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ABSTRACT
On the intuitive level, software testing is important because
it assures the quality of the software used by humans. How-
ever, ensuring this quality is not an easy task because as the
complexity of the software increases, so do the efforts to
test it. Search-based software testing is an active research
field that develops and explores tools for automatic test case
generation. Their work involves using meta-heuristic search
optimisation approaches such as evolutionary algorithms
from the evolutionary computation community and apply-
ing them to test case generation. The crossover between the
evolutionary computation domain and the test case genera-
tion one produced DynaMOSA, a state-of-the-art evolution-
ary algorithm for generating test cases. In an attempt to
produce another well-performing algorithm, this paper per-
forms another crossover between the two communities and
creates DynaMOSARVEA - a product of a Reference Vector
Guided Evolutionary Algorithm (RVEA) and DynaMOSA.
The conducted empirical study showed that although Dy-
naMOSARVEA does not outperform DynaMOSA, it did out-
perform RVEA, thus demonstrating the value brought by
domain-specific knowledge.

1 INTRODUCTION
According to Aniche most developers do not enjoy testing their soft-
ware for various reasons, e.g. they claim that it is a time-consuming
task which is not as fun as developing production code [3]. One way
of testing the software is by writing unit-tests, which aim to ensure
the functionality of the smallest part of the code, for example, a
single method. However, it is still not an easy job because to test
this method, developers need to understand its functionality, its ap-
plication and isolate it if it has dependencies. This process is further
complicated when the complexity of the software (e.g. the number
of dependencies or parameters of a single method) increases.

Search-based software testing (SBST) is an active research field
that aims at automating test case generation. The researchers from
this field produced interesting tools which employ different ap-
proaches to test case generation, such as EvoSuite [17] and its evo-
lutionary algorithm and Randoop [27] with its feedback-directed
random testing. Recent studies have shown how these tools can
achieve higher test coverage [2] and dramatically reduce the time
needed for debugging and testing [32]. Furthermore, the SBST ap-
proach is also applied in the industry at companies like Meta, which
developed its tool Sapienz [23].

DynaMOSA [29] is the current state-of-the-art approach to SBST
implemented in many tools such as SynTest [25], Pynguin [21],
EvoMaster [4] and helped the EvoSuite team to win in the last few
SBST Tool Competitions [18]. DynaMOSA is an adaptation of a

non-dominated sorting genetic algorithm II (NSGA-II [13]) from the
evolutionary computation community to the test case generation
domain. Using test case specific fitness functions, it evolves a set
of initially randomly generated test cases over a given budget (e.g.
time or number of generations). Software testing domain-specific
knowledge makes DynaMOSA more effective at generating test
cases than traditional evolutionary algorithms. [29]

Due to advantages such as the provision of many alternative
solutions, wide applicability, low development costs, and other
[14], evolutionary algorithms are an area of research on their own.
The evolutionary computation community produced many algo-
rithms apart from NSGA-II by Deb et al. Some algorithms try to
improve various NSGA-II shortcomings, while others explore differ-
ent approaches. Some of the popular work includes SPEA-II1 [39],
PESA-II2 [10], RVEA [8], PCSEA3 [35] and PSO4 [33]. Although
each algorithm is successful in its own right, they are not inher-
ently designed for test case generation. Thus forms a knowledge
gap because we do not know how those algorithms would perform
at test case generation.

Panichella et al. picked NSGA-II as a base evolutionary algorithm
and specialised it with domain-specific knowledge of test case gen-
eration, thus producing DynaMOSA. As studies [2, 6, 22, 30] and
competitions [18, 31] showed it delivered impressive results at test
case generation. Thus it is important to slowly start filling this
knowledge gap to see if a different baseline algorithm adapted for
test case generation problems could perform better than adopted
NSGA-II (DynaMOSA) or if test case generation knowledge also
improves other algorithms.

In this paper, we fill a part of a knowledge gap by investigating
the performance of a Reference Vector Guided Evolutionary Algo-
rithm (RVEA) in generating unit-test cases for JavaScript programs.
Thus answering the following research questions:

(1) How does RVEA adapted for test case generation perform at
generating test cases automatically?

(2) Does domain-specific knowledge of test case generation prob-
lem makes RVEA perform better?

RVEA is interesting because it relies on a decomposition-based
approach that aims to produce Pareto-efficient solutions for prob-
lems, and instead of a non-dominance criterion, it combines con-
vergence and diversity criterion for individual selection [8]. We
chose to implement the algorithm to generate JavaScript test cases
because of its popularity, as reported by [1, 37]. Specifically, we
will work with the SynTest-Framework because it already imple-
ments the DynaMOSA-based test case generation for JavaScript
programming languages.
1Strength Pareto Evolutionary Algorithm II (SPEA-II)
2Pareto Envelope-Based Selection Algorithm II (PESA-II)
3Pareto Corner Search Evolutionary Algorithm (PCSEA)
4Particle swarm optimization (PSO)



The conducted empirical study showed that the adapted version
of RVEA for test case generation (DynaMOSARVEA) approaches
the average branch coverage performance of DynaMOSA butmisses
it by one test file. But it (DynaMOSARVEA) outperforms RVEA at
the average branch coverage in more than half of the test files, thus
demonstrating the value brought by domain-specific knowledge.

The remainder of the paper is structured as follows; Section 2
provides necessary background knowledge, Section 3 explains our
approach, Section 4 describes the study design, Section 5 presents
the results, Section 6 discusses the threats to validity, Section 7 con-
cludes the paper and suggests future work and Section 8 discusses
responsible research.

2 BACKGROUND
2.1 SBST
Search-based software testing (SBST) uses various meta-heuristic
search techniques to automate test case generation. The techniques
include evolutionary algorithm, hill climbing, simulated annealing
and tabu search [19]. Hill climbing and simulated annealing are local
search approaches because they only one solution at a time, and
only the neighbours near them as moving possibilities. In contrast,
an evolutionary algorithm is a global approach because it considers
many solutions at once [24].

As noted by McMinn, meta-heuristic techniques were success-
fully applied to problems including but not limited to functional,
integration, and mutation testing. Furthermore, as mentioned in
Section 1, the SBST approaches are successfully applied in the in-
dustry at companies such as Meta and many SBST tools, such as
Sapienz, EvoSuite, and Randoop, was produced by academia and
industry.

There are two requirements for applying a search-based ap-
proach to a problem. First, a possible solution to a problem has to
be represented in code so an algorithm can manipulate it during the
search process. E.g. in the case of a genetic algorithm, a subcategory
of evolutionary algorithms, a solution has to be represented as an
individual in a population which can be mutated and crossed over
with other individuals. Second is the presence of a fitness function
which will tell how close a given solution is to covering an objective.
[24]

Depending on the testing task (e.g. branch coverage) and the
selected approach (e.g. an evolutionary algorithm), the representa-
tion of the solution and choice of fitness function could differ. For
example, when we apply a genetic algorithm to a branch coverage
problem, we can model a solution in at least two ways.

One way is to represent a single solution (individual) as a whole
suite, as proposed by Fraser and Arcuri. A single solution contains
a variable number of test cases, while each test case has a vari-
able number of method calls. In this case, a fitness function would
consider how close the entire test suite (individual) is to covering
all branches of a program [16]. This modelling of the problem is
known as a single objective formulation since we have only one
fitness function, which we will try to minimise.

However, Panichella et al. proposed a reformulation of the branch
coverage problem as a many-objective problem (MaOP) if we con-
sider each branch as an objective [28]. Therefore, we will have many
objective functions, one for each branch, which has to be optimised

(e.g. minimised). In this formulation, a solution (individual) is a
single test case, not an entire test suite.

Several studies [2, 6, 22, 28–30] empirically showed the per-
formance of the many-objective formulation of branch coverage
problems at test case generation and how it outperforms the single
objective formulation.

2.2 Overview of Evolutionary Algorithms
The evolutionary algorithm (EA) is motivated by Darwin’s work on
evolution and borrows concepts such as natural selection and sur-
vival of the fittest [15]. And it typically has four stages: initialisation,
offspring creation, evaluation and selection.

The overall intuition is that by starting with a (random) popula-
tion and a (fitness) function that tells us which individual is fitter
than the other, we could select X5 number of fittest individuals,
exchange their genetic information and hopefully produce a fitter
offspring population. The process loops from offspring creation to
selection until it reaches a termination condition (e.g. exhausted
budget, finding the best solution). Thus with each generation, the
overall fitness of the population should increase. [15]

To apply an EA, a problem is represented in a way to allow
the four stages to happen. E.g. a solution (individual) has to have
genes (parameters) which could be exchanged with another in-
dividual through random variation operations like crossover and
mutation. A problem-specific fitness function should be predefined
to numerically identify individuals closer to achieving the desired
objective. However, there could be more than one objective and
fitness function.

In the evolutionary computation community, the algorithms and
optimisation problems are classified based on the number of ob-
jectives (fitness functions). The categories are single, multi- and
many-objective optimisation problems or evolutionary algorithms.
Single refers to one fitness function or objective, multi- is between
two and three, while many are more than three. The number of
fitness functions also determines the dimensions of the objective
space in which solutions are graphed. The need for this classifica-
tion stems from the performance issues of the algorithms as the
dimensions of the objective space increase.

2.3 Evolutionary Algorithms - Issues and
Enhancement Approaches

The performance issues begin to appear when non-dominance is
selected as a comparison measure between two different solutions
in a population with a limited size [8]. According to the definition,
a solution is non-dominated if there are no other solutions which
are better than it in at least one objective and equally good or better
in all other objectives [29].

For single-objective problems, the non-dominance comparison
is usually not an issue because there is only one objective that is
compared. A single-objective EA would find the best solution or
several equally good solutions. However, MOEAs6 and MaOEAs7
have several objectives, which could be conflicting, meaning that

5X is a specified number of individuals, i.e. chosen population size.
6Multi-objective Evolutionary Algorithm (MOEA)
7Many-objective Evolutionary Algorithm (MaOEA)
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one optimal solution does not exist instead there is a set of solu-
tions, known as Pareto-optimal solutions, depicting the trade-offs
between different objectives. The set of Pareto-optimal solutions
forms a Pareto front (PF).

As Panichella et al. explain, the problem with Pareto-optimal
solutions is that as the number of objectives increases, the size
of a PF increases as well thus making it impossible to use non-
dominance criteria to distinguish which solution is better than
another. This problem is known as the loss of selection pressure.

Another performance issue of EA, highlighted by Cheng et al.,
stems from the difficulty of maintaining a good population diversity
as the number of objectives increases. This is because the individ-
uals in the population become more sparsely distributed as the
number of fitness functions grows; creating more difficulties to
the diversity managing strategies such as crowding distance of
NSGA-II.

According to Cheng et al., there are roughly three categories of
enhancements for evolutionary algorithms. First is convergence
enhancement-based approaches which modify the dominance re-
lationship, thus trying to increase the selection pressure toward
the Pareto front. Second is decomposition-based approaches which
break down a complex multi-objective problem into smaller multi-
objective problems or into single-objective problems. Third is per-
formance indicator-based approaches which are not subject to non-
dominance relationship problems but rather high computational
costs when the number of objectives is large.

2.4 RVEA
Cheng et al. proposed a Reference Vector Guided Evolutionary Al-
gorithm (RVEA) for many-objective optimisation problems which
is motivated by the ideas of the decomposition-based approaches.
The algorithm is made of five parts, namely: reference vector gener-
ation, offspring creation, elitism selection, reference vector-guided
selection and reference vector adaptation.

Reference vector generation either produces uniformly distributed
unit vectors that decompose the original problem into several single-
objective sub-problems or unit vectors targeting the user’s preferred
part of the Pareto front (PF).

The offspring creation happens through a random pairing of
individuals to create a parent pair. The genetic material is exchanged
through simulated binary crossover (SBX) and polynomial mutation
operation.

Elitism selection is the result of offspring and parent populations
combined into a single one before the start of reference vector-
guided selection.

Reference vector-guided selection selects the fittest individual,
according to the angle-penalised distance (APD) approach, in each
subpopulation. Subpopulation is created by assigning each individ-
ual to a certain region created by the generated reference vectors.
APD is a scalarisation approach designed to dynamically adjust
two selection criteria, convergence and diversity, of the individu-
als as the search progresses. It picks the individuals closest to the
ideal point8 (convergence criterion) at the start of the search and

8In Cheng et al. paper which works with a minimisation problem, the ideal point is
the origin of the coordinates.

individuals closest to the reference vector to which the individual
belongs (diversity criterion) in the later stage of the search.

Reference vector adaptation adapts the reference vectors to the
objective space current value range to mitigate the effects of objec-
tive values not falling within the same value range.

2.5 From NSGAII to DynaMOSA
The current state-of-the-art algorithm for test case generation,
DynaMOSA, is a specialisation of a genetic algorithm NSGAII to
the structural coverage problem9. NSGAII can be thought of as a
baseline algorithm which was modified (specialised) with domain-
specific knowledge of structural coverage problems to first create
the MOSA algorithm, then the DynaMOSA.

The Many Objective Sorting Algorithm (MOSA) was introduced
by Panichella et al. along with the many-objective problem formu-
lation of the branch-coverage problem. In MOSA individuals are
single test cases and their genes are the test input data and the
possible program statements (e.g. method calls). MOSA objectives
are the various structural coverage targets such as branch coverage,
statement coverage and strong mutation coverage [29]. The fitness
function10 numerically scores how close the execution trace of an
individual (test case) is to cover the desired targets (objectives).
Therefore, the overall fitness of an individual is determined by how
well its execution trace covers all objectives (e.g. branch coverage
targets). Since the most interesting individuals for the structural
coverage problem are the ones that cover the targets, Panichella
et al. increased the selection pressure among the Pareto optimal
solutions by introducing a preference criterion which prefers indi-
viduals closer to targets (objectives) and fewer program statements.
Furthermore, Panichella et al. introduced an archive for storing
the test cases that cover certain targets. The archive is updated
with each generation if new objectives are covered or if an already
covered objective has a new smaller test case. Lastly, the dominance
comparator was changed to consider only uncovered targets in-
stead of all as was originally introduced by Deb et al. in NSGAII
[13].

DynaMOSA is MOSA which knows that there are structural de-
pendencies among the targets (objectives) and uses this knowledge
to dynamically select reachable objectives. To that end, DynaMOSA
relies on a control dependency graph which shows the control de-
pendency hierarchy. For intuition consider a program with nested
if statements, the control dependency hierarchy would show that
before reaching the inner statement, first, the outer one has to be
satisfied. Therefore, DynaMOSA would first select the reachable
outer statements, and once they are covered, it would consider the
inner statements.

3 APPROACH
This paper presents our adaptation of RVEA to the test case gen-
eration problem and its modification with domain-specific knowl-
edge. The result is three algorithms, RVEA, MOSARVEA and Dy-
naMOSARVEA.

9Structural coverage shows the amount of code exercised during a method call or a
test.
10Each coverage criterion (e.g. branch coverage) has its own fitness function.
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3.1 The RVEA Adaptation
Adaptation of RVEA to the test case generation problem required
three adjustments namely, formulation of the structural coverage
problems (e.g. branch coverage) as a many-objective one, the intro-
duction of a population size parameter, and a slight modification
of the search progress metric for angle-penalised distance (APD)
calculation.

3.1.1 Many-Objective Formulation. As described in Section 2.2 to
apply an evolutionary algorithm to a problem we first need to
choose a representation for the individuals and their genes, as well
as define the fitness functions. To that end, we adopted Panichella
et al. many-objective formulation of the branch coverage problem as
opposed to the single-objective formulation proposed by Fraser and
Arcuri. The justification is that algorithms that adopted the many-
objective formulation seemed to have performed better according
to several studies [6, 22, 30]. This means that our individuals, ob-
jectives and fitness functions are the same as in MOSA. Individuals
are single test cases and their genes are the test input data and the
possible program statements (e.g. method calls). The objectives are
the various structural coverage targets. The fitness functions are de-
pendent on the chosen coverage criterion, e.g. the branch coverage
is measured by the approach level and branch distance. Approach
level refers to the amount of the control dependencies separating
the objective and the execution trace of the individual [29]. Branch
distance is the distance between the individual’s predicate11 value
for a branch and the value that satisfies the branch predicate.

3.1.2 Population Size Dependent Reference Vector Generation. In
the original RVEA algorithm population size itself is not a parameter
but a byproduct of reference vector generation. Since reference
vectors are responsible for decomposing the objective space into
multiple subspaces they also set the upper limit on the population
size at each generation because RVEA picks at most one individual
from each subspace. If there are only two reference vectors, there
will only be at most two selected individuals regardless of the
starting population. To generate uniformly distributed reference
vectors, Cheng et al. employed a method from [7]. This method
has two parameters𝑀 for the number of objectives and 𝐻 for the
positive simplex-lattice design integer. First, it uses a canonical
simplex-lattice design method [11]{

ui = (𝑢1𝑖 , 𝑢
2
𝑖
, . . . , 𝑢𝑀

𝑖
)

𝑢
𝑗
𝑖
∈
{ 0
𝐻
, 1
𝐻
, . . . , 𝐻

𝐻

}
,
∑𝑀

𝑗=1 𝑢
𝑗
𝑖
= 1

(1)

to generate a set of uniformly distributed points on a unit hyper-
plane, where𝑀 is the number of objectives, 𝐻 is a positive simplex-
lattice design integer, and 𝑁 in 𝑖 = 1, . . . , 𝑁 being the number of
uniformly distributed points. Then, through normalisation

vi =
ui
| |ui | |

(2)

of a vector ui a corresponding unit vector vi is obtained. The
simplex-lattice design property allows us to calculate 𝑁 , the total
number of reference vectors (population size), through a combina-
tion formula 𝑁 =

(𝐻+𝑀−1
𝑀−1

)
.

11Predicate is the conditional expression which creates the branching.

For the test case generation problem, the parameter M is always
determined by the number of objectives derived from the unit under
test. Cheng et al. follow the recommendations from [12] and [20]
by deploying a two-layer vector generation strategy for problems
where𝑀 ≥ 8. However, their approach does not scale well for test
case generation problems because the number of objectives can
easily exceed eight and reach double-digit numbers and at times
even triple-digits.

Instead of adapting a different approach to uniform reference
vector generation, we decided to keep this methodology but adjust
it to be based on the population size parameter (𝑁 ), not 𝐻 . For
that, we first establish the minimum number of reference vectors
that should be generated by choosing the highest value among a
doubled number of objectives and the population size (max(M*2,
N)). This condition ensures that if we have fewer objectives than
the population size, then we will generate enough reference vectors
to at least get the same population back (assuming that no subspace
has more than one individual in it). If however there are more
objectives, then this condition ensures that we will generate more
than M vectors, i.e. more than one for each axis that creates the
objective space. Second, we use

(𝐻+𝑀−1
𝑀−1

)
to find the value of 𝐻

which would create our minimum number of reference vectors.
Once we found the appropriate 𝐻 we generate reference vectors
with equations 1 and 2 by passing the found 𝐻 and our𝑀 .

3.1.3 APD Search ProgressModification. The original angle-penalised
distance (APD) calculation relies on generation count to track the
search progress. More concretely, the ratio of the current genera-
tion to the max generation ( 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑡𝑚𝑎𝑥

) is used to indicate how far the
progress has reached. However in test case generation, especially in
a practical implementation like SynTest, there could be other ways
to track the progress of the search (e.g. time budget). Hence in our
algorithm, we track the search progress not necessarily through
the generation count (passed iterations) but rather through the
system’s total progress (𝐵𝑢𝑑𝑔𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡

𝐵𝑢𝑑𝑔𝑒𝑡𝑇𝑜𝑡𝑎𝑙
).

3.1.4 Computational Complexity. As reported by Cheng et al., the
computational complexity of RVEA is 𝑂 (𝑀 × 𝑁 2) where𝑀 is the
objective size and 𝑁 is the population size. The above modifications
do not increase or decrease the computational complexity since
the test case generation reformulation takes place outside of the
RVEA algorithm, reference vector generation still generates vectors
according to the same method and the APD search progress value
still performs the same calculation but acknowledges and includes
other budget types.

3.2 MOSARVEA
To improve RVEA’s performance at generating test cases we in-
troduced the same domain-specific improvements as in MOSA,
namely: preference criterion, archiving and focus on uncovered tar-
gets, thus creating MOSARVEA. The algorithm of MOSARVEA has
a high resemblance with MOSA the main difference being the use
of the RVEA algorithm in the PREFERENCE-SORTING subroutine
of MOSA instead of a FAST-NONDOMINATED-SORT subroutine,
as shown in Algorithm 1.

The Algorithm 1 is the PREFERENCE-SORTING subroutine from
[29]. RVEAMOSA modifications are in blue, the rest is the same
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as in the original subroutine. The subroutine begins with finding
the zeroth front F0 using the preference criterion which picks the
tests closest to the current uncovered objectives (lines 2-5). Then
the algorithm removes the found tests from the total population
(line 6) and checks if the population size was satisfied (line 7). If
the population size is satisfied with F0 the rest of the test cases are
assigned to F1 (line 8) and the algorithm returns. If the population
size is not satisfied the algorithm proceeds to find more test cases
using the RVEA’s main subroutines (lines 10-18). The else condi-
tion starts with focusing the search only on the uncovered targets
(line 10). Then, PREFERENCE-VECTOR-GENERATION generates
reference vectors as described in Section 3.1.2. OBJECTIVE-VALUE-
TRANSLATION contains objective values inside the first quadrant
of the objective space and sets the coordinate origin to be the mini-
mum value for each objective function (line 12), this is undone on
line 15. POPULATION-PARTITION decomposes the problem into
smaller single-objective sub-problems by assigning each individual
to the closest reference vector, thus creating a sub-population. This
is achieved by finding the maximum cosine value for each individ-
ual between the individual and all reference vectors (line 13), in the
implementation a map is returned. Lastly, angle-penalised distance
is calculated (line 14) and returns several fronts. Lines 16-18 append
the found fronts to F.

The key to substituting the FAST-NONDOMINATED-SORT sub-
routine with the RVEA subroutine was in adapting angle-penalised
distance calculation to return multiple fronts. Usually, RVEA re-
turns only the first front. However, we used the already calculated
APD values to make the APD-CALCULATION return individuals
who have higher APD scores as well. Choosing how to compose
multiple RVEA fronts is something that can be investigated in future
work.

Outside of the PREFERENCE-SORTING subroutine, we removed
MOSA’s calculation of crowding distance (see Appendix A) and
RVEA’s reference adaptation strategy. Crowding-distance is mainly
used for ensuring the diversity of a population; however, RVEA’s
angle-penalised distance already accounts for the diversity. Al-
though it would be interesting to see how crowding-distance would
affect the algorithm, we decided to stick as much as possible to the
original algorithm and leave experimentation for future work. The
reference vector adaptation strategy, responsible for scaling the
reference vectors to the values range of the objective space, was
removed in preparation for dynamic target selection.

3.2.1 Computational Complexity. As reported in [29] the computa-
tional complexity of the FAST-NONDOMINATED-SORT subroutine
is 𝑂 (𝑀 × 𝑁 2) where 𝑀 is the objective size and 𝑁 is the popula-
tion size. As was established in Section 3.1.4 the computational
complexity of RVEA is also 𝑂 (𝑀 × 𝑁 2). Therefore, the creation of
MOSARVEA through the substitution of FAST-NONDOMINATED-
SORT by RVEA should result in the same computational complexity
as MOSA.

3.3 DynaMOSARVEA
Following in the steps of the original DynaMOSAwe added dynamic
objective selection to MOSARVEA, thus creating DynaMOSARVEA.
NowMOSARVEA also uses the control dependency graph to derive
structural dependencies among all of the objectives and consider

the reachable statements first. The main side effect from adding
dynamic target selection to RVEA is that the reference vector adap-
tation strategy is no longer needed because reference vectors are
generated anew for each iteration of the algorithm because the
dimensions of the objective space change.

3.3.1 Computational Complexity. DynaMOSARVEA should per-
form equally well or better than MOSARVEA by the proof from
[29] because the modifications are the same.

Algorithm 1: PREFERENCE-SORTING
Input:
A set of candidate test cases 𝑇
Population size𝑀
Result:
Angle-penalised distance (APD) ranking assignment F

1 begin
2 F0 /* First non-dominated front */

3 for 𝑢𝑖 ∈ 𝑈 and 𝑢𝑖 is uncovered do
/* for each uncovered target we select the
best test case according to the
preference criterion */

4 𝑡𝑏𝑒𝑠𝑡 ← test case in 𝑇 with minimum objective score
for 𝑢𝑖

5 F0 ← F0
⋃{𝑡𝑏𝑒𝑠𝑡 }

6 𝑇 ← 𝑇 − F0
7 if |F0 | > 𝑀 then
8 F1 ← 𝑇

9 else
10 𝑈 *← {𝑔 ∈ 𝑈 : is uncovered}

/* Perform RVEA-based front formation */

11 𝑅𝑣 ← REFERENCE-VECTOR-GENERATION(𝑀 ,
|𝑈 *|)

12 𝑇 *← OBJECTIVE-VALUE-TRANSLATION(𝑇 ,
{𝑢 ∈ 𝑈 *})

13 𝑃 ← POPULATION-PARTITION(𝑇 *, {𝑢 ∈ 𝑈 *}, 𝑅𝑣 )
14 E← APD-CALCULATION(𝑃 , 𝑇 *, {𝑢 ∈ 𝑈 *}, 𝑅𝑣 )
15 E← UNDO-OBJECTIVE-VALUE-TRANSLATION(E,

{𝑢 ∈ 𝑈 *}) /* Pass E to undo the

translation and update E */

16 𝑑 ← 0 /* first front in E */

17 for All non-dominated fronts in E do
18 F𝑑+1 ← E𝑑

4 STUDY DESIGN
4.1 Research Questions
To investigate if a different baseline algorithm adapted for the test
case generation problem could perform better than the adopted
NSGA-II (DynaMOSA) or if test case generation knowledge also im-
proves other algorithms, we conduct an empirical study to answer
the following two research questions (RQs).
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RQ1 How does RVEA adapted for test case generation perform at
generating test cases automatically?

RQ2 Does domain-specific knowledge of structural coverage prob-
lem makes RVEA perform better?

4.2 Benchmark
The benchmark we are using to test the performance of the algo-
rithms was created in [36] by Stallenberg et al. It consists of five
different projects, namely: Commander.js12, Express13, JavaScript
Algorithms14, Loadash15 and Moment.js16. They were picked based
on their popularity among the GitHub and Node Package Manager
communities as well as their code style and syntax diversity.

Furthermore, only a subset of files for each project was picked.
The files were selected based on their cyclomatic complexity (CC) to
ensure that the CC is high enough so that high structural coverage
is not achieved with few tests [36].

However, the Moment.js project was removed entirely from the
benchmark because when running the experiment those files could
not run. Application.js in express was removed because it started a
web server which prevented the experiment from terminating.

4.3 Prototype
To conduct the experiment we made a fork17 from SynTest-Core18
repository and implemented RVEA,MOSARVEA andDynaMOSARVEA
algorithms in TypeScript. SynTest-Core already has an implemen-
tation of DynaMOSA and the SynTest-Framework19 provides the
benchmark described in the benchmark section 4.2.

4.4 Parameter Settings
For this empirical evaluation, we chose not to experiment with dif-
ferent parameter settings but rather stick to the default values, since
[5] showed that hyper-tuned parameters do not give a much better
performance than the defaults. For DynaMOSA, DynaMOSARVEA
and RVEA we used a single point crossover with a crossover proba-
bility of 0.7, and mutation with a probability of 1

𝑛 where n is the
number of statements in the test case. Tournament selection was
used for DynaMOSA but for RVEA and DynaMOSARVEA it is not
a part of the algorithm. The population size of 50 was set for all
algorithms. The search budget was set to 120 seconds instead of
the common 60 seconds [26]. The additional minute gives the algo-
rithms time to run a bit longer but not for too long. For RVEA and
DynaMOSARVEA we set alpha, which controls the rate of change
of the angle-penalised distance calculation, to equal two as in [8].
RVEA also required a parameter to control the frequency for the
vector adaptation strategy, which was set to 0.1 like in [8].

4.5 Experimental Protocol
To answer RQ1 we compare the adapted version of RVEA (Dy-
naMOSARVEA) with the DynaMOSA. The comparison is done

12https://tj.github.io/commander.js/
13https://expressjs.com/
14https://github.com/trekhleb/javascript-algorithms
15https://lodash.com/
16https://momentjs.com/
17SynTest-Core Fork - https://github.com/SergeyDatskiv/syntest-core
18SynTest-Core - https://github.com/syntest-framework/syntest-core
19SynTest-Framework - https://github.com/syntest-framework

using the average final branch coverage per file, unpaired Wilcoxon
signed-rank test and Vargha-Delaney 𝐴12 statistic. It shows if a
different baselines algorithm (RVEA) can be adapted to the test case
generation problem and how it compares with the state-of-the-art
DynaMOSA.

To answer RQ2 we compare RVEA20 to DynaMOSARVEA. This
comparison is done analogously to the comparison in RQ1 and
shows how much domain-specific knowledge improves the perfor-
mance of an algorithm.

Due to the algorithm’s stochastic nature, we ran the experiment
10 times and calculated an average performance. Each run considers
only one file from the benchmark and searches for the solution for
120 seconds, excluding the pre- and post-processing time. While
the algorithm is taking 120 seconds to search for the solutions the
number of covered objectives and timestamp is recorded for each
generation of the search. Once the search exhausted its time budget,
the final branch coverage and other statistics are recorded.

In total, we had 1080 runs because there were 36 benchmark files
which were run for three configurations ten times (36×10 𝑡𝑖𝑚𝑒𝑠3 =
1080). Given the search budget of 120 seconds or 2 minutes, the run
time of the benchmark would be (1080×2𝑚𝑖𝑛)

60𝑚𝑖𝑛 ≈ 36ℎ, excluding the
pre- and post-processing time. We managed to run 100 instances in
parallel, thus shortening the duration.

To prevent the hardware from making an impact on the experi-
ment we used the same system, namely AMD EPYC 7H12 with a
64-Core Processor clocked at 3293.082 MHz with 512GB of RAM, 2
CPUs, 128 Cores and 256 Threads.

To compare the performance differences between the algorithms
we calculated the average final branch coverage for each file. We
chose to calculate the mean because in our preliminary runs21
virtual in all cases the coverage per file per algorithm was the same.

We used the unpaired Wilcoxon signed-rank test [9] with a
threshold of 0.05 (𝑝-value ≤ 0.05) to determine if the experiments
are significantly different from each other. This test checks if two
data distributions can be sampled from the same one, if not they are
significantly different from each other. Furthermore, to determine
the magnitude of the difference between the two data distributions
we paired the Wilcoxon signed-rank test with the Vargha-Delaney
𝐴12 statistic [38] to describe the effect size of the result.

5 RESULTS
This section presents the results, obtained by following the protocol
explained in Section 4.5, for the two research questions from Section
4.1. Note that not all the benchmark files were included in the table
because nine22 of them could not generate any tests across all
three algorithms. All of them were related to graphs and probably
struggled with graph generation. All results can be found in the
replication package23.

20Reformulated for test case generation problem but not enhanced with the knowledge
of structural coverage problem
21Preliminary runs can be found in the replication package.
22The nine files are: articulationPoints.js, bellmanFord.js, bfTravellingSalesman.js,
detectDirectedCycle.js, detectUndirectedCycle.js, eulerianPath.js, flyodWarshall.js,
hamiltonianCycle.js, stronglyConnectedComponents.js.
23Replication Package - https://github.com/SergeyDatskiv/TUDelft-Bachelor-
ResearchProject-CSE3000-ReplicationPackage
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Table 1 can be split into four sections. First is the file under test
provided by a benchmark project, second is the average branch cov-
erage third and fourth are the 𝑝-value and 𝐴12 for two sets of com-
parisons. The average branch coverage shows how many branches
each algorithm covered in each file, it is reported in percentage
up to two decimal places. The highest-performing percentages are
highlighted in grey, making the poorly performing algorithm eas-
ier to see. The next sections show 𝑝-value and 𝐴12 for RVEA vs
DynaMOSARVEA comparison, with𝐴12 values indicating the mag-
nitude difference in brackets (Negligible, Small, Medium, Large).
The baseline for statistical analysis in this case was RVEA and it
was compared to DynaMOSARVEA. Analogously, the last sections
show statistical analysis comparisons between DynaMOSA and
DynaMOSARVEA. The baseline here was DynaMOSA and it was
compared to DynaMOSARVEA.

Table 2 uses the 𝑝-value and 𝐴12 to classify the files under test
into three categories a number of wins (# Win), no difference (# No
Diff.) and loses (# Lose). To classify the results we first look at the
𝑝-value for a single test file for one comparison (e.g. DynaMOSA
vs DynaMOSARVEA), if it is less than or equal to 0.05 (𝑝-value
≤ 0.05) then it goes to either # Win or #Lose else it goes to # No
Diff because the results are not significantly different. The classi-
fication between # Win and # Lose is based on the 𝐴12, if the 𝐴12
is less than 0.5 then it is a win for the statistical baseline, i.e. the
algorithm on the left-hand side of the “vs”. If it is bigger then, it is
a lose for the left-hand side algorithm. The magnitudes (Negligi-
ble, Small, Medium, Large) are given by the function in R used to
compute the 𝐴12 scores. As an example consider the DynaMOSA
vs DynaMOSARVEA comparison, it has only one instance where
𝑝-value ≤ 0.05 which is in the response.js file. Since the 𝐴12 score
is much less than 0.5 it is considered a win for DynaMOSA with
the magnitude difference classified as large. All other files go to no
difference column since their 𝑝-values are bigger than 0.5.

5.1 RQ1 Results
The results from Table 1 and 2 show that the adapted version of
RVEA (DynaMOSARVEA) performs fairly well at generating test
cases because its performance almost always matches the state-of-
the-art algorithm (DynaMOSA).

The average branch coverage results from Table 1 shows that
DynaMOSARVEA achieves the same coverage as DynaMOSA in 25
cases. The only flies where it does not achieve the same coverage
are response.js and utils.js. However as can be seen by Table 2 only
one of them, namely the response.js file, is significantly different
to be categorised as a loss for DynaMOSARVEA (or a win for
DynaMOSA). In all other cases, there is no statistically significant
difference.

5.2 RQ2 Results
The results from Table 1 and 2 show that the domain-specific spe-
cialisations of RVEA to create DynaMOSARVEA have significantly
improved the performance of the algorithm at generating test cases.

The average branch coverage results from Table 1 shows that
RVEA achieves the same branch coverage as DynaMOSARVEA (or
DynaMOSA) in 13 files out of 27. Table 2 shows that RVEA loses

in total 15 times to DynaMOSARVEA meaning that the domain-
specific improvements of DynaMOSARVEA allowed it to perform
better in 15 cases. Thus quantifying the value which test generation
knowledge brought to RVEA.

6 THREATS TO VALIDITY
Here we present potential threats to the validity of the conducted
study.

Threats to internal validity. All algorithms which were com-
pared in the results section are implemented on a fork of the
SynTest-Core repository. We wrote a couple of tests to check if
the subroutines of the algorithm perform correctly. However, tests
alone do not guarantee that the code is bug-free. If bugs are present
in any repository which was used to conduct the experiment,
namely: SynTest-Core and its fork, SynTest-JavaScript and SynTest-
JavaScript-Benchmark, then they could affect the results and va-
lidity. To mitigate the risk we did all of our work on a public fork
of SynTest-Core and published all results and processing scripts.
Thus, allowing others to inspect it and replicate the experiment or
results.

Threats to external validity. The benchmark consists of five
different projects featuring 36 test files so that the algorithms are
tested on code of various purposes, sizes, syntax, application do-
mains and code styles. However, the performance of the algorithm
on those 36 test files is not the best generalisation approach. To
increase the confidence in the generalisability of the study it would
be beneficial to conduct a study with a bigger and more diverse
benchmark. However, running such an experiment would incur a
high cost. Hence, a smaller study is conducted here.

Threats to conclusion validity. To mitigate a possible positive
or negative impact of a randomised nature of the algorithms, e.g.
getting a good performance of algorithms due to an accidental
good seed, each experiment was conducted 10 times with different
random seeds. We used the Vargha-Delaney 𝐴12 effect size and
unpaired Wilcoxon signed-rank test to quantify the significance
and magnitude of the results.

7 CONCLUSION AND FUTUREWORK
In this paper, we reformulated RVEA for the structural cover-
age problem and specialised it with test case generation-specific
knowledge. Thus producing three algorithms RVEA (for test case
generation), MOSARVEA and DynaMOSARVEA. The empirical
study measured the performance of the created algorithms by
comparing them to the state-of-the-art algorithm for test case
generation (DynaMOSA). We compared the performance of Dy-
naMOSARVEA with DynaMOSA and found that DynaMOSARVEA
has lower branch coverage only for one file. Furthermore, we com-
pared RVEA with its improved version (DynaMOSARVA), thus
quantifying the benefit of the domain-specific improvements which
producedDynaMOSARVEA. Those improvements increased branch
coverage in more than half of the tested files.

The time limitations and scope of the project prevented the
paper from exploring more areas, many of which could be future
work. The DynaMOSA and DynaMOSARVEA comparison can be
analysed further by computing the area under the curve to see
which algorithm reached the end branch coverage earlier. Moreover,
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Table 1: Average branch coverage, 𝑝-value and 𝐴12 statistic for each benchmark file.
Highest scores are highlighted in grey.

Benchmark File Name Average Branch Coverage RVEA vs DynaMOSARVEA DynaMOSA vs DynaMOSARVEA

RVEA DynaMOSARVEA DynaMOSA 𝑝-value �̂�12 𝑝-value �̂�12

Commander.js help.js 25.76% 50.00% 50.00% 0.001 1 (Large) 0.1675 0.4 (Small)
option.js 38.89% 50.00% 50.00% 0.01308 0.815 (Large) 0.3277 0.385 (Small)
suggestSimilar.js 62.50% 71.88% 71.88% 0.00005 1 (Large) 0.1675 0.6 (Small)

Express query.js 66.67% 66.67% 66.67% NA 0.5 (Negligible) NA 0.5 (Negligible)
request.js 30.43% 32.61% 32.61% 0.0004 0.915 (Large) 1 0.5 (Negligible)
response.js 10.87% 17.66% 19.57% 0.0001 1 (Large) 0.0007 0.055 (Large)
utils.js 23.91% 41.30% 42.39% 0.00008 1 (Large) 0.6934 0.45 (Negligible)
view.js 37.50% 37.50% 37.50% 0.1675 0.6 (Small) 0.5828 0.55 (Negligible)

JS Algorithms Graph breadthFirstSearch.js 18.75% 18.75% 18.75% 1 0.5 (Negligible) 1 0.5 (Negligible)
depthFirstSearch.js 0.00% 0.00% 0.00% 0.6809 0.55 (Negligible) 1 0.5 (Negligible)
kruskal.js 20.00% 20.00% 20.00% NA 0.5 (Negligible) NA 0.5 (Negligible)
prim.js 16.67% 16.67% 16.67% NA 0.5 (Negligible) NA 0.5 (Negligible)

JS Algorithms Knapsack Knapsack.js 57.50% 57.50% 57.50% 0.0344 0.7 (Medium) NA 0.5 (Negligible)
KnapsackItem.js 50.00% 50.00% 50.00% NA 0.5 (Negligible) NA 0.5 (Negligible)

JS Algorithms Matrix Matrix.js 6.58% 7.89% 7.89% 0.0146 0.75 (Large) NA 0.5 (Negligible)

JS Algorithms Sort CountingSort.js 57.14% 57.14% 57.14% 0.3681 0.45 (Negligible) 1 0.5 (Negligible)

JS Algorithms Tree RedBlackTree.js 14.71% 29.41% 29.41% 0.00005 1 (Large) NA 0.5 (Negligible)

Lodash equalArrays.js 70.83% 83.33% 83.33% 0.00005 1 (Large) 0.3681 0.55 (Negligible)
hasPath.js 100.00% 100.00% 100.00% NA 0.5 (Negligible) NA 0.5 (Negligible)
random.js 85.71% 100.00% 100.00% 0.0001 0.955 (Large) 0.1681 0.4 (Small)
result.js 80.00% 80.00% 80.00% NA 0.5 (Negligible) 0.1675 0.4 (Small)
slice.js 85.00% 100.00% 100.00% 0.00004 1 (Large) NA 0.5 (Negligible)
split.js 87.50% 87.50% 87.50% NA 0.5 (Negligible) NA 0.5 (Negligible)
toNumber.js 55.00% 65.00% 65.00% 0.00002 1 (Large) NA 0.5 (Negligible)
transform.js 75.00% 91.67% 91.67% 0.0552 0.745 (Large) 1 0.505 (Negligible)
truncate.js 44.12% 55.88% 55.88% 0.00002 1 (Large) 0.5828 0.45 (Negligible)
unzip.js 100.00% 100.00% 100.00% 0.1681 0.6 (Small) 0.3681 0.55 (Negligible)

Table 2: Processed statistical results based on branch coverage.

Comparisons # Win # No Diff. # Lose
Negl. Small Medium Large Negl. Negl. Small Medium Large

RVEA vs DynaMOSARVEA - - - - 12 - - 1 14
DynaMOSA vs DynaMOSARVEA - - - 1 26 - - - -

since RVEA introduced reference vectors and hyper-parameters,
it could be interesting to examine their impact on performance.
E.g. investigating if a different reference vector generation strategy
can lead to better performance. It could also be interesting to see
if computing crowding distance or using tournament selection
would improve DynaMOSARVEA’s performance. Or if the non-
dominated front can be computed using the convergence criterion
of angle-penalised distance. Furthermore, more studies with a larger
benchmark involving other algorithms (e.g. SPEA-II [39], PESA-II
[10], PCSEA [35] and PSO [33]) could be conducted to examine to
what extent the performance of DynaMOSA stems from NSGAII or
the domain-specific improvements introduced by Panichella et al.

8 RESPONSIBLE RESEARCH
8.1 Ethics
Ethical concerns in our project could relate to the research stage
and post-research state. The benchmark used to conduct our em-
pirical study was created in [36]. In the Section 4.2, we explained
how we used the benchmark, what we changed and why. Despite
that, there could be ethical concerns in the post-research stage. The
created algorithms aim to generate test cases for the developers
to use, and because those algorithms are public, anyone could use
them. Creating tests is not inherently wrong. However, the user has
to be responsible for how they use the tool. Our algorithm does not
make any promises regarding the quality of the tests, so the users of
our algorithms must understand that we do not take responsibility
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for the generated test cases. This line of thinking would be closest
to the separatism notion and tripartite model explained by Poel
and Royakkers in [34]. It claims that engineers can only be held ac-
countable for the product design, not the consequences of its usage.
When implementing the algorithms, we did not purposefully intro-
duce any bias. Furthermore, we made our work publicly available
for anyone to examine it and improve if there are problems.

8.2 Reproducibility
In academia, reproducibility is an important concept because it
allows researchers to verify the claims of others. In our project,
we relied on data from others, created our own and processed it.
To ensure that our research is reproducible, we have a replication
package24 which contains the data generated during the project
and the scripts for its extraction. Therefore, if someone would
like to double-check our computations, for example, the statistical
analysis, they will have access to the same data. Replicating the
data itself is slightly trickier because of the randomness of the
experiment and the algorithm. In our research, we tried to mitigate
the stochastic nature of the empirical study by conducting several
runs of our algorithms on the benchmark and reporting the average.
The recorded data includes the settings of various parameters and
the random seed. Therefore, others could try to produce the same
results.
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A APPENDIX A
This is the MOSA algorithm taken from [29]. It is included for
completeness, the MOSA changes are in blue. The PREFERENCE-
SORTING algorithm is 1

24Replication Package - https://github.com/SergeyDatskiv/TUDelft-Bachelor-
ResearchProject-CSE3000-ReplicationPackage

Algorithm 2:MOSARVEA
Input:
𝑈 = {𝑢1, . . . , 𝑢𝑚} the set of coverage targets of a program.
Population size M
𝐺 = ⟨𝑁, 𝐸, 𝑠⟩: control dependency graph of the program
𝜙 : 𝐸 → 𝑈 : partial map between edges and targets
Result: A test suite T

1 begin
2 U*← targets in U with no control dependencies
3 𝑡 ← 0 /* current generation */

4 𝑃𝑡 ← RANDOM-POPULATION(M)
5 archive← UPDATE-ARCHIVE(𝑃𝑡 , ∅)
6 U*← UPDATE-TARGETS(U*, G, 𝜙)
7 while not (search_budget_consumed) do
8 𝑄𝑡 ← RANDOM-POPULATION(M)
9 archive← UPDATE-ARCHIVE(𝑄𝑡 , archive)

10 U*← UPDATE-TARGETS(U*, G, 𝜙)
11 𝑅𝑡 ← 𝑃𝑡

⋃
𝑄𝑡

12 F← PREFERENCE-SORTING(𝑅𝑡 , U*)
13 𝑃𝑡+1 ← ∅
14 𝑑 ← 1
15 while |𝑃𝑡+1 | + |F𝑑 | ≤ 𝑀 do
16 CROWDING-DISTANCE-ASSIGNMENT(F𝑑 , U*)
17 𝑃𝑡+1 ← 𝑃𝑡+1

⋃
F𝑑

18 𝑑 ← 𝑑 + 1
19 Sort(F𝑑 ) /* according to the crowding

distance */

20 𝑃𝑡+1 ← 𝑃𝑡+1
⋃
F𝑑 [1 : (𝑀 − |𝑃𝑡+1 |)]

21 𝑡 ← 𝑡 + 1
22 T← archive
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