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A B S T R A C T   

Coastal management in the Netherlands has the aim to defend coastal zones by preventing flooding and miti
gating erosion. To that end, large-scale nourishments are placed in the nearshore, which are supposed to 
dynamically preserve the coastal zone over a timescale of years. To assess their effectiveness, these nourishments 
are monitored over large areas and long durations. As repetitive, in-situ measurements become too expensive, 
remote sensing offers an attractive alternative, mapping depth and near-surface current fields via depth inversion 
algorithms (DIA). However, the information that can be derived from remotely-sensed data is subject to 
improvement. In this study a 3D-FFT based DIA named XMFit (X-Band Matlab Fitting) is introduced, which is 
robust, accurate and fast enough for operational use. Focusing on depth estimates, the algorithm was validated 
for two case studies in the Netherlands: (1) the “Sand Engine”, a beach mega nourishment at a uniform open 
coast, and (2) the tidal inlet of the Dutch Wadden Sea island Ameland, characterizing a more complex coast. 
Considering both sites, the algorithm performance was characterized by a spatially averaged depth bias of � 0.9 
m at the Sand Engine and a time-varying bias of approximately -2 – 0 m at the Ameland Inlet. When compared to 
in-situ depth surveys the accuracy was lower, but the time resolution higher. Depth estimates from the Ameland 
tidal inlet were produced every 50 min by an operational system using a navigational X-Band radar to monitor 
the placement of a 5 million m3 ebb-tidal delta nourishment – a pilot measure for coastal management. Volu
metric changes in the nourishment area over the year 2018, occurring at 7 km distance from the radar, were 
estimated with an error of 7%. Depth errors statistically correlated with the direction and magnitude of 
simultaneous near-surface current estimates. Additional experiments on Sand Engine data demonstrated that 
depth errors may be significantly reduced using an alternative spectral approach and/or by using a Kalman filter.   

1. Introduction 

With the extensive urbanization of the coastal hinterland, the role of 
coastal management in the Netherlands has become increasingly 
important to ensure flood safety and the protection of recreational and 
ecological values of the coast. Modern coastal maintenance strives to
wards a “building with nature” approach (de Vriend and van Konings
veld, 2012), using soft engineering strategies to mitigate long-term 
coastal recession. Along uniform coastlines, large 1–2 million m3 

shoreface nourishments have proved to be an effective strategy (Hamm 
et al., 2002), and a basic understanding has been established about their 
behaviour (Huisman et al., 2019; Lodder and Sørensen, 2015). In pursuit 

of finding the optimal long-term solution, larger nourishment designs 
have been explored of which the Sand Engine, a beach 
mega-nourishment comprising 21 million m3 of sand is a famous 
example (Stive et al., 2013). In the meantime even bigger nourishments 
have been placed with volumes up to 36 million m3 (Kroon et al., 2016). 
The most recent experiment involved the construction of a 5 million m3 

nourishment in the outer delta of a complex tidal inlet system at the 
Wadden Sea island Ameland. 

To evaluate the success of these innovative coastal management in
terventions it is necessary to map them and to monitor their evolution. 
Due to the large nourishment volumes and long lifetime, monitoring 
with in-situ techniques is expensive and it may be favorable to use 
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remote sensing techniques instead. Such techniques can capture 
morphological variability at a large spatial scale in high temporal res
olution over long periods of time (Bergsma et al., 2019). To be used in an 
operational setting, remote sensing techniques need to be robust. We 
define robust as being able to handle variations in environmental con
ditions and data quality without the need for manual adjustments and 
costly person hours. Here, we propose to derive bathymetries with a 
technique that meets these desired requirements and uses already 
available X-Band radar data from a lighthouse. 

Marine radars operating in the X-Band range are routinely deployed 
aboard ships and on marine traffic control towers to detect vessels and 
other floating objects. In coastal areas, such radars may also be used to 
monitor waves, currents and water depths. Their benefits over in-situ 
depth surveys are a high spatial and temporal coverage and lower 
operating and maintenance costs. However, the spatial resolution of X- 
Band radars can be coarse and, as sampling frequencies are often low, 
they have a lacking ability to recognize shorter period waves. Moreover, 
an inherent uncertainty exists in relating radar image intensities to the 
observed ocean surface properties, bringing challenges to the analysis of 
X-Band radar data. Moreover, X-Band radars are expensive instruments, 
which is why it may be attractive to exploit existing navigational radars 
in areas of interest. 

Although considered “noise” for navigational purposes, the wave 
field leaves a signature on an X-Band radar known as sea clutter. This 
imprint is produced by radar signal reflection off capillary waves, which 
are modulated by the underlying surface gravity wave field (Borge et al., 
2004; Valenzuela, 1978), the so-called Bragg-scattering (Plant, 1990). 
Observing the propagation of a wavefield through time offers a possi
bility to infer information about the waves themselves, but also about 
currents and depths these waves feel. 

In particular for the purpose of depth estimation, several depth 
inversion algorithms (DIAs) have been developed. Most DIAs use 
wavefield recordings from either radars or beach cameras, but these 
methods may be used interchangeably between instruments (Honegger 
et al., 2019). While some DIAs use a sequence of images (i.e. a video of 
typically 6–12 min) to link wavenumbers to wave frequencies and es
timate depths via the linear dispersion relationship (Bell, 1999; Dugan 
et al., 2001; Hessner et al., 1999; Holman et al., 2013), other DIAs use 
the average of a sequence of images (i.e. a time exposure) to estimate 
depths through spatial patterns of breaking intensity (Aarninkhof et al., 
2005; van Dongeren et al., 2008). If the area of interest is large, X-Band 
radars have an advantage above cameras because of their larger field of 
view. Other advantages are their operability at night and a smaller 
sensitvity to rain or sun glare. A large field of view means that depths are 
estimated far beyond the breaker zone, therefore a dispersion-based DIA 
is preferred with a sequence of images as input. 

The commonly used dispersion-based DIAs to analyse image se
quences from XBand-radar, employ three dimensional Fast Fourier 
Transforms (3D-FFTs) to acquire the necessary wavenumber – frequency 
relationships. Spatial variations are captured by discretising an image 
sequence into smaller domains known as computational cubes (x,y,t) 
(Trizna, 2001). These computational cubes are processed separately. A 
3D-FFT then converts each computational cube from the space-time 
domain (x,y,t) into wave components in the wave number – frequency 
domain (kx,ky,ω). This information is used to constrain the 
Doppler-shifted linear dispersion shell 

ω¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gjkjtanhðjkjdÞ

p
þU⋅k (1)  

to estimate the water depth, d (m), and the two horizontal current vector 
components [u, v] of U (m/s). The gravitational acceleration is given by 
g, the wave number vector by k (rad/m) with components [kx, ky], and ω 
(rad/s) is the corresponding frequency. The idea to use 3D-FFTs origi
nally came from the estimation of U under known d (Young et al., 1985), 
however, it could naturally be extended to estimate d as well by keeping 
d as a free parameter (e.g. Bell, 2008; Hessner et al., 2014; Ludeno et al., 

2015; Rutten et al., 2017). The derivation of the Doppler-shift in the 
form þU∙∙k in equation (1), assumes a depth uniform current equal to U. 
In practice, the current profile is not uniform over depth and the vector 
U represents a weighted average of velocities in the upper layer of the 
water column (e.g., assuming a linearly sheared current profile, waves 
with periods of T ¼ 5–8 s travelling in water depths of d ¼ 5–15 m feel 
velocities that occur at 20–45% of the water depth; see eq. (5) in 
Campana et al., 2016). Therefore, U is commonly also referred to as 
near-surface current (Young et al., 1985; Senet et al., 2001). 

Several authors have applied the dispersion relation without 
Doppler-shift (þU∙∙k in equation (1)), neglecting the presence of near- 
surface currents, to remotely sense d from X-Band radar data (Bell, 
1999; Hessner et al., 1999). Although conceptually proven, these early 
developments were applied to limited datasets and lacked quantitative 
validation. Later, based on two single daily-averaged estimates from 
Egmond aan Zee (NL) and Teignmouth Pier (UK), Bell (2001) demon
strated that error margins could be within 1 m accuracy for depths up to 
12 m, with exception of the breaker zone where errors were approxi
mately 2 m. For the site of Duck (North Carolina, US) with depths up to 
6 m, Trizna (2001) reported depth errors of 0–4 m depending on the 
wave-height and suggested that the inclusion of non-linear wave theory 
improves estimates. This was then disproven by Flampouris et al. (2011) 
who, for a site near the Wadden Sea island Sylt (GE), reported 
root-mean-square-errors (RMSE) of at least 1.6 m regardless of the 
(non-)linear wave theory used. 

For airborne optical video, Dugan et al. (2001) were one of the first 
to include the Doppler-shift in equation (1), for the joint estimation of 
d and U using 3D-FFTs. The extension was subsequently also used in the 
analysis of X-Band radar data from the Dee Estuary (UK) (Bell, 2008). 
Although near-surface currents could not be validated, it was noted that 
their inclusion had improved depth estimates, which is consistent with a 
recent study showing that currents can influence depth estimates 
significantly (Honegger et al., 2020). Based on three high tide estimates, 
Bell (2008) found depth errors to be mostly within a 1 m range in the 
spatial domain, however, estimates in the deep channel (>20 m) were 
larger as waves only weakly felt the bottom. More recently, 3D-FFT 
based DIAs have been applied to complex nearshore situations, for 
example by Hessner et al. (2014), who built on work done by Seemann 
et al. (1997) and Senet et al. (2001) by solving for d in addition to U for 
an analysis of two days of radar data from a coastal site in New Zealand 
with strong tidal currents. Their near-surface current estimates reason
ably agreed with model data, yet simultaneous depth estimates lacked 
validation. Similarly, Hessner et al. (2015) investigated a site at the 
southeast coast of the UK. Here, accumulated depth estimates were 
compared to ground truth measurements and agreed qualitatively but 
error metrics were not quantified. Ludeno et al. (2015) used an algo
rithm proposed by Serafino et al. (2010) to jointly estimate d and U from 
45 min of radar data from a ferry near the harbour of Salerno (IT) and 
used a spatial partitioning technique to accelerate computations. The 
local depth was between 10 and 20 m, which Ludeno et al. (2015) 
estimated to have a bias of approximately 1 m. Rutten et al. (2017) were 
one of the first to explore the possibility of estimating volume budgets 
from estimates of d in the nearshore region over a long time period of 
one year, taking a first step from research to a potential use of radar 
based DIAs in coastal management. A large depth bias of 2.3 m for 
depths smaller than 6 m, however, caused volume estimates to be 3.9 
million m3 short of what was expected. While near-surface current es
timates were not presented, they noted that poor d estimates concurred 
with poor U estimates. 

So far, 3D-FFT based depth inversion from XBand-radar data has 
focussed on the development and (often conceptual) testing of DIAs 
(Bell, 2008; Hessner et al., 2014; Ludeno et al., 2015). The accuracy of 
depth estimates is generally in a 1–2 m range and depends on the 
location, radar, and the algorithm used. Moreover, presented error sta
tistics are mostly based on short, experimental data sets. The accuracy is 
generally lower in deeper areas where waves are hardly affected by the 
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depth (Bell, 2008) and in very shallow water where waves become 
non-linear (e.g., Trizna, 2001; Holland, 2001). Even though the vali
dation of near-surface currents themselves is often lacking, it has been 
reported that including their effect on waves is important: while it im
proves depth estimates (Bell, 2008), a poor current estimate can also be 
an indicator for a poor, joint depth estimate (Rutten et al., 2017). The 
effect of higher significant wave heights, Hs, has been shown to increase 
depth errors in shallower waters (Trizna, 2001), while a minimum Hs >

1 m is needed for sufficient sea-clutter (Bell, 2008). 
3D-FFT based DIAs have mostly been applied in an experimental 

setting and the question arises whether they are ready to be used for 
practical coastal management purposes, such as the quantification of 
volumetric changes caused by nourishments. To that end, they need to 
run operationally on long-term radar data and hence be able to handle 
variations in environmental conditions and data quality. In this paper, 
we present a 3D-FFT-based DIA named XMFit (X-Band Matlab Fitting), 
which manages such variations by selecting the best values from a set of 
[d, U]-solutions, for every location in the radar domain at any point in 
time. The generation of a set of solutions is done by a set of different 
energy thresholds to separate spectral wave data from the noise floor. 
This is different from other currently used DIAs, which may (i) optimize 
a [d, U]-solution by iterating on a first, high energy threshold guess with 
a lower energy threshold guess including aliases and higher order effects 
(Hessner et al., 2014; Senet et al., 2001) or (ii) by maximizing a 
normalized scalar product between the image amplitude spectrum and a 
characteristic function, which omits the use of thresholds (Ludeno et al., 
2015; Serafino et al., 2010). Similar to those algorithms, the present 
method also includes the Doppler-shift (equation (1)) to allow for the 
effect of near-surface currents on the depth estimates. XMFit uses 
different spectral filters, an anti-aliasing step and a least-squares fitting 
procedure. 

We validate the DIA using two different sites in the Netherlands: The 
Sand Engine, and the ebb-tidal delta of the Ameland Inlet to the Wadden 
Sea. Detailed ground truth data from 2014 to 2018 are respectively used 
for validation. With 7.5 km, the XBand-radar range at the Ameland Inlet 
is double the range previously reported for depth inversion studies and 
enables us to capture the extensive size of the Inlet. By that, we track a 5 
million m3 ebb-tidal delta nourishment at 7 km distance from the radar, 
creating a one-year time evolution of its volume. 

Section 2 introduces the XMFit algorithm and its features. In section 
3, the field sites and data collection are described. Results on validation 
and monitoring the placement of the nourishment are presented in 
section 4. In the Discussion section 5, we elaborate on errors and 
methods to mitigate them and then conclude our findings in section 6. 
Radar specifics and details on computational settings are documented in 
the Appendices. 

2. Depth-inversion method 

The depth-inversion algorithm XMFit is based on an original idea by 
Young et al. (1985), where radar image sequences of a wave field are 
first split into smaller cubes, then processed via 3D-FFT to retrieve 
spectral wave characteristics, after which the Doppler-shifted dispersion 
relation can be used to obtain estimates of depth and near-surface cur
rents (equation (1)). In order to process an image sequence, the algo
rithm requires information about the radar, user settings and optionally 
a bathymetry and a water level (Fig. 1, top row). The radar information 
includes the coordinates of the radar, its radius and the framerate of the 
image sequence and pixel size. User settings include a grid definition, 
which consists of the location and size of the computational cubes, and 
limiters that are used to constrain the analysis. 

Before an image sequence is analysed, a high-pass threshold on the 
significant wave heights of Hs ¼ 0.9 m is made, similar to (Bell, 2008) as 
a proxy for sufficient sea-clutter (Fig. 1, red diamond). Note that the 
wave height information has to be provided as an external input to the 
DIA. 

The processing of an image sequence commences by dividing it into a 
number of computational cubes (c ¼ 1 … N) according to the user 
defined grid. Cubes are processed consecutively, each providing an es
timate for a depth, dc, and near-surface current vector, Uc, at its location. 
The inversion of [dc, Uc] consists of seven steps (Fig. 1, labels ①..⑦). 
Since the procedure is identical for all cubes, we drop the subscript c 
from here onwards and use [d, U] for notational simplicity. The first step 
is to taper the computational cube with a 3D-Hanning window and to 
generate a kx,ky,ω-energy spectrum via 3D-FFT. If the time-sequence is 
long enough, the spectrum may also be smoothed through spectral 
averaging in time, by dividing the cube into smaller time-bins. Using 
min-max normalization, the spectral energy is then converted to the 
range [0,1] to prepare it for a fitting procedure later in the process 
(Fig. 1, ①). At this stage, the spectrum carries redundant information in 
non-relevant spectral components, such as noise and aliases, which can 
be discarded to save computer memory. A wide-dispersion filter 
removes spectral energy beyond realistic depths (Fig. 1, ②), by means of 
limiting dispersion shells corresponding to a minimum depth dmin, and a 
maximum depth dmax. These limiting dispersion shells do not include a 
Doppler-shift, as experience shows that it does not provide additional 
result accuracy but does increase computation time. A frequency filter 
removes spectral energy beyond realistic wave periods (Fig. 1, ③), by 
means of a minimum wave period Tmin and a maximum wave period 
Tmax. The limits for realistic water depths and wave periods are supplied 
by the user and are typically set around [dmin, dmax] ¼ [0.5, 25] (m) and 
[Tmin, Tmax] ¼ [4, 15] (s) respectively; indicating the ranges where we 
expect waves to be mostly in intermediate or shallow water to get reli
able depth estimates. Note that for depths larger than approximately 15 
m, shorter period waves (T < 6 s) are mainly useful in determining near- 
surface currents. 

If the frame rate of the image sequence is low due to a slow turning 
radar antenna, as is the case in this study with 1/2.85 s� 1, the filtered 
spectrum may show aliasing since the Nyquist frequency is close to the 
governing wave periods. An anti-aliasing step removes these unwanted 
by-products (Fig. 2; Fig. 1, ④), and permits the use of data up to two 
times the Nyquist frequency (Seemann et al., 1997). 

To separate the aliases from correct wave data a singular value 
decomposition (svd) (equation (2)) is performed on the energetic parts 
of the spectrum. Energetic parts are defined by all spectral data with 
energies above a user defined threshold Eth,low, which is the lower bound 
of the set 0 <{Eth,low … Eth,high} < 1 used in the fitting procedure that 
follows this anti-aliasing step. 

A ¼ U Σ VT ;

where

A ¼
h
k↑

xk↑
y ω↑
i
¼

2

6
6
6
6
6
6
6
4

k↑
x;1 k↑

y;1 ω↑
1

k↑
x;2 k↑

y;2 ω↑
2

⋮ ⋮ ⋮

k↑
x;P k↑

y;P ω↑
P

3

7
7
7
7
7
7
7
5

(2) 

The matrix A lists the p ¼ 1 … P energetic points in the spectrum by 
their spectral coordinates k↑

x,p, k↑
y,p, ω↑

p in the columns [k↑
x, k↑

y, ω↑], 
where the upward arrow signifies energy higher than Eth,low. The amount 
of points, P, depends on the value of Eth,low and the spectral wave signal. 
The svd factorizes the matrix A into two unitary matrices U, V and a 
diagonal matrix Σ. The superscript T denotes the transpose. In practice, 
V represents a rotation of the kx,ky,ω-coordinate system: V ¼ [kx,rot, ky, 

rot, ωrot], which best follows the spectral data A. Due to the position of 
the aliases in the spectrum, the ω-axis rotates (ωrot) towards the correct 
spectral data and away from the aliases, which allows for a clear sepa
ration: Correct data have higher values on ωrot (found via Aωrot) 
compared to the original ω-axis and for aliases this is the opposite, which 
means that they are identified and can be removed. 

After pre-processing the spectrum several spectral fits are done. 
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Fig. 1. XMFit workflow for depth and near-surface current inversion from an image sequence. Consecutive processing steps in the flowchart are visualized along 
their left. The flowchart includes: data (brown), user input (green), decision (red), process loop start (blue; trimmed top corners) and process loop end (blue; trimmed 
bottom corners), and process (white). Arrows and their annotations signify flow of information. The algorithm requires input on radar specifics, user settings and 
optionally a bathymetry and water level (grey squares top row). The output contains maps of depth estimates and near-surface current fields (grey square bottom 
row). Symbols represent: [kx, ky] ¼ wavenumber components, ω ¼ wave frequency, [dmin, dmax] ¼ depth limits, [Tmin, Tmax] ¼ wave period limits, |Umax| ¼ velocity 
magnitude limit, [Eth,low,..Eth,i,..Eth,high] ¼ array of spectral energy thresholds, [d,i, U,i] ¼ depth and near-surface current estimates corresponding to Eth,i, and [d, U] ¼
optimal depth and near-surface current pair. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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Using a Levenberg-Marquardt minimisation, the Doppler-shifted linear 
dispersion relationship (equation (1)) is fitted to all spectral data above a 
certain energy threshold Eth to yield an estimate for [d, U]. Since the 
spectrum has been normalized this threshold lies between 0 < Eth < 1. 
However, the optimal value of Eth is not known beforehand. The solution 
is to iterate an optimal value by making several fits for an array of energy 
thresholds {Eth,low, …, Eth,high}, which produces a set of depth and near- 
surface current pairs {[dlow, Ulow], …, [dhigh, Uhigh]} (Fig. 1, ⑤). By 
default, {Eth,low, …, Eth,high} covers the range {0.4, …,0.6} in 10 in
crements, which is a generic setting, but can be adjusted by the user. By 
using a set of Eth, instead of single threshold, we omit the need to tailor 
the algorithm to each image sequence separately, which makes the al
gorithm robust to use on long time-series of data. 

The goal is now to find the optimal pair of [di, Ui] among the list of 
candidates {[dlow, Ulow], …, [dhigh, Uhigh]}. Pairs are retained using three 
criteria: (1) di falls within the pre-set depth range [dmin, dmax], (2) |Ui| is 
smaller than a user-defined maximum velocity magnitude |Umax|, and 
(3) the coefficient of determination r2 > 0.6, (Fig. 1, ⑥). Note that the 
depth constraint [dmin, dmax] has been used in an earlier step to reduce 
the spectrum with a wide dispersion filter (Fig. 1, ②). However, a poor 
candidate fit on those data may still suggest a solution beyond those 
limits, therefore criterion (1) is needed here. To improve estimates of an 
operational system, knowledge about previous depth estimates can be 
used to (A) tighten criterion (1) or (B) in a Kalman filter. In case of 
option (A), an average is taken over a certain number of M previous 
depth estimates, davg,M, and a margin Δd is chosen to tighten criterion (1) 
by redefining dmin, ¼ davg,M – ½Δd and dmax ¼ davg,M þ ½Δd. Option (B) is 
a postprocessing step and does not affect the depth inversion procedure. 
In this study we used option (A) for the site of Ameland (section 4) and 
experimented with option (B) for the Sand Engine (section 5). 

The r2 of criterion (3) is used as the optimization criterion as it in
dicates how well the non-linear fit represents the spectral data. This 

value is unity for a perfect match. Hence, the optimal [d, U] amongst the 
remaining candidates is finally found by the fit with maximum r2 (Fig. 1, 
⑦), and can be stored as the representative estimate for the computa
tional cube. After a computational cube has been processed, the 
sequence of steps repeats for the next computational cube in the grid 
(Fig. 1: steps ①..⑦), eventually producing full maps of depths and near- 
surface currents (Fig. 1, output). 

3. Radar in-situ data collection 

3.1. Sand Engine 

The first field site is the Sand Engine, a sandy mega-nourishment of 
approximately 21 Mm3 constructed on the southwestern Dutch coast in 
2011 (Fig. 3,left). It was designed to combat erosion by diffusing along 
the coastline over an extended period of 10–20 years, while minimizing 
ecological stress and creating space for recreation (Stive et al., 2013). To 
gain insight into the development and impact of the unprecedented scale 
of the nourishment an extensive monitoring campaign was launched in 
2012 (de Schipper et al., 2016). A radar station was installed 3 km north 
of the nourishment area, covering approximately 40 km2. The available 
radar data covered a short timeframe of 18 h during 20–21 October 2014 
and were used to create a snapshot of the nourishment for that moment. 
Specific details on the radar properties are summarized in Table A1. 

The significant wave height (Hs) ranged from 1.0 m to 1.7 m and the 
peak period (Tp) from 6.0 s to 7.0 s, which are average wave conditions 
for the site (de Schipper et al., 2016). In total, 184 image sequences were 
available, each consisting of 128 images in intervals of 2.85 s, trans
lating to 6 min of wave motion at a resolution of 3.75 m. Ground truth 
data were based on a detailed bathymetrical survey from September 6, 
2014 which was merged with Jarkus transect data from 2014 to get 
greater coverage offshore. A local tide gauge was used to compensate for 
water level fluctuations in the depth estimates. For consistency, we only 
use the term depth throughout this paper, but note that it excludes the 
influence of water level modulation and is referenced to NAP (Dutch 
ordnance datum, about Mean Sea Level) for both sites. 

3.2. Ameland tidal inlet 

The second field site is the Ameland Inlet, one of the tidal inlets of the 
Dutch Wadden Sea (Fig. 3,right). The inlet is characterized by a wave- 
dominated ebb-tidal delta and deep tide-dominated inlet channels 
formed by strong tidal currents with maximum velocities around 1.5 m/ 
s. The semi-diurnal tide has a mean range of approximately 2 m. Over 
the study period Dec 2017–Dec 2018, Hs ranged from 0.1 m to 6.2 m and 
Tp from 1.8 s to 17.0 s. Wave conditions were on average Hs ¼ 1.3 m and 
Tp ¼ 5.6 s and exceeded Hs > 3.0 m and Tp > 9.0 s during 5% of the time. 

The inlet is being extensively monitored within the framework of the 
Coastal Genesis 2.0 (Dutch: Kustgenese 2.0) research program, which 
was commissioned by the Dutch Ministry of Infrastructure and Envi
ronment in 2017 (Van Prooijen et al., 2019). As part of the monitoring 
program, XMFit software runs operationally on X-Band radar data 
collected at the Ameland lighthouse. The navigational radar monitors 
the tidal inlet and has a spatial coverage of approximately 180 km2 

(Fig. 3,right). Specific details on the radar properties can be found in 
Table A1. The goal of employing the radar is to track the evolution of a 
pilot nourishment of 5 million m3 at the outer rim of an ebb-shield. 
Commencing March 20, 2018, the gradual placement of the nourish
ment ended in February 2019. 

Radar image sequences at Ameland consist of 256 images spaced at 
2.85 s. Image sequences cover a time window of 12 min and are pro
duced at 20 min intervals, leaving 8 min of downtime in between. The 
pixel size is 7.5 m. Note that the range resolution is 7.5 m, but that the 
beam widens with distance from the radar. Depending on the alignment 
of the radar beam and wave crests, we estimate the resolution to be 
between 7.5 m and 57 m at 7 km distance from the radar (see also 

Fig. 2. Anti-aliasing on a spectral cube with dimensions kx, ky, ω. Energetic 
spectral data with energies above a threshold Eth,low are given by a set of p ¼ 1 … 
P points with coordinates k↑

x,p, k↑
y,p, ω↑

p. This set contains correct data points 
(red dots) and aliases (blue dots), below and above the Nyquist frequency (grey 
plane). Aliases are detected and removed via a singular value decomposition. 
The ω-axis rotates (ωrot) towards the correct spectral data by which aliases can 
be separated and a non-linear fit can be done on the correct spectral data (red 
dispersion shell) according to equation (1). The blue shell indicates the orien
tation of aliases in the spectrum. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 

M. Gawehn et al.                                                                                                                                                                                                                               



Coastal Engineering 159 (2020) 103716

6

Table A1). Due to presently limited storage space (in this case 16 TB), 
raw image sequences (each 3 GB) are overwritten after 2 months and 
hence not available for reanalysis. The image sequences are processed 
locally in the light house such that the much smaller sized result files 
(each 0.1–0.5 MB) can be transferred via a 4G internet connection. Note 
that the storage buffer allows for the analysis of up to 72 image se
quences a day; the increasing lag can be caught up during times when Hs 
< 0.9 m. 

Poor depth estimates were supressed by tightening criterion (1) 
(section 2) using an averaging window of M ¼ 5 and a depth margin of 
Δd ¼ 4 m. Initial bathymetry data was needed to start the process. Tidal 
depth modulation was accounted for by passing information from a local 
wave buoy at Terschelling (Fig. 1: grey square, top right). As initial 
bathymetry data a combination of surveys from February and September 
2017 was used. Their initial influence on the estimates quickly phased 
out due to the choice of a rather large depth margin Δd. To additionally 
ensure that presented depth estimates were independent from the initial 
bathymetry the first 1 000 estimates were ignored in this study. The 
choices for the averaging window and the allowable depth margin were 
made arbitrarily and other values may be chosen, yet the current com
bination of values underlies the results presented in this study. 

Between Dec 2017–Dec 2018, the operational system returned 
approximately 7 500 estimates of morphology. Within this period the 
Ameland Inlet was surveyed twice using a single beam mounted on a 
vessel. The first survey was done in the beginning stage of nourishment 
works 31 May – June 5, 2018 (Survey #1) and the second survey about 

half way, from 12–October 14, 2018 (Survey #2). The surveys were 
done during calm periods that fell below the threshold of Hs ¼ 0.9 m 
used by the operational system to produce depth estimates. For valida
tion, therefore the average was taken over daily median estimates with 
similar spatial coverage shortly before and after each survey. Specif
ically for the nourishment location, additional multibeam surveys were 
available, which were used in this study to compute volumetric changes 
over the placement period of the nourishment. 

The computational grids and user settings underlying the analyses of 
both the Sand Engine and the Ameland Inlet can be found in Appendix B. 

4. Results 

4.1. Sand Engine 

The application of XMFit to radar images from the Sand Engine 
produced spatially smooth depth estimates (Fig. 4a). Comparison of the 
median depth inversions with depth measurements revealed an overall 
bias of � 0.9 m, revealing a tendency for depth overestimation by the 
DIA. The average standard deviation around a depth estimate was 0.85 
m and likely stemmed from tidally induced changes in flow direction 
relative to the direction of wave incidence, see also Discussion section 
5.1. The spatial root mean square error (RMSE) was 1.32 m and was 
mostly caused by inaccuracies close to shore and at the northern 
boundary of the radar domain. Near the shoreline, especially around the 
5 m depth contour (Fig. 4b), waves start to break over the nearshore bars 

Fig. 3. Radar locations (centre crosses) and ranges (see top scales) at the two field sites of Sand Engine (left) and the Ameland inlet (right). A map of the Netherlands 
(middle) indicates the location of the two sites. 

Fig. 4. Radar-derived results for the Sand Engine. (a) 
Inverted depths dinv (m) (colorbar). (b) Comparison of 
dinv against in-situ measured depths d0 (m), where 
red/blue colors indicate under-/overestimation of 
depth respectively. In both panels, contour lines of 
measured depths are superimposed for reference. 
Results represent the median over 184 image se
quences spanning 18 h in total. Values are included 
for the percentage of grid cells returning a result (inv. 
cells), the overall bias (bias) and the root mean 
squared error (RMSE). (For interpretation of the ref
erences to color in this figure legend, the reader is 
referred to the Web version of this article.)   
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and the used linear wave theory is not representative, which causes 
errors to be locally larger. This is similar to a previous observation by 
Bell (2001) for Egmond aan Zee, a site about 60 km to the north of the 
Sand Engine. Close to the boundary of the radar domain, the radar image 
quality degrades. Furthermore, at the north-eastern end of the domain 
the radar beam aligns with wave crests, and depth estimates were poor 
or not returned. It is interesting to observe that estimates at large depths 
d ¼ 10–15 m were generally close to ground truth, although peak wave 
periods were relatively short Tp ¼ 6–7 s, meaning that an error in 
wavenumber leads to a large error in depth. There are two reasons why 
such errors are limited in the current approach: First, wavenumber er
rors are minimized through spectral averaging with 5 temporal bins (see 
Appendix B). Secondly, many spectral coordinates are used for the 
non-linear fit (Fig. 1, ⑤). For the Sand Engine at these large depths on 
average about 75 coordinates spread over several angles and 11 fre
quencies. An important property of 3D-FFTs in combination with 
anti-aliasing is that frequencies up to two times the Nyquist frequency 
can be used for the fit (Seemann et al., 1997; Senet et al., 2001). This 
supplies extra spectral coordinates for the fit (red points above Nyquist 
frequency in Fig. 2), which especially for Tp ¼ 5–6 s can offer some extra 
certainty on the depth estimate in this case. 

Note that it is possible to improve the results by making changes to 
the spectral treatment of the radar data or by using a Kalman filter in 
post-processing, which we address in the Discussion section 5. 

4.2. Ameland Inlet 

Depth results for the Ameland Inlet distinctly captured the charac
teristic morphological features of the outer delta (Fig. 5a,c). The 
horseshoe-shaped ebb-shield in the west, the central ebb channel, and 
the large swash platform fronting Ameland were detected by the algo
rithm. The estimated depths at instances of Survey #1 and Survey #2 
compared to ground truth with spatially averaged biases of respectively 
0.85 m and 0.63 m, and RMSEs of respectively 1.34 m and 1.14 m 
(Fig. 5b,d), which were largely determined by inaccuracies between the 
5–10 m contour lines. We hypothesize these imprecisions to be partly 
linked to complex local hydrodynamics, which are not accounted for by 
equation (1), in combination with some radar image related effects. For 
example, we expect some error due to tide driven shear flows in the 
channel between the ebb-shield and the swash platform and intense 

wave breaking and strong wave driven currents along the northern 
edges of these two features. In the region close to the island of Tersch
elling, in the western part of the domain (Fig. 5b), we ascribe some error 
to the unfavourable angle of the radar beam with respect to the 
incoming wave crests. Yet another source of error was present, as the 
ebb-shield and the western branch of the ebb channel appeared slightly 
shifted to the south compared to single beam data. This shift stood out in 
the comparison with ground truth data (Fig. 5b,d) through sharp 
negative biases around feature-edges facing north and corresponding 
positive biases around feature-edges facing south. Revisiting the raw 
radar images, revealed that this shift was partly rooted in a localized 
distortion of the raw radar image data, which was probably caused by a 
slight misalignment of the radars Northing, but the full origin is un
known and could therefore not be assessed in detail. In contrast, the 
system performed well for shallow parts such as the large swash plat
form near Ameland and deep parts to the north of the outer delta. Here, 
depth estimates were consistently accurate (Fig. 5b,d: white areas). 

The difference between the two time instances of Survey #1 and 
Survey #2 brought out the signature of the nourishment at the outer rim 
of the ebb-shield, in the single beam measurements (Fig. 6b) as well as 
radar-inverted results (Fig. 6a). These results were in line with the 
location of the nourishment site as provided by the dredging contractor. 
A succession of sedimentation-erosion patterns across north-eastern di
rection over the ebb-shield furthermore suggested a slight, clockwise 
turning of the ebb-shield over this four-month period. Although less 
pronounced than in the single beam measurements (Fig. 6b), these 
patterns were also found in the radar-derived results (Fig. 6a). 

Since the nourishment was clearly visible in the time snapshots, the 
analysis was refined towards a more detailed time evolution to see 
whether we were able to monitor volume changes in the nourishment 
area during placement. For this, we used all the results produced be
tween Dec 2017–Dec 2018. Before analysing nourishment volumes, the 
noise of the radar-derived depth estimates throughout the radar domain 
was assessed, as this noise could impact volume calculations. A times
eries of the spatially averaged depth bias was computed by the differ
ence between radar-derived estimates and single beam data from Survey 
#1 (Fig. 7). It was assumed that the influence of actual morphological 
change on the bias was negligible compared to the variability in radar 
depth estimations (cf. Figs. 6b and 5b). Although tidal water level 
changes were accounted for, the timeseries of depth biases fluctuated 

Fig. 5. XMFit results from the operational 
Ameland system as compared to a survey 
from 31- May to 5- June 2018 (Survey #1) 
and a survey from 12 to 14 October 2018 
(Survey #2). Panels (a,c): average depth es
timates over two days encompassing each 
survey, as indicated by (a) dinv,S1 for Survey 
#1 and (c) dinv,S2 for Survey #2. Single beam 
observations are outlined by white depth 
contours. Panels (b,d): difference of inverted 
depths dinv with the corresponding single 
beam measurements d0 (now accentuated by 
black contours instead of white contours) as 
indicated by (b) d0,S1 – dinv,S1 for Survey #1 
and (d) d0,S2 – dinv,S2 for Survey #2. Similar 
to the Sand Engine a mostly negative bias 
(depth overestimation; blue) is observed, 
being a little higher for Survey #1 (bias ¼
� 0.85 m) than Survey #2 (bias ¼ � 0.63 m). 
(For interpretation of the references to color 
in this figure legend, the reader is referred to 
the Web version of this article.)   
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roughly between � 2 m and 0 m. The average standard deviation around 
a daily depth estimate was 0.71 m. This noise was inherent to the 
operational system and was likely a product of a combination of factors, 
such as differences in radar image quality due to external factors (wind, 
rain, fog), but was also a consequence of applying idealized theory 
(equation (1)) to a complex and variable outer delta environment: we 
found weak linear dependencies of the depth bias on the water level and 
the wind speed. For low water levels, NAP -1.5 m, the depth bias was on 
average � 0.74 m and decreased linearly to � 1.06 m for high water 
levels of NAP þ1.5 m. Yet, with a standard deviation of 0.84 m the 
uncertainty in these depth bias values was high and showed that it 
would be difficult to predict the depth bias from a given water level. A 
similar linear relation was found between depth bias and wind magni
tude: for wind speeds of 3 m/s the depth bias was on average ~ � 0.5 m, 
while for wind speeds of 15 m/s this bias was ~ � 1.2 m. Yet again, the 
standard deviation was high at 0.81 m, showing that a prediction of the 
depth bias based on wind speed would be uncertain. Depth estimates 
also correlated with simultaneous near-surface current estimates, whose 
directions and magnitudes are indicators for local depth underestima
tion or overestimation, as we discuss in detail in section 5.1. Since the 
current fields constantly change in space and time, they likely contribute 
to the observed fluctuations in the overall depth bias. No correlations of 
the depth bias with wind direction, wave height or wave period were 
found. 

On the time scale of days, the observed noise would severely impact 
the calculation of nourishment volumes, therefore a straightforward 
solution was to ensemble average over a time window: we based volume 
calculations on median depth estimates in the nourishment area over a 

sliding time-window of one month. Besides denoising, volume estimates 
were then continuous in time, bridging over gap periods where the radar 
system had not been able to produce depth estimates for the nourish
ment area (Fig. 8, gaps between grey bars). A window size of one-month 
was chosen as most data gaps could be overcome, except for a large gap 
in February 2018, while noise was largely suppressed. Volume changes 
were calculated by multiplying the average depth changes by the 
nourishment area (see Fig. 6, green polygon). For the comparison, vol
umes were computed based on inverted depths as well as the depths 
from the multibeam surveys of the nourishment. 

To focus the comparison between radar-estimates and multibeam 
measurements on volume changes, we referenced both the radar esti
mates and the measurements to the second multibeam measurement. 
The reason for this is a bias of 2 million m3 between the radar estimates 
and the measurements in the nourishment area at the time of the second 
multibeam survey (Fig. 5). We assumed this bias to be constant in time, 
as fluctuations caused by environmental conditions and data quality 
should average out using a one-month averaging window over a long 
period of time. This meant that volume changes could be studied. 

Computed volume changes in the nourishment area were relatively 
stable until they started to increase at the beginning of March 2018 
(Fig. 8). Considering the start of nourishment works (20. March 2018), 
this increase appeared two weeks premature. This could be explained by 
the one-month time window to suppress noise, while having no pre- 
nourishment data in February to counter balance March data. A RMSE 
of 276.000 m3 was calculated based on the 7 instances where radar- 
derived volumes could be related to the multibeam surveys. It repre
sented an error of 7% on the total placement volume of 3.8 million m3. It 

Fig. 6. Difference between June (Survey #1) and 
October (Survey #2) as derived for radar and single 
beam measurements. (a) radar: inverted depths dinv,S1, 
of Survey #1 are subtracted from dinv,S2 of Survey #2. 
(b) single beam: accordingly, measurements d0,S1 of 
Survey #1 are subtracted from d0,S2 of Survey #2. 
The pilot nourishment fronting the ebb shield is 
clearly visible in both cases and its position is in line 
with expectation (green polygon). Note that the sur
veys do not cover the entire radar domain. For visual 
clarity, differences between radar results (a) are 
truncated to the same area as the surveys (b). (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   

Fig. 7. Mean spatial bias over the full radar domain of XMFit estimates with ground truth data surveyed between 31 May to June 5, 2018 (Survey #1, yellow). The 
start of nourishment works is indicated by a vertical green line. Representative bed elevations are obtained by subtracting local water level measurements from the 
XMFit depth estimates. Dots represent the daily median result and whiskers the corresponding 25th and 75th percentiles. Colors indicate the average depth over the 
parts of the radar image that contain results and show that the bias appears lower for moments when only small (small marker size), shallow (magenta, red) areas 
could be inverted. When coverage is high (large marker size) the bias also accounts for sensitive deeper parts (purple, blue). Note that the lack of data during 
February is due to a temporary system shutdown. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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is interesting to note that the location was at more than 7 km distance 
from the radar station, near maximum range. 

5. Discussion 

The depth inversion showed skill for both the Sand Engine as well as 
the complex Ameland Inlet. Yet, the depth was often overestimated in 
regions (i) that were close to the boundary of the radar domain (ii) 
where the radar beam aligned with wave crests (iii) where we expected 
complex hydrodynamics due to wave breaking, strong currents or shear 
flows. These errors are related to the backscatter, but also to the limi
tations of using a simplified physical model (i.e., equation (1), idealized 
wave-current interaction) for depth inversion. The quality of d estimates 
by their covariance with U estimates provides insight into the role of the 
Doppler-shift. This is done from a statistical point of view, based on the 
extensive dataset from the Ameland Inlet (section 5.1). The d estimates 
can also be improved. By changing the computation procedure (section 
5.2) and/or by post-processing the results (section 5.3), errors in (i) - (iii) 
are reduced. Experiments to reduce depth errors were conducted for the 
Sand Engine, since the image sequences could be recomputed at this site. 
Note that Ameland depth estimates were collected during a time where 
the DIA did not yet include a measure for error variance, which means 
that we could not test the Kalman filter on those data. 

5.1. The role of near-surface current estimates in depth inversion 

Near-surface currents are estimated per computational cube via the 
Doppler-shift (þk∙∙U, equation (1)), being the dot product of a wave
number vector with a near-surface current vector. Only current com
ponents in/against the wave direction alter the wave frequency and 
thereby affect the depth estimate d. To investigate the effect of U on d, 
near-surface current directions were translated to near-surface current 
angles (NSCA) with respect to wave direction, which was here taken to 
be the energy-weighted mean wave direction (MWD) over the spectrum. 

First a preliminary check was done whether patterns of U and MWD 
were realistic and thereby suited for further analysis (Fig. 9). This 
appeared to be the case: The MWD captured the effect of wave refrac
tion, being stronger during low tide conditions (Fig. 9c) than during high 
tide conditions (Fig. 9a). It also revealed more intricate patterns as for 
example waves which followed ebb-channels to meet at the bifurcation 
just below the horseshoe-shaped ebb-shield (Fig. 9c). Estimated U-vec
tors also appeared realistic, reflecting the characteristic tidal flows ex
pected for the area: The tidal wave travels along the barrier islands 

(Fig. 9b,d: vector fields in north-northeast of domain) pushing water 
into the inlets at upcoming tide (Fig. 9b: east-south-eastward flow 
through ebb-channels) and causing outward flow at falling tide (Fig. 9d: 
westward flow through western ebb-channel and northward flow 
through central ebb-channel). Details such as flow through the small 
flood channels near Terschelling at rising tide were also captured. 

For the Doppler-shift analysis, we retrieved the required NSCAs by 
expressing near-surface currents relative to the collocated MWDs. The 
accuracy of depth estimates was measured by the local depth bias d0,S1 – 
dinv, which was computed for each cube in the domain and for all 
available time instances. In this way a comprehensive dataset was 
constructed, comprising more than 20 million pairs of depth biases and 
coincident near-surface current vectors. Analogous to Fig. 7, we used 
Survey #1 as reference to calculate depth biases. 

The analysis revealed that near-surface current estimates in direction 
of wave propagation (NSCA → 0�) generally cooccurred with underes
timation of depth, while near-surface current estimates against the di
rection of wave propagation (NSCA → �180�) coincided with an 
overestimation of depth (Fig. 10a: sinusoidal shape). These under- and 
overestimations increased with increasing near-surface current magni
tudes (Fig. 10a: bright colors at peak NSCA ¼ 0�, and trough NSCA ¼
�180�). However, weak near-surface current estimates in direction of 
wave propagation did not guarantee a good depth estimate (Fig. 10a: 
dark colors between NSCA -60� to þ63�). Still, the observations gener
ally show that the Doppler-shift overcompensates for the presence of 
currents, as without the Doppler-shift we would expect current-induced 
depth errors to behave the opposite way (Honegger et al., 2020, eq. 
(10)). 

In shallow water, d0,S1 ¼ 0.5–5.0 m, depth overestimations and depth 
underestimations nearly balanced each other over the range of NSCAs 
from � 180� to 180� (Fig. 10b: median depth bias per NSCA, green curve, 
undulates around zero. Transition from general depth underestimation 
to overestimation at NSCA ¼ �73�, vertical magenta lines). This 
changed with increasing depth, d0,S1 ¼ 5.0–10.0 m, as depth over
estimations started to dominate depth underestimations for most NSCAs 
(Fig. 10c: green curve only positive for NSCA between � 43� and þ52�), 
with chronical overestimation for d0,S1 ¼ 10.0–25.0 m (Fig. 10d: green 
curve stays below zero). However, in direction of wave propagation 
these overestimations were on average small with values close to zero 
(Fig. 10d: green curve within NSCA < � 90�). Besides the tendency 
towards depth overestimations, also the sensitivity in the depth esti
mates increased with increasing depth (cf. Fig. 10b–d: bandwidth, given 
by 2.5th � 97.5th percentile range, increases from b) ~3 m to c) ~4 m to 

Fig. 8. The time-evolution of the sediment volume changes in the nourishment area (Fig. 6, green polygon) for the period Dec 2017–Dec 2018 according to radar 
(red line) and multibeam surveys (blue dots). Volume changes are normalized to the 2nd multibeam survey (cyan dot). Per day, the number of available XMFit results 
that covered the nourishment area - and could hence be used for volume calculations - is indicated by a vertical grey band (see colorbar). The monthly median radar 
estimate (red line) is presented with corresponding 25–75 percentile range (shaded red) and 10th – 90th percentile range (shaded yellow). The start of nourishment 
execution, Mar. 20, 2018, is indicated by the vertical green line. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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d) ~6 m) especially for situations where near-surface current estimates 
pointed in direction of wave propagation (cf. Fig. 10b–d: bandwidth 
larger for NSCA < � 90�). It was interesting to observe that for shallow 
depths estimated maximum near-surface current magnitudes were 
larger in direction of wave propagation than against it (Fig. 10b: 
brightest colors for NSCA → 0�, depth underestimation). For large 
depths, maximum near-surface current magnitudes were estimated 
against direction of wave propagation (Fig. 10c and d: brightest colors 
for NSCA → 180�, depth overestimation), while near-surface current 
estimates in direction of wave propagation appeared to be under
estimated (Fig. 10c and d: dark colors for NSCA < � 90�). 

In summary, observed biases in both depth and near-surface current 
estimates suggest that the non-linear fit of equation (1) to the spectral 
data is sensitive to the local depth and the wave direction: (1) Generally, 
depths are underestimated for near-surface currents following the di
rection of wave propagation and depths are overestimated for opposing 
near-surface currents. (2) Strong near-surface current estimates corre
late with strong depth biases, but a weak near-surface current estimate 
in direction of wave propagation does not guarantee a small depth bias. 
(3) For increasing depth, the depth estimate is more uncertain, tends 
towards overestimation, and especially so for opposing near-surface 
currents. (4) This is correlated with near-surface currents against di
rection of wave propagation having larger magnitudes than in direction 
of wave propagation. 

The observations suggest that depth estimates may benefit from 
stricter constraints on maximum surface current magnitudes (e.g. |Umax| 
< 0.5 m instead of |Umax| < 1.5 m). This entails that it be difficult to find 
an optimal solution among the list of [di, Ui]-candidates which satisfies 
the stricter criterion (Fig. 1, ⑥). A way to solve this problem could be to 
penalize the non-linear fit for large |U|. 

5.2. Choice of spectrum (amplitude vs. energy) 

Depth estimates can also be improved in other ways. Depth inversion 
results are a product of relating wave characteristics to wave theory. A 
different representation of the wave characteristics may lead to different 
results, which is investigated by using amplitude spectra instead of en
ergy spectra. The difference is simply that spectra are not squared after 
performing the 3D-FFT. It does not alter the wavenumber-frequency 
relationships, but their weights and hence changes the sets of spectral 
data that are passed to the non-linear fitter during the thresholding 
procedure (Fig. 1, ⑤). 

The results of this experiment suggest that more favorable sets of 
spectral data are established if amplitude spectra are used, as the overall 
depth bias (median over all analysed image sequences) improved by 
0.13 m, from � 0.90 m to � 0.77 m (cf. Fig. 11a and b). The improve
ments especially occurred around the bars where waves break (Fig. 11a 
and b, right column: red line vs. green line between d0 ¼ 4–8 m). This 
was also emphasized by an improvement of the bias by 0.22 m for the 
nearshore area, above the 10 m depth contour. Similarly, also the RMSE 
improved by 0.20 m from 1.32 m to 1.12 m with improvements being 
largest in shallow regions and the bar area. This effect can be explained 
by the disproportionate spectral weight of breaking waves in the image 
spectrum who by their asymmetry do not agree with the linear disper
sion assumption underlying the analysis. Using an amplitude spectrum 
keeps the spectral weights closer together and thereby reduces the 
impact of breakers. Improvements were also noticed for the more 
difficult area to the north-east of the Sand Engine (Fig. 11a and b, left 
column: whitening of north east area), which we ascribe to a relatively 
weaker impact of bad wave representations; in this case due to radar 
beam - wave crest alignment and lesser image quality. 

5.3. Kalman filtering 

An alternative way to improve the XMFit results is through post- 
processing with a Kalman filter. The Kalman filter is used in time on 

Fig. 9. Examples of mean wave directions (MWD) and near-surface currents 
(NSC) at the Ameland Inlet, as estimated by XMFit. Turquoise arrows indicate 
MWD-patterns. NSC arrows are scaled and colored according to magnitude 
(colorbar). Panels (a,b): An example from Oct 25, 2018 at 05:50, rising tide 
with a water level (WL) ¼ NAP þ1.1 m. Panels (c,d): An example from the 
preceding falling tide at 01:30, with WL ¼ NAP -0.9 m. 
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the derived morphological changes, assuming slowly varying 
morphology in comparison to the radar sampling interval, analogous to 
Holman et al. (2013). The Kalman filter is an instrument for quality 
control and improvement: It weighs the current depth estimate dt at time 
t against a previous estimate d‾t-1 at t-1 using the Kalman gain, K, by d‾t 
¼ d‾t-1 þ K(dt - d‾t-1), where overbars denote Kalman adjusted estimates. 
The Kalman gain requires an indication for the confidence we have in 
the current dt estimate (R in eq. (5) of Holman et al. (2013)). In line with 
Holman et al. (2013), we use the error variance σ2 of the non-linear fit 
for this purpose. This error variance of dt is compared against the vari
ance σ‾2 of d‾t-1 (P in eqs. (5)–(7) of Holman et al. (2013)), which de
pends on previous estimates of σ2, but also on process variance (Q in eq. 
(6) of Holman et al. (2013)). The process variance, Q, accounts for 
morphological change that may occur over the period of observations, 
but since Sand Engine data only cover a period of 18 h, we neglect it (i.e., 
Q ¼ 0). For further details on the application of a Kalman filter to ba
thymetry estimates from a DIA, we refer to Holman et al. (2013). This 
experiment presents the results after the last, 184th Kalman filter 
iteration. 

The Kalman filter reduced the depth bias by 0.21 m, from � 0.90 m to 
� 0.69 m, and the RMSE by 0.25 m, from 1.32 m to 1.07 m (cf. Fig. 11a, 
c). In this case, the improvements were quite evenly distributed across 
all depths, including deeper areas (Fig. 11a,c, left column: whitening of 
northern area; Fig. 11a,c, right column: narrowing of dinv-confidence 
interval for d0 > 10 m). The combined effect of a Kalman filter and an 
analysis based on amplitude spectra was a reduction of the overall depth 
bias to � 0.58 m and RMSE to 0.88 m (Fig. 11d). The broad improve
ments clearly showed when compared to the base case (cf. Fig. 11a,d): 
Depth estimates of the difficult regions in the north and north-east 
improved (Fig. 11a,d, left column), but also the breaker region 
(Fig. 11a,d, right column), which is known to experience larger errors 

(Bell, 2008). Hence, on the short term, the application of a Kalman filter 
without process variance is superior to using the median estimate. 
Though we recommend the data to cover at least one tidal cycle as to 
dampen out temporary tide induced inaccuracies. 

Although we could not test the Kalman filter on the Ameland data, 
due to lacking information on σ2, it is also not straightforward to apply. 
While the Kalman filter has proved itself valuable for the Sand Engine 
and also other uniform coastlines such as Duck (Holman et al., 2013), 
more complex coastal systems – like an ebb-tidal delta – may pose a 
problem when viewed over long periods of time, as morphological 
change needs to be described by process variance as a function of time 
and location, Q(t,x,y). Tidal deltas are subject to various drivers and 
mechanisms that move sediment (Elias et al., 2019; Lenstra et al., 2019). 
Their influence and interactions continuously change in both space and 
time, which makes it difficult to formulate and quantify Q(t,x,y). A 
spatiotemporally uniform implementation could be the choice of an 
upper bound Q ¼ max(morphological change), however, remains subject 
for further study. 

By reducing both bias and RMSE, the change of spectrum (section 
5.2) and the Kalman filter (section 5.3) have demonstrated that results 
can be improved. Stricter constraints on near-surface current magni
tudes may also increase the accuracy of depth estimates (section 5.1). 
Future work might provide insights that could lead to additional 
improvement of the results since some bias and RMSE remains. Early 
thoughts on common sources of error are (i) more radar image pre- 
processing to enhance radar image quality with increasing distance 
from the sensor, for example using FFT-accelerated video reconstruction 
techniques (Chan et al., 2011) (ii) the application of multiple radars to 
cover unfavourable wave-angles and (iii) including breaker intensity as 
a proxy for depth-induced dissipation to improve estimates in breaker 
zones (van Dongeren et al., 2008). 

Fig. 10. Observed depth bias (vertical axis) as a function of the near-surface current angle (NSCA) with respect to mean wave direction (horizontal axis). At NSCA ¼
�0�, near-surface currents point in direction of wave propagation, whereas for NSCA ¼ �180� they oppose each other. The depth bias is used as proxy for the depth 
error. Corresponding near-surface current magnitudes (|U|) are shown in bronze colors (colorbar). Panels present data within different ranges of depth: a) 0.5 < d0,s1 
< 25.0 m (all data); b) 0.5 < d0,s1 < 5.0 m; c) 5.0 < d0,s1 < 10.0 m; d) 10.0 < d0,s1 < 25.0 m. Depth biases are calculated as the difference between measured depths 
from Survey #1 and water level corrected inverted depths, d0,S1 – dinv. Per NSCA, the 95% range of observed depth biases is presented (bandwidth) along with their 
median value (green line); the 95%, 80% and 50% range contours are indicated with dotted black lines and labelled as shown by the green boxes in panel (a). NSCA 
¼ �90� are emphasized by additional vertical grid lines, to indicate where near-surface currents have no effect on waves according to equation (1). The angles that 
are optimal for depth inversion are given by the zero crossings of the median depth bias and are emphasized by vertical magenta grid lines. The dataset includes the 
results of all analysed cubes over the entire period from Dec 2017–Dec 2018, amounting to >20 million observations. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 11. Methods to improve the XMFit results 
for the example case of the Sand Engine, 
shown by comparisons of inverted depths dinv 
(m) against in-situ measured depths d0 (m). 
The left column presents difference maps 
where red/blue colors indicate under-/over
estimation of depth respectively. The right 
column presents direct comparisons of dinv 
against d0, including the 1:1 reference (green), 
the median over all dinv at a certain d0 (red), 
and the 5%–95% confidence interval (dashed 
red). Panels (a,b): Median depth estimates 
over all 184 image sequences from 20 to 21 
Oct. 2014, for (a) the base case using the en
ergy spectrum and (b) using the amplitude 
spectrum. Panels (c,d): The final, 184th esti
mate of the Kalman filter after application to 
results produced using (c) energy spectra and 
(d) amplitude spectra. (For interpretation of 
the references to color in this figure legend, 
the reader is referred to the Web version of 
this article.)   
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6. Conclusions 

A depth inversion algorithm (DIA), XMFit (X-Band MATLAB Fitting), 
is a radar-based technique to monitor coastal evolution on large space 
(10s of kilometers) and time (months) scales. We mapped and analysed 
two nourishments in the Netherlands using this technique: (1) an 18-h 
snapshot of the beach mega nourishment, the Sand Engine, and (2) a 
one-year time-series of a 5 million m3 pilot nourishment in the ebb-tidal 
delta of the Wadden Sea island Ameland. Derived morphologies in both 
cases largely agreed with ground truth data. Depth biases were around 
� 0.9 m at Sand Engine and fluctuated between approximately -2 – 0 m 
at the Ameland ebb-tidal delta. By averaging and debiasing the radar- 
derived morphologies, it was possible to accurately quantify the 
growth of the ebb tidal delta nourishment at Ameland during its 
placement in 2018 with a volumetric margin error of 7%. Depth errors in 
the Ameland delta correlated with near-surface current magnitude and 
direction relative to the direction of wave propagation. The depth errors 
were generally smaller for small surface current magnitudes and 
respectively showed under- and overestimation for near-surface cur
rents, in and against the direction of wave propagation. For the Sand 
Engine, experiments with the spectral treatment and the conceptual 
employment of a Kalman filter in post-processing improved the depth 
bias to -0.6 m. Further improving the results and the algorithm remains a 
scientific and operational challenge. 

This research presents the successful operation of a DIA on data from 
a navigational X-Band radar to monitor a mega nourishment in a com
plex tidal inlet system, allowing coastal managers to assess volume 
changes over time. 
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Appendices A and B 

Appendices A 

Table A.1 
Radar properties at the Sand Engine and Ameland  

Properties Sand Motor Ameland Inlet 

Antenna Height [m, NAP] 15 60 
System Type Terma Scanter 2000 Terma Scanter 2001 
Antenna Width [ft] 14 21 
Range [km] 3.75 7.5 
Pulse Length [ns] 50 60 
Horizontal Beam Width [deg] 0.5 0.43 
Vertical Beam Width [deg] 23 23 
PRF [kHz] 4 2.2 
Rotation Speed [rpm] 25 21 
Output Power [kW] 25 25 
Polarization VV VV  

Appendices B 
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Fig. B.1. Computational grids (green) used for (a) the Sand Engine (b) and the Ameland Inlet. The grids are overlaid on typical radar images of both sites.  

Sand Engine. 
For computational efficiency of XMFit, a variable grid spacing of 25 m near the shoreline and 250 m further offshore was used, resulting in 9 380 

grid points (Figure B.1, left). The computational cubes were time-averaged by subdividing them into 32 image bins with 8 images overlap. The spatial 
extents were 64px (240 m) within 300 m from the shoreline and 128px (480 m) further offshore. The reduced cube size in the nearshore region was 
chosen in order to capture more morphological detail. 

For consistency, XMFit settings were chosen to be similar to the application at Ameland. The spectral frequency filter was set to include shorter 
wave periods, [Tmin, Tmax] ¼ [3.5, 15] (s) (Fig. 1, ②). Depth limits were set to [dmin, dmax] ¼ [0.5, 25] (m) (Fig. 1, ③), and the near-surface current 
velocity limit was set to |Umax| ¼ 1.25 (m/s) (Fig. 1, ⑥). 

Ameland Inlet. 
In case of the Ameland Inlet, a constant grid spacing of 100 m was used amounting to 8 328 grid points in total (Figure B.1, right). Computational 

cubes were time-averaged using 32 image bins without overlap and had a spatial extent of 128px (960 m). 
The inversion process was constrained by the wave period limits [Tmin, Tmax] ¼ [5, 15] (s) (Fig. 1, ②), depth limits [dmin, dmax] ¼ [0.2, 25] (m) 

(Fig. 1, ③), and |Umax| ¼ 1.5 (m/s) (Fig. 1, ⑥). 
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