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Abstract—It is often assumed that a network will not be struck
by multiple disasters in a relatively short period of time; that is,
a subsequent disaster will not strike within the recovery phase
of a previous disaster. However, recent events have shown that
combinations of disasters are not implausible. This realization
calls for a new perspective on how we assess the vulnerability of
our networks and shows a need for a framework to assess the
vulnerability of networks to successive independent disasters.

We propose a network and disaster model capable of modeling
a sequence of disasters in time, while taking into account recovery
operations. Based on that model, we develop both an exact
and a Monte Carlo method to compute the vulnerability of a
network to successive disasters. By applying our approach to
real empirical disaster data, we show that the probability of
a second disaster striking the network during recovery can be
significant even for short repair times. Our framework is a first
step towards determining the vulnerability of networks to such
successive disasters.

I. INTRODUCTION

Disasters can inflict significant damage on networks. The
2011 earthquake near the coast of Japan, for example, caused
extensive damage to telecommunications buildings and equip-
ment. The total cost of emergency restoration and reconstruc-
tion of the local NTT East network was around 80 billion
yen (1 billion dollars at the time) [1]. Large network outages
such as these can have a massive impact on our economy and
further exacerbate the impact of disasters on society. Hence,
efforts into developing new methods to improve the resilience
of communication networks to disasters have increased signif-
icantly in the last decade.

The rate at which disasters strike an area is typically very
low. Therefore, it is commonly assumed that a network will
only be affected by single (possibly composite1) isolated dis-
asters. The probability that two or more independent disasters
will occur shortly after one another is seen as negligible and
safe to ignore. Recent events have shown that this assumption
might not be as rock solid as first thought.

The 2017 Atlantic hurricane season was extremely active
and, due to global warming, the intensity of hurricanes is
projected to keep increasing [2]. The continental United States
was hit by 3 hurricanes (Harvey, Irma, and Nate), of which
two where categorized as major hurricanes (Harvey and Irma)

1Highly correlated disasters such as an earthquake and its aftershocks, can
be modeled as a single composite disaster.

[3]. Hurricane Irma hit the East Coast only 16 days after
Harvey [4], [5]. Out of the top 5 costliest US mainland tropical
cyclones on record, 3 occurred in 2017 [6].

In total, there were 16 billion-dollar weather and climate
disaster events in the United States in 2017 [7]. The total
cost of these events exceeded 300 billion dollars. For the past
five years (2013-2017), the United States has had an average
of 11.6 major disasters per year with a cost of more than 1
billion dollars.

Also in 2017, Mexico was hit by two major earthquakes
in two weeks (where the second quake is not considered an
aftershock of the first [8]), leading to a combined economic
loss of nearly 6 billion dollars [9], [10].

Recovering a network after a disaster can take several weeks
to months, as a large amount of hardware will need to be
replaced or repaired in a potentially very inaccessible area [1].
In the context of this paper, a network is said to be affected by
multiple successive disasters if a disaster strikes the network
during its recovery from a previous disaster. Depending on the
moment in the recovery phase when the next disaster occurs,
the total impact and final recovery time will differ significantly.

To increase the resilience of our networks to disasters, it is
essential to be able to compute the vulnerability of networks to
these disasters. While previous work has been instrumental in
computing the vulnerability of a network to a single disaster,
it has not addressed multiple successive disasters. In this
paper, we propose a framework to assess the vulnerability of
a network to successive disasters. Our main contributions are
as follows:

• We compose a network and disaster model capable of
modeling a sequence of disasters in time (Sec. II).

• We develop a method to compute the vulnerability of a
network to successive disasters by modeling the network
state as a discrete-time Markov chain (Sec. IV). Our
methodology allows for arbitrary precision by only com-
puting the effect of at most k successive disasters, with
corresponding error bounds. Our results for the Markov
chain are subsequently used to derive a faster Monte
Carlo method in Sec. V.

• We apply our methods to empirical disaster data in Sec.
VI. These experiments show that the probability of a
second disaster striking the network during recovery can
be significant, even for short repair times.ISBN 978-3-903176-08-9 c©2019 IFIP
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To the best of our knowledge, we are the first to propose
models and methods for assessing the impact of successive
disasters on networks, while taking into account recovery
operations.

II. NETWORK AND DISASTER MODEL

We model the network as a directed multigraph G =
(V,E, ψ) with nodes v ∈ V connected by links e ∈ E, where
ψ : E → V × V and e ∈ E connects v1 to v2 if and only if
ψ(e) = (v1, v2). Thus, we permit the same pair of nodes to be
connected by multiple links. We define a failure set s, where
network component c ∈ V ∪ E is functioning if and only if
c /∈ s. In the remainder of the paper, we refer to the failure
set of a network as the state of that network.

Given such a network, we are interested in three factors: (1)
the number of successive disasters we can expect the network
to be struck by, (2) the impact of being struck by one or more
disasters, and (3) the total time it takes to fully recover from
these disasters. To assess these attributes, we need to model
the occurrence of disasters over time.

The occurrence of disasters is inherently unpredictable.
A common stochastic model for disaster occurrences [11]–
[13], which we will also employ, is the Poisson process. We
model all disaster processes as mutually independent Poisson
processes and assume we are given a multiset of disaster
processes d = (ad, λd) ∈ D∗, where ad ⊆ V ∪ E are the
components affected by d and λd is the rate of d.

If disaster process d triggers at time t, when the network
state is s, the new network state at time t will be s∪ ad. That
is, all components in ad fail. We assume at most one disaster
can strike the network at any given time t.

The combination of multiple Poisson processes is again
Poissonian, with as rate the sum of its component rates.
Thus, we can merge all disaster processes that affect the same
components without affecting the outcome of our analysis.
Hence, we transform the set D∗ to

D = {(ad, λd)|ad 6= ∅ ∧ λd =
∑

(ad,λd∗ )∈D∗

λd∗ > 0} (1)

Let (Tn)
∞
n=1 be the ordered sequence such that T1 is the

occurrence time of the first disaster, and for all n > 1, Tn
is the time between disasters n − 1 and n. Let (Dn)

∞
n=1 be

the ordered sequence of disasters. In other words, the first
disaster D1 ∈ D occurs at time T1 ∈ R, the second D2 ∈ D
at T1 + T2 ∈ R, etc. Then, for all n ∈ N:

Tn ∼ Exp(λD) (where λD :=
∑

(ad,λd)∈D

λd) (2)

the Tn are exponentially distributed with rate λD, and Dn and
Tn are independent for all n ∈ N:

P (Dn = d ∧ Tn = t) = P (Dn = d)P (Tn = t) (3)

A. Example Network and Disasters Instance

To illustrate our network and disaster model, we give an
example in Fig. 1. We consider a small triangle network of 3
nodes and 3 links. Its representative set of disasters contains

four (types of) disasters. As each of these disasters affects a
different set of components, D∗ = D. The total disaster rate
is λD = 1.6 disasters per year.

A network topology and set of disasters are not sufficient
to properly compute the vulnerability of the network to suc-
cessive disasters, as the impact of these disasters significantly
depends on how quickly, and in what order, the network can be
repaired. Thus, we also need to include some repair properties.

Our framework can include any repair function, but in the
example the following repair rules hold: nodes can be repaired
in half a month, while links take a full month to repair, and
repairs are performed according to a predetermined priority
and cannot be performed concurrently.

III. PROBLEM STATEMENT

We consider a deterministic repair model. We assume that,
given a certain starting state, the recovery of the network is
fixed (until a new disaster occurs). For example, if disaster 4
of the example instance occurs, all nodes will be damaged.
Afterwards, the nodes will be repaired one by one. Thus,
unless another disaster occurs during repair, the state of the
network will be
• {n1, n2, n3} at time 0
• {n2, n3} at time 1

24
• {n3} at time 2

24
• ∅ at time 3

24

Generalizing the above example, we define repair functions
rs0 : R+ → V ∪ E for each s0 ∈ V ∪ E. r(t)s0 ∈ V ∪ E is
the state of the network at time t+C, given that the state of
the network was s0 after being struck by a disaster at some
time C. We assume the network does not degrade further in
the recovery phase:

r(b)s0 ⊆ r(a)s0 0 ≤ a ≤ b, s0 ∈ V ∪ E (4)

Different repair strategies can be compared by changing
the repair functions. Additionally, by increasing the amount
of components being repaired simultaneously, the benefits of
acquiring more personnel can be assessed and compared to
the additional cost in salary.

In the following, we elaborate on our research objectives
with respect to three properties.

A. Number of Successive Disasters N

Network operators should decide on how many successive
disasters they prepare for. To do so, knowing the probability
of at least n successive disasters is essential. In addition, the
expected number of successive disasters is also of interest.
Hence, our goal is to compute P (N ≥ n), as well as E[N ].

B. Impact

While knowing the expected number of successive disasters
is useful, it is also important to consider their impact. Suppose
we have a measure M : V × E → [0, 1] that assigns a value
M(s) between 0 (worst case) and 1 (best case) to each state
s of the network. We require that M(a) ≤M(b) if b ⊆ a.

2



n1 n2

n3

e1

e2e3

Network: Disasters:
d ad λd
1 {n1, e1, e3} 0.5
2 {n2, e1, e2} 0.5
3 {n3, e2, e3} 0.5
4 {n1, n2, n3} 0.1

Repair:
Concurrently: no
Node repair time: 1

24
Link repair time: 1

12
Repair order: n1 > n2 > n3

> e1 > e2 > e3

Instance:

Fig. 1. Example problem instance.

We analyze the minimum value of M during the disaster-
and-recovery process. In the one-disaster case, this would
simply be the value of M directly after the disaster. Successive
disasters, although rare, can have a significantly higher impact
on the network than single disasters. Therefore, given a critical
value m, we want to compute the probability that the network
reaches a state at least as bad as m during the disaster-
and-recovery process, P (Mmin ≤ m), where Mmin is the
minimum value of M between T1 and full recovery.

C. Total Time to Full Recovery

Let Ttotal be the total repair time, from the start of the
first disaster to the time when all damage from all previous
disasters has been repaired. We aim to compute the expected
time to full recovery, E[Ttotal].

IV. ANALYSIS

In this section, we describe methods for computing the
properties introduced in the previous section by modeling
the state of the network as a Discrete-Time Markov Chain
(DTMC).

A. Markov Chain

Let An be the state of network G directly after the nth dis-
aster strikes the network. Now, because the disaster processes
are independent and memoryless, and the repair function is
deterministic,

P (An = an|A1 = a1, A2 = a2, . . . , An−1 = an−1) =

P (An = an|An−1 = an−1)
(5)

that is, (An)
∞
n=1 satisfy the Markov property and form a

(discrete-time) Markov chain.
The transition probabilities of this Markov chain depend on

which disaster strikes next, as well as at which stage of the
repair process this disaster strikes. By property (3), these two
factors are independent. Thus, the transition probabilities can
be calculated by summing over all possible disasters d ∈ D:

P (An = an|An−1 = an−1) =∑
d∈D

λd
λD

(exp(−λDMan−1,d,an)− exp(−λDSan−1,d,an))

(6)

Here, λd

λD
is the probability that the network will be struck

by disaster d = (ad, λd). [Man−1,d,an ,San−1,d,an) is the

period of time during which the occurrence of disaster d
will result in network state an and exp(−λDMan−1,d,an) −
exp(−λDSan−1,d,an) the probability that the next disaster will
occur in this period of time2.

We are specifically interested in the chain of network states
until full recovery. Thus, we construct an additional Markov
chain (Sn)

∞
n=1 by adding an absorbing state ∅ to (An)

∞
n=1

such that Sn = ∅ if and only if the network has been fully
repaired.

Let Rs := min{t ≥ 0|r(t)s = ∅} be the time it takes
to fully repair the network (assuming no subsequent disasters
occur), starting from network state s ∈ V ∪ E. The proba-
bility that, starting in state s, the network is fully recovered
before the next disaster strikes is exp(−λDRs). Therefore, the
transition probabilities to the absorbing state ∅ are

P (Sn = ∅|Sn−1 = sn−1) =

{
1 if sn−1 = ∅
exp(−λDRsn−1

) if sn−1 6= ∅
(7)

and the transition probabilities to all other states are

P (Sn = sn 6= ∅|Sn−1 = sn−1) =
0 if sn−1 = ∅∑
d∈D

λd

λD
(exp(−λDmin(Msn−1,d,sn , Rsn−1

))

− exp(−λDmin(Ssn−1,d,sn , Rsn−1
))) if sn−1 6= ∅

(8)

S1 = A1 = aD1
, so the initial distribution of the Markov

chain (Sn)
∞
n=1 is

P (S1 = s1) =

{
λd

λD
∃d ∈ D s.t. ad = s1

0 otherwise
(9)

B. Number of Successive Disasters N

We can now compute the probability P (N ≥ n) = 1 −
P (Sn = ∅) of at least n successive disasters without full
recovery. This probability decreases exponentially with n.

Lemma 1:

P (N ≥ n) ≤ (1− exp(−λDR))n−1 (10)

2Man−1,d,an is the first time at which ran−1 ∪ ad = an (or ∞ if no
such time exists), and San−1,d,an is the first time after Man−1,d,an at
which ran−1 ∪ ad 6= an (or ∞).

3



where R := max
s⊆V ∪E

Rs.

Proof: See Appendix.
Remark 1: If Rs = R ∀s ∈ V ∪ E − ∅, then

P (N ≥ n) = (1− exp(−λDR))n−1

Typically, R = max
s⊆V ∪E

Rs will be the amount of time it takes

to repair all network components (RV ∪E).
Unfortunately, computing E[N ] directly is intractable in

most cases, as the number of possible states can be as high
as 2|V |+|E|. However, we can approximate (from below) the
expected number of successive disasters by only constructing
the Markov model for k successive disasters and computing
the distribution of S1 to Sk. The choice of k depends on the
required accuracy.

Theorem 1 (Stopping conditions 1): Let Ê[N ] =
k∑

n=1
P (N ≥ n), then

0 ≤ E[N ]− Ê[N ] ≤ (1− exp(−λDR))k

exp(−λDR)
(11)

In addition, if P (N ≥ k) ≤ ε exp(−λDR)
1−exp(−λDR) , then

E[N ]− Ê[N ] ≤ ε (12)

Proof: We start by proving (11).

E[N ]− Ê[N ] =
∞∑

n=k+1

P (N ≥ n)

≤
∞∑

n=k+1

(1− exp(−λDR))n−1 (Lemma 1)

=
(1− exp(−λDR))k

exp(−λDR)

If P (N ≥ k) ≤ ε exp(−λDR)
1−exp(−λDR) , then (for n ≥ k):

P (N ≥ n) ≤ ε exp(−λDR)(1− exp(−λDR))n−k−1

This can be proved analogously to Lemma 1. But this means
that the absolute error

E[N ]− Ê[N ]

≤
∞∑

n=k+1

ε exp(−λDR)(1− exp(−λDR))n−k−1

=
∞∑
n=0

ε exp(−λDR)(1− exp(−λDR))n

= ε

Thus, to guarantee an upper bound on the absolute error,
we can either choose the number of steps k beforehand, or
test if P (N ≥ k) is below the threshold after every iteration,
where the latter requires fewer iterations than the former.

C. Impact

As M is minimal directly after a disaster,
Mmin = min

n
M(Sn). The cumulative distribution

function P (Mmin ≤ m) is the hitting probability of
M≤m := {s ∈ V × E|M(s) ≤ m}. We can take a similar
approach as before and approximate these probabilities as

P̂ (Mmin ≤ m) := P (Mk
min ≤ m) (13)

where Mk
min = min

n≤k
M(Sn).

Suppose we have computed the first k states and correspond-
ing transition probabilities of the Markov chain (Sn)

∞
n=1. To

compute P (Mk
min ≤ m) we construct a new Markov chain

(S≤mn )∞n=1 by replacing all s ∈M≤m with a single absorbing
state A≤m. Now,

P (Mk
min ≤ m) = P (S≤mk = A≤m) (14)

Theorem 2 (Stopping conditions 2): Let

P̂ (Mmin ≤ m) = P (Mk
min ≤ m) = P (S≤mk = A≤m)

Then

0 ≤ P (Mmin ≤ m)− P̂ (Mmin ≤ m) ≤
1− P̂ (Mmin ≤ m)− P (S≤mk = ∅) ≤ P (N ≥ k)

≤ (1− exp(−λDR))k−1
(15)

Proof: If m ≥ 1, then
P (Mmin ≤ m) = P̂ (Mmin ≤ m) = 1, so we assume that
m < 1.

In this case

P (Mmin ≤ m)− P̂ (Mmin ≤ m)

= P (Mmin ≤ m)− P (Mk
min ≤ m)

= P (Mmin ≤ m ∧Mk
min > m)

≤ 1− P (Mk
min ≤ m)− P (S≤mk = ∅)

≤ P (N ≥ k)

D. Total Time to Full Recovery

The total time to full recovery, or the total repair time, Ttotal,
is equivalent to the sum of the time spent on repair in all states
of (Sn)∞n=1:

Ttotal =
∞∑
n=1

Rn (16)

where Rn is the time spent on repairs between the nth and
(n + 1)th disaster. Thus, Rn is 0 if Sn = ∅ and Rn is the
minimum between the total repair time of failures Sn and the
time till the next disaster otherwise:

Rn =

{
0 if Sn = ∅
min(RSn

, Tn+1) if Sn 6= ∅
(17)
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The expected value of Rn is

E[Rn] =∑
s6=∅

P (Sn = s)(

Rs∫
0

λD exp(−λDt)tdt+ exp(−λDRs)Rs)

=
∑
s6=∅

P (Sn = s)(
1

λD
(1− exp(−λDRs)))

=
1

λD

∑
s6=∅

P (Sn = s)(1− exp(−λDRs))

(18)

As before, we propose approximating E[Ttotal] by trun-
cating (16). That is, we approximate E[Ttotal] by summing
the expected values of R1 to Rk, which only requires the
distributions of S1 to Sk.

Theorem 3 (Stopping conditions 3): Let Ê[Ttotal] :=
k∑

n=1
E[Rn], then

0 ≤ E[Ttotal]− Ê[Ttotal] ≤
(1− exp(−λDR))k

λD exp(−λDR)
(19)

In addition, if P (N ≥ k) ≤ ελD exp(−λDR)
1−exp(−λDR) , then

E[Ttotal]− Ê[Ttotal] ≤ ε (20)

Proof: By the monotone convergence theorem,

E[Ttotal] = E[

∞∑
n=1

Rn] =
∞∑
n=1

E[Rn]

In addition, by (18), E[Rn] ≤ 1
λD
P (N ≥ n).

Now, the proof follows analogously to that of Theorem 1.

V. MONTE CARLO

The Markov chain in Sec. IV has a large number of states.
Most of these states have a very small probability of ever being
reached. However, we can not simply ignore these states, as
the aggregate of their probabilities is relatively high. This is a
perfect use case for Monte Carlo simulations.

We propose an efficient Monte Carlo method, based on
the results from Sec. IV, for estimating P (N ≥ n), E[N ],
E[Mmin], and E[Ttotal]. The method is given in detail in Fig.
2. The main idea is to simulate many sequences of successive
disasters simultaneously, and cut off these sequences when
the error bounds on the values of interest are small enough.
As all sequences are cut off after the same number n of
successive disasters, we only allow transitions to subsequent
disaster states and keep track of the probability of reaching the
absorbing state separately. This allows us to closer estimate the
values of interest.

In essence, we approximate the lower bounds described in
Sec. IV. By Theorems 1 to 3, these lower bounds, combined
with P (N ≤ n), give us the upper bounds as well. The method
can be tuned with respect to two values: Stopping condition

Input: Number of simulations η, and bound β
Output: P̂ (N ≥ n), Ê[N ], P̂ (Mmin ≤ m), Ê[Mmin], and
Ê[Ttotal]
Let Statei,j be the network state in simulation i after the
jth disaster
P̂ (N ≥ 1)← 1
P̂ (Mmin ≤ m)← 0
for i = 1 to i = η do

Sample starting state Statei,1 from S1

Pi,1 ← 1
Mi,1 ←M(Statei,1)
if Mi,i ≤ m then
P̂ (Mmin ≤ m)← P̂ (Mmin ≤ m) + 1

η
end if

end for
n← 1
while P̂ (N ≥ n) > β do
n← n+ 1
for i = 1 to i = η do
P (Sn = ∅)← exp(−λDRStatei,n−1)
Pi,n ← Pi,n−1(1− P (Sn = ∅))
Sample next disaster occurrence time Tn, conditioned
on Tn < RStatei,n−1

Compute Statei,n, given occurrence time Tn
Mi,n ← min(Mi,n−1,M(Statei,n))
if Mi,n−1 > m and Mi,n ≤ m then
P̂ (Mmin ≤ m)← P̂ (Mmin ≤ m) + 1

ηPi,n
end if

end for
P̂ (N ≥ n)← 1

η

η∑
i=1

Pi,n

end while
Ê[N ]←

n∑
j=1

P̂ (N ≥ n)

Ê[Mmin]←
η∑
i=1

n−1∑
j=1

Pi,j exp(−λDRStatei,j )Mi,j

Ê[Mmin]← 1
η Ê[Mmin] +

1
η

η∑
i=1

Pi,nMi,n

Ê[Ttotal]← 1
ηλD

η∑
i=1

n∑
j=1

Pi,j(1− exp(−λDRStatei,j ))

Fig. 2. Monte Carlo method for estimating P (N ≥ n), E[N ], P (Mmin ≤
m), E[Mmin], and E[Ttotal].

β gives the maximum difference between the approximated
bounds, while the number of simulations η can be adjusted
to affect the accuracy of the approximation of the bounds
itself. When the probability of subsequent disasters is too
high, lowering β can keep computation times manageable by
reducing the number of successive disasters taken into account.

VI. EXPERIMENTS

To demonstrate our methods, we apply them to a version
of the Sinet topology (Fig. 3) from the Topology Zoo [14],
where all nodes without geographical information have been
removed. This backbone network of 47 nodes connected by

5



Fig. 3. Sinet Topology.

49 bidirectional links is located in Japan, and hence is vul-
nerable to a variety of different disasters such as earthquakes,
landslides, and typhoons. All experiments are performed on
an Intel Xeon Processor E5-2620 v3.

A. Dataset

We create a set of disasters D∗ by combining datasets from
two sources: (1) the Japan Seismic Hazard Information Station
(J-SHIS) [15] and (2) the International Best Track Archive for
Climate Stewardship (IBTrACS) [16].

1) Earthquake Data (J-SHIS): The National Research Insti-
tute for Earth Science and Disaster Resilience (NIED) provides
a large amount of data on Japanese earthquakes through the
Japan Seismic Hazard Information Station (J-SHIS). We use
the 2016 version of this dataset. J-SHIS provides maps of the
effect of a significant number of modeled earthquakes: the
Scenario Earthquake Shaking Maps. These maps give, among
other data, the JMA seismic intensities for each affected
Divided Quarter Grid Square [17] cell in Japan.

We create a disaster process d ∈ D∗ for each earthquake
scenario. The affected components ad of each scenario are
the set of network components that intersect (or lie within)
one or more grid cells with a seismic intensity larger than or
equal to 5.5. The disaster rates λd are the inverse of the mean
recurrence intervals of each fault, divided by the total number
of scenarios of the fault.

2) Tropical Cyclone Data (IBTrACS): IBTrACS is a collec-
tion of tropical cyclone data from numerous agencies main-
tained by the National Centers for Environmental Information
(NCEI) of the (U.S.) National Oceanic and Atmospheric
Administration (NOAA). In our experiments, we use IBTrACS
beta version 4 and limit ourselves to cyclones from 1980 to
2017. We filter out any storms that never reached wind speeds
of 74 mph, leaving us with a set of 1649 historical storms.
As disaster area, we would prefer to use the regions that
reached 74 mph winds. Unfortunately, this information is only
available for some storms (in the form of the radius maximum
extent per quadrant). Therefore, we apply the concept of the
hurricane strike circle instead.

A strike circle is a circle with diameter 231.5 km, centered
23.15 km to the right of the hurricane center (based on its

0 2 4 6 8 10 12 14 16 18 20
100

101

102

103

104

Component repair time (days)

Monte Carlo approximation (E[Ttotal])
Monte Carlo approximation (E[N ])

Fig. 4. Approximations of the expected number of successive disasters, E[N ],
and the expected time to full recovery, E[Ttotal], against the component repair
time.

direction of motion). It is meant to depict the typical extent
of hurricane force winds [18].

For each typhoon-level storm, we find the first registered
center point pa where the storm had a maximum sustained
wind speed of at least 74 mph, as well as the last center
point pb with at least 74 mph maximum sustained wind speed.
Then, we select the range of center points from pa up to and
including the first registered center point after pb. Connecting
these points forms a track. ad is the selection of all components
within or intersecting a strike circle of any point (including
points on the line segment between registered center points) on
this track. The resulting set of disasters includes many storms
that do not affect any components of Sinet (e.g. hurricanes
striking the U.S.). However, this is not an issue, as empty ad
are filtered out when generating D.

The final set D∗ is the union of the earthquake scenarios and
historical tropical cyclones. This set of 2304 potential disasters
can be reduced to a set D of 160 unique scenarios affecting
Sinet. The total rate λD of these scenarios is 1.648 per year.

B. The Effect of Component Repair Time

We first examine the effect of repair time. In a one-disaster
scenario, the relation between component repair time and
total repair time is simple: Ignoring start-up time, if repairing
components takes twice as long, the total time to full recovery
will also take twice as long. However, if we take the possibility
of multiple disasters into account, we encounter another effect
of repair time: When the time to repair the network increases,
so does the probability that the network will be struck by a
subsequent disaster during recovery. These subsequent disas-
ters further increase the expected total recovery time on top of
the increase in component repair time itself. Our experiments
show this effect can be significant.

We consider a situation where components are repaired one-
by-one, using a greedy strategy that tries to maximize the
number of connected node-pairs. We vary the time it takes
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Fig. 5. The probability of a successive disaster during recovery of the first
disaster, P (N > 1), against the component repair time. Exact.
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Fig. 6. Approximations of P (ATTRmin ≤ 0.5), P (ATTRmin ≤ 0.1), and
E[ATTRmin] against the component repair time. Computed by Monte Carlo
simulations.

to repair a component between 0 and 20 days. As we would
need to compute a large number of steps of the DTMC to
get precise results for higher repair times, we approximate all
results. We use η = 10, 000 simulations for each Monte Carlo
approximation and set β = 0.05.

The expected number of successive disasters and the ex-
pected time to full network recovery are plotted in Fig. 4. E[N ]
rapidly increases with the (component) repair time. Although,
as could be expected, for more reasonable repair times3 E[N ]
remains below 2. Due to the influence of subsequent disasters,
E[Ttotal] grows exponentially in the component repair time.

Fig. 5 shows the probability of a subsequent disaster during
recovery of the first disaster, P (N > 1). This value can
be computed exactly by computing one step of the DTMC.
Interestingly, even with a component repair time of less than 5

3When components are repaired non-concurrently and the component repair
time is 20 days, it can take more than 5 years to fully repair Sinet.
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Fig. 7. Computation time of the Monte Carlo approximations against the
component repair time.

days, the probability of facing more than 1 disaster is relatively
high. Probabilities of around 0.2, or even 0.1, are significant
enough to stop ignoring the possibility of subsequent disasters.

Next, we consider the connection between repair time and
network performance. To do so, we analyze the minimum
value of the Average Two-Terminal Reliability (ATTR) sur-
vivability measure in the period after the first disaster strikes
and before all damage has been repaired.

The ATTR of a network is the number of connected node
pairs, divided by the total number of node pairs. We choose
this metric because it is of vital importance that as many areas
remain connected as possible after a disaster.

In Fig. 6, we have plotted E[ATTRmin] against the compo-
nent repair time. While the repair time does affect the expected
minimum ATTR, this effect is much smaller than that on the
expected time to full recovery.

A similar outcome can be observed when computing the
probability that at most half of all node pairs remain con-
nected (Fig. 6). However, while P (ATTRmin ≤ 0.5) increases
relatively slowly with the repair time, P (ATTRmin ≤ 0.1)
increases much faster.

Fig. 7 shows the computation time of the Monte Carlo
method (parallelized to 11 threads) against the component
repair time. The computation time grows exponentially in the
component repair time, as the method has to simulate longer
sequences of disasters to keep satisfying the stopping con-
dition. Nevertheless, even for unrealistically large E[N ] and
P (N ≥ 1), the computation time is more than manageable.

The repair time has a significant effect on both the total
recovery time and ATTR during the recovery process. Thus,
reducing it, by repairing more components at once or by
decreasing the time it takes to repair individual components,
should be a high priority.

C. Concurrent Repair

To evaluate our methods, we consider a use-case in which
multiple components can be repaired simultaneously. In addi-
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TABLE I
COMPARISON OF THE EXACT RESULTS FROM SEC. IV AND THE RESULTS

OF THE MONTE CARLO METHOD FROM SEC. V. THE EXACT COLUMN
SHOWS THE LOWER AND UPPER BOUNDS OF THE VALUE. THE RUNTIME

OF THE EXACT COMPUTATION ONLY INCLUDES THE TIME TO COMPUTE S1

TO Sk . THE MONTE CARLO APPROXIMATION IS OBTAINED BY
PERFORMING 50,000 MONTE CARLO SIMULATIONS WITH STOPPING

CONDITION P̂ (N ≥ n) ≤ 0.0001
exp(−λDR)

1−exp(−λDR)
.

Exact Monte Carlo
E[N ] 1.0850 - 1.0851 1.0851

P (N > 1) 0.0763 0.0763
P (ATTRmin ≤ 0.5) 0.3834 - 0.3834 0.3825
P (ATTRmin ≤ 0.1) 0.0021 - 0.0022 0.0021

E[Ttotal] (days) 19.4576 - 19.4674 19.4816

1-Threaded Computation Time (s) 1,556.7398 120.1504

tion, we assume only nodes are damaged by the disasters.
As Sinet is a backbone network and individual nodes are
connected to many additional network components (which
will also be affected by the disaster) that are not included
in our topology, we assume repairing a single node takes half
a month. However, by sending out multiple repair crews, 10
nodes can be repaired simultaneously.

To compute exact lower and upper bounds of the proper-
ties of interest, we construct the DTMC up to 5 successive
disasters. By applying the methods from Sec. IV and limiting
ourselves to 5 successive disasters, we obtain lower bounds
of E[N ], P (ATTRmin ≤ m), and E[Ttotal]. By computing the
upper bound on the error, applying Theorems 1, 2, and 3, we
can obtain the upper bounds on these values as well.

We approximate the lower bounds of these properties with
our Monte Carlo method from Sec. V. We set the number of
simulations η to 10,000, and choose β such that the difference
between the approximation of the lower and upper bounds of
E[N ] is smaller or equal to ε = 0.0001. That is, the method
stops if P̂ (N ≤ n) ≤ β = 0.0001 exp(−λDR)

1−exp(−λDR) . The resulting
values can be found in Table I.

The computation time of the Monte Carlo method is much
lower than that of the exact bounds. In addition, the Monte
Carlo approximations are quite accurate. Thus, this method
can be a good alternative for the exact approach, especially
when the network or repair times are very large.

The probability of a second disaster striking the network
during repair of a previous disaster has a low, yet still
significant, probability (0.0763), but a very high impact. It is
disastrous to the network if more than 90% of all node pairs
lose their connection. While this outcome is not even con-
sidered feasible when only considering a single disaster, our
successive disaster model shows that it is possible, although
with low probability.

VII. RELATED WORK

The amount of research into assessing the impact of multiple
regional failures is rather sparse. In [13], disaster occurrences
were characterized by independent Poisson processes. How-
ever, in contrast to our framework, the methodology of [13] did

not consider the difference between single or multiple disaster
occurrences in a short period of time.

When the possibility of more than one regional failure is
considered, it is often in the form of deliberate, simultaneous
attacks. In this case, the goal is to find a set of attack locations
where the damage to the network is maximized [19]–[21] or
to compute the minimum number of regional failures required
to disconnect two nodes [22]–[24].

In [25], Neumayer and Modiano showed how to compute
the average two-terminal reliability after a randomly located
disk or line cut. They briefly discussed how to extend their
approach to multiple simultaneous events.

Regional failures can be modeled as Shared-Risk Link
Groups (SRLG). SLRGs reflect possible combinations of links
that can fail simultaneously, for example due to disasters or
cable cuts. Yang et al. considered the problem of finding
a set of at most k paths with an availability of at least δ
under, potentially multiple simultaneous, single link failures
and SRLG failures [26]. As this problem is NP-hard, they
provided both a heuristic and an integer non-linear program
formulation to find these paths.

Rahnamay-Naeini et al. proposed a model for multiple
correlated random disasters, based on spatial point processes
[27]. Using their model, Monte Carlo simulations can be
performed by randomly generating a fixed number of disaster
events and their effects. The model from [27] does not take
into account network repair or disaster processes over time.

Heegaard and Trivedi considered the recovery of a network
after a single pre-selected disaster [28]. They proposed a
detailed model of the performance of a network directly after
the failure event and during subsequent recovery operations.

To the best of our knowledge, none of the work on multiple
regional failure events consider time or network repair.

VIII. CONCLUSION

Recently, natural disasters have struck the same area shortly
after one another on a number of occasions. Successive
disasters like these are rare, but can inflict a massive amount
of damage on the network. Consequently, the risk of succes-
sive disasters is significant and should be considered when
evaluating the vulnerability of a network.

To this end, we have composed a network and disaster
model capable of modeling a sequence of disasters in time and
applied this model to construct a discrete-time Markov chain
of the network state after one or more successive disasters.
We have shown how to adopt this Markov chain to compute
with arbitrary precision (1) the probability of more than one
successive disaster, (2) the expected number of successive
disasters, and (3) the expected time to fully recover from these
disasters. Analogously to the expected survivability metrics in
single-disaster models, we considered the minimum value of
a metric during the disaster-and-recovery process.

Building upon these results, we have developed a Monte
Carlo method that can compute the vulnerability of networks
to disasters in a matter of minutes. Since these types of
analyses only need to be conducted sporadically and can be
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done well in advance, this computation time can be considered
to be very fast.

We have applied our model to empirical disaster data. Our
experiments show that when considering successive disasters,
the expected time to complete recovery grows exponentially in
the time it takes to repair a network component. Additionally,
the probability of a second disaster striking the network during
recovery can be significant, even for short repair times. Our
framework is a first step towards determining the vulnerability
of a network to these successive disasters.
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APPENDIX A
PROOF OF LEMMA 1

By induction:
Trivially, P (N ≥ 1) = 1 ≤ (1− exp(−λDR))0.
Now, suppose

∀k < n P (N ≥ k) ≤ (1− exp(−λDR))k−1,

then

P (N ≥ n) = P (N ≥ n− 1)P (N ≥ n|N ≥ n− 1)

≤ (1− exp(−λDR))n−2P (N ≥ n|N ≥ n− 1)

By direct application of (7):

P (N ≥ n|N ≥ n− 1) = 1− P (Sn = ∅|Sn−1 6= ∅)

= 1− 1

P (Sn−1 6= ∅)
∑
s6=∅

P (Sn−1 = s)P (Sn = ∅|Sn−1 = s)

= 1− 1

P (Sn−1 6= ∅)
∑
s6=∅

P (Sn−1 = s) exp(−λDRs)

≤ 1− 1

P (Sn−1 6= ∅)
∑
s6=∅

P (Sn−1 = s) exp(−λDR)

= (1− exp(−λDR))

So,
P (N ≥ n) ≤ (1− exp(−λDR))n−1
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