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Polynomial-Time Algorithms for Phylogenetic
Inference Problems Involving Duplication

and Reticulation
Leo van Iersel , Remie Janssen, Mark Jones , Yukihiro Murakami , and Norbert Zeh

Abstract—A common problem in phylogenetics is to try to infer a species phylogeny from gene trees. We consider different variants

of this problem. The first variant, called UNRESTRICTED MINIMAL EPISODES INFERENCE, aims at inferring a species tree based on a model

with speciation and duplication where duplications are clustered in duplication episodes. The goal is to minimize the number of such

episodes. The second variant, PARENTAL HYBRIDIZATION, aims at inferring a species network based on a model with speciation and

reticulation. The goal is to minimize the number of reticulation events. It is a variant of the well-studied HYBRIDIZATION NUMBER

problem with a more generous view on which gene trees are consistent with a given species network. We show that these

seemingly different problems are in fact closely related and can, surprisingly, both be solved in polynomial time, using a structure

we call “beaded trees”. However, we also show that methods based on these problems have to be used with care because the

optimal species phylogenies always have a restricted form. To mitigate this problem, we introduce a new variant of UNRESTRICTED

MINIMAL EPISODES INFERENCE that minimizes the duplication episode depth. We prove that this new variant of the problem can also be

solved in polynomial time.

Index Terms—Phylogenetics, duplication, MINIMUM EPISODES problem, HYBRIDIZATION NUMBER problem, gene trees, inference,

polynomial-time algorithm

Ç

1 INTRODUCTION

PHYLOGENETIC trees are commonly used to represent the
evolutionary history of a set of taxa. The leaves repre-

sent extant taxa; internal nodes represent speciation events
that caused lineages to diverge. If we assume that the only
process is speciation and that no incomplete lineage sorting
occurs, then any gene will have a gene tree that is consistent
with the species phylogeny. There are, however, evolution-
ary processes beyond vertical inheritance of genetic material
and speciation events that make it more challenging to
reconstruct the real evolutionary history. Examples of such
processes are hybridization, horizontal gene transfer, and
duplication. Each of these processes can result in discor-
dance between gene trees.

This leads to a number of problems in which the task is to
minimize the number of such complicating events. In reconcili-
ation problems, we are given the gene trees together with the
species phylogeny, and the task is to find optimal embeddings
of the gene trees into the species phylogeny. Suchmethods are
for example used to estimate dates of duplications, to discover

relationships between duplicate genes [1], [2], and to recon-
struct the infection history of parasites [3]. In inference prob-
lems, only the gene trees are given and we aim to find a
species phylogeny that minimizes the discordance with the
gene trees. Such problems are relevant when the species phy-
logeny is not yet knownwith certainty.

1.1 Duplication Minimization Problems

Gene duplications happen as a consequence of errors in the
DNA replication process. This leads to a species having
multiple copies of the same gene. There exist many types of
gene duplication, which depend on the positions of errors
within the replication process [4], [5]. The scale of gene
duplications is determined by the number of genes that get
duplicated. An extreme example of a large-scale duplication
is Whole Genome Duplication (WGD), in which every gene in
the genome is duplicated. This process, also known as poly-
ploidization, occurs as a result of an error in separation of
chromosomes during gamete production. It is most com-
mon in plants (see, e.g., Fig. 1 in [11]) but has also occurred
in animals [6], and there are two WGD events even in the
evolutionary history leading to humans [7], [8]. Large-scale
duplications provide species with diversification potential,
giving them the ability to quickly adapt to a changing envi-
ronment [6], [9], [10].

In their seminal paper [12], Goodman et al. pioneered the
parsimony approach to reconciling gene trees with species
trees. This has motivated researchers to explore reconcilia-
tion through different models whilst optimizing some mea-
sure of the number of duplication events.
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The studied problems can be categorized according to
how duplication events are clustered to form duplication
episodes and which restrictions are put on the possible loca-
tions of duplications [13]. We focus on minimal episodes (ME)
clustering where duplications can be clustered if they occur
on the same branch of the species phylogeny and have no
ancestor-descendant relationship in any gene tree. We
believe this way of clustering to be most relevant since it
can cluster duplications that can be part of a single (large-
scale) duplication event. We consider unrestricted ME (called
the FHS-model in [13]), which does not put any restrictions
on the locations of gene duplications.

Reconciliation problems have been studied intensively,
especially without clustering of duplication events [3], [14],
[15]. Several reconciliation problems with clustering of
duplication events have been proven to be computation-
ally intractable [16], [17], whereas for others there are
polynomial-time [18], [19] or even linear-time [13], [20], [21]
algorithms. For unrestricted ME reconciliation, which was
recently shown to be NP-hard [23], there only exists an
exponential-time algorithm [13].

It has also been attempted to use reconciliation as a basis
for inferring species phylogenies. For the unrestricted ME
inference problem, [22] used a brute-force approach on all
possible species phylogenies. It was observed that unre-
stricted ME fails to rank the true species tree among the top
third of all topologies (for real data with a well accepted
species phylogeny). It was suggested that a possible reason
for this anomaly is that duplication episodes near the root
are overly powerful under this criterion. A similar observa-
tion was made in a more recent reconciliation study [13].
However, neither article gives a mathematical explanation
for this phenomenon. It should also be noted that, since the
number of possible species phylogenies grows extremely
quickly with the number of species, brute-force approaches
are only feasible for very small data sets.

Inference problems are generally assumed to be compu-
tationally intractable. However, NP-hardness has been
proven only for some restricted inference problem without
clustering of duplication events [17]. For an inference prob-
lem with restricted clustering (called gene duplication (GD)
clustering in [13]), NP-hardness was suggested in [16] but
not proven. Because of the suspected intractability of these
problems, some heuristic inference approaches have been
attempted using efficient algorithms for reconciliation (see,
e.g., [24]).

1.2 Reticulation Minimization Problems

Another possible cause of discordance between gene trees is
reticulate evolution, such as hybridization or horizontal gene
transfer. In such cases, the evolutionary history is repre-
sented by a phylogenetic network rather than a tree.

Reticulate evolution can occur in nature when genetic
material from one species is transmitted to some other spe-
cies. In asexual species, such transfers are called horizontal
gene transfers (HGT). In bacteria, for example, this happens
in nature by transformation (take-up from the environment)
or conjugation (transmission from another bacterium). In
sexual species, a cause for such transmissions can be hybrid-
ization, where individuals from different but related taxa
mate. There is also evidence that horizontal gene transfers
occur between multicellular sexual species. An example is
the transfer of a phototropin gene from Hornworts to
Ferns (see [25], [26]). HGT can even happen between more
distant species.

Gene trees that appear to be inconsistent may in fact sim-
ply take different paths through the network. This leads to a
family of inference problems in which the aim is to find a
phylogenetic network that is consistent with the gene trees
and has the minimum number of reticulation events (nodes
in the network with two ancestral branches). A phylogenetic
network is often taken to be consistent with a gene tree if
that tree is displayed by the network, which, roughly speak-
ing, means that the gene tree can be drawn inside the net-
work in such a way that each network branch contains at
most one lineage of the gene tree. A more generous defini-
tion is to count a network as consistent with a gene tree if
the tree is weakly displayed by the network [27], [28]. Roughly
speaking, this means that different lineages of the gene tree
may “travel down” the same branch of the network, as long
as any branching node in the tree coincides with a branch-
ing node in the network. In this case, the tree is also called a
parental tree of the network. This models situations where a
species has individuals carrying multiple homologous cop-
ies of a gene.

The HYBRIDIZATION NUMBER problem, in which we seek a
network with the minimum number of reticulations dis-
playing all input trees, has been well-studied. It has been
shown that HYBRIDIZATION NUMBER is NP-hard already when
the input consists of only two gene trees [29]. Furthermore,
there are theoretical FPT algorithms for any fixed number of
gene trees, but there are no practical algorithms that can
handle instances with more than two input trees unless the
number of taxa is extremely small [30], [31].

In contrast, the PARENTAL HYBRIDIZATION problem, in
which we seek a network with the minimum number of
reticulations that weakly displays each input tree, was intro-
duced only recently [28] and its computational complexity
was open prior to this article. Our motivation for studying
this problem is threefold:

(i) Since HYBRIDIZATION NUMBER is NP-hard, it is interest-
ing whether relaxing the notion of a tree displayed
by a network leads to an easier problem.

(ii) Since reticulation can lead to multiple homologous
copies of a gene in a species, requiring that each
gene tree is displayed by the network may lead us to
overestimate the number of reticulations.

Fig. 1. (a) A MUL-tree T on X ¼ fa; b; cg. (b) A duplication tree D that is
consistent with T . (c) An illustration showing how T can be drawn insideD.
This shows how two or more incoming branches may duplicate simulta-
neously at a duplication node (according toMinimal Episodes clustering).
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(iii) The problem of finding an optimal network that
weakly displays a set of phylogenies arises as a cru-
cial subproblem in a recent heuristic approach for
constructing phylogenetic networks in the presence
of hybridization and incomplete lineage sorting [28].

1.3 Structural Assumptions

In this paper, as is common in the literature, we assume that
all networks and trees are binary, that is, every node except
the root and the leaves has total degree exactly 3. Our
results should easily generalize to nonbinary trees and net-
works, but we do not verify this here.

We note that, unlike many papers in this area, we allow a
network to contain parallel arcs, that is, pairs of arcs that join
the same pair of nodes. Parallel arcs are normally omitted
because, for most problems, it can either be shown that
there exists an optimal solution without parallel arcs or it
can be assumed that a realistic solution contains no parallel
arcs. For example, any set of gene trees is displayed by an
optimal hybridization network without parallel arcs. For
the problems studied in this paper, however, an optimal
solution may require parallel arcs. Considering this prob-
lem with the added restriction that parallel arcs are for-
bidden may be an interesting mathematical challenge;
however, we do not believe it is biologically meaningful.

Explicit reasons to allow parallel arcs in networks are
abundant. We give three: First, if one restricts a large net-
work to a subset of the taxa, the natural restriction could
have parallel arcs. Second, phylogenetic Markov models for
character evolution behave differently if parallel arcs are
suppressed. Third, polyploidization events often result
from a sort of interspecific or intraspecific hybridization
[32]; an intraspecific hybridization is most naturally repre-
sented by parallel arcs in the network.

Throughout this paper, we allow input trees to be multi-
labelled, that is, each species may appear as a label of multi-
ple leaves in a tree. This is natural for the problems we
study, as gene duplication and reticulation can both lead to
multiple homologous genes appearing in the genome of a
single species.

1.4 Our Contributions

We show that both UNRESTRICTED MINIMAL EPISODES INFERENCE

and PARENTAL HYBRIDIZATION reduce to the problem BEADED

TREE, which we introduce in this paper. Using this reduc-
tion, we show that both problems can be solved in polyno-
mial time by adapting Aho et al.’s classic algorithm for
testing gene tree consistency [33]. Thereby, we provide the
first polynomial-time algorithm for an inference problem
with duplication clustering. Furthermore, we provide the
first polynomial-time algorithm for constructing a phyloge-
netic network with a minimum number of reticulations from
gene trees.

We also show that optimal solutions to BEADED TREE have
a restricted structure and this has corresponding implica-
tions for the optimal solutions to UNRESTRICTED MINIMAL EPI-

SODES INFERENCE and PARENTAL HYBRIDIZATION that our
algorithms produce. Moreover, we show that, in fact, all
optimal solutions to UNRESTRICTED MINIMAL EPISODES INFER-

ENCE have a particular structure. Therefore, this problem

should be used with care. For this reason, we introduce a
variation of UNRESTRICTED MINIMAL EPISODES INFERENCE, in
which the aim is not to minimize the total number of dupli-
cation episodes but to minimize instead the maximum num-
ber of duplication episodes on any path from the root to a
leaf in the output tree. We show that this problem can also
be solved in polynomial time via reduction to a variant of
BEADED TREE, which we call BEADED TREE DEPTH.

1.5 Structure of the Paper

In Section 2, we introduce the main definitions, including
formal problem definitions. In Section 3, we show that both
UNRESTRICTED MINIMAL EPISODES INFERENCE and PARENTAL

HYBRIDIZATION reduce to the problemBEADED TREE. In Section 4,
we prove structural properties of optimal solutions to BEADED

TREE. In Section 5, we provide a polynomial-time algorithm
for BEADED TREE and prove its correctness and running time.
In Section 6, we provide a polynomial-time algorithm for
BEADED TREE DEPTH. Finally, in Section 7, we discuss our
results and possibilities for further research.

2 PRELIMINARIES AND DEFINITIONS

We begin by defining multi-labelled trees, which form the
input for all problems considered in this paper.

Definition 1. Let X be a set of species. A multi-labelled tree
(MUL-tree) on X is a directed acyclic graph with one node of
in-degree 0 and out-degree 1 (the root) and with all other nodes
having either in-degree 1 and out-degree 2 (tree nodes) or in-
degree 1 and out-degree 0 (leaves). Each leaf is labelled with an
element of X. If each element of X labels at most one leaf, we
call the MUL-tree a tree.

Note that we will often refer to a labelled node by its
label; for example, we may say that x 2 X is a leaf in a
MUL-tree T if one of the leaves of T is labelled with x.

The notation introduced in the next definition is common
to all structures considered in this paper, that is, not just to
MUL-trees but also to duplication trees, phylogenetic net-
works, and beaded trees, defined later in this section.

Definition 2. Given a directed acyclic graph G, let V ðGÞ
denote the nodes, and EðGÞ the edges of G. Let LðGÞ denote
the leaves (i.e., nodes of out-degree 0) of G. We refer to the
non-leaf nodes of G as the internal nodes of G. Given an
edge xy in G, we say that x is a parent of y and y is a child
of x. We say a node x is an ancestor of a node y (and y is a
descendant of x) if there is a path from x to y in G (includ-
ing if x ¼ y). If in addition x 6¼ y, we say x is a strict ances-
tor of y (and y is a strict descendant of x). A node x is a least
common ancestor of two nodes y and z if it is an ancestor of
both y and z and no strict descendant of x is an ancestor of
both y and z. If G is a tree, then the LCA of any two nodes is
unique; otherwise, it may not be unique.

2.1 Duplication Episodes

The evolutionary history of a set of species, including points
at which duplication events occurred, can be modelled by a
duplication tree, defined as follows:

Definition 3. LetX be a set of species. A duplication tree onX
is a directed acyclic graph D with one node of in-degree 0 and
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out-degree 1 (the root), jXj nodes of in-degree 1 and out-degree
0 (leaves), and all other nodes having either in-degree 1 and
out-degree 2 (tree nodes) or in-degree 1 and out-degree 1
(duplication nodes). The leaves are bijectively labelled with
the elements of X. The duplication number of D is the num-
ber of duplication nodes it contains.

We note that, in contrast to MUL-trees, each species in X
appears as the label of exactly one leaf in a duplication tree.
Informally, a MUL-tree T is consistent with a duplication
tree D if T can be drawn inside D so that branches of T
duplicate only at duplication nodes of D, in the sense that
both out-edges of a node of T may follow the same out-
edge of the duplication node. We formalize this as follows:

Definition 4. Given a MUL-tree T on X and a duplication tree
D on X, a duplication mapping from T to D is a function
M : V ðT Þ ! V ðDÞ such that
� For each leaf l 2 LðT Þ,MðlÞ is a leaf ofD labelled with

the same species as l,
� For each edge uv 2 EðT Þ, MðuÞ is a strict ancestor of

MðvÞ, and
� For each internal node u of T with children v; v0, either

MðuÞ is the least common ancestor of MðvÞ and
Mðv0Þ, orMðuÞ is a duplication node.

This is illustrated in Fig. 1. We say that D is consistent
with T if there is a duplication mapping from T toD.

Let S be the species tree derived from D by suppressing
duplication nodes. Then a duplication mapping from T to D
represents a reconciliation of T with SwithMinimal Episodes
clustering. Each duplication node inD represents a cluster of
duplications, which is called a duplication episode. Internal
nodes in T are treated as duplications if they are mapped to
duplication nodes of D, and as speciations otherwise. Dupli-
cations are clustered together if they are mapped to the same
duplication node of D. The properties of a duplication tree
and duplication mapping ensure that duplications that are
clustered occur on the same branch of the species phylogeny
and have no ancestor-descendant relationship in a gene tree,
as required by Minimal Episodes clustering. We are now
ready to define the following problem:

UNRESTRICTED MINIMAL EPISODES INFERENCE

Input. A set T ¼ fT1; . . . ; Ttg of MUL-trees with label sets
X1; . . . ; Xt � X.

Output. A duplication tree D on X with minimum dupli-
cation number such thatD is consistent with each tree in T .

For this and other optimization problems, we use the
term solution to refer to an object that satisfies the require-
ments specified in the description of the output except that
it does not necessarily need to optimize the optimization cri-
terion. An optimal solution is a solution that optimizes the
optimization criterion. For example, for UNRESTRICTED MINI-

MAL EPISODES INFERENCE, a solution is a duplication tree on X
that is consistent with each tree in T . It is an optimal solu-
tion if, in addition, it has minimum duplication number
over all such duplication trees.

We note that for any MUL-tree T on X and any duplica-
tion tree D on X that has at least jV ðT Þj duplication nodes
as ancestors of every tree node,D is consistent with T . It fol-
lows that every instance of UNRESTRICTED MINIMAL EPISODES

INFERENCE has a solution (and therefore an optimal solution).

2.2 Parental Hybridization

Phylogenetic networks are an appropriate mathematical
model used for describing evolutionary histories that
include reticulation events and are central to the problem
PARENTAL HYBRIDIZATION, defined below.

Definition 5. Let X be a set of species. A (rooted binary) phy-
logenetic network N on X is a directed acyclic multigraph
with one node of in-degree 0 and out-degree 1 (the root), jXj
nodes of in-degree 1 and out-degree 0 (leaves), and all other
nodes having either in-degree 1 and out-degree 2 (tree nodes)
or in-degree 2 and out-degree 1 (reticulation nodes). The
leaves are bijectively labelled with the elements of X. The retic-
ulation number of N is the number of reticulation nodes it
contains. IfN contains no reticulation nodes, then N is a tree.

We note that the key distinctions between a phylogenetic
network and aMUL-tree are that a phylogenetic network may
contain reticulation nodes but each label inXmay appear only
once, whereas a MUL-tree has no reticulations but each label
can appear multiple times. Also note that, due to the degree
restrictions, there can be at most two edges between any pair
of nodes in a phylogenetic network, and there are no loops.

Definition 6. Given a set X of species, let N be a phylogenetic
network, and T a MUL-tree on X. A weak embedding of T
into N is a function h that maps every node of T to a node of
N , and every edge in T to a directed path in N such that

� For each leaf l 2 LðT Þ, hðlÞ is a leaf of N labelled with
the same species,

� For each edge xy 2 EðT Þ, the path hðxyÞ is a path from
hðxÞ to hðyÞ inN , and

� For each internal node x in T with children y; y0, the
paths hðxyÞ and hðxy0Þ start with different out-edges
of hðxÞ.

This is illustrated in Fig. 2. We say that N weakly dis-
plays T if there is a weak embedding of T into N .

We note that N weakly displays T if and only if T is a
parental tree inside N as defined in [28], hence the name
PARENTAL HYBRIDIZATION. The notion of a tree weakly displayed
by a network was first introduced in [27], where it was
shown that T is weakly displayed by N if and only if there
exists a locally separated reconciliation from T to N , which is
equivalent to our definition of a weak embedding.

We now define the PARENTAL HYBRIDIZATION problem:
PARENTAL HYBRIDIZATION

Input. A set T ¼ fT1; . . . ; Ttg of MUL-trees with label sets
X1; . . . ; Xt � X.

Output. A phylogenetic network N on X with minimum
reticulation number and such that N weakly displays all
MUL-trees in T .

Even though we do not use it in this paper, it is worth
noting the relationship between weak embeddings, weakly
displayed trees, and PARENTAL HYBRIDIZATION on one hand
and embeddings, displayed trees, and HYBRIDIZATION NUM-

BER on the other hand. An embedding of a tree T into a net-
work N is a weak embedding h of T into N with the added
condition that the paths hðeÞ and hðe0Þ are edge-disjoint for
every pair of edges e 6¼ e0 2 T . (Note that this also implies
that the paths are node-disjoint unless e and e0 have a node
in common.) If such an embedding exists, then N displays T .
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Similarly to PARENTAL HYBRIDIZATION, the HYBRIDIZATION NUM-

BER problem for a set of phylogenetic trees T asks for a
phylogenetic network N with the minimum reticulation
number and such that N displays all trees in T .

2.3 Beaded Trees

The key to solving both UNRESTRICTED MINIMAL EPISODES INFER-

ENCE and PARENTAL HYBRIDIZATION is the equivalence between
these two problems and the following BEADED TREE problem,
which we establish in this paper.

Definition 7. A bead in a phylogenetic network N is a pair of
nodes ðu; vÞ such that there are two parallel edges from u to v.
A beaded tree is a phylogenetic network B in which every
reticulation node is part of a bead (see Fig. 2).

The BEADED TREE problem is defined as follows:
BEADED TREE

Input. A set T ¼ fT1; . . . ; Ttg of MUL-trees with label sets
X1; . . . ; Xt � X.

Output. A beaded tree B on X with minimum reticula-
tion number that weakly displays all MUL-trees in T .

3 REDUCTIONS TO BEADED TREE

In this section, we show that the two problems UNRESTRICTED

MINIMAL EPISODES INFERENCE and PARENTAL HYBRIDIZATION are
both reducible to BEADED TREE, which will allow us to focus
on the latter problem in the rest of the paper. We begin with
the proof for UNRESTRICTED MINIMAL EPISODES INFERENCE.

Lemma 8. LetX be a set of species and T ¼ fT1; . . . ; Ttg a set of
MUL-trees on X. For any integer k, there exists a solution to
UNRESTRICTED MINIMAL EPISODES INFERENCE on T with k dupli-
cations if and only if there exists a solution to BEADED TREE on
T with k beads.

Proof. Let the duplication tree D be a solution to UNRE-

STRICTED MINIMAL EPISODES INFERENCE on T with k duplica-
tions. Then construct a beaded tree B from D as follows:
Replace each duplication node d in D with a bead ðud; vdÞ.
If p is d’s parent in D, then ud’s parent in B is p or, if p is
itself a duplication node, vp; vd’s child in B is d’s child c in
D or, if c is itself a duplication node, uc.

It is easy to observe thatB is a beaded tree with k beads.
To see that B is a solution to BEADED TREE on T , consider
any tree T 2 T and letM be a duplicationmapping from T
to D. Then we can construct a weak embedding h from T

intoB as follows. For each node x inT , ifMðxÞ is a duplica-
tion node d, then let hðxÞ be the tree node ud (i.e., the top
node of the bead ðud; vdÞ). Otherwise, let hðxÞ ¼MðxÞ. For
any edge xy, the node hðyÞ is by construction a strict
descendant of hðxÞ, so there exists a path from hðxÞ to hðyÞ
in B. We choose hðxyÞ to be any such path but ensure that
the two paths hðxyÞ and hðxy0Þ start with different edges in
the bead ðud; vdÞ ifMðxÞ is a duplication node d inD and y
and y0 are x’s children in T . This guarantees that the paths
hðxyÞ and hðxy0Þ start with different out-edges of hðxÞ if
MðxÞ is a duplication node. If MðxÞ is not a duplication
node, thenMðxÞ is the least common ancestor ofMðyÞ and
Mðy0Þ, so the paths hðxyÞ and hðxy0Þ are edge-disjoint and
again start with different out-edges of hðxÞ. Thus, h is a
weak embedding of T intoB.

Conversely, let the beaded tree B be a solution to
BEADED TREE on T with k beads. Then construct a duplica-
tion tree D from B by replacing each bead ðu; vÞ with a
duplication node dðu;vÞ. dðu;vÞ’s parent in D is u’s parent p
in B or, if p is itself part of a bead ðx; pÞ, the duplication
node dðx;pÞ; dðu;vÞ’s child in D is v’s child c in B or, if c is
itself part of a bead ðc; yÞ, the duplication node dðc;yÞ.

It is easy to observe that D is a duplication tree with k
duplications. To see that D is a solution to UNRESTRICTED

MINIMAL EPISODES INFERENCE on T , consider any tree T 2 T
and let h be a weak embedding of T into B. Then we can
construct a duplication mapping from T to D as follows.
For any node x in T , if hðxÞ is not in a bead, then set
MðxÞ ¼ hðxÞ. If hðxÞ is the top node u of a bead ðu; vÞ,
then let MðxÞ ¼ dðu;vÞ. (Note that hðxÞ cannot be the bot-
tom node of a bead, because x is either a leaf or has out-
degree 2.) By the requirements of a weak embedding,
MðxÞ is a strict ancestor of MðyÞ for any edge xy in T .
Furthermore, for any internal node x with children y
and y0, there are paths from hðxÞ to hðyÞ and from hðxÞ to
hðy0Þ that start with different out-edges of hðxÞ. It follows
that either MðxÞ ¼ hðxÞ is the least common ancestor of
MðyÞ andMðy0Þ orMðxÞ is a duplication node. tu
The next lemma shows that any instance T of PARENTAL

HYBRIDIZATION has an optimal solution that is a beaded tree,
that is, PARENTALHYBRIDIZATION can be reduced to BEADED TREE.

Lemma 9. For any set T of MUL-trees on X, there exists a phy-
logenetic network N with k reticulations that weakly displays
all MUL-trees in T if and only if there exists a beaded tree B
with k reticulations that weakly displays the MUL-trees in T .

Fig. 2. A MUL-tree T and illustrations of a duplication mapping from T to a duplication treeD, and of weak embeddings of T into a beaded tree B and
into a phylogenetic networkN that is not a beaded tree.
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Proof. The if-direction is trivial because every beaded tree
is a phylogenetic network. For the only-if-direction, con-
sider a network N with the maximum number of beads
among all solutions of PARENTAL HYBRIDIZATION on T
with k reticulations. If N is a beaded tree, the lemma
holds. Otherwise, there is some reticulation node r in N
that has two different parents cs and dt. Let q be the
unique child of r. Let u be a least common ancestor of cs
and dt in N , let c1 and d1 be the children of u, let c1; . . . ; cs
be the nodes on a path from c1 to cs, and let d1; . . . ; dt be
the nodes on a path from d1 to dt. Note that, by construc-
tion, there is no directed path from dj to ci, for any
1 � i � s and 1 � j � t.

We obtain a phylogenetic network N 0 from N as fol-
lows: Delete r and any edges incident to it, as well as the
edges uc1 and ud1. Now add a new node v, a pair of par-
allel edges from u to v, and edges vc1; csd1, and dtq. (Note
that this construction assumes that s; t � 1; if this is not
the case, then we can produce N 0 by introducing a
“dummy node” c1 or d1 and suppressing it after the con-
struction is complete.)

Observe that (as there is no path from any node dj to
any node ci in N) N 0 is still an acyclic graph. It follows
that N 0 is a phylogenetic network, and it is easy to see
that N 0 has the same number of reticulations as N but
one more bead than N . We show now that any MUL-tree
T weakly displayed by N is also weakly displayed by N 0,
from which it follows that N 0 is also a solution to PAREN-

TAL HYBRIDIZATION on T with k reticulations. Since N 0 has
one more bead than N , this contradicts the choice of N ,
that isN must be a beaded tree.

Let h be a weak embedding of T into N . Then we
define a weak embedding h0 of T intoN 0 as follows. Since
hðxÞ 6¼ r for every node x 2 T and V ðNÞ n V ðN 0Þ ¼ frg,
we have hðxÞ 2 V ðN 0Þ for all x 2 T . Thus, we can define
h0ðxÞ ¼ hðxÞ for all x 2 T . Next observe that, for any two
nodes u0; v0 2 V ðNÞ n frg, there exists a path from u0 to v0

in N 0 if there exists such a path in N . Thus, since there
exists a path hðxyÞ from hðxÞ to hðyÞ in N , for every edge
xy 2 T , there also exists a path h0ðxyÞ from h0ðxÞ to h0ðyÞ
in N 0 for every edge xy 2 T . We need to show that we
can choose these paths such that, for every node
x 2 V ðT Þ with children y and y0, the paths h0ðxyÞ and
h0ðxy0Þ begin with different out-edges of h0ðxÞ.

So consider a node x and its two children y and y0 in T .
If no out-edges of h0ðxÞ were deleted in the construction
of N 0, then the children of h0ðxÞ are the same in N 0 as in
N , and these children are still ancestors of h0ðyÞ and
h0ðy0Þ. Thus, the required paths exist. Now assume that at
least one out-edge of h0ðxÞwas deleted, from which it fol-
lows that h0ðxÞ 2 fu; cs; dtg. If h0ðxÞ ¼ u, then there are
two paths from h0ðxÞ to h0ðyÞ and from h0ðxÞ to h0ðy0Þ that
use different out-edges of h0ðxÞ, as each path can use a
different parallel edge from u to v. If h0ðxÞ ¼ cs, then one
of fh0ðyÞ; h0ðy0Þg is a descendant of r (and therefore a
descendant of q), and the other is a descendant of the
other child of cs. Therefore, in N 0, one of fh0ðyÞ; h0ðy0Þg is
descended from q, and the other is descended from the
child of cs that is not d1. Thus, the required paths still
exist. A similar argument applies when h0ðxÞ ¼ dt. This
finishes the proof. tu

4 STRUCTURAL PROPERTIES OF OPTIMAL

BEADED TREES

In this section, we prove some of the properties of an opti-
mal solution to an instance of BEADED TREE. These properties
will both be used in Section 5 as a basis for our algorithm
for finding an optimal beaded tree for any given instance
and highlight that in fact every optimal solution to an
instance of BEADED TREE has a very restrictive structure.

Definition 10. Given a phylogenetic networkN onX and a sub-
set S � X, let N n S denote the network derived from N by
deleting every leaf in S, and then exhaustively deleting unla-
belled nodes of out-degree 0 and suppressing nodes of in-degree
1 and out-degree 1. LetN jS denote the network N n ðX n SÞ.

For a set of MUL-trees T , let F1ðT Þ denote the set of trees
derived by, roughly speaking, deleting the topmost tree
node from every tree. We make this notion more precise in
the following definition.

Definition 11. Given a MUL-tree T with more than one leaf, let
r denote the root, x the child of r and yl and yr the children of
x. Let Tl be derived from T by deleting yr and all its descend-
ants, and suppressing x. Similarly let Tr be derived from T by
deleting yl and all its descendants, and suppressing x. Then we
call fTl; Trg the depth-1 forest of T , denoted F1ðT Þ. For a set
of MUL-trees T , we define

F1ðT Þ ¼
[
T2T

F1ðT Þ:

In what follows, we say that a beaded tree B has a bead at
the root if the child u of the root node is part of a bead ðu; vÞ.

Lemma 12. Given an instance T of BEADED TREE, there exists a
solution B with a bead at the root and reticulation number k
if and only if F1ðT Þ has a solution B0 with reticulation num-
ber k� 1.

Proof. Suppose first that F1ðT Þ has a solution B0 with reticu-
lation number k� 1. Let r be the root of B0 and a its child.
Construct a beaded tree B from B0 by deleting the edge
ra, adding a new bead ðu; vÞ, and adding edges ru and va.
By construction, B is a beaded tree with k beads, and it
has a bead at the root.

To see that B is a solution for T , consider any tree T in
T , and let fTl; Trg ¼ F1ðT Þ. Let rT be the root of T , x its
child, and yl and yr the children of x, with yl 2 V ðTlÞ and
yr 2 V ðTrÞ. Since B0 is a solution for F1ðT Þ, there exist
weak embeddings hl and hr of Tl and Tr, respectively,
into B0. Construct a weak embedding h of T into B as fol-
lows: Let hðrT Þ ¼ r, hðxÞ ¼ u, and for all other nodes
x0 2 V ðT Þ, hðx0Þ ¼ hlðx0Þ if x0 2 V ðTlÞ, and hðx0Þ ¼ hrðx0Þ
if x0 2 V ðTrÞ. Let hðrTxÞ be the path from r to u,
hðx0y0Þ ¼ hlðx0y0Þ if x0y0 2 EðTlÞ, and hðx0y0Þ ¼ hrðx0y0Þ if
x0y0 2 EðTrÞ. Finally, let hðxylÞ be a path from u to hðylÞ,
and hðxyrÞ a path from u to hðyrÞ, letting those two paths
start with different out-edges of u. It is easy to see that h
is a weak embedding of T into B, so B is a solution for T .

Conversely, suppose that T has a solution B with a
bead ðu; vÞ at the root and reticulation number k. Let r be
the root of B and z the child of v. Let B0 be the network
derived from B by deleting u and v and adding an edge
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rz. By construction, B0 is a beaded tree with reticulation
number k� 1.

To see that B0 is a solution for F1ðT Þ, consider any tree
T in T , and let fTl; Trg ¼ F1ðT Þ. Let rT be the root of T , x
its child, and yl and yr the children of x, with yl 2 V ðTlÞ
and yr 2 V ðTrÞ. Since B is a solution for T , there exists a
weak embedding h of T into B. Observe that hðx0Þ must
be a strict descendant of v for any strict descendant x0 of
x (indeed, u is the earliest node that x could be mapped
to and any strict descendant of x must be mapped to a
tree node strictly descended from this point). So we can
define a weak embedding hl of Tl into B0 by letting
hlðrT Þ ¼ r and hlðx0Þ ¼ hðx0Þ for every node x0 6¼ rT 2 Tl,
letting hlðrTylÞ be a path in B0 from r to hlðylÞ, and letting
hlðeÞ ¼ hðeÞ for any other edge e 2 Tl. By a similar
method, we can define a weak embedding hr of Tr

into B0. Thus, B0 is a solution for F1ðT Þ, as required. tu

In the same way that Lemma 9 establishes that PARENTAL

HYBRIDIZATION always has an optimal solution that is a
beaded tree, the following lemma shows that there always
exists an optimal solution to BEADED TREE of an even more
restrictive structure.

Lemma 13. Every instance T of BEADED TREE has an optimal
solution B such that all reticulations are on the same path.

Proof. Consider an optimal solution B for T . For each retic-
ulation node z 2 B, let �BðzÞ be the number of reticulation
nodes strictly descended from z. Let �ðBÞ be the sum of
�BðzÞ over all reticulation nodes z in B. Choose B such
that �ðBÞ is maximized. Since all optimal solutions for T
have the same number b of beads and �ðB0Þ � b�1

2

� �
for

any beaded tree B0 with b beads, an optimal solution B
for T that maximizes �ðBÞ exists.

If all reticulations in B are on the same path, the
lemma holds. So assume that not all reticulations are on
the same path. Then there is some tree node b in B that is
not in a bead and such that both children of b are ances-
tors of a bead. Let ðuL; vL) be an earliest bead descended
from one child of b, and ðuR; vRÞ an earliest bead
descended from the other child of b. If uL is not a child of
b, then let c1; . . . cl be the nodes on the path from b to uL.
Similarly, if uR is not a child of b, then let d1; . . . dr be the
nodes on the path from b to uR. Note that c1; . . . cl and
d1; . . . dr are all tree nodes. Finally let wL be the single
child of vL, and wR the single child of vR.

Construct a new beaded tree B0 from B as follows:
Delete the nodes uL; vL; uR; vR and any edges incident to
them, as well as the edges bc1 and bd1. Now add new
nodes q; u; v; w and add a pair of parallel arcs from b to q
and from u to v, as well as arcs qc1; cld1; dru; vw;wwL, and
wwR. (Note that this construction assumes that l; r � 1; if
this is not the case, then we may produce B0 by introduc-
ing “dummy nodes” c1 and d1 and suppressing them
after the construction is complete.) Observe that this con-
struction ensures that every node u0 2 V 0 ¼ V ðBÞ n fuL;
vL; uR; vRg is an ancestor of a node v0 2 V 0 in B0 if this is
the case in B, that every node v0 2 V 0 that is a descendant
of uL or uR in B is a descendant of u in B0, and that every
node v0 2 V 0 that is an ancestor of uL or uR in B is an
ancestor of u in B0.

To show that any MUL-tree weakly displayed by B is
also weakly displayed by B0, let T be a MUL-tree weakly
displayed by B and let h be a weak embedding of T into
B. We define a weak embedding h0 of T into B0 as fol-
lows: For any node x 2 V ðT Þ, let

h0ðxÞ ¼ u if hðxÞ 2 fuL; uRg
hðxÞ otherwise

�
:

Note that this ensures that h0ðxÞ 2 V 0 [ fug because hðxÞ
is a tree node for all x 2 V ðT Þ, that is, hðxÞ =2 fvL; vRg.
This definition of h0 ensures that there exists a path
h0ðxyÞ from h0ðxÞ to h0ðyÞ for every edge xy of T . Indeed,
there exists a path hðxyÞ from hðxÞ to hðyÞ in B because h
is a weak embedding of T into B. If hðxÞ; hðyÞ 2 V 0, then
h0ðxÞ ¼ hðxÞ, h0ðyÞ ¼ hðyÞ, and we observed above that
every descendant of h0ðxÞ in B that belongs to V 0 is also a
descendant of h0ðxÞ in B0, that is, there exists a
path h0ðxyÞ from h0ðxÞ to h0ðyÞ. If hðxÞ 2 fuL; uRg, then
hðyÞ 2 V 0, h0ðxÞ ¼ u, and h0ðyÞ ¼ hðyÞ. As observed above,
every descendant of uL or uR in B that belongs to V 0 is a
descendant of u in B0. Thus, there exists a path h0ðxyÞ
from h0ðxÞ to h0ðyÞ also in this case. Finally, if hðyÞ 2
fuL; uRg, then hðxÞ 2 V 0, h0ðxÞ ¼ hðxÞ, and h0ðyÞ ¼ u. As
observed above, every ancestor of uL or uR in B that
belongs to V 0 is an ancestor of u in B0. Thus, there exists a
path h0ðxyÞ from h0ðxÞ to h0ðyÞ once again. It remains to
show that these paths can be chosen so that the two paths
h0ðxyÞ and h0ðxy0Þ corresponding to the edges xy and xy0

between a node x 2 V ðT Þ and its two children y and y0 in
T begin with different out-edges of h0ðxÞ.

So consider any node x of T and its two children y and
y0. If h0ðxÞ is the top node of a bead, then the two paths
h0ðxyÞ and h0ðxy0Þ can be chosen to start with different
edges of this bead. If h0ðxÞ is not the top node of a bead,
then h0ðxÞ ¼ hðxÞ 2 V 0 and hðxÞ is not the top node of a
bead in B either. Since h is a weak embedding of T into
B, hðyÞ is a descendant of one child z of hðxÞ and hðy0Þ is
a descendant of the other child z0 of hðxÞ. Moreover, one
of these two children, say z, is also a child of h0ðxÞ in B0.
As observed above, since hðyÞ is a descendant of z in B,
h0ðyÞ is also a descendant of z in B0, so we can choose the
path h0ðxyÞ to start with the edge h0ðxÞz. If z0 is a child of
h0ðxÞ in B0, then, by an analogous argument, we can
choose the path h0ðxy0Þ to start with the edge h0ðxÞz0, so
the two paths h0ðxyÞ and h0ðxy0Þ start with different out-
edges of h0ðxÞ. If z0 is not a child of h0ðxÞ, then hðxÞ 2
fcl; drg, z0 2 fuL; uRg, and z is the child of hðxÞ not on the
path from hðxÞ to uL or uR. In this case, u is a descendant
of h0ðxÞ and h0ðy0Þ is a descendant of u. Thus, we can
choose h0ðxy0Þ to be the concatenation of two paths from
h0ðxÞ to u and from u to h0ðy0Þ. Since z does not belong to
this path, the two paths h0ðxyÞ and h0ðxy0Þ once again
start with different edges.

Since we have just shown that any MUL-tree weakly
displayed by B is also weakly displayed by B0, B0 is a
solution for T . Moreover, B0 has the same number of
beads as B and, since �B0 ðvÞ ¼ �BðvLÞ þ �BðvRÞ, �B0 ðqÞ ¼
�BðvLÞ þ �BðvRÞ þ 1, and �B0 ðzÞ ¼ �BðzÞ for any reticula-
tion node z 2 V 0, �ðB0Þ > �ðBÞ. This contradicts the
choice of B, so B has all its beads on a single path. tu
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In what follows, we use T jS and T n S to denote the sets
fT1jS; . . . ; TtjSg and fT1 n S; . . . ; Tt n Sg, respectively, for any
set of trees T ¼ fT1; . . . ; Ttg and any label set S. If any tree
in T jS or T n S is empty, it is removed from the set.

The following definitions and lemmas describe the struc-
ture of an optimal solution for T in terms of optimal solu-
tions for T jS and T n S. These structural results will make it
easy to design an algorithm for BEADED TREE.

Definition 14. Given a set of MUL-trees T ¼ fT1; . . . ; Ttg,
with each MUL-tree Ti having label set Xi � X, the split par-
titionS ¼ fS1; . . . ; Ssg of fT1; . . . ; Ttg is the partition of X
into minimal sets such that any two labels of the same MUL-
tree in F1ðT Þ belong to the same set in S.

Definition 15. Given two phylogenetic networks N1 on X1 and
N2 onX2 withX1 \X2 ¼ ;, the process of joiningN1 withN2

consists of identifying the root r1 ofN1 and the root r2 ofN2 into
a single node u and making u the child of a new root node r.

Observation 16. IfN is obtained by joiningN1 andN2, then
any MUL-tree weakly displayed by N1 or N2 is also
weakly displayed byN .

The following lemma immediately suggests a strategy for
constructing an optimal beaded tree for a collection T of
MUL-trees.

Lemma 17. Given an instance T of BEADED TREE, if jXj ¼ 1 and
max1�i�tjLðTiÞj ¼ 1, then the optimal solution is the tree with
a single leaf on X. Otherwise, let S ¼ fS1; . . . ; Ssg be the split
partition of T . If for some Si, there exists a tree T weakly dis-
playing the MUL-trees in T jSi , then there exists an optimal
solution B that is obtained by joining T with an optimal solu-
tion to T n Si. If no such tree T exists, there exists an optimal
solution B with a bead ðu; vÞ at the root and such that v is the
root of an optimal solution for F1ðT Þ.

Proof. If jXj ¼ 1 and max1�i�tjLðTiÞj ¼ 1, then the optimal
solution clearly is the tree with a single leaf on X. So sup-
pose that jXj > 1 and assume first that there exists a set
Si 2 S such that the MUL-trees in T jSi are weakly dis-
played by some tree T . If some tree T 0 weakly displays the
MUL-trees in T , then s � 2 (since any tree in F1ðT Þ has its
leaf set contained within the leaf set of one of the trees in
F1ðT 0Þ and we can assume w.l.o.g. that not all trees in
F1ðT Þ are displayed by the same tree in F1ðT 0Þ). In particu-
lar, Si 6¼ X. If no such tree T 0 exists, then Si 6¼ X because T
weakly displays all MUL-trees in T jSi . Since Si 6¼ X in

both cases, it follows that X n Si 6¼ ;. Now consider any
optimal solution B0 for T . Observe that B0 n Si weakly dis-
plays all MUL-trees in T n Si. Moreover,B0 n Si has reticu-
lation number at most that ofB0.

Construct a network B by joining B0 n Si with T . Any
MUL-tree Tj 2 T with no leaves in Si is weakly displayed
byB0 n Si and therefore byB. Similarly, if every leaf of Tj is
in Si, then Tj is weakly displayed by T and therefore byB.
So suppose Tj has leaves in both Si andX n Si. SinceF1ðTjÞ
consists of two MUL-trees and S is a split partition of T ,
wemust have F1ðTjÞ ¼ fTjjSi ; Tj n Sig. Since T weakly dis-

plays TjjSi and B0 n Si weakly displays Tj n Si, it follows
that B weakly displays Tj. This shows that B displays all
MUL-trees in T . Since B has reticulation number at most
that ofB0,B is therefore an optimal solution for T .

It remains to observe that B0 n Si is an optimal solution
to T n Si, as otherwise we could obtain a solution for T
that is better than B by joining T with an optimal solution
for T n Si. Thus, the lemma holds for the case when there
exists a tree T weakly displaying all MUL-trees in T jSi
for some Si 2 S.

Now suppose that there is no tree weakly displaying
the MUL-trees in T jSi for any Si 2 S. By Lemma 13, there

exists an optimal solution B with all reticulations on one
path. Suppose that B does not have a bead at the root.
Then the child a of the root is a tree node which is the root
of two otherwise disjoint beaded trees, and at least one of
these beaded trees is a tree T (without beads). Let S be the
leaves of this tree T . Since we can assume that at least one
MUL-tree in T has a leaf in S, there exists a set Si 2 S such
that Si \ S 6¼ ;. Any such set Si must be a subset of S
because otherwise there exists a MUL-tree T 0 2 F1ðT Þ
that has leaves in both S and X n S; since a is a tree node
that is not part of a bead, T 0 would have to be weakly dis-
played by either T orB n S, which is impossible.

So consider such a set Si � S in S. BjSi weakly dis-
plays the MUL-trees in T jSi and is a tree because

BjSi ¼ T jSi . Since we assumed that no tree displaying all

MUL-trees in T jSi exists, B must in fact have a bead at

the root, as claimed. By Lemma 12, we also have that the

bottom part of the bead is the root of a solution B0 for

F1ðT Þ with reticulation number k� 1, where k is the

reticulation number of B. Moreover, B0 must be an opti-

mal solution for F1ðT Þ because otherwise we could

obtain a solution for T that is better than B by adding a

bead at the root of an optimal solution for F1ðT Þ. This
proves the lemma for the case when there is no tree T

displaying all MUL-trees in T jSi for any Si 2 S. tu

The next two lemmas show that not only does there exist
an optimal solution to BEADED TREE with all reticulations on
one path, but in fact any optimal solution must be quite
close to such a structure.

Lemma 18. Given two beads in any optimal solution to an
instance T of BEADED TREE such that neither bead is a descen-
dant of the other, at least one of these beads has no beads strictly
descended from it.

Proof. The proof is similar to the proof of Lemma 13.
Consider an optimal solution B and suppose for the

sake of contradiction that the claim does not hold for B.
Then let ðpL; qLÞ, ðpR; qRÞ, ðuL; vLÞ and ðuR; vRÞ be four
distinct beads such that ðpL; qLÞ is not an ancestor of
ðpR; qRÞ and ðpR; qRÞ is not an ancestor of ðpL; qLÞ , but
ðpL; qLÞ is an ancestor of ðuL; vLÞ and ðpR; qRÞ is an ances-
tor of ðuR; vRÞ. Moreover, assume that ðpL; qLÞ, ðpR; qRÞ,
ðuL; vLÞ and ðuR; vRÞ are the earliest such beads, that
is, the condition is not satisfied if we replace any one of
these beads with one of its strict ancestors. This implies
that there are no beads on the path between qL and uL,
on the path between qR and uR or on the path from the
least common ancestor of pL and pR to either pL or pR.

Let x be the least common ancestor of pL and pR. If pL
is not a child of x, then let a1; . . . as be the nodes on the
path from x to pL. Similarly, if pR is not a child of x, then
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let b1; . . . bt be the nodes on the path from x to pR. If uL is
not a child of qL, then let c1; . . . cl be the nodes on the
path from qL to uL. Similarly, if uR is not a child of qR,
then let d1; . . . dr be the nodes on the path from qR to uR.
Note that a1; . . . as; b1; . . . bt; c1; . . . cl; d1; . . . dr are all tree
nodes. Finally let wL be the single child of vL and wR the
single child of vR.

Construct B0 from B as follows: Delete the nodes pL,
qL, uL, vL, pR, qR, uR, and vR and any edges incident to
them, as well as the edges xa1 and xb1. Now add new
nodes y, p, q, u, v, and w, and add a pair of parallel arcs
from x to y, from p to q, and from u to v, as well as arcs
ya1, asb1, btp, qc1, cld1, dru, vw, wwL, and wwR (Note that
this construction assumes that s; t; l; r � 1; if this is not
the case, then we can produce B0 by introducing
“dummy nodes” a1, b1, c1, and d1 and suppressing them
after the construction is complete.)

We now show that any MUL-tree weakly displayed
by B is also weakly displayed by B0. Let T be a MUL-tree
weakly displayed by B, and let h be a weak embedding
of T into B. Then we define a weak embedding h0 of T
into B0 as follows: For any node z 2 V ðT Þ, we set

h0ðzÞ ¼
p if hðzÞ 2 fpL; pRg
u if hðzÞ 2 fuL; uRg

hðzÞ otherwise

8<
: :

Note that hðzÞ =2 fqL; qR; vL; vRg because hðzÞ is a tree
node for all z 2 V ðT Þ. Observe that, if there is a path
from u0 to v0 in B, for any two nodes u0; v0 2 V ðBÞ n fpL;
qL; uL; vL; pR; qR; uR; vRg, then there is a path from u0 to v0

in B0. Moreover, if there is a path in B from hðx0Þ to hðy0Þ,
for any two nodes x0; y0 2 V ðT Þ, then there is a path
h0ðx0y0Þ in B0 from h0ðx0Þ to h0ðy0Þ. It remains to verify that
these paths can be chosen such that, for any tree node
x0 2 V ðT Þ with children y0 and z0, the two paths h0ðx0y0Þ
and h0ðx0z0Þ start with different out-edges of h0ðx0Þ.

So consider any tree node x0 2 V ðT Þ and its two chil-
dren y0 and z0. Since h is a weak embedding, hðx0Þ is a
tree node and, by construction, so is h0ðx0Þ. If h0ðx0Þ is the
top node of a bead, then h0ðx0y0Þ and h0ðx0z0Þ can be cho-
sen to start with different parallel arcs of this bead. So
assume h0ðx0Þ is not the top of a bead in B0. Then, by con-
struction, hðx0Þ is not the top part of a bead in B and hðy0Þ
and hðz0Þ are descendend from different children of hðx0Þ
in B. If no out-arcs of hðx0Þ were deleted in the construc-
tion of B0, then the children of h0ðx0Þ are the same as the
children of hðx0Þ, and these children are still ancestors of
h0ðy0Þ and h0ðz0Þ. Thus paths h0ðx0y0Þ and h0ðx0z0Þ can still
be chosen to start with different out-edges of h0ðx0Þ. The
final case is when h0ðx0Þ is not the top of a bead and at
least one out-arc of hðx0Þ was deleted in the construction
of B0. In this case, h0ðx0Þ 2 fas; bt; cl; drg. It is easy to check
that in each of these cases, h0ðy0Þ and h0ðz0Þ are still
descendants of different children of h0ðx0Þ.

This completes the proof that any MUL-tree weakly
displayed by B is also weakly displayed by B0. Moreover,
B0 has fewer beads than B (as we replaced the four beads
ðpL; qLÞ; ðpR; qRÞ; ðuL; vLÞ; ðuR; vRÞ with the three beads
ðx; yÞ; ðp; qÞ; ðu; vÞ), contradicting the optimality of B. tu

UsingLemmas 13 and 18,we can show the following lemma.
Intuitively speaking, it says that any optimal solution to BEADED

TREE must have “almost all reticulations on one path”, in the
sense that most reticulations exist on a single path, and any
branch coming off of this path leads to atmost one reticulation.

Lemma 19. Given any optimal solution B to an instance T of
BEADED TREE, there exists a path from the root to a leaf of B
such that any node not on this path has at most one strict
descendant that is a reticulation.

Proof. Suppose for the sake of contradiction that the claim
does not hold, that is, for any pathP inB, there exists a node
u not in P that has at least two reticulations among its strict
descendants. In particular, this implies that there exist two
nodes a; b such that a is not an ancestor of b, b is not an ances-
tor of a, and each of a and b is a strict ancestor of at least two
reticulations. Let Ba be the part of B descended from a and
letBb be the part ofB descended from b. By Lemma 13, there
exist beaded trees B0a and B0b such that B0a weakly displays
every MUL-tree weakly displayed by Ba, B

0
b weakly dis-

plays every MUL-tree weakly displayed by Bb, B
0
a has no

more reticulations than Ba, B
0
b has no more reticulations

thanBb, and both B0a andB0b have all their reticulations on a
single path. By replacingBa andBb withB0a and B0b, respec-
tively, inB, we obtain a beaded treeB0 that weakly displays
all MUL-trees in T and has no more reticulations than B. If
B0a or B

0
b has only one bead, then B0 has fewer reticulations

than B, contradicting B’s optimality. Thus, B0a has a bead
ðpa; qaÞ that is an ancestor of another bead ðua; vaÞ in B0a and
B0b has a bead ðpb; qbÞ that is an ancestor of another bead
ðub; vbÞ in B0b. Since neither ðpa; qaÞ nor ðpb; qbÞ is an ancestor
of the other, B0 cannot be an optimal solution for T , by
Lemma 18. Thus, since B0 has no more reticulations than B,
B is not an optimal solution for T either, a contradiction. tu

Algorithm 1. Algorithm BEADED-TREE(T )
Input: A set of MUL-trees T ¼ fT1; . . . ; Ttg
Output: A beaded tree B with the minimum number of
reticulations that weakly displays the MUL-trees in T

1 if jXj ¼ 1 andmax1�i�tjLðTiÞj ¼ 1 then
2 return a tree with 1 leaf onX;
3 else
4 Calculate the split partition fS1; . . . ; Ssg of T ;
5 for i 1 to s do
6 T  SUPERTREE ðT jSiÞ;
7 if T 6¼NONE then
8 B0  BEADED-TREE ðT n SiÞ;
9 Construct B by joining B0 and T ;
10 return B;
11 end
12 end
13 B0  BEADED-TREE ðF1ðT Þ);
14 ConstructB by adding a beadwhose child is the root ofB0;
15 return B;
16 end

5 BEADED TREE ALGORITHM

In what follows, we let SUPERTREE denote an algorithm that
takes as input a set of MUL-trees T , and returns either a
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tree T weakly displaying all MUL-trees in T or the value
NONE if no such tree exists. The algorithm of [33] achieves
this in OðjXjnÞ time, where n ¼

Pt
i¼1 jTij and jTij is the total

number of nodes in Ti. We note that the algorithm of [33] is
designed only for MUL-trees with at most one copy of each
label, for the simple reason that there is no tree weakly dis-
playing a MUL-tree with multiple copies of some label. For-
tunately, the fix for this is straightforward: we just let
SUPERTREE return NONE whenever T contains a MUL-tree
with two or more copies of some label. By the following
lemma, an optimal solution for any instance of BEADED TREE

can be found in polynomial time using Algorithm 1.

Lemma 20. Let T ¼ fT1; . . . ; Ttg be an instance of BEADED

TREE, let n ¼
Pt

i¼1 jTij, and let k be the reticulation number of
an optimal solution for T . Algorithm 1 finds an optimal solu-

tion for T in OððjXj2 þ jXjkÞnÞ time.

Proof. The correctness of the algorithm follows from
Lemma 17. To analyze the running time, observe that
each recursive call of BEADED-TREE acts on an instance T 0
on leaf set X0 such that either jX0j < jXj and an optimal
solution for T 0 has at most as many reticulations as an
optimal solution for T , orX0 ¼ X and an optimal solution
for T 0 has fewer reticulations than an optimal solution for
T . It follows that the algorithm makes at most kþ jXj þ 1
recursive calls of BEADED-TREE, where k is the reticulation
number of an optimal solution to T .

To determine the cost of a single invocation of BEADED-
TREE, observe that line 14 clearly takes constant time and
line 4 takes OðnÞ time. Indeed, it takes OðjXjÞ ¼ OðnÞ time
to construct a graph G ¼ ðX; ;Þ. Then, for each tree Ti, we
compute the connected components of its depth-1 forest in
OðjTijÞ time. For each such componentC, we choose one of
its leaves as the “representative leaf” ‘ of the component
and add an edge ð‘; xÞ to G for every leaf x in C. This also
takes OðjTijÞ time. Doing this for all trees in T takes
Oð

Pt
i¼1 jTijÞ ¼ OðnÞ time. The split partition of T is now

easily seen to be the partition ofX into the vertex sets of the
connected components of G, which can be computed in
OðnÞ time. Each iteration of the for-loop in lines 5–12,
excluding lines 6 and 8 takes constant time. In line 6, the
construction of T jSi is easily accomplished inOðjSijnÞ time
and the call to SUPERTREE takesOðjSijnÞ time. Thus, exclud-
ing the cost of line 8, the total cost of all iterations of the for-
loop is Oð

Ps
i¼1 jSijnÞ ¼ OðjXjnÞ and the entire invocation

of BEADED-TREE takesOðjXjnÞ time.
Since the algorithm makes at most kþ jXj þ 1 invoca-

tions, its total cost is thus Oððkþ jXj þ 1ÞjXjnÞ ¼ OððjXj2
þjXjkÞnÞ. tu

6 MINIMIZING BEAD DEPTH

Lemma 19 implies that any optimal solution to an instance
of BEADED TREE has a very restrictive structure. Informally
speaking, there is a single path in the beaded tree that may
contain any number of reticulations, and any “branch” com-
ing off this path can contain at most one reticulation.
Because of the close relationship between BEADED TREE and
UNRESTRICTED MINIMAL EPISODES INFERENCE (described in
Lemma 8), the same structural properties apply to optimal
solutions for the latter problem: there is one main path

containing any number of duplication episodes, and any
path branching off from the main path contains at most one
duplication episode.

This structure is quite unusual. Furthermore, it is not
clear why, from a biological perspective, it should be the
case that most duplications occur on a single path. For this
reason, we now consider the problems UNRESTRICTED MINI-

MAL EPISODES DEPTH INFERENCE and BEADED TREE DEPTH.
UNRESTRICTED MINIMAL EPISODES DEPTH INFERENCE

Input. A set T ¼ fT1; . . . ; Ttg of MUL-trees with label sets
X1; . . . ; Xt � X.

Output. A duplication tree D on X with the minimum
number of duplication nodes on any path from the root to a
leaf and such thatD is consistent with each of T1; . . . ; Tt.

BEADED TREE DEPTH

Input. A set T ¼ fT1; . . . ; Ttg of MUL-trees with label sets
X1; . . . ; Xt � X.

Output. A beaded tree B on X with the minimum num-
ber of beads on any directed path and such that B weakly
displays each of T1; . . . ; Tt.

By a similar argument to the proof of Lemma 8, these two
problems are equivalent.

UNRESTRICTED MINIMAL EPISODES DEPTH INFERENCE is loosely
based on the following two assumptions: separate lineages
accumulate duplications independently; there is a maximal
duplication rate that does not vary too much between line-
ages. Given that d duplication episodes happened on one
path, these assumptions make it reasonable to expect at
most d duplication episodes on any other path disjoint from
it (with same evolutionary length). In particular, this holds
for all paths (lineages) starting at the root, which justifies
the maximum depth formulation. These assumptions seem
close to those of evolutionary models. However, this does
not make the UNRESTRICTED MINIMAL EPISODES DEPTH INFERENCE

problem model-based. The problem is still one of parsi-
mony: we minimize the maximum depth or, equivalently,
the duplication rate.

Note that solutions to UNRESTRICTED MINIMAL EPISODES

DEPTH INFERENCE explicitly do not contain unnecessarily
highly placed duplications: where the proof of Lemma 13
“zipped” duplication episodes at much as possible, we now
“unzip” them to avoid “stacking” duplications as in the
proof of Lemma 13. Hence, this new problem is biologically
motivated and it has more reasonable solutions than UNRE-

STRICTED MINIMAL EPISODES INFERENCE.
Fortunately, it turns out that a similar algorithm to that

for BEADED TREE can be used to solve BEADED TREE DEPTH. The
difference between the two algorithms may be summed up
as follows: Both algorithms begin by considering the split
partition of the set of MUL-trees under consideration. If any
set in this partition can be “solved” using a tree, then for
both problems it is always optimal to assume that the solu-
tion does not start with a bead, but instead includes such a
tree as a child of the top tree node. If the split partition con-
sists of a single set (and there is more than one leaf), then
any possible solution (even a non-optimal solution) must
begin with a bead. For the remaining cases, we essentially
have a choice; there exist solutions that begin with a bead
and solutions that don’t. The algorithm for BEADED TREE

always introduces a bead in these cases; the algorithm for
BEADED TREE DEPTH never does. The following lemma is the
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basis for our algorithm to solve BEADED TREE DEPTH and
establishes its correctness.

Lemma 21. Let T be an instance of BEADED TREE DEPTH, and let
fS1; . . . ; Ssg be the split partition of T . If jXj ¼ 1 and
max1�i�tjLðTiÞj ¼ 1, then the optimal solution is the tree with
a single leaf on X. Otherwise, if s ¼ 1, then every optimal solu-
tion B has a bead ðu; vÞ at the root and the child of v is the root
of an optimal solution for F1ðT Þ. If s > 1, then any network B
obtained by joining an optimal solution for T jSs with an opti-

mal solution for T n Ss is optimal for T . Such a network B
always exists.

Proof. If jXj ¼ 1 and max1�i�tjLðTiÞj ¼ 1, then the optimal
solution clearly is the tree with a single leaf on X. So
assume that jXj > 1 and assume first that the split parti-
tion of T is trivial (s ¼ 1). Consider an optimal solution
B. We prove first that B must have a bead at the root.
Assume the contrary. Since either jXj > 1 or max1�i�tj
LðTiÞj > 1, B is not a tree with a single leaf. Therefore,
the child of the root of B is a split node a, that is, a tree
node that is not in a bead. Let b1 and b2 be the children of
a and let S and X n S be the disjoint leaf sets descended
from b1 and b2, respectively. Since both b1 and b2 have
non-empty sets of descendant leaves, S is a non-empty
proper subset ofX.

Since the split partition is trivial, there exists at least
one MUL-tree T 2 T such that some MUL-trees
T 0 2 F1ðT Þ has a leaf ‘1 2 S and a leaf ‘2 2 X n S. Let rT
be the root of T , x the child of rT , and yl and yr the chil-
dren of x. Without loss of generality, T 0 is the tree
obtained from T by deleting yr and all its descendants,
and suppressing x. We show that B does not weakly dis-
play T , which is the desired contradiction. So consider
any weak embedding h of T into B. If hðylÞ is a proper
descendant of a, then either hð‘1Þ or hð‘2Þ is not a descen-
dant of hðylÞ, a contradiction because yl is an ancestor of
both ‘1 and ‘2 in T . Thus, hðylÞ 2 fr; ag. hðylÞ ¼ r is
impossible because hðxÞ must be a proper ancestor of
hðylÞ. Thus, hðylÞ ¼ a and hðxÞ ¼ r. Since a is the only
child of r, this implies that both paths hðxylÞ and hðxyrÞ
start with the edge ra, again a contradiction. This proves
that Bmust have a bead at the root.

The part of B descended from this bead must be an
optimal solution to F1ðT Þ because otherwise we could
obtain a solution for T that is better than B by construct-
ing an optimal solution for F1ðT Þ and adding a bead at
its root. This proves the lemma for the case when s ¼ 1.

Finally, assume that T does not have a trivial split par-
tition, that is, s > 1. For any collection T 0 of MUL-trees,
let OPTðT 0Þ denote an optimal solution to T 0. For any
beaded tree B, let dðBÞ be the maximum number of beads
along any root-to-leaf path in B. We show first that the
beaded tree B defined in the lemma weakly displays all
trees in T .

Any MUL-tree T 2 T with no leaves in Ss is weakly
displayed by OPTðT n SsÞ and therefore by B. Similarly,
if all leaves of T belong to Ss, then T is weakly displayed
by OPTðT jSsÞ and therefore by B. So suppose T has
leaves in both Ss and X n Ss. Since F1ðT Þ consists of two
MUL-trees and fS1; . . . ; Ssg is a split partition of T , we
must have F1ðT Þ ¼ fT jSs ; T n Ssg. Since T jSs 2 T Ss and

T n Ss 2 T n Ss, the former is weakly displayed by OPT
ðT SsÞ and the latter is weakly displayed by OPTðT n SsÞ.
Thus, T is once again weakly displayed by B. This shows
that Bweakly displays all trees in T .

Now, since OPTðT Þ weakly displays all MUL-trees in
T jSs and T n Ss and B is obtained by joining OPTðT jSsÞ
and OPTðT n SsÞ, we have dðBÞ ¼ maxðdðOPTðT jSsÞÞ;
dðOPT ðT n SsÞÞÞ � dðOPTðT ÞÞ, that is, B is an optimal
solution for T . tu

Algorithm 2. Algorithm BEAD-DEPTH(T )
Input: A set of MUL-trees T ¼ fT1; . . . ; Ttg
Output: A beaded tree B with the minimum bead depth
that weakly displays all MUL-trees in T

1 if jXj ¼ 1 andmax1�i�tjLðTiÞj ¼ 1 then
2 return a tree with 1 leaf onX;
3 else
4 Calculate the split partition fS1; . . . ; Ssg of T ;
5 if s ¼ 1 then
6 B0  BEAD-DEPTH ðF1ðT Þ);
7 Construct B by adding a bead whose child is the

root of B0;
8 else
9 B0  BEAD-DEPTH ðT jSsÞ;
10 B00  BEAD-DEPTH ðT n SsÞ;
11 Construct B by joining B0 and B00;
12 end
13 return B;
14 end

Lemma 22. Let T ¼ fT1; . . . ; Ttg be an instance of BEADED TREE

DEPTH. Algorithm 2 finds an optimal solution for T in
OððjXj2 þ jXjkÞnÞ time, where n ¼

Pt
i¼1; jTij and k is the

reticulation number of the computed solution.

Proof. The correctness of the algorithm follows from
Lemma 21. To analyze the running time, the cost per
invocation of BEAD-DEPTH is OðjXjnÞ, by the same analysis
as in the proof of Lemma 20. To bound the number of
recursive calls, observe that the input to the recursive call
in line 6 has label set X and has an optimal solution with
k� 1 reticulations. The inputs to the recursive calls in
lines 9 and 10 have label sets Ss and X n Ss and have opti-
mal solutions with k1 and k2 reticulations, respectively,
where k1 þ k2 ¼ k. Thus, if Sðx; kÞ is the number of recur-
sive calls made on an input with x ¼ jXj and having k
reticulations in the optimal solution, we have Sðx; kÞ ¼
1þminðSðx; k� 1Þ; Sðx1; k1Þ þ Sðx2; k2ÞÞ, where x1þ x2 ¼
x and k1 þ k2 ¼ k. This recurrence has the solution
Sðx; kÞ ¼ 2ðxþ kÞ � 1. Thus, the running time of the algo-
rithm is Oðð2jXj þ 2k� 1Þ � jXjnÞ ¼ OððjXj2 þ jXjkÞnÞ. tu

7 CONCLUDING REMARKS

Although we have shown that the UNRESTRICTED MINIMAL EPI-

SODES INFERENCE and PARENTAL HYBRIDIZATION problems are
solvable in polynomial time, we have also shown that the
phylogenies produced by solving these problems have a
severely restricted structure.

The optimal phylogenetic network that our algorithm
produces for the PARENTAL HYBRIDIZATION problem is always
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a phylogenetic tree with “beads”, where a bead consists of a
speciation directly followed by a reticulation. Such solutions
are not necessarily the most realistic or likely ones since
they contain a lot of “extra lineages”, that is, multiple line-
ages of an input tree travelling through the same branch of
the phylogenetic network. Minimizing the total number of
extra lineages, the XL-score [34], irrespective of the reticula-
tion number, is also not ideal, since there always exists a
solution with zero extra lineages and possibly a very high
reticulation number. Therefore, the most relevant open
problem that needs to be solved is to find a phylogenetic
network that minimizes a weighted sum of the XL-score
and the reticulation number of the network. Another alter-
native problem formulation that seems reasonable is to min-
imize the total number of parental trees that the constructed
phylogenetic network has in addition to the input trees.

Another option would be to completely exclude beads in
the solutions. However, although this is an interesting theo-
retical open problem, we do not see a reason why the result-
ing optimal solutions would by any more realistic, or why it
would be reasonable to assume that a speciation cannot be
followed by a reticulation.

Regarding UNRESTRICTED MINIMAL EPISODES INFERENCE, the
situation is in some sense even worse. We have shown that
all optimal solutions have a very specific structure: there is
onemain path from the root to a taxon containing potentially
many duplication episodes, while each path branching off
this main path contains at most one duplication episode.
Although such scenarios are not to be excluded (for example
see the eukaryotic species phylogeny from [24]), it is unreal-
istic to expect all phylogenies to look like this (see for
example Fig. 1 in [11] for a phylogeny where the duplication
episodes are significantly more spread out). Therefore, we
have proposed an alternative problem that minimizes the
“duplication depth”: the maximum number of duplication
episodes that lie on any directed path. This problem can also
be solved in polynomial time and we expect it to produce
more realistic solutions. Moreover, note that, although the
problem definition does not exclude unnecessary duplica-
tion episodes as long as they do not increase the duplication
depth, our algorithm will not create such redundant dupli-
cation episodes. Nevertheless, to properly assess the two
algorithms, it is necessary to implement both algorithms
and extensively test them on simulated and real biological
data sets.

Finally, it would be interesting to study more general
problem variants, which simultaneously take different pro-
cesses into account, such as duplication episodes, hybridiza-
tion, and gene loss and transfers. Although such problems
have been studied in a reconciliation setting where the spe-
cies tree is (assumed to be) known, there has been less work
on variants where the species tree or network needs to be
inferred. Although such problems seem daunting, we have
shown here that not knowing the species tree can actually
make computational problems easier.
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