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Capturing Head Poses Using
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This article presents the first subject-specific head pose estimation
approach using only one frequency-modulated continuous wave radar
data frame. Specifically, the proposed method incorporates a deep
learning framework to estimate head pose rotation and orientation
frame-by-frame by combining a convolutional neural network operat-
ing on range-angle radar plots and a PeakConv network. The proposed
method is validated with an in-house collected dataset, including
annotated head movements that varied in roll, pitch, and yaw, and
these were recorded in two different indoor environments. It is shown
that the proposed model can estimate head poses with a relatively
small error of approximately 6.7°-14.4° for all rotational axes and is
capable of generalizing to unseen, new environments when trained in
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one scenario (e.g., lab) and tested in another (e.g., office), including in
the cabin of a car.

[. INTRODUCTION

Monitoring human movements and activities through
nonvision-based sensors plays a crucial role in various
applications [1], including medical imaging [2] and auto-
motive [3], [4]. Its significance lies in the enhanced privacy
offered by sensors such as radar, lidar, or thread-based
devices [5], in contrast to vision-based sensors such as
cameras. Specifically, radar sensors excel in providing pri-
vacy and perception, including in scenarios with optically
obscured paths. This makes them highly valuable for tasks
such as human detection through opaque materials [6] or
the estimation of human body motions [7], [8].

In applying body pose estimation using radar, the lit-
erature has made rapid progress. For instance, recent work
has shown some results by utilizing deep learning (DL)
techniques to map radar signals to body skeletons, guided
by camera vision [9]. Following this approach, a series of
studies have emerged, demonstrating techniques to enhance
the estimation accuracy of the posture of the different
body parts in the skeleton. For example, recent research
has proposed using temporal information and attention
mechanisms to improve body posture estimation with radar
data [10], [11], [12]. Other research works have shown that
using point cloud representations derived from raw radar
signals with DL techniques can effectively estimate pose
while keeping computational costs manageable [13], [14],
[15]. Another key challenge in using DL techniques for
body pose estimation is achieving generalization capability.
Recent developments suggest this is to some extent possible
[16], [17].

However, a tradeoff exists, as none of these techniques
can provide exceptionally high spatial resolution. This is
because the labels are derived from skeleton poses in 3-D
space and are limited to the positions of key points without
considering rotational angles, posing challenges in pre-
cisely gauging motion within predefined target areas—this
includes, for example, using radar to estimate the precise
location of the human hands or orientation of the head, i.e.,
where the person is looking at or in other words the angular
orientation of the head.

In contrast to typical body pose recognition, we are
specifically interested in capturing head movement. As
found in the literature, most previous works have focused
on capturing the head movement during driving tasks, such
as in the cabins of vehicles [18], [19], [20], aiming to
enhance our understanding of human behavior and monitor
attentiveness and mental focus. Recent efforts have shown
the incorporation of deep neural networks or DL to improve
the performance of the earlier works [21], [22]. However,
most of these studies remain application-centric, primarily
on classification such as head movement direction and
specific types of head pose, while leaving a regression task
with adaptability and generalization abilities not concretely
explored until nowadays. This year’s latest work reports
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RTH — Radar on Top of The Head
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Fig. 1.
preprocessing step to acquire training data and corresponding ground-truth head poses, and the prediction model to predict head pose and rotations.

the algorithm for ultra-wideband radar used to estimate the
pitch and yaw of the head in the car scene [23]. These
motivated us to narrow down and conduct the proposed
studies in this research direction, especially regression tasks
or the estimation of head movement.

This article presents a feasibility study on estimating
human head pose rotation and orientation based on a ded-
icated DL framework using frequency-modulated contin-
uous wave (FMCW) radar. The proposed approach can
work on just a single frame of radar data and provide
subject-specific head pose estimations (i.e., training one
specific model for individual subjects). Unlike focusing on
human head classification, our approach is formulated as
a regression task, predicting head motion rotation values
parameterized by the three variables of roll, pitch, and yaw.
In addition, we demonstrate the capability of our approach
to generalize well to different environments by training the
model in one scene and testing it in another completely
different environment.

A specific dataset was collected with a 77-GHz FMCW
radar to validate the proposed approach, and vision-based
techniques were used to label the data. Precisely, to predict
the head pose rotation, we propose to leverage the range-
azimuth convolutional neural network (RA-CNN) model
based on a fully convolutional network (FCN) [24], demon-
strating its potential in localizing tiny targets in FMCW
radar data within a limited dataset. In addition, we incorpo-
rate the response different aware PeakConv (ReDA-PKC)
network [25] before the RA-CNN network. The kernel
convolution of ReDA-PKC is designed to achieve a contin-
uous false alarm rate (CFAR), aiding RA-CNN in focusing
on meaningful features. Combining these two networks
demonstrates the effectiveness of our proposed method in
predicting subject-specific head pose rotations.

To summarize, an overview of our study is depicted in
Fig. 1, and the main contributions are outlined as follows.

KUMCHAISEEMAK ET AL.: CAPTURING HEAD POSES USING FMCW RADAR AND DEEP NEURAL NETWORKS

Overview of our proposed framework for radar-based head pose estimation. The framework consists of a data collection process, a

1) To the best of our knowledge, this is the first work
to estimate subject-specific head pose rotation with
only FMCW radar data utilizing a DL regression
approach. It should be noted that this is a more
challenging estimation problem than simply locating
or tracking the position of the head in the skele-
ton [13], [15], as the angular orientation of the head
is regressed in the three dimensions of yaw, pitch,
and roll.

2) The proposed approach is comprehensively vali-
dated with an experimental dataset with head rota-
tion information, comprising over 198 000 frames
of movement and ten participants recorded in two
different environments.

The rest of this article is organized as follows. Section 11
elaborates on the proposed methodology. Following this,
Section III outlines the experimental setup and data collec-
tion process. Next, in Sections IV and V, we evaluate our
models’ performance under various settings, compare them
to alternative models inspired by the literature, and discuss
the limitations of our work. We show an example of our
model’s usage in a vehicle’s cabin in Section V-C. Finally,
Section VI concludes this article.

[I. PROPOSED METHODOLOGY

We aim to predict subject-specific head pose rotations
using a DL regression model based on a combination
of ReDA-PKC and RA-CNN architectures. This section
provides details of the proposed approach. First, in
Sections II-A and II-B, we briefly overview the signal
model, and then, describe the preprocessing steps for
FMCW radar data, which serve as the input for our
DL model. Second, our proposed model is described in
Section II-C. Finally, Section II-D addresses the postpro-
cessing aspects of the predictions provided by the model.
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Fig. 2. Illustration of the principles of linear chirp FMCW radar; it

shows how the frequency sweeps during the radar operations. The blue
line represents the transmitting chirp, the red line denotes the receiving
chirp, and the green line illustrates the IF signal derived by “beating” the
received signal with the transmitted one.

A. Radar Signal Model

In our study, we used FMCW radar to gather head mo-
tion signatures from each participant. Essentially, FMCW
radar estimates target distance by generating intermediate
frequency (IF, or “beat” frequency) signals by multiplying a
copy of the transmitted signal and the received signal. The
transmitted signal’s frequency is swept within a specified
bandwidth, as shown in Fig. 2. In contrast, the received
signal is assumed to be a delayed copy of the transmitted
signal, with additional phase shifts in case of moving targets.
The IF signal within a single radar frame can be modeled
as follows:

N .
d
Lkl = Zanexp <j27rf0%sin6n>

n=1

. 2v, k
X exp <—J27T (fOTTpl + Wq)) (1)

where z; x; represents specifically the discretized IF signal
(dechirp). There, i = [0, 1, ..., N; — 1] denotes the index
of the antennas in the radar linear virtual array, where
N; is the total number of virtual antennas. Similarly, k =
[0, 1, ..., Ny — 1] denotes the number of sampling indices
(fast time), where N, = T, f; represents the maximum num-
ber of samples in one chirp. Here, 7, denotes the chirp
duration, and f; denotes the sampling frequency. Finally,
[ =10,1,...,N; — 1] is the number of chirp indices (slow
time), with N; being the total number of chirps. Then, ¢, is
a constant complex amplitude related to the characteristics
of the target n, while f; represents the starting frequency
and ¢ denotes the speed of light. 6, denotes the azimuth
of the target n, d represents the spacing between adjacent
antennas, and v, represents the radial velocity between
the radar and target n. T, stands for the pulse repetition
time, and u denotes the frequency modulation rate. Finally,
Vo = 2? 1 L T, represents the time delay of the echo signal
relative to the transmitting signal, where D,, denotes the
distance between the radar and target n.

For a more comprehensive discussion of the signal
models and system considerations of FMCW radar, refer
to the detailed explanation in [26] and[27].
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B. Preprocessing

An overview of the preprocessing on the radar data is
shown in Fig. 3 on the left-hand side, and the steps are
detailed as follows.

1) Range-Angle Data Representation: To generate a
range-angle map, we utilize the conventional approach
based on the Fourier transform. Fast Fourier transform
(FFT) is applied along both the fast time axis and anten-
nas/channels axis of the radar signal previously defined
in (1). The output of the range-angle Fourier transform is
determined by

N—1 Ne—1 » P
. reexpl—or [Siv—k)) @
kL ; g Zik,l * €XP ( J£T (Ml + Nk )) ( )

where 7 and k are the angle and range bin after FFT, respec-
tively. Next, the modulus of the signal mentioned previously
is computed to generate the range-angle plot, where peaks in
the data correspond to the distance (range bin) and azimuth
angle (angle bin) of the target head. In addition, to minimize
environmental noise and clutter, we limit the range bins
to concentrate solely on the region containing the target
head. Furthermore, it should be noted that zero padding is
implemented in both FFT's beforehand to enhance the visual
quality of the resulting range-angle map in both the range
and angle direction.

2) Clutter Removal: As in this study, we aim to use a
DL approach for head pose estimation across diverse envi-
ronments, the proposed model should be able to maintain
background invariance. This typically involves training on a
large dataset covering multiple environments, enabling the
network to capture various background clutter or multipath
propagation effects. However, resource constraints led to a
relatively small radar head pose estimation dataset. Hence,
to address this background invariance, we use a classi-
cal technique to mitigate the static clutter effect through
interframe processing. Specifically, this process involves
averaging the range bins across the chirps within a single
frame and subtracting this average from each chirp. The
clutter removal equation is defined as follows:

| N

Al _ AA N o AA R

Gkt TSk Ty § :Zi,k,l 3)
I =0

where 2’ represents the range-angle feature after static clut-
ter removal.

C. Estimation Framework With DL Model

To estimate the head pose, we take inspiration from two
deep learning models [24], [25] that predict frame-by-frame
range-angle features as defined in the previous subsection,
i.e., after static clutter removal. Initially, we modify the RA-
CNN model and propose a combination of ReDA-PKC with
RA-CNN, as shown on the right hand of Fig. 3.

1) RA-CNN: We propose a modified FCN network
derived from the RA-CNN network in [24] for estimating
the target head pose rotation. The model comprises three
branches for roll, pitch, and yaw prediction, each sharing
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Overview of our proposed model. The left side of the figure demonstrates the preprocessing step. After data collection, a double FFT

operation generates range-angle plots to extract representative features. Next, clutter removal techniques are applied to reduce the impact of static
background clutter. Our deep learning model for head pose estimation is depicted on the right side of the figure. We provide a comparison with two
existing models: first, the RA-CNN network at the top, and second, the ReDA-PKC + RA-CNN model at the bottom. Finally, a smoothing filter is
employed on the predictions to improve their smoothness over time.

an identical architecture. This architecture includes six 2-D
convolution layers with rectified linear unit activations and
two max pooling layers. The output of the last convo-
lution layers is averaged along the range axis, yielding
a dimensionality-reduced 1-D vector. This reduction pre-
serves meaningful features, given that head pose rotation
primarily relies on changes in the peak along the angle
axis. Next, the logits from the last layer are converted into
probabilities, P, using Softmax, representing the probabil-
ity distribution as a function of angle. Finally, to convert
these probabilities into the final prediction, we calculate
the expectation of the angle bin index, A, over, P as

N ~

P=P A t=1{0,0,V) @)
and
T el
A:[—E,. .,0,...,5] (5)

where P, € [—%, 5] 1is the predicted output of the network
for the head pose, and the elements of A are arranged based
on the given range of P.

The utilization of the FCN model aims to maintain
a property known as translation equivariance. This prop-
erty ensures that when the peak in the range-angle feature
translates by a certain amount, the output in each layer
shifts by the same amount. This feature aids in the model’s
ability to learn, mainly when training data for some specific
participants that may not cover all possible head movement
angles. The convolutional kernels learn to detect peaks in a
limited training region and can reuse such learned patterns
across various movements, including unseen ones.

2) ReDA-PKC + RA-CNN: In addition to the modified
RA-CNN, we introduced a fusion approach combining the
RA-CNN with the ReDA-PKC [25]. This model replaces
the initial layers of RA-CNN with ReDA-PKC to capture
significant peak information from the range-angle features.
The concept behind this is inspired by the CFAR algorithm,

KUMCHAISEEMAK ET AL.: CAPTURING HEAD POSES USING FMCW RADAR AND DEEP NEURAL NETWORKS

commonly used in radar systems for peak detection. How-
ever, unlike traditional CFAR methods, where the threshold
for the cell under test is calculated solely based on the
surrounding reference cells, leaving the center cell excluded
in the threshold calculation, the ReDA-PKC method also
involves the cell under test in the thresholding process.
Consequently, the thresholding factor is calculated based
on the variance between each reference cell and the cen-
ter cell. This results in enhanced interference suppression,
as the kernel convolution incorporates both the reference
cells and the cell under test values in the thresholding
process. The output of ReDA-PKC network, x,,, can be
determined by

Cout

N,
i i
Xout = Vec E W) * (Xc — X,.)
i=1 j=1

, wi- € RGn
(0)

where x. € R% represents the cell under test, x| € R
denotes the set of reference cells at i elements, w represents
the set of learning weights, and N, is the number of reference
cells. The symbol * denotes the convolution operator. Cj,
and Cy, represent the channel input and output, respectively,
both set equal to the number of chirp indices, &V, in this
study. Finally, similar to traditional CFAR, a guard cell, x,,
is necessary to establish buffer zones around the cell under
test to prevent target signal leakage to the reference cells.

Subsequently, the ReDA-PKC’s output will be directed
to the RA-CNN model to estimate head pose rotation. As
mentioned, adding ReDA-PKC before RA-CNN mitigates
interference signals that may not be entirely removed during
preprocessing and static clutter removal. Likewise, this
technique helps the network prioritize significant peaks
within the range-angle maps.

In our study, we train both models using the mean
absolute error loss function, ensuring that the predicted head
rotation is optimized to match the ground-truth head pose,
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as defined by
L=E[|[P; — P|] @)

where P, is the ground truth of head pose rotation, with the
models being optimized independently for roll, pitch, and
yaw.

D. Postprocessing

As our prediction model operates by providing predic-
tions for every single frame, intermittent jitter trajectories
may occur with unrealistic fluctuations in predictions on
a frame-by-frame basis, i.e., unrealistic in terms of phys-
ical human head movement. To mitigate this, we use the
Savitzky—Golay filter after prediction to improve the real-
ism of head movement trajectories and obtain a smoothing
effect. This is defined by

o w-l

w1
7
Pi= Y Cp-PY (8)
J 2

where P! represents prediction values after filtering at po-
sition 7, with W is the size of window used for filtering. Cy
are the filter coefficients, and 15§ is the element of the vector
f’t. For this study, we set the window size to 35, and the
polynomial fitting order is set to 2. This choice is based on
the observation that a larger window size and a lower or-
der polynomial yield smoother results, effectively filtering
out highly intermittent jitter trajectories and aligning more
closely with realistic head movements.

E. Implementation Details

For the RA-CNN model, we employ six layers of 2-D
convolution with filter sizes {32, 32, 32, 32, 32, 1}, all with
a kernel size of 3. The number of layers and convolution
channels are determined through grid search hyperparame-
ter tuning. Given the extensive range of combinations and
models to train, we restrict the search space to {4, 6, 8, 10}
as the number of convolutional layers in the overall ar-
chitecture and to {16, 32, 64} for the number of filters in
each convolutional layer; the output of the last channel
is set to 1. In addition, we incorporate two max-pooling
layers after every two convolution layers, using a kernel
size of 3 to minimize less significant numbers generated
by the convolution operations. For the ReDA-PKC model,
the bandwidth of the reference and guard cells are set to 1
and 2, respectively. Training is carried out using the Adam
optimizer with a constant learning rate of 1 x 10° and a
batch size of 100. The model undergoes training for 200
epochs, and on a single Nvidia GeForce RTX 2080 Ti, the
process takes approximately 2 min for each run. Details
of the different combinations of data used for training and
testing are provided in the subsequent section with results.

[ll.  RADAR HEAD POSE DATASET

This section presents the dataset to validate the proposed
approach for head pose estimation. Section III-A details the
equipment setup. Next, Section III-B describes how the data

6752

TABLE I
Radar Hardware Parameters

Item | Value
Bandwidth =~ 3.19 GHz
Number of chirps 32
Frame rate 30 fps
Samples per chirp 256
Number of virtual antennas 12
Multiplexing techniques TDM

collection process was conducted. Finally, in Section III-C,
we describe the process of generating ground truth and
refining it through calibration to adjust pose positions within
the dataset.

A. Equipment Setup

To generate our radar-based head pose estimation
dataset, we present a vision-based system for simultane-
ous data collection at each time step, capturing both radar
signals and 2-D images at each time step. In this dataset,
we use the Texas Instruments mmWave IWR1443 FMCW
radar, which operates in the 76-81 GHz frequency band,
and some of its detailed parameters are provided in Table I.
We introduced ten types of movements detailed as follows
to cover all possible trajectories of head motions. Plus,
the radar array geometry/location concerning the head is
optimized in three different configurations, namely, radar on
top of the head (RTH), radar aligned vertically (RAV), and
radar aligned horizontally (RAH). This is done to maximize
the available angular resolution for each movement type,
as shown in Fig. 1, essentially by aligning the length of
the resulting radar virtual array along the direction of the
dominant head movement for that specific movement. These
head movement types include the following.

1) Roll (tilting head left <> right) with RTH.

2) Pitch (moving head up <> down) with RAV.

3) Yaw (moving head left <> right) with RAH.

4) Left tilting (tilting head left <> center) with RTH.

5) Right tilting (tilting head right <> center) with RTH

6) Center-up (moving head up <> center) with RAV.

7) Center-down (moving head down <> center) with
RAV.

8) Center-left (moving head left <> center) with RAH.

9) Center-right (moving head right <> center) with
RAH.

10) Free head movement, repeating collections to uti-

lize the radar in all three positions (RTH, RAV, and
RAH).

Our experiments were conducted in two environments
with different levels of background clutter: laboratory and
office scenes. The laboratory scene had minimal clutter,
with a large empty space and no walls within the study
range, resulting in reduced multipath effects on the collected
data. In contrast, the office scene contained significantly
more clutter, such as walls and multiple office chairs and
desks, introducing higher levels of contamination into the
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Fig. 4. Photos of the environments used for data collection.
(a) Laboratory: Characterized by minimal clutter and wide spaces.
(b) Office: Featuring numerous background elements, such as office
chairs, monitors, and desks close to each other, with limited space.

data in the form of clutter and multipath. Both environments
are shown in Fig. 4 .

To maximize the signal-to-noise ratio (SNR) and main-
tain consistent model performance regardless of distance
variations, we limited the study range in our work to ap-
proximately 15-30 cm, with the target positioned within
the radar’s line of sight.

B. Data Collection

We recruited ten volunteers for this experiment, with
heights ranging from 170 to 184 cm and weights from 60 to
90 kg. We captured data for 11 s during each movement,
yielding 330 frames from both radar and camera. The
recordings were captured with a brief pause in between
them. This entire cycle was repeated five times, resulting
in 1650 frames per movement and 19800 per volunteer
for all movement types. This process was carried out in
laboratory and office settings, where the total data were
duplicated. We did not impose limitations on the range of
head angles, head movement speed, or motion repetition
in each cycle, leaving the participants free to achieve a
broader range of movement patterns or maintain a closer
resemblance to real-world scenarios. The data collection
process received approval from the Human Research Ethics
Committee, Delft University of Technology.

C. Ground-Truth Generation and Calibration Method

To create ground-truth data for training, 2-D images
collected alongside radar data were processed using a large-
scale dense, accurate, and diverse dataset for 3D head align-
ment from a single image (DAD-3DHeads) model [28],
which outputs roll, pitch, and yaw values. However, these
ground truths are based on the camera orientation, whereas
we require ground truths corresponding to the radar orienta-
tion. Therefore, we also employed the quick response (QR)
marker, which was used for calibration orientation to obtain
the accurate pose of the human head, aligning it with the
radar orientation .

We employ a vision-based system to determine the head
pose rotation relative to the radar orientation, using a QR
marker based on the augmented reality university of cordoba
(ArUco) [29] library, as shown in the concept illustration of
Fig. 5. The goal is to use the QR markers as references

KUMCHAISEEMAK ET AL.: CAPTURING HEAD POSES USING FMCW RADAR AND DEEP NEURAL NETWORKS

Fig. 5. Illustration of the vision-based system used to calibrate data
generated from the DAD-3DHeads model to be used as ground truth.

for the poses of each device (radar and camera), and to
calculate the angular difference between them. This angular
difference will be used to adjust the generated data to be
used as ground truth. To do this, an additional camera is
needed to estimate the poses of the two QR markers. Our
technique comprises two steps. First, we attach QR markers
to the radar and the camera to serve as reference poses. We
then estimate the extrinsic of the camera and radar, Ec, Er
€ SE(3), by solving the perspective n-point problem. The
camera intrinsic parameters are obtained through standard
calibration with an OpenCV checkerboard. Second, we
calculate the relative pose between the camera and radar,
defined as

E._, = E;IEC (9)

where E._,, represents the relative pose from the camera
to the radar. This indicates the angular difference between
the radar and camera, serving as a compensatory angle for
ground truths predicted by the DAD-3DHeads network.

IV. EXPERIMENTS AND RESULTS

In this section, we present the results of four experiments
conducted to evaluate the performance of our model, all of
which were conducted in a subject-specific manner, namely,
the following:

1) we show the accuracy of our prediction model in
estimating environment-specific head poses;

2) we evaluate the extent to which our model can gen-
eralize to different environments by training in one
and testing in another;

3) we highlight the performance enhancements result-
ing from an increase in the size of the available
training dataset;

4) we evaluate our model’s performance against alter-
native models inspired by the literature.

Fig. 6 illustrates an overview of the first three
experiments.
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Fig. 6. Illustration of the different experiment configurations to

demonstrate the training and testing process in different environments
and for different head motions.

A. Environment Specific

We assess the efficacy of our proposed prediction model
in fitting subject-specific Head pose estimations. The mod-
els are trained and tested on the same subjects and environ-
ment. Specifically, the models are trained on specific motion
data sequences (roll, pitch, and yaw only), and then, tested
on free-head movement sequences, with the antenna array
geometry of the testing data matching that of the training
data. For each training model, 50% of the data from the
specific motion is allocated to training, and the remaining
50% from free head movement is allocated for testing
data.

In Fig. 7 and Table II, the proposed ReDA-PKC +
RA-CNN model shows slightly better performance than
RA-CNN, with mean absolute errors (MAEs) of 6.7°,
10.10°, and 14.4° for roll, pitch, and yaw, respectively, in the
lab—lab (training—testing) scene, and 7.2°, 8.7°, and 13.5°
for roll, pitch, and yaw, respectively, in the office—office
(training—testing) scene. For individual subjects, the lowest
average MAE is 7.4° on P-10 for the lab—lab scene and 7.2°
on P-2 for the office—office scene, while the highest MAE is
15.6° on P-1 for the lab—lab scene and 12.4° on P-7 for the
office—office scene. Considering the typical head rotation
angle (~ 180°), the 7.4° and 7.2° errors translate to approxi-
mately 4.1% and 4.0% error at the minimum, while the 15.6°
and 12.4° errors correspond to around 8.7% and 6.9% error
in angle at maximum. These results indicate that the angle
errors are relatively small compared to regular rotation, as
observed in [23], where they achieved error angles ranging
from 8.63° to 18.24° in terms of yaw and pitch movements.
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TABLE II
Head Pose Estimation Results for Each Participant (Subject-Specific in
Each Environment, Lab and Office)

Note:FCN = RA-CNN, P+FCN = ReDA-PKC + RA-CNN

MAE Roll | MAE Pitch | MAE Yaw |
Participants FCN P+FCN FCN P+FCN FCN P+FCN
P-1 10.3 103 148 133 234 232
P-2 8.4 8.4 9.2 9.1 10.4 8.4
P-3 6.3 5.9 8.2 8.6 121 124
P-4 5.3 5.8 14.1 13.1 6.6 7.5
P-5 4.6 4.7 4.9 46 16.1 15.4
P-6 10.4 6.6 9.5 93 112 9.9
P-7 9.1 7.2 13.9 14.7 16.7 18.4
P-8 5.6 5.7 14.4 123 230 23.1
P-9 7.6 8.4 11.2 12.2 16.7 17.2
P-10 42 3.8 137 10.0 7.8 8.3
Mean (u) 7.2 6.7 114 10.7 14.4 14.4
SD (o) 22 1.8 32 2.8 5.5 5.7
(a) Training—Testing: Lab-Lab
MAE Roll | MAE Pitch | MAE Yaw |
Participants FCN P+FCN FCN P+FCN FCN P+FCN
P-1 10.1 9.7 13.7 11.4 14.1 14.1
P-2 6.0 6.0 6.9 6.7 9.9 9.0
P-3 6.9 6.8 8.8 9.7 227 19.1
P-4 8.9 10.3 7.5 7.7 9.2 9.6
P-5 6.2 6.1 6.4 6.5 17.7 16.2
P-6 4.6 4.8 6.6 54 111 10.4
P-7 7.3 6.0 9.6 9.7 238 22.0
P-8 7.2 80 115 114 123 12.6
P-9 7.1 7.4 12.2 11.6 16.1 135
P-10 74 7.1 8.6 8.1 9.9 8.2
Mean (1) 7.2 7.2 9.2 87 147 13.5
SD (o) 1.4 1.6 2.4 2.1 5.0 4.3

(b) Training—Testing: Office—Office
Bold text highlights the best values.

This demonstrates our model’s capacity to accurately es-
timate head pose rotations in subject-environment-specific
tasks.

B. Environment Generalization

We demonstrate how our method effectively achieves
environment generalization for head pose estimation.
Specifically, the proposed model is trained in laboratory
scenes and evaluated in office environments. The training—
testing split remains at 50% and 50%, and the configuration
of the antenna array geometry and training procedures
remains unchanged from the previous experiment.

In the case of the lab—office (training—testing) scene,
the average MAE:s for roll, pitch, and yaw are 10.8°, 11.7°,
and 17.7° for ReDA-PCK + RA-CNN, respectively. On the
other hand, the office—lab (training—testing) scene yields
average MAEs of 8.7°, 13.6°, and 18.8° for roll, pitch,
and yaw, respectively. Specifically, P-6 exhibits the lowest
average MAE for the lab—office scene, at 8.3°, while P-10
demonstrates the lowest average MAE for the office-lab
scene, at 9.9°. Regarding the highest error, P-1 and P-4
display average MAEs of 20.6° and 16.7°, respectively,
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for the lab—office and office—lab scene. We observed a
decrease in performance regarding environment general-
ization ability compared to subject-environment-specific
experiments, falling within the range of 2.0°—4.2° However,
this degradation is considered to be minor, indicating that
the model is capable of environment generalization, as
shown in Table III.

C. Effect of the Training Size

In this experiment, we aim to investigate the impact
of training data size on the performance of our model. To
explore this, we augment the training size by incorporating
additional data equivalent to 40%, 80%, 120%, 160%, and
200% of the base training data size. However, we do not

KUMCHAISEEMAK ET AL.: CAPTURING HEAD POSES USING FMCW RADAR AND DEEP NEURAL NETWORKS

add identical movement data sequences (roll, pitch, and
yaw) to introduce more variability into the training sam-
ples. Instead, we request volunteers to perform movements
covering only a partial range of angles within each motion
category. For instance, during the yaw movement, volun-
teers are instructed to execute two phases: first, moving
the head from the center to the left, and second, moving
it from the center to the right. This approach allows for a
broader range of head movements, contributing to a more
diverse training dataset. As depicted in Fig. 8, including
additional data results in performance improvements, par-
ticularly for yaw angle prediction. Here, the percentages
represent the additional training data; for instance, 200%
indicates that the sample size doubles compared to regular
training.
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TABLE IV
Head Pose Estimation Results: Average MAE for Proposed Models
Versus Alternative Models (Environment Generalization, i.e., Train in
Lab and Test in Office and Vice Versa)

Note: Super Res- = Super Resolution, Head Ori- = Head Orientation

TABLE III
Head Pose Estimation Results for Each Participant (Environment
Generalization, i.e., Train in Lab and Test in Office and Vice Versa)

Note: FCN = RA-CNN, P+FCN = ReDA-PKC + RA-CNN

Methods Input Task Roll | Pitch | Yaw |
MAE Roll | MAE Pitch | MAE Yaw | -
J. Smith [30] RA  Super Res- 12.5 239 31.9
Participants ~FCN P+FCN FCN P+FCN FCN P+FCN S. Scholes [31] RARRD  Body Pose 11.8 23.8 26.5
J. Jung [32] RA Head Ori- 11.2 19.7 25.1
P-1 20.0 21.2 16.2 175 238 232 mmPose [13] Point Cloud  Body Pose 10.6 11.8 19.8
p-2 13.4 13.0 9.2 7.8 133 10.9 FCN (Ours) RA  Head Pose 10.5 12.2 18.0
P-3 7.2 7.8 11.6 11.5 13.5 13.8 P+FCN (Ours) RA  Head Pose 10.8 11.7 17.7
P-4 14.4 14.1 16.3 18.2 15.5 14.7
P-5 8.6 98 99 8.2 19.4 20.4 (a) Training—Testing: Lab—Office
P-6 6.3 4.5 8.9 7.9 13.7 12.3
P-7 55 6.3 115 10.6 26.8 272 Methods Input Task Roll | Pitch | Yaw |
p-8 10.9 1.3 16.1 149 184 17.0 1. Smith [30] RA  Super Res- 16.2 225 26.3
P-9 9.2 9.3 12.7 12.0 23.1 25.1 S. Scholes [31] RA,RD  Body Pose 143 21.0 25.1
P-10 9.7 10.4 9.8 8.8 12.6 12.7 J. Jung [32] RA Head Ori- 13.5 19.9 20.9
mmPose [13] Point Cloud  Body Pose 9.7 16.8 18.9
Mean (1) 10.5 108 122 1.7 18.0 17.7 FCN (Ours) RA  Head Pose 8.6 138 189
SD (o) 4.2 4.4 2.8 3.7 4.9 5.5 P+FCN (Ours) RA  Head Pose 8.7 13.6 18.8
(a) Training—Testing: Office—Lab
(a) Training—Testing: Lab-Office Bold text highlights the best values.
MAE Roll | MAE Pitch | MAE Yaw | 1.0
Participants FCN P+FCN FCN P+FCN FCN P+FCN 05 .
P-1 12.3 123 20.2 19.1 18.3 16.5
P-2 11.1 10.4 13.8 12.1 10.9 10.7 E 0.0 e P Xy
P-3 6.6 5.8 12.4 12.5 16.1 17.8 5 p \/\ s ,:l ¥
P-4 9.2 10.6 14.6 143 221 253 g -0.5 \ /" s
P-5 6.7 7.2 9.2 9.8 242 21.6 =
P-6 5.2 4.0 11.6 11.3 14.9 15.5 2 -1.0
P-7 12.8 119 161 151 245 227 & ---- J.Jung
P-8 8.8 9.6 149 16.9 219 21.2 —1.51 ---- J. Smith mmPose
P-9 6.8 7.3 13.9 14.6 250 259 ----S. Scholes —— P+FCN
P-10 6.4 7.9 10.8 10.6 11.4 11.3 -2.0
0 100 200 300
Mean () 8.6 8.7 13.8 13.6 18.9 18.8 Samples
SD (o) 2.6 2.6 2.9 2.8 5.1 5.1

Fig. 10. Example of pitch estimation for each considered model on P-5.
It is shown that our approach achieves more accurate predictions in
unseen regions (light blue area), i.e., those not fully included in the

training data.

(b) Training—Testing: Office—Lab
Bold text highlights the best values.

D. Comparison With Alternative Models ) ) ) )
) ) ) fair comparison with our proposed approach, specifically,
This section compares our proposed model with al- e following:

ternative designs to highlight its performance for human

head pose estimation. As, to the best of our knowledge, 1) FCN with a regression layer for range-angle
no other model is available in the open literature for a map superresolution inspired by the work by
direct, like-for-like radar-based comparison, we implement J. Smith et al. [30];

the following four models inspired from relevant literature. 2) Multiview-3DCNN for human pose inference in-
All these models perform frame-by-frame predictions for a spired by the work by S. Scholes et al. [31];
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Fig. 11.

Example of applying the proposed model in the front seat of a car, where the model was previously trained on data collected in an office

scene.

3) MobileNet for eye-gaze and head orientation in-
spired by the work by J. Jung et al. [32];

4) mmPose [13], a state-of-the-art radar-based pose
estimation model.

For a clear and comprehensive performance compar-
ison, this evaluation is performed using an environment
generalization scheme as described in Section IV-B. More-
over, we reoptimized some of the models’ layers to address
differences in input/output sizes and data variance, as de-
tailed in the Appendix.

As shown in Table I'V, the proposed models outperform
all the considered alternative models, showing the effec-
tiveness of our purposely designed model architectures for
the task of head pose estimation with radar. Moreover, a
key distinction is that, due to the translation equivariance
property, our model performs better in unseen regions than
the others (i.e., in regions that were not fully included in the
training data), as also illustrated in Fig. 10.

V. LIMITATIONS AND DISCUSSION

The results presented in this article highlight the poten-
tial of the proposed approach for predicting subject-specific
head pose rotation from FMCW radar data. Nevertheless,
it is essential to explore limitations as well and identify
the cases where the model struggles to predict head poses
effectively, categorized into two prominent cases: extreme
head movement cases, i.e., those performed by also dis-
tinctively moving the whole body and not just the head,
and out-of-distribution (OOD) instances, as illustrated in
Fig. 9. Finally, in the discussion in Section V-C, we explore
the potential application of our work in different settings,
including utilizing our model in car environments.

A. Extreme Head Movement Cases

The extreme head movement occurs when volunteers
move their bodies and heads distinctively. For example, in
the case of P-7, this presents an example of incorrect esti-
mation provided by the proposed model due to the volunteer
leaning their body toward the radar while in motion. As the
reflected radar signal originates from the superposition of
two different extended sources, such as the head and body,
the model faces difficulty distinguishing between head and
body movements, resulting in incorrect predictions.

KUMCHAISEEMAK ET AL.: CAPTURING HEAD POSES USING FMCW RADAR AND DEEP NEURAL NETWORKS

B. OOD Cases

In these cases, incorrect predictions may occur when the
testing movement data differs significantly from the training
data. For example, in the case of P-1, the volunteer’s head
movements were limited to a slight angle while collecting
pitch movement data (training data). However, in the subse-
quent free movement sequences (testing data), the volunteer
moved their head at a wider angle in the pitch direction. As
a result, the prediction becomes constrained within specific
values, unable to extrapolate head poses to unseen larger
angles. Despite the network being designed to preserve
translation equivariance property, it still struggles to handle
such scenarios where there is a considerable discrepancy
between the training and testing data.

C. Discussion

This study demonstrates the feasibility of using FMCW
radar data for head pose estimation tasks through DL
techniques. Specifically, we introduce the combination of
ReDA-PKC and RA-CNN networks, which predicts head
pose rotation frame-by-frame from range-angle plots. How-
ever, we only focus on subject-specific tasks (i.e., training
and testing on data from the same participant), leaving
subject generalization aspects unexplored in this study.
Nevertheless, the results mentioned earlier showed that the
model can generalize to data collected in unseen environ-
ments, for example, by training with data collected in the lab
and testing with data collected in the office, and vice versa.
Furthermore, we investigated the capability of the approach
to generalize to a new environment by collecting additional
data within a car’s cabin, an environment with rather com-
plex propagation characteristics due to the confined space
and highly reflective surfaces. Preliminary results for this
test are presented in Fig. 11. Specifically, by training the
DL model on office scenes and testing it with car scene
data, we highlight its adaptability beyond laboratory and
office settings, showing potential applications in areas such
as driving behavior detection and drowsiness detection.

VI. CONCLUSION

This article proposes the firstimplementation of subject-
specific head pose estimation using FMCW radar data.
Specifically, a DL model is formulated based on the com-
bination of ReDA-PKC and RA-CNN networks, and this
can estimate head rotations/orientations in terms of roll,
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pitch, and yaw angles based on a single frame of radar data.
Experimental results reveal that our model achieves average
MAE:s ranging from 6.7° to 7.2° for roll, 8.7° to 10.7° for
pitch, and 13.5° to 14.4° for yaw in environment-specific
scenarios. In environment generalization scenarios where
the model is trained with data in one location and tested
with data in another, the MAEs range from 8.7° to 10.8° for
roll, 11.7° to 13.6° for pitch, and 17.7° to 18.8° for yaw. Re-
garding model comparison, the performance of ReDA-PKC
+ RA-CNN shows improvements over RA-CNN ranging
from 5.75% to 8.89% in environment-specific cases and
from 0.53% to 6.21% in environment generalization cases.
Notably, these errors are relatively small compared to the
actual head rotation, indicating the model’s effectiveness in
accurately estimating head pose rotation from FMCW radar
data for each individual.

APPENDIX
A. Modifications of Alternative Models

To achieve optimal training for each model and ensure
they are compatible with our input and output sizes, we
reoptimized certain layers in the models as follows.

1) J. Smith. et al. [30]: This FCN-based model cannot
output a single node for roll, pitch, and yaw. To
address this, we simply added a single node output
and adjusted the first convolution layer to match the
input filter size with the number of chirps.

2) S. Scholes. et al. [31]: This multiview-3DCNN has
two branches: one for the range-angle map and
another for the range-Doppler map. We modified
the input filter size of the first convolution layer in
the first branch to match the number of chirps, and
the second branch to match the number of virtual
antennas.

3) J. Jung et al. [32]: This MobileNet-based model
was modified to match the input filter size with the
number of chirps, and a single node output was added
for roll, pitch, and yaw estimation.

4) mmPose [13]: We modified only the final layer to
output a single node for roll, pitch, and yaw esti-
mates.

Finally, the output estimations of each model undergo
the same postprocessing as in our model for a fair compar-
ison.
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