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Chapter 11

Lessons learned from developing green software

Luís Cruz and Petra Heck

Abstract

Technology brings exciting opportunities to improve our interactions with the natural sur-
roundings. However, that same technological development might also negatively impact 
the environment. Every new technology has a carbon footprint, whether from its construc-
tion or operation. And most technological developments require software systems, and 
more recently AI-based software systems. For these software systems to positively impact 
our environment, they need to be developed and operated with sustainability in mind, also 
called ‘green’ in the discipline of software engineering.

This chapter explores various dimensions of sustainability in software system develop-
ment, drawing on existing software quality frameworks. We highlight green software best 
practices for development and knowledge transfer. We examine AI-based software systems, 
emphasising the importance of energy efficiency and carbon impact in the next genera-
tion of intelligent systems. This entails considering decisions at different stages of the AI 
lifecycle, ranging from underlying design choices in training pipelines to selecting optimal 
hardware for training and serving models.

This chapter presents the intersection of green software, sustainable software engineer-
ing, and green AI as of major importance for future innovation. By prioritising sustainability 
in software development and AI, we can foster a more sustainable and eco-friendly future, 
with the potential to reduce energy consumption and mitigate the environmental impact 
of technology.

11.1	 Innovation and environmental responsibility

In an era defined by technological marvels, our world stands at a crossroads where 
innovation and environmental responsibility converge. Software technology prom-
ises to transform how we interact with the natural world, offering the prospect of 
a sustainable future. For example, it is used to track climate patterns, biodiversity, 
water and air quality; it is also used in waste management systems to optimise 
waste collection routes, manage landfill operations, and so on. Yet, software takes 
its own toll in terms of impact in the environment. For example, running software 
worldwide requires massive amounts of electricity. It is estimated that, by 2030, it 
will be responsible for 13% of electricity consumption globally (EU, 2022). Hence, 
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we are faced with a formidable challenge: how can we harness the power of soft-
ware without leaving a devastating ecological footprint in our wake?

To bend the curve of biodiversity loss, our attitude towards nature has to change 
fundamentally. This behavioural change can for instance be triggered by engaging 
smartphone apps that can recognise flora and fauna at species level. This helps raise 
awareness and create knowledge of our natural environment.

Case 11.1

AI-enabled mobile application

Consider, a mobile application that is designed to store and analyse pictures 
of flora and fauna. It leverages an artificial intelligence (AI) model to identify 
species automatically and catalogue your pictures according to contemporary 
taxonomic tables. It includes both local storage, in the phone, and online stor-
age, in a cloud server, so that you do not lose your records even if something 
happens to your phone.

One key feature of this app is uploading the pictures to a server in the cloud. 
There are several ways of implementing this feature. For example, one way 
could be that, as soon as a picture is taken, the app takes care of immediately 
uploading it. This way, the pictures are immediately backed up as soon as they 
are taken. Most users would appreciate having their pictures safely secured as 
soon as they are taken.

Imagine, however, that many of the app users enjoy going for a hike in the 
woods, where there is poor internet connectivity. While enjoying the hike, 
users also enjoy taking pictures of the interesting things they see along the 
way: fauna, flora, landscape, etc. However, that implies that the phone makes 
a new data connection with the server every time a picture is taken. With poor 
connectivity, it would probably mean that the phone would take such a long 
time to upload each picture that it would not be fast enough for all the pic-
tures that the user is taking. To make things worse, the phone’s battery level is 
getting low, but the app is eagerly trying to get the pictures uploaded and will 
not stop until the phone dies.

The scenario in Case 11.1 motivates developers to find strategies to make sure their 
software is designed in the most energy efficient way. It challenges them to include 
strategies to test and monitor the energy efficiency of their code. On top of that, 
smartphones are now running AI features locally, without an internet connection. 
This means that we save energy by not using an internet connection, but we drain 
our battery to run these powerful AI models. The proliferation of large language 
models in 2021 takes this challenge to another level, yielding ever-growing models 
with billions of parameters. As we delve deeper into this chapter, we show that a 
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single training iteration of these AI models leads to a massive carbon footprint. This 
motivates a need for new standards and practices that make energy efficiency a de 
facto requirement for modern software.

In this chapter, we cover the various dimensions of sustainable software and AI 
engineering, providing insights into how these pressing issues are being tackled. 
We start by defining the concepts around software sustainability. Then we analyse 
the well-established software quality standard ISO 25000 and look at how it relates 
to the practical realms of developing green software and green AI. Along the way, 
we unveil best practices that not only guarantee the energy efficiency but also the 
collection of reliable energy measurements from software.

11.2	 Sustainable software engineering

Although sustainability is a widely used term, the definition of sustainable software 
engineering is not always clear. Within this chapter, we define it as ‘the discipline 
that studies the process of creating software systems that create value in the long 
term without hindering its surroundings’. Despite being short, this definition gives 
us a starting point from which to identify software systems that are not sustainable. 
For example, if a software system is carbon efficient and eco-friendly but does not 
create value, it is not sustainable. Moreover, if a software system is eco-friendly but 
was designed in a way that makes it difficult to maintain (e.g. fixing security vulner-
abilities), it is also not sustainable. The examples are numerous.

Software sustainability can be divided into five major dimensions (Becker et al., 
2015), as illustrated in Figure 11.1: environmental, social, individual, technical, and 
economical. We explain these five perspectives of software sustainability below.

Environmental sustainability relates to the long-term effects of software on nat-
ural systems. This dimension includes ecosystems, raw resources, climate change, 
water, pollution, waste, etc. This can be attributed for example to the power con-
sumption of the infrastructure used to run the software (e.g., electricity used by data 
centres), the water consumption used to cool down supercomputers, the disposal 
of IT hardware to acquire new state-of-the-art replacements, and so on. The branch 
of software engineering that studies this dimension is known as green software.

Social sustainability is concerned with societal communities (groups of people, 
organisations) and the factors that erode trust in society. This dimension includes 
social equity, justice, employment, democracy, public health, public well-being, 
and so on. There is no doubt that software systems have a tremendous impact in our 
society and on individual people nowadays. This impact is often positive, but it can 
also have some negative consequences. A recurrent example of lack of social sus-
tainability lies in many modern social media platforms, where we have witnessed 
the exploitation of their feed algorithms to disseminate fake news and mislead pub-
lic opinion.

sustainable 
software 
engineering

environmental 
sustainability

social 
sustainability
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Individual sustainability refers to the well-being of the people involved in the 
development of the software. This includes mental and physical well-being, edu-
cation, self-respect, skills, mobility, and so on. Several factors such as work-life bal-
ance, social environment, job autonomy, and physical health affect the well‐being 
of tech professionals. Most of the work in this dimension aims at making sure that 
all the collaborators in a software team have a motivating, safe, and healthy work-
ing environment that fosters their contributions to the software project. Examples 
include promoting diversity within teams, sponsoring gym membership, defining 
clear career paths, organising team building activities, and so on.

Technical sustainability refers to the longevity of information, systems, and 
infrastructure and their adequate evolution with changing surrounding conditions. 
It includes concerns such as maintenance, innovation, data integrity, etc. This is a 
dimension that has been widely addressed within software engineering commu-
nities. The lack of technical sustainability means, for example, that a system is not 
scalable and thus does not follow the growth of customers. It can also mean that 
whenever a new feature needs to be implemented, it is very complicated to do it in 
a way that will not break other features.

Economic sustainability focuses on assets, capital and added value. It includes 
wealth creation, prosperity, profitability, capital investment, income, and so on. 

individual 
sustainability

technical 
sustainability

economic 
sustainability

Figure 11.1	 The five dimensions of sustainable software engineering
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This is an essential dimension for any organisation. The operation of a software 
system must not lead its investors into bankruptcy. Even when we talk about toy 
software systems, if their contributors cannot support the costs of having a system 
available to its users, it will soon have to be decommissioned.

11.2.1	 Green software
All these dimensions are important and interact with each other. For example, envi-
ronmental sustainability is important for social sustainability and should not harm 
the economic sustainability of a project. However, some of these five dimensions 
have become more important throughout the history of software engineering. It 
is not difficult to convince a software organisation that they need to worry about 
the technical and economic sustainability of their software. For example, tech 
organisations take great pains to ensure that their business model is economically 
sustainable. Start-ups go through different rounds of funding where economical 
sustainability is the main concern. For example, if a fintech company decides to 
become more environmentally sustainable and moves all its software systems to 
data centres that run on clean energy, these data centres will probably be more 
expensive. Hence, the company will have to come up with a business model that 
is able to accommodate these extra costs, perhaps by charging their customers 
slightly higher fees. If customers do not deem these extra costs to be reasonable, 
this company might face serious economic issues – or simply shut down the idea 
at the first opportunity. Technical sustainability is also quite popular and is second 
only to economic sustainability. In the early versions of a software product, proto-
types and proof-of-concepts are the main artefact being used to assess whether the 
product might be (economically) sustainable. Right after this stage, stakeholders 
start thinking about technical sustainability. In other words, software sustainability 
is a systemic concept and one dimension cannot be studied without considering 
the others.

With that in mind, a new discipline is emerging in software engineering:  
green software. Green software covers activities across the whole software devel-
opment lifecycle: planning, analysis, design, implementation, and maintenance. 
This includes, for example, making sure that the software is energy efficient,  
i.e. that it uses the least power – which is easier said than done (Cruz, 2021). With 
the emergence of this field, any software organisation or developer that wants to 
deliver high-quality software cannot succeed without considering Green Software 
practices.

11.2.2	 A quality perspective on green software
There have long been standards (since 1991!) that define what high quality means. 
ISO 9126 and its successor ISO 25000 (Systems and software Quality Requirements 
and Evaluation: SQuaRE) define quality characteristics for software systems, 

green software

ISO 25000
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including a measurement model with metrics. But it is only much more recently 
that the debate about green software has begun. So, one might think that green is 
a new quality characteristic that needs to be added to the ISO 25000 standards. 
However, as seen in Figure 11.2, which shows the quality characteristics for the 
inherent product quality and the emerging product quality (quality in use), ISO 
25000 already includes the quality characteristics that define green software under 
the category ‘Performance Efficiency’. In fact, ISO 25000 goes one step further and 
explicitly states under the category ‘Freedom from risk’ that the software system 
shall also mitigate any other environmental risk than just consuming unnecessary 
energy or storage.

So, in the light of ISO 25000, green software can be translated to software that 
scores high on the following two quality characteristics:
1.	 Performance efficiency: ‘performance relative to the amount of resources 

used under stated conditions’.
a.	 time behaviour: ‘degree to which the response and processing times and 

throughput rates of a product or system, when performing its functions, 
meet requirements’.

b.	 resource utilisation: ‘degree to which the amounts and types of resources 
used by a product or system, when performing its functions, meet 
requirements’.

c.	 capacity: ‘degree to which the maximum limits of a product or system 
parameter meet requirements (note: parameters can include the num-
ber of items that can be stored, the number of concurrent users, the 

performance  
efficiency

Figure 11.2	 ISO 25000 quality model
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communication bandwidth, throughput of transactions, and size of 
database)’.

2.	 Environmental risk mitigation: ‘degree to which a product or system mitigates 
the potential risk to property or the environment in the intended contexts  
of use’.

One could argue that when developing performance-efficient software, environ-
mental risk is also mitigated, but of course more needs to be done to fully miti-
gate any harm to the environment. In the remainder of this chapter, we will focus 
on the first characteristic, related to the energy consumption of software, because 
this is what green software has been mostly focusing on. Energy consumption is 
seen as the biggest environmental risk for software development, especially with 
the advent of AI-based software systems that require huge amounts of data storage 
and computing power.

11.3	 Measuring energy consumption

There is no perfect way to measure energy consumption. It mostly boils down to 
a trade-off between simplicity and accuracy. In other words, the easiest approach 
tends to be less accurate, and the most accurate approach tends to be difficult to 
set up.

Let us start with the easiest approach. To estimate energy consumption, one can 
simply measure the time a software takes to execute a given task. If task A takes 
more time to run than task B, one can assume that A takes more energy than B. This 
assumption works well under well-defined conditions where we have observed this 
to be the case. For example, if we are comparing single-threaded Central Processing 
Unit (CPU) intensive algorithms, the algorithm that takes more time will be asking 
the CPU to execute more work. The more work from the CPU, the more energy  
is spent.

This assumption is challenged when the software uses a large set of resources 
with dynamic configurations that we cannot entirely predict beforehand: for exam-
ple, a mobile application can use different sensors (GPS, accelerometer, camera, 
touch, etc.), different CPU modes (low-power or high-power units), different actu-
ators (screen with different brightness colours, speakers, haptics, etc.). Modelling 
these different interactions is far from straightforward. Moreover, it is very unlikely 
that these interactions are identical across two different executions of the same 
task or use case.

As an alternative, the most accurate solution is to collect exact power measure-
ments during the execution of the software – i.e. using a hardware-based approach. 
Using power monitoring tools, such as the Monsoon Power Monitor presented in 
Figure 11.3, it is possible to collect power data from the different hardware compo-
nents and log power measurements per instant of time.

environmental  
risk mitigation
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Unfortunately, this is far from easy. The figure above shows the power monitor 
connected to a smartphone. This setup required disassembling a smartphone and 
extracting its battery. That is suboptimal: mobile developers cannot be expected to 
recreate such a setup for the sake of improving energy efficiency.

An alternative is the use of software-based estimators of energy consumption. 
These estimators rely on indicators of the usage of different hardware resources 
(memory, CPU, and so on) to compute a value of the power consumption of a given 
software. A popular example is Intel® RAPL, which has been widely used in this 
area by researchers and tool developers. Depending on the scenario, these different 
alternatives need to be considered.

There are of course more challenges that need to be addressed before being 
able to measure software energy consumption. Software seldom runs in isola-
tion: there is an operative system, other software applications, background pro-
cesses, etc. that are running in parallel and contribute to the measured energy  
consumption.

To add to that, there are a multitude of other factors that also contribute to 
energy consumption: the power state of the different components (e.g., is the GPS 
already running or does it still need to be powered up?), their temperature, the 
temperature of the surroundings, and so on.

Figure 11.3	 Energy monitoring setup for mobile app development
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This means that if we measure the same software task twice, it is very unlikely 
that we will measure the same energy consumption.

There are several steps that need to be followed to collect reliable energy data. 
Below we have an extensive but not complete list of actions that should be taken 
before collecting energy data:

	– The first thing we need to ensure is that the only thing running in our system is 
the software we want to measure. Unfortunately, this is impossible in practice – 
our system will always have other tasks and things that it will run at the same 
time. Still, we must at least minimise all these competing tasks: all applications 
should be closed, and notifications should be turned off; only the required hard-
ware should be connected (avoid USB drives, external disks, external displays, 
etc.); remove any unnecessary services running in the background (e.g., web 
server, file sharing, etc.); if you do not need an internet or intranet connection, 
switch off your network; cable is preferable to wireless – the energy consump-
tion from a cable connection is more stable than from a wireless connection.

	– It is not possible to shut off the unnecessary things that run in our system. Still, 
we need to at least make sure that they will behave the same across all sets of 
measurements. Thus, we must fix and report some configuration settings. One 
good example is the brightness and resolution of your screen – report the exact 
value and make sure it stays the same throughout the measurement. A common 
mistake is to keep the automatic brightness adjustment on – this leads to major 
errors when measuring energy efficiency in mobile apps.

	– Run dummy tasks a few times before keeping track of the measurements. Energy 
consumption is greatly affected by the temperature of your hardware. The higher 
the temperature, the higher the resistance of electrical conductors, leading to 
higher dissipation and consequently more energy consumption. If we start 
measurements right after the workstation comes back from sleep mode, it will 
probably be relatively cool. As soon as we start executing our energy tests, the 
temperature of the computer will rise until it reaches a plateau. This means that 
the first measurements will show less energy consumption precisely because 
they were the first. Typically, it is recommended to run a dummy task before 
starting to measure energy consumption. It can take as long as five minutes, 
depending on the scenario, and can be done by executing a CPU-intensive task, 
such as the Fibonacci sequence.

	– Despite all efforts, subsequent energy measurements will lead to different results. 
It is therefore common practice to repeat executions and average the results. 
Depending on the scenario, the number of repetitions could go up to 30. This is 
the typical magic number in scientific studies because it enables statistical anal-
yses. There is no golden rule: the best method is to adjust this number along the 
way based on the variability of the results.

	– Give the device a one-minute sleep between measurements. If we repeat the 
same experiment 30 times with no rest in between, our CPU will probably be 
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warmer in the last experiment than in the first. It is important to make sure that 
all measurements are executed under the same conditions. Hence, it is common 
practice to ensure a pause/break of a few seconds or minutes between repeti-
tions. It can be more or less dependent on your hardware or the duration of your 
energy test.

	– In some cases, we collect energy data to compare two versions of the software 
when performing the same use case. If we execute version A 30 times and version 
B another 30 times, there is a chance that between the first and the second half 
of measurements, the factors affecting the energy consumption have changed. 
Hence, the energy consumption of the two versions will also be different because 
the context has changed. To mitigate this issue, it is important to mix the execu-
tions of the different versions.

	– It is well established that temperature affects energy consumption. We should  
not let differences in temperature affect our measurements. For example, it can 
happen that we measure the software over different periods of the day. This 
means that some measurements could happen during the night, with lower tem-
peratures, or during the day, with higher temperatures. This bias has to be avoided 
at all costs to avoid misleading observations. This is done by controlling room 
temperature and collecting temperature data alongside energy data. With tem-
perature data, one can discard energy measurements that might be misleading.

	– Although this sounds obvious, it tends to be challenging. If we manually run  
the software and test its features, we are introducing a new variable that may 
affect energy consumption. One cannot be sure that the interactions are exactly 
the same.

All these practices help improve the reliability of energy data collected. However, 
for practical reasons, they need to be taken with a grain of salt. There might be 
scenarios where overlooking some of these practices will not lead to significantly 
different results. As always, perfect is the enemy of good. Measuring something, 
even with flaws, is better than not measuring anything at all.

11.4	 Best practices for green software development

Above, we discussed the difficulties inherent in measuring the energy consump-
tion of a software application. It requires a great deal of effort and time to assess 
whether a given use case is energy efficient. In practice, developers may not be able 
to afford to follow such a meticulous process to collect energy. Hence, other alter-
natives ought to be considered.

This is where best practices or guidelines can play a major role. In other words, 
you do not need to measure every single line of code to have a certain degree of 
confidence that the code is energy efficient. As long as it follows energy efficiency 
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guidelines, energy measurements can be reserved for cases where it is deemed 
necessary.

Guidelines can provide advice at several levels of the software development 
process: at the code level – with code patterns, testing; at the server level – with 
regard to the deployment strategy, servers used, hardware; at the project manage-
ment level  – with practices ensuring skill diversity, knowledge transfer, refactor-
ing iterations; and so on. In this section, we delve into existing design patterns for 
energy efficiency, we look at how the choice of programming language can affect 
the energy efficiency of a software system, and we showcase how the energy con-
sumption of software can be addressed in the cloud.

11.4.1	 Green software design patterns
It is not always necessary to measure the energy consumption of an application to 
understand that it will probably have issues in this area. If software developers are 
aware of design patterns for energy efficiency, they can already anticipate these 
scenarios. The good thing about energy issues is that they tend to be recurrent and 
will probably apply to different applications.

Design patterns for energy efficiency are typically known as energy patterns. 
They provide developers with advice on the best way to design their software code 
so that it runs with the minimum energy consumption. They are typically defined 
by (at least) three components: context, explaining where the pattern can be used; 
solution, explaining what can be done to improve energy efficiency in that con-
text; and examples, with a few instances of software code where the pattern was 
applied. This proved to be useful when designing mobile applications (Cruz and 
Abreu, 2019).

Despite energy patterns being a useful resource for developers that want to 
build energy efficient tools, they can also be a wonderful tool for knowledge trans-
fer. Imagine, for example, that in a software organisation with several teams, there 
is only one developer that is an expert in green software. This developer cannot 
be involved in too many projects at the same time, so most projects will not have 
anyone with expertise to improve the energy efficiency of their code. However, the 
developer is keeping a log tracking the main energy efficiency improvements that 
they have been making in their apps. At the end of the week, the developer docu-
ments these improvements and adds them to a catalogue of energy patterns that 
is accessible by other developers from other teams. These developers will then be 
able to learn from the expertise of the green software developer. Assuming that 
there is enough freedom for developers to explore this catalogue and apply some of 
the patterns in their own code, eventually the software organisation will have more 
developers with knowledge on energy-efficient coding practices at a very reason-
able cost. In other words, education is an important aspect of green software and 
there are many easy ways to facilitate this.

energy patterns
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11.4.2	 Green programming languages
Green software is all about choices and trade-offs. When choosing the program-
ming language for their next project, software developers have to consider a num-
ber of factors: experience of the team, code readability, the language community 
and ecosystem, existing libraries, and so on. To add to that, a group of researchers 
have recently studied the energy consumption of different programming languages 
(Pereira, 2021). As it turns out, the choice of language can have a massive impact on 
the energy consumption of the software.

The group of researchers took the existing benchmark for programming lan-
guages, called ‘The Computer Language Benchmarks Game’, and collected energy 
consumption metrics. The benchmark is used by experts from all over the world to 
rank programming languages according to their time and memory efficiency. The 
same tasks are solved across different programming languages and then results are 
compared.

When analysing the energy consumption data, the results were astonishing: 
popular programming languages such as Python were observed to be 76 times less 
energy efficient than top performing languages such as C. This is particularly inter-
esting as Python is becoming more and more popular given its ease of use and avail-
able libraries for AI-based software development.

It is important to note that, in the case of using Python for AI development, 
most of it relies on third-party libraries that are often developed in C. This means 
that although we are coding in Python, our final software is probably using other 
programming languages under the hood and the overall energy efficiency is 
much better than one would expect. Nevertheless, it is important to be aware of 
these details  – energy efficiency is not a given and our choices can make a big  
difference.

11.4.3	 Carbon-aware data centres
Data centres continuously run a large number of complex everyday software tasks – 
for example, the so-called ‘cloud’ is nothing more than several large-scale software 
systems running in data centres. Naturally, it cannot be done without a massive 
ecological footprint from powering and cooling down all the servers running in the 
data centre. To reduce carbon emissions, many data centres are opting for renew-
able energy. However, renewable energy is not always available. Depending on 
demand and the availability of clean energy in the grid at a particular time, data 
centres may have to resort to less clean power sources. This is more severe during 
peak hours, when there is high demand and servers have to run at full capacity, 
requiring more energy to power the data centre.

Some of the tasks running during peak hours are urgent and need to be imme-
diately executed. For example, when a bank system is processing a payment from a 
grocery store. Any small delay leads to poor customer experience. However, there 
are other tasks that do not really need to be executed at a precise second or minute. 
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For example, many AI training tasks take several hours to execute. In those cases, it 
might be okay to wait a couple hours before performing the task.

Software tasks that have flexibility in their execution time offer an excellent 
opportunity to reduce carbon emissions. For example, if the carbon intensity from 
the power grid is high – i.e. there is not enough clean energy in the grid – we can 
simply wait until there is enough clean energy before we execute that task.

This simple idea makes it easier to make sure a data centre runs mostly on clean 
energy. It has been tested in a few contexts. However, it still poses a few challenges: 
estimating the carbon intensity of the grid for the next few hours, predicting how 
complex a given task is, predicting how much time it takes to finish, and defining 
how much time it can be delayed. Making incorrect estimates of these numbers 
can lead to suboptimal results. For example, if we predict that the sun will be bright 
later in the day – meaning that solar panels will produce clean energy – and then 
it turns out to be cloudy, delaying tasks could be emitting more carbon than we 
anticipated. Nevertheless, preliminary results show great potential in this strategy.

With simple ideas like this, the carbon footprint of software systems running in 
data centres can be massively improved. However, the carbon footprint of software 
is always being challenged with new cutting-edge technologies that always require 
more energy and resources. One example is the new hype for AI technologies, 
which require a massive amount of data and computational resources.

11.5	 Green AI

The advent of artificial intelligence (AI) is making the new generation of software 
intelligent. Software systems feature components that perform tasks that until now 
have only been accomplished by humans. It takes software use cases to another 
level, e.g. by enabling them to generate text, images, and recognise objects, faces, 
etc. It can even perform certain tasks better than humans – for example, AI models 
are widely used to detect fraudulent online transactions.

Machine learning (ML), the most popular form of AI, consists of feeding large 
amounts of data into a computational pipeline that will process it and extract pat-
terns in order to generate a model – a task known as training. This model can then 
be used to take inputs from users and return meaningful answers – a task typically 
known as inference. Of course, these models are mostly useful when integrated 
with software. For example, the model itself does not provide a graphical user inter-
face that allows users to interact with it. So, in general, AI models are being used 
without users even being aware of it. Behind every bank transaction, social media 
post, etc. there are multiple models running in the background.

Despite the numerous benefits of adding AI models to software systems, there 
is an inherent cost that needs to be addressed: energy consumption. These mod-
els require a great deal of energy to be developed and executed. For example, the 

machine 
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popular large language model ChatGPT consumed 550 tonnes of CO₂-eq to be 
trained (Patterson et al., 2021). This is equivalent to driving 1000 cars for 1000 kms. 
To make matters worse, this is only related to a single training of the model – the 
cost of experimenting and tuning the training strategy took several iterations before 
converging to the final one. If we factor in the cost of running the model – i.e. inter-
acting with the chat – this number will probably be astronomical. According to the 
latest numbers, the cost of running ChatGPT for a year is equivalent to 25 times the 
cost of training it (Chien et al., 2023). When we think that AI is being considered a 
competitive technology for every business, it is not too big a leap to imagine these 
numbers quickly escalating.

This means that modern AI, despite being a powerful technology to combat cli-
mate change, has a carbon footprint of its own that cannot be ignored. Hence, when 
assessing the quality of a model, the answer can no longer be exclusively about its 
ability to come up with correct answers. Other metrics need to be looked at. AI is 
therefore becoming an important part of building sustainable software systems. It 
calls for a redesign of the processes we have for developing and monitoring AI sys-
tems, to ensure not only green software, but also green AI.

11.5.1	 A quality perspective on green AI
Many have analysed the differences between rule-based software systems and 
(self-) learning software systems (Heck et al., 2021).

With respect to the energy consumption of AI-enabled systems, four differences 
stand out:
1.	 AI-enabled systems consist of code, data and models (see Figure 11.4). This 

means we need to incorporate performance efficiency of data and models too.
2.	 Data is considered the new gold due to the hype surrounding data analytics 

in general and AI in particular. This encourages organisations to store huge 
amounts of data, with a considerable environmental cost, even if they are not 
sure they will use this data in the future.

3.	 AI-enabled systems are very computer-intensive because of the complicated 
mathematical calculations that are behind the machine-learning algorithms 
and the large datasets that they need to be applied to.

4.	 There is a focus on optimal models (see Figure 11.4), where stronger results are 
‘bought’ by massively increasing computational power. Schwartz et al. (2020) 
call this ‘Red AI’.

So green AI is essentially green software on steroids. That is why it emerged as 
a separate research field and is being addressed in many industry standards and 
guidelines, including the upcoming EU AI Act. For example, the EU guidelines 
for trustworthy AI (EU, 2019) list seven requirements, including ‘Societal and 
environmental well-being’. According to this requirement ‘AI systems promise to 
help tackle some of the most pressing societal concerns, yet it must be ensured 
that this occurs in the most environmentally friendly way possible. The system’s 

trustworthy AI
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Figure 11.4	 Development process for AI-enabled systems, including a data and model (ML) loop
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development, deployment and use process, as well as its entire supply chain, should 
be assessed in this regard, e.g. via a critical examination of the resource usage and 
energy consumption during training, opting for less harmful choices. Measures 
securing the environmental friendliness of AI systems’ entire supply chain should 
be encouraged.’

Heck (2022) analysed the quality characteristics of AI systems and concluded that 
nine properties need to be added to ISO 25000: the leaves of the flower in Figure 11.5. 
However, from the description in the EU guidelines we can see that in fact green 
AI quality characteristics are the same as green software quality characteristics: 
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performance efficiency and environmental risk mitigation. According to those 
same guidelines, environmental well-being is a necessary condition for trustworthy 
AI. This vision is depicted in Figure 11.5, highlighting the importance of green AI in 
the development of future AI-enabled software systems.

As described in Figure 11.4, the AI development process covers a wide range of 
things that need to be addressed before converging to a fully functional AI system. 
Such a complex pipeline implies that to make green AI systems we need to address 
energy efficiency at all frontiers.

11.5.2	 Best practices for green AI
Green AI as a field is still in its infancy but there are already some interesting 
approaches that deserve a mention. One is data simplification. Not all the data we 
collect brings something worthwhile to be learned. The way we have been dealing 
with issues in data quality is by increasing the size of our data. This way, any issues 
in the data are attenuated by other data points. However, if we increase the size of 
the data, we also increase the computation required to train the model. As shown 
by Yarally et al. (2021), simple techniques for feature selection or data size reduction 
can have a massive impact on energy consumption.

Other ingenious techniques rely on simplifying the model. Popular techniques of 
model simplification are quantization, pruning, and distillation (Van Steenweghen, 
2023). Quantization consists of changing the data types used at model training – 
e.g. by reducing the number of bits used. Pruning consists of removing parts of a 
neural network that are not relevant for the performance of the model. Distillation 
consists of learning a new smaller model  – also known as the student model  – 
based on the knowledge of the original large model – also known as the teacher 
model. The downside is that some of the model simplification strategies can make 
model training more energy intensive, as they require extra computation for train-
ing. The benefits are mostly achieved in terms of the energy consumption of using 
the model. Another downside is the fact that applying some of these techniques is 
often not straightforward and requires domain expertise. These techniques come 
in different flavours and require tuning before they can produce improvements in 
energy efficiency. A good example of this is the project LLaMA.cpp: a port of Meta’s 
large language model LLaMA that aims at running in low-powered devices such as 
a smartphone but running several model simplification techniques.

Another interesting angle is the pareto between the training pipeline and the 
training hardware. When they want to train their models, AI practitioners often 
opt for the best server available. This is a natural choice, because you want to use 
the best state-of-the-art tools available. However, as usual, we need the best tool for 
the right job. When we select the most powerful hardware, this does not necessarily 
give us better results. Research has shown that, depending on the model, a hard-
ware setup with lower specs can lead to better energy efficiency without hindering 
accuracy metrics (del Rey et al., 2023).
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Such an observation is in line with reports from Meta revealing that a vast por-
tion of their AI systems are only using GPUs at 30% of their full capacity (Wu 
et al., 2022). This is a major issue because it means that we need three times more 
GPUs to compensate for this lack of resource efficiency. Moreover, hardware has an 
embodied carbon footprint – i.e. the carbon emissions incurred by producing and 
shipping it – that is being wasted on stalled GPUs.

Another issue arising from reliance on the latest hardware is that existing hard-
ware soon becomes obsolete (del Rey et al., 2023). The latest AI libraries are quickly 
dropping their support for older hardware. This does not necessarily mean that the 
hardware is unable to perform the required computational tasks. In some cases, 
it simply means that the cost of providing support to old hardware has become 
economically unsustainable. The consequences of this problem are twofold: 1) we 
are reducing the lifecycle of hardware without reducing its embodied carbon foot-
print, and 2) only practitioners that have the capacity to buy new state-of-the-art 
hardware are able to run the latest advancements in AI technology. This last con-
sequence raises an issue in terms of AI democracy. We want AI technologies to be 
accessible to any group of tech enthusiasts and not just to a few big tech companies 
that have enough negotiating power and financial resources to get the hardware 
that runs the latest AI software.

11.6	 Conclusion

This chapter lays the foundation for sustainable software engineering and all its 
different dimensions. The means to creating sustainable software requires a multi- 
factorial approach that considers trade-offs between different sustainability aspects: 
environmental, social, individual, technical, and economic. This is easier said than 
done: despite being covered by industrial software quality models, designing green 
software systems requires a number of non-trivial techniques to test and monitor 
the energy efficiency of software.

In this chapter, we have seen how energy patterns and other best practices can 
help build energy-efficient software by design. However, the advent of AI is chal-
lenging the software industry by requiring even more computational power to run 
state-of-the-art intelligence. The emerging guidelines for trustworthy AI make per-
formance efficiency and environmental risk mitigation essential requirements.

However, more work needs to be done to enable a fully green landscape in the 
realm of intelligent software. This is a concern that involves developers, design-
ers, policymakers, users, and society in general. We currently rely on software for 
everything – as software users, we have the right to ask for transparent and trust-
worthy software. When we download a new app or sign up for a new service, we 
want to know what is behind the curtain. All stakeholders have a role to play, and 
little by little, step by step, we will make all software green, together.
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