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Abstract
Geothermal energy can be promising to help the energy transition. Warm water is pumped up from a
geothermal well and after it is cooled down, the cold water is reinjected into the hot aquifer underground.
The temperature change could cause chemical balances to be disturbed and result in precipitation on
the porous medium of the aquifer. This process of clogging of an aquifer is not desirable since it re-
duces the efficiency of the production of warm water. This research is a stepping stone for modelling
these reactions and clogging of the aquifer. The reactions rates depend on the temperature and the
concentration of the reactants in the aquifer. For this reason the temperature distribution of the aquifer
was numerically derived with finite difference methods. The velocity field is important for modelling
both the temperature and the concentrations. Therefore the pressure and velocity field were modelled
with use of mass conservation and the Darcy model. The models were solved numerically with finite
difference methods and some results were compared to the analytical solution of the model. It was
concluded that the numerical model for the velocity field is accurate when compared to analytical solu-
tions of the model equations. In the model used, an increase in porosity resulted in a delay of cooling
the aquifer. This is because there was no relation between porosity and permeability implemented in
the model. A lower flow rate in the aquifer delays the cooling of the aquifer as well. For further research
it is recommended to implement the chemical reactions into the model and use this model to look into
how to prevent the clogging in the aquifer.
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Variable Symbol Unit
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𝑚
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volume 𝑉 𝑚3
surface area 𝐴 𝑚2

mass flow Φ 𝑘𝑔
𝑠

time 𝑡 𝑠
heat energy density 𝑒 𝐽

𝑚3

specific heat for water 𝑐𝑤
𝐽

𝑘𝑔𝐾
temperature 𝑇 𝐾
convective heat flux density ⃗̂𝜙𝑐

𝑊
𝑚2

diffusive heat flux density ⃗̂𝜙𝑑
𝑊
𝑚2

normal unit vector �̂� -

thermal conductivity 𝜆 𝑊
𝑚𝐾

thermal diffusivity 𝑎 𝑚2
𝑠

heat transfer coefficient ℎ 𝑊
𝑚2𝐾

total heat transfer coefficient 𝑈 𝑊
𝑚2𝐾

diffusion flux density �⃗�𝑑
𝑚𝑜𝑙
𝑚2𝑠

convective flux density �⃗�𝑐
𝑚𝑜𝑙
𝑚2𝑠

effective thermal diffusivity 𝛼 𝑚2
𝑠

correction factor for convective heat transport 𝛾 -

diffusion coefficient 𝐷 𝑚2
𝑠

concentration 𝑐 𝑚𝑜𝑙
𝑚3𝑤𝑎𝑡𝑒𝑟
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1
Introduction

Geothermal energy is a promising renewable energy source that can be used in the energy transition to
dampen climate change. The use of geothermal energy is not new (it is more than 2000 years old), but
there is a high increase in usage during the last decade. With respect to 2015, thermal power provided
by geothermal installations increased 52% in 2020, resulting in the prevention of 252,6 million tonnes
of CO2 emissions per year worldwide [1].

Figure 1.1: Geothermal doublet

A geothermal installation retrieves warm water from an aquifer, a wa-
ter bearing layer underground, via a geothermal well. The warm water
from the production well can be used to heat houses and other buildings,
whichmakes the gas that is currently used for this purpose unnecessary.

The geothermal installation that will be considered in this research
works via two wells some space apart from each other, a geothermal
doublet (figure 1.1). One well pumps warm water out of the subsurface
and the second well pumps cold water into the porous medium in the
subsurface. During this process of retrieving warm water, the water in
the aquifer cools down. Chemical balances of minerals in the water are
disturbed by the cooling and it could be possible that settlements occur.
These settlements decrease the porosity and therefore the permeabil-
ity of the porous medium (figure 1.2) resulting in a higher energy use
by the pumps that pump the water in and out of the aquifer. At some
point, more energy would be needed for the pumping than the amount
of energy that is retrieved from the water. We would like to prevent this
from happening and have a better understanding of these processes.
However, the interaction between the cold and warm water is deep un-
derground, which makes measurements difficult.

A lot of research has already been done in the field to monitor these
processes. One part of the problem is to model the flow in the aquifer.
Wood et al [2] determined the pore-scale flow in a packed bed of spher-
ical beads experimentally via particle image velocimetry (PIV) and nu-
merically. The technique of PIV is to track the movement of small parti-
cles via illuminated planes. Both methods generated similar results. An-
other part of the problem is tomodel the temperature distribution. Jarrahi
et al. [3] found a new way to model heat transfer in media which con-
tains fractures. The fractures were represented in the model as porous
media with higher permeability. A lot of researches have investigated
the clogging of an aquifer and the influence on the permeability of the
medium. The transport of fines and clogging due to this transport were
modelled by Kanimozhi et al. [4]. Porosity-permeability relations were
investigated by Schulz et al. [5]. Litvinenko et al. [6] used random
variables for physical properties to account for the heterogeneity in the
medium. Yang et al. [7] studied the change of permeability coefficients

3



4 1. Introduction

Figure 1.2: Settlements (dark region) on the porous medium (light region) decrease the porosity of the medium. The arrows
represent the flow of water through the medium.

and related chemical processes in an indoor sand column. Other geothermal installations than a dou-
blet installation were researched as well. Yin et al. [8] investigated a new method in a coaxial open
loop where no water was taken from the aquifer, only heat. A study performed an analysis on the effect
of using multiple wells on the cost and lifetime of the geothermal installation [9].

There has been a lot of research on the relation between porosity and permeability. Unfortunately
not so much on how the temperature indirectly influences the permeability. For this reason this research
will develop and analyse amodel describing the velocity field and temperature distribution underground.
The model for the velocity field uses Darcy model. The velocity field and temperature distribution
are essential in modelling the chemical processes. This research investigates how the temperature
distribution is influenced by the porosity of the medium and the flow rate of the injection well. This
is a start in analysing clogging due to chemical reactions and finding answers on how to prevent the
decrease of permeability in the aquifer.

Chapter 2 describes the derivation of a model for the pressure and velocity field as well as the
temperature distribution and concentration of dissolved substances. Chapter 3 will continue with the
discretization of the model, followed by a stability analysis. The accuracy of the model is determined by
comparing to analytical solutions derived in chapter 4. Chapter 5 presents the results of this accuracy
analysis and the numerical velocity field and temperature distribution. This is followed by the conclusion
chapter 6.



2
Model derivation

In this chapter we will formulate the model equations that describe fluid flow and transport of heat
and chemical species in an aquifer, which will later be solved numerically (chapter 3) and analytically
(chapter 4) to validate the numerical approach. We start with explaining the domain of interest and
introducing relevant physical properties (section 2.1). The Darcy model will be introduced (section
2.2), which relates the velocity field to the pressure field. After this explanation the model equations
are derived from conservation laws together with boundary and initial conditions. With use of the law
of mass conservation the model equations for the velocity field are derived and related to the model
equations for the pressure field via the Darcy model (section 2.3). From the conservation law of energy
the heat equation is derived (section 2.4). In section 2.5 the temperature of the water is related to the
temperature of the porous medium from which the model equations for the temperature distribution
follow. The model equations for the concentration of dissolved substances follow again from the law of
mass conservation (section 2.6). An overview of the relation between the different models is visualized
and explained in section 2.7.

2.1. Model of the geometric domain of interest
We will consider an enclosed aquifer some kilometres underground and take a 2D horizontal domain
with length 𝐿 and width 𝐻 (figure 2.1). We assume that the domain is repeated in the direction of y. The
third dimension is averaged into this 2D domain. The aquifer consists of a porous medium saturated
with water. The physical properties of the porous medium are of importance for this research. The first
property is the porosity 𝜙 of the medium, indicating which fraction of the total volume is occupied by
water. The second one is the permeability 𝑘 of the medium, which is a measure of how easy the water
can flow through the pores of the medium. The permeability is influenced by the structure, the size
of grains in the porous medium and by precipitation due to chemical reactions on the grains. Lastly,
the temperature of the ground is of interest. We will also have a look into the properties of the water.
This research will not consider the velocities of the water at pore-scale, but at a macroscopic scale,
the Darcy velocity. This velocity is the so called superficial velocity, which means it is the flux of water
through a cross-section of the medium divided by its area. Since this area is partly covered with the
porous medium, the Darcy velocity is lower than the real velocity.

5



6 2. Model derivation

Figure 2.1: Schematic representation of an aquifer (light region) enclosed by two confining beds of low permeability (darker
region). The domain of interest is a horizontal rectangular cross-section of the enclosed aquifer, with dimension 𝐿𝑥𝐻.

2.2. Darcy model
The pressure gradient in a porous medium is the driving force behind the flowing of water. The equation
relating the velocity of the water in porous media with the pressure gradient was discovered by Henry
Darcy. Henry Darcy was a French scientist and engineer who lived in the 19th century. In 1834, he
designed one of Europe’s best water supply systems for its time. This water pipe system in Dijon was
solely driven by gravity and used sand as a filter [10]. His knowledge and experience from projects and
experiments lead to the finding of the phenomenological Darcy model.

�⃗� = −𝑘𝜇∇𝑝, (2.1)

with Darcy (or superficial) velocity �⃗� (𝑚/𝑠), permeability 𝑘 (𝑚2), viscosity 𝜇 (Pa s) and pressure 𝑝 (Pa).
The Darcy model only holds in the region of very low Reynolds numbers [11], with the Reynolds number
based on the water velocity and the pore diameter. Since the water velocity and pore diameter is low,
the Darcy model is applicable in this research. The Darcy model will be used in the next section when
deriving the model for the pressure field.

2.3. Mass conservation
No water should appear or disappear when flowing through a porous medium, which is stated by the
conservation law of mass. With use of the mass conservation law and divergence theorem we will
derive an equation for the velocity field. The meaning of the symbols can be found in the list of symbols
(page 1).

We start with introducing an expression for the total mass of water𝑚 in a small volume Δ𝑉 (2.2). The
system consists of porous medium and water. The porosity 𝜙 indicates which fraction of the volume is
occupied by water.

𝑚 =∭
Δ𝑉
𝜌𝜙𝑑𝑉 (2.2)

The mass flow Φ is the amount of water entering the system per time and 𝜌 is the density. Applying
the divergence theorem we get the followin expression for the mass flow,

Φ = −∯
𝑆
𝜌�⃗� ⋅ �̂� 𝑑𝑆 = −∭

Δ𝑉
∇ ⋅ 𝜌�⃗� 𝑑𝑉. (2.3)

The only change in total mass could be due to mass flow. Differentiating (2.2) with respect to time and
setting it equal to (2.3) results in,

𝑑𝑚
𝑑𝑡 =

𝑑
𝑑𝑡∭Δ𝑉

𝜌𝜙𝑑𝑉 =∭
Δ𝑉

𝜕
𝜕𝑡𝜌𝜙𝑑𝑉 = −∭Δ𝑉

∇ ⋅ 𝜌�⃗�𝑑𝑉 = Φ. (2.4)

From this expression we extract,
𝜕
𝜕𝑡𝜌𝜙 = −∇ ⋅ 𝜌�⃗�. (2.5)



2.4. Heat equation 7

Figure 2.2: Visual representation of model equations for the pressure field 𝑝.

In this way we have found an expression for the velocity field to ensure that the mass is conserverd.
We assume a constant density 𝜌 and porosity 𝜙. Let the water flow into the domain at 𝑥 = 0 with the

same velocity 𝑢0 it flows out of the domain at 𝑥 = 𝐿. Furthermore we assume no water flows through
the boundaries at 𝑦 = 0 and 𝑦 = 𝐻. From these assumptions and equations (2.1) and (2.5), we find
our model equations (2.6).

⎧
⎪

⎨
⎪
⎩

∇ ⋅ �⃗� = 0
�⃗� = − 𝑘

𝜇∇𝑝
�⃗�(𝑥, 0) = �⃗�(𝑥, 𝐻) = − 𝑘

𝜇
𝜕𝑝
𝑑𝑦 (𝑥, 0) = −

𝑘
𝜇
𝜕𝑝
𝜕𝑦 (𝑥, 𝐻) = 0

�⃗�(0, 𝑦) = �⃗�(𝐿, 𝑦) = − 𝑘
𝜇
𝜕𝑝
𝜕𝑥 (0, 𝑦) = −

𝑘
𝜇
𝜕𝑝
𝜕𝑥 (𝐿, 𝑦) = 𝑢0

(2.6)

Model equations 2.6 can be rewritten for the pressure field (2.7), when you substitute the second model
equation into the first model equation. These equations are visualized in figure 2.2.

⎧
⎪⎪

⎨
⎪⎪
⎩

∇ ⋅ (− 𝑘
𝜇∇𝑝) = 0

𝜕𝑝
𝜕𝑦 (𝑥, 0) =

𝜕𝑝
𝜕𝑦 (𝑥, 𝐻) = 0

𝜕𝑝
𝜕𝑥 (0, 𝑦) = −

𝑢0
𝑘
𝜇 (0,𝑦)

𝜕𝑝
𝜕𝑥 (𝐿, 𝑦) = −

𝑢0
𝑘
𝜇 (𝐿,𝑦)

(2.7)

2.4. Heat equation
After deriving the model for the velocity and pressure field (2.6, 2.7) we will continue with the tem-
perature distribution described by the heat equation. We will consider two ways to transport heat:
conduction (or diffusion) and convection. Starting with an energy balance over a small volume and
with use of Fourier’s law we will derive the heat diffusion-convection equation.

Volumetric heat energy density 𝑒 is linearly related to temperature.
𝑒(𝑥, 𝑦, 𝑡) = 𝑐𝑤𝜌𝑇(𝑥, 𝑦, 𝑡), (2.8)

with heat energy density 𝑒 (𝐽/𝑚3), specific heat for water 𝑐𝑤 (𝐽/(𝑘𝑔 ⋅ 𝐾)), density 𝜌 (𝑘𝑔/𝑚3) and tem-
perature 𝑇 (𝐾). The specific heat 𝑐𝑤 can be considered constant in the temperature range of interest.
Water with energy density 𝑒 flows into the small volume with rate �⃗�. Therefore equation (2.8) can be
used to find the convection flux density ⃗̂𝜙𝑐 (2.9).

⃗̂𝜙𝑐 = 𝑒�⃗� = 𝑐𝑤𝜌𝑇�⃗� (2.9)
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Fourier’s law (2.10) relates the diffusion flux density ⃗̂𝜙𝑑 phenomenologically to the temperature gradi-
ent.

⃗̂𝜙𝑑 = −𝜆∇𝑇, (2.10)

with heat diffusion flux density ⃗̂𝜙𝑑 (𝑊/𝑚2), thermal conductivity 𝜆 (𝑊/(𝑚 ⋅ 𝐾)) and temperature 𝑇 (𝐾).
We calculate the changes to the heat energy density due to the diffusion and convection flux via the
divergence theorem over a small volume Δ𝑉 (2.11). Here the normal unit vector �̂� is defined positive
when pointing out of the surface.

Δ𝑉𝜙𝜕𝑒𝜕𝑡 = −∮𝑆
⃗̂𝜙𝑑 ⋅�̂�𝑑𝑆−∮

𝑆
𝑐𝑤𝜌𝑇�⃗�⋅�̂�𝑑𝑆 = −∬

Δ𝑉
∇⋅ ⃗̂𝜙𝑑𝑑𝑉−∬

Δ𝑉
∇⋅(𝑐𝑊𝜌𝑇�⃗�)𝑑𝑉 = Δ𝑉(𝜆∇2𝑇−𝑐𝑤𝜌∇⋅(𝑇�⃗�))

(2.11)
From equation (2.11) we find the heat equation by dividing by Δ𝑉𝑐𝑤𝜌𝜙 and introducing 𝑎 = 𝜆

𝑐𝑤𝜌
(𝑚2/𝑠).

𝜕𝑇
𝜕𝑡 =

1
𝑐𝑤𝜌

𝜕𝑒
𝜕𝑡 =

𝑎
𝜙∇

2𝑇 − 1
𝜙∇ ⋅ (𝑇�⃗�). (2.12)

2.5. Temperature coupling
Technically, there are two temperatures to be considered, the temperature of the water 𝑇𝑤 and the
temperature of the porous medium 𝑇𝑠. We will show that the heat transfer between the two materials
is fast with respect to the time scale of the model. From a heat balance over a volume with initial
temperature 𝑇0 and surroundings with temperature 𝑇1, the following expression for the average grain
temperature ⟨𝑇⟩ is derived by [12],

𝑇1 − ⟨𝑇⟩
𝑇1 − 𝑇0

= 𝑒𝑥𝑝 ( −6𝑈𝜌𝑠𝑐𝑠𝑑
𝑡) . (2.13)

Here, 𝑈 is the total heat transfer coefficient, combining the heat transferred from the grain and the heat
transferred inside the grain and d is the diameter of the grain. 𝑈 is not constant throughout the cooling
process, therefore equation (2.13) is not an exact solution. An expression for the total heat transfer
coefficient 𝑈 is given in equation (2.14).

1
𝑈(𝑡) =

1
ℎ𝑖(𝑡)

+ 1
ℎ𝑒
= 𝑑
𝑁𝑢𝑖(𝑡)𝜆𝑠

+ 𝑑
𝑁𝑢𝑒𝜆𝑤

≈ 𝑑
6, 6𝜆𝑠

+ 𝑑
2𝜆𝑤

, (2.14)

with 𝜆𝑠 and 𝜆𝑤 the thermal conductivities of the grain and the water (table 2.1).

Table 2.1: Material properties of water and sand (quartz) [13]

Variable Value Units
𝜆𝑤 0.6 𝑊/(𝑚𝐾)
𝜌𝑤 1 ⋅ 103 𝑘𝑔/𝑚3
𝑐𝑤 4.18 ⋅ 103 𝐽/(𝑘𝑔𝐾)
𝜙 0.2 [14] -
𝜆𝑠 1.1 𝑊/(𝑚𝐾)
𝜌𝑠 2.6 ⋅ 103 𝑘𝑔/𝑚3
𝑐𝑠 0.8 ⋅ 103 𝐽/(𝑘𝑔𝐾)

From equations (2.13) and (2.14), it is approximated that for a grain of sand it takes 𝑡 ≈ 0.1 𝑠 to
cool down when 𝑑 = 1.8 ⋅ 10−4 𝑚 [14] and for a slightly larger 𝑑 = 1.7 ⋅ 10−3 𝑚, 𝑡 ≈ 4 𝑠. The cooling
of the sand will thus be very fast compared to the time needed for the water to stream past the grain
(𝑡0 = 5.4 𝑠 and 𝑡0 = 54 𝑠, respectively). Therefore the temperature of the porous medium and the
temperature of the water can be approximated to be the same, denoted by 𝑇. Nevertheless, the heat
diffusivity coefficients of the materials differ and we construct two heat equations, for the temperature
of the water (2.15) and the medium (2.16). In the porous medium no convective heat transport will take
place.



2.6. Dissolved substances 9

𝜕𝑇𝑤
𝜕𝑡 = 𝑎𝑤

𝜙 ∇
2𝑇𝑤 −

1
𝜙∇ ⋅ (𝑇𝑤�⃗�) +

ℎ𝐴
𝑐𝑤𝜌𝑤𝜙𝑉

(𝑇𝑠 − 𝑇𝑤) (2.15)

𝜕𝑇𝑠
𝜕𝑡 =

𝑎𝑠
1 − 𝜙∇

2𝑇𝑠 −
ℎ𝐴

𝑐𝑠𝜌𝑠(1 − 𝜙)𝑉
(𝑇𝑠 − 𝑇𝑤) (2.16)

From these two equations and the approximation 𝑇𝑤 ≈ 𝑇𝑠, we construct one equation (2.17) by multi-
plying the two equations with 𝑐𝑤𝜌𝑤𝜙 and 𝑐𝑠𝜌𝑠(1 − 𝜙), respectively and then adding them.

(𝑐𝑤𝜌𝑤𝜙 + 𝑐𝑠𝜌𝑠(1 − 𝜙))
𝜕𝑇
𝜕𝑡 = (𝑐𝑊𝜌𝑤𝑎𝑤 + 𝑐𝑆𝜌𝑠𝑎𝑠)∇

2𝑇 − 𝑐𝑤𝜌𝑤∇ ⋅ (𝑇�⃗�) (2.17)

Division by (𝑐𝑤𝜌𝑤𝜙+𝑐𝑠𝜌𝑠(1−𝜙)) and using the definition of the heat diffusivity coefficient 𝑎, we derive
a modified heat equation that takes the heat transport of both the water and the porous medium into
account,

𝜕𝑇
𝜕𝑡 =

𝜆𝑤 + 𝜆𝑠
𝑐𝑤𝜌𝑤𝜙 + 𝑐𝑠𝜌𝑠(1 − 𝜙)

∇2𝑇 − 𝑐𝑤𝜌𝑤
𝑐𝑤𝜌𝑤𝜙 + 𝑐𝑠𝜌𝑠(1 − 𝜙)

∇ ⋅ (𝑇�⃗�) =∶ 𝛼∇2𝑇 − 𝛾∇ ⋅ (𝑇�⃗�). (2.18)

We introduced the effective thermal diffusivity 𝛼 and the correction factor for convective heat transport
𝛾. The domain initially has a high temperature 𝑇ℎ𝑖𝑔ℎ. At the boundary 𝑥 = 0, water is pumped into the
domain with a low temperature 𝑇𝑙𝑜𝑤. No heat transport is assumed to take place at 𝑦 = 0 and 𝑦 = 𝐻,
since the domain is repeated at higher and lower values of 𝑦. The Péclet number 𝛾𝑢𝑥Δ𝑥𝛼 tells that the
heat transport is dominated by convection and diffusion plays a much smaller role. The boundary at
𝑥 = 𝐿 is set to conduct no heat, as conduction (or diffusion) already is a small portion of the heat
transport. This results in the following boundary and initial conditions,

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑇(0, 𝑦, 𝑡) = 𝑇𝑙𝑜𝑤
𝜕𝑇
𝜕𝑥 (𝐿, 𝑦, 𝑡) = 0𝜕𝑇
𝜕𝑦 (𝑥, 0, 𝑡) = 0
𝜕𝑇
𝜕𝑦 (𝑥, 𝐻, 𝑡) = 0
𝑇(𝑥 > 0, 𝑦, 0) = 𝑇ℎ𝑖𝑔ℎ

(2.19)

2.6. Dissolved substances
In order to model chemical reactions it is important to know the concentration 𝑐 of the dissolved sub-
stances that are part of the reactions. Here we will derive an equation describing the concentration
of these substances. The change in concentration of dissolvents in the water depends on diffusion,
convection and potential reactions with other materials. The derivation of this equation is analogous
to the derivation of the heat equation. We use the law of mass conservation for the concentration as
opposed to the law of thermal energy conservation for the temperature. Fick’s law for diffusion replaces
Fourier’s law for conduction to find the diffusion flux density �⃗�𝑑,

�⃗�𝑑 = −𝐷∇𝑐. (2.20)

The convection flux density is given by the mass of dissolvent that flows through a cross-section with
Darcy velocity �⃗�,

�⃗�𝑐 = 𝑐�⃗�. (2.21)

The change in mass inside a small volume Δ𝑉 is found with the divergence theorem (2.22).

Δ𝑉𝜙𝜕𝑐𝜕𝑡 = −∮𝑆
(�⃗�𝑑 + �⃗�𝑐) ⋅ �̂�𝑑𝑆 − 𝑟𝜙Δ𝑉 = −∬

Δ𝑉
∇ ⋅ (−𝐷∇𝑐 + 𝑐�⃗�)𝑑𝑉 − 𝑟𝜙Δ𝑉 = Δ𝑉(𝐷∇2𝑐 − ∇ ⋅ (𝑐�⃗�) − 𝑟𝜙)

(2.22)
We find the model equation for the concentration of dissolved substances by dividing by Δ𝑉𝜙.

𝜕𝑐
𝜕𝑡 =

𝐷
𝜙∇

2𝑐 − 1
𝜙∇ ⋅ (𝑐�⃗�) − 𝑟, (2.23)
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with 𝐷 the diffusion coefficient (𝑚2/𝑠) and 𝑟 the reaction speed (𝑚𝑜𝑙/𝑚3𝑠). Similar to the heat equation,
we expect no flux of dissolvents at the boundaries 𝑦 = 0 and 𝑦 = 𝐻. At 𝑥 = 0 the concentration of the
dissolved substance of interest is given by the injection concentration 𝑐𝑖𝑛𝑗. Furthermore, at the start of
the injection, the concentration of dissolved substance in the porous domain equals 𝑐𝑚𝑒𝑑.

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑐(0, 𝑦, 𝑡) = 𝑐𝑖𝑛𝑗
𝜕𝑐
𝜕𝑥 (𝐿, 𝑦, 𝑡) = 0𝜕𝑐
𝜕𝑦 (𝑥, 0, 𝑡) = 0
𝜕𝑐
𝜕𝑦 (𝑥, 𝐻, 𝑡) = 0
𝑐(𝑥 > 0, 𝑦, 0) = 𝑐𝑚𝑒𝑑

(2.24)

2.7. Overview of the derived model
A visual summary on how themodel equations derived in this chapter relate to one another can be found
in figure 2.3. The velocity field (2.6) and pressure field (2.7) are related to each other via the Darcy
model (2.1). The velocity field influences the temperature distribution (2.18, 2.19) and the concentration
of the dissolvents (2.23, 2.24). Chemical reactions of the dissolvents depend on the temperature distri-
bution and the concentration of the dissolvents, and in their turn influence the concentrations. Chemical
reactions could cause settlements to occur, reducing the porosity and therefore the permeability of the
medium (figure 1.2).

Figure 2.3: Overview of how the model quantities relate to one another. The scope of this research is given by the dashed line.



3
Numerical approximation

The numerical approximations of themodel for the pressure field (3.1) and temperature distribution (3.2)
are derived. The stability of the numerical approximation for the temperature distribution is analysed
as well.

3.1. Pressure field
The model for the pressure field in the ground from equation (2.7) will be solved numerically with use
of finite differences. For this purpose the rectangular 2D domain [0, 𝐿]𝑥[0, 𝐻] will be discretized in
rectangles of size Δ𝑥 ⋅ Δ𝑦 with Δ𝑥 = 𝐿

𝑛𝑥
and Δ𝑦 = 𝐻

𝑛𝑦
. Here 𝑛𝑥 = 100 and 𝑛𝑦 = 75 are the number

of grid points in the x-direction and y-direction respectively. Scalar quantities are considered uniform
inside a grid cell. The coordinates of the grid points are [12Δ𝑥 + 𝑖 ⋅ Δ𝑥,

1
2Δ𝑦 + 𝑗 ⋅ Δ𝑦] with 𝑖 ∈ [0, 𝑛𝑥 − 1]

and 𝑗 ∈ [0, 𝑛𝑦 − 1]. The model equations are discretized with central differences (appendix A.1) and
the resulting linear matrix equation is solved by the direct solver numpy.linalg.solve() [15] from python.
When the pressure field is found, the velocities can be derived from the Darcy model (equation 2.1)
by approximating the pressure gradient with the difference between two grid points. A staggered grid
is used to connect the velocity field with the pressure field, the x-components of the velocity field are
calculated at coordinates [𝑖 ⋅Δ𝑥, 12Δ𝑦+𝑗 ⋅Δ𝑦] and the y-components at [

1
2Δ𝑥+𝑖 ⋅Δ𝑥, 𝑗 ⋅Δ𝑦]. This way the

velocities have the same index as the pressure point to the right or above. In figure 3.1 the staggered
grid is shown with indices to some of the grid points and velocity components.

Figure 3.1: Discretization of the domain with pressure 𝑝 as a scalar quantity and velocity 𝑢 as vectors.

11
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3.2. Temperature distribution
3.2.1. Numerical approximation
Themodel for the temperature distribution from equation (2.18) will also be solved with a finite difference
method. The same staggered grid (figure 3.1) will be used, with the scalar quantity temperature T on
the grid nodes and the velocity components 𝑢𝑥 and 𝑢𝑦 on the grid cell walls. The time derivative
is approximated with the forward Euler method. The diffusion term with central differences and the
convection term with upwind differences. The discretization of the model equations can be found in
appendix A.2.

3.2.2. Stability
We will check if the chosen numerical method for time integration (forward Euler method) is stable [16].
Solely for this subsection the x-discretization will be indexed by 𝑙 instead of 𝑖, to avoid confusion with
the imaginary number 𝑖. First we define 𝜖𝑘𝑙,𝑗 = 𝑇𝑘𝑙,𝑗 −𝑇𝑘𝑙,𝑗 as the error between the exact solution and the
perturbed one. From the discretized heat equation A.16 we find,

𝜖𝑘+1𝑙,𝑗 = 𝛼Δ𝑡
Δ𝑥2 𝜖

𝑘
𝑙+1,𝑗 + [

𝛼Δ𝑡
Δ𝑥2 +

𝛾𝑢𝑥,𝑙,𝑗Δ𝑡
Δ𝑥 ] 𝜖𝑘𝑙−1,𝑗 + [1 − 2

𝛼Δ𝑡
Δ𝑥2 − 2

𝛼Δ𝑡
Δ𝑦2 −

𝛾𝑢𝑥,𝑙+1,𝑗Δ𝑡
Δ𝑥 −

𝛾𝑢𝑦,𝑙,𝑗+1Δ𝑡
Δ𝑦 ] 𝜖𝑘𝑙,𝑗

+ 𝛼Δ𝑡Δ𝑦2 𝜖
𝑘
𝑙,𝑗+1 + [

𝛼Δ𝑡
Δ𝑦2 +

𝛾𝑢𝑦,𝑙,𝑗Δ𝑡
Δ𝑦 ] 𝜖𝑘𝑙,𝑗−1.

(3.1)

Substitute for 𝜖𝑘𝑙,𝑗 = 𝜁𝑘𝑒𝑖𝑟𝑚𝑙Δ𝑥+𝑖𝑠𝑛𝑗Δ𝑦, where 𝑟𝑚 = 𝜋𝑚
𝐿 , 𝑚 = 1, 2, ..., 𝑀 and 𝑀 = 𝐿

Δ𝑥 ; similarly 𝑠𝑛 =
𝜋𝑛
𝐻 ,

with 𝑛 = 1, 2, ..., 𝑁 and 𝑁 = 𝐻
Δ𝑦 . Take 𝜓 = 𝑟𝑚Δ𝑥 and 𝜂 = 𝑠𝑛Δ𝑦,

𝜁 = 1 + 2𝛼Δ𝑡Δ𝑥2 (𝑐𝑜𝑠(𝜓) − 1) + 2
𝛼Δ𝑡
Δ𝑦2 (𝑐𝑜𝑠(𝜂) − 1) +

𝛾𝑢𝑥Δ𝑡
Δ𝑥 (𝑒−𝑖𝜓 − 1) +

𝛾𝑢𝑦Δ𝑡
Δ𝑦 (𝑒−𝑖𝜂 − 1), (3.2)

where the maximum value of 𝑢𝑥 and 𝑢𝑦 are given. For absolute stability we require |𝜁| < 1 for all values
of 𝜓 and 𝜂. We take 𝜓 = 𝜂 = 𝜋, since this is the most challenging case. We find a theoretical upper
bound for the time step,

Δ𝑡 <
2𝛼
Δ𝑥2 +

2𝛼
Δ𝑦2 +

𝛾𝑢𝑥
Δ𝑥 +

𝛾𝑢𝑦
Δ𝑦

4𝛼2
Δ𝑥4 +

4𝛼2
Δ𝑦4 +

8𝛼2
Δ𝑥2Δ𝑦2 +

4𝛼𝛾𝑢𝑦
Δ𝑥2Δ𝑦 +

4𝛼𝛾𝑢𝑥
Δ𝑥3 + 4𝛼𝛾𝑢𝑥

Δ𝑦2Δ𝑥 +
4𝛼𝛾𝑢𝑦
Δ𝑦3 + 𝛾2𝑢2𝑥

Δ𝑥2 +
𝛾2𝑢2𝑦
Δ𝑦2 +

2𝛾2𝑢𝑥𝑢𝑦
Δ𝑥Δ𝑦

. (3.3)

We can compare this result to known conditions on time step Δ𝑡 for the one dimensional case. We take
Δ𝑥 = Δ𝑦 and 𝑢𝑥 = 𝑢𝑦 Péclet number

𝛾𝑢𝑥Δ𝑥
𝛼 ,

Δ𝑡 <
4𝛼
Δ𝑥2 +

2𝛾𝑢𝑥
Δ𝑥

16𝛼2
Δ𝑥4 +

16𝛼𝛾𝑢𝑥
Δ𝑥3 + 4𝛾2𝑢2𝑥

Δ𝑥2
= Δ𝑥2
2𝛼

1
2 + 𝑃𝑒2 . (3.4)

lim
𝑃𝑒→0

∶Δ𝑡 < Δ𝑥2
4𝛼 (3.5)

lim
𝑃𝑒→∞

∶Δ𝑡 < Δ𝑥2
2𝛼𝑃𝑒 =

Δ𝑥
2𝛾𝑢𝑥

(3.6)

The derived conditions on the time step Δ𝑡 correspond to known conditions for this problem [17], but
differ a factor 2. This factor 2 comes from the fact that we simplified a 2D stability condition to a 1D
stability condition.

It is interesting to see if the theoretical upper bounds correspond to the upper bounds found when
using the code. The results (table 3.1) show that the practical upper bound can be slightly larger than
the theoretical upper bound. This was checked for different thermal diffusivity coefficients. Figure 3.2
shows an example of the stability and instability for two time steps.
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Table 3.1: Ratio theoretical and practical upper bound for the time step [18] for the heat equation for different values of 𝛼,
𝛾 = 1.672, 𝑢𝑥 = 3.17 ⋅ 10−5 𝑚/𝑠, 𝑢𝑦 = 2.85 ⋅ 10−18 𝑚/𝑠 Δ𝑥 = 0.2 𝑚 and Δ𝑦 = 0.15 𝑚.

𝛼 [𝑚2/𝑠] Δ𝑡𝑡ℎ [𝑠] Δ𝑡𝑝𝑟 [𝑠]
Δ𝑡𝑝𝑟
Δ𝑡𝑡ℎ

6.8 ⋅ 10−4 10.6 10.6 ± 0.01 1.00 ± 0.01
6.8 ⋅ 10−5 103 103 ± 1 1.00 ± 0.01
6.8 ⋅ 10−6 827 847 ± 1 1.024 ± 0.001
6.8 ⋅ 10−7 2782 3020 ± 10 1.086 ± 0.004

(a) Δ𝑡 = 103 𝑠 (b) Δ𝑡 = 104 𝑠

(c) Δ𝑡 = 104 𝑠

Figure 3.2: Temperature 𝑇 over time 𝑡 in the point (20 m, 7.5 m) for different values of Δ𝑡. 𝛼 = 6.8 ⋅ 10−5 𝑚2/𝑠, 𝛾 = 1.672,
𝑢0 = 3.17 ⋅ 10−5 𝑚/𝑠





4
Analytical solutions

The aim of this chapter is to find analytical solutions which can be compared with the solutions calcu-
lated by the numerical model. From these comparisons the accuracy of the numerical model can be
evaluated. The following problems are analytically solved: two 2D nonhomogeneous boundary value
problems where the nonhomogeneous boundary conditions are placed at different boundaries (case I
and II, sections 4.1 and 4.2) and a 1D transient heat equation (case III, section 4.3).

4.1. Pressure field for case I
We start with the analytical solution of the boundary value problem stated in equation 2.7. Assume 𝑘

𝜇 is
constant. Then we are left with a Laplacian on a rectangular domain with two nonhomogeneous Neu-
mann boundary conditions. We look for a characteristic function 𝑟(𝑥, 𝑦) satisfying the nonhomogeneous
boundary conditions, equation (4.1) meets our requirements.

𝑟(𝑥, 𝑦) = −𝑢0𝜇𝑘 𝑥 (4.1)

Figure 4.1: Visualization of the 2D boundary value problem of case I for pressure 𝑝 with nonhomogenous Neumann boundary
conditions at 𝑥 = 0 and 𝑥 = 𝐿.

15
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We redefine the problem for 𝑣(𝑥, 𝑦) ∶= 𝑝(𝑥, 𝑦) − 𝑟(𝑥, 𝑦),

⎧
⎪
⎪

⎨
⎪
⎪
⎩

− 𝑘
𝜇∇

2𝑣 = − 𝑘
𝜇∇

2(𝑝 − 𝑟) = − 𝑘
𝜇∇

2𝑝 = 0
𝜕𝑣
𝜕𝑥 (0, 𝑦) =

𝜕𝑝
𝜕𝑥 (0, 𝑦) −

𝜕𝑟
𝜕𝑥 (0, 𝑦) = −

𝑢0𝜇
𝑘 + 𝑢0𝜇

𝑘 = 0
𝜕𝑣
𝜕𝑥 (𝐿, 𝑦) =

𝜕𝑝
𝜕𝑥 (𝐿, 𝑦) −

𝜕𝑟
𝜕𝑥 (𝐿, 𝑦) = −

𝑢0𝜇
𝑘 + 𝑢0𝜇

𝑘 = 0
𝜕𝑣
𝜕𝑦 (𝑥, 0) =

𝜕𝑝
𝜕𝑦 (𝑥, 0) −

𝜕𝑟
𝜕𝑦 (𝑥, 0) = 0

𝜕𝑣
𝜕𝑦 (𝑥, 𝐻) =

𝜕𝑝
𝜕𝑦 (𝑥, 𝐻) −

𝜕𝑟
𝜕𝑦 (𝑥, 𝐻) = 0

(4.2)

We proceed with separation of variables by introducing 𝑣(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦).

1
𝑋(𝑥)

𝑑2𝑋
𝑑𝑥2 (𝑥) = −

1
𝑌(𝑦)

𝑑2𝑌
𝑑𝑦2 (𝑦) = −𝜆 (4.3)

We split this equation into two ordinary differential equations for 𝑋(𝑥) and 𝑌(𝑦).

⎧

⎨
⎩

𝑑2𝑋
𝑑𝑥2 (𝑥) + 𝜆𝑋(𝑥) = 0𝑑𝑋
𝑑𝑥 (0) = 0𝑑𝑋
𝑑𝑥 (𝐿) = 0

(4.4)

From (4.4) we find, 𝑋𝑛(𝑥) = cos (𝑛𝜋𝐿 𝑥), with 𝜆𝑛 = (
𝑛𝜋
𝐿 )

2
, for 𝑛 = 0, 1, 2, 3....

{
𝑑2𝑌(𝑦)
𝑑𝑦2 − 𝜆𝑌(𝑦) = 0
𝑑𝑌
𝑑𝑦 (0) = 0

(4.5)

From (4.5) we find, 𝑌𝑛(𝑦) = cosh (𝑛𝜋𝐿 𝑦). The next step is to use superposition of the eigenfunctions,

𝑣(𝑥, 𝑦) =
∞

∑
𝑛=0

𝑐𝑛 cos (
𝑛𝜋
𝐿 𝑥) cosh (

𝑛𝜋
𝐿 𝑦) , (4.6)

and substitute the last boundary condition into this equation,

𝑑𝑣
𝑑𝑦(𝑥, 𝐻) =

∞

∑
𝑛=1

𝑐𝑛 cos (
𝑛𝜋
𝐿 𝑥)

𝑛𝜋
𝐿 sinh (𝑛𝜋𝐿 𝐻) = 0. (4.7)

Equation (4.7) holds when 𝑐𝑛 = 0 for all 𝑛 ≥ 1. Only 𝑐0 is undefined and can take up any value. This is
expected since the problem only has Neumann boundary conditions. We have found the solution for
𝑣(𝑥, 𝑦) and from this we find the solution for 𝑝(𝑥, 𝑦).

𝑣(𝑥, 𝑦) = 𝑐0 (4.8)

𝑝(𝑥, 𝑦) = 𝑣(𝑥, 𝑦) + 𝑟(𝑥, 𝑦) = −𝑢0𝜇𝑘 𝑥 + 𝑐0 (4.9)

A visualization of the solution is given in figure 4.2.
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Figure 4.2: Pressure field for case I with 𝑘
𝜇 = 1

𝑚4

𝑁𝑠 and 𝑢0 = 0.0000317 𝑚/𝑠 for all 𝑦 ∈ [0,𝐻].

4.2. Pressure field for case II

Figure 4.3: Visualization of a 2D boundary value problem with nonhomogenous boundary conditions, where water streams
around the corner.

In this section we will derive the analytical solution of case II (figure 4.3). This problem is similar
to case I, where the nonhomogeneous boundary conditions are placed at different boundaries. The
nonhomogeneous boundary conditions are placed at different boundaries to ensure the solution has a
2D character. The purpose of this derivation is to test the accuracy of the numerical model for a more
complex problem. We assume the domain to be homogeneous and therefore the physical properties
porosity 𝜙, density 𝜌, permeability 𝑘 and viscosity 𝜇 to be constant in space and time. For simplicity 𝑘

𝜇
is set to be equal to 1. These assumptions translate to the following nonhomogeneous boundary value
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problem for pressure 𝑝 (see also figure 4.3),

⎧
⎪⎪

⎨
⎪⎪
⎩

∇2𝑝 = 0
𝜕𝑝
𝜕𝑥 (0, 𝑦) = 0𝜕𝑝
𝜕𝑥 (𝐿, 𝑦) = −

𝑢0
𝐻𝜕𝑝

𝜕𝑦 (𝑥, 0) = 0
𝜕𝑝
𝜕𝑦 (𝑥, 𝐻) =

𝑢0
𝐿 .

(4.10)

The general idea of the solution method is to use the method of eigenfunction expansion using
Green’s formula [19], because this method allows nonhomogeneous boundaries. In the previous sec-
tion we did not need this method because we could translate the problem to a homogeneous problem
with help of a characteristic function. We derive the eigenfunctions of the related homogeneous prob-
lem for either 𝑥 or 𝑦. Pressure field 𝑝(𝑥, 𝑦) is then approximated with an eigenfunction expansion of the
found eigenfunctions. The coefficients of the expansion are then calculated using the orthogonality of
the eigenfunctions and Green’s formula.

We start with rewriting the partial differential equation from equation (4.10) as follows,

𝜕2𝑝
𝜕𝑥2 = −

𝜕2𝑝
𝜕𝑦2 . (4.11)

We choose to use the related homogeneous eigenvalue problem for 𝑦, this gives 𝜙𝑛(𝑦) = cos(𝑛𝜋𝐻 𝑦),
with 𝜆𝑛 = (

𝑛𝜋
𝐻 )

2 and 𝑛 = 0, 1, 2, .... Via eigenfunction expansion we find an expression for 𝑝(𝑥, 𝑦),

𝑝(𝑥, 𝑦) ∼
∞

∑
𝑛=0

𝑏𝑛(𝑥)𝜙𝑛(𝑦). (4.12)

Using the orthogonality of the eigenfunctions 𝜙𝑛 we find for 𝑏𝑛(𝑥),

𝑏𝑛(𝑥) =
∫𝐻0 𝑝(𝑥, 𝑦)𝜙𝑛(𝑦)𝑑𝑦
∫𝐻0 𝜙𝑛(𝑦)2𝑑𝑦

. (4.13)

We use the ∼ notation in 4.12, because an equality wouldn’t hold at 𝑦 = 𝐻. This is because 𝜙𝑛(𝑦)
satisfies the homogeneous boundary condition and 𝑝(𝑥, 𝑦) does not. This also means that the solution
to be found will not satisfy the boundary condition at 𝑦 = 𝐻. For this reason we can’t take the derivative
with respect to 𝑦. We can however take the derivative with respect to 𝑥 in the following way,

𝜕2𝑝
𝜕𝑥2 =

∞

∑
𝑛=0

𝑑2𝑏𝑛(𝑥)
𝑑𝑥2 𝜙𝑛(𝑦) = −

𝜕2𝑝
𝜕𝑦2 , (4.14)

from which with use of orthogonality of the eigenfunctions follows that,

𝑑2𝑏𝑛(𝑥)
𝑑𝑥2 =

−∫𝐻0
𝜕2𝑝
𝜕𝑦2𝜙𝑛(𝑦)𝑑𝑦

∫𝐻0 𝜙𝑛(𝑦)2𝑑𝑦
. (4.15)

Applying Green’s formula (4.16) results in,

∫
𝐻

0
(𝑝𝑑

2𝜙𝑛
𝑑𝑦2 − 𝜙𝑛

𝜕2𝑝
𝜕𝑦2)𝑑𝑦 = (𝑝

𝑑𝜙𝑛
𝑑𝑦 − 𝜙𝑛

𝜕𝑝
𝜕𝑦) |

𝐻

0
, (4.16)

∫
𝐻

0
(−𝑝𝜆𝑛𝜙𝑛 − 𝜙𝑛

𝜕2𝑝
𝜕𝑦2)𝑑𝑦 = −𝜙𝑛(𝐻)

𝜕𝑝
𝜕𝑦(𝑥, 𝐻) =

𝑢0
𝐿 (−1)

𝑛+1. (4.17)
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When rearranging (4.17) and substituting in (4.15) together with (4.13) we find differential equations for
𝑏𝑛(𝑥),

𝑑2𝑏𝑛(𝑥)
𝑑𝑥2 =

∫𝐻0 𝜆𝑛𝜙𝑛𝑝𝑑𝑦 +
𝑢0
𝐿 (−1)

𝑛+1

∫𝐻0 𝜙2𝑛𝑑𝑦
= 𝜆𝑛𝑏𝑛(𝑥) +

𝑢0
𝐿 (−1)

𝑛+1

∫𝐻0 𝜙2𝑛𝑑𝑦
. (4.18)

We need boundary conditions at 𝑥 = 0 and 𝑥 = 𝐿 to solve these differential equations. We substitute
the boundary condition for 𝑝(𝑥, 𝑦) at (𝐿, 𝑦) into the eigenfunction expansion (4.12),

𝜕𝑝
𝜕𝑥 (𝐿, 𝑦) =

∞

∑
𝑛=0

𝑑𝑏𝑛(𝐿)
𝑑𝑥 𝜙𝑛 = −

𝑢0
𝐻 . (4.19)

Using the orthogonality of the eigenfunctions, we derive the boundary condition for 𝑏𝑛(𝑥) at 𝑥 = 𝐿,

𝑑𝑏𝑛(𝐿)
𝑑𝑥 =

∫𝐻0 −
𝑢0
𝐻 𝜙𝑛𝑑𝑦

∫𝐻0 𝜙2𝑛𝑑𝑦
= {−

𝑢0
𝐻 for 𝑛 = 0

0 for 𝑛 ≠ 0 (4.20)

In a similar way we derive the boundary condition at 𝑥 = 0,

𝑑𝑏𝑛(0)
𝑑𝑥 = 0. (4.21)

Now all the ingredients are found and we can solve the differential equations (4.18) for 𝑏𝑛(𝑥).

Solving the differential equations for 𝑏𝑛(𝑥)
The boundary condition for 𝑏𝑛(𝑥) is different for 𝑛 = 0 and 𝑛 ≠ 0. Therefore we will solve the differential
equations for 𝑛 = 0 and 𝑛 ≠ 0, separately.

The differential equation for 𝑛 = 0 is as follows,

⎧⎪
⎨⎪⎩

𝑑2𝑏0(𝑥)
𝑑𝑥2 = − 𝑢0

𝐿𝐻
𝑑𝑏0(0)
𝑑𝑥 = 0

𝑑𝑏0(𝐿)
𝑑𝑥 = −𝑢0𝐻 .

(4.22)

Integrating the differential equation of (4.22) once gives an integration constant which turns out to be 0
when applying the boundary condition at 𝑥 = 0,

𝑑𝑏0(𝑥)
𝑑𝑥 = − 𝑢0𝐿𝐻𝑥. (4.23)

Integrating (4.23) again gives another constant 𝑐1,

𝑏0(𝑥) = −
𝑢0
2𝐿𝐻𝑥

2 + 𝑐1. (4.24)

This constant 𝑐1 will remain arbitrary since we did not specify a reference pressure point when we
introduced only Neumann boundary conditions. We have found the solution for 𝑏0(𝑥) (equation 4.24).

Next we solve the differential equations for 𝑛 ≠ 0,

{
𝑑2𝑏𝑛(𝑥)
𝑑𝑥2 − 𝜆𝑛𝑏𝑛 =

2𝑢0
𝐿𝐻 (−1)

𝑛+1

𝑑𝑏𝑛(0)
𝑑𝑥 = 𝑑𝑏𝑛(𝐿)

𝑑𝑥 = 0
(4.25)

There are two solutions to the homogeneous part of the problem,

𝑏𝑛,ℎ1(𝑥) = 𝐴𝑒
𝑛𝜋
𝐻 𝑥 (4.26)

𝑏𝑛,ℎ1(𝑥) = 𝐵𝑒
−𝑛𝜋𝐻 𝑥 . (4.27)
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We will use variation of parameters [20] to solve the nonhomogeneous part of the problem as well.
The wronskian of the two found homogeneous solutions equals −2𝐴𝐵 𝑛𝜋𝐻 , from which the particular
solution is found,

𝑏𝑛,𝑝(𝑥) =
2𝐻𝑢0
𝑛2𝜋2𝐿(−1)

𝑛 (4.28)

When we substitute 𝑏𝑛(𝑥) = 𝑏𝑛,ℎ1(𝑥) + 𝑏𝑛,ℎ2(𝑥) + 𝑏𝑛,𝑝 into the differential equations, we see that the
found solution indeed solves the differential equations (4.18),

(𝑛𝜋𝐻 )
2
(𝐴𝑒

𝑛𝜋
𝐻 𝑥 + 𝐵𝑒−

𝑛𝜋
𝐻 𝑥) − (𝑛𝜋𝐻 )

2
(𝐴𝑒

𝑛𝜋
𝐻 𝑥 + 𝐵𝑒−

𝑛𝜋
𝐻 𝑥 + 2𝐻𝑢0

𝑛2𝜋2𝐿(−1)
𝑛) = 2𝑢0

𝐿𝐻 (−1)
𝑛+1. (4.29)

The next step is to find the coefficients 𝐴 and 𝐵 using the boundary conditions (4.20) and (4.21). From
(4.21) we find 𝐴 = 𝐵 (equation 4.30).

𝑑𝑏𝑛(0)
𝑑𝑥 = 𝑛𝜋

𝐻 (𝐴𝑒
𝑛𝜋
𝐻 0 − 𝐵𝑒−

𝑛𝜋
𝐻 0) = 𝑛𝜋

𝐻 (𝐴 − 𝐵) = 0 (4.30)

When substituting 𝐴 = 𝐵 into the other boundary condition (4.20) we find,

𝑑𝑏𝑛(𝐿)
𝑑𝑥 = 𝑛𝜋

𝐻 (𝐴𝑒
𝑛𝜋
𝐻 𝐿 − 𝐴𝑒−

𝑛𝜋
𝐻 𝐿) = 2𝐴𝑛𝜋𝐻 sinh (𝑛𝜋𝐻 𝐿) = 0. (4.31)

Since 𝑛 ≠ 0, the sinushyperbolicus has no zero and we conclude 𝐴 = 0. From this we have found the
solution,

𝑝(𝑥, 𝑦) =
∞

∑
𝑛=0

𝑏𝑛(𝑥)𝜙𝑛(𝑦) (4.32)

𝑏𝑛(𝑥) = {
− 𝑢0
2𝐿𝐻𝑥

2 + 𝑐1 𝑛 = 0
2𝐻𝑢0
𝑛2𝜋2𝐿 (−1)

𝑛 𝑛 ≠ 0
(4.33)

𝜙𝑛(𝑦) = cos (𝑛𝜋𝐻 𝑦) . (4.34)

We could have started with taking the homogeneous equivalent boundary value problem for 𝑥. Follow-
ing a similar procedure for this case the solution would have been,

𝑝(𝑥, 𝑦) =
∞

∑
𝑛=0

𝑎𝑛(𝑦)𝜓(𝑥) (4.35)

𝑎𝑛(𝑦) = {
𝑢0
2𝐿𝐻𝑦

2 + 𝑐1 𝑛 = 0
− 2𝐿𝑢0
𝑛2𝜋2𝐻 (−1)

𝑛 𝑛 ≠ 0
(4.36)

𝜓𝑛(𝑥) = cos (𝑛𝜋𝐿 𝑥) (4.37)

We see that the solutions (4.32-4.34) are very similar to the solutions (4.35-4.37), the 𝑥 and 𝑦 are inter-
changed as well as 𝐻 and 𝐿 and the signs. These differences follow from the difference in the boundary
conditions. Visualizations of the solutions are given in figure 4.4. We see that the two solutions gener-
ate the same pressure field.
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(a) Eigenfunction expansion with 𝜓𝑛(𝑥) (b) Eigenfunction expansion with 𝜙𝑛(𝑦)

Figure 4.4: Pressure fields of the analytical solutions (with N=1000 terms). The reference points of the pressure fields were set
equal and at position (0,0). The pressure fields were divided by |p(0,0)|.

4.3. Transient temperature distribution for case III
The 1D version of the diffusion-convection equation (2.18) with general coefficients looks like,

𝜕𝑇
𝜕𝑡 = 𝛼

𝜕2𝑇
𝜕𝑥2 − 𝛽

𝜕𝑇
𝜕𝑥 (4.38)

The effective thermal diffusivity 𝛼 is assumed to be positive. The effective Darcy velocity of the water is
assumed to be constant and is replaced by 𝛽 (denoted by 𝛾�⃗� in equation 2.18). If we apply separation of
variables, this differential equation would be easier to solve without the convection term. An expression
for 𝑇(𝑥, 𝑡) can be defined to accomplish this [21],

𝑇(𝑥, 𝑡) = 𝑒−
𝛽2
4𝛼 𝑡𝑒

𝛽
2𝛼𝑥𝑣(𝑥, 𝑡) =∶ 𝐴𝑣(𝑥, 𝑡) (4.39)

Substituting equation (4.39) into equation (4.38), confirms this claim,

−𝛽
2

4𝛼𝐴𝑣 + 𝐴
𝜕𝑣
𝜕𝑡 = 𝛼 (

𝛽2
4𝛾4𝐴𝑣 + 2

𝛽
2𝛼𝐴

𝜕𝑣
𝜕𝑥 + 𝐴

𝜕2𝑣
𝜕𝑥2 ) − 𝛽 (

𝛽
2𝛼𝐴𝑣 + 𝐴

𝜕𝑣
𝜕𝑥)

𝐴𝜕𝑣𝜕𝑡 = (2
𝛽2
4𝛼 −

𝛽2
2𝛼)𝐴𝑣 + (𝛽 − 𝛽)𝐴

𝜕𝑣
𝜕𝑥 + 𝛼𝐴

𝜕2𝑣
𝜕𝑥2

𝜕𝑣
𝜕𝑡 = 𝛼

𝜕2𝑣
𝜕𝑥2 . (4.40)

Using this expression for 𝑇(𝑥, 𝑡) (4.39), we can convert our initial problem (4.41) into a new problem
(4.42). This new problem is solely based on diffusion.

⎧
⎪
⎨
⎪
⎩

𝜕𝑇
𝜕𝑡 = 𝛼

𝜕2𝑇
𝜕𝑥2 − 𝛽

𝜕𝑇
𝜕𝑥

𝑇(0, 𝑡) = 0
𝜕𝑇
𝜕𝑥 (𝐿, 𝑡) = 0
𝑇(𝑥 > 0, 0) = 𝑇ℎ𝑖𝑔ℎ − 𝑇𝑙𝑜𝑤 =∶ Δ𝑇

(4.41)

⎧
⎪

⎨
⎪
⎩

𝜕𝑣
𝜕𝑡 = 𝛼

𝜕2𝑣
𝜕𝑥2

𝑣(0, 𝑡) = 0
𝛽
2𝛼𝑣(𝐿, 𝑡) +

𝜕𝑣
𝜕𝑥 (𝐿, 𝑡) = 0

𝑒
𝛽
2𝛼𝑥𝑣(𝑥 > 0, 0) = Δ𝑇

(4.42)

We use separation of variables, introduce 𝑣(𝑥, 𝑡) = 𝑋(𝑥)ℎ(𝑡) and substitute this expression into
equation (4.42),
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1
𝛼ℎ(𝑡)

𝑑ℎ
𝑑𝑡 (𝑡) =

1
𝑋(𝑥)

𝑑2𝑋
𝑑𝑥2 (𝑥) = −𝜆. (4.43)

⎧

⎨
⎩

𝑑2𝑋
𝑑𝑥2 (𝑥) = −𝜆𝑋(𝑥)
𝑋(0) = 0
𝛽
2𝛼𝑋(𝐿) +

𝑑𝑋
𝑑𝑥 (𝐿) = 0

(4.44)

We will analyse if 𝜆 is positive, zero or negative. Let 𝜆 ≤ 0, the result is the following,

𝑋(𝑥) = 𝐴𝑒√−𝜆𝑥 + 𝐵𝑒−√−𝜆𝑥 (4.45)
𝑋(0) = 𝐴 + 𝐵 = 0 (4.46)

𝛽
2𝛼𝑋(𝐿) +

𝑑𝑋
𝑑𝑥 (𝐿) = 𝐴

𝛽
2𝛼 (𝑒

√−𝜆𝐿 − 𝑒−√−𝜆𝐿) + 𝐴√−𝜆 (𝑒√−𝜆𝐿 + 𝑒−√−𝜆𝐿) = 0 (4.47)

Equation 4.47 can be rewritten by multiplying with 𝑒√−𝜆𝐿 into,

𝑒2√−𝜆𝐿 =
𝛽
2𝛼 − √−𝜆
𝛽
2𝛼 + √−𝜆

(4.48)

The left hand side of equation 4.48 must be larger than or equal to 1 since the power is nonnegative.
However, the right hand side must be smaller than or equal to 1. Therefore the only solution of equation
4.48 is for 𝜆 = 0, and this results in the trivial solution. We conclude that the eigenvalue problem for
𝑋(𝑥) (equations 4.44) only has positive eigenvalues. If 𝜆 > 0, we use goniometric functions to find the
solution,

𝑋(𝑥) = 𝐴 cos(√𝜆𝑥) + 𝐵 sin(√𝜆𝑥) (4.49)
𝑋(0) = 𝐴 cos(0) + 𝐵 ⋅ 0 = 0 (4.50)
𝛽
2𝛼𝑋(𝐿) +

𝑑𝑋
𝑑𝑥 (𝐿) =

𝛽
2𝛼𝐵 sin(√𝜆𝐿) + 𝐵√𝜆 cos(√𝜆𝐿) = 0 (4.51)

𝑡𝑎𝑛(√𝜆𝐿) = −2𝛼√𝜆𝛽 . (4.52)

Values for 𝜆 can be obtained numerically with equation (4.52). Next, the time dependent part of the
solution is,

𝑑ℎ
𝑑𝑡 (𝑡) = −𝜆𝛼ℎ(𝑡) (4.53)

ℎ(𝑡) = 𝐶𝑒−𝜆𝛼𝑡 . (4.54)

Superposition of the eigenfunctions gives,

𝑣(𝑥, 𝑡) =
∞

∑
𝑛=1

𝑐𝑛 sin(√𝜆𝑛𝑥)𝑒−𝜆𝑛𝛼𝑡 , (4.55)

and from inserting the initial condition follows,

𝑒
𝛽
2𝛼𝑥𝑣(𝑥 > 0, 0) = 𝑒

𝛽
2𝛼𝑥

∞

∑
𝑛=1

𝑐𝑛 sin(√𝜆𝑛𝑥) = Δ𝑇. (4.56)

If the eigenfunctions 𝑠𝑖𝑛(√𝜆𝑛𝑥) are orthogonal, an expression for 𝑐𝑛 can be found,

𝑐𝑛 =
∫𝐿0 Δ𝑇𝑒

− 𝛽
2𝛼𝑥 sin(√𝜆𝑛𝑥)𝑑𝑥

∫𝐿0 sin2(√𝜆𝑛𝑥)𝑑𝑥
. (4.57)
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If the eigenfunctions are orthogonal, the following expression should be zero for all 𝑛 ≠ 𝑚,

∫
𝐿

0
sin(√𝜆𝑛𝑥) sin(√𝜆𝑚𝑥)𝑑𝑥 =

√𝜆𝑚
𝜆𝑛 − 𝜆𝑚

sin(√𝜆𝑛𝐿) cos(√𝜆𝑚𝐿) −
√𝜆𝑛

𝜆𝑛 − 𝜆𝑚
cos(√𝜆𝑛𝐿) sin(√𝜆𝑚𝐿).

(4.58)
Unfortunately, the eigenfunctions did not seem to be orthogonal (table 4.1). To find the coefficients

Table 4.1: Eigenvalues with use of the root-finder scipy.optimize.bisect() function from python and the inproduct of their eigen-
function with the first eigenfunction.

𝑛 𝜆𝑛 ∫𝐿0 sin(√𝜆1𝑥) sin(√𝜆𝑛𝑥)𝑑𝑥
1 0.010 0.240
2 0.059 1.299
3 0.158 1.193
4 0.306 -0.626
5 0.504 0.278
6 0.75 0.203
7 1.046 0.095
8 1.392 0.125
9 1.787 0.038
10 2.231 -0.067

𝑐𝑛 equation (4.57) cannot be used. Instead the interval [0, 𝐿] is discretized in [𝑥1, 𝑥2, ..., 𝑥𝑖 , ..., 𝑥𝑁] and
for each value of 𝑥𝑖 we find an equation from (4.56). These 𝑁 equations can be written as a matrix
equation, which can be solved for 𝑐𝑛 with the direct solver numpy.linalg.solve() from python. We find
the solution of the 1D convection-diffusion equation (4.38) after substituting (4.55) into (4.39),

𝑇(𝑥, 𝑡) =
∞

∑
𝑛=1

𝑐𝑛𝑒
−(𝛽

2
4𝛼+𝜆𝑛𝛼)𝑡𝑒

𝛽
2𝛼𝑥 sin(√𝜆𝑛𝑥), (4.59)

with the eigenvalues 𝜆𝑛 derived numerically from equation (4.52) and the coefficients 𝑐𝑛 from equation
(4.56). In reality, the solution is shifted by 𝑇𝑙𝑜𝑤. The analytical solution is displayed in figure 4.5. One
can see that at 𝑡 = 0, the solution is not a neat step function.
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Figure 4.5: Temperature distribution of the analytical solution of the first 100 terms for different times 𝑡, where 𝛼 ⋅ 103 = 6.8 ⋅
10−4 𝑚2/𝑠 and 𝛽 = 5.3 ⋅ 10−5 𝑚/𝑠.



5
Results

In this chapter the results of the numerical model are presented and discussed. The first part discusses
results that describe the accuracy of the numerical model (section 5.1) including a comparison with the
analytical model (section 5.2). The second part presents the results of the numerical model (section
5.3), describing the velocity field and temperature distribution.

5.1. Mass conservation of numerical model
One of the two equations that form the basis of the model, is the mass continuity equation (2.5). We
expect that the mass conservation holds for the result generated by the numerical model. To check if
this is indeed the case, equation 5.1 was used to compare the in- and outflow per grid cell. See figure
3.1 for a visualization of the indices.

error mass conservation per cell =
(𝑢𝑥,𝑖,𝑗 − 𝑢𝑥,𝑖+1,𝑗)Δ𝑦 + (𝑢𝑦,𝑖,𝑗 − 𝑢𝑦,𝑖,𝑗+1)Δ𝑥

(|𝑢𝑥,𝑖,𝑗| + |𝑢𝑥,𝑖+1,𝑗|)Δ𝑦 + (|𝑢𝑦,𝑖,𝑗| + |𝑢𝑦,𝑖,𝑗+1|)Δ𝑥
⋅ 100% (5.1)

We will consider the case described by equations 2.7 and 2.1 first (case I). A schematic representation
of this case is presented in figure 5.1. The mass conservation is checked for different settings for 𝑘𝜇 ,

namely 𝑘
𝜇 a) is a constant, b) is a smooth function of x, c) has a constant value or d) a smoothly varying

value everywhere except of a rectangular subdomain where it has a constant smaller value. The results
for case I for these different settings, are shown in figure 5.2. It is clear that the error is very small and
of the order of machine accuracy. In the case 𝑘

𝜇 = 1 (fig 5.2a), we see that the error is lowest in the
middle part of the x range. The inflow is larger than the outflow for low values for x, and the other way
around for high values of x. Furthermore, the block of lower permeability seems to have little effect in
the case 𝑘

𝜇 = 1. In the case
𝑘
𝜇 = 1 + 𝑒

− 𝑥
1 𝑚 , the block seems to enlarge the error. Lastly in the case

𝑘
𝜇 = 1 + 𝑒−

𝑥
1 𝑚 ,we see fluctuations in the error as vertical stripes and the error is a factor 10 larger.

Secondly, we will consider case II with different boundary conditions described in equation (4.10). A
schematic representation is shown in figure 5.3. In case II presented in figure 5.4), the error is even
smaller than for case I.
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Figure 5.1: Schematic representation of the domain and boundary conditions of case I.

(a) 𝑘𝜇 = 1
𝑚4
𝑁𝑠 (b) 𝑘𝜇 = 1 + 𝑒

− 𝑥
1 𝑚 𝑚4

𝑁𝑠

(c) 𝑘𝜇 = 0.5
𝑚4
𝑁𝑠 for (𝑥, 𝑦) ∈ [4, 8]𝑥[3, 5] and 𝑘

𝜇 = 1
𝑚4
𝑁𝑠 elsewhere (d) 𝑘

𝜇 = 0.5 𝑚4
𝑁𝑠 for (𝑥, 𝑦) ∈ [4, 8]𝑥[3, 5] and 𝑘

𝜇 = 1 + 𝑒−
𝑥
1 𝑚 𝑚4

𝑁𝑠
elsewhere

Figure 5.2: Error percentage in mass conservation per cell according to equation 5.1, for different values of 𝑘𝜇 for case I.
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Figure 5.3: Schematic representation of the domain and boundary conditions of case II.

Figure 5.4: Error percentage in mass conservation per cell according to equation 5.1 for 𝑘𝜇 = 1
𝑚4

𝑁𝑠 .
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Figure 5.5: Relative difference between the analytical and numerical solution for case I.

5.2. Comparison with analytical model
In chapter 4 the analytical solutions to the pressure field were found for case I (figure 5.1) and case
II (figure 5.3). In this section we will compare these analytical solutions with the numerical solution.
For case I the pressure was found to be a linear function of x. The relative difference with the nu-
merical solution is plotted in figure 5.5. In section 4.2 the analytical solution of case II is derived with
eigenfunction expansion. There were two eigenfunction expansions, one for x (𝜓𝑛(𝑥)) and one for y
(𝜙𝑛(𝑦)). This section will focus on comparing the analytical solutions with each other and the numer-
ical solution (figure 5.6). The results displayed in figure 5.6 a), b) and c) show that the analytical and
numerical solutions are very similar. The first 1000 terms of the infinite sum of the analytical solutions
were programmed, adding more terms decreases the relative differences (figure 5.7). In figure 5.6 f) we
see that the relative difference has a repetitive pattern. This is probably caused by the eigenfunctions
𝜙𝑛(𝑦) = cos (𝑛𝜋𝐿 𝑦) of the analytical solution. A jump is shown on the boundary at 𝑦 = 𝐻 as expected.
The analytical solution doesn’t hold at this boundary because the eigenfunction expansion satisfies a
homogeneous boundary condition, in contrast to the nonhomogeneous boundary condition of the prob-
lem. In figure 5.6 e) the relative difference is much smaller than in f). Here we also see a jump at the
boundary (here at 𝑥 = 𝐿) caused by the eigenfunctions 𝜙𝑛(𝑥) = cos (𝑛𝜋𝐻 ) satisfying a homogeneous
boundary condition. When comparing the two eigenfunction expansions (figure 5.6) it becomes clear
that the eigenfunction expansion for 𝑦 is more dominant and at both the nonhomogeneous boundary
conditions there is a jump.

In section 4.3 the analytical solution for the heat equation was derived. The analytical solution and
the numerical solution are both shown in figure 5.8. For the two time stamps larger than 0, the solutions
are close to one another but still differ for 𝑥 < 𝐿/2. At 𝑡 = 0, the analytical solution oscillates strongly.
It is clear that the analytical solution is not yet accurate enough. This possible comes from rounding
errors when deriving the eigenvalues that may be enlarged by solving the matrix equation for 𝑐𝑛.



5.2. Comparison with analytical model 29

(a) Eigenfunction expansion with 𝜓𝑛(𝑥) (b) Eigenfunction expansion with 𝜙𝑛(𝑦)

(c) Numerical solution (d) Relative difference between eigenfunction expansions 𝜙𝑛(𝑦) and
𝜓𝑛(𝑥); (𝑝𝜙 − 𝑝𝜓)/𝑚𝑎𝑥 𝑝𝜙 ⋅ 100 %

(e) Relative difference between numerical solution and eigenfunction
expansion with 𝜓𝑛(𝑥); (𝑝𝑛𝑢𝑚 − 𝑝𝜓)/𝑚𝑎𝑥 𝑝𝑛𝑢𝑚 ⋅ 100 %

(f) Relative difference between numerical solution and eigenfunction
expansion with 𝜙𝑛(𝑦); (𝑝𝑛𝑢𝑚 − 𝑝𝜙)/𝑚𝑎𝑥 𝑝𝑛𝑢𝑚 ⋅ 100 %

Figure 5.6: Pressure fields for case II (figure 5.3) and the relative differences between the numerical and analytical solutions
(with N=1000 terms). The reference points of the pressure fields (a-c) were equal and at position (0,0). The pressure fields were
divided by |p(0,0)|.
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(a) Relative difference between eigenfunction expansions 𝜙𝑛(𝑦) and
𝜓𝑛(𝑥); (𝑝𝜙 − 𝑝𝜓)/𝑚𝑎𝑥 𝑝𝜙 ⋅ 100 %

(b) Relative difference between numerical solution and eigenfunction
expansion with 𝜓𝑛(𝑥); (𝑝𝑛𝑢𝑚 − 𝑝𝜓)/𝑚𝑎𝑥 𝑝𝑛𝑢𝑚 ⋅ 100 %

(c) Relative difference between numerical solution and eigenfunction
expansion with 𝜙𝑛(𝑦); (𝑝𝑛𝑢𝑚 − 𝑝𝜙)/𝑚𝑎𝑥 𝑝𝑛𝑢𝑚 ⋅ 100 %

Figure 5.7: Relative differences between the numerical and analytical solutions (with N=2000 terms) for the pressure fields for
case II.

Figure 5.8: Numerical and analytical solution (first 100 terms) for the temperature distribution at different times, where 𝛼 ⋅ 103 =
6.8 ⋅ 10−4 𝑚2/𝑠 and 𝛽 = 5.3 ⋅ 10−5 𝑚/𝑠.



5.3. Numerical model results for case I and II 31

(a) 𝑘𝜇 = 1
𝑚4
𝑁𝑠 (b) 𝑘𝜇 = 1 + 𝑒

− 𝑥
1 𝑚 𝑚4

𝑁𝑠

(c) 𝑘𝜇 = 0.5
𝑚4
𝑁𝑠 for (𝑥, 𝑦) ∈ [4, 8]𝑥[3, 5] and 𝑘

𝜇 = 1
𝑚4
𝑁𝑠 elsewhere (d) 𝑘

𝜇 = 0.5 𝑚4
𝑁𝑠 for (𝑥, 𝑦) ∈ [4, 8]𝑥[3, 5] and 𝑘

𝜇 = 1 + 𝑒−
𝑥
1 𝑚 𝑚4

𝑁𝑠
elsewhere

Figure 5.9: Pressure field (colour gradient) 𝑝/(𝜌𝑤𝑢20) and streamplot for different values of
𝑘
𝜇 .

5.3. Numerical model results for case I and II
There are two results to be shown, the pressure field and velocity field. The pressure and velocity field
are shown in figure 5.9 for case I for different values of 𝑘𝜇 . The pressure field is visible in the colour
gradient and the velocity field in the lines of the streamplot. The lines of the streamplot describe where
the value of the streamfunction is constant. With the streamfunction defined by,

Φ(𝑥, 𝑦) = ∫
𝑦′=𝑦

𝑦′=0
�⃗� ⋅ �̂� 𝑑𝑦. (5.2)

The pressure field for the case 𝑘
𝜇 = 1

𝑚4
𝑁𝑠 and 𝑘

𝜇 = 1 + 𝑒
− 𝑥
1 𝑚 𝑚4

𝑁𝑠 seem very similar. However, for the
latter the pressure difference is slightly smaller. In figure 5.9a)-b) the water flows in a straight line from
𝑥 = 0 towards 𝑥 = 𝐿. This is as expected from the analytical solution found in section 4.1. In figure 5.9
a block in the domain is set to have a lower permeability. The streamplots indeed show that the water
partly flows around these blocks of lower permeability.

Figure 5.10 shows the pressure and velocity field for case II. The water flows from boundary 𝑦 = 𝐻
towards boundary 𝑥 = 𝐿 as we expect from the boundary conditions. Accordingly, the pressure field
is the highest at 𝑦 = 𝐻 and lowest at 𝑥 = 𝐿. In figure 5.10b) we can see that there does not flow any
water through the boundaries 𝑥 = 0 and 𝑦 = 0.
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(a) Numerical solution of pressure field for case II with streamfunction.

(b) Numerical solution of pressure field for case II with velocity field.

Figure 5.10: Streamplot and velocity field numerically derived from equation 4.10. The pressure fields were divided by |p(0,0)|.
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5.4. Numerical model results for case III
5.4.1. Parameter variation
We are interested to see how different parameters influence the temperature distribution in time. Three
parameters are analyzed, the effective thermal diffusivity coefficient 𝛼, the initial velocity of the water 𝑢0
and the porosity𝜙 of themedium (see figure 5.11). Themolecular thermal diffusivity coefficient depends
on the physical properties of the materials considered and therefore does not change. However, the
effective diffusivity coefficient could differ up to a factor 103 due to the dispersion of the water. We
see different characteristics of the temperature distribution when the Péclet number is smaller than
10 or larger than 10 (figure 5.11 a)). We see the same difference in characteristics in figure 5.11 b).
Furthermore, the cooling of the porous medium is delayed when the flow rate 𝑢0 is smaller. Figure 5.11
c) shows a delay in cooling when the porosity 𝜙 is increased. This can be explained by the fact that
the permeability of the medium is not related to the porosity in the used model. Physically however,
the permeability does depend on the porosity. The flow rate 𝑢0 therefore doesn’t change in this model
when the porosity is changed. The volume of the water in the medium is enlarged, and the flow rate is
relatively smaller. This results in a delay of cooling the medium.

(a) 𝑢0 = 3.17 ⋅ 10−5 𝑚/𝑠 and 𝜙 = 0.2 (b) 𝛼 = 6.8 ⋅ 10−4 𝑚2/𝑠 and 𝜙 = 0.2

(c) 𝑢0 = 3.17 ⋅ 10−5 𝑚/𝑠, Pe=0.78.

Figure 5.11: The temperature T [∘ C] in time [h] in the point (10 m, 7.5 m) for varying parameters.

5.4.2. Rescaling the temperature distribution
The purpose of rescaling is to be able to show the temperature distribution for general 𝑥 and 𝑡. The
characteristic length of the convection-diffusion problem varies in time. This was taken into account
when calculating the Péclet number,

𝑃𝑒 = 𝛾𝑢20𝑡
𝛼 . (5.3)
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(a) 𝛼 ⋅ 10 = 6.8 ⋅ 10−6𝑚2/𝑠 (b) 𝛼 ⋅ 10 = 6.8 ⋅ 10−6𝑚2/𝑠

(c) 𝛼 = 6.8 ⋅ 10−7𝑚2/𝑠 (d) 𝛼 = 6.8 ⋅ 10−7𝑚2/𝑠

Figure 5.12: Rescaling of the temperature distribution for high Péclet numbers.

Figure 5.12 shows that the temperature distribution is a function of 𝑥/𝑡 when the Péclet number is large,
indicating the convection dominance of the distribution. The function depending on 𝑥/𝑡 decribing the
high temperature for high values of Péclet numbers is the error function. For low values of the Péclet
number the temperature distribution is a function depending on 𝑥/√𝑡 (figure 5.13).



5.4. Numerical model results for case III 35

(a) 𝛼 ⋅ 104 = 6.8 ⋅ 10−3𝑚2/𝑠 (b) 𝛼 ⋅ 104 = 6.8 ⋅ 10−3𝑚2/𝑠

(c) 𝛼 ⋅ 103 = 6.8 ⋅ 10−4𝑚2/𝑠 (d) 𝛼 ⋅ 103 = 6.8 ⋅ 10−4𝑚2/𝑠

Figure 5.13: Rescaling of the temperature distribution for low Péclet numbers.





6
Conclusion

In this research the influence of porosity and flow rate in an aquifer on its temperature distribution was
investigated. For this purpose a numerical model was derived with use of finite difference methods
and the forward Euler method to describe the pressure field, velocity field and temperature distribution.
The accuracy of these numerical models were analysed by comparing their results with the results of
analytical solutions.

For the pressure and velocity field the results are very accurate. The analytical and numerical
solutions for the pressure and velocity field both described a quasi-linear velocity field along the x-
axis, with a negligible y-component. Accordingly, the pressure field described a decreasing linear
dependence on the x-coordinate. Furthermore, it was shown that the velocity field of the numerical
model obeyed the conservation law of mass up to machine precision for different values of permeability:
a constant value and a smooth function with and without a block with lower permeability of a factor two.

There was some difference in the temperature distribution for the analytical and numerical solution.
It is expected that this difference comes from an error in the analytical solution. The analytical problem
could not be solved purely analytical, some numerical help was needed for deriving the eigenvalues
and coefficients of the eigenfunction expansion. Probably, some errors from the numerical computation
influenced the results of the analytical solution. Therefore the accuracy of the numerical model for
the temperature distribution could not be determined with certainty. The temperature distribution of
the numerical solution is described by a complementary error function. For low Péclet numbers this
function depends on 𝑥/√𝑡 and for high numbers on 𝑥/𝑡.

Finally, we conclude the following on the influence of parameters on the temperature distribution.
The characteristics of the temperature distribution changes when the flow rate of the aquifer is changed.
For higher values of flow rate, the Péclet number increases and the characteristic of the temperature
distribution changes accordingly. Furthermore, a decreasing flow rate translates into a delay of cooling
the aquifer as we would expect. In the current model, an increase in porosity results in a delay of
cooling the aquifer. This is because in the current model the permeability is not related to the porosity.
Therefore the flow rate is unchanged and relatively smaller compared to the volume of the water in the
medium.

For further research it is advised to analyse errors occuring in the numerical computation for the
analytical solution in order to determine the accuracy of the numerical model for the temperature dis-
tribtuion. In a new model the permeability can be related to the porosity. Chemical reactions that would
cause a decrease of porosity can be implemented. When the chemical reactions are implemented in
the model, one can look into preventing chemical clogging.
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A
Numerical scheme

A.1. Pressure field
The numerical approximation of pressure 𝑝 at location [(𝑖 + 1

2) Δ𝑥, (𝑗 +
1
2) Δ𝑦] is 𝑝𝑖,𝑗, similarly for 𝜅 ∶=

𝑘
𝜇 . The equations from (2.7) are approximated by the central difference method.

∇𝑝 ≈
𝑝𝑖+ 12 ,𝑗

− 𝑝𝑖− 12 ,𝑗
Δ𝑥 �̂� +

𝑝𝑖,𝑗+ 12
− 𝑝𝑖,𝑗− 12
Δ𝑦 �̂� (A.1)

∇ ⋅ (−𝜅∇𝑝) ≈
−𝜅𝑖+ 12 ,𝑗

𝑝𝑖+1,𝑗−𝑝𝑖,𝑗
Δ𝑥 + 𝜅𝑖− 12 ,𝑗

𝑝𝑖,𝑗−𝑝𝑖−1,𝑗
Δ𝑥

Δ𝑥 +
−𝜅𝑖,𝑗+ 12

𝑝𝑖,𝑗+1−𝑝𝑖,𝑗
Δ𝑦 + 𝜅𝑖,𝑗− 12

𝑝𝑖,𝑗−𝑝𝑖,𝑗−1
Δ𝑦

Δ𝑦

=
−𝜅𝑖+ 12 ,𝑗

𝑝𝑖+1,𝑗 + (𝜅𝑖+ 12 ,𝑗
+ 𝜅𝑖− 12 ,𝑗

) 𝑝𝑖,𝑗 − 𝜅𝑖− 12 ,𝑗
𝑝𝑖−1,𝑗

Δ𝑥2

+
−𝜅𝑖,𝑗+ 12

𝑝𝑖,𝑗+1 + (𝜅𝑖,𝑗+ 12
+ 𝜅𝑖,𝑗− 12

) 𝑝𝑖,𝑗 − 𝜅𝑖,𝑗− 12
𝑝𝑖,𝑗−1

Δ𝑦2

(A.2)

𝜅 at the boundary between two grids is defined as the harmonic mean of the 𝜅 values at those grid
points, ie.

𝜅𝑖+ 12 ,𝑗
∶= 2

1
𝜅𝑖,𝑗
+ 1
𝜅𝑖+1,𝑗

(A.3)

The boundary conditions from (2.7) are approximated via central differences,

𝜕𝑝
𝜕𝑥 (0, 𝑦) ≈

𝑝0,𝑗 − 𝑝−1,𝑗
Δ𝑥 = − 𝑢0

𝜅− 12 ,𝑗
(A.4)

𝜕𝑝
𝜕𝑥 (𝐿, 𝑦) ≈

𝑝𝑛𝑥 ,𝑗 − 𝑝𝑛𝑥−1,𝑗
Δ𝑥 = − 𝑢0

𝜅𝑛𝑥− 12 ,𝑗
(A.5)

𝜕𝑝
𝜕𝑦(𝑥, 0) ≈

𝑝𝑖,0 − 𝑝𝑖,−1
Δ𝑦 = 0 (A.6)

𝜕𝑝
𝜕𝑦(𝑥, 𝐻) ≈

𝑝𝑖,𝑛𝑦 − 𝑝𝑖,𝑛𝑦−1
Δ𝑦 = 0 (A.7)
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Setting equation (A.2) equal to zero, we find an expression for the numerical approximations of 𝑝
for the interior of the domain (A.8). For 1 ≤ 𝑖 ≤ 𝑛𝑥 − 2 and 1 ≤ 𝑗 ≤ 𝑛𝑦 − 2,

−𝜅𝑖+ 12 ,𝑗
𝑝𝑖+1,𝑗 + (𝜅𝑖+ 12 ,𝑗

+ 𝜅𝑖− 12 ,𝑗
) 𝑝𝑖,𝑗 − 𝜅𝑖− 12 ,𝑗

𝑝𝑖−1,𝑗
Δ𝑥2

+
−𝜅𝑖,𝑗+ 12

𝑝𝑖,𝑗+1 + (𝜅𝑖,𝑗+ 12
+ 𝜅𝑖,𝑗− 12

) 𝑝𝑖,𝑗 − 𝜅𝑖,𝑗− 12
𝑝𝑖,𝑗−1

Δ𝑦2 = 0. (A.8)

In order to find expressions at the boundary of the domain, we substitute equations (A.4- A.7) into
equation (A.8). Some examples are given of such substitutions (A.9-A.12). For 𝑖 = 0 and 𝑗 = 0,

−𝜅𝑖+ 12 ,𝑗
𝑝𝑖+1,𝑗 + 𝜅𝑖+ 12 ,𝑗

𝑝𝑖,𝑗
Δ𝑥2 +

−𝜅𝑖,𝑗+ 12
𝑝𝑖,𝑗+1 + 𝜅𝑖,𝑗+ 12

𝑝𝑖,𝑗
Δ𝑦2 = 𝑢0

Δ𝑥 . (A.9)

For 𝑖 = 0 and 1 ≤ 𝑗 ≤ 𝑛𝑦 − 2,

−𝜅𝑖+ 12 ,𝑗
𝑝𝑖+1,𝑗 + 𝜅𝑖+ 12 ,𝑗

𝑝𝑖,𝑗
Δ𝑥2 +

−𝜅𝑖,𝑗+ 12
𝑝𝑖,𝑗+1 + (𝜅𝑖,𝑗+ 12

+ 𝜅𝑖,𝑗− 12
) 𝑝𝑖,𝑗 − 𝜅𝑖,𝑗− 12

𝑝𝑖,𝑗−1
Δ𝑦2 = 𝑢0

Δ𝑥 . (A.10)

For 1 ≤ 𝑖 ≤ 𝑛𝑥 − 2 and 𝑗 = 𝑛𝑦 − 1,

−𝜅𝑖+ 12 ,𝑗
𝑝𝑖+1,𝑗 + (𝜅𝑖+ 12 ,𝑗

+ 𝜅𝑖− 12 ,𝑗
) 𝑝𝑖,𝑗 − 𝜅𝑖− 12 ,𝑗

𝑝𝑖−1,𝑗
Δ𝑥2 +

𝜅𝑖,𝑗− 12
𝑝𝑖,𝑗 − 𝜅𝑖,𝑗− 12

𝑝𝑖,𝑗−1
Δ𝑦2 = 0. (A.11)

For 𝑖 = 𝑛𝑥 − 1 and 𝑗 = 𝑛𝑦 − 1,
𝜅𝑖− 12 ,𝑗

𝑝𝑖,𝑗 − 𝜅𝑖− 12 ,𝑗
𝑝𝑖−1,𝑗

Δ𝑥2 +
𝜅𝑖,𝑗− 12

𝑝𝑖,𝑗 − 𝜅𝑖,𝑗− 12
𝑝𝑖,𝑗−1

Δ𝑦2 = −𝑢0Δ𝑥 . (A.12)

The numerical scheme is solved by translating the derived equations into matrix form and use the
function numpy.linalg.solve from python.

A.2. Temperature distribution
This section will explain how the heat equation was discretized. Similarly as for 𝑝, 𝑇𝑘𝑖,𝑗 is the numerical
approximation of 𝑇 at location [(𝑖 + 1

2) Δ𝑥, (𝑗 +
1
2) Δ𝑦] on time 𝑘Δ𝑡. The diffusion term of equation (2.18)

is approximated by central difference method (A.13) and the convection term by the upwind difference
(A.14) [22]. Finally, the time derivative term is approximated by the forward difference (A.15). Using
equations (A.13-A.15), the discretized heat equation can be derived (A.16).

∇2𝑇 ≈ (
𝑇𝑘𝑖+1,𝑗 − 2𝑇𝑘𝑖,𝑗 + 𝑇𝑘𝑖−1,𝑗

Δ𝑥2 +
𝑇𝑘𝑖,𝑗+1 − 2𝑇𝑘𝑖,𝑗 + 𝑇𝑘𝑖,𝑗−1

Δ𝑦2 ) (A.13)

(𝜕𝑢𝑥𝑇𝜕𝑥 +
𝜕𝑢𝑦𝑇
𝜕𝑦 ) ≈ (−

𝑢𝑥,𝑖+1,𝑗𝑇𝑘𝑖,𝑗 − 𝑢𝑥,𝑖,𝑗𝑇𝑘𝑖−1,𝑗
Δ𝑥 −

𝑢𝑦,𝑖,𝑗+1𝑇𝑘𝑖,𝑗 − 𝑢𝑦,𝑖,𝑗𝑇𝑘𝑖,𝑗−1
Δ𝑦 ) (A.14)

𝜕𝑇
𝜕𝑡 ≈

𝑇𝑘+1𝑖,𝑗 − 𝑇𝑘𝑖,𝑗
Δ𝑡 (A.15)

𝑇𝑘+1𝑖,𝑗 = 𝑇𝑘𝑖,𝑗 + Δ𝑡𝛼 (
𝑇𝑘𝑖+1,𝑗 − 2𝑇𝑘𝑖,𝑗 + 𝑇𝑘𝑖−1,𝑗

Δ𝑥2 +
𝑇𝑘𝑖,𝑗+1 − 2𝑇𝑘𝑖,𝑗 + 𝑇𝑘𝑖,𝑗−1

Δ𝑦2 )

+ Δ𝑡𝑣 (−
𝑢𝑥,𝑖+1,𝑗𝑇𝑘𝑖,𝑗 − 𝑢𝑥,𝑖,𝑗𝑇𝑘𝑖−1,𝑗

Δ𝑥 −
𝑢𝑦,𝑖,𝑗+1𝑇𝑘𝑖,𝑗 − 𝑢𝑦,𝑖,𝑗𝑇𝑘𝑖,𝑗−1

Δ𝑦 ) (A.16)
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The boundary conditions and initial condition from (2.19) are discretized in a similar manner as for the
pressure field with central differences.

𝑇(0, 𝑦, 𝑡) ≈ 𝑇𝑘0,𝑗 = 𝑇𝑙𝑜𝑤 (A.17)

𝜕𝑇
𝜕𝑥 (𝐿, 𝑦, 𝑡) ≈

𝑇𝑘𝑛𝑥 ,𝑗 − 𝑇
𝑘
𝑛𝑥−1,𝑗

Δ𝑥 = 0 (A.18)

𝜕𝑇
𝜕𝑦 (𝑥, 0, 𝑡) ≈

𝑇𝑘𝑖,0 − 𝑇𝑘𝑖,−1
Δ𝑦 = 0 (A.19)

𝜕𝑇
𝜕𝑦 (𝑥, 𝐻, 𝑡) ≈

𝑇𝑘𝑖,𝑛𝑦 − 𝑇
𝑘
𝑖,𝑛𝑦−1

Δ𝑦 = 0 (A.20)

𝑇(𝑥, 𝑦, 0) ≈ 𝑇0𝑖,𝑗 = {
𝑇𝑙𝑜𝑤 , 𝑖 = 0
𝑇ℎ𝑖𝑔ℎ , 𝑖 ≠ 0 (A.21)

Equation (A.16) holds for the interior of the domain, i.e. 0 < 𝑖 < 𝑛𝑥 − 1 and 0 < 𝑗 < 𝑛𝑦 − 1. At the
edge of the domain, boundary conditions (A.18-A.20) should be substituted into equation (A.16). Some
examples of these substitutions are given, the other cases will be similar to the given examples.
For 𝑖 = 𝑛𝑥 − 1 and 0 < 𝑗 < 𝑛𝑦 − 1,

𝑇𝑘+1𝑛𝑥−1,𝑗 = 𝑇𝑛𝑥−1,𝑗 + Δ𝑡𝛼 (
−𝑇𝑘𝑛𝑥−1,𝑗 + 𝑇

𝑘
𝑛𝑥−2,𝑗

Δ𝑥2 +
𝑇𝑘𝑛𝑥−1,𝑗+1 − 2𝑇

𝑘
𝑛𝑥−1,𝑗 + 𝑇

𝑘
𝑛𝑥−1,𝑗−1

Δ𝑦2 )

+ Δ𝑡𝑣 (−
𝑢𝑥,𝑖+1,𝑗𝑇𝑘𝑖,𝑗 − 𝑢𝑥,𝑖,𝑗𝑇𝑘𝑖−1,𝑗

Δ𝑥 −
𝑢𝑦,𝑖,𝑗+1𝑇𝑘𝑖,𝑗 − 𝑢𝑦,𝑖,𝑗𝑇𝑘𝑖,𝑗−1

Δ𝑦 ) . (A.22)

For 0 < 𝑖 < 𝑛𝑥 − 1 and 𝑗 = 0,

𝑇𝑘+1𝑖,0 = 𝑇𝑘+1𝑖,0 + Δ𝑡𝛼 (
𝑇𝑘𝑖+1,0 − 2𝑇𝑘𝑖,0 + 𝑇𝑘𝑖−1,0

Δ𝑥2 +
𝑇𝑘𝑖,1 − 𝑇𝑘𝑖,0
Δ𝑦2 )

+ Δ𝑡𝑣 (−
𝑢𝑥,𝑖+1,0𝑇𝑘𝑖,0 − 𝑢𝑥,𝑖,0𝑇𝑘𝑖−1,0

Δ𝑥 −
(𝑢𝑦,𝑖,1 − 𝑢𝑦,𝑖,0)𝑇𝑘𝑖,0

Δ𝑦 ) . (A.23)

For 𝑖 = 𝑛𝑥 − 1 and 𝑗 = 0,

𝑇𝑘+1𝑛𝑥−1,0 = 𝑇𝑘𝑛𝑥−1,0 + Δ𝑡𝛼 (
−𝑇𝑘𝑛𝑥−1,0 + 𝑇𝑘𝑛𝑥−2,0

Δ𝑥2 +
𝑇𝑘𝑛𝑥−1,1 − 𝑇𝑘𝑛𝑥−1,0

Δ𝑦2 )

+ Δ𝑡𝑣 (−
𝑢𝑥,𝑛𝑥 ,0𝑇𝑘𝑛𝑥−1,0 − 𝑢𝑥,𝑛𝑥−1,0𝑇𝑘𝑛𝑥−2,0

Δ𝑥 −
(𝑢𝑦,𝑛𝑥−1,1 − 𝑢𝑦,𝑛𝑥−1,0)𝑇𝑘𝑛𝑥−1,0

Δ𝑦 ) .
(A.24)





B
Code

B.1. Numerical model
import numpy as np

import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.animation import PillowWriter
import copy

#from cartesian to x-lexicographic ordering
def lex(i, j, N):

return i+j*N
#analytical solution for p
def p_ana(x, u0, p0):

#return -u0*(np.log(1+np.exp(x))-np.log(2))+p0 #kappa=1+e^(-x)
return -u0*x+p0 #kappa = 1

#discretization
L=20 #m
nx=100
dx=L/nx
H=11.25 #m
ny=75
dy=H/ny
print(dx,dy)

#and other variables
u0 = 0.0000317 #m/s from 1km/1y
lam_w=0.6 #W/mK
rho_w = 10**3 #kg/m^3
c_w = 4.18*10**3 #J/kgK
phi = 0.2
lam_s = 1.1 #W/mK
rho_s = 2.6*10**3 #kg/m^3
c_s = 0.8*10**3 #J/kgK

#coefficients for heat equation
alpha = (lam_w+lam_s)/(c_w*rho_w*phi+c_s*rho_s*(1-phi))
gam = c_w*rho_w/(c_w*rho_w*phi+c_s*rho_s*(1-phi))
print(alpha)
alpha=alpha*1000
print(alpha, gam)

T_high=80
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T_low = 15
dt=10

#define grid
#grid points for scalar quantities
x = [dx/2+i*dx for i in range(nx)] #x_0 to x_(n-1)
y = [dy/2+j*dy for j in range(ny)] #y_0 to y_(n-1)

#crossing points of the grid
bx = [i*dx for i in range(nx+1)] #bx_0 to bx_n
by = [j*dy for j in range(ny+1)] #by_0 to by_n

#define kappa := permeability/viscosity
#define different cases
case = 1 #1:uniform grid, 2:1+e^-x, 3:block with 0.5 and 1 else, 4:block

with 0.5 and 1+e^-x else

def kappa(x,y,case):
if case == 1:

return 10^3
elif case == 2:

return 1+np.exp(-x)
elif case == 3:

if 4<x<8 and 3<y<5:
return 0.5

#elif 10<x<13 and 3<y<5:
# return 0.00000005
else:

return 1
elif case == 4:

if 4<x<8 and 3<y<5:
return 0.5

else:
return 1+np.exp(-x)

else:
print(’Invalid value for case’)

#SOLVE THE PRESSURE FIELD
#define A and f for Ap=f
A=np.zeros((nx*ny, nx*ny))
f=np.zeros((nx*ny,1))
k=0
for i in range(nx):

for j in range(ny):
kap = kappa(x[i],y[j],case)
if j==0: #boundary condition at y=0

kap_N = 1/(0.5/kap+0.5/kappa(x[i],y[j+1],case))
A[k, lex(i,j+1, nx)]-=kap_N/dy**2
A[k, lex(i,j,nx)]+=kap_N/dy**2

elif j==ny-1: #boundary condition at y=H
kap_S = 1/(0.5/kap+0.5/kappa(x[i],y[j-1],case))
A[k, lex(i,j-1,nx)]-=kap_S/dy**2
A[k, lex(i,j,nx)]+=kap_S/dy**2

else:
kap_N = 1/(0.5/kap+0.5/kappa(x[i],y[j+1],case))
kap_S = 1/(0.5/kap+0.5/kappa(x[i],y[j-1],case))
A[k, lex(i,j+1, nx)]-=kap_N/dy**2
A[k, lex(i,j-1,nx)]-=kap_S/dy**2
A[k, lex(i,j,nx)]+=(kap_N+kap_S)/dy**2

if i==0: #boundary condition at x=0
kap_E = 1/(0.5/kap+0.5/kappa(x[i+1],y[j],case))
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A[k, lex(i+1,j,nx)]-=kap_E/dx**2
A[k, lex(i,j,nx)]+=kap_E/dx**2
f[k, 0] = u0/dx
k+=1

elif i==nx-1: #boundary condition at x=L
kap_W = 1/(0.5/kap+0.5/kappa(x[i-1],y[j],case))
A[k, lex(i-1,j,nx)]-=kap_W/dx**2
A[k, lex(i,j,nx)]+=kap_W/dx**2
f[k,0] = -u0/dx
k+=1

else:
kap_E = 1/(0.5/kap+0.5/kappa(x[i+1],y[j],case))
kap_W = 1/(0.5/kap+0.5/kappa(x[i-1],y[j],case))
A[k, lex(i+1,j,nx)]-=kap_E/dx**2
A[k, lex(i-1,j,nx)]-=kap_W/dx**2
A[k, lex(i,j,nx)]+=(kap_W+kap_E)/dx**2
k+=1

#solve for p
p = np.linalg.solve(A,f)
p = np.reshape(p, (ny,nx))
p-=p[ny-1,nx-1] #take reference point

#SOLVE VELOCITY FIELD
u_x = np.zeros((ny, nx+1))
u_y = np.zeros((ny+1, nx))
u_x[:,0] = u0
u_x[:,nx] = u0
u_y[0,:] = 0
u_y[ny,:] = 0
for i in range(1,nx):

u_x[0,i]=-1/(0.5/kappa(x[i-1],y[0],case)+0.5/kappa(x[i],y[0],case))
*(p[0,i]-p[0,i-1])/dx

for j in range(1,ny):
u_y[j,0]=-1/(0.5/kappa(x[0],y[j-1],case)+0.5/kappa(x[0],y[j],case))

*(p[j,0]-p[j-1,0])/dy
u_x[j,i]=-1/(0.5/kappa(x[i-1],y[j],case)+0.5/kappa(x[i],y[j],case))

*(p[j,i]-p[j,i-1])/dx
u_y[j,i]=-1/(0.5/kappa(x[i],y[j-1],case)+0.5/kappa(x[i],y[j],case))

*(p[j,i]-p[j-1,i])/dy
print(np.max(u_x), np.max(u_y))

#check mass conservation per cell
cons = np.zeros((ny,nx))
for i in range(nx):

for j in range(ny):
cons[j,i]=((u_x[j,i]-u_x[j,i+1])*dy+(u_y[j,i]-u_y[j+1,i])*dx)/

((np.abs(u_x[j,i])+np.abs(u_x[j,i+1]))*dy+(np.abs(u_y[j,i])
+np.abs(u_y[j+1,i]))*dx)*100

#figure for mass conservation
plt.matshow(cons)
plt.xlabel(’x’)
plt.ylabel(’y’)
xlab=[i*10 for i in range(nx//10+1)]
ylab=[i*10 for i in range(ny//10+1)]
plt.xticks(xlab, [round(i/nx*L,2) for i in xlab])
plt.yticks(ylab, [round(i/ny*H,2) for i in ylab])
plt.ylim(ny,0)
plt.colorbar()
plt.savefig(’mass cons per cell kap=1+e-x, blok.jpg’, dpi=1000)
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plt.show()

#find average velocities at grid points
mu_x = np.zeros((ny,nx))
mu_y = np.zeros((ny,nx))
for i in range(nx):

for j in range(ny):
mu_x[j,i]=(u_x[j,i]+u_x[j,i+1])/2
mu_y[j,i]=(u_y[j,i]+u_y[j+1,i])/2

mx = nx/L*np.array(x*ny)
my = np.repeat(np.array(y)/H*ny,nx)

#plot pressure field and velocity field with arrows
step=6
plt.matshow(p)
plt.colorbar()
plt.xlabel(’x’)
plt.ylabel(’y’)
xlab=[i*10 for i in range(nx//10+1)]
ylab=[i*10 for i in range(ny//10+1)]
plt.xticks(xlab, [round(i/nx*L,2) for i in xlab])
plt.yticks(ylab, [round(i/ny*H,2) for i in ylab])
plt.ylim(ny,0)
plt.quiver(mx[::step], my[::step], list(np.reshape(mu_x,(1,nx*ny))[0])[::step],

list(-np.reshape(mu_y,(1,nx*ny))[0])[::step], width=0.002)
plt.show()

#SOLVE TEMPERATURE DISTRIBUTION
T_init = np.ones((ny,nx))*T_high
T_init[:,0] = T_low
T = [T_init]
for t in range(int(10000/dt)+1):

T_old = copy.deepcopy(T[-1])
if t%100==0:

print(t)
T_new = copy.deepcopy(T_init)
for j in range(ny):

for i in range(1, nx):
T_new[j,i]=T_old[j,i]
if j==0:

T_new[j,i]+=dt*(alpha/dy**2+gam*u_y[j,i]/dy)*T_old[j,i]
T_new[j,i]+=dt*(alpha/dy**2)*T_old[j+1,i]

elif j==ny-1:
T_new[j,i]+=dt*(alpha/dy**2+gam*u_y[j,i]/dy)*T_old[j-1,i]
T_new[j,i]+=dt*(alpha/dy**2)*T_old[j,i]

else:
T_new[j,i]+=dt*(alpha/dy**2+gam*u_y[j,i]/dy)*T_old[j-1,i]
T_new[j,i]+=dt*(alpha/dy**2)*T_old[j+1,i]

if i==nx-1:
T_new[j,i]+=dt*(alpha/dx**2+gam*u_x[j,i]/dx)*T_old[j,i-1]
T_new[j,i]+=dt*(alpha/dx**2)*T_old[j,i]

else:
T_new[j,i]+=dt*(alpha/dx**2+gam*u_x[j,i]/dx)*T_old[j,i-1]
T_new[j,i]+=dt*(alpha/dx**2)*T_old[j,i+1]

T_new[j,i]+=dt*(-2*alpha/dx**2-2*alpha/dy**2-gam*u_x[j,i+1]/dx
-gam*u_y[j+1,i]/dy)*T_old[j,i]

T.append(T_new)
#print(T_new)

#change of temperature in a single point over time
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Tpunt = [T[i][int(ny/2),int(nx-1)] for i in range(len(T))]
tpunt = [dt*i/3600 for i in range(len(T))]
Tana={}

plt.plot(tpunt,Tpunt)
#plt.ylim((15,80))
plt.xlabel(’$\it{t}$ [h]’)
plt.ylabel(’$\it{T}$ [$^\circ$C]’)
#plt.savefig(’stability dt=104v2.jpg’, dpi=1000)
plt.show()
T=T[::100]

print(dt, alpha, dx, dy, np.max(u_x), np.max(u_y))

#animate the temperature distribution
def update(i):

matrix.set_array(T[i])
return matrix

fig, ax = plt.subplots()
matrix = ax.imshow(T[0])
plt.colorbar(matrix)

ani = animation.FuncAnimation(fig, update, frames = len(T), interval = 100)
writer = PillowWriter(fps=30)
#ani.save(’v4 perm 1+blok a-6 dt 100.gif’, writer=writer)

B.2. Analytical pressure and velocity field
import numpy as np

import matplotlib.pyplot as plt
import copy

#from cartesian to x-lexicographic ordering
def lex(i, j, N):

return i+j*N
def p_ana(x, u0, p0):

#return -u0*(np.log(1+np.exp(x))-np.log(2))+p0
return -u0*x+p0

#discretization
L=20 #m
nx=100
dx=L/nx
H=11.25 #m
ny=75
dy=H/ny
print(dx,dy)
#and other variables
u0 = 0.0000317 #m/s from 1km/1y
rho = 10**3

#define grid
#grid points for scalar quantities
x = [dx/2+i*dx for i in range(nx)] #x_0 to x_(n-1)
y = [dy/2+j*dy for j in range(ny)] #y_0 to y_(n-1)

#crossing points of the grid
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bx = [i*dx for i in range(nx+1)] #bx_0 to bx_n
by = [j*dy for j in range(ny+1)] #by_0 to by_n

#ANALYTICAL SOLUTION
def p0(x,y,N):

u0=0.0000317
L=20
H=11.25
val =0
for i in range(N):

if i==0:
val+=-u0/2/L/H*x**2

else:
val+=(2*H*u0*(-1)**i/i**2/np.pi**2/L)*np.cos(i*np.pi*y/H)

return val
def p1(x,y,N):

u0=0.0000317
L=20
H=11.25
val =0
for i in range(N):

if i==0:
val+=u0/2/L/H*y**2

else:
val+=(-2*L*u0*(-1)**i/i**2/np.pi**2/H)*np.cos(i*np.pi*x/L)

return val

def p0elmnt(x,y,N):
u0=0.0000317
L=20
H=11.25
if N==0:

return -u0/2/L/H*x**2
else:

return(2*H*u0*(-1)**N/N**2/np.pi**2/L)*np.cos(N*np.pi*y/H)

def p1elmnt(x,y,N):
u0=0.0000317
L=20
H=11.25
if N==0:

return u0/2/L/H*y**2
else:

return (-2*L*u0*(-1)**N/N**2/np.pi**2/H)*np.cos(N*np.pi*x/L)

#find the analytical solution for eigenfunction expansion for y and x
py = np.zeros((ny, nx))
px = np.zeros((ny, nx))
for i in range(nx):

for j in range(ny):
py[j,i]=p0(i*dx+dx/2, j*dy+dy/2, 2000)
px[j,i]=p1(i*dx+dx/2, j*dy+dy/2, 2000)

#see if the analytical sum converges

#errorx = []
#errory = []
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#errorxy = []
#Npoints = []
#py = np.zeros((ny, nx))
#px = np.zeros((ny, nx))
#for n in range(250):
# print(n)
# for i in range(nx):
# for j in range(ny):
# py[j,i]+=p0elmnt(i*dx+dx/2, j*dy+dy/2, n)
# px[j,i]+=p1elmnt(i*dx+dx/2, j*dy+dy/2, n)
# py -= py[0,0]-p[0,0]
# px -= px[0,0]-p[0,0]
# Npoints.append(n)
# errorx.append(np.max(np.abs(p-px)))
# errory.append(np.max(np.abs(p-py)))
# errorxy.append(np.max(np.abs(py-px)))
#plt.plot(Npoints, errorx, label = ’diff ana and px’)
#plt.plot(Npoints, errory, label = ’diff ana and py’)
#plt.plot(Npoints, errorxy, label = ’diff px and py’)
#plt.legend()
#plt.show()

#NUMERICAL SOLUTION
#define kappa := permeability/viscosity
#define different cases
case = 1 #1:uniform grid, 2:1+e^-x, 3:block with 0.5 and 1 else, 4:block

with 0.5 and 1+e^-x else

def kappa(x,y,case):
if case == 1:

return 1
elif case == 2:

return 1+np.exp(-x)
elif case == 3:

if 4<x<8 and 3<y<5:
return 0.00000005

#elif 10<x<13 and 3<y<5:
# return 0.00000005
else:

return 1
elif case == 4:

if 4<x<8 and 3<y<5:
return 0.5

else:
return 1+np.exp(-x)

else:
print(’Invalid value for case’)

#define A and f
A=np.zeros((nx*ny, nx*ny))
f=np.zeros((nx*ny,1))
k=0
for i in range(nx):

for j in range(ny):
kap = kappa(x[i],y[j],case)
if j==0: #boundary condition at y=0

kap_N = 1/(0.5/kap+0.5/kappa(x[i],y[j+1],case))
A[k, lex(i,j+1, nx)]-=kap_N/dy**2
A[k, lex(i,j,nx)]+=kap_N/dy**2

elif j==ny-1: #boundary condition at y=H
kap_S = 1/(0.5/kap+0.5/kappa(x[i],y[j-1],case))
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A[k, lex(i,j-1,nx)]-=kap_S/dy**2
A[k, lex(i,j,nx)]+=kap_S/dy**2
f[k,0]+= u0/L/dy

else:
kap_N = 1/(0.5/kap+0.5/kappa(x[i],y[j+1],case))
kap_S = 1/(0.5/kap+0.5/kappa(x[i],y[j-1],case))
A[k, lex(i,j+1, nx)]-=kap_N/dy**2
A[k, lex(i,j-1,nx)]-=kap_S/dy**2
A[k, lex(i,j,nx)]+=(kap_N+kap_S)/dy**2

if i==0: #boundary condition at x=0
kap_E = 1/(0.5/kap+0.5/kappa(x[i+1],y[j],case))
A[k, lex(i+1,j,nx)]-=kap_E/dx**2
A[k, lex(i,j,nx)]+=kap_E/dx**2
k+=1

elif i==nx-1: #boundary condition at x=L
kap_W = 1/(0.5/kap+0.5/kappa(x[i-1],y[j],case))
A[k, lex(i-1,j,nx)]-=kap_W/dx**2
A[k, lex(i,j,nx)]+=kap_W/dx**2
f[k,0] += -u0/dx/H
k+=1

else:
kap_E = 1/(0.5/kap+0.5/kappa(x[i+1],y[j],case))
kap_W = 1/(0.5/kap+0.5/kappa(x[i-1],y[j],case))
A[k, lex(i+1,j,nx)]-=kap_E/dx**2
A[k, lex(i-1,j,nx)]-=kap_W/dx**2
A[k, lex(i,j,nx)]+=(kap_W+kap_E)/dx**2
k+=1

#solve for p
p = np.linalg.solve(A,f)
p = np.reshape(p, (ny,nx))
p-=p[0,0]-py[0,0]

#solve for u
u_x = np.zeros((ny, nx+1))
u_y = np.zeros((ny+1, nx))
u_x[:,0] = 0
u_x[:,nx] = u0/H
u_y[0,:] = 0
u_y[ny,:] = -u0/L
for i in range(1,nx):

u_x[0,i]=-1/(0.5/kappa(x[i-1],y[0],case)+0.5/kappa(x[i],y[0],case))
*(p[0,i]-p[0,i-1])/dx

for j in range(1,ny):
u_y[j,0]=-1/(0.5/kappa(x[0],y[j-1],case)+0.5/kappa(x[0],y[j],case))

*(p[j,0]-p[j-1,0])/dy
u_x[j,i]=-1/(0.5/kappa(x[i-1],y[j],case)+0.5/kappa(x[i],y[j],case))

*(p[j,i]-p[j,i-1])/dx
u_y[j,i]=-1/(0.5/kappa(x[i],y[j-1],case)+0.5/kappa(x[i],y[j],case))

*(p[j,i]-p[j-1,i])/dy

#plot pressure field and velocity field with streamfunction
stream = np.zeros((ny+1, nx+1))
for i in range(nx+1):

for j in range(1, ny+1):
stream[j,i]=stream[j-1,i]+dy*u_x[j-1,i]

plt.matshow(np.flip(p/np.abs(p[0,0]),0), vmin=minmin, vmax=maxmax)
plt.colorbar()
plt.contour(np.array(bx)/L*nx, np.array(by)/H*ny, np.flip(stream,0),

colors=’black’)
plt.xlabel(’$\it{x}$ [m]’)
plt.ylabel(’$\it{y}$ [m]’)
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plt.xticks([i-1/2 for i in xlab], [round(i/nx*L,2) for i in xlab])
plt.yticks([i-1/2 for i in ylab], [round((i-ny%10)/ny*H,2) for i in ylab[::-1]])
plt.tick_params(axis=”x”, top=False, bottom=True, labelbottom=True,

labeltop=False)
plt.xlim(-1/2,nx-1/2)
plt.ylim(ny-1/2,-3/4)

plt.savefig(’num 2d stream.jpg’, dpi=1000)
plt.show()

#CHECK DIFFERENCE ANALYTICAL AND NUMERICAL
diff = np.zeros((ny,nx))
diffxy = np.zeros((ny,nx))
diffx = np.zeros((ny,nx))
for i in range(nx):

for j in range(ny):
diff[j,i]=(p[j,i]-py[j,i])/np.max(p)*100
if diff[j,i]<-10:

print(i,j,p[j,i], py[j,i])
diffxy[j,i]=(py[j,i]-px[j,i])/np.max(py)*100 #difference between the two

eigenfunction expansions
diffx[j,i]=(p[j,i]-px[j,i])/np.max(px)*100 #difference between numerical

and analytical

#set the same range for the colorbars
minmin = min(np.min(p/np.abs(p[0,0])),np.min(py/np.abs(py[0,0])),

np.min(px/np.abs(px[0,0])))
maxmax = max(np.max(p/np.abs(p[0,0])),np.max(py/np.abs(py[0,0])),

np.max(px/np.abs(px[0,0])))

xlab=[i*10 for i in range(nx//10+1)]
ylab=[i*10+ny%10 for i in range(ny//10+1)]

#plot numerical solution with velocity arrows
step=6
plt.matshow(np.flip(p/np.abs(p[0,0]),0))
plt.colorbar()
plt.xlabel(’x’)
plt.ylabel(’y’)
plt.xlabel(’$\it{x}$ [m]’)
plt.ylabel(’$\it{y}$ [m]’)
plt.xticks([i-1/2 for i in xlab], [round(i/nx*L,2) for i in xlab])
plt.yticks([i-1/2 for i in ylab], [round((i-ny%10)/ny*H,2) for i in ylab[::-1]])
plt.tick_params(axis=”x”, top=False, bottom=True, labelbottom=True,

labeltop=False)
plt.xlim(-1/2,nx-1/2)
plt.ylim(ny-1/2,-3/4)
plt.quiver(mx[::step], my[::step][::-1],

list(np.reshape(mu_x,(1,nx*ny))[0])[::step],
list(np.reshape(mu_y,(1,nx*ny))[0])[::step], linewidths=3, width=0.003)

plt.savefig(’num 2d velocity.jpg’, dpi=1000)
plt.show()

#plot difference numerical and analytical
plt.matshow(np.flip(diff,0))
plt.xlabel(’$\it{x}$ [m]’)
plt.ylabel(’$\it{y}$ [m]’)
plt.xticks([i-1/2 for i in xlab], [round(i/nx*L,2) for i in xlab])
plt.yticks([i-1/2 for i in ylab], [round((i-ny%10)/ny*H,2) for i in ylab[::-1]])
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plt.tick_params(axis=”x”, top=False, bottom=True, labelbottom=True,
labeltop=False)

plt.xlim(-1/2,nx-1/2)
plt.ylim(ny-1/2,-3/4)
cb = plt.colorbar()
cb.set_label(’%’, rotation = ’horizontal’)
plt.savefig(’ana 2d flip numvspyv4.jpg’, dpi=1000)
plt.show()

#plot difference analytical eigenfunction expansions
plt.matshow(np.flip(diffx,0))
plt.xlabel(’$\it{x}$ [m]’)
plt.ylabel(’$\it{y}$ [m]’)
plt.xticks([i-1/2 for i in xlab], [round(i/nx*L,2) for i in xlab])
plt.yticks([i-1/2 for i in ylab], [round((i-ny%10)/ny*H,2) for i in ylab[::-1]])
plt.tick_params(axis=”x”, top=False, bottom=True, labelbottom=True,

labeltop=False)
plt.xlim(-1/2,nx-1/2)
plt.ylim(ny-1/2,-3/4)
cb = plt.colorbar()
cb.set_label(’%’, rotation = ’horizontal’)
plt.savefig(’ana 2d flip numvspxv4.jpg’, dpi=1000)
plt.show()

B.3. Analytical temperature distribution
import numpy as np

import matplotlib.pyplot as plt
from scipy.optimize import bisect

#and other variables
u0 = 0.0000317 #m/s from 1km/1y
lam_w=0.6 #W/mK
rho_w = 10**3 #kg/m^3
c_w = 4.18*10**3 #J/kgK
phi = 0.2
lam_s = 1.1 #W/mK
rho_s = 2.6*10**3 #kg/m^3
c_s = 0.8*10**3 #J/kgK

#coefficients for heat equation
alpha0 = (lam_w+lam_s)/(c_w*rho_w*phi+c_s*rho_s*(1-phi))
nu = c_w*rho_w/(c_w*rho_w*phi+c_s*rho_s*(1-phi))

gam2 = alpha0*10**3
beta = nu*u0
#beta = 0
dT = 80-15
L=20

nx=100
dx=L/nx
N=100
per = 0.0000001*np.pi/L #pertubation from asymptotes tangens

def trans(gam2, beta, l): #equation for eigenvalues
return np.tan(np.sqrt(l)*L)+2*gam2*np.sqrt(l)/beta
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def initial_smooth(x, L): #a smooth initial function
return -(x-L)**2+L**2

def initial(x,L,dx, dT): #initial function
if x<2*dx/3:

return 0
else:

return dT
def orthogonal(a,b,L): #check orthogonality

return
b/(a**2-b**2)*np.sin(a*L)*np.cos(b*L)-a/(a**2-b**2)*np.cos(a*L)*np.sin(b*L)

f = lambda l: trans(gam2, beta, l)

if beta>0: #find eigv via function trans
eigv = []
for i in range(1, N+1):

eigv.append(bisect(f, ((i-1/2)*np.pi/L)**2+per, ((i+1/2)*np.pi/L)**2-per))
else: #we know the eigenvalues

eigv = [((i-1/2)*np.pi/L)**2 for i in range(1, N+2)]

xgrid = [dx/2+i*dx for i in range(nx)]
print(eigv[:10])

#check for orthogonality
print(L/2-1/4/eigv[0]*np.sin(2*eigv[0]*L))
for b in eigv[1:10]:

print(round(b,3))
print(round(orthogonal(eigv[0], b, L),3))

#print the initial function
plt.plot(xgrid, [initial(x, L, dx, dT) for x in xgrid])
plt.show()

#set up matrix equation to find coefficients c_n
A = np.zeros((nx,N))
b = np.zeros((nx,1))
for i in range(nx):

b[i,0]=initial_smooth(xgrid[i], L) #initial function is smooth
v(x,0)=-(x-L)**2-L

b[i,0]=initial(xgrid[i], L, dx, dT)
for j in range(N):

A[i,j]=np.sin(np.sqrt(eigv[j])*xgrid[i])*np.exp(beta*xgrid[i]/2/gam2)
c = np.linalg.solve(A,b)

#term in summation
def Telement(x,t,n, gam2, beta, L, dT, eigv_n, c):

return np.exp(-beta**2*t/4/gam2-eigv_n*gam2*t)*np.sin(np.sqrt(eigv_n)*x)
*np.exp(beta*x/2/gam2)*c[n-1]

Tana={} #store the cumulative summation
Tanas=[] #store the elements of the summation separately
plt.figure()
for t in [0, 2000, 10000]:

Tana[t]=[]
for n in range(1, len(eigv)):

Tana[t].append([])
Tanas.append([])
i=0
for x in xgrid:

Tanas[n-1].append(Telement(x,t,n, gam2, beta, L, dT, eigv[n-1], c))
if n==1:
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Tana[t][0].append(float(Telement(x,t,n, gam2, beta, L, dT, eigv[n-1],
c)))

else:
Tana[t][n-1].append(float(Telement(x,t,n, gam2, beta, L, dT,

eigv[n-1], c))+Tana[t][n-2][i])
i+=1

print(Tana[t][n-1])
plt.plot(xgrid, np.array(Tana[t][n-1])+15, label=’t=’+str(round(t/3600,

3))+’h’)
plt.xlabel(’$\it{x}$ [m]’)
plt.ylabel(’$\it{T}$ [$^\circ$C]’)
plt.legend()
plt.savefig(’ana heat eqv1.jpg’, dpi=1000)
plt.show()

#see if the summation converges for a given x (here x=L)
plt.plot([i for i in range(len(Tana))], [i[int(nx-1)] for i in Tana], label=’som’)
plt.plot([i for i in range(len(Tana))], [i[int(nx-1)] for i in Tanas],

label=’losse termen’)
plt.legend()
#plt.plot([i for i in range(len(Tana))], [np.max(np.abs(Tmasksom))],

label=’makkelijke som’)
plt.show()
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