

Delft University of Technology

Lessons learned from developing green software

Cruz, Luís; Heck, Petra

DOI
10.3920/9789004730779_012
Publication date
2025
Document Version
Final published version
Published in
Moral Design and Green Technology

Citation (APA)
Cruz, L., & Heck, P. (2025). Lessons learned from developing green software. In Moral Design and Green
Technology (pp. 168-185). Brill. https://doi.org/10.3920/9789004730779_012

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3920/9789004730779_012
https://doi.org/10.3920/9789004730779_012

© Luís Cruz and Petra Heck, 2025 | doi:10.3920/9789004730779_012
This is an open access chapter distributed under the terms of the CC BY-NC-ND 4.0 license.

Chapter 11

Lessons learned from developing green software

Luís Cruz and Petra Heck

Abstract

Technology brings exciting opportunities to improve our interactions with the natural sur-
roundings. However, that same technological development might also negatively impact
the environment. Every new technology has a carbon footprint, whether from its construc-
tion or operation. And most technological developments require software systems, and
more recently AI-based software systems. For these software systems to positively impact
our environment, they need to be developed and operated with sustainability in mind, also
called ‘green’ in the discipline of software engineering.

This chapter explores various dimensions of sustainability in software system develop-
ment, drawing on existing software quality frameworks. We highlight green software best
practices for development and knowledge transfer. We examine AI-based software systems,
emphasising the importance of energy efficiency and carbon impact in the next genera-
tion of intelligent systems. This entails considering decisions at different stages of the AI
lifecycle, ranging from underlying design choices in training pipelines to selecting optimal
hardware for training and serving models.

This chapter presents the intersection of green software, sustainable software engineer-
ing, and green AI as of major importance for future innovation. By prioritising sustainability
in software development and AI, we can foster a more sustainable and eco-friendly future,
with the potential to reduce energy consumption and mitigate the environmental impact
of technology.

11.1	 Innovation and environmental responsibility

In an era defined by technological marvels, our world stands at a crossroads where
innovation and environmental responsibility converge. Software technology prom-
ises to transform how we interact with the natural world, offering the prospect of
a sustainable future. For example, it is used to track climate patterns, biodiversity,
water and air quality; it is also used in waste management systems to optimise
waste collection routes, manage landfill operations, and so on. Yet, software takes
its own toll in terms of impact in the environment. For example, running software
worldwide requires massive amounts of electricity. It is estimated that, by 2030, it
will be responsible for 13% of electricity consumption globally (EU, 2022). Hence,

169Lessons learned from developing green software

we are faced with a formidable challenge: how can we harness the power of soft-
ware without leaving a devastating ecological footprint in our wake?

To bend the curve of biodiversity loss, our attitude towards nature has to change
fundamentally. This behavioural change can for instance be triggered by engaging
smartphone apps that can recognise flora and fauna at species level. This helps raise
awareness and create knowledge of our natural environment.

Case 11.1

AI-enabled mobile application

Consider, a mobile application that is designed to store and analyse pictures
of flora and fauna. It leverages an artificial intelligence (AI) model to identify
species automatically and catalogue your pictures according to contemporary
taxonomic tables. It includes both local storage, in the phone, and online stor-
age, in a cloud server, so that you do not lose your records even if something
happens to your phone.

One key feature of this app is uploading the pictures to a server in the cloud.
There are several ways of implementing this feature. For example, one way
could be that, as soon as a picture is taken, the app takes care of immediately
uploading it. This way, the pictures are immediately backed up as soon as they
are taken. Most users would appreciate having their pictures safely secured as
soon as they are taken.

Imagine, however, that many of the app users enjoy going for a hike in the
woods, where there is poor internet connectivity. While enjoying the hike,
users also enjoy taking pictures of the interesting things they see along the
way: fauna, flora, landscape, etc. However, that implies that the phone makes
a new data connection with the server every time a picture is taken. With poor
connectivity, it would probably mean that the phone would take such a long
time to upload each picture that it would not be fast enough for all the pic-
tures that the user is taking. To make things worse, the phone’s battery level is
getting low, but the app is eagerly trying to get the pictures uploaded and will
not stop until the phone dies.

The scenario in Case 11.1 motivates developers to find strategies to make sure their
software is designed in the most energy efficient way. It challenges them to include
strategies to test and monitor the energy efficiency of their code. On top of that,
smartphones are now running AI features locally, without an internet connection.
This means that we save energy by not using an internet connection, but we drain
our battery to run these powerful AI models. The proliferation of large language
models in 2021 takes this challenge to another level, yielding ever-growing models
with billions of parameters. As we delve deeper into this chapter, we show that a

170 Cruz and Heck

single training iteration of these AI models leads to a massive carbon footprint. This
motivates a need for new standards and practices that make energy efficiency a de
facto requirement for modern software.

In this chapter, we cover the various dimensions of sustainable software and AI
engineering, providing insights into how these pressing issues are being tackled.
We start by defining the concepts around software sustainability. Then we analyse
the well-established software quality standard ISO 25000 and look at how it relates
to the practical realms of developing green software and green AI. Along the way,
we unveil best practices that not only guarantee the energy efficiency but also the
collection of reliable energy measurements from software.

11.2	 Sustainable software engineering

Although sustainability is a widely used term, the definition of sustainable software
engineering is not always clear. Within this chapter, we define it as ‘the discipline
that studies the process of creating software systems that create value in the long
term without hindering its surroundings’. Despite being short, this definition gives
us a starting point from which to identify software systems that are not sustainable.
For example, if a software system is carbon efficient and eco-friendly but does not
create value, it is not sustainable. Moreover, if a software system is eco-friendly but
was designed in a way that makes it difficult to maintain (e.g. fixing security vulner-
abilities), it is also not sustainable. The examples are numerous.

Software sustainability can be divided into five major dimensions (Becker et al.,
2015), as illustrated in Figure 11.1: environmental, social, individual, technical, and
economical. We explain these five perspectives of software sustainability below.

Environmental sustainability relates to the long-term effects of software on nat-
ural systems. This dimension includes ecosystems, raw resources, climate change,
water, pollution, waste, etc. This can be attributed for example to the power con-
sumption of the infrastructure used to run the software (e.g., electricity used by data
centres), the water consumption used to cool down supercomputers, the disposal
of IT hardware to acquire new state-of-the-art replacements, and so on. The branch
of software engineering that studies this dimension is known as green software.

Social sustainability is concerned with societal communities (groups of people,
organisations) and the factors that erode trust in society. This dimension includes
social equity, justice, employment, democracy, public health, public well-being,
and so on. There is no doubt that software systems have a tremendous impact in our
society and on individual people nowadays. This impact is often positive, but it can
also have some negative consequences. A recurrent example of lack of social sus-
tainability lies in many modern social media platforms, where we have witnessed
the exploitation of their feed algorithms to disseminate fake news and mislead pub-
lic opinion.

sustainable
software
engineering

environmental
sustainability

social
sustainability

171Lessons learned from developing green software

Individual sustainability refers to the well-being of the people involved in the
development of the software. This includes mental and physical well-being, edu-
cation, self-respect, skills, mobility, and so on. Several factors such as work-life bal-
ance, social environment, job autonomy, and physical health affect the well‐being
of tech professionals. Most of the work in this dimension aims at making sure that
all the collaborators in a software team have a motivating, safe, and healthy work-
ing environment that fosters their contributions to the software project. Examples
include promoting diversity within teams, sponsoring gym membership, defining
clear career paths, organising team building activities, and so on.

Technical sustainability refers to the longevity of information, systems, and
infrastructure and their adequate evolution with changing surrounding conditions.
It includes concerns such as maintenance, innovation, data integrity, etc. This is a
dimension that has been widely addressed within software engineering commu-
nities. The lack of technical sustainability means, for example, that a system is not
scalable and thus does not follow the growth of customers. It can also mean that
whenever a new feature needs to be implemented, it is very complicated to do it in
a way that will not break other features.

Economic sustainability focuses on assets, capital and added value. It includes
wealth creation, prosperity, profitability, capital investment, income, and so on.

individual
sustainability

technical
sustainability

economic
sustainability

Figure 11.1	 The five dimensions of sustainable software engineering

Economical

Sustainable
Software

Engineering

EnvironmentalTechnical

Individual Social

172 Cruz and Heck

This is an essential dimension for any organisation. The operation of a software
system must not lead its investors into bankruptcy. Even when we talk about toy
software systems, if their contributors cannot support the costs of having a system
available to its users, it will soon have to be decommissioned.

11.2.1	 Green software
All these dimensions are important and interact with each other. For example, envi-
ronmental sustainability is important for social sustainability and should not harm
the economic sustainability of a project. However, some of these five dimensions
have become more important throughout the history of software engineering. It
is not difficult to convince a software organisation that they need to worry about
the technical and economic sustainability of their software. For example, tech
organisations take great pains to ensure that their business model is economically
sustainable. Start-ups go through different rounds of funding where economical
sustainability is the main concern. For example, if a fintech company decides to
become more environmentally sustainable and moves all its software systems to
data centres that run on clean energy, these data centres will probably be more
expensive. Hence, the company will have to come up with a business model that
is able to accommodate these extra costs, perhaps by charging their customers
slightly higher fees. If customers do not deem these extra costs to be reasonable,
this company might face serious economic issues – or simply shut down the idea
at the first opportunity. Technical sustainability is also quite popular and is second
only to economic sustainability. In the early versions of a software product, proto-
types and proof-of-concepts are the main artefact being used to assess whether the
product might be (economically) sustainable. Right after this stage, stakeholders
start thinking about technical sustainability. In other words, software sustainability
is a systemic concept and one dimension cannot be studied without considering
the others.

With that in mind, a new discipline is emerging in software engineering:
green software. Green software covers activities across the whole software devel-
opment lifecycle: planning, analysis, design, implementation, and maintenance.
This includes, for example, making sure that the software is energy efficient,
i.e. that it uses the least power – which is easier said than done (Cruz, 2021). With
the emergence of this field, any software organisation or developer that wants to
deliver high-quality software cannot succeed without considering Green Software
practices.

11.2.2	 A quality perspective on green software
There have long been standards (since 1991!) that define what high quality means.
ISO 9126 and its successor ISO 25000 (Systems and software Quality Requirements
and Evaluation: SQuaRE) define quality characteristics for software systems,

green software

ISO 25000

173Lessons learned from developing green software

including a measurement model with metrics. But it is only much more recently
that the debate about green software has begun. So, one might think that green is
a new quality characteristic that needs to be added to the ISO 25000 standards.
However, as seen in Figure 11.2, which shows the quality characteristics for the
inherent product quality and the emerging product quality (quality in use), ISO
25000 already includes the quality characteristics that define green software under
the category ‘Performance Efficiency’. In fact, ISO 25000 goes one step further and
explicitly states under the category ‘Freedom from risk’ that the software system
shall also mitigate any other environmental risk than just consuming unnecessary
energy or storage.

So, in the light of ISO 25000, green software can be translated to software that
scores high on the following two quality characteristics:
1.	 Performance efficiency: ‘performance relative to the amount of resources

used under stated conditions’.
a.	 time behaviour: ‘degree to which the response and processing times and

throughput rates of a product or system, when performing its functions,
meet requirements’.

b.	 resource utilisation: ‘degree to which the amounts and types of resources
used by a product or system, when performing its functions, meet
requirements’.

c.	 capacity: ‘degree to which the maximum limits of a product or system
parameter meet requirements (note: parameters can include the num-
ber of items that can be stored, the number of concurrent users, the

performance
efficiency

Figure 11.2	 ISO 25000 quality model

Functional
Suitability
• Functional
 Completeness
• Functional
 Correctness
• Functional
 Appropriateness

Usability

• Appropriateness
• Recognizability
• Learnability
• Operability
• User Error
 Protection
• User Interface
 Aesthetics
• Accessibility

Effectiveness

• Effectiveness

Efficiency

• Efficiency

Satisfaction

• Usefulness
• Trust
• Pleasure
• Comfort

Freedom
from risk
• Economic risk
 mitigation
• Health and
 safety risk
 mitigation
• Environmental
 risk mitigation

Context
coverage
• Context
 Completeness
• Flexibility

Compatibility

• Co-existence
• Interoperability

Performance
Efficiency
• Time Behaviour
• Resource
 Utilization
• Capacity

Reliability

• Maturity
• Availability
• Fault Tolerance
• Recoverability

Security

• Confidentiality
• Integrity
• Non-repudiation
• Authenticity
• Accountability

Maintainability

• Modularity
• Reusability
• Analysability
• Modifiability
• Testability

ISO 25000 Software Product Quality Model

ISO 25000 Quality in Use Model

174 Cruz and Heck

communication bandwidth, throughput of transactions, and size of
database)’.

2.	 Environmental risk mitigation: ‘degree to which a product or system mitigates
the potential risk to property or the environment in the intended contexts
of use’.

One could argue that when developing performance-efficient software, environ-
mental risk is also mitigated, but of course more needs to be done to fully miti-
gate any harm to the environment. In the remainder of this chapter, we will focus
on the first characteristic, related to the energy consumption of software, because
this is what green software has been mostly focusing on. Energy consumption is
seen as the biggest environmental risk for software development, especially with
the advent of AI-based software systems that require huge amounts of data storage
and computing power.

11.3	 Measuring energy consumption

There is no perfect way to measure energy consumption. It mostly boils down to
a trade-off between simplicity and accuracy. In other words, the easiest approach
tends to be less accurate, and the most accurate approach tends to be difficult to
set up.

Let us start with the easiest approach. To estimate energy consumption, one can
simply measure the time a software takes to execute a given task. If task A takes
more time to run than task B, one can assume that A takes more energy than B. This
assumption works well under well-defined conditions where we have observed this
to be the case. For example, if we are comparing single-threaded Central Processing
Unit (CPU) intensive algorithms, the algorithm that takes more time will be asking
the CPU to execute more work. The more work from the CPU, the more energy
is spent.

This assumption is challenged when the software uses a large set of resources
with dynamic configurations that we cannot entirely predict beforehand: for exam-
ple, a mobile application can use different sensors (GPS, accelerometer, camera,
touch, etc.), different CPU modes (low-power or high-power units), different actu-
ators (screen with different brightness colours, speakers, haptics, etc.). Modelling
these different interactions is far from straightforward. Moreover, it is very unlikely
that these interactions are identical across two different executions of the same
task or use case.

As an alternative, the most accurate solution is to collect exact power measure-
ments during the execution of the software – i.e. using a hardware-based approach.
Using power monitoring tools, such as the Monsoon Power Monitor presented in
Figure 11.3, it is possible to collect power data from the different hardware compo-
nents and log power measurements per instant of time.

environmental
risk mitigation

175Lessons learned from developing green software

Unfortunately, this is far from easy. The figure above shows the power monitor
connected to a smartphone. This setup required disassembling a smartphone and
extracting its battery. That is suboptimal: mobile developers cannot be expected to
recreate such a setup for the sake of improving energy efficiency.

An alternative is the use of software-based estimators of energy consumption.
These estimators rely on indicators of the usage of different hardware resources
(memory, CPU, and so on) to compute a value of the power consumption of a given
software. A popular example is Intel® RAPL, which has been widely used in this
area by researchers and tool developers. Depending on the scenario, these different
alternatives need to be considered.

There are of course more challenges that need to be addressed before being
able to measure software energy consumption. Software seldom runs in isola-
tion: there is an operative system, other software applications, background pro-
cesses, etc. that are running in parallel and contribute to the measured energy
consumption.

To add to that, there are a multitude of other factors that also contribute to
energy consumption: the power state of the different components (e.g., is the GPS
already running or does it still need to be powered up?), their temperature, the
temperature of the surroundings, and so on.

Figure 11.3	 Energy monitoring setup for mobile app development

176 Cruz and Heck

This means that if we measure the same software task twice, it is very unlikely
that we will measure the same energy consumption.

There are several steps that need to be followed to collect reliable energy data.
Below we have an extensive but not complete list of actions that should be taken
before collecting energy data:

	– The first thing we need to ensure is that the only thing running in our system is
the software we want to measure. Unfortunately, this is impossible in practice –
our system will always have other tasks and things that it will run at the same
time. Still, we must at least minimise all these competing tasks: all applications
should be closed, and notifications should be turned off; only the required hard-
ware should be connected (avoid USB drives, external disks, external displays,
etc.); remove any unnecessary services running in the background (e.g., web
server, file sharing, etc.); if you do not need an internet or intranet connection,
switch off your network; cable is preferable to wireless – the energy consump-
tion from a cable connection is more stable than from a wireless connection.

	– It is not possible to shut off the unnecessary things that run in our system. Still,
we need to at least make sure that they will behave the same across all sets of
measurements. Thus, we must fix and report some configuration settings. One
good example is the brightness and resolution of your screen – report the exact
value and make sure it stays the same throughout the measurement. A common
mistake is to keep the automatic brightness adjustment on – this leads to major
errors when measuring energy efficiency in mobile apps.

	– Run dummy tasks a few times before keeping track of the measurements. Energy
consumption is greatly affected by the temperature of your hardware. The higher
the temperature, the higher the resistance of electrical conductors, leading to
higher dissipation and consequently more energy consumption. If we start
measurements right after the workstation comes back from sleep mode, it will
probably be relatively cool. As soon as we start executing our energy tests, the
temperature of the computer will rise until it reaches a plateau. This means that
the first measurements will show less energy consumption precisely because
they were the first. Typically, it is recommended to run a dummy task before
starting to measure energy consumption. It can take as long as five minutes,
depending on the scenario, and can be done by executing a CPU-intensive task,
such as the Fibonacci sequence.

	– Despite all efforts, subsequent energy measurements will lead to different results.
It is therefore common practice to repeat executions and average the results.
Depending on the scenario, the number of repetitions could go up to 30. This is
the typical magic number in scientific studies because it enables statistical anal-
yses. There is no golden rule: the best method is to adjust this number along the
way based on the variability of the results.

	– Give the device a one-minute sleep between measurements. If we repeat the
same experiment 30 times with no rest in between, our CPU will probably be

zen mode

freeze
your
settings

warm up

repeat

rest

177Lessons learned from developing green software

warmer in the last experiment than in the first. It is important to make sure that
all measurements are executed under the same conditions. Hence, it is common
practice to ensure a pause/break of a few seconds or minutes between repeti-
tions. It can be more or less dependent on your hardware or the duration of your
energy test.

	– In some cases, we collect energy data to compare two versions of the software
when performing the same use case. If we execute version A 30 times and version
B another 30 times, there is a chance that between the first and the second half
of measurements, the factors affecting the energy consumption have changed.
Hence, the energy consumption of the two versions will also be different because
the context has changed. To mitigate this issue, it is important to mix the execu-
tions of the different versions.

	– It is well established that temperature affects energy consumption. We should
not let differences in temperature affect our measurements. For example, it can
happen that we measure the software over different periods of the day. This
means that some measurements could happen during the night, with lower tem-
peratures, or during the day, with higher temperatures. This bias has to be avoided
at all costs to avoid misleading observations. This is done by controlling room
temperature and collecting temperature data alongside energy data. With tem-
perature data, one can discard energy measurements that might be misleading.

	– Although this sounds obvious, it tends to be challenging. If we manually run
the software and test its features, we are introducing a new variable that may
affect energy consumption. One cannot be sure that the interactions are exactly
the same.

All these practices help improve the reliability of energy data collected. However,
for practical reasons, they need to be taken with a grain of salt. There might be
scenarios where overlooking some of these practices will not lead to significantly
different results. As always, perfect is the enemy of good. Measuring something,
even with flaws, is better than not measuring anything at all.

11.4	 Best practices for green software development

Above, we discussed the difficulties inherent in measuring the energy consump-
tion of a software application. It requires a great deal of effort and time to assess
whether a given use case is energy efficient. In practice, developers may not be able
to afford to follow such a meticulous process to collect energy. Hence, other alter-
natives ought to be considered.

This is where best practices or guidelines can play a major role. In other words,
you do not need to measure every single line of code to have a certain degree of
confidence that the code is energy efficient. As long as it follows energy efficiency

shuffle

keep it
cool

automate
executions

178 Cruz and Heck

guidelines, energy measurements can be reserved for cases where it is deemed
necessary.

Guidelines can provide advice at several levels of the software development
process: at the code level – with code patterns, testing; at the server level – with
regard to the deployment strategy, servers used, hardware; at the project manage-
ment level – with practices ensuring skill diversity, knowledge transfer, refactor-
ing iterations; and so on. In this section, we delve into existing design patterns for
energy efficiency, we look at how the choice of programming language can affect
the energy efficiency of a software system, and we showcase how the energy con-
sumption of software can be addressed in the cloud.

11.4.1	 Green software design patterns
It is not always necessary to measure the energy consumption of an application to
understand that it will probably have issues in this area. If software developers are
aware of design patterns for energy efficiency, they can already anticipate these
scenarios. The good thing about energy issues is that they tend to be recurrent and
will probably apply to different applications.

Design patterns for energy efficiency are typically known as energy patterns.
They provide developers with advice on the best way to design their software code
so that it runs with the minimum energy consumption. They are typically defined
by (at least) three components: context, explaining where the pattern can be used;
solution, explaining what can be done to improve energy efficiency in that con-
text; and examples, with a few instances of software code where the pattern was
applied. This proved to be useful when designing mobile applications (Cruz and
Abreu, 2019).

Despite energy patterns being a useful resource for developers that want to
build energy efficient tools, they can also be a wonderful tool for knowledge trans-
fer. Imagine, for example, that in a software organisation with several teams, there
is only one developer that is an expert in green software. This developer cannot
be involved in too many projects at the same time, so most projects will not have
anyone with expertise to improve the energy efficiency of their code. However, the
developer is keeping a log tracking the main energy efficiency improvements that
they have been making in their apps. At the end of the week, the developer docu-
ments these improvements and adds them to a catalogue of energy patterns that
is accessible by other developers from other teams. These developers will then be
able to learn from the expertise of the green software developer. Assuming that
there is enough freedom for developers to explore this catalogue and apply some of
the patterns in their own code, eventually the software organisation will have more
developers with knowledge on energy-efficient coding practices at a very reason-
able cost. In other words, education is an important aspect of green software and
there are many easy ways to facilitate this.

energy patterns

179Lessons learned from developing green software

11.4.2	 Green programming languages
Green software is all about choices and trade-offs. When choosing the program-
ming language for their next project, software developers have to consider a num-
ber of factors: experience of the team, code readability, the language community
and ecosystem, existing libraries, and so on. To add to that, a group of researchers
have recently studied the energy consumption of different programming languages
(Pereira, 2021). As it turns out, the choice of language can have a massive impact on
the energy consumption of the software.

The group of researchers took the existing benchmark for programming lan-
guages, called ‘The Computer Language Benchmarks Game’, and collected energy
consumption metrics. The benchmark is used by experts from all over the world to
rank programming languages according to their time and memory efficiency. The
same tasks are solved across different programming languages and then results are
compared.

When analysing the energy consumption data, the results were astonishing:
popular programming languages such as Python were observed to be 76 times less
energy efficient than top performing languages such as C. This is particularly inter-
esting as Python is becoming more and more popular given its ease of use and avail-
able libraries for AI-based software development.

It is important to note that, in the case of using Python for AI development,
most of it relies on third-party libraries that are often developed in C. This means
that although we are coding in Python, our final software is probably using other
programming languages under the hood and the overall energy efficiency is
much better than one would expect. Nevertheless, it is important to be aware of
these details – energy efficiency is not a given and our choices can make a big
difference.

11.4.3	 Carbon-aware data centres
Data centres continuously run a large number of complex everyday software tasks –
for example, the so-called ‘cloud’ is nothing more than several large-scale software
systems running in data centres. Naturally, it cannot be done without a massive
ecological footprint from powering and cooling down all the servers running in the
data centre. To reduce carbon emissions, many data centres are opting for renew-
able energy. However, renewable energy is not always available. Depending on
demand and the availability of clean energy in the grid at a particular time, data
centres may have to resort to less clean power sources. This is more severe during
peak hours, when there is high demand and servers have to run at full capacity,
requiring more energy to power the data centre.

Some of the tasks running during peak hours are urgent and need to be imme-
diately executed. For example, when a bank system is processing a payment from a
grocery store. Any small delay leads to poor customer experience. However, there
are other tasks that do not really need to be executed at a precise second or minute.

180 Cruz and Heck

For example, many AI training tasks take several hours to execute. In those cases, it
might be okay to wait a couple hours before performing the task.

Software tasks that have flexibility in their execution time offer an excellent
opportunity to reduce carbon emissions. For example, if the carbon intensity from
the power grid is high – i.e. there is not enough clean energy in the grid – we can
simply wait until there is enough clean energy before we execute that task.

This simple idea makes it easier to make sure a data centre runs mostly on clean
energy. It has been tested in a few contexts. However, it still poses a few challenges:
estimating the carbon intensity of the grid for the next few hours, predicting how
complex a given task is, predicting how much time it takes to finish, and defining
how much time it can be delayed. Making incorrect estimates of these numbers
can lead to suboptimal results. For example, if we predict that the sun will be bright
later in the day – meaning that solar panels will produce clean energy – and then
it turns out to be cloudy, delaying tasks could be emitting more carbon than we
anticipated. Nevertheless, preliminary results show great potential in this strategy.

With simple ideas like this, the carbon footprint of software systems running in
data centres can be massively improved. However, the carbon footprint of software
is always being challenged with new cutting-edge technologies that always require
more energy and resources. One example is the new hype for AI technologies,
which require a massive amount of data and computational resources.

11.5	 Green AI

The advent of artificial intelligence (AI) is making the new generation of software
intelligent. Software systems feature components that perform tasks that until now
have only been accomplished by humans. It takes software use cases to another
level, e.g. by enabling them to generate text, images, and recognise objects, faces,
etc. It can even perform certain tasks better than humans – for example, AI models
are widely used to detect fraudulent online transactions.

Machine learning (ML), the most popular form of AI, consists of feeding large
amounts of data into a computational pipeline that will process it and extract pat-
terns in order to generate a model – a task known as training. This model can then
be used to take inputs from users and return meaningful answers – a task typically
known as inference. Of course, these models are mostly useful when integrated
with software. For example, the model itself does not provide a graphical user inter-
face that allows users to interact with it. So, in general, AI models are being used
without users even being aware of it. Behind every bank transaction, social media
post, etc. there are multiple models running in the background.

Despite the numerous benefits of adding AI models to software systems, there
is an inherent cost that needs to be addressed: energy consumption. These mod-
els require a great deal of energy to be developed and executed. For example, the

machine
learning

181Lessons learned from developing green software

popular large language model ChatGPT consumed 550 tonnes of CO₂-eq to be
trained (Patterson et al., 2021). This is equivalent to driving 1000 cars for 1000 kms.
To make matters worse, this is only related to a single training of the model – the
cost of experimenting and tuning the training strategy took several iterations before
converging to the final one. If we factor in the cost of running the model – i.e. inter-
acting with the chat – this number will probably be astronomical. According to the
latest numbers, the cost of running ChatGPT for a year is equivalent to 25 times the
cost of training it (Chien et al., 2023). When we think that AI is being considered a
competitive technology for every business, it is not too big a leap to imagine these
numbers quickly escalating.

This means that modern AI, despite being a powerful technology to combat cli-
mate change, has a carbon footprint of its own that cannot be ignored. Hence, when
assessing the quality of a model, the answer can no longer be exclusively about its
ability to come up with correct answers. Other metrics need to be looked at. AI is
therefore becoming an important part of building sustainable software systems. It
calls for a redesign of the processes we have for developing and monitoring AI sys-
tems, to ensure not only green software, but also green AI.

11.5.1	 A quality perspective on green AI
Many have analysed the differences between rule-based software systems and
(self-) learning software systems (Heck et al., 2021).

With respect to the energy consumption of AI-enabled systems, four differences
stand out:
1.	 AI-enabled systems consist of code, data and models (see Figure 11.4). This

means we need to incorporate performance efficiency of data and models too.
2.	 Data is considered the new gold due to the hype surrounding data analytics

in general and AI in particular. This encourages organisations to store huge
amounts of data, with a considerable environmental cost, even if they are not
sure they will use this data in the future.

3.	 AI-enabled systems are very computer-intensive because of the complicated
mathematical calculations that are behind the machine-learning algorithms
and the large datasets that they need to be applied to.

4.	 There is a focus on optimal models (see Figure 11.4), where stronger results are
‘bought’ by massively increasing computational power. Schwartz et al. (2020)
call this ‘Red AI’.

So green AI is essentially green software on steroids. That is why it emerged as
a separate research field and is being addressed in many industry standards and
guidelines, including the upcoming EU AI Act. For example, the EU guidelines
for trustworthy AI (EU, 2019) list seven requirements, including ‘Societal and
environmental well-being’. According to this requirement ‘AI systems promise to
help tackle some of the most pressing societal concerns, yet it must be ensured
that this occurs in the most environmentally friendly way possible. The system’s

trustworthy AI

182 Cruz and Heck

Figure 11.4	 Development process for AI-enabled systems, including a data and model (ML) loop

Requirements Optimal Model Staging ProductionProduction

DATA

Pr
oc

es
s

Collect

Store Ident
ify

ML

Tr
ain

Extract

Optimize Exp
lo

re

DEV

Pa
ck

age Develop

Test Plan

OPS

M
on

itor
Configure

Validate Rele
as

e

Figure 11.5	 Green AI at the root of Trustworthy AI

Freedom from risk
Functional suitability
Usability
Reliability
Security
Performance Efficiency

ISO25000
for

Trustworthy
AI

development, deployment and use process, as well as its entire supply chain, should
be assessed in this regard, e.g. via a critical examination of the resource usage and
energy consumption during training, opting for less harmful choices. Measures
securing the environmental friendliness of AI systems’ entire supply chain should
be encouraged.’

Heck (2022) analysed the quality characteristics of AI systems and concluded that
nine properties need to be added to ISO 25000: the leaves of the flower in Figure 11.5.
However, from the description in the EU guidelines we can see that in fact green
AI quality characteristics are the same as green software quality characteristics:

183Lessons learned from developing green software

performance efficiency and environmental risk mitigation. According to those
same guidelines, environmental well-being is a necessary condition for trustworthy
AI. This vision is depicted in Figure 11.5, highlighting the importance of green AI in
the development of future AI-enabled software systems.

As described in Figure 11.4, the AI development process covers a wide range of
things that need to be addressed before converging to a fully functional AI system.
Such a complex pipeline implies that to make green AI systems we need to address
energy efficiency at all frontiers.

11.5.2	 Best practices for green AI
Green AI as a field is still in its infancy but there are already some interesting
approaches that deserve a mention. One is data simplification. Not all the data we
collect brings something worthwhile to be learned. The way we have been dealing
with issues in data quality is by increasing the size of our data. This way, any issues
in the data are attenuated by other data points. However, if we increase the size of
the data, we also increase the computation required to train the model. As shown
by Yarally et al. (2021), simple techniques for feature selection or data size reduction
can have a massive impact on energy consumption.

Other ingenious techniques rely on simplifying the model. Popular techniques of
model simplification are quantization, pruning, and distillation (Van Steenweghen,
2023). Quantization consists of changing the data types used at model training –
e.g. by reducing the number of bits used. Pruning consists of removing parts of a
neural network that are not relevant for the performance of the model. Distillation
consists of learning a new smaller model – also known as the student model –
based on the knowledge of the original large model – also known as the teacher
model. The downside is that some of the model simplification strategies can make
model training more energy intensive, as they require extra computation for train-
ing. The benefits are mostly achieved in terms of the energy consumption of using
the model. Another downside is the fact that applying some of these techniques is
often not straightforward and requires domain expertise. These techniques come
in different flavours and require tuning before they can produce improvements in
energy efficiency. A good example of this is the project LLaMA.cpp: a port of Meta’s
large language model LLaMA that aims at running in low-powered devices such as
a smartphone but running several model simplification techniques.

Another interesting angle is the pareto between the training pipeline and the
training hardware. When they want to train their models, AI practitioners often
opt for the best server available. This is a natural choice, because you want to use
the best state-of-the-art tools available. However, as usual, we need the best tool for
the right job. When we select the most powerful hardware, this does not necessarily
give us better results. Research has shown that, depending on the model, a hard-
ware setup with lower specs can lead to better energy efficiency without hindering
accuracy metrics (del Rey et al., 2023).

data
simplification

simplifying
the model

lower specs

184 Cruz and Heck

Such an observation is in line with reports from Meta revealing that a vast por-
tion of their AI systems are only using GPUs at 30% of their full capacity (Wu
et al., 2022). This is a major issue because it means that we need three times more
GPUs to compensate for this lack of resource efficiency. Moreover, hardware has an
embodied carbon footprint – i.e. the carbon emissions incurred by producing and
shipping it – that is being wasted on stalled GPUs.

Another issue arising from reliance on the latest hardware is that existing hard-
ware soon becomes obsolete (del Rey et al., 2023). The latest AI libraries are quickly
dropping their support for older hardware. This does not necessarily mean that the
hardware is unable to perform the required computational tasks. In some cases,
it simply means that the cost of providing support to old hardware has become
economically unsustainable. The consequences of this problem are twofold: 1) we
are reducing the lifecycle of hardware without reducing its embodied carbon foot-
print, and 2) only practitioners that have the capacity to buy new state-of-the-art
hardware are able to run the latest advancements in AI technology. This last con-
sequence raises an issue in terms of AI democracy. We want AI technologies to be
accessible to any group of tech enthusiasts and not just to a few big tech companies
that have enough negotiating power and financial resources to get the hardware
that runs the latest AI software.

11.6	 Conclusion

This chapter lays the foundation for sustainable software engineering and all its
different dimensions. The means to creating sustainable software requires a multi-
factorial approach that considers trade-offs between different sustainability aspects:
environmental, social, individual, technical, and economic. This is easier said than
done: despite being covered by industrial software quality models, designing green
software systems requires a number of non-trivial techniques to test and monitor
the energy efficiency of software.

In this chapter, we have seen how energy patterns and other best practices can
help build energy-efficient software by design. However, the advent of AI is chal-
lenging the software industry by requiring even more computational power to run
state-of-the-art intelligence. The emerging guidelines for trustworthy AI make per-
formance efficiency and environmental risk mitigation essential requirements.

However, more work needs to be done to enable a fully green landscape in the
realm of intelligent software. This is a concern that involves developers, design-
ers, policymakers, users, and society in general. We currently rely on software for
everything – as software users, we have the right to ask for transparent and trust-
worthy software. When we download a new app or sign up for a new service, we
want to know what is behind the curtain. All stakeholders have a role to play, and
little by little, step by step, we will make all software green, together.

obsolete
hardware

185Lessons learned from developing green software

References

Becker, C., Chitchyan, R., Duboc, L., Easterbrook, S., Penzenstadler, B., Seyff, N. and
Venters, C.C., 2015. Sustainability design and software: the Karlskrona manifesto. In:
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (Vol. 2,
pp. 467–476).

Chien, A.A., Lin, L., Nguyen, H., Rao, V., Sharma, T., and Wijayawardana, R., 2023. Reducing
the carbon impact of generative AI inference (today and in 2035). In: Proceedings of the
2nd workshop on sustainable computer systems (pp. 1–7).

Cruz, L. and Abreu, R., 2019. Catalog of energy patterns for mobile applications. Empirical
software engineering, 24:2209–2235.

Cruz, L., 2021. Green software engineering done right: a scientific guide to set up energy effi-
ciency experiments. http://luiscruz.github.io/2021/10/10/scientific-guide.html.

del Rey, S., Martínez-Fernández, S., Cruz, L., and Franch, X., 2023. Do DL models and training
environments have an impact on energy consumption? In: 49th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), pp. 150–158.

EU, 2019. Ethics guidelines for trustworthy AI. Brussels: European Commission. https://
data.europa.eu/doi/10.2759/346720.

EU, 2022. Questions and answers: EU action plan on digitalising the energy system. https://
ec.europa.eu/commission/presscorner/detail/en/qanda_22_6229.

Heck, P., Schouten, G., and Cruz, L., 2021. A software engineering perspective on building
production-ready machine learning systems. In: Handbook of research on applied data
science and artificial intelligence in business and industry (pp. 23–54). IGI Global.

Heck, P., 2022. A quality model for trustworthy AI systems. https://fontysblogt.nl/a
-quality-model-for-trustworthy-ai-systems/.

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.M., Rothchild, D., … and Dean, J., 2021.
Carbon emissions and large neural network training. arXiv preprint arXiv:2104.10350.

Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J.P., and Saraiva, J., 2021.
Ranking programming languages by energy efficiency. Science of computer program-
ming, 205, 102609.

Schwartz, R., Dodge, J., Smith, N.A., and Etzioni, O., 2020. Green AI. Communications of the
ACM, 63:54–63.

Van Steenweghen, A., 2023. EasyCompress: automated compression for deep learning mod-
els. Master Thesis TU Delft, the Netherlands.

Wu, C.J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N., Maeng, K., Chang, G., Aga, F.,
Huang, J., Bai, C. and Gschwind, M., 2022. Sustainable AI: environmental implica-
tions, challenges and opportunities. In: Proceedings of machine learning and systems,
4:795–813.

Yarally, T., Cruz, L., Feitosa, D., Sallou J., and Van Deursen, A., 2023. Uncovering energy-
efficient practices in deep learning training: preliminary steps towards green AI. In:
IEEE/ACM 2nd International Conference on AI Engineering–Software Engineering for
AI (CAIN) (pp. 25–36).

http://luiscruz.github.io/2021/10/10/scientific-guide.html
https://data.europa.eu/doi/10.2759/346720
https://data.europa.eu/doi/10.2759/346720
https://ec.europa.eu/commission/presscorner/detail/en/qanda_22_6229
https://ec.europa.eu/commission/presscorner/detail/en/qanda_22_6229
https://fontysblogt.nl/a-quality-model-for-trustworthy-ai-systems/
https://fontysblogt.nl/a-quality-model-for-trustworthy-ai-systems/

	11 Lessons learned from developing green software
	Abstract
	11.1	Innovation and environmental responsibility
	11.2	Sustainable software engineering
	11.3	Measuring energy consumption
	11.4	Best practices for green software development
	11.5	Green AI
	11.6	Conclusion

