), solution channels in 

limestone (Jennings, 1972, p. 45), density current (Leopold, 

1995, his Figure 4.6) and even in lava channels on Venus 

(Komatsu and Baker, 1994). A l l these meanders show 

remarkable geometric similarity over a wide range of scales 

(Figure 2, I^opold, 1995, his Figure 4.2, Davy and Davies, 

1979, their Figure 1). This suggests that the typical meander 

planform is the result of a physical principle. In this paper it 

wi l l be shown that the typical meander planform is the 

result ofthe thermodynamic principle of maximum entropy. 

In the following section a review is given of the existing 

planform theories and at the same time some basic terms 

wil l be introduced. In Section I I I the consequences of the 

maximum entropy principle for a river system wil l be 

discussed and an expression of entropy production in a 

meandering river is derived. The velocity gradients in this 

expression are determined with a flow model for 

meandering rivers described in Section IV . The results are 

presented in Section V and discussed in Section V I . 

Figure 2. Examples of river meanders of different scale and 
sinuosity, (a) Mississippi River at Greenville, Miss., USA, before 



the artificial cutoffs (redrawn after Langbein and Leopold, 1966), 
(b) White River at Edwardsport, Ind., USA (redrawn after Brice, 
1974), (c) Laboratory meander (redrawn after Langbein and 
Leopold, 1966). In all cases flow is from left to right. Shade 
indicates bars (b) or shoal areas (c). 

I I . REVIEW OF PLANFORM THEORIES 

In 1869, Fargue made one of the first attempts known by 

the author to describe meander planform. He argued that 

rivers have one essential property, namely "la continuité de 

la variation de la courbure" (the continuity of the change in 

curvature) and that the curvature could thus be well 

described by a cosine function of the phase along the river 

(Ramant, 1891, p. 318). Unfortunately, in spite of the 

similarities with later theories, his findings stayed largely 

unknown. As part of a research on meander belts, Jefferson 

(1902) argued that meandering is the result of a 

minimization of energy, and that "maturely meandering 

streams may be regarded as finding their slope too steep". 

This imphcates that rivers should develop towards a state of 

minimum slope and thus towards a minimum dissipation of 

energy, in correspondence to later findings. 

In the 1960's Langbein and Leopold made important 

progress in the research on meandering. They derived many 

empirical relations for meandering rivers. One of the most 

used is the almost linear relationship between the width w 

of a river and the meander wavelength X (Hey, 1976, see 

also Figure 3): 

A = 10.9w''" feet (1) 

Davy and Davies (1979) showed this relationship to be 

valid over seven orders of magnitude for different types of 

meanders. From these relations they showed that the ratio 

of minimum radius of curvature to width is almost constant 

for any meander (namely 2.4), roughly corresponding to the 

same ratio in bended pipes for which minimum energy 

losses occur. Langbein and Leopold (1966) also found that 

the path of a meander was very similar to the most probable 

path of a random walk of given length between two fixed 

points and therefore concluded that the meander path must 

somehow reflect a state of maximum likehhood. The most 

probable path for a random walk can be well described by a 

sine-generated curve (Langbein and Leopold, 1966), a 

curve in which © ( 5 ) , the angle between the tangent to the 

curve and the downvalley ;t-axis, is a function of the phase 

^ along the curve: 

@{s) = @gCos(/> (2) 

in which = 2ns IL with s the coordinate along the curve 

and L the meanderlength measured along the curve; ©,, is 

the starting angle at i = 0 (see Figure 3). An example of a 

sine-generated curve is given in Figure 3. The sine-

generated curve has another important property, namely it 

minimizes the sum of the squares of the changes in 

direction. This was the basis of the so-called Theory of 

minimum variance, stating that meanders are characterized 

by a minimum variance not only of angular deflection but 

also in hydrauhc properties. Leopold and Langbein (1966) 

also argued that the Theory of minimum variance should 

perhaps be interpreted as a strive to uniformity in the rate of 

energy expenditure, but they provided no prove for this 

hypothesis. This imphcates that the most probable path of a 

meander is the result of flow processes and is not 

necessarily a sine-generated curve, but this implication was 

never noted. 

Figure 3. Sine-generated curve and definition of parameters. 

In spite of the elegance of the Theory of minimum variance, 

the sine-generated curve proved to be an oversimphfication 

of the meander planform, for the theory did not account for 

the two most important features in meandering rivers: 

namely bed topology (the bar-deep pool sequence) and 

heUcal motion. Though the sine-generated curve is still 

widely used to describe meander planform, Carson and 

Lapointe (1983) concluded after a statistical analysis of a 

large number of meandering rivers that the most probable 

meander bends possess two types of asymmetry, namely a 

delayed inflection and an upvalley skew in the meander 

loop, and that "the Theory of minimum variance should 

thus be abandoned". Based on the work of Ikeda et al. 

(1981) and Parker et al. (1982), Parker et al. (1983) 

provided a theoretical basis for the observed asymmetry in 

high amplitude meanders. They combined the dynamic 

description of flow in bends with a kinematic description of 

bank erosion, which resulted in the formulation of a more 

general function to describe meander planform. This 

function add skewing and fattening to the curve given by 

Equation 2: 

© ( ^ ) = ©0 cos ^ - ©0 ' ( c o s 3(/) + sin 3^) (3) 

in which Cj and are parameters defining the amount of 

fattening respectively skewing of the sine-generated curve 

of equation 2. Different combinations of these parameters 

lead to a wide range of curves, frorn nearly sinuous to 
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circular or parabolic (see Figure 4). Parker et al. (1983) 

named this curve the "Kinoshita curve", but here the name 

third order sine-generated curve as used by Mizumura and 

Yamasaka (1997) wi l l be used. Parker et al. (1983) found a 

curve with a negative fattening and upvalley skewing to 

best describe the "ideal state" of a meander. 

Figure 4. First order sine-generated curve compared with third 
order sine-generated curves of the same sinuosity, having different 
combinations of the fattening and skewing parameters. 

The mechanistic bend equation used by Parker et al. (1983) 

formed the basis of several simulation models for 

meandering rivers (Howard and Knutson, 1984, Crosato, 

1990, Sun et a l , 1996, 2001a, 2001b, Meakin et al., 1996). 

Other models have only recently been developed (Lancaster 

and Bras, 2002), illustrating the still existing need to fully 

understand the process of meandering. Although these 

models are capable of simulating large scale meandering 

behavior, they do not offer a fundamental explanation for 

the characteristic planform of meandering rivers. 

Little research has been done on the large-scale pattern of 

meandering. St0lum (1996, 1998) analyzed extended 

meander systems in the Amazon basin and concluded that 

meander systems possess fractal geometry and therefore 

must be the result of a process of self-organization. The 

state of a meander system can be expressed by the 

dimensioniess parameter sinuosity (k), defined as: 

" - 1 

in which L and A are defined in Figure 3. Local sinuosity 

ranges from an arbitrary minimum of 1.5 (Chang, 1984) to 

a theoretical maximum of 5.48 for circular bends (Chitale, 

1973). It was shown by St0lum (1996) that through 

enlargement of meander bends and the opposing process of 

cut-off, the meander system develops into a steady state of 

self-organized criticaUty, which is characterized by 

fluctuations around an average sinuosity of TT . This showed 

true for both field data and the Howard and Knutson model 

(1984). In the following section the steady state of a 

meander system wil l be discussed in terms of entropy. 

I I I . T H E CONCEPT OF ENTROPY I N MEANDERING RIVERS 

Irreversibility and probability 

In natural processes, mechanical work is transferred into 

heat due to friction. Although work and heat are both terms 

of energy, it is easier to create heat out of work than it is to 

create work out of heat. This irreversibiUty can also be seen 

in the absence of work, since heat can only be transported 

from higher temperatures to lower. This imphcates that 

processes possess a time-asymmetry and develop towards a 

state pf disorder or dissipation of potentials. Order or 

potential can only be created by the input of energy. It can 

be seen that this disorder can be expressed in terms of 

energy, temperature, information or probability. In 1854 

Clausius introduced the term entropy as a measure of the 

dissipated potential. In thermodynamics, the change in 

entropy S between two states A and B is defined as the 

integral of the ratio of change in internal energy £•,. and 

absolute temperature r(Ohanian, 1989, p. 556): 

Equation 5 thus forms the hnk between entropy and energy. 

Other expressions of entropy in terms of probability and 

information were introduced by Boltzmann in 1872 and 

Shannon in 1948, but as this paper only deals with 

thermodynamic entropy they wi l l not be described here. 

Although equation 5 forms the hnk between entropy and 

energy, it does not offer an explanation for the phenomenon 

of irreversibility. The second law of thermodynamics states 

that the entropy of a closed system must always increase or 

stay the same. Therefore this law defines the direction of 

time (time-asymmetry) in natural processes (Ohanian, 

1989, p. 562): 

S,-S^>0 (6) 

The classical approach of entropy in closed systems cannot 

be used in open systems. In a closed system entropy wil l 

increase until equihbrium is reached at maximum entropy, 

while in open systems boundary conditions can prevent the 

system from reaching this equilibrium state. In this case 

entropy is continuously being generated. It was discovered 

by Prigogine in 1945 that linear thermodynamic systems 

close to equilibrium evolve "toward a stationary state 

characterized by the minimum entropy production 

compatible with the constraints imposed upon the system" 

(Prigogine and Stengers, 1985, p. 138). As steady state 

imphes independence of time, the entropy of a system in 

steady state is also a constant and therefore the internal 

production of entropy is balanced by the rate of outflow of 
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entropy (Denbigh, 1951, p, 40). Thus the most probable 

state to which an open system evolves (corresponding to 

maximum entrojiy) is one in which the production of 

entropy is minimized. I f the properties of a system are 

constant and independent of place (homogenous system), 

the system wil l evolve towards a state in which entropy 

production has the same minimum value in the whole 

system. For a homogenous system at maximum entropy, 

this also imphcates a uniform, or at least as uniform as 

possible, distribution of enhopy production. 

Entropy and fluvial geomorphology 

Assuming a constant discharge, a river can be considered as 

an open system in a steady state (Leopold, 1995, p. 57). 

This approach has been used before in fluvial 

geomorphology to explain other phenomena (Leopold and 

Langbein, 1962, Woldenberg, 1966). In a river a potential 

(gravitational or potential energy) is continuously converted 

into kinetic (ordered) energy. As this process is reversible 

(the gain in velocity for all molecules is in the same 

direction), this does not lead to an increase in entropy. The 

kinetic energy is converted into heat by friction in the fluid. 

As heat represents disordered energy (random motion of 

molecules), this process is irreversible and entropy 

increases. 

One might wonder where this continuous increase in 

entropy is compensated, as the entropy of the earth as a 

whole does not seem to change. As order can only be 

created by the input of energy, it can be seen that the 

increase in entropy is balanced on a global scale by an 

increase in order caused by the input of solar radiation. This 

radiation provides the energy necessary for evaporation of 

water molecules and precipitation on a location with higher 

gravitational energy (hydrological cycle). 

Because rivers adjust their course by the process of erosion 

and sedimentation, it is likely that this process is driven by 

an increase in entropy (equation 5). It is assumed that, 

under ideal circumstances (constant discharge, uniform 

valley slope and without cutoff's), rivers evolve towards a 

stationary state in which no more change in course takes 

place and where meander bends have a regular shape. 

Davies and Tinker (1984) found that surface tension 

meanders indeed evolve towards such a steady state and 

they argued that this should also be true for river meanders, 

although natural river meanders may never reach this 

steady state due to a continuously change of boundary 

conditions and stochastic variables like discharge. The 

tendency of meanders to evolve towards a steady state was 

confirmed by simple quahtative experiments with surface 

tension meanders on an inclined Perspex plate. A regular 

and stable surface tension meander is shown in Figure 5. 

Although there are major differences between surface 

tension meanders and river meanders, there was no 

evidence found in hterature that these meanders behave 

differently. 

Figure 5. Stable surface tension meander. Flow is from left to 
right, (photograph by author) 

The tendency of meanders to evolve towards a steady state 

might however no longer be true for meanders with high 

sinuosity's (>5). Above this value cutoff's are likely to 

occur and the self-organized nature of this process (St0lum, 

1996) indicates that this process is no longer determined by 

an increase in entropy and wil l not reach an equihbrium 

state. It has been shown by Schumm et al. (1972) and 

Nagakawa and Scott (1984) that sinuosity is mainly 

determined by valley slope. In this research therefore focus 

is laid on rivers on relatively flat slopes with sinuosity's of 

less than 5, where no cutoff's take place. As the process of 

valley slope adjustment acts on a much larger timescale 

than the process of course adjustment, it is assumed that a 

river can reach an equihbrium state for any sinuosity, and 

that the sinuosity is determined by external factors as 

discharge, valley slope and sediment characteristics. The 

principle that rivers develop towards a state of maximum 

entropy corresponds to the conclusions reached by Song 

(1992) that "energy dissipation has been shown to be the 

primary stabihzing force that determines the direction of 

change towards an equilibrium condition". This 

minimization principle for natural rivers was the basis for 

the Theory of minimum rate of energy dissipation (Yang 

and Song, 1979). 

At maximum entropy, the production of internal energy 

(heat, or entropy) is as low as possible, Davy and Davies 

(1979) concluded that strictly speaking the principle found 

by Prigogine is only derived for linear systems, and that 

minimum entropy production correspond to laminar flow. 

From analysis of surface tension meanders Davies and 

Tinker (1984) and Mizumura (1993) concluded that the 

typical meander shape is also present in laminar flow. 

Therefore the flow conditions seem of little importance to 

the apphcability of the principle of minimum entropy 

production. Furthermore it was shown by Yang (1979) that 
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the same principle can also be derived from the Navier-

Stoke's equation for turbulent flow. It is thus beheved that 

Prigogine's principle not only determines the flow in a 

meander bend on a tunescale smaller than the timescale at 

which changes bend shape take place, but that this principle 

also determines the changes in bend shape on a much larger 

timescale. 

A first indication that meandering rivers correspond to a 

state of maximum entropy is given by considering the 

entropy production for different types of rivers. This 

parameter is generaUy the lowest for meandering rivers and 

has been applied successfully in several studies to 

distinguish between meandering and braiding rivers 

(Chang, 1979. Van den Berg, 1995, Lewin and Brewer, 

2001). From experimental and Mississippi River data, 

Schumm et al. (1972) concluded that meandering occurs on 

smaller slopes. A l l these findings indicate that meandering 

and minimum enttopy production are inherent phenomena. 

Because a river system can be considered homogenous over 

relatively short distances (no change in constraints of 

discharge and sediment characteristics), a minimum entropy 

production wiU also result in a uniform entropy production 

along the river. However, the constraint of the presence of 

bends in a river and the associated hehcal motion imphcates 

a non-uniform entropy production. It that case the most 

probable distribution of entropy production is one in which 

the distribution is as uniform as possible (Yang, 1971) or 

the variance of the entropy production is minimum 

(Langbein and Leopold, 1966). In this research the widely 

accepted minimum variance principle wil l be used. 

Minimization and uniformity of energy dissipation have 

also been used recently by Molnar and Ramirez (1998) and 

Huang and Nanson (2000) to explain hydraulic and 

geometric properties of rivers. In the following section an 

expression for entropy production along a meandering river 

is derived, which wi l l then be used to determine the most 

probable meander planform. 

Entropy production in a meandering river 

With the assumption that the most probable planform for a 

meander bend reflects minimum variance of the entropy 

production, the question remains how to quantify this 

production of entropy? In an isothermal system the entropy 

production is solely caused by irreversible friction losses 

within the fluid. For incompressible fluids, the entropy 

production per unit volume and unit time, a , is described 

by (Yang, 1992): 

rcr = - ( T : V v ) (7) 

in which T is the absolute temperature, T is the stress 

tensor and v is the velocity vector. Equation 7 can be 

obtained by combining the first law of thermodynamics 

with the equation of motion for an isothermal system and 

incompressible fluid. Written in terms of energy, this 

derivation can be found in many handbooks on fluid 

mechanics (such as Bird et a l , 1960, p. 313). This is shown 

in Appendix I . It is assumed that the stress tensor for 

turbulent flow in a river can be written in terms of a rate of 

strain tensor and a kinematic eddy viscosity, s , similar to 

the kinematic viscosity in laminar flow. This implicates that 

the influences of turbulent flow on the meander planform is 

neglected. Smith and McLean (1984) and Odgaard (1986a) 

also used this assumption. The stress tensor can then be 

written in Einstein notation as: 

r,j =-2pey/. (8a) 

in which p the density of the fluid and y.j the rate of 

strain tensor. The rate of strain tensor is given by: 

(8b) 

in which and j represent the directions s, n and z. The 

components of the rate of strain tensor follow from 

equation 7. For convenience, the velocity gradient tensor 

wil l be expressed in a right-handed, orthogonal, curvihnear 

coordinate system with a downstream j-axis, a cross-stream 

n-axis and a vertical z-axis (Figure 3, 6 and AII-1). The 

physical (Cartesian) space and the computational space 

resulting from the transformation of Cartesian into 

curvihnear coordinates are illustrated in Figure 6. 

(a) (b) 

Figure 6. Illustration of coordinate transformation, (a) Physical 
space, (b) Computational space. 

In curvilinear coordinates, the velocity gradient tensor is 
given by: 

1 9v, 

l-N ds 

dn 

dv^ 

dz 

r—n r^-n 1-N ds 

dn 

dz 

1 9v, 

l-N ds 

dn 

K 
dz 

(9) 

in which r^ is the radius of curvature of the river centerhne 

and N = n I r^ a scale factor. The derivation of equation 9 is 

given in Appendix I I . The complete determination of 

equation 7 is rather complex. Fortunately not all 

components of this equation are equaUy important. I f only 
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the situation of a moderately meandering, shallow river 

with steady, subcritical flow is considered, several 

components can be neglected. First, because of the 

assumption of incompressible fluid, the contribution of the 

normal stresses T „ , r„„ and can be neglected. In 

addition, moderate meandering imphcates small values of 

/ dn and 3v„ / ds making T „̂ and T„j, small compared 

to and . The contribution of these components to the 

solution is thought to be at least an order of magnitude less 

than the contribution of the other components, so the error 

introduced by neglecting these components in relatively 

small. Finally in a shallow river, flow near the banks is 

small and relatively unimportant, so when bankflow is 

neglected, the gradients of vertical velocity dvjds and 

dvjdn can also be neglected. Therefore the effective 

width of a river ( ) is introduced as the part of the river 

not influenced by bankflow (see Figure 7). After these 

simphfications, calculation of the tensor product (equation 

7) results in an expression for a only dependent on the 

vertical gradients of the longitudinal and transverse velocity 

(Van Andel, 2002). Because the main interest is in the 

distribution of the entropy production along the river, this 

expression is integrated over a cross section of the river. 

This yields: 

c,, =-
2"e U 

i 
- i i v , 0 

dv, Y _̂  ' dv„ 

dz dz 
Uzdn (10) 

in which is the entropy production for a cross-section 

of a river or per unit length, is the effective river width 

and d is the local depth. In order to quantify equation 10 the 

distribution of the longitudinal and transverse velocities in a 

meander bend have to be known. The flow model used to 

calculate these velocities is described in Section IV. With 

the assumption of steady flow it is imphed that the meander 

planform is determined by one unique discharge. This 

assumption is also used by Chang (1979, 1984), Ikeda et al. 

(1981), Parker et al. (1982, 1983), Odgaard (1986a, 1986fo) 

and many others. Usually the bankful discharge is taken as 

the unique discharge, which normally occurs once a year on 

average (Williams, 1978). 

IV. APPLICATION OF THE MEANDER FLOW MODEL 

Model choice 

derivation of equation 10, bankflow is neglected. The 

constraints are (Odgaard, 1986a): (1) effective river width 

is constant; (2) centerline radius of curvature is large 

compared with width; (3) large width/depth ratio; (4) 

transverse velocity components are smaU compared to 

longitudinal; (5) the turbulence is isotropic. Fortunately, 

these constraints are not in contradiction with the goal of 

finding the most probable shape of a regular meander under 

ideal circumstances. Another advantage of the model is its 

simphcity. This makes it less difficult to interpret the 

results. In this section only a brief sunmiary of the model 

wil l be given. A more complete description can be found in 

Appendix I I I or in Odgaard (1986a). 

Because it was shown that meandering is not dependent of 

scale it is convenient to have the model also independent of 

scale. The Meander flow model is shghtly modified for a 

dimensioniess treatment. The dimensions present in the 

problem are length, time, mass and temperature. Since the 

entropy production in equation 14 wil l be written times 

temperature and per unit mass, only characteristic scales for 

length and time have to be defined. For both quantities a 

suitable reference value is present in the model. Both 

effective width and centerhne depth are assumed constant 

in the model, as well as the averaged centerline longitudinal 

velocity. Therefore all lengths are normalized with respect 

to width and all velocities are normahzed with respect to 

the averaged centerhne longitudinal velocity. As an 

example, the dimensioniess downstream direction s and 

transverse velocity v„ can be written as: 

la 
V , , 

•, s = sw^ ( l l a ) 

( l i b ) 

in which the tilde denotes a dimensioniess variable. The 

characteristic time scale results from combining equations 

l l a and l i b . Because the bed topography and the 

longitudinal velocity profile are dependent on the actual 

velocity and friction coefficient (which are not determined 

in a dimensioniess treatment), a fully dimensioniess 

treatment is not possible. However the scale dependent 

parameters are found to have only smaU effect on the 

results (see Section V) . 

In order to evaluate equation 9 along a meander bend, the 

velocity distributions have to be known. Therefore a model 

is needed that describes the (stationary) flow and bed 

topography in a meander bend. The Meander flow model 

developed by Odgaard (1986a) is employed here. The most 

important reason for choosing this model is that it is based 

on the same assumptions as made in Section I I I . The model 

apphes to steady, subcritical, turbulent flow in shallow, 

moderately meandering rivers of relatively constant width 

and with uniform bed sediment. Furthermore, as in the 

Velocity profiles and calculation of entropy production 

First a description is given of the velocity profiles in the 

Meander flow model. Because these profiles are given by 

simple analytical relationships it is possible to solve the 

first integral of equation 10. This results in an expression of 

a^^ no longer directly dependent on vertical changes in 

velocity. The general power law is used to describe the 

vertical distribution of the longitudinal velocity (Odgaard, 

1986a, his equation 3): 

6 



m + lf z^-

m 
(12) 

in which the dimensioniess velocity-profile exponent m is a 

linear function of the Chezy coefficient. The vertical 

transverse velocity profile is assumed to be linear. Because 

the mass-shift, assumed in the Odgaard (1986a), model has 

no influence on the shape of the velocity profile, neglecting 

the mass shift leads to the relationship (Odgaard, 1986a, his 

equation 4): 

d 2 
(13) 

in which is the transverse surface velocity. Again the 

interaction with the riverbed is not accounted for. Therefore 

the violation of the no-slip condition on the riverbed is 

legitimate. Examples of the velocity profiles described by 

equations 12 and 13 are given in Figure 7. 

Figure 7. Longitudinal and transverse vertical velocity profiles, 
transverse depth distribution and definition of model parameters. 

With equations 12 and 13, it is possible to solve the first 

integral of equation 10. Normalizing a^^ by the 

temperature, density, effective width and averaged 

centerhne longitudinal velocity, integrating and rearranging 

of terms yields (see Appendix IV): 

(m + 1) ^ 3 ^ 4 f x / 

6m 
tin (14) 

The entropy production is now only dependent on the 

transverse surface velocity and the averaged centerline 

longitudinal velocity. No further analytical solution is 

possible because no simple relationships exist between n 

and the depth (which determines the magnitude of and 

v J . Therefore the model wi l l be solved numerically to 

determine these variables in the s, h -plane, A complicated 

determination ofthe three-dimensional velocity field is thus 
avoided. 

Model description and solution strategy 

The starting point of the Meander flow model is the 

equation that describes the longitudinal or streamwise 

variation of the centerline transverse bedslope (5 j . J . This 

equation is derived from a combination of the equation of 

motion for the transverse velocity component, a parabohc 

eddy viscosity profile, a parabohc velocity profile, the mass 

balance at the centerline to compensate for mass-shift and a 

simple linear relationship between the transverse bedslope 

and the transverse velocity at the bottom. At the centerhne 

of the river this yields (Odgaard, 1986a, his equation 30): 

d~s' 
• + a 

ds r 
(15) 

in which a.', b' and c' are functions depending on 

sediment characteristics and cross section geometry. In 

equation 15, only the centerhne radius of curvature r^ is a 

function of s . From the centerline transverse bedslope, the 

local transverse depth distribution can be calculated from 

the simple relationship (Odgaard, 1986a, his equation 48): 

d,. r 
(16) 

in which d^ is the (constant) centerline depth and r is the 

local radius of curvature. The convex transverse depth 

distribution described by equation 16 is shown in Figure 7. 

The depth distiribution is needed to calculate the 

longitudinal velocity distribution. From the equation of 

motion in longitudinal direction, written in terms of the 

average longitudinal velocity and with the use of the 

parabohc eddy viscosity profile, i t follows that the change 

in average longitudinal velocity along a path of constant 

distance from the centerline can be approximately written 

as (Odgaard, 1986a, his equation 15): 

ds d 

— 2 
• V . • (17) 

in which the function g' is again depending on sediment 

characteristics and cross section geometry. Finally it is 

assumed that the local transverse bedslope is proportional 

to the transverse bottom velocity. Since it follows from 

equation 13 that the transverse surface velocity has the 

same absolute value (but different sign) as the transverse 

bottom velocity, the transverse surface velocity can be 

written in terms of the centerhne transverse bedslope as 

(Odgaard, 1986a, his equations 21 and 48): 

- f ' S j , (18) 
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in wliicli tlie function ƒ ' depends on sediment and flow 

characteristics and cross section geometry. The calculation 

process is summarized in Figure 8. First the centerline 

transverse bedslope is determined for one meander 

wavelength by solving the homogenous second order 

differential equation given by Equation 15 for the initial 

condition S^.^ (0) = 0. With S^^ [s) the depth distribution is 

determined and the disttibution of the averaged longitudinal 

velocity is determined by solving Equation 17 with the 

initial condition ï7. (0,n) = 1. Finally the distribution of the 

transverse surface velocity is determined. With v^{s,n) 

and i'nj (s,n) the entropy production for each cross section 

can be determined (Equation 14). To avoid errors 

introduced by choosing initial conditions, the entropy 

production for complete meander bend (T„, is determined. 

As long as the value of a,^, is not constant, the complete 

calculation process is repeated with new initial conditions. 

The computational -space (see Figure 6) is discreted 

into steps of O.lw, The source code of the flow model 

(MEANDERMODEL) is given in Appendix V I . 

Input planform parameter k 

Compute &g from c^^^^j 

Obtain r^(s) from eg. 3, 19~] 

Input flow and sediment 
parameters F^, m, d^, 9 

Set initial conditions S^. (0), v (0,«) W 

Compute SJ. (S) with eq. 15 

T 
Compute d{s,n) with eq. 16 | 

Compute V {s,n) with eq. 17 

Compute v^{s,ri) with eq. 18 | 

Compute ô^ with eq. 14 I 

Figure 8. Flow chart of the calculation process (modified after 
Van Andel, 2002). 

Scenarios 

The main goal of the model study is to determine which 

meander planform results in the least variance of entropy 

production along a meander bend. Therefore the centerline 

radius of curvature as a function of the downstreain location 

has to be known in the right hand side of equation 15. As a 

boundary condition to ease the interpretation of the results 

it is also demanded that a change in shape of the meander 

bend does not lead to a change in the meanderlength and 

wavelength. A formula that suits these conditions is given 

by the third order sine-generated curve (equation 3). From 

this equation, the longitudinal variation in the centerhne 

radius of curvature is calculated by: 

d@ 

ds 
(19) 

There were several reasons for choosing the class of third 

order sine-generated curves as a description of the meander 

planform. First, the third order curves result from a 

theoretical analysis of flow and erosional processes in 

meander bends, and are nowadays widely accepted as a 

good description of meander planform. Furthermore with 

varying the fattening and skewing parameters a wide range 

of curves can be produced (Figure 4). For a given sinuosity 

this only leaves a clear and easy to handle two degrees of 

freedom. Finally, no fattening and skewing resuhs in the 

"first order" sine-generated curve, the minimum variance 

curve when flow processes are not taken into account. The 

values of and c^ are taken between -0.1 and 0.1, with 

intervals of 0.01. Higher or lower values result in unlikely 

curves. For each combination of these parameters ©„ is 

determined for a given sinuosity (see Determineparameters 

script in Appendix V) . Each resulting curve is used as input 

of the Meander flow model (see Figure 8). 

Since the Meander flow model is made dimensioniess, the 

number of parameters that influences the result is strongly 

reduced. The spatial dimensions are all expressed in respect 

to the effective width, so only three spatial ratios remain to 

be chosen: the ratios of wavelength, meanderlength and 

depth to effective width. Since the empirical relation 

between width and wavelength was shovwi by Davy and 

Davies (1979) to be almost a fundamental relation and the 

power is very close to unity, the wavelength is assumed to 

equal eleven times the width; 

X = n.Ow (20) 

With a constant wavelength, the meanderlength is 

determined by the sinuosity. Based on the work of St0lum 

(1996, 1998) a most probable sinuosity of TT is assumed, 

corresponding to moderately meandering rivers. In natural 

rivers, all possible values of sinuosity can be found. I t has 

been shown by Schumm et al. (1972) and Nagakawa and 

Scott (1984) that sinuosity is mainly determined by valley 

slope. As there is large variation in valley slopes, the 

influence of the sinuosity is investigated. A sinuosity of 5 

is taken as maximum. Above this value cutoff's are likely 

to occur and the self-organized nature of this process 

(St0lum, 1996) indicates that this process is no longer 

determined by an increase in entropy. The depth/width ratio 

also shows considerable variations in natural rivers. A 

reference value of 0.1 is chosen, but the influence of this 

variable is also investigated. According to Odgaard (1986(j) 
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bankflow influences the flow pattern to a distance of 

approximately one time the depth. With a depth/width ratio 

of 0.1, neglecting bankflow thus leads to a ratio of the 

wavelength to effective width of 13.2. 

Besides the geometrical parameters mentioned above also 

two parameters related to flow and sediment characteristics 

are dependent on scale. Although the velocity profile 

exponent and the particle Froude number are both 

dimensioniess, their value cannot be determined because 

the velocity profile exponent is a function of the scale 

dependent Chezy coefficient and the particle Froude 

number is a function of the actual velocity and sediment 

size (see Appendix I V ) . The values of the velocity profile 

exponent and the particle Froude number are taken as 2.8 

respectively 6.78, the average values of the two river sites 

tested in Odgaard (1986è). On both parameters a sensitivity 

test is performed. 

V . RESULTS 

The variance of the entropy production per cross section 

(equation 14) for different third order sine-generated 

meander curves with a constant sinuosity, clearly shows 

one unique minimum. This is shown in Figure 9, where the 

variance of a^^. is plotted in the c^,c^-plane. From this 

figure it can be concluded that there is one "most probable" 

meander planform. The location of the minimum clearly 

differs from the first order sine-generated curve (located at 

(0,0)), which would result i f the enfropy production would 

be a simple linear function of the curvature. Linear 

interpolation shows that the minimum is located at 

(0.020,0.011). This leads to a fattening and upvalley skew 

in comparison with the first order sine-generated curve. 

Figure 9. Variance of the entropy production per cross-section 
(vertical axis) versus fattening and skewmg. 

When the variance of the entropy production per cross 

section is interpreted as a measure of the probabihty, it can 

be seen from Figure 9 that the most probable meander 

planfotins are found in the second quadrant. When 

compared with the first order sine-generated curve, 

fattening is more pronounced than skewing. This means 

that meanders with a negative fattening are unhkely to be 

found in nature. Since skewing is less pronounced, 

synmietric meanders or meanders with a shght downvalley 

skew should also occur in nature, but in smaller numbers. 

The probabihty of different types of third order sine-

generated curves is discussed in more detail in Van Andel 

(2002). 

1-5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

'K ' ' ' ' > 
\ • k 

1 

— m 

J - / j » b > - • ^ ~ 

! 1 1 1 \ 1 

5 10 15 20 25 30 35 40 

0.00 — 

-0.01 ' 1 1 ' 1 1 1 • I 

2 3 4 5 6 7 8 9 10 

m 

Figure 10. Effect of model parameters on the values of fattening 
(dotted line) and skewing (solid line), (a) Geometric parameters, 
(b) Flow and sediment parameters. 

The results are dependent on two geometrical parameters 

and two parameters in the meander flow model, as 

discussed earher. The effect of the sinuosity and the 

depth/width ratio on the result is shown in Figure 10a. The 

upvalley skew in meanders is the most pronounced at 

higher sinuosity's. At a sinuosity of 1.8, the model predicts 

a symmetric meander as the most probable one, while at an 

even lower sinuosity the most probable meander shows a 

shght downvaUey skew. The less pronounced asymmetry at 

lower sinuosity's can also be seen from Figure 2. The 

influence of the sinuosity on the most probable meander 

planform is illustrated in Figure 11. The depth of the river 

also influences the most probable combination of fattening 

and skewing parameters. From Figure 10a it can be seen 

that there's a maximum upvalley skew at a depth of 1/15 

9 



times tlie effective width. The effect of the particle Froude 

number and the velocity profile exponent on the result is 

shown in Figure 10b. The particle Froude number (or flow 

regime) shows to have only little effect on the result. 

Skewing is more pronounced at low and high values of the 

velocity profile exponent, while at median values skewing 

is less pronounced. 

*=5A 

4.0 _ 

Figure 11. The most probable meander planform for different 
sinuosity's. Direction of flow is from left to right. 

V I . DISCUSSION 

After seeing Figure 11, the most logical question is does the 

most probable meander planform predicted by the Meander 

flow model correspond to meanders found in nature? The 

answer to this question is much more comphcated than the 

question itself. As a fuU comparison with natural meanders 

is beyond the aim of this study, only a brief comparison 

with one of the most famous meanders wiU be given. The 

meanders in the Mississippi River at Greenville (Miss., 

USA, see also Figure 2) have been used in previous studies 

on meandering to illustrate earlier attempts to explain the 

typical meander planform (Langbein and Leopold, 1966, 

Parker et al., 1983). Because the meanders in the 

Mississippi are very old and distinct, they can be assumed 

close to equihbrium and thus close to the curves presented 

in Figure 11. One complete wavelength of the Mississippi 

meanders is shown in Figure 12 and compared with the 

most probable third order sine-generated curve with the 

same sinuosity. Although not perfect, the similarity can be 

called convincing. 

Figure 12. Mississippi River at Greenville, Miss., USA, before the 
artificial cutoffs (redrawn after Langbein and Leopold, 1966) 
compared with the third order sine-generated curves as predicted 
by maximum entropy principle. Direction of flow is from left to 
right. 

Natural meanders often differ from the meanders drawn in 

Figure 11. The reason for this difference can be ascribed to 

the discrepancy between "ideal" regularly and stationary 

meanders and natural river meanders. In reality, a meander 

bend cannot be seen separated from the meandering river it 

is part of. And although the river system may continuously 

develop towards an increase in entropy, equihbrium is 

never reached because of constantly changing boundary 

conditions in natural rivers. These are the result of the 

occurrence of cut-off's as well as changes in flow regime. 

Furthermore irregularities in geology, sediment distribution, 

topography or other factors can prevent a river from 

developing towards maxirnum entropy. It can thus be 

assumed that only old and weU-developed meanders are 

close to the most probable state (Langbein and Leopold, 

1966) or the "ideal state" (Parker et al., 1983). 

How can it be seen that the distribution of entropy 

production is indeed the parameter that determines the 

channel planform? One might instinctively suspect that it is 

not the distribution of the internal stress but the bed shear 

stress that determines the planform, as sediment transport 

and erosion are related to bed shear rather than internal 

shear in the fluid. But as laboratory measurements by 

Hooke (1975) showed, the distribution of sediment 

transport and bed shear in a meander bend is not evenly 

distributed, not even over a cross-section. From equation 10 

it can be seen that the entropy production is only related to 

velocity gradients. Thus in a steady state the velocity 

gradients wil l also reflect a balanced situation with velocity 

gradients at the bed - which determine the complex pattern 

of local erosion and deposition. But as meandering is not 

restricted to the presence of sediment and the most probable 

state of a river is one with small sediment load, the 
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detennination of this complex relation is of httle 

importance in this study. 

The round meander bends found in this study are partially 

in contradiction with the conclusions reached by Parlcer et 

al. (1983), who predicted a negative fattening leading to a 

sharper bend. However the more rounded asymmetrical 

bend resulting from positive fattening is similar to the 

meander bends drawn by Davis (1899, his Figure 50). The 

upvalley skew predicted in this study is in agreement with 

the conclusions reached by Carson and Lapointe (1983), 

who found that both types of asymmetry are found in 

nature, but that meanders with an upvalley skew have a 

greater probabihty. In Figure 13, the maximum entropy 

curve resulting from this study is compared with the curves 

predicted by the Theory of minimum variance (Langbein 

and Leopold, 1966) and the Bend equation (Parker et al., 

1983). The difference in shape between the maximum 

enhopy curve and the fhst order sine generated curve can 

be explained by the more conceptual rather than theoretical 

basis of the latter (see Section I I ) . However to find an 

explanation for the difference in shape between the 

maximum entropy curve predicted by this study and the 

curve resulting from the Bend equation is much more 

difficult, as this difference is the result of a fundamentally 

different approach. Both curves share the same upvahey 

skewing, but the relatively sharp bends and long almost 

straight reaches between the bends in comparison with the 

rounded maximum entropy curve seem in contradiction 

with the curves found in nature (Figures 1, 2 and 5). An 

extensive study on the shape of and flow processes in 

meandering rivers is needed to provide data necessary to 

evaluate the resuhs of the present study as weh as past 

studies. Further study by means of easy controllable and 

small-scale surface tension meanders might be a useful in 

this respect. 

Figure 13. Comparison of the maximum entropy meander curve 
with the curves predicted by the Theory of minimum variance 
(Langbein and Leopold, 1966) and the bend equation (Parker et 
al., 1983). Direction of flow is from left to right. 

Another question is how far the results are dependent on the 

methods that have been used. This is especially true for the 

choices of the flow model and the class of third order sine-

generated curves. Although the resuhs of the Meander flow 

model seem to agree well with field measurements, i t is 

however possible that a model based on different 

assumptions wiU yield different resuhs. The choice for the 

class of third order sine-generated curves was done by 

practical lack of altematives. Although the curves seem 

able to describe natural meanders, they do not describe 

delayed inflection as found by Carson and Lapointe (1983). 

It might thus stih be possible to f ind a meander planform 

resulting in an even lower variance of the enttopy 

production. Using natural meander planforms as an input 

for the Meander flow model might be an important next 

step in this research. 

V I I . CONCLUSION 

Although there have been numerous efforts to find an 

explanation of the typical meander planform, so far no 

general principle has been found that sufficiently explains 

the typical meander planform. In this study it was shown 

that the typical meander planform is the result of the 

thermodynamic principle of maximum entropy. The most 

probable distribution of the production of entropy along a 

meander bend is one in which the production of entropy is 

as low and as uniform as possible. This corresponds to a 

state of maximum entropy. For the methods used, the 

variance of the entropy production along a meander bend 

showed to be minimum for a shghtly fattened and skewed 

curve when compared with the first order sine-generated 

curve suggested by Langbein and Leopold (1966). Their 

Theory of minimum variance thus showed to be inherent 

with meander asymmetry as documented by Carson and 

Lapointe (1983), 
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APPENDIX I . DERIVATION OF EQUATION 7 FROM FIRST LAW 

OF THERMODYNAMICS 
APPENDIX I I . COORDINATE TRANSFORMATION A N D 

SIMPLIFICATION OF EQUATION 7. 

An expression for tlie entropy production can be derived by 

starting witii the first law of thermodynamics, which states 

that the difference between the heat (Ö) added to a system 

and the worlc (W) done by a system equals the increase of 

energy (£): 

In this appendix equation 7 wih be rewritten in a right-

handed, orthogonal, curvilinear coordinate system with a 

downstream j'-axis, across-stream n-axis and a vertical z-

axis. According to Bird et al. (1960, p. 739), the gradient 

vector in curvihnear coordinates can be written as: 

AQ-AW = dE ( A M ) 

For a fluid particle work is done by gravitational, pressure 

and viscous forces. The energy term in AI-1 includes both 

kinetic energy as weh as internal energy. Written in terms 

of rate of change per unit mass for an infinitesimal volume, 

with p assumed constant, equation AI-1 can be written as 

(Birdeta l , 1960,p. 313): 

Dt 
-{y •q) + p{g •v)-{V• pv)-{^-[T-V]) 

(AI-2) 

To obtain the equation for change of e,., equation AI-2 is 

subtracted by the equation that gives the rate of change of 

kinetic energy per unit mass for an element of fluid moving 

downstream. This equation is obtained by multiplying the 

equation of motion with the local velocity v: 

Dt 
p{V-v)-{Vpv) + p{vg)-{v[V-r])(AL-3) 

With the vector identity v • [V • xJ = V • [ T • v J - T : Vv (Bird 

et al., 1960, p. 731) subtraction of equation AI-3 from 

equation AI-2 yields the equation of the rate of change for 

the internal energy of a fluid particle: 

De, 

t L 
Dt 

- ( V . 9 ) - / J ( V . V ) - ( T : V V ) (AI-4) 

For an isothermal system (no heat flow) and incompressible 

fluid the equation becomes: 

. ^ = - ( x : V v ) (AI-5) 

This equation describes the irreversible rate of internal 

energy increase per unit volume by viscous dissipation 

(potential energy is dissipated into heat). Because this 

process is irreversible, the right-hand side of equation AI-5 

also describes the increase in disorder or entropy. With the 

substitution of pDe.lDt = Ta , the equation thus becomes 

(Yang, 1992): 

rcr = - ( T : V v ) (7) 

where a is the entropy production per unit volume and T is 

the absolute temperature. 

(AII-1) 

in which is the unit vector in direction of the "new" 

coordinate system and h„ is a scale factor in the direction 

. The scale factors are determined by (Morse and 

Feshbach, 1953, p. 24): 

-t-

\ 2 

Ma] 13?«J 
(AII-2) 

in which x, y and z are Cartesian coordinates. As illustrated 

in figure A I I - 1 , the Cartesian coordinates can be related to 

the curvihnear coordinates by (Smith and McLean, 1984): 

X = X(, - Ax = Xg - n cos ;ö = Xj - n 
ds 

y = yo+^y = yo+nsmfi = yg+n-f-
ds 

(AII-3a) 

(AII-3b) 

where the centrehne of the river is given by the Cartesian 

coordinates (x^, y^,) (fig. AII-1). 

Ay 7 
/ dx 

dy y 

yo Ax / 

y 

yo 

^0 
• > 

X 

Figure AII-1. Definition sketch for the curvilinear coordinate 
system (after Smith and McLean, 1984). 

The radius of curvature of the river centreline is given by 

(Harris and Stocker, 1998, p,520): 

d l 

ds 

d^yg 

ds ds' ds"- ds 

d^Xg dya 
(AII-4) 

With ?i = 5 , q2=n and 

determined as follows: 
q3=z, the scale factor /z, is 
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dx _dxQ d yg 

ds ds ds 

ds ds 

dz_ 

ds 

+ n-
d \ 

ds' 

so the equation for 1^ becomes: 

(AII-5a) 

(AII-5b). 

(AII-5c) 

-2n 

dxp 

^ds J 
dyo_ 

ds 
+ n 

rd\1fd\~^'' 

ds' ds' 

dxp d'y^ dy, d'x, '^^ 

ds ds' ds ds' j j 

^ (AII-6) 

A l l other expressions are equal to zero. The dyadic product 

Vv results in a tensor. The nine tensor components can be 

calculated according to: 

Vv 
Ö 3 3 3 

As an example the first tensor component (corresponding to 

S^S^) is calculated below: 

l-Nds l-N ds 

- V , . + -

(All-14) 

r^-n " l-N ds 

Similarly, another part of the first component fohows from: 

With the help of equations AII-4 and AII-5 this can be 
written as: l-Nds l-N ds r-n 

(All-15) 

V 

1: +n' 
V 

dp_^ 

ds 
J 

\ 2n n'^ 

J K J 

= l-N (AII-7) 

in which N = nlr^. The other scale factors and are 

unity. With these scale factors inserted in equation A I I - 1 , 

the gradient vector in curvihnear coordinates becomes: 

l-Nds "dn 'dz 
(AII-8) 

In order to calculate Vv in equation 7, it is convenient first 

to focus on the spatial derivatives of the unit vectors in 

curvilinear coordinates. These derivatives can be obtained 

according to (Bird et a l , 1960, p. 739): 

Mf! K Ma "^hh dq, 
(AII-9) 

in which 5^p is the Kronecker deUa. The Kronecker delta 

can be written as: 

^ap = {^a-Si,) (AII-10) 

It can be seen that the Kronecker delta is 1 for a = ,5 and 0 

for ai^ p. This results in the following expressions for the 

spatial derivatives of the unit vectors: 

3 ^ 

ds 

3^ 

dN 

l-N ds 
+ <5,, 

^ d, dN 3, ^ 

l-N ds r 

1 

r 

(AII-11) 

(AII-12) 

The first tensor component is given by summarizing all 
terms with S.S.: 

1 dv, V , 

l-Nds r-t 
(All-16) 

The complete dyadic product Vv can be written as foUows: 

V v , = 

1 3v, 

l-N ds ' 

dn 

dK 

dz 

I 1 3v„ 

r^-n l-N ds 

dv^ 

dn 

dz 

1 dv. 

l-N ds 

dn 

dz 

(9) 

With the expression for Vv in curvilinear coordinates, 

focus is now on the expression of the stress tensor T in 

velocity gradients. Because flow in rivers is almost always 

turbulent, transport of momentum wiU occur mainly by 

convection rather than by molecular motion, so Newton's 

law of viscosity for laminar flow cannot be used here. A 

solution was offered by the famous hydrologist Boussinesq 

in 1877, who introduced the kinematic eddy viscosity in 

analogy with the kinematic viscosity in laminar flow. The 

eddy viscosity is however not a property of the fluid but of 

the flow, and it can be used in systems where the diffusion 

of momentum is mainly in vertical dkection and where the 

horizontal transfer of momentum is of httle importance 

(Smith and McLean, 1984). I f we assume that, in analogy 

with laminar flow, the stress tensor for turbulent flow can 

be written as the product of a scalar eddy viscosity s and a 

rate of strain tensor v|;, the components of the stress tensor 

are given by: 
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The rate of strain is given by: 

(8a) 

(8b) 

The components of the rate of strain tensor can be 

determined from equation 9. This resuhs in the foUowing 

six unique components of the stress tensor: 

1 3v.. 

l-N ds r-n 

\ 
(AII-17a) 

simphfications, calculation of the tensor product (equation 

7) results in an expression for <j only dependent on the 

vertical gradients of the longitudinal and transverse velocity 

(Van Andel, 2002): 

( T : Vv) = 
dz 

-pe 
dz 

or: 

a-
pe d v A ' f d v ^ 

dz d z ) 

2\ 

(All-19) 

(AII -20) 

-2pe 

r^=-2pe A ^ 

f 
-pe 

I dv, dv. 

-pe 

l-N ds dz 

dn dz 

= -pe 
I dv„ V, dv. 

l-N ds r-n dn 

(AII-17b) 

(AII-17C) 

(AII-17d) 

(AII-17e) 

(AII-17f) 

The scalar product (also caUed double dot product) of the 

two tensors T and Vv can be calculated from (Bird et a l , 

1960,p.731): 

(All-18) 

resulting in an expression with nine terms. Fortunately not 

ah components of this equation are equally important. I f 

only the situation of a moderately meandering, shallow 

river with steady, subcritical flow is considered, several 

components can be neglected. First, because of the 

assumption of incompressible fluid, the contribution of the 

normal stresses T̂ .̂ . , T„„ and can be neglected. In 

addition, moderately meandering implicates small values of 

dv^ I dn and 3v„ / 3^ making -r̂ .̂  and T„, smaU compared 

to Tj.j and T„^. The conhibution of these components to the 

solution is thought to be at least an order of magnitude less 

than the conhribution of the other components, so the error 

introduced by neglecting these components in relatively 

smah. Finally in a shahow river, flow near the banks is 

smaU and relatively unimportant, so when bankflow is 

neglected, the gradients of vertical velocity dvjds and 

3v^/3« can also be neglected. Therefore the effective 

width of a river ( ) is introduced as the part of the river 

not influenced by bankflow (see Figure 6). After these 

APPENDIX I I I . DESCRIPTION OF M E A N D E R FLOW MODEL 

The model used here to calculate velocity profiles in a 

meander bend of arbitirary shape was developed by Odgaard 

(1986). It applies to steady, subcritical, turbulent flow in 

rivers with uniform bed sediment. Similar to the assumption 

made earher in the derivation of the entropy production 

equation, bankflow is regarded insignificant (fig. 6). Other 

constraints are (Odgaard, 1986): (1) effective river width is 

constant; (2) centrehne radius of curvature is large 

compared with width; (3) large width/depth ratio; (4) 

transverse velocity components are small compared to 

longitudinal; (5) the turbulence is isotropic. Because it was 

shown that meandering is not dependent on scale, it is 

desirable to have the model resuhs independent of scale. 

Therefore the model wi l l be written in dimensioniess terms. 

Here only a brief summery of the model is given, for a 

complete description of the model is referred to Odgaard 

(1986a). AS the model describes a steady state, the only 

variables dependent on scale are length and velocity. For 

both quantities a suitable reference value is present in the 

model. Both effective width and centreline depth are 

assumed constant in the model, as well as the averaged 

centoeline longitudinal velocity. As an example, the 

dimensioniess downstream direction s and transverse 

velocity v„ can be written as: 

•, S = SW, 

_ v„ _ 
V = — 2 - . V = V V 

( l l a ) 

( l i b ) 

were the tilde denotes a dimensioniess variable. In the 

following ah length and velocity variables wi l l be treated 

dimensioniess unless stated otherwise and the tilde for these 

variables wil l be omitted for clarity. 

The starting point of the meander flow model is the 

equation that describes the longitudinal or streamwise 

variation of the centreline transverse bedslope (S^^). This 

equation is derived from a combination of the equation of 
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motion for the transverse velocity component, a parabohc 

eddy viscosity profile, a parabohc velocity profile, the mass 

balance at the centreline to compensate for mass-shift and a 

simple hnear relationship between the transverse bedslope 

and the transverse velocity at the bottom. At the centreline 

ofthe river this yields (Odgaard, 1986a, his equation 30): 

- + a 
ds K 

(15) 

in which 

c =-

and 

l6Kh'm + 2 1 -

3a^ m + 1 

32K'h' m + 2 1 

3cAj6 (m + 1)' F^c 

16K'h'~ 

m-t-1 

2OT + 1 

(Al l l - l a ) 

(A l l l - l b ) 

(Al I I - l c ) 

2ic'm 
( A l l l - l d ) 

The particle Froude number and the velocity profile 
exponent are defined as: 

(AIII-2) 

Now the depth distribution along the river bend is known, 

focus is now laid on how to ' calculate the velocity 

distributions. The vertical distribution of the longitudinal 

velocity is given by (Odgaard, 1986a, his equation 3, see 

also Figure 6): 

i ? , _m + l( z 

V , m 
(12) 

In order to calculate the entropy production, only has to 

be known (see appendix IV). The disteibution of along 

the river can be determined from the following differential 

equation (Odgaard, 1986a, his equation 15): 

dv. 
- + ; 

ds d 

in which 

r 
(17) 

2ic' 

{m + 1) d^ 
(AIII-5) 

The vertical disttibution of the transverse velocity is 

assumed to be linear. Because the main interest lies in the 

velocity gradients, the (constant) mass shift caused by a 

change in curvature that is one of the main features of the 

meander flow model, is not used in this analysis. The 

distribution of v„ can therefore simply be written as 

(Odgaard, 1986a, his equation 4): 

l_l} 
d 2 

(13) 

m = K-^ = K¬
V . 

(AIII-3) 

With the downstream change in centreline transverse 

bedslope given by equation AIII-2, the depth distribution 

along the width of the river can now be calculated 

according to (Odgaard, 1986a, his equation 48): 

dr r 
(16) 

in which is the transverse surface velocity (see fig. 6). 

The transverse surface velocity is the same as the transverse 

bed velocity (but with opposite sign). Because the 

transverse bed slope was determined from the concept of 

transverse force balance on a sediment particle (upward 

force proportional to transverse bed velocity), the 

transverse surface velocity can be determined from the 

simple relationship (Odgaard, 1986a, his equation 21): 

••d'S^r (AIII-6) 

When interpreting Sj as d[d)ldr this can be written for 

convenience as (Odgaard, 1986a, his equation 49): 

d_ 

I r 
(AIII-4) 

Equation 16 results in a increasing transverse bedslope 

toward the outer bank. An example of a depth distribution 

described by equation 16 is given in Figure 6. 

in which 

d' = 
2 KGm + 2 1 

3a 49 m + 1 
(AIII-7) 

Finally, the dependence of the eddy viscosity on the depth 

is assumed to be parabolic. In non-dimensionless form: 

£ = KV^Z 1 - - (AIII-8) 
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in wiiicii tlie shear velocity is given by: = Kv^ Im . The 

fkst term between brackets is the result of the 

dimensioniess treatment. 

APPENDIX V . SCRIPT TO DETERMINE PARAMETERS FOR 

THIRD ORDER SINE GENERATED CURVE FOR GIVEN 

SINUOSITY 

APPENDIX IV. A N A L Y T I C A L SOLUTION OF FIRST INTEGRAL 

OF EQUATION 10 

With the velocity dishibutions (eq. 12 and 13), the 

expression for entropy production (eq. 10) can be further 

worked out. Differentiating the vertical longitudinal and 

transverse velocity distributions yields: 

dv. 

and 

Uv. ^ 

m + 1 
d "'z"" 

V J 

dz 
= 4 m 

V ^ J 

(AlV-la) 

(AlV- lb ) 

% Determineparameters 
% T h i s s c r i p t determines t h e parame t e r v a l u e s of a 
3rd o r d e r s i n e g e n e r a t e d c u r v e f o r a f i x e d 
wavelength 
% C r e a t e d on march 6 2002 by A d r i a a n T e u l i n g 
% C o p y r i g h t by Department of Water R e s o u r c e s , 
Wageningen U n i v e r s i t y , The N e t h e r l a n d s 
% T h i s s c r i p t was c r e a t e d i n Matlab 5.3. 

• % I n p u t 
ThetaOmin = 68*(2*pi/360) 
d e l t a T h e t a = 0 . 0 0 5 * ( 2 * p i / 3 6 0 ) ; 
ThetaOmax = 100* (2*pi/360) 
numberThetaOvalues = (ThetaOmax-
ThetaOmin)/deltaTheta; %has t o be whole number 

bmin = -0.1; 
d e l t a b = 0 . 0 1 ; 
bmax = 0.1; 

numberbvalues = (bmax-bmin)/deltab+1; %has t o be 
whole number 

Together with the eddy viscosity profile (eq. AIII-8) these 

equations can be substituted in equation 10. In order to 

obtain the entropy production over a cross-section, this 

equation is integrated over the z- and n-directions. This 

results in: 

Taw K 

+4zv. 

2 \ d 

z\ 1— 
m + 1 

d "z" 

1-4 
fr, V 

(AIV-2) 

yd J 
dzdh 

The first integral of this equation can be solved analytically. 

Rewriting results in: 

«••ƒƒ 
1 _̂  

z" —-z" 
d V 

4 ^ 

m 

fr, \' 

yd J 

(AIV-3) 

-__z_ dzdh 

After integrating and regrouping the entropy production 

over a cross-section can be written as: 

{m + lf 

6m 
tin (14) 

From equation 14 it can be seen that only the average 

longitudinal velocity and the transverse surface velocity 

have to be determined for the entropy production, which 

means that the model only has to describe these parameters 

and not the complete velocity distribution. Unfortunately no 

simple relationships exist which describe ï7 and v^^., so no 

further analytical solution of equation 14 is possible. 

dmin = -0.1; 
d e l t a d = 0.01; 
dmax = 0.1; 

numberdvalues = (dmax-dmin)/deltad+1; %has t o be 
whole number 

L = 30; 

d e l t a s = 0.1; % s t e p s i z e 

numberpoints = L / d e l t a s + 1 ; %has t o be whole number 
s = 0 : d e l t a s : L ; 
c = 2*p i / L ; 

wavelength = 13.2; 
t a r g e t = 0.01; % a c c u r a c y 
%End i n p u t 

T o t a l C a l c u l a t i o n s = n u m b e r b v a l u e s * n u m b e r d v a l u e s 
ThetaO=ThetaOmin:deltaTheta:ThetaOmax; 
b=bmin:delt ab;bmax; 
d=dmin:deltad:dmax; 

P=0; 
x ( l ) = 0 ; 
A=0; 

f o r 1=1:numberbvalues; 
f o r m=l:numberdvalues; 

f o r k=l:numberThetaOvalues; 
f o r o = l : n u m b e r p o i n t s - l ; 

d e v i a t i o n a n g l e ( o ) = T h e t a O ( k ) * s i n ( c * s (o))+Theta0 
(k) ̂ 3*b (1) * s i n { 3 * c * s (o) ) +Theta0 (k) ''3*d(m) *cos ( 3 * c * 
s ( o ) ) ; 

X ( o + l ) = x ( o ) + d e l t a s * c o s ( d e v i a t i o n a n g l e ( o ) ) ; 
end 

i f abs ( (x ( n u m b e r p o i n t s ) - X (1) ) -
wavelength)<=target; 

p=p+l 

A{p, 1) =Theta0 (k) ; 
A ( p , 2 ) = b ( l ) ; 
A(p,3)=d(m) ; 

A(p, 4) = (x (numberpoints) -x (1) ) ; 
break 

e l s e 
end 

end 

end 
end 

save R e s u l t A 

A %shows the r e s u l t 
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APPENDIX V I . SOURCE CODE OF MEANDER FLOW MODEL 

% MEANDERMODEL v e r s i o n 2.2 

% C r e a t e d on j a n u a r y 14 2002 by Adriaan T e u l i n g 
and S c h a l k - J a n van Andel 
% Copyright by Department of Water Resources, 
Wageningen U n i v e r s i t y , The Netherlands 
% T h i s s c r i p t was c r e a t e d i n Matlab 5.3. 

warning o f f 

A =[1.8511 -0.0200 0.0110); 
% Copy the m a t r i x A (Determineparameters.m) 

c o n t a i n i n g ThetaO, b and d f o r a given c h a n n e l -
and wavelength 

f o r j = l : l ; % Number of rows of ma t r i x A 
j % Shows p r o g r e s s of c a l c u l a t i o n i n command 
window 

% D e f i n i t i o n of planform parameters 
g l o b a l L 

L = 41; %must be the same as i n the c a l c u l a t i o n s 
f o r A 
g l o b a l ThetaO 
ThetaO = A ( j , 1 ) ; 
g l o b a l b 
b = A ( j , 2 ) ; 
g l o b a l d 
d = A { j , 3 ) ; 
g l o b a l xmax 

xmax = 120; % a t l e a s t max L 

% G r i d d e f i n i t i o n 
g l o b a l smin 

smin = 0; %must be m u l t i p l e of d e l t a s 
g l o b a l d e l t a s 
d e l t a s = 0 . 1 ; 
g l o b a l nmin 

nmin = -1/2; 
g l o b a l d e l t a n 
d e l t a n = 0 . 1 ; 

g l o b a l nmax 
nmax = 1/2; 

% I n i t i a l c o n d i t i o n s 
g l o b a l STcO 
STcO = [ 0 . 0 ; 0 . 0 ] ; 
g l o b a l uuO 
fo r k=l:1;((nmax-nmin)/deltan+1); 
uuO (k) = 1; 
end 

% C a l c u l a t i o n of energy d i s s i p a t i o n 

F i n d c o n s t a n t e n e r g y p r o f i l e 

% Saying r e s u l t s 

B ( j , : ) = [ T h e t a O b d V a r i a n c e E n e r g y c s count c h e c k ] ; 
save R e s u l t B 

end 

B %Shows f i n a l r e s u l t m a t r i x 

% F i n d c o n s t a n t e n e r g y p r o f i l e 
% T h i s s c r i p t runs t h e meander flow model u n t i l 
the energy l o s s i s c o n s t a n t 

% T h i s s c r i p t i s p a r t of t h e MEANDERMODEL 2.2 
% C r e a t e d on march 6 2002 by Adri a a n T e u l i n g and 
Sch a l k - J a n van Andel 

% Copyright by Department of Water Resources, 
Wageningen U n i v e r s i t y , The Netherlands 
% T h i s s c r i p t was c r e a t e d i n Matlab 5.3. 

g l o b a l L 
g l o b a l E n e r g y l 

E n e r g y l = 20; 
g l o b a l xmax 

g l o b a l window %must be m u l t i p l e of d e l t a s 
window = round(0.9*L); %determines the s i z e of the 
s h i f t a f t e r each c a l c u l a t i o n round. 
g l o b a l r e a c h %Reach/width must be m u l t i p l e of 
d e l t a s 
r e a c h = 5*L; 
g l o b a l check 
check = 1; 
g l o b a l smin 
g l o b a l d e l t a s 
g l o b a l nmin 
g l o b a l d e l t a n 
g l o b a l nmax 
g l o b a l n 
n = [nmin:deltan;nmax]; 
g l o b a l STcO 
g l o b a l uuO 

fo r count = 1:1:5; %Maximum number of c a l c u l a t i o n s 
f o r t he energy l o s s t o become c o n s t a n t 

Runflowmodel; 

g l o b a l T o t a l E n e r g y d i s s i p a t i o n 
g l o b a l E n e r g y l 

z = a b s ( T o t a l E n e r g y d i s s i p a t i o n -
E n e r g y l ) / T o t a l E n e r g y d i s s i p a t i o n ; % R e l a t i v e 
d i f f e r e n c e i n energy l o s s 

i f z<0.01 
break 

g l o b a l check 
e l s e i f check==-l %check to see i f t he 

c a l c u l a t i o n s converge. I f not check becomes -1 but 
the c a l c u l a t i o n s proceed, 

break 

e l s e i f count==5 %has t o be max count to 
pre v e n t s h i f t of s 

g l o b a l check 
check=-l; 

break 

e l s e %new i n i t i a l c o n d i t i o n s f o r next 
c a l c u l a t i o n round 

g l o b a l s 
s = sl+window; 
g l o b a l STcO 

STcO = STc(window/deltas+1,:); 
g l o b a l uuO 
uuO = uuu(window/deltas+1,:); 
g l o b a l smin 
smin = m i n ( s ) ; 
g l o b a l E n e r g y l 

E n e r g y l = T o t a l E n e r g y d i s s i p a t i o n ; 
end 

end 

% Runflowmodel 

% T h i s s c r i p t e x e c u t e s t he d i f f e r e n t p a r t s of the 
meander flow model 
% T h i s s c r i p t i s p a r t of t h e MEANDERMODEL 2.2 
% C r e a t e d on march 6 2002 by Adri a a n T e u l i n g and 
S c h a l k - J a n van Andel 
% Cop y r i g h t by Department o f Water Resources, 
Wageningen U n i v e r s i t y , The Net h e r l a n d s 
% T h i s s c r i p t was c r e a t e d i n Matlab 5.3. 

C a l c u l a t e r i v e r p l a n f o r m ; 

C a l c u l a t e r a d i u s o f c u r v a t u r e ; 
g l o b a l r c 
g l o b a l Rc 

P h y s i c a l p a r a m e t e r s ; 

C a l c u l a t e t r a n s v e r s e b e d s l o p e ; 
g l o b a l STc 
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C a l c u l a t e d e p t h ; 

g l o b a l ddd 

g l o b a l d r e i 

C a l c u l a t e l o n g i t u d i n a l v e l o c i t y ; 
g l o b a l uuu 
g l o b a l u 

C a l c u l a t e t r a n s v e r s e v e l o c i t y ; 
g l o b a l vs 
g l o b a l vsinax 

C a l c u l a t e e n e r g y p a r a m e t e r s ; 
g l o b a l T o t a l E n e r g y d i s s i p a t i o n 
g l o b a l Eamplitude 
g l o b a l V a r i a n c e E n e r g y c s 
g l o b a l Energy 
g l o b a l Energycs 

% C a l c u l a t e r i v e r p l a n f o r m 

% T h i s s c r i p t p l o t s the 3rd o r d e r s i n e generated 

curve 

% T h i s s c r i p t i s p a r t of the MEANDERMODEL 2.2 

% C r e a t e d on march 6 2002 by A d r i a a n T e u l i n g and 

Sch a l k - J a n van Andel 

% Copyright by Department of Water Resources, 

Wageningen U n i v e r s i t y , The Neth e r l a n d s 

% T h i s s c r i p t was c r e a t e d i n Matlab 5.3. 

c l e a r g l o b a l s 
c l e a r g l o b a l d e v i a t i o n a n g l e 

c l e a r g l o b a l x 

c l e a r g l o b a l y 

g l o b a l L 
g l o b a l ThetaO 
g l o b a l b 
g l o b a l d 
g l o b a l smin 
g l o b a l d e l t a s 
g l o b a l reach 
g l o b a l Border 
Border = reach; 
g l o b a l s 

s = smin;deltas:Border; 
g l o b a l c 
c = 2*pi/L; 

g l o b a l d e v i a t i o n a n g l e 
g l o b a l x 

g l o b a l y 

x ( l ) = 0 ; 

y ( l ) = 0 ; 

g l o b a l xmax 

f o r o=2:1:(Border-smin)/deltas+1; 

check=l; 

s s = s ( o - l ) + 0 . 2 5 * L ; 

d e v i a t i o n a n g l e ( o -

1) =ThetaO*sin ( c * s s ) +Theta0''3*b*sin ( 3 * c * s s ) +ThetaO'-

3 * d * c o s ( 3 * c * s s ) ; 

X ( o ) = x ( o - l ) + d e l t a s * c o s ( d e v i a t i o n a n g l e ( o - l ) ) ; 

y ( o ) = y ( o - l ) + d e l t a s * s i n ( d e v i a t i o n a n g l e ( o - l ) ) ; 

i f (x (o)-xmax) >0 

break 

e l s e 

end 

end 

g l o b a l smax 

sraax=(ss-0.25*L)+deltas; 

c l e a r g l o b a l s 

c l e a r g l o b a l s l 

g l o b a l s 

s=[smin:deltas:smax] ' ; 

g l o b a l s l 

s l = [ s m i n : d e l t a s ; s m a x ] ' ; 

g l o b a l c h a n n e l l e n g t h 

channellength=(smax-smin); 

% C a l c u l a t e r a d i u s o f c u r v a t u r e 

% T h i s s c r i p t c a l c u l a t e s t h e r a d i u s of c u r v a t u r e 

as f u n c t i o n of s • 

% T h i s s c r i p t i s p a r t of t h e MEANDERMODEL 2.2 

% C r e a t e d on march 6 2002 by A d r i a a n T e u l i n g and 

S c h a l k - J a n van Andel 

% C o p y r i g h t by Department of Water Re s o u r c e s , 

Wageningen U n i v e r s i t y , The N e t h e r l a n d s 

% T h i s s c r i p t was c r e a t e d i n Matlab 5.3. 

f u n c t i o n r c = r a d i u s ( s , b , c ) 
c l e a r g l o b a l r c 
g l o b a l L 

g l o b a l ThetaO 
g l o b a l b 
g l o b a l c 

g l o b a l d 
g l o b a l smin 

g l o b a l d e l t a s 
g l o b a l smax 

g l o b a l s 

g l o b a l r c 

f o r h =l:1:(smax-smin)/deltas+1; 
ss=s(h)+0.25*L; 

i f 

( c * T h e t a O * c o s ( c * s s ) ) + T h e t a 0 ^ 3 * b * 3 * c * c o s ( 3 * c * s s ) -
ThetaO^3*d*c*3*sin(3*c*ss)==0; 

r e c ( h ) = - r e a l r a a x ; 
e l s e 

r e c (h) =11 (c*ThetaO*cos ( c * s s ) +Theta0'-3*b*3*c*co 
s ( 3 * c * s s ) - T h e t a 0 ^ 3 * d * c * 3 * s i n ( 3 * c * s s ) ) ; 

end 

end 

r c = r c c ' ; 

g l o b a l Rc 

Rc=min(abs ( r c ) ) ; 

% P h y s i c a l p a r a m e t e r s 
% T h i s s c r i p t c o n t a i n s t he v a l u e s of most 

parameters used i n t h e meander flow model 

% T h i s s c r i p t i s p a r t of t h e MEANDERMODEL 2.2 
% C r e a t e d on march 6 2002 by A d r i a a n T e u l i n g and 
S c h a l k - J a n van Andel 

% C o p y r i g h t by Department of Water Resources, 
Wageningen U n i v e r s i t y , The N e t h e r l a n d s 
% T h i s s c r i p t was c r e a t e d i n Matlab 5.3. 

% I n p u t of p h y s i c a l (flow and sediment) parameters 
g l o b a l kappa %von Karman's c o n s t a n t [-] 
kappa = 0 . 4 ; 

g l o b a l dc % c e n t e r l i n e depth [m], under t h e 
assumption d<<width 
dc = 0.1; 

g l o b a l FDc % P a r t i c l e Froude number c e n t e r l i n e 
FDc = 6.85; 

g l o b a l m % v e l o c i t y p r o f i l e exponent (m=mc)[-] 
m = 2.8; 

g l o b a l a l p h a % r a t i o of p r o j e c t e d s u r f a c e a r e a t o 
volume f o r a sediment p a r t i c l e d i v i d e d by t h a t f o r 
a sphere of the same volume (alpha=1.27 f o r 
o r d i n a r y r i v e r s a n d ) [ - ] 
a l p h a = 1.27; . 

g l o b a l Theta % S h i e l d ' s p a r a m e t e r [ - ] 
Theta = 0.04; 

g l o b a l N % c o n s t a n t f a c t o r , checked by measurements 

N = 2*m+l/(2*kappa^2*m); 

g l o b a l k % p r o p o r t i o n a l i t y f a c t o r , assumed 

independent of sediment t r a n s p o r t r a t e 

k = kappa*N*(m+2)/(ra+1); 

g l o b a l aaa % p r o p o r t i o n a l i t y f a c t o r ST=a*v's [s/m] 
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aaa = ( 3 * a l p h a / 2 * s q r t ( T h e t a ) / k ) * F D c ; 
g l o b a l aa % c o n s t a n t 
aa = 

16*kappa*N*(m+2)*dc/(3*alpha*sqrt(Theta)*(m+1)*FDc 
) ; 
g l o b a l bb % c o n s t a n t 
bb = 

32*kappa'"3*N* (m+2) / ( 3 * a l p h a * s q r t (Theta) * (m+1) '^2*FD 
c) ; 
g l o b a l c c % c o n s t a n t 
cc = 16*kappa'^2*N*dc/(m+1) ; 
g l o b a l c3 % c o n s t a n t from l o n g i t u d i n a l v e l o c i t y 
e quation 
c3 = ( 2 * k a p p a " 2 ) / ( ( ( m + 1 ) ^ 2 ) * d c ) ; 

% C a l c u l a t e t r a n s v e r s e b e d s l o p e 
% T h i s s c r i p t c a l c u l a t e s t he t r a n s v e r s e bedslope 
at t he channel c e n t e r l i n e 
% T h i s s c r i p t i s p a r t of the MEANDERMODEL 2.2 
% C r e a t e d on march 6 2002 by Adri a a n T e u l i n g and 
Sc h a l k - J a n van Andel 
% Copyright by Department of Water Resources, 
Wageningen U n i v e r s i t y , The Netherlands 
% T h i s s c r i p t was c r e a t e d i n Matlab 5.3. 

g l o b a l d e l t a s 
g l o b a l dc 
g l o b a l r c 
g l o b a l s 
g l o b a l STc 
g l o b a l n 
g l o b a l nmax 
g l o b a l nmin 
g l o b a l d e l t a n 
g l o b a l aaa 
g l o b a l ddd 
g l o b a l d r e i 

f o r y = l : 1 : ( (nmax-nmin)/deltan+1) 
nn=n(y); 

f o r x = l : 1 : ( ( s m a x - s m i n ) / d e l t a s + 1 ) 
STcc=STc(x,1); 
r c c = r c ( x ) ; 
i f a b s ( r e c ) > l e + 6 

ddd(x, y ) = 1 * ( l - S T c c * n n / d c ) * d c ; 
e l s e 

ddd (x, y) = ( ( r c c -
n n ) / r e c ) " ( S T c c * r c c / d c ) * d c ; 

end 
end 

end 

f u n c t i o n s o l v e S T c 
drel=ddd/dc; 

c l e a r g l o b a l STc 
g l o b a l r c 
g l o b a l aa 
g l o b a l bb 
g l o b a l c c 
g l o b a l s 
g l o b a l d e l t a s 
g l o b a l smin 
g l o b a l STcO 
g l o b a l STc 

[s, STc]=ode45('Transversebedslopeequation',s,STcO, 
t] , aa,bb,cc,rc, d e l t a s , smin) ; 

% C a l c u l a t e l o n g i t u d i n a l v e l o c i t y 
% T h i s s c r i p t c a l c u l a t e s t h e l o n g i t u d i n a l v e l o c i t y 
p r o f i l e 

% T h i s s c r i p t i s p a r t of the MEANDERMODEL 2.2 
% C r e a t e d on march 6 2002 by Adri a a n T e u l i n g and 
Sc h a l k - J a n van Andel 

% Copyright by Department of Water Resources, 
Wageningen U n i v e r s i t y , The Neth e r l a n d s 
% T h i s s c r i p t was c r e a t e d i n Matlab 5.3. 

f u n c t i o n solveu2n 

% T r a n s v e r s e b e d s l o p e e q u a t i o n 
p T h i s s c r i p t s o l v e s t he d i f f e r e n t i a l equation f o r 
the t r a n s v e r s e bedslope 
% T h i s s c r i p t i s p a r t of t h e MEANDERMODEL 2.2 
% C r e a t e d on march 6 2002 by Adri a a n T e u l i n g and 
Sc h a l k - J a n van Andel 
% Copyright by Department of Water Resources, 
Wageningen U n i v e r s i t y , The Netherlands 
% T h i s s c r i p t was c r e a t e d i n Matlab 5.3. 

f u n c t i o n STcp = 

Transversebedslope(s,STc,FLAG,aa,bb,cc, r c , d e l t a s , s 
min) 

S T c p = [ S T c ( 2 ) ; - a a * S T c ( 2 ) - b b * S T c ( 1 ) + c c / r c ( ( s -
s m i n ) / d e l t a s + 1 ) ] ; 

% C a l c u l a t e d e d e p t h 

% T h i s s c r i p t c a l c u l a t e s t he depth d i s t r i b u t i o n 
% T h i s s c r i p t i s p a r t of t h e MEANDERMODEL 2.2 
% C r e a t e d on march 6 2002 by Adri a a n T e u l i n g and 
Sc h a l k - J a n van Andel 

% Copyright by Department of Water Resources, 
Wageningen U n i v e r s i t y , The Netherlands 
% T h i s s c r i p t was c r e a t e d i n Matlab 5.3. 

c l e a r g l o b a l uuu 
c l e a r g l o b a l u 
g l o b a l c3 
g l o b a l d e l t a s 
g l o b a l r c 
g l o b a l s 
g l o b a l smin 
g l o b a l smax 
g l o b a l n 
g l o b a l nmax 
g l o b a l nmin 
g l o b a l d e l t a n 
g l o b a l uuO 
g l o b a l uuu 
g l o b a l d r e i 

f o r y=l:1:((nmax-nmin)/deltan+1) 
nn=n(y); 
d r e l l = d r e l ( : , y ) ; 

[s,uu]=ode4 5 ( ' L o n g i t u d i n a l v e l o c i t y e g u a t i o n ' 
uuO (y) , [] , c 3 , d r e l l , n n , r c , d e l t a s , smin) ; 

uuu(:,y)=uu; 
end 

g l o b a l u 

u= s q r t ( u u u ) ; 

f u n c t i o n d d d = s t r a a l ( s , n , S T c ) 
c l e a r g l o b a l ddd 

c l e a r g l o b a l d r e i 
g l o b a l • s m i n 
g l o b a l smax 
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% Longitudinalvelocityequatión 
% T h i s s c r i p t c o n t a i n s t he d i f f e r e n t i a l e q u a t i o n 
f o r the l o n g i t u d i n a l v e l o c i t y 
% T h i s s c r i p t i s p a r t of the MEANDERMODEL 2.2 
% Crea t e d on march 6 2002 by A d r i a a n T e u l i n g and 
Schalk-Jan van Andel 
% Copyright by Department of Water Resources, 
Wageningen U n i v e r s i t y , The Netherlands 
% T h i s s c r i p t was c r e a t e d i n Matlab 5.3. 

f u n c t i o n uup = 

L o n g i t u d i n a l v e l o c i t y ( s , uu, F L A G , c 3 , d r e l l , nn, r c , d e l t 
as,smin) 
u u p = [ - c 3 * d r e l l { ( s - s m i n ) / d e l t a s + 1 ) ^ (¬
1 ) * u u + c 3 * r c ( ( s - s m i n ) / d e l t a s + 1 ) / ( r c ( ( s -
s m i n ) / d e l t a s + 1 ) - n n ) ] ; 

c l e a r g l o b a l Eamplitude 

c l e a r g l o b a l V a r i a n c e E n e r g y c s 

g l o b a l L 
g l o b a l smin 
g l o b a l smax 

g l o b a l d e l t a s 
g l o b a l nmax 
g l o b a l nmin 
g l o b a l d e l t a n 
g l o b a l m 
g l o b a l kappa 
g l o b a l u 
g l o b a l v s 

g l o b a l Energy 
g l o b a l E n ergycs 
g l o b a l T o t a l E n e r g y d i s s i p a t i o n 
g l o b a l Eamplitude 

g l o b a l V a r i a n c e E n e r g y c s 

% C a l c u l a t e t r a n s v e r s e v e l o c i t y 
% T h i s s c r i p t c a l c u l a t e s t he t r a n s v e r s e v e l o c i t y 
% T h i s s c r i p t i s p a r t of t h e MEANDERMODEL 2.2 
% Crea t e d on march 6 2002 by A d r i a a n T e u l i n g and 
Schalk-Jan van Andel 

% Copyright by Department of Water Resources, 
Wageningen U n i v e r s i t y , The Netherlands 
% T h i s s c r i p t was c r e a t e d i n Matlab 5.3. 

f u n c t i o n vs=ST(s, n,STc) 

c l e a r g l o b a l vs 
g l o b a l smin 
g l o b a l smax 
g l o b a l d e l t a s 
g l o b a l dc 
g l o b a l r c 
g l o b a l .s 
g l o b a l STc 
g l o b a l n 
g l o b a l nmax 
g l o b a l nmin 
g l o b a l d e l t a n 
g l o b a l aaa 
g l o b a l d r e i 
g l o b a l vs 
g l o b a l vsmax 

f o r f = l : 1 : ( L / d e l t a s + 1 ) 

f o r i =l:1:((nmax-nmin)/deltan+1) 
i f i = = l 

Energy ( f , i ) = (kappa'"2) * ( ( (m+1) '-2*u ( f , i ) "3) / (4*m 
" 3 + 2 * m " 4 ) + ( 4 * u ( f , i ) * v s ( f , i ) " 2 ) / ( 5 * m ) ) * ( 1 / 2 ) * d e l t a n 

r 

e l s e i f i==((nmax-nmin)/deltan+1) 

Energy ( f , i ) = (kappa"2) * ( ( (m+1) '^2*u ( f , i ) "3) / (4*m 

^3+2*m'^4) + ( 4 * u ( f , i ) * v s ( f , i ) - 2 ) / ( 6 * m ) ) * ( l / 2 ) * d e l t a n 

e l s e 

Energy ( f , i ) = (kappa"2) * ( ( (m+1) '^2*u { f , i ) " 3 ) / ( 4 * m 
'•3+2*m"4) + ( 4 * u ( f , i ) *vs ( f , i ) "2) / (6*m) ) * d e l t a n ; 

end 
end 

end 

E n e rgycs = sum(Energy'); 

T o t a l E n e r g y d i s s i p a t i o n = d e l t a s * s u m ( E n e r g y c s ) ; 
Eamplitude = m a x ( E n e r g y c s ) - m i n ( E n e r g y c s ) ; 
V a r i a n c e E n e r g y c s = v a r ( E n e r g y c s ) ; % c a l c u l a t e s t h e 
v a r i a n c e of Energycs 

f o r y=l:1:((nmax-nmin)/deltan+1) 
nn=n(y); 

f o r x=l; 1 : ( ( s m a x - s m i n ) / d e l t a s + 1) 
d r e l l = d r e l ( x , y ) ; 
STcc=STc(x); 
r c c = r c ( x ) ; 

vs ( X , y) = S T c c * d r e l l * ( ( r c c - n n ) / r e c ) " (¬
1)/aaa; 

end 

end 

vsmax=max(abs(vs{:,nmax/deltan+1))); 

% C a l c u l a t e e n e r g y p a r a m e t e r s 
% T h i s s c r i p t c a l c u l a t e s a number of energy 
d i s s i p a t i o n parameters 
% T h i s s c r i p t i s p a r t of the MEANDERMODEL 2.2 

% Crea t e d on march 5 2002 by A d r i a a n T e u l i n g and 
Scha l k - J a n van Andel 
% Copyright by Department of Water Resources, 
Wageningen U n i v e r s i t y , The Netherlands 
% T h i s s c r i p t was c r e a t e d i n Matlab 5.3. 

f u n c t i o n E n e r g y c o n s i d e r a t i o n s = u v s ( s , n , S T c ) 

c l e a r g l o b a l Energy 
C l e a r g l o b a l E n e r g y c s 

c l e a r g l o b a l T o t a l E n e r g y d i s s i p a t i o n 

23 



APPENDIX VIL NOTATION 

a 
b' 
C 
c' 

D 
d 

d 

I 
E 
E: 

D 

ƒ ' 

k 
L 
m 
N 

n 
n 
P 
Q 
q 

li 

r 

S 
s 
s 

T 
t 
V 

V 

V, 

function (equation 15) 
function (equation 15) 
Ciiezy coefficient 
function (equation 15) 
fattening parameter 

slcewing parameter 

particle diameter 

local river depth 

dimensioniess local river depth 

dimensioniess centerhne depth 

energy 

internal energy 

internal energy per unit mass 

particle Froude number 

function (equation 18) 

function (equation 17) 
vector of acceleration due to gravity 
scalar value of acceleration due to gravity 
function (equation A l l l - l b and AII I - lc ) 

scale factor in direction a 

sinuosity {LlX) 
meander length measured along river centerline 
velocity-profile exponent 
cross-stream coordinate divided by centerhne 
radius of curvature ( « / / ; ) 

cross-stream direction 
dimensioniess cross-stream direction 
pressure 
heat 

vector of heat flow per unit mass 
direction i 

dimensioniess local radius of curvature 
centerline radius of curvature 

dimensioniess centerline radius of curvature 

entropy 
downstream direction 
dimensioniess downstream direction 
transverse bedslope 

centerline transverse bedslope 

absolute temperature 
time 
velocity vector 
scalar velocity 
velocity component in dkection i 

velocity component in the downstream direction 

dimensioniess velocity component in the 
downstream direction 
dimensioniess depth averaged velocity in the 
downstream direction 
depth averaged centerhne velocity in the 
downstream direction 
velocity component in the cross-stream direction 

dimensioniess velocity component in the cross-
stream direction 
dimensioniess surface velocity in the cross-stream 

direction 

velocity component in the vertical direction 

shear velocity 

W work 
w river width 

effective river width {~w-2d) 

X downvalley direction 
downvalley coordinate of the river centerhne 

y crossvaUey direction 
crossvaUey coordinate of the river centerhne 

z vertical dkection 
z dimensioniess vertical direction 
a projected area/volume ratio for sediment particle 

normahzed by that for sphere 
fi angle between downvaUey and cross-skeam axis 

£ kinematic eddy viscosity 
K Von Karman's constant (0.4) 
5^ unity vector in the downstream direction 

5^ unity vector in the cross-stream dkection 

5^ unity vector in the vertical dkection 

8^fi Kronecker deha 

T stress tensor 
X.. components of the stress tensor 

T normal stress in the cross-stream dkection 

X shear stress in the downskeam dkection on a 
ns 

cross-skeam plane 
X shear stress in the vertical direction on a cross-

stream plane 
X normal stress in the downskeam dkection 

ss X shear stress on a downskeam plane in the cross-
in ^ 

stream dkection 
X shear stress on a downskeam plane in the vertical 

direction 
X normal stress in the vertical direction 

X shear stress on the z plane in the cross-stream 
direction 

X shear stress on the z plane in the downskeam 
ZS ^ 

direction 
© deviation angle from valley axis 

deviation angle of sine-generated curve from 
valley axis at point of inflexion 

X meander wavelength 
¥ rate of strain tensor 
P fluid density 

particle density 

e Shields' parameter (0.27) 
cr rate of entropy production per unit volume 
a^^ rate of entropy production per unit river length 

cr,„j total rate of enkopy production for meander bend 

^ phase along the river (2%s IL) 
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