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summary

The thesis develops a framework using exclusively Synthetic Aperture Radar (SAR) data to
identify and classify volcanic deposits into Pyroclastic Density Currents (PDCs) and lava flows,
which is crucial for planetary exploration where direct sampling is infeasible. Confirming the
existence of PDCs on a planetary body provides insights into its geologic and atmospheric
evolution, volatile content, and even potential for habitability.

The study uses high-resolution, dual-polarised Level-1 Ground Range Detected (GRD) SAR
C-band imagery from the Sentinel-1 mission. Case studies from Sinabung (Indonesia), Fuego
(Guatemala), Kilauea (Hawaii), and Nyiragongo (Congo) offer a diverse dataset.

The framework involves preprocessing steps suitable for highly variable topographic terrain,
including calibration, despeckling, and radiometric and geometric corrections to produce re-
flectivity estimates in VV and VH polarisations. Texture features are derived using the Gray
Level Co-occurrence Matrix (GLCM) method, including contrast, homogeneity, dissimilarity,
and angular second moment (ASM). They are used as input to the first classifier alongside
more straightforward metrics like polarisation ratio, Normalised Difference Index (NDI), and
local variance. The first model distinguishes deposit pixels from the scene’s background. The
deposit pixels are further classified as PDCs or lava flows by an extreme gradient boosting
classifier using the same features.

The models demonstrated high F1 scores, indicating a good balance between precision and
recall, though both exhibited high RMSE. The first model’s high RMSE (0.35) is not concern-
ing for this application, considering an accurate outline is unnecessary. The second model’s
RMSE (0.42) coupled with a high False Negative rate (25%) reduces the method’s reliabil-
ity. Nonetheless, when tested on unseen data from Soufriere Hills (Montserrat) and Pahoa
(Hawaii), the models produced accurate results with at least double the pixels correctly identi-
fied as their respective deposit type.

Including GLCM-derived texture features significantly enhanced accuracy, validating their use
in volcanic deposit classification. This study’s contributions to remote sensing in volcanology
provide a foundation for understanding remote worlds. Future research could explore the
impact of resolution on classification and test different texture measures as complementary or
substitute features. Integrating part of the workflow into satellite firmware could enable near
real-time monitoring and enhance hazard assessment and mitigation strategies.
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Introduction

Volcanic activity plays a crucial role in shaping planetary surfaces, influencing atmospheres,
and providing key insights into the internal processes of planets. By studying volcanic deposits,
scientists can reconstruct the history of planetary bodies, understand the evolution of their
interiors, and even predict future volcanic activity. Characterising the morphology and physical
properties (e.g., grain size, density, componentry) of volcanic deposits such as lava flows,
tephra and pyroclastic density currents (PDCs) is critical to gaining insights into the eruption
dynamics and emplacement processes that formed these deposits [9], [23]. Such insight is
essential for interpreting volcanic regions’ historical and potential future activity.

"Distinguishing between different flow types contributes to the understanding of
geodynamic processes taking place in the subsurface [33].”

For instance, the presence of PDCs suggests high volatile content in the mantle released
via volcanism; subsurface pressure and temperature conditions allow for the accumulation of
these volatiles [64]. Effusive volcanism (lava flows) could indicate a mantle composition rich
in basaltic magma, implying a lower gas content and higher fluidity.

Historically, volcanic monitoring has faced numerous challenges. From field missions to re-
mote sensing, various techniques have been employed to track and analyse volcanic activities
and mitigate associated risks [13], [76]. Deposit areas are typically extensive and can be diffi-
cult and dangerous to access due to eruptive activity, inaccessible terrain or other restrictive
conditions, even long after an eruption has concluded [9]. While in-situ observations, when
feasible, provide precise classification of volcanic deposits, they are often expensive and re-
quire significant time investment. Consequently, remote sensing has become a vital tool in
volcanology, substantially enhancing our ability to study volcanic activity and deposits from a
safe distance efficiently.

Optical sensors, such as those on GeoEye, WorldView, Quickbird, and Pléiades, are widely
used for their high-resolution capabilities, providing sub-meter image pixels that are excellent
for detailed surface observations on Earth [84]. However, when it comes to planetary bodies
with thick atmospheres, like Venus, these sensors face significant limitations. Optical imaging
is ineffective in such environments due to its inability to penetrate dense atmospheric layers
and obstructions such as clouds, smoke, or ash; all commonly present in humid, tropical envi-
ronments where many volcanoes are located [81].

Synthetic Aperture Radar (SAR) addresses these issues by collecting data regardless of time
of day or lighting conditions, and most critically, it can penetrate thick atmospheres and other
obstructions, making it the only viable option for observing the surface of planets like Venus
[88].

In this context, previous studies have utilised several data sources and satellite or airborne
missions, such as ALOS/PALSAR [84], COSMO-SkyMed (CSK) [22], multi-sensor unoccu-
pied aerial systems (UAS), thermal infrared (TIR) cameras [9], and their combinations. Most
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of the studies focus on detailed classifications of a single volcanic scene, analysing the various
sub-types of lava or PDCs. However, this type of analysis can often lead to non-generalising
models as they are case-specific and very localised. In their work, Dualeh et al. [22], created
a semi-automatic classification method from backscatter imagery. However the results were
significantly less accurate compared to a manual method. The discrepancies were especially
prominent in smaller flows, due to the difficulty of distinguishing backscatter signals from sur-
rounding noise. In addition, the classification of the outlines required a time-series of images
- both before and after the eruption - in order to detect changes in the signal over-time which
required repeat-pass acquisitions of the same area.

Identifying and classifying volcanic deposits remotely with limited information is the only option
for planetary bodies where direct geological sampling is unfeasible. On Earth, geological field-
work has allowed us to catalogue and understand the relationships between different types of
volcanoes and their associated deposits. In contrast, extraterrestrial missions face significant
logistical, technical, and financial challenges, with exponentially higher costs and complexities
[15], [74]. Thus, accurately classifying volcanic deposits using remote sensing technologies
like SAR becomes indispensable.

1.1. General Objectives

Recognising the limitations of multiple data sources in space missions, where bandwidth and
payload capacities restrict data volume [82], this thesis presents a simplistic approach to clas-
sifying volcanic deposits. However, this simplicity is not a limitation; it is a strength. It aims to
develop a framework based on a single source of information: SAR image data.

The primary research question addressed in this thesis is:

Can we identify and distinguish PDCs and lava flows on a planetary body using
exclusively remote sensing SAR data?

With sub-questions following the main research question:

» Does the proposed framework indicate the presence of deposits in the scene?
* Is the resolution of Sentinel-1 SAR data sufficient for deposit classification?

To address these questions, this work develops a framework which includes appropriate pre-
processing steps and two binary classifiers based on SAR Sentinel-1 data. This approach
maximises the utility of minimal information, ensuring the feasibility of deploying such tech-
niques in planetary missions.

1.2. Broader Implications
The remote classification of volcanic deposits contributes to our understanding of a planet’s
geodynamic processes [72] without costly and technically challenging physical sample returns.
It allows us to conduct planetary geology at a distance, opening up new possibilities for under-
standing extraterrestrial volcanism.

The discovery of PDCs on a planetary body, as discussed in NASA Technical Reports [33],
signifies active or past volcanic activity and aids in understanding the planet’s geologic and
atmospheric evolution. ldentifying PDCs can provide insights into the volatile content of the
planet's magmas and the nature of past eruptions, which are vital to interpreting the planet’s
surface features and potential for habitability [32]. The relationship between habitability and
volatile content is complex, with volcanic outgassing playing a crucial role in regulating plane-
tary climates; for those interested in a deeper understanding, sources like [44], [99] and [52]
provide further details. The ability to recognise and study such phenomena can also, refine
our models of planetary evolution [12] and aid in selecting landing sites for future missions to
ensure scientific value. Although atmospheric and environmental conditions may vary, within
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the framework of comparative planetology, the findings of this study can be carefully extrapo-
lated and applied to other planetary bodies with comparable characteristics to Earth, such as

Venus.



Background Information

This chapter introduces the geomorphological characteristics of each deposit type observed
on Earth. Although an in-depth evaluation of the deposits’ physical properties is outside the
scope of this study, | owe the reader a brief overview of their textural attributes to facilitate
reading. The two main categories of volcanic deposits are PDCs and Lava Flows. These
two deposit types are selected due to their distinct emplacement mechanisms and resultant
surface morphologies, which are governed by physical properties such as viscosity, temper-
ature, gas and particle content. Their differences manifest in surface roughness and texture,
parameters effectively captured by SAR imaging.

2.1. Pyroclastic Density Currents

In the context of volcanology, PDCs are hot, fast-moving mixtures of gas and volcanic particles
(ash and rock debris) that flow “hugging” the ground due to their higher density relative to
the surrounding air and the influence of gravity [67], [61]. They extend until they run out of
momentum. They typically originate from the collapse of eruption columns, lava domes, or
lava flow fronts and explosive lateral blasts [21].

Subcategories of PDCs relevant to the context of this study are introduced below.

Block-and-Ash Flows (BAFs) Block-and-ash flows (BAFs) are a common type of PDC
formed by the gravitational collapse of hot lava domes, lava lakes (molten or solidified lava
in volcanic craters or depressions [80]), and perched pyroclastic debris [23]. These flows are
characterised by a concentrated basal avalanche, which carries the bulk of the mass and mo-
mentum, overlain by a dilute turbulent ash cloud surge, making them a complex dense—dilute
system [23]. A typical BAF deposit example is shown in Figure 2.1.

Figure 2.1: BAF deposit texture with angular and fractured andesite clasts from the Waiweranui unit, Maero
Formation, Mt. Taranaki. Image retrieved from [30].

Lahars Lahars are a conglomerate of rock debris, mud and water that travel rapidly downs-
lope under the influence of gravity [86]. They can progress through different phases with

4
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varying water content. In all phases, the liquid portion supports the solid particles and enables
the rapid movement of the flow down the volcano’s slope [85]. Figure 2.2 shows a large lahar
formation on the slopes of Mount Saint Helens.

Figure 2.2: Lahars at Mount Saint Helens. Image retrieved from [73].

Pyroclastic Surges and Pyroclastic Flows Pyroclastic flows are dense and contain a high
concentration of solid volcanic fragments. Pyroclastic surges are more dilute, with fewer solid
particles and more turbulent nature as depicted in Figure 2.3a. The lower concentration of frag-
ments increases its mobility and allows for surmounting topographical features as indicated in
Figure 2.3b. In both cases, the gas phase partially supports the solid particles, contributing to
their high mobility [85].

QAc6740¢

(a) Pyroclastic flow vs pyroclastic surge representation. (b) Pyroclastic flow vs pyroclastic surge deposits. Image
Image retrieved from [78]. retrieved from [45].

Figure 2.3: Comparison of pyroclastic flow and surge.

Block or debris avalanches Block and debris avalanches are massive, gravity-driven vol-
canic rock, debris, and soil movements. They occur when the structural integrity of a volcanic
flank collapses, often due to volcanic activity such as dome intrusion, phreatic explosions, or
caldera wall slumping [1]. These avalanches consist predominantly of block facies and ma-
trix facies and can travel at high speeds, picking up soil, stream gravels and wood, causing
significant damage to the surrounding landscape [89].

» Block facies: Consist of coherent (solid, intact), unconsolidated (loose, uncemented,
minor compaction or hardening) or poorly consolidated (partially compacted) volcanic
fragments. They often retain their internal stratification and intrusive contacts [1].



2.2. Lava flows 6

» Matrix facies: Comprise of a mixture of volcanic clasts from the source volcano, typically
poorly sorted, angular, highly fractured, often fitting together [1].

2.2. Lava flows

Lava flows are streams of molten rock (liquid), crystals (solids), gas (bubbles), and other voids
that emerge from a volcano and solidify as they cool [43]. The temperature at which lava
solidifies depends on its composition (approximately 800 degrees Celsius) [87]. This study
considers three (3) primary types of lava flow subcategories.

Pahoehoe Pahoehoe lava flows exhibit smooth, glass-like surfaces, often characterised by
folds called “ropes” and an undulating, “hummocky” or “billowy” topography. The surface tex-
ture may include small bumps and mounds due to the entrapment of crystals, and it produces
a characteristic crunching sound when walked on due to the fragile glassy rind that spalls off
[43]. The term “pahoehoe” comes from the Hawaiian word “hoe,” meaning to paddle, which
likely refers to the resemblance of the ropy texture of this type of lava to the swirling eddies
created by paddle strokes in the water as shown in Figure 2.4. These flows form when lava
erupts at a low rate and moves slowly over gentle slopes. Pahoehoe flows can travel as sheets,
through lava channels, or within lava tubes, often advancing as small lobes or toes that break
out from the crust. Subtypes of pahoehoe include smooth, ropy, hummocky, shelly, slabby,
spiny, toothpaste, and entrail [79]. Several of these types are presented in Figure 2.4 and
Figure 2.5.

(a) Ropy lava flow formed on La Palma, Canary Islands in 1949.
This wrinkled surface is the result of the interior lava flow —

moving quicker than the exterior due to the difference in (b) A close up image of Pahoehoe rope lava with

temperature. Image retrieved from [70]. visible red-hot interior. Image retrieved from [79].

Figure 2.4: Examples of ropy pahoehoe - the most well-known type, formed due to shear stress accumulation at
the surface. The cooling crust is dragged downstream by the hot interior.

‘A‘a ‘A‘a lava flows have rough, jagged, or clinkery surfaces composed of angular, spiny
fragments as shown in Figure 2.6. These flows are characterised by their irregular, sharp
clasts of lava formed when the lava is too viscous or flowing too quickly to maintain a smooth
surface [79]. Instead, it tears apart due to shear strain, creating a brecciated surface layer
that encloses a coherent core [43]. They typically advance as sheets or within channels faster
than pahoehoe and are more common [79]. Figure 2.7 showcases an example of both ‘a‘a
and pahoehoe formations.

Blocky Blocky lava flows, typically composed of andesitic and basaltic-andesitic materials,
feature larger blocks than ‘a‘d lava [70]. Their surface is smooth, lacking the rough, spiny
texture of ‘a'a. Their shape is polyhedral with defined angles. Internally, they have a dense
core, often rich in crystals or bands of obsidian and pumice. They are also distinguishable
from ‘a‘a due to their much higher thickness [43]. Examples of blocky lava flow deposits are
presented in Figure 2.8.
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(a) Basaltic pahoehoe formation in Hawaii. Image (b) Pahoehoe lava formation after cooling in Hawaii.
retrieved from [70]. Image retrieved from [70].

(c) Pahoehoe "toes” on an active lava flow from Kilauea (d) Texture example of spiny pahoehoe lava. It forms
Volcano in Hawaii. This sub-type rapidly cools down from viscous lavas with gas bubbles. Location: Kilauea,
when exposed to the atmosphere. Image from [79]. Hawaii. Image from [79].

Figure 2.5: Pahoehoe lava flow types. Images retrieved from [79], [70].

- ) ; (b) A close up view of ‘a‘a showing the
(a) ‘A‘a lava in the foreground in La Palma, Canary Islands incandescent interior and the cooled
formed during the Cumbre Vieja eruption in 1712 [70]. rubbly,clinkery surface [79].

Figure 2.6: ‘A'a lava flow examples.
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Figure 2.7: Both pahoehoe and ‘a‘a lava formations as seen in Hawaii. When the flow rates are high and the
slopes are steep the formation of ‘a‘a lava is favored. [70]

(a) Blocky lava at Nea Kameni (new burnt) island in the caldera (b) A close up of blocky lava at Nea Kameni island
of Santorini, Greece [70]. in Greece [70].

Figure 2.8: Blocky lava flow can be tens of meters high with very large rock formations.



Data & Methods

This chapter outlines the overall approach developed to attain the study’s objectives, which
involves a preprocessing step and two classification pipelines. First, the case studies are
presented in the context of their key physical properties that are relevant to the classification.
Following this discussion, the data products selected for these cases are introduced, leading
to a detailed explanation of the methods employed.

3.1. Case studies

There are four case studies used as input for classification. The selection is made to incorpo-
rate different lava and PDC subtypes to ensure diversity. In addition, since the operation year
of Sentinel-1 is 2014, eruptions prior to that date were disconsidered.

3.1.1. Case Study 1: Sinabung Volcano, Indonesia

Mount Sinabung is an andesitic stratovolcano in the North Sumatra Province of Indonesia
[54]. The phreatic eruption on August 27, 2010 [35], marked the beginning of Sinabung’s first
historical activity. The eruption was followed by a prolonged period of dome growth, lava flows,
and frequent explosive events. Notably, major PDC events occurred in November 2016, with
eight (8) recorded explosions and February 19, 2018, with the latter removing the summit lava
dome [100], [65], [7]. An effusive eruption on January 31 2014, created a 100-meter-thick
and three (3) km-long andesitic (blocky type) lava flow on the SE flank, which has remained
prominently visible [7], [36].

The collected data for this location are from April 21, 2018, following an eruption that produced
fresh PDCs reaching about 3.5 km down the SE flank. The outline includes avalanche blocks
and fine-grained ashes embedded in between [37], [38]. This timing allows for assessing
the freshly deposited materials without the interference of significant erosion or vegetation
regrowth. It is worth mentioning that the thick lava flow of January 2014 is visible in the SAR
image.

The unique coexistence of lava flows and PDCs within the same volcanic scene at Sinabung
creates a layered geological structure that challenges and complicates classification. Due to
the multiple eruptions taking place after the deposition of lava, the question is raised:

Should we consider the lava flow region as "lava,” "PDC,” or a new combined category?

In later sections, we will discuss the model’s performance in each case. This volcano was
specifically selected to examine the algorithm’s performance in distinguishing complex vol-
canic scenes and diversifying the sub-types of PDC deposits, a critical step towards under-
standing volcanic behaviour and developing more accurate models.

The shapefiles with the outlines for this case were provided by Brett et al. [7]. The PDC outline
was extended to incorporate additional pixels that were left out. Figure 3.1 illustrates both the
original and revised outlines. Considering the limited PDC data points, incorporating these
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additional pixels was crucial to enrich the dataset for training and validation purposes.

Shapefile Overlay on VH
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Figure 3.1: In light green, the original outline capturing a smaller part of the deposit. In white, additional patches
of PDC areas are added.

3.1.2. Case Study: Fuego Volcano, Guatemala

Volcan de Fuego - Spanish for "Volcano of Fire”, is a stratovolcano in Guatemala primarily pro-
ducing basaltic and andesitic flows, with recent eruptions producing more mafic material, rich
in silicate minerals or magnesium and iron [95]. Notable eruptions have produced pyroclastic
flows, lahars and block avalanches [40]. This work examines the activity related to the major
eruption on June 3, 2018, and subsequent minor eruptions in the following days. As observed
in satellite data, multiple explosions generated an ash plume throughout the day, reaching
15.2 km in altitude [39]. Large pyroclastic flows descended several ravines on the volcano’s
flanks [10]. On June 5, additional explosions increased the number of pyroclastic flows and
block avalanches, which travelled up to 1 km downslope [39]. Ash plumes and pyroclastic
flow debris led to persistent ash clouds. Heavy rainfall starting June 6 led to over sixty (60)
lahars that month, caused by the interaction of rain and freshly deposited volcanic material
[22]. Figure 3.2 shows a SAR image depicting ground surface changes in the area.

Rainfall significantly influences radar backscatter properties by altering the moisture content
of volcanic deposits. When the subsurface transitions from dry to wet, radar penetration
decreases, and the radar signal reflects more from the near-surface scatterers, increasing
backscatter intensity [22]. Sentinel-1 SAR data used in this study was carefully selected from
June 8, 2018, to capture the deposits as fresh as possible before any significant erosion; how-
ever, rainfall events could alter the backscatter signals and, consequently, the accuracy of the
classification.

Due to its clear and isolated PDC signatures, the Fuego scene presents an ideal opportunity
for training models to distinguish PDCs from other volcanic deposits. A rough outline for this
volcanic scene was provided by Dualeh et al. [22]. It was then carefully redrawn based on
the mean of a collection of cloud-filtered Sentinel-2 images. This new outline improved data
fidelity by closely adhering to the deposit boundaries and correcting the original contour, which
included extraneous background pixels.

3.1.3. Case Study: Kilauea, Hawaii
The 2018 eruption of Kilauea, a shield volcano known for its gentle slopes and active history
[71], was a significant event. Lasting from May 3 until August 9, this eruption saw a transition in
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Figure 3.2: Damage map derived from SAR images by the Copernicus Sentinel-1 satellites (ESA), taken before
(June 1, 2018) and after (June 7, 2018) the volcanic eruption. The map covers 91 by 21 km with each pixel
representing about 30 meters. Color variation from yellow to red indicates increasing ground surface change.
Image courtesy of NASA JPL [59].

lava composition from evolved basalt and andesite to more mafic basalt. This shift indicated
a change in magma source from the rift zone to nearby magma reservoirs [24]. The high-
temperature mafic lava, with its higher effusion rate, formed channelized pahoehoe and 'a’a
lava flows [24], adding to the diversity of lava flow subtypes in the dataset.

The eruption produced over twenty (20) fissures and significant seismic activity, leading to
large-scale magma drainage through the summit, rapid deflation, and extensive lava flows
reaching the ocean [56]. The United States Geological Survey (USGS) carefully mapped the
extent of the eruption and generated detailed shapefiles for the outline of each flow [93]. The
data selected for this area are shortly after the last effusive activity on the 15th of August to
avoid erosion and excessive rainfall compacting the deposit. The same scene contains lava
flows from a past eruption that took place between June 2014 and June 2016, and they were
used to test the accuracy of the model based on unseen data.

The outlines for the training data were retrieved from U.S. Geological Survey [93] and [92]. It
is worth noting that older deposits in the (training) scene were included to enrich the dataset
with more diverse lava flow points. Figure 3.3 shows the location of these older flows, which
were subsequently integrated into the original outline.

3.1.4. Case Study: Nyiragongo, Democratic Republic of Congo

The eruption at Mt. Nyiragongo, an active stratovolcano in the Republic of Congo, took place
on May 22, 2021, and shortly after, the Copernicus Emergency Management Service mapped
it to analyse the lava and its impact [14]. The SAR image for this study is dated June 6, 2021.
Basaltic lava flowed South through three (3) fissures near the lava lake present in the summit
crater [34]. According to Innocent et al. [47] who performed a geochemical characterisation of
the deposits, the 2021 eruption produced “ultrabasic” lava, highly alkalic with low magnesium,
calcium and iron contents. Such alkaline, basic magma is rarely observed, making this an
interesting case to diversify the portfolio of lava types. The type of lava flow produced during
this eruption can be inferred from Figure 3.4, where one can recognise the rough, spiny texture
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Figure 3.3: Map of Hawaii island (left). The dotted rectangle is the area of interest located in the East rift zone.
The optical image on the right shows the lava flow area, with the yellow dotted polygons highlighting previously
deposited lava [50].

with irregular shapes and sizes characteristic of ‘a‘a lava. The GIS shapefiles for this event
were retrived from Copernicus Emergency Management Service [14].

Figure 3.4: Nyiragongo eruption deposits as captured by The Washington Post [90].

3.2. Data

The data utilised in this research comprises Synthetic Aperture Radar (SAR) C-band imagery
from the Sentinel-1 mission, a component of the Copernicus European joint initiative by the
European Commission and the European Space Agency [2]. All images are obtained from
the Alaska Satellite Facility (https://search.asf.alaska.edu/), specifically in Interferometric Wide
(IW), high-resolution mode from Sentinel-1A.

Ground Range Detected (GRD) GRD data, categorised as Level-1 products, include a de-
gree of pre-processing and present multi-looked backscatter intensity information projected to
ground range using the WGS84 Earth ellipsoid model [97], [2]. The selected images feature
dual polarisations, VV and VH. While the data of IW High Resolution are provided with a pixel
spacing of 10 m x 10 m, the spatial resolution is 20 m x 22 m (range x azimuth).

3.3. Methodology

Sentinel-1 GRD data were preprocessed using the Sentinel Application Platform (SNAP), fol-
lowing a systematic workflow to ensure the data’s accuracy and reliability for further analysis.
As mentioned earlier in this section, the information contained in the GRD product of each
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scene is amplitude, A, and intensity, I, which are related by

I =A% (3.1)

3.3.1. Preprocessing Workflow

Figure 3.5 is a block diagram that schematically depicts the preprocessing workflow. The final
output includes ~, referred to as "gamma nought”, in VV and VH polarisations. It represents
a reflectivity estimate derived from radar brightness after calibration and radiometric correc-
tions. For clarity, and because some of the readers might not be familiar with these terms, an
explanation of the different reflectivity estimates is given in Figure 3.6, where it is visible that
oo and v are trigonometric transformations of radar brightness ().

Sentinel-1 GRDH IW

!

Orbit Correction

!

Apply Orbit file

Thermal Noise Removal

|

Border Noise Removal

[
[
[
[
l
[
[
[
[

!

Radiometric Terrain Flattening

!

Despeckling

Digital Elevation Model

Refined Lee Filter

l

Rangle-Doppler Terrain
Correction

Digital Elevation Model

Reflectivity estimate (y,)

A

Figure 3.5: Block diagram of the preprocessing workflow.

Figure 3.6: Brightness expressions for radar backscattering. The most common backscattering term for
geoscientists is 0g. 0 and oy are reflectivity estimates and they differ in the way they are normalised. Image
from [66].

Specifically, 0o measures the mean reflectivity of a patch of distributed scatterers per unit area
of a horizontal surface, measured along the ground range. On the other hand, ~, represents
the reflectivity of distributed scatterers per unit area of the incident wave front and has the
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advantage of maintaining relatively constant reflectivity over a wide range of incident angles
for rough surfaces [66]. To make it clear, Figure 3.7 illustrates the definitions of ground range
and incident angle. Therefore, the calibrated backscatter values ~, are used throughout this
study to represent backscatter intensity.

Local Normal
to surface

Ground Range

Figure 3.7: Definition of some common terms in SAR.

1. Orbit Correction

This step involves updating the satellite’s orbit information to ensure accurate geolocation
through orbit state vectors stored in the metadata of the GRD product [28].

2. Thermal Noise Removal

Thermal noise is inherent in radar systems and can be pronounced in images with low intensi-
ties, especially in cross-polarisation channels [5]. Itis present in all electrical systems, caused
by the random motion of charge carriers (most typically electrons, or electron holes) regardless
of any applied voltage and increases proportionally with temperature [63]. Practically, in SAR
imaging, thermal noise can affect the quality of the images. The noise appears as random
variations in the brightness or pixel values.

3. Border Noise Removal

Radiometric artefacts, which affect the edges of the SAR image, are removed to prevent them
from affecting the analysis. The operator in SNAP removes low-intensity noise and invalid
data at the border [28].

4. Calibration

Calibration converts the pixel values to backscatter coefficients (o, 79 and ). This step
ensures the data reflect only the true backscatter intensity from the Earth’s surface. In 3y, the
influence of the incidence angle is still present [27]. For this study, 5, is selected as an output
of this operator and it is calculated as

~ DN?
~ LUTg

B (3.2)

where LUT g0 is the calibration vector available in the annotation files of the Sentinel-1 prod-
uct and DN is the pixel Digital Number; in the case of GRD products it represents the pixel
amplitude found in the measurement file [26].

5. Radiometric Terrain Flattening
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B CCRSICCT

Figure 3.8: Slant range distortion representation. Inspite A1 and B1 targets having the same size on the ground,
their apparent dimensions, as seen by the radar, (A2 and B2) are different. Image courtesy of Natural Resources
Canada [60]

This step corrects for radiometric distortions caused by terrain variations, resulting in ~y and o
values that are more accurate for hilly or mountainous areas. The Terrain Flattening operator
in SNAP utilises an algorithm by Small [83], which does not use the (local) incidence angle
but the area illuminated by the sensor of each pixel. Correcting the angles prior to this step
could lead to overestimating the influence of the surface orientation towards the sensor [27],
thus the angles are calibrated to 5, prior to this step.

6. Despeckling

This step reduces speckle - a granular, noise-like signal inherent to SAR images and any
coherent source. Speckle arises from the constructive and destructive interference of the
coherent radar signal, resulting in a grainy appearance that can obscure fine details in the
data and reduce interpretability [66]. This workflow employs the Refined Lee filter with a 7x7
pixel window to mitigate its effect. The resulting images have improved radiometric resolution
at the expense of spatial resolution [49]. The choice of the particular window size is due
to its commonality in SAR image processing, because it provides sufficient neighbourhood
information to effectively reduce speckle while minimising the loss of spatial resolution.

7. Range-Doppler Terrain Correction

This step corrects geometric distortions caused by the side-looking (slant) radar geometry,
using a Digital Elevation Model (DEM) to accurately geocode the data. Radar imagery suffers
from geometric distortions due to its viewing geometry and the radar’s nature as a distance-
measuring device, causing slant-range scale distortion and varying image scale from near to
far range as depicted in Figure 3.8. Additionally, the presence of hills and valleys can introduce
geometric shifts known as foreshortening, layover, and radar shadow. Range-Doppler Terrain
Correction addresses these issues by shifting all pixels to their correct locations according to
an input DEM, ensuring accurate ground-range representation. [25], [3], [60].

3.3.2. Classification
The classification approach encompasses a two-step strategy designed to improve accuracy in
classifying volcanic deposits. This strategy involves the construction of two separate models:

* Model 1: This model classifies pixels as either deposit or background.

* Model 2: This model further classifies the deposit pixels and distinguishes between the
two types: PDCs and lava flows.

This sequential method reduces the overall decision space and minimises the potential for
"confusion” between classes. Isolating the deposit pixels from the background reduces the
complexity of the overall classification task. When trialling the implementation of a single model
with three classes (lava flows, PDCs and background), many PDC pixels were misclassified
as background, adding to the motivations for adopting the two-step approach.
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Implementation Both models are implemented in Python. The exact selection of parame-
ters can be found in the Appendix A.

Model 1 Model 2

Classifier: Random Forest Classifier: Extreme Gradient Boosting
Library: Scikit-learn [16] Library: XGBoost [20]

Function: Function:

For a detailed explanation of how a Ran-

dom Forest classifier works, the reader Wade and Glynn [96] provide more infor-
can study the overview given by Belgiu mation on extreme gradient boosting.
and Dragut [6].

Table 3.1: Model selection for each step and libraries used to implement them in Python.

Motivation for model choices The particular setup was selected based on performance
and practical considerations:

» Random Forest performed well in distinguishing between background and deposit pixels
due to its ability to handle large feature spaces and capture complex patterns. However,
its computational cost made it less suitable for the second step, considering that more
adjustments were necessary to achieve satisfactory performance.

» Extreme gradient boosting was preferred for the second step due to its computational
efficiency and ease of tuning without overfitting. These traits were important for handling
the more refined task of distinguishing between PDCs and lava flows.

Alternatives A single decision tree for Model 1 was considered, but it could not sufficiently
differentiate between deposits and background. Convolutional Neural Networks (CNNs) were
considered for Model 2 due to their potential to capture the complex relationships between
lava flow and PDC textures. However, due to data limitations (only four images would not
suffice for such methods), an implementation was not attempted.

Feature Extraction

The model considers various basic features computed exploiting both the VV and VH polarisa-
tions, as well as a set of features representing texture utilising the Gray Level Co-occurrence
Matrix (GLCM) concept as described in [57]. Rodrigo et al. [69] have also used GLCM texture
features for land cover classification, where a high level of accuracy was achieved, confirm-
ing the value of this method. In both cases, the authors use GLCM to compute and create a
texture characteristics map of the original ~, images in VV and VH.

Basic features The first two (2) features are the v¢ VV and VH channels, based on which
the following four (4) features are calculated.

» Polarisation ratio: This ratio helps identify the terrain’s scattering mechanisms and sur-
face roughness characteristics. Higher ratios typically indicate increased surface rough-
ness or volume scattering, which is common in areas with dense vegetation or rough
surfaces. Computed as shown in (3.3).

Pol Ratio — J%VH (3.3)
Yo,vv

* Normalised Difference Index (NDI): This index highlights the relative difference be-
tween the VV and VH polarisations, providing insights into surface properties and struc-
ture. A higher NDI value indicates a greater difference between the polarisations, often
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corresponding to more distinct surface features. Calculated using the formula provided
in (3.4).

NDI — Yo,vv — Y0,vH

(3.4)
Yo,vv + Yo,vH

* Local Variance: Calculated separately for the VV and VH channels using a 4x4 moving
window approach. This feature measures the spread or dispersion of pixel values within
the window. In this study, local variance is calculated using a smooth function [91]. This
function smooths the data using a convolution with a specified window. It computes the
weighted sum of the data points at each position. It effectively performs moving average
smoothing, which aids in reducing noise and highlighting underlying trends in the data.
Mathematically, the mean of the squared pixel values and the square of the mean pixel
values are calculated for each window and polarisation. The local variance is then given
by the difference between the two quantities as shown in (3.5).

U|2c>ca| =72 - (’7)2 (3.5)

Lastly, the normalised local variance is expressed by:

2 \ Ulzocal (3.6)

Onorm = Ta
where 7 is the average pixel value in the specified window as calculated through the
smooth function.

GLCM features The Gray Level Co-occurrence Matrix (GLCM) is a statistical method used
to examine the spatial relationship between pixels in an image. It represents how often pairs
of pixels with specific values and spatial relationships occur within an image or sub-image
[48], [57], [69]. Using the GLCM, one can derive texture feature maps. These texture features
are critical for representing the complex surface properties of volcanic deposits and can help
enhance classification accuracy [69]. This directly ties back to the physical properties of lava
flows and PDCs discussed earlier, as the texture features captured by GLCM are influenced
by factors such as surface roughness and composition. By selecting case studies with diverse
volcanic deposit types, the analysis leverages these GLCM-derived features to improve the
accuracy of distinguishing between different volcanic surfaces.

In the 1970s, Haralick, Shanmugam, and Dinstein [42] systematised most of the GLCM tex-
ture calculations used in Remote Sensing. They proposed fourteen different measures and
recommended calculating them in four directions and using each measure’s mean and range
in classification problems. Directionality has not been widely applied, with most researchers
opting for a single, "invariant” spatial direction as the average of the four [41], inline with the sug-
gestions of the authors. This study makes use of four texture features: contrast, homogeneity,
dissimilarity, and angular second moment (ASM). A detailed description on the computation
of the GLCM and the extraction of features is provided in Appendix B.

An integral part of the workflow is the normalisation method applied to the ¢ VV and VH images
used as input for the GLCM calculations. For this application, the images were normalised
based on an Equal Probability Quantisation approach described in detail in Appendix B. The
rationale behind this non-trivial choice is explained here.

Haralick, Shanmugam, and Dinstein [42] highlighted a general challenge in grey-tone normal-
isation of images: texture is independent of tone. For instance, an image might depict the
same texture in different tones, as shown in Figure 3.9. While humans can easily recognise
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the similarity in texture despite tonal differences, a machine would either need the images
to be probability quantised (not just quantised) to derive the GLCM and its features, or the
features themselves to be invariant under monotonic grey-tone transformations. ASM is one
such invariant feature, whereas contrast, dissimilarity, and homogeneity are sensitive to over-
all brightness or contrast changes. Specifically, monotonic transformations, whether linear or
non-linear, preserve the order of pixel intensities and consequently the probabilities of occur-
rence in the GLCM are preserved too. ASM is calculated based on the squared probabilities
which is why it remains invariant under these transformations. In summary, unless the input
image is probability quantised or normalised in such a way so that the distribution of intensities
is considered, most texture features are not invariant to monotonic grey-tone transformations.

Figure 3.9: The image on the left is developed with light and thin tones, while the image on the right consists of
dark and heavy tones. Despite the differences in tone, the texture pattern of the lines remains the same in both
images. This illustrates how texture can be invariant to monotonic grey-tone transformations. Images created
using chatGPT 4o.

Moving Window Approach

A moving window approach is used to apply the GLCM features across the entire image. A
window of predefined size (e.g., 3x3, 5x5 pixels) "slides” across the image, and the GLCM and
subsequent texture features are computed for each window position. The results are texture
feature maps representing each feature’s spatial distribution across the image. For this work,
a window size 5x5 was selected, representing a 2500 square meter area. The window size
choice strikes a balance between capturing detailed local textural variations, while maintaining
computational efficiency.

In total, the reader is now familiar with ten features, all of which are used in both models along
with their respective logarithmic transformation to account for the wide range of values and
enhance the model’s sensitivity to minor variations.

Training the models

The models were trained using all features described in the previous paragraphs as input. In
the first model, pixels were labelled as deposit if they fell within the outlined areas. In the sec-
ond model, they were further labelled according to their case study as lava or PDC. To ensure
data fidelity, in some cases, a subset of the background pixels was pre-selected to exclude
small patches or streams of deposits not captured by the outlines. For example, Figure 3.10
illustrates an optical image of Volcan de Fuego layered with a red outline encapsulating the
fresh 2018 deposits. One can discern that the outline does not include the smaller streams
downhill of the mountain nor the older deposits at the top near the crater.
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The output of Model 1 is a binary classification map where each pixel is labelled as either
deposit or background. The identified deposit pixels are further classified by Model 2 into /ava
or PDC, resulting in a a refined classification map as the final output of the overall framework.

Figure 3.10: Optical image of Volcan de Fuego overlayed with the rough outline. Smaller streams of PDC
runouts are not included.

Balancing the datasets

Due to the high imbalance between the classes, each model’s pipeline includes a sampling
strategy.

» Oversampling: SMOTE (Synthetic Minority Over-sampling Technique) was applied to
the minority classes (deposit and PDC pixels) of both models.

* Undersampling: The majority class (background pixels) of Model 1 was under-sampled
in order to match the number of pixels in the minority class [46]. In total, one million
values for each class were considered.

* Pipeline Setup: The resampling techniques were incorporated into a pipeline to ensure
a balanced training set. Using a pipeline is particularly useful when performing cross-
validation methods. It ensures that the resampling steps are performed within each
cross-validation fold, leading to a more robust model performance evaluation.

Performance metrics

Selecting the appropriate performance metrics is a nontrivial task and a critical factor in eval-
uating the quality of a classifier. The scientific community consenses that one should select
those metrics according to the specific criteria of their application; however, those require-
ments might not be known in advance [101]. Yangguang et al. [101] performed a statistical
analysis using Pearson linear correlation and Spearman rank correlation to explore the re-
lationship among widely employed metrics. They categorise the metrics into three groups:
threshold, probability and rank metrics. Table 3.2 shows the different metrics, their calculation
and grouping. An explanation of the variables is provided below:

» TP: True Positives - the number of correctly predicted positive instances.
* TN: True Negatives - the number of correctly predicted negative instances.
* FP: False Positives - the number of incorrectly predicted positive instances.

FN: False Negatives - the number of incorrectly predicted negative instances.

M: Total number of instances (positive and negative).
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» P,: Prediction accuracy of a classifier - the proportion of times the classifier correctly
predicts the true class.

» P.: Agreement probability due to chance - the proportion of times that agreement is
expected by chance.

» Precision: The ratio of correctly predicted positive observations to the total predicted

g TP
positives expressed as 7p1pp-

» Recall: Represents how accurately the model identifies the positive class and it is ex-

TP
pressed as 5 7y -

 y;: Actual (true) value for instance .
* 7;: Predicted value for instance i.

* N: Total number of negative instances (FN and TN).

According to their findings, metrics within the same category are highly correlated, while met-
rics from different categories are not as strongly correlated. Hence, when evaluating a classi-
fier, it is advisable to select multiple metrics, ensuring that at least one is chosen from each
category, especially if the specific evaluation criteria are not predetermined. Additionally, they
conclude that it is not critical for a classifier to achieve optimal performance across all metric
categories. Instead, as long as the classifier meets the performance requirements for the ap-
plication as measured by certain groups of metrics, it is recommended to adopt it even if its
performance in other metric groups is less satisfactory.

Table 3.2: Performance Metrics with Calculation Methods

Category Metric Calculation Method
TP+TN
Accuracy T
Threshold Metrics Kappa Statistic }10_}1?
F-Score 9. Precision-Recall

Precision+Recall

Mean Absolute Error (MAE) LMy — il
Probability Metrics

Root Mean Square Error (RMSE) \/ﬁ Zf\il(yi — ;)?

Area Under the ROC Curve (AUC-ROC) fol Recall x d(5F)
Rank Metrics

Area Under the PR Curve (AUPRC) fol Precision x d(Recall)

Considering the above and that the important class for this application is the minority class, this
study explores a variety of metrics, focusing on f-score, RMSE, AUC-ROC and AUC-PRC. In
order to not exclude the most widely used metric (i.e., accuracy), it is calculated and presented
in the results section; however, alone, it is not a reliable metric for this application because it
can be biased towards the majority class [53].
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In addition to the performance metrics described here, there are more tools one can leverage
to assess the quality and performance of a machine learning model. For this work, those are:
the confusion matrix, tree depth analysis, feature and permutation feature importance and
k-fold cross-validation.

Confusion Matrix The confusion matrix is a typical tool used in machine learning to visualize
a model’s behaviour in supervised classification. For binary classification, the matrixisa 2 x 2
matrix that provides a detailed breakdown of the model’s performance by showing the counts
of true positive (TP), false positive (FP), true negative (TN), and false negative (FN) predictions
[8].

Tree Depth Analysis Tree depth analysis involves examining the depths of individual trees.
The average tree depth indicates the complexity of the model, while the distribution of tree
depths provides insight into the diversity of the trees. Tree depth affects model flexibility, with
deeper trees fitting more complex functions and improving training set performance. Never-
theless, this could lead to overfitting and reduced generalization on the test data. Increasing
depth decreases bias while increasing variance; random forests mitigate this increase by aver-
aging multiple trees, though they are still susceptible to overfitting [11]. It is worth mentioning
that in the context of machine learning, bias refers to the error introduced by false assumptions
of the algorithm, which can cause it to miss relevant patterns and underfit the data. Variance,
on the other hand, captures how sensitive the model is to small fluctuations in the training data,
which can lead to overfitting.

This concept gives rise to the well-known "bias-variance tradeoff,” where increasing
model complexity reduces bias but increases variance, and vice versa.

The challenge in model development is finding the optimal balance between bias and variance,
ensuring that the model is complex enough to capture the underlying patterns in the data
without overfitting the noise and specificities of the training set [98].

Feature Importance Feature importance measures the contribution of each feature to the
model’s predictions. It is calculated by averaging the decrease in impurity across all trees
using the Gini splitting index [17]. This tool identifies the most influential features, providing
insights into the factors that most affect deposit classification.

Impurity-based feature importance can be misleading in several situations, mainly when deal-
ing with high cardinality features. Considering that our dataset contains many unique values
within a feature space, another metric, called permutation feature importance, can support our
understanding of which features play a significant role in constructing the model. It works by
shuffling the values of each feature and noting the change in the model’s score; this indicates
how much the model relies on that feature [18], [19]. The score metric used is the f1-score for
all the reasons discussed earlier in this section.

K-fold cross validation Itis a resampling procedure used to detect overfitting by assessing
how the results of a statistical analysis will generalise to an independent dataset [29]. It also
supports robust model selection and hyperparameter tuning. The general procedure is the
following:

1. Random shuffling of the dataset.
2. Split into k-amount of groups (folds) of approximately equal size.
3. For each group:

» Use the group as validation (test) dataset.

» Use the remaining (k-1) groups as training datasets.
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» Fit a model on the training set and evaluate on the validation.
+ Calculate the evaluation score (performance metrics).

4. Aggregate the k-scores to get a single estimate of the model’s performance. This in-
volves computing their mean and standard deviation to understand not only performance
but consistency, too [29].



Results

The initial phase of this study involved preprocessing the raw Ground Range Detected (GRD)
data from Sentinel-1 to mitigate various sources of noise and distortions, as outlined in chap-
ter 3. Intermediate preprocessing results are omitted as they fall outside the primary scope of
this work. This chapter introduces the case studies, detailing the feature images (basic and
GLCM) employed in model training. Additionally, the classification outcomes and performance
metrics for each model are presented.

Figure 4.1 provides an overview of the four case study areas, with deposit outlines overlayed
on each. Red polygons delineate the deposit regions used for training the models, while the
blue outline in Figure 4.1b highlights the old lava flow that is still visible today, as previously
discussed.
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(a) Case study: Fuego, Guatemala - data: June 8, 2018 (b) Case study: Sinabung, Indonesia - data: April 21, 2018
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(d) Case study: Nyiragongo, Democratic Republic of Congo -
(c) Case study: Kilauea, Hawaii - data: August 15, 2018 data: June 6, 2021

Figure 4.1: Deposit outlines overlayed on polarisation ratio maps for each volcanic scene. Note the difference in

colormap scales. (a) PDC deposit on Volcan de Fuego; (b) PDC deposit and the older lava pertaining to the 2014

eruption on Mt. Sinabung; (c) Kilauea, Hawaii with the lava flow outline of the 2018 eruption and older lava flows;
(d) Lava flow deposit on Nyiragongo.
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4.1. Basic Features

Figure 4.2, Figure 4.3, Figure 4.4 and Figure 4.5 explore each case in more detail, illustrating
the six basic features: vy vv, 70,va, NDI, Polarisation Ratio, and Local Variance. The VV
polarisation images generally exhibit low contrast, making it difficult to discern the deposit
outlines, except in the Sinabung case (Figure 4.3a), where the old lava flow is distinctly visible
and prominent compared to the PDC.

In contrast, the VH polarization images provide superior segregation of deposits from the back-
ground in all cases. However, finer details and smaller deposits tend to be less distinct (e.qg.,
Figure 4.2b). The NDI and polarisation ratio images offer enhanced contrast between back-
ground and deposit pixels, where one can easily discern the outlines. Notably, in the Sinabung
case (Figure 4.3c, Figure 4.3d), the lava flow becomes indistinguishable from the PDC, veri-
fying the challenge in differentiating deposit types using these first-order texture measures.

Lastly, the local variance maps capture distinct patterns in the PDC scenes - for instance,
in Figure 4.2f and Figure 4.3f, highlighting areas of significant variation. Contrariwise, they
do not reveal clear deposit patterns in the lava flow scenes. Despite this apparent lack of
information, this distinction is informative. The absence of discernible patterns in the lava flow
areas might still contribute valuable information, especially in the second model, which aims
to distinguish between the two deposit types. The presence of patterns in the PDC scenes
versus the absence of such patterns in the others can be a critical distinguishing feature for
accurate classification.
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Figure 4.2: Fuego case study site basic features. (a) VV polarisation vo; (b) VH polarisation ~; (c) Normalised
Difference Index (NDI); (d) Polarisation ratio; (e) and (f) local variance calculated based on VV and VH,

respectively.
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Figure 4.3: Sinabung case study site basic features. (a) VV polarisation vo; (b) VH polarisation ~o; (c)
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Normalised Difference Index (NDI); (d) Polarisation ratio; (e) and (f) local variance calculated based on VV and

VH, respectively.
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Figure 4.4: Kilauea case study site basic features. (a) VV polarisation ~o; (b) VH polarisation ~o; (c) Normalised

Difference Index (NDI); (d) Polarisation ratio; (e) and (f) local variance calculated based on VV and VH,
respectively.
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Figure 4.5: Nyiragongo case study site basic features. (a) VV polarisation ~o; (b) VH polarisation ~; (c)
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4.2. GLCM features

Due to the extensive number of GLCM feature images, only a selection of the most pertinent
ones is presented here. The remaining features are available in the Appendix C. This pre-
selection was made based on logical criteria to highlight key findings and interesting patterns
observed in the data.

Figure 4.6, depicting the Fuego volcano, consists of four texture maps in grayscale for the
ASM feature in VH polarization across the four principal angles. The images are almost iden-
tical, indicating that ASM is not directional. This similarity is expected considering that ASM
measures texture uniformity by summing the squared probabilities of pixel pairs in the GLCM
as explained in Appendix B. Since all pixel pairs contribute equally to the value within a win-
dow without considering their spatial arrangement, ASM generally does not exhibit directional
properties.

10

14.48
14.46

14.44

ek
? ; v T iy
-90.92 -90.90 -90.88 -90.86 9084 -90.82 - -90.90 -90.88 -90.86

0.0

10

14.48

14.46

14.44

14.42

14.40

0.0

(c) (d)

Figure 4.6: GLCM ASM texture maps in VH polarisation and all directions; (a) Horizontal, (b) diagonal, (c)
vertical and (d) anti-diagonal. The maps are almost identical.

Overall, the deposits exhibit higher values of ASM, suggesting that the texture of PDC deposits
is more uniform compared to the background vegetation. The deposits have a consistent
particle distribution, while the background, likely due to leaves, branches, and shadows, entails
a more complex and varied structure. Other ASM calculations for the VH polarisation follow a
similar pattern and can be found in the Appendix C.

On the other hand, in most cases, ASM calculated based on the VV polarisation does not
offer a visible difference between classes. Some examples are presented in Figure 4.7. This
outcome is anticipated because the original VV images provide little-to-no distinguishing infor-
mation. The low contrast contributes to the homogeneous appearance of the area, making
the deposits appear "blending” into their respective backgrounds.

Next, Figure 4.8 illustrates mean GLCM contrast texture maps based on VH polarisation. One
can discern that, where visible, the contrast of the deposit is lower compared to the contrast
of the surroundings. For Sinabung, the lava flow with the PDC deposit is distinguishable,
however, its values are similar to those of the background.
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Figure 4.7: Mean ASM VV texture maps for all case studies. Note the scale difference in colormaps. VV
polarisation does not appear to "highlight” the deposits from the background.
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Additionally, we may focus on a specific case and discuss directionality. Figure 4.9 shows
the contrast texture maps for Sinabung in two (2) directions: horizontal and diagonal, where
one can observe the difference in brightness levels - an indicator of directional variation in
texture. The dark areas representing the PDC deposit remain low in contrast in both cases,
indicating uniformity in pixel intensities. The bright areas - background - represent regions
with high contrast, where the intensities change with direction. These variations suggest a
textural anisotropy in the background, meaning the vegetation around the deposit exhibits
different properties in different directions. This directional variation of the background as op-
posed to the stable low values of contrast irrespective of direction for deposits, can contribute
in differentiating the two.
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(a) Horizontal direction. (b) Diagonal direction.

Figure 4.9: The case of Sinabung - Contrast texture maps in two directions.

Fuego provides an interesting case for dissimilarity due to its evident directionality. Figure 4.10
highlights the differences between the diagonal (45°) and off-diagonal (135°) directions in
the texture maps. The diagonal image has pronounced bright lines and features, suggesting
higher dissimilarity in this direction. These differences indicate that the texture has directional
components, with the diagonal being the dominant direction. However, both directions con-
tribute to the pool of information needed in classification. For instance, only in the 135° image
is the thin stream of PDC visible (right red circle).

100
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Figure 4.10: The highlighted differences suggest that the texture is anisotropic. The 45° image may highlight
certain linear features or edges more prominently, resulting in higher dissimilarity values and stronger texture
variations. The 135° direction may not align with these features or edges as strongly, leading to lower
dissimilarity values in these areas.

Similarly, when juxtaposing the 0° and 90° dissimilarity texture maps (Figure 4.11), one can
notice that the background exhibits directional anisotropy, with some brighter areas highlighted
in the vertical direction. The brightness level of the deposit remains relatively stable in all
directions.

Ankita et al. [4] follow an alternative method to evaluate directionality using percentage differ-
ences. They characterised rocks using GLCM features and suggested that an isotropic scene
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Figure 4.11: Highlighted differences in red for the dissimilarity texture maps in 0° and 90° directions; a sign of
directional anisotropy mainly in the background.

would exhibit similar GLCM feature values in perpendicular directions (0° vs 90° and 45° vs
135°). Conversely, an anisotropic scene would show more considerable differences in these
features.

Using the Fuego example, the mean dissimilarity VH observed in each direction is:
* Mean Dissimilarity 0°: 26.88
* Mean Dissimilarity 45°: 35.95
* Mean Dissimilarity 90°: 25.50
* Mean Dissimilarity 135°: 33.47

The percentage differences between orthogonal and diagonal directions are:

» Percentage Difference 0° vs 90°: 5.4%
* Percentage Difference 45° vs 135°: 7.4%

These results confirm the conclusions made visually: the diagonal direction is the dominant
texture direction for this feature. However, it is worth noting that part of the larger percentage
difference observed in the diagonal directions (45° vs 135°) can be attributed to the greater
distance between pixels in these directions, which increases the dissimilarity values. To clar-
ify, vertical or horizontal adjacent pixels have a distance of one pixel unit, while the distance
between diagonally adjacent pixel pairs is v/2 pixel units.

Lastly, Figure 4.12 illustrates the mean homogeneity feature in VH polarisation. The figure
reveals a clear visual distinction between the deposits and their surroundings in most cases.
The deposits appear bright, with values close to one for PDCs, indicating high uniformity and
smooth texture. Lava flows also demonstrate high homogeneity, although not as pronounced
as the PDCs.

An interesting observation from Figure 4.12c and other Kilauea images in Appendix C is the low
contrast between background and deposit. The latter is barely discernible, despite the clear
distinctions evident in the quantised images used as input for the GLCM calculations. The
quantised image in VH polarisation is demonstrated in Figure 4.13. This discrepancy could be
attributed to the choices pertaining the normalisation technique described in Appendix B. ltis
also plausible that the window size (5 x 5) used in the co-occurrence matrix calculation is the
limiting factor.

4.3. Performance

Figure 4.14 portrays the confusion matrices for model 1 and model 2. They perform relatively
well, evidenced by the percentages of True Positive (TP) and True Negative (TN) rates. Their
accuracy scores are comparable (0.832 and 0.794). The first model has a high False Positive
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Figure 4.12: Mean homogeneity texture maps in VH polarisation for all case studies.
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Figure 4.13: Equal Probability Quantised image of ~, - VH polarisation - Kilauea. The image exhibits high
contrast between deposit and background.

(FP) rate of 26%; approximately one fourth of the deposit pixels are mistakenly recognised as
background. This might not pose a significant problem for our application since "losing” some
deposit pixels is not crucial for our objective. One can fill-in the gaps with techniques such as
spatial or density-based clustering, watershed algorithms and canny edge detection.

Model 2, with classes lava and PDC, demonstrates a high level of accuracy in correctly iden-
tifying PDC pixels. During parameter tuning for the second model high TP and low FP rates
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were intentionally pursued. The high False Negative (FN) rate for lava predictions suggests a
risk of overlooking lava events, which is essential for high-reliability applications.

Normalized Confusion Matrix

Normalized Confusion Matrix

TP FP

0.89 07

deposit
PDC

- 05

Actual

Actual

-04

lava

-03

background

-02

deposit background PDC lava
Predicted Predicted

(a) Normalised confusion matrix of model 1 with classes (b) Normalised confusion matrix of model 2 with classes
deposit and background. lava and PDC.

Figure 4.14: In model 1 (a) there is a true positive rate of 74% for identifying the deposit class. In model 2, (b),
11% of the PDC pixels were mistakenly classified as lava.

Table 4.1 is a summary of the performance metrics for both models. The accuracy on the
validation (test) set for the first model is 0.832, suggesting that it correctly predicts the outcome
for approximately 83.2% of the cases. However, as mentioned in chapter 3, there might be
better metrics for highly imbalanced datasets than accuracy. The F1 scores for the first model
suggest balanced precision and recall, especially for the negative (background) class, while
the scores of the second model are slightly lower. Regarding the RMSE values, in the context
of binary classification 0.35 and 0.42 are relatively high. This suggests that, on average, the
predicted probabilities deviate from the actual binary outcomes by approximately 0.4. Given
that the maximum possible deviation is 1 (e.g., predicting 0 when the actual label is 1 or vice
versa), the deviation is substantial.

Table 4.1: Performance Metrics of the Models

Metric Model 1 Model 2
Accuracy 0.832 0.794
F1 Scores

Positive Class 0.73 (deposit) 0.72 (PDC)
Negative Class 0.88 (background) 0.84 (lava)

RMSE 0.35 0.42
AUC-PRC 0.94 0.96
AUC-ROC 0.89 0.91

A key metric for this application is the Area Under the Precision-Recall Curve (AUC-PRC). Both
models exhibit high values, which indicates excellent performance, especially when positive
class instances are a smaller subset of the total population (class imbalance). The Precision-
Recall Curve for model 1 illustrated in Figure 4.15 showcases that the model maintains high
precision across varying levels of recall, making it reliable for predicting the positive class
even in imbalanced datasets. The Receiver Operating Characteristic (ROC) curve presented
in the same figure, also affirms the model’s quality, with an AUC of 0.89. It suggests that the
model distinguishes well between the classes across different thresholds. The curve stays well
above the diagonal line of no-discrimination, confirming that the model significantly improves
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over random guessing. The curves for model 2 are presented in Figure 4.16 and they indicate
similar behaviour.
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Figure 4.15: Left: Receiver Operating Characteristic (ROC) curve; right: Precision-Recall Curve (PRC) for

Model 1.
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Figure 4.16: Left: Receiver Operating Characteristic (ROC) curve; right: Precision-Recall Curve (PRC) for
Model 2.

The tree depth histogram of the first model is presented in Figure 4.17. The distribution ap-
pears slightly right-skewed, indicating that there are a few trees with much higher depth than
the majority. A deep tree distribution can lead to better performance on the training dataset.
At the same time, it risks overfitting, where the model would learn the noise and specific details
of the training set and might not generalise well to unseen data. However, this would reflect
in a large gap between training and validation performance metrics, which has not been the
case.

By definition, random forests introduce a randomness component during training to avoid over-
fitting, decrease correlation between the trees and enable generalisation. While reducing ran-
domness (e.g., by using all data or all features during training) might enhance the strength
of individual trees, increasing tree depth can also achieve a strong tree while maintaining di-
versity among the ensemble. According to Ren et al. [68], deep trees contribute significantly
to the strength of a random forest, so the increased depth of the model is not concerning.
Another perspective, as described by Lin and Jeon [55], states that the averaging process in
random forests reduces variance but does not significantly lower bias. Random forests are
most effective with large trees, where each tree has a small bias. Nevertheless, having negli-
gible bias does not always equate to the best performance and some form of regularisation is
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Figure 4.17: Distribution of tree depths for the Random Forest model. High an average tree depth of 62 the
complexity of the model is high.

advised.

Feature importances indicate the relative contribution of each feature to the predictive power
of the model. For model 1, the results demonstrate that  vy_jog @and o vH are the most signif-
icant features, with mean decreases in impurity of 0.08 and 0.075, respectively. However, the
high standard deviations associated with these importances suggest variability in their contri-
bution across different trees within the forest (Figure 4.18). No single feature stands out as
overwhelmingly superior, as indicated by the spread of importances across several features.
Interestingly, the top ten features are all the basic features. The lack of GLCM-derived fea-
tures as main contributors in the first model may arise due to the "blending” effect of applying
a moving window in the calculations, leading in a loss of fine details at the edges. GLCM
calculations are performed in the entire image (containing both background and deposit) and
not in "cropped-first” images. In addition, the basic features often clearly highlight the deposit
location.
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Figure 4.18: The 10 most important features for model 1. The features are nearly equally "valuable” in predicting
the outcome.

On the other hand, model 2 utilises the GLCM texture maps to differentiate between deposit
types, particularly with ASM and Homogeneity maps. It appears that overall uniformity is a
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differentiating factor between lava and PDC, especially in the vertical direction. As seen in
Figure 4.19 there is no clear main contributing feature. This could indicate that the selected
features provide redundant information, are not strong individually, or that the relationships
between them and the target are non-linear and complex. It could also mean that multiple
features are equally important in predicting the target variable.
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Figure 4.19: The 12 most important features for model 2.

Boxplots of the top four GLCM features are presented in Figure 4.20 to gain an insight into
their distributions. Figure 4.20a illustrates the boxplot of the Homogeneity feature in VV po-
larisation and vertical direction. The PDC class has overall higher values with the median at
approximately 0.35, where the third quartile of /ava ends. For PDC, the interquartile range
(IQR) is wider, and the whiskers extend throughout the range of values for that feature. The
same feature in the VH polarisation exhibits a similar phenomenon. The ASM boxplots show
that 75% of the lava pixels have a value lower than 0.1, which is less than the median of the
positive class. Both classes contain outliers, with the negative class having relatively more.
The PDC regions tend to have both higher values and higher variability, which may seem
contradictory since ASM measures uniformity. However, this means there is a range of ho-
mogeneity levels within the PDC class, potentially reflecting natural variations in the texture of
PDC deposits. On the other hand, most lava samples have a similar degree of inhomogeneity
(low variability), indicating more consistency in the texture despite being overall non-uniform.

Lastly, the permutation feature importances for the second model are presented in Figure 4.21.
The analysis was conducted using ten (10) repeats with - vy exhibiting the highest importance,
outperforming the other features. Local variance VV has the second highest score, confirming
assumptions made earlier regarding the absence of variations in the lava deposit scenes as
opposed to visible patterns in the PDC case studies. Overall, the permutation feature scores
are well distributed, indicating that the model does not heavily rely on a single feature. The
model therefore, captures complex interactions between features, where their combination is
more critical than any individual one.

4.4. Visual Assessment

To visually inspect the results and identify the areas with inaccurate predictions, accuracy maps
are constructed for all case studies. Figure 4.22 depicts the correctly (blue) and incorrectly
(yellow) identified pixels. In the two PDC scenes one can observe that in the borders of the
outline there are instances of misclassifications. Sinabung has the highest percentage of
correctly identified pixels (87%). There is a big cluster of misclassified pixels within the old
lava flow area, which could be related to the difficulty of distinguishing the lava flow from
the background as seen in some of the features. The southern most background patch of
Fuego shows two streams of yellow pixels, classified as deposit. This is not necessarily an
inaccuracy, because in the original image there are some very thin streams of PDC that could
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Figure 4.20: Boxplots for the top four GLCM features.
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Figure 4.21: Top ten (10) permutation feature importances for model 2.

not be captured by the outline. With respect to the lava flow scenes, the lowest percentage of
correct predictions belongs to Kilauea at 78%, with many of them found clustered in the area
of the older deposit.

The second model has identified the PDC deposits with great accuracy as shown in Fig-
ure 4.23a. Sinabung has 85% accurately identified pixels, while Fuego 92%. The two lava
deposits have slightly lower correct percentages. Nyiragongo has the lowest percentage at
68%), however itis evident from Figure 4.23b that the main misclassification is happening close
to the source of the deposit, possibly due to the steepness of the topography close to the lava
lake skewing the results.
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Figure 4.22: Prediction maps of model 1. Blue are correctly identified instances.

4.4.1. The Sinabung case

Three different models were trained to answer the question posed in chapter 3 regarding the
lava patch of Sinabung. Including the lava as a third category (both) was suboptimal due to
the insufficient number of pixels representing this class. Even with oversampling, the results
were not promising. Classifying the lava as lava yielded slightly better results but reduced the
accuracy of predictions for lava deposits in other case studies. Ultimately, labelling the lava
patch of Sinabung as PDC proved to be the best choice. Figure 4.24 is an image of the thick
lava patch at the top of the volcano, visible in the centre. The lava formation appears covered
with material from subsequent explosions. This part of the scene remains complex even when
used as PDC because the backscatter signal also contains information on scatterers of lower
layers due to radar penetration at the surface.

4.5. Unseen data - Case study: Soufriere Hills, Montserrat

The Soufriére Hills stratovolcano has been extensively studied and mapped, particularly fo-
cusing on the deposits associated with its activity between 1995 and 2010. The Montserrat
Volcano Observatory provided the dataset for this case, which comprises of 29 maps sourced
from scientific literature. However, the corresponding researcher indicated that the individ-
ual geometries primarily emphasize on deposition areas, meaning the impacted area from
dilute flows could be more extensive (Jose M. Marrero, personal communication). Addition-
ally, some maps exhibit significant horizontal deviations in geographic precision. Due to the
lower precision of these geometries and the fact that the deposits predate the first Sentinel
data, this location was not suitable for training. Nonetheless, the area remains valuable for
validation purposes, given the presence of large PDC deposits visible in the optical image
shown in Figure 4.25a.

Since the last eruptions, vegetation has overtaken several parts of the island in-between the
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Figure 4.23: Prediction maps of model 2. Blue are correctly identified instances.

e

Figure 4.24: Closeup of Sinabung - the 100 m. thick lava is visible at the centre of the image.

flows and this is prominent in Figure 4.25b. The outline is superimposed on the optical im-
age and while it encloses the general area of the PDCs, it is only shown as reference for
understanding the results of the classification.

Results from step 1 of the classification workflow indicate a good accuracy as seen in Fig-
ure 4.26a. Despite of the prominent deposit, the background areas remain noisy with several
pixels classified as deposit. Smaller flows are not captured effectively and they are "lost” in
the noise. Before applying step 2, the pixels classified as background are discarded. Interest-
ingly, the misclassified background pixels are mainly classified as /ava, while the main PDC
deposit is clearly visible. The PDC areas are noisy, however, the amount of PDC classified
pixels within the rough outline is higher than the amount of lava pixels.
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Figure 4.25: Soufriere Hills volcano in Montserrat.
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Figure 4.26: Prediction maps of Soufriere Hills, Montserrat.

4.6. Unseen data - Case study: Kilauea volcano, Pahoa, Hawaii

In the same region as the Kilauea case study, USGS has mapped the lava flow associated
with the "June 27th” lava flow (Pu’u 'O’0 eruptive episode 61e) that was active at the Kilauea
volcano from June 27, 2014 to June 8, 2016. The geological lines were mapped on the ground
or during helicopter reconnaissance flights using a GPS [94]. Figure 4.27 shows the mapped
lava flows on the polarisation ratio map of the area. Only part of the flows within the area are
attributed to the aforementioned event, however, there is another large lava deposit extending
to the coast. Figure 4.28 represents the prediction maps for step 1 and step 2 of the classifi-
cation process. The deposit class has been well separated from the background pixels with
minimal noise. The second step contains significant noise, however within the mapped lava
flow area the amount of /ava pixels is much higher than the PDC predictions.

In both "unseen” data case studies, the second model showed a considerable amount of false
positives (positive being PDC for Soufriére Hills and lava for Pahoa). Despite this discrepancy,
the number of true positives is double that of false positives, demonstrating sufficient model
performance for this application.
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Figure 4.27: Pahoa region, mapped lava flows in red outline overlayed on polarisation ratio.
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Figure 4.28: Prediction maps of model 2. Blue are correctly identified instances.




Discussion

This thesis presents a unique, simplistic approach to classifying volcanic deposits using ma-
chine learning techniques applied to SAR data. This chapter discusses several key findings,
with observations relating to various stages of data preprocessing, feature selection, model
selection, training, and evaluation.

Classifying deposit types into two broad categories, PDCs and lava flows, is a challenging task.
Chapter 2 demonstrates that subtypes of PDCs might exhibit similar textural characteristics
to lava flows, whose subtypes also have very different patterns. Despite the complexity, the
results seem promising, with the texture features helping greatly in the final classification step,
evident by Figure 4.19 indicating their importance.

The framework developed and presented here successfully addresses the main research ques-
tion posed in chapter 1 by identifying and distinguishing PDCs from lava flows with sufficient
accuracy using SAR data. The study’s objective is to determine whether a volcanic deposit is
present in the scene and, if so, to confidently classify it as either a PDC or a lava flow. The
focus is not on achieving perfect per-pixel classification but making a reliable binary distinction
between the two deposit types.

Overall, the Sentinel-1 datasets’ resolution is adequate to capture the morphological char-
acteristics of the deposits. While the presence of noise in the output classification maps is
concerning, it does not prohibit the application. In both cases of "unseen data,” the model
effectively indicated the presence of deposits in the scenes. Moreover, despite the noise, the
correct deposit type was identified in double the number of pixels, instilling confidence in the
methods’ reliability.

5.1. Limitations, Uncertainties and Future Research

The difficulty in achieving a low RMSE without overfitting and increasing the classification
output’s signal-to-noise ratio (SNR) could indicate that the derived features cannot effectively
capture the relationships between the classes. Several reasons, such as feature quality and
relevance, may contribute to this effect. However, for this work, it is presumed that there may
be too many irrelevant or redundant features (e.g., NDI and polarisation ratio or contrast and
dissimilarity). This can dilute the importance of the ones that matter most and lead to overfitting.
Feature selection techniques such as Principal Component Analysis (PCA) can help limit the
features or reduce dimensionality to improve model performance.

Another study limitation that could be addressed in future work is that the background pixels
used for training mainly represent vegetated areas. Considering that the framework is intended
for comparative planetology and applied on planetary landforms where vegetation is absent,
the first model, which distinguishes between background and deposits, would benefit from
retraining with data from bare soil environments instead of vegetated regions. This adjustment
leverages the modular nature of the two-step model approach, allowing for targeted retraining
of just the first model without altering the overall framework.
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In addition, it has been established that microwaves penetrate Earth’s top layers and provide
information on scatterers below the surface [22]. It is commonly cited that pre-eruption land
cover affects the backscatter signal, complicating classification and interpretation by introduc-
ing another unknown variable. The returning signal from the C-band SAR data is a composite
signal from the top few centimeters of the surface depending on the surface material and con-
ditions. For the application in this study, pre-eruption land cover is not expected to influence
the results considering that the deposited formations are typically thicker than Sentinel-1's
penetration depth. On the other hand, variability in moisture content can reduce interpretabil-
ity in the SAR signal. If surface roughness remains unchanged, radar backscatter increases
with increasing moisture content. The relationship between the two is generally non-linear
and affects both basic and GLCM-derived features. In addition, with heavy rainfall, the main
contributors to the signal are near-surface scatterers. Despite the added complexity, GLCM
texture map features such as homogeneity and ASM are designed to be resilient to uniform
changes in pixel values - both of which were ranked high in feature importance. Lastly, rainfall
as we experience it on Earth is not present on most other planetary bodies, including Venus,
so it is not expected to be a limiting factor for those cases.

Despeckling filters, spatial resolution, and GLCM-related parameter choices may also limit
performance, and they will be discussed in the following paragraphs. Certainly, the access to
only four case studies as input adds to the challenge. Initially, more locations were considered,
such as the Stromboli volcano in Italy, the Merapi volcano in Indonesia, Colima in Mexico,
Alamagan in the Mariana Islands and Mt. Helens in Washington. However, they were deemed
unsuitable for various reasons, including scattered deposits, encroaching vegetation, and the
age of the eruptions.

With sufficient time and computational resources, one could extract additional texture maps
using various sliding window sizes rather than relying solely on initial assumptions. Selecting
a single window size suitable for all deposits is challenging. For example, PDC deposits can
be both homogeneous with fine details (lahars) and non-uniform due to the mix of ash, pumice
and coarser rock fragments. Small window sizes (e.g., 3x3, 5x5) capture fine-scale details and
high-frequency variations, making them sensitive to localised texture changes. Conversely,
larger window sizes are sensitive to large-scale variations and are likely better suited for more
uniform surfaces, such as that of pahoehoe lava.

Spatial resolution subtleties Another deciding factor in the window size is the spatial res-
olution. The effective spatial resolution of the GRD dataset in IWH mode is approximately 20
x 20 meters, but it is oversampled and provided with a finer pixel spacing of 10 x 10 meters.
That does not signify that adjacent pixels contain identical values, as oversampling uses inter-
polation techniques that introduce variations and provide a smooth transition. Therefore, the
smallest window in GLCM can represent 30 by 30 meters on the ground. However, that might
not be optimal, considering each pixel’s actual detail is limited to 20 meters. Adding to the com-
plexity, the GLCM ”searches” for spatial patterns at a specified pixel distance, which in this
case is one. A distance of two may capture more relevant texture information and better reflect
the true spatial resolution. Optimally, multiple distances and window sizes should be used to
capture the patterns at varying scales, providing a more comprehensive representation of the
assorted textures in volcanic deposits.

A convolutional neural network (CNN) could theoretically "learn” the optimal filters and win-
dow sizes for this task, adapting to various texture scales. However, this approach requires
large datasets to train the network effectively. In the absence of such datasets, it is still rec-
ommended to manually create the additional texture feature maps to ensure comprehensive
texture analysis.
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Noise and mitigation One way to address the noisiness in the output classification maps
is to apply image processing techniques. A centroid or density-based clustering algorithm
could help accurately delineate the deposit and produce a visually appealing classification map.
Moreover, object-based classification and edge-detection algorithms could be fitted within the
workflow to reduce noise output and improve data fidelity, especially after applying the first
model.

The role of filters in comparability The process known as despeckling is an integral part
of preprocessing SAR data. Various filters are available, and the one used here is the Refined
Lee filter, which is an improvement to the original Lee filter. The latter reduces speckle by
performing a smoothing operation within a sliding window based on local statistics, and the
former incorporates edge detection and directional filtering for better edge preservation [51].
Refined Lee is an adaptive filter based on local image patterns, which can enhance quality;
however, in the context of image classification, it might reduce comparability and consistency
between the datasets. This is an effect of its adaptive nature since it applies different degrees
of smoothing and edge preservation across the image, reducing uniformity in preprocessing.
Considering that the applied models perform pixel-by-pixel classification, the need for edge
and fine detail preservation is not imperative. Although the selection of filters is not critical to
the classification process, a more effective approach, in hindsight, would consist of a more
straightforward filter such as Lee or Gamma Map Filter.

5.2. Theoretical implications and contributions

The use of traditional (basic) features complemented by GLCM-derived texture features in de-
posit classification has proven useful for complex classification tasks. This study emphasises
the potential of incorporating multi-scale texture analysis to capture the diverse textural prop-
erties of volcanic deposits. By utilising a sliding window approach, the research highlights the
necessity of adapting window sizes to better capture fine details in rough textures, such as

those found in ’a’a lava, and broader patterns in smoother textures, such as pahoehoe lava.

Ultimately, this study’s findings support the hypothesis that volcanic deposits on planetary
bodies can be classified using only one source of information, namely SAR data. This valida-
tion has implications for planetary geology, particularly as we look toward future missions to
Venus, such as the proposed NASA VERITAS and ESA EnVision missions, which will carry ad-
vanced SAR instruments like VenSAR. These missions will provide high-resolution SAR data
that could be instrumental in detecting and classifying various volcanic landforms on Venus
[31]. For example, large-scale features such as lava plains and large lava flow fields should be
relatively easy to detect due to their extensive coverage and distinct radar signatures. Smaller,
thinner and less extensive lava flows and PDCs should be moderately challenging to detect
and distinguish due to their intricate details and subtle differences in surface roughness. The
most difficult features to detect should be thin lava flows, especially those emplaced in narrow
channels or depressions, as they may blend with their surroundings. Ash-fall deposits with
fine-grained pyroclastic materials may also be particularly challenging due to their smooth
surface spanning a substantial area, potentially more extensive than a single SAR image.

Moreover, this study prompts further investigation into how spatial resolution impacts classifica-
tion accuracy. Future research should explore whether lower resolutions suffice for planetary
geology or if the resolution provided by Sentinel-1 represents the minimum threshold neces-
sary. Addressing these questions could refine the application of SAR data in planetary geology
and optimise resource utilisation and payload requirements in future mission planning.

This study contributes to the field’s theoretical understanding and practical capabilities by ad-
vancing the methodology for volcanic deposit classification and highlighting the practical ap-
plications of SAR data.



Conclusions

This study developed and evaluated a framework for classifying volcanic deposits using in-
formation exclusively from SAR data. The methodology encompasses several critical steps:
pre-processing workflow suitable for regions with significant topographic variability, extraction
of basic features from VV and VH polarisations, appropriate image normalisation, the use of
GLCM to calculate texture features that reveal underlying patterns within the deposits and a
two-step approach in classification.

The framework utilises Sentinel-1 GRD data of four case studies, beginning with a series of
preprocessing steps: orbit correction, thermal and border noise removal, calibration, radio-
metric terrain flattening, despeckling, and Range-doppler terrain correction. This sequence
results in reflectivity estimates in VV and VH polarisations. Subsequently, both polarization
images are used to calculate first and second order texture measures, specifically: NDI, po-
larization ratio, local variance, and GLCM-derived texture measures. These features serve as
inputs to a random forest classifier, which distinguishes deposit pixels from background pixels.
The deposit pixels are then further classified into lava flows and PDCs using extreme gradient
boosting. The final output is a classification map indicating which areas contain background,
lava or PDCs.

The first model exhibits high complexity due to the increased tree depth, despite a clear visual
distinction between the deposit and background in several features. However, a deeper tree
distribution is not necessarily inadequate. The False Positive rate is relatively high at 26%,
but this is acceptable for the application. Given the high values of AUC-PRC and AUC-ROC
metrics, the model does not show signs of overfitting. Nevertheless, the RMSE of 0.35 is
concerning, considering the maximum deviation in binary classification is 1. The second model
faces a similar issue with an RMSE of 0.42 but predicts PDC deposits with a high True Positive
rate of 89%.

Overall, the results obtained through "unseen data” from Montserrat, Soufriere Hills, and Pa-
hoa, Hawaii are noisy but adequately distinguish deposits from the background. The second
model is also successful as it correctly classifies the majority of deposit pixels as their re-
spective type. While noise was expected, the crucial aspect is that the method works. The
approach of using texture features derived from SAR data to confidently identify deposits is
suitable for this application and could be further improved.

Feature Selection and improvement A critical enhancement would involve a more sys-
tematic selection of features to ensure a streamlined and non-redundant dataset. Notably,
the Normalized Difference Index (NDI) and polarisation ratio features convey comparable in-
formation. They both capture the relative differences in polarisation backscatter. However,
NDI normalizes these differences, so inclusion over the polarisation ratio is recommended. In
addition, images constructed based on VV polarisation often lack the contrast necessary to
distinguish between background and deposit. Discarding those features from the first model
could enhance its predictability.
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Furthermore, the texture measures contrast and dissimilarity are constructed similarly, with
only minor differences in the weights applied in their final calculations. Contrast is more sensi-
tive to pronounced differences in intensity compared to dissimilarity. Similarly, Angular Second
Moment (ASM) and homogeneity are closely related. Therefore, using only ASM and contrast
may be sufficient to represent the necessary texture information. Exploring additional GLCM
texture features, such as entropy or correlation is also advisable.

This study confirms that texture features can add value in differentiating between lava and
PDCs. Analysing the directionality of deposits using four principal angles in GLCM calcula-
tions revealed that the vertical direction is particularly useful. Varying the window sizes and
distances in GLCM calculations may enhance performance and uncover additional inter-class
relationships. Different texture measures can substitute or complement the GLCM features.
Methods such as Local Binary Patterns (LBP) or Wavelet Scattering Transforms can capture
different aspects of texture, potentially enriching the dataset with diverse textural information.

Broader Impact This study contributes to the broader field of remote sensing in volcanol-
ogy by demonstrating the efficacy of SAR data for deposit classification. This contribution
underscores the importance of texture analysis in advancing our understanding of geological
processes and improving hazard assessment in volcanically active regions. High-resolution
imagery might not always be available, especially in planetary missions. The methodologies
developed here also offer potential applications in planetary exploration, providing a founda-
tion for future research in planetary geology. Further research is needed to understand the
role of spatial resolution in this application. If it is critical for pattern detection, missions could
perform initial reconnaissance to locate deposits and subsequently conduct high-resolution
surveys at those locations.

Future work could explore the capability of these techniques to discriminate between sub-
types of lava and PDCs, potentially with higher-resolution imagery. Incorporating part of this
framework directly onboard the satellite, such as on an FPGA, could significantly reduce pro-
cessing time and enable near real-time output. This real-time capability would facilitate timely
monitoring and rapid response during volcanic events, enhancing the effectiveness of hazard
assessment and mitigation strategies.
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Source Code

def calculate_texture_features_vectorized(image, window_size=5):

Calculate texture features for an image using a sliding window approach.

Parameters:
- image: 2D numpy array
The input grayscale image for which texture features are to be calculated.
- window_size: int, optional (default=5)
The size of the sliding window. Must be an odd integer to ensure a center
pixel.

Returns:
- features: dict
A dictionary containing four 3D numpy arrays for texture features:

'contrast', 'dissimilarity', 'homogeneity', and 'ASM' (Angular Second
Moment) .

Each array has a shape (height, width, 5) where the third dimension
contains

the texture feature values for four angles and their mean.
nnn

# Pad the image to handle borders
pad_width = window_size // 2
padded_image = np.pad(image, pad_width, mode='reflect')

# Create overlapping windows using view_as_windows
windows = view_as_windows(padded_image, (window_size, window_size))

# Initialize the feature dictionary
shape = image.shape
features = {
'contrast': np.zeros((shape[0], shape[l], 5)),
'dissimilarity': np.zeros((shape[0], shape[1l], 5)),
'homogeneity': np.zeros((shape[0], shape[1], 5)),
"ASM': np.zeros ((shape[0], shape[1], 5))
}
angles = [0, np.pi/4, np.pi/2, 3*np.pi/4] # Define the angles for GLCM
calculation

for i in range(shape[0]):
for j in range(shape[1]):

window = windows[i, j]
# Skip processing if any NaN values are found in the window
if np.isnan(window) .any():

continue

window = window.astype(np.uint8) # Convert window to uint8 type
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def

return f

# Calculate the Gray-Level Co-occurrence Matrix (GLCM)
glcm = graycomatrix(window, [1], angles, levels=256, symmetric=True,

normed=True)

# Calculate texture properties from the GLCM
for name in features.keys():

prop_values = graycoprops(glcm, name) [0]
for k in range(4):

features [name] [i, j, k] = prop_values [k]
features[name][i, j, 4] = np.mean(prop_values)

value of properties

eatures

# Store the mean

equal_probability_quantisation(image, polarisation, global_max_VV,
global_max_VH, num_levels=16):

Perform equal probability quantisation on an image based on the specified

polarisation.
Parameters:
- image: 2D numpy array

The input image to be quantised.
- polarisation: str

The polarisation type of the image, either 'VV' or 'VH'.
- global_max_VV: float

The global maximum value for 'VV' polarisation.
- global_max_VH: float

The global maximum value for 'VH' polarisation.
- num_levels: int, optional (default=16)

The number of quantisation levels.
Returns:

- full_quantised_image: 2D numpy array
The quantised image with the same shape as the input image.

# Normalise the image based on the specified polarisation and its global
maximum

if polar

isation == 'VV':

normalised_image = (image / global_max_VV) * 255

elif pol

arisation == 'VH':

normalised_image = (image / global_max_VH) * 255

else:
rais

e ValueError("Polarisation must be either 'VV' or 'VH'")
# Flatten the image, excluding NaN values
d_image = normalized_image[~np.isnan(normalized_image)].ravel()

flattene

# Calculate the histogram and cumulative distribution function (CDF)

histogram,

cdf = hi
cdf_norm

stogram. cumsum ()
alised = cdf / cdf[-1]

# Determine quantisation thresholds using linear interpolation

threshol

ds = np.interp(np.linspace(0, 1, num_levels + 1),

bin_edges[:-1])

# Initia
quantise

lise the quantised image array with NaN values
d_image = np.full_like(flattened_image, np.nan)

cdf_normalised,

# Quantise the flattened image based on the determined thresholds

for i in
low
high

range (num_levels):
= thresholds[i]
= thresholds[i + 1]

bin_edges = np.histogram(flattened_image, bins=256, range=(0, 256))
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mask = (flattened_image >= low) & (flattened_image < high)
quantised_image [mask] = int((i / (num_levels - 1)) * 255)

# Create a full-size quantised image with the original NaN values
full_quantised_image = np.full_like(normalised_image, np.nan)
full_quantised_image [~np.isnan(normalised_image)] = quantised_image

return full_quantised_image
from drama import utils as drtls

def moving_average (data, Naz, Nrg, downsample=False):
nun

Apply a moving average filter to a 2D numpy array.

Parameters:
- data: 2D numpy array

The input data to be filtered.
- Naz: int

The number of samples averaged in the azimuth (first) dimension.
- Nrg: int

The number of samples averaged in the range (second) dimension.
- downsample: bool, optional (default=False)

If True, downsample the data after averaging.

Returns:
- filt_data: 2D numpy array

The filtered (and possibly downsampled) data.
nnn
# Apply smoothing in the range dimension
filt_data = drtls.smooth(data, Nrg, axis=1)
# Apply smoothing in the azimuth dimension
filt_data = drtls.smooth(filt_data, Naz, axis=0)

# Downsample the data if requested
if downsample:
filt_data = filt_datal[int(Naz/2)::Naz, int(Nrg/2)::Nrg]

return filt_data

# Calculate the local variance for the 'VV' polarisation
nrcs_var = moving_average(VV**2, 4, 4) - moving_average(VV, 4, 4)*x2
loc_var_VV = np.sqrt(nrcs_var) / moving_average(VV, 4, 4)

#Model 1 implementation

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from imblearn.pipeline import Pipeline as IMBPipeline

from imblearn.over_sampling import SMOTE

from imblearn.under_sampling import RandomUnderSampler

labels = {'deposit':0, 'background': 1}

sampling_strategy_oversample = {labels['deposit']: 1000000} # Target number for
PDC pixels

sampling_strategy_undersample = {labels['background']: 1000000} # Target number
for background pixels

X_train, X_test, y_train, y_test = train_test_split(X_all_df_no_nan, y_all_no_nan,
test_size=0.2, random_state=29)

pipeline_stepl = IMBPipeline(steps=[
('oversample', SMOTE(sampling_strategy=sampling_strategy_oversample)),
('undersample', RandomUnderSampler (sampling_strategy=

sampling_strategy_undersample)),
('classifier', RandomForestClassifier(n_estimators=200, n_jobs=-1,
random_state=29))
D

# Training the model
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pipeline_stepl.fit(X_train, y_train)

# Predicting on the test set

y_pred_stepl = pipeline_stepl.predict(X_test)

# Probability predictions for performance metrics
y_prob_stepl = pipeline_stepl.predict_proba(X_test)[:, 1]

#Model 2 implementation

from xgboost import XGBClassifier

labels_step2 = {'PDC': 0, 'lava': 1}

sampling_strategy_oversample_2 = {labels_step2['PDC']: 540000} # Target number
for PDC pixels

X_train_2, X_test_2, y_train_2, y_test_2 = train_test_split(X_all_df_no_nan_2,
y_all_no_nan_2, test_size=0.2, random_state=14)

pipeline_step2 = IMBPipeline(steps=[

('oversample', SMOTE(sampling_strategy=sampling_strategy_oversample_2,
random_state=4)),

('classifier', XGBClassifier(n_estimators=200, max_depth=3, learning_rate
=0.005, gamma=1, colsample_bytree=0.8, reg_alpha=1, reg_lambda=5,
min_child_weight=5, n_jobs=-1, random_state=64))

D

# Training the model

pipeline_step2.fit(X_train_2, y_train_2)

# Predicting on the test set

y_pred_step2 = pipeline_step2.predict(X_test_2)

# Probability predictions for performance metrics
y_prob_step2 = pipeline_step2.predict_proba(X_test_2)[:, 1]



Appendix B

B.1. Equal Probability Quantisation

Equal probability quantisation (EPQ) is designed to map the pixel values of an image into a
specified number of levels such that each level has an approximately equal number of pixels.
This process involves the following steps:

1. Normalise the image: Scale the image values to a common range, usually 0-255 for
grayscale images.

2. Compute Histogram and CDF: Calculate the histogram of the normalised image and the
cumulative distribution function (CDF).

3. Determine Thresholds: Establish quantisation thresholds based on the CDF to ensure
that each quantised level has an equal number of pixels.

4. Quantise the Image: Assign pixel values to quantised levels based on the determined
thresholds.

The amount of levels used in this study are sixteen (16).

B.1.1. Impact on Relative Distribution
» Original Relative Distribution: The original relative distribution of pixel values reflects
the natural variations in the intensity levels of the image.

+ After EPQ: The EPQ method alters this distribution to achieve a uniform distribution
across the quantised levels. This means that the original relative proportions of differ-
ent intensity levels are not preserved. Instead, the intensity values are redistributed to
ensure that each quantised level has an equal number of pixels.

A simple normalisation method includes dividing the image values by a global maximum and
multiply them by 255. To understand the difference between simple normalisation and EPQ,
Figure B.1 presents the case of Kilauea. The original distribution of pixel intensities is pre-
served during the simple normalisation, however, due to the use of a global maximum, the
values are scaled only between 0 and 150, not taking advantage of all the available levels.
With equal probability, the values are spread over the entire range.

To visually inspect the impact of equal probability quantisation on texture feature maps the
case of Nyiragongo is presented in Figure B.2. It is evident that the equal probability technique
has preserved the texture of the deposit better compared to the simple normalisation. This
also results in more appealing results in the GLCM-derived features as shown in the contrast
example in Figure B.3.

B.1.2. Advantages

» Uniform Quantisation Levels: EPQ ensures that each quantised level is equally repre-
sented, which can enhance the visibility of texture features by reducing the dominance
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Distribution of Pixel Values in original image - Kilauea Distribution of Pixel Values after simple normalisation - Kilauea
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(a) Original distribution of pixel values in VH polarisation.  (b) Simple normalisation: the distribution is preserved.
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Figure B.1: Pixel value distribution for the case of Kilauea (VH polarisation). The equal probability quantisation
method does not preserve the original distribution.

of certain intensity ranges.

* Robustness to Monotonic Transformations: Because EPQ is based on the CDF, it is less
sensitive to monotonic transformations like brightness changes, preserving the overall
texture characteristics better.

B.1.3. Disadvantages
» Loss of Original Distribution: The primary drawback is the loss of the original relative
distribution of pixel intensities. This can lead to a different perception of contrast and
texture compared to the original image.

B.1.4. Mathematical Formulation

Step 1: Normalise the Image
Given an image I with intensity values, normalise the pixel values to a common range, such

as [0, 255]:

I
Inormalised = (global_max) X 255

Here, global_max is the predefined global maximum intensity value.

Step 2: Compute Histogram and CDF
Calculate the histogram H of the normalised image and the cumulative distribution function

(CDF) F:

H(i) = Z 6 (Inormalised (2, y) — @)

x?y
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Figure B.2: Nyiragongo case. Left: simple normalisation; right: equal probability. The texture features have
been preserved better in the right image. Note that with simple normalisation the values are concentrated on the
low end of the grayscale.
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Figure B.3: Contrast VH - Nyiragongo case. Left: simple normalisation; right: equal probability. In this case, the
texture features have been preserved better in the right image.

Normalise the CDF:

F
Frormalised (1) = m

Step 3: Determine Quantisation Thresholds
Establish quantisation thresholds T based on the normalised CDF to ensure equal probability
levels:

. k .
Ty, = interp (Z’ Frormaliseds bm_edges)
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Here, L is the number of quantisation levels, bin_edges are the edges of the histogram bins,
and interp denotes linear interpolation.

Step 4: Quantise the Image
Assign pixel values to quantised levels based on the determined thresholds:

L—-1

k

Iquantised(l‘,y) == Z |:L — 1 X 255:| : (Tk‘ S Inorma“sed(x’ y) < Tk_l'_l)
k=0

B.2. Gray Level Co-occurrence Matrix (GLCM) computation
In this study, the GLCM is computed for sub-images obtained through a sliding window ap-
proach.

The original image was first normalised by dividing each pixel value by the polarisation-specific
global maximum and scaling the result to a range between 0 and 255; commonly referred
to as the greyscale range. Then, using Equal Probability Quantisation (EPQ) as described
above, the quantised image used as input for the GLCM can be constructed. Using the scikit-
image library, one can obtain the four-dimensional (4D) array representing the grey-level co-
occurrence histogram. The histogram PJi, j, d, 6] defines how frequently a pixel with grey-level
1 occurs at a distance d and angle 6 from a pixel with grey-level 5 [75]. To facilitate reading, a
visual example is presented in Figure B.4 and Figure B.5.

Normalised image 1 2
d=1 2,0 0 2 1
1 2,2 02
c/1|2|1|0|3
. 4101 o1
5
1 O 0|1 1 1
o 1 2
0 4
1 6 | 1
2

Construction of GLCM

Figure B.4: Simple GLCM construction example within a 5x5 window for angle 0° and distance 1. On the left,
the normalised image, where it is represented by values between 0 and 255. To construct the matrix, one counts
how many times a pixel with value i has a pixel with value j next to it in that sequence. There are five (5)
instances of the pair (1,0).

The user may select the distance(s) and angle(s) at which the spatial relationships are most
prominent. For this study, all four principal angles were used, with the pixel relationship set at
adjacent pixels (d=1). According to Haralick, Shanmugam, and Dinstein [42], the four direc-
tions are:

» 0° (Horizontal): Pairs of pixels are analyzed horizontally.
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» 45° (Diagonal): Pairs of pixels are analyzed from bottom-left to top-right.
+ 90° (Vertical): Pairs of pixels are analyzed vertically (bottom to top).
» 135° (Anti-Diagonal): Pairs of pixels are analyzed from bottom-right to top-left.

In the example of Figure B.4 the GLCM is constructed for a distance one and angle zero
degrees(0°). Using multiple angles helps assess the directional texture without varying the
spatial relationship distance, which is helpful in understanding texture variations in different di-
rections across a localised area. In addition to the principal directions, the mean texture values
across all angles are also calculated to obtain a fifth map. Calculating the mean of the tex-
ture features across multiple angles ensures rotation invariance, which is important because,
while not strictly necessary, the definition of texture does not imply knowledge of orientation
but could be presumed to include it [62]. This averaging process provides a generalised and
robust representation of the texture features that captures the overall textural properties of
the image without being biased towards any particular orientation. In the context of classifica-
tion, this approach eliminates the need for aligning images to a common orientation, ensuring
consistent and accurate analysis regardless of the image’s directional alignment.

0 1 2 ol 2
s ia : - sum(1,4,1,5,...,1) = 19 pairs O_ Rt | e, | 9up
1 5 | 1 2 » 1 026 0.05| 01
2 2 2 1 2| 01| 01 |0.05
Completed GLCM Normélised GLCM

P, j)

Figure B.5: Completed and normalised GLCM P(i,j). The normalised matrix values represent the probability of a
certain pair occurring in a given image, following a certain positional relationship. It sums up to one (1).

Each matrix is then normalised to sum to one (1) as shown in Figure B.5, converting it into a
probability distribution of pixel pair occurrences. This normalisation ensures that the GLCM
reflects relative frequencies or probabilities rather than absolute counts, making the texture
measures derived from the GLCM more comparable across different images or regions within
an image, especially when those images or regions have varying scales, brightness, or con-
trast levels.

The window size used to create the textural map is centred around the target pixel to include
a symmetrical area. The size of the window determines the extent of the surrounding area
considered in the texture analysis. A larger window size includes more of the surrounding
context but may be less sensitive to small-scale texture variations.

Deriving Texture Features

Four texture features were selected to create texture maps to aid in classification. Each feature
provides different information about the spatial distribution of pixel intensities within the image.

» Contrast: It measures the intensity contrast between a pixel and its neighbour over the
entire image, highlighting areas of high variability in intensity values [48]. It is computed
as:

Contrast = » (i — 5)*P(i, §) (B.1)

i’j
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* Homogeneity: Also known as the inverse difference moment [58]. It measures smooth-
ness of the intensity distribution in the image. Its values range between zero (0) and
one (1), with one indicating regions of uniform intensity [57]. Clearly, if contrast is low,
homogeneity will be high. It is mathematically described by:

Homogeneity = Z ng)]) (B.2)

» Dissimilarity: This feature is similar to contrast but less sensitive to significant differ-
ences in intensity. It is a linear measure of the local variations in the image [58]. Calcu-
lated as:

Dissimilarity = " i — j|P(i, ) (B.3)
2%

* Angular Second Moment (ASM): It measures textural uniformity in an image. Its values,

similar to homogeneity, range between zero and one. Higher values indicate homoge-

neous regions with low complexity and appear when the gray level distribution exhibits
a consistent periodic pattern [58]. Equation B.2 shows how this metric is computed.

ASM =" P(i, )

i%j
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Figure C.1: Fuego Case Study GLCM feature maps.
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Figure C.2: Sinabung Case Study GLCM feature maps.
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Figure C.3: Kilauea Case Study GLCM feature maps.
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