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Abstract

Dark silicon is pushing processor vendors to add more specialized units such as ac-
celerators to commodity processor chips. Unfortunately this is done without enough
care to security. In this paper we look at the security implications of integrated
Graphical Processor Units (GPUs) found in almost all mobile processors. We demon-
strate that GPUs, already widely employed to accelerate a variety of benign appli-
cations such as image rendering, can also be used to “accelerate” microarchitectural
attacks (i.e., making them more effective) on commodity platforms. In particu-
lar, we show that an attacker can build all the necessary primitives for performing
effective GPU-based microarchitectural attacks and that these primitives are all ex-
posed to the web through standardized browser extensions, allowing side-channel
and Rowhammer attacks from JavaScript. These attacks bypass state-of-the-art
mitigations and advance existing CPU-based attacks: we show the first end-to-end
microarchitectural compromise of a browser running on a mobile phone by orches-
trating our GPU primitives. While powerful, these GPU primitives are not easy to
implement due to undocumented hardware features. We describe novel reverse engi-
neering techniques for peeking into the previously unknown cache architecture and
replacement policy of the Adreno 330, an integrated GPU found in many common
mobile platforms. This information is necessary when building shader programs
implementing our GPU primitives. We conclude by discussing mitigations against
GPU-enabled attackers.
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Chapter 1

Introduction

While transistors are becoming ever smaller allowing more of them to be packed in
the same chip, the power to turn them all on at once is stagnating. To meaningfully
use the available dark silicon for common, yet computationally demanding process-
ing tasks, manufacturers are adding more and more specialized units to the proces-
sors, over and beyond the general purpose CPU cores [1, 2, 3]. Examples include
integrated cryptographic accelerators, audio processors, radio processors, network
interfaces, FPGAs, and even tailored processing units for artificial intelligence [4].
Unfortunately, the inclusion of these special-purpose units in the processor today ap-
pears to be guided by a basic security model that mainly governs access control [5, 6],
but entirely ignores the threat of more advanced microarchitectural attacks. Among
this plethora of specialized units that are being included on the System-on-Chip,
currently the most widely spread integrated processors are the Graphics Processing
Units (GPUs). Most laptops and almost all mobile phones [7] are sold today with
a System-on-Chip (SoC) comprising this integrated unit. This is due to the always
higher demand for better graphics even on lower-end commodity platforms. These
systems are known as heterogeneous system architectures (HSAs) and are able to
balance their workload in a more efficient way among the two co-processors.

Even though modern GPUs are evolving always more towards the goal of general
purpose computing, these systems do not necessarily provide such advanced parallel
programming features, and on some low-end hardware they are still restricted to
very limited graphics acceleration. These more limited capabilities of such systems
drew researchers to the misguided conclusion of an even more limited attack surface.
Throughout this research we demonstrate how such assumption is fundamentally
flawed by showing how the (supposedly) limited features of such system do not inhibit
an attacker from carrying out advanced microarchitectural attacks on commodity
systems. On the contrary, we demonstrate that GPUs, already widely employed in
almost all mobile platforms to accelerate a variety of benign applications such as
image rendering, can also be used to “accelerate” microarchitectural attacks (i.e.,
making them more effective) on commodity platforms. In particular, we show that
an attacker can build all the necessary primitives for performing effective GPU-
based microarchitectural attacks and that these primitives are all exposed to the
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1. Introduction

web through standardized browser APIs, allowing side-channel and Rowhammer
attacks from within the JavaScript sandbox on mobile ARM platforms.

1.1 Microarchitectural attacks

Microarchitectural attacks are a family of attacks that arose as a way to circum-
vent defenses protecting cryptographic algorithms [8, 9, 10]. These attacks base
their primitives on intrinsic hardware properties such as execution time [8], power
consumption [11] and even DRAM charges [12]. Since they base their effectiveness
on physical properties of the system, researchers initially assumed a threat model
that limited such attacks to attackers with physical access to the devices. However,
this assumption was proven erroneous in recent years when different studies demon-
strated the possibility of carrying out microarchitectural attacks not only from native
software[9, 10, 12, 13, 14, 15, 16, 17, 18] but also remotely from malicious JavaScript
websites [19, 20, 21, 22, 23, 24].

These attacks are implemented with two different purposes: either steal data,
through a variety of side-channels, or corrupt data, using fault injection attacks.

Side-channels: Side-channels are a category of microarchitectural attacks that
have the goal of stealing secrete data — or transmit in the case of covert-channels.
This type of attacks was first described in 1996 by Kocher [8] who showed how it was
possible to leak information by measuring timing differences when executing different
operations. After this first study on timing side-channels many other researchers
followed this path [10, 13, 14, 15, 16, 21, 25, 26, 27, 28] showing the strength of timing
attacks. These attacks base their effectiveness on the possibility of measuring time
differences while executing different operations. This timing difference is usually
consequence of (undocumented) hardware optimization such as usage of caches to
store recently used data or branch predictors [26]. The most common targeted
component when implementing timing side-channels are CPU caches. However, any
level of the memory hierarchy can be the target of these attacks.

Fault injection: Fault attacks are a second category of microarchitectural attacks
that exploit hardware glitches to trigger data corruptions. These attacks usually
target undocumented states such as out-of-range voltage [29, 30] to inject glitches
and modify data that should not be accessible by the attacker, hence bypassing
applications’ trust boundaries. The most dramatic and wide spread example of
software-based fault injection attack is Rowhammer. Rowhammer exploits the tran-
sient nature of DRAM capacitors to trigger bit flips on specific memory rows by
performing particular access patterns that influence the capacitor charges on adja-
cent rows. Previous work shows that it is possible to compromise cloud VMs [18, 31]
and browsers [23, 24] and even to gain kernel privileges [17, 32].

While their native implementation already represents a significant threat, the rel-
evance of microarchitectural attacks escalated after Oren et al. [19] unveiled the
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1.2. Research Goal

possibility of implementing remote attacks. To counter this threat, a number of
recently proposed defenses aim to protect against these attacks. Defenses against
timing side-channels eradicate the problem from its roots proposing to reduce the
resolution [33, 34, 35, 36], fuzz [37] or make deterministic [38] the value returned
by explicit and implicit timers. Defenses targeting Rowhammer, on the other hand,
usually propose to either target memory allocations isolating different privileged
contexts [39] or to monitor memory accesses to enforce preventive measures [40].

All these defenses, however, share the common implicit assumption of a restricted
threat model that limits the attacker’s capabilities to what is provided by the CPU
cores.

1.2 Research Goal

As of now microarchitectural attacks are considered to be implementable just from
CPU cores. The goal of our research is to revisit this current assumption to demon-
strate that it is insufficient to protect only against attacks that originate from the
CPU. Therefore, we need to show the possibility of building these attacks with an-
other exploitation vector: the GPU. To do so, we need to identify the common
primitives an attacker needs when performing microarchitectural attacks and de-
termine their possible equivalent when adopting integrated GPUs as exploitation
vector. We then need to define a new threat model that takes these integrated pro-
cessors into account and we need to investigate the efficacy of current state-of-the-art
defenses protecting from microarchitectural attacks against this new threat model.
This last paragraph can be summarized in the following research question:

What means does the GPU provide to an attacker for building microarchitectural at-
tacks? And how do currently proposed defenses against traditional implementations
cope with this new exploitation vector?

The investigation of such questions can unfold by answering the following sub-
questions:

• What are the primitives that an attacker traditionally needs to carry out mi-
croarchitectural attacks?

• What means does an integrated GPU provide to an attacker trying to build
such primitives?

• What is the new threat model defined by the introduction of this new exploita-
tion vector?

• How do currently proposed defenses respond to this new attack paradigm?

• How can we cope with this new threat model?

To the best of our knowledge, currently no research has been carried out on
the field of microarchitectural attacks from integrated GPUs. Since these systems
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1. Introduction

are embedded on almost every commodity platform such as smartphones and lap-
tops [7] we chose to address such knowledge gap in order to provide new and valuable
information to the body of science.

1.3 Contributions

In this thesis, we show that we can build all necessary primitives for performing pow-
erful microarchitectural attacks directly from the GPU. Dramatic is the fact that we
can obtain these primitives, hence perform these attacks, directly from JavaScript,
by exploiting the WebGL API which exposes the GPU to remote attackers. More
specifically, we show that we can program the GPU to construct very precise timers,
perform novel side channel attacks, and, finally, launch more efficient Rowhammer
attacks from the browser on mobile devices. All steps are relevant. Precise timers
serve as a key building block for a variety of side-channel attacks and for this rea-
son a number of state-of-the-art defenses specifically aim to remove the attackers’
ability to construct them [37, 38]. We will show that our GPU-based timers bypass
such novel defenses. Next, we use our timers to perform a side-channel attack from
JavaScript that allows attackers to detect contiguous areas of physical memory by
programming the GPU. Again, contiguous memory areas are a key ingredient in a
variety of microarchitectural attacks [23]. To substantiate this claim, we use this
information to perform an efficient Rowhammer attack from the GPU in JavaScript,
triggering bit flips from a browser on mobile platforms. To our knowledge, we are the
first to demonstrate such attacks from the browser on mobile (ARM) platforms. The
only bit flips on mobile devices to date required an application with the ability to run
native code with access to uncached memory, as more generic CPU cache eviction-
based Rowhammer strategies were found too inefficient to trigger bit flips [32]. In
contrast, our approach generates hundreds of bit flips directly from JavaScript. This
is possible by using the GPU to (i) reliably perform double-sided Rowhammer and,
more importantly, (ii) implement a more efficient cache eviction strategy.

Our proof of concept end-to-end attack, uses all these GPU primitives in or-
chestration to reliably compromise the browser on a mobile device using only mi-
croarchitectural attacks in a matter of few minutes. In comparison, even on PCs,
all previous Rowhammer attacks from JavaScript require non default configurations
(such as reduced DRAM refresh rates [24] or huge pages [23]) and often take such a
long time that some researchers have questioned their practicality [39].

Our exploit shows that browser-based Rowhammer attacks are entirely practical
even on (more challenging) ARM platforms. One important implication is that
it is not sufficient to limit protection to the kernel to deter practical attacks, as
hypothesized in previous work [39]. We elaborate on these and further implications of
our GPU-based attack and explain to what extent we can mitigate them in software.

As a side contribution, we report on the reverse engineering results of the caching
hierarchy of the GPU architecture for a chipset that is widely used on mobile devices.
Constructing attack primitives using a GPU is complicated in the best of times, but
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1.4. Thesis Outline

made even harder because integrated GPU architectures are mostly undocumented.
We describe how we used performance counters to reverse engineer the GPU ar-
chitecture (in terms of its caches, replacement policies, etc.) for the Snapdragon
800/801 SoCs, found on mobile platforms such as the Nexus 5 and HTC One.

We can summarize our contributions as follow:

• The first study of the architecture of integrated GPUs, the functionalities that
they provide, and how they are exposed from JavaScript using the standardized
WebGL library.

• A series of novel attacks that are executed directly on the GPU, compromising
existing defenses and showing new possibilities for microarchitectural attacks.

• The first end-to-end remote Rowhammer exploit on mobile phones using the
GPU-based primitives in orchestration, compromising mobile browsers on com-
modity smartphones.

• Directions for containing GPU-based attacks on integrated systems.

1.4 Thesis Outline

Due to the broad nature of this project it is hard to follow the standard structure of
a thesis. As a consequence, we laid out our manuscript following the conventional
approach used when building our attack.

We start in Chapter 2 providing the fundamental knowledge to understand future
architectural analyses and microarchitectural attacks. This consists in a thorough
description of the first two layers of the memory hierarchy: caches and DRAM. We
then proceed with recovering the architecture of our target system in Chapter 3.
We initially give a description of a general GPU architecture, describing how an
attacker can gain control over it, and we conclude with a more detailed analysis
of the GPU embedded in our test system (i.e., the Adreno 330) showing how this
processor has access to resources shared with the rest of the system. After we have
all the required knowledge about our system we then need to identify the necessary
primitives required to build microarchitectural attacks. We start by describing these
primitives making a distinction between side-channels and Rowhammer attacks and
we then proceed in recovering each of these primitives from an integrated GPU.
After recovering all the necessary primitives to build complete microarchitectural
attacks we make such attacks concrete in Chapter 5 showing how we can combine
all the primitives defined in the previous chapter in order to create an end-to-end
exploit that compromises a mobile browser without relying on any software bug. We
complete this chapter discussing possible mitigations against such attacks. We draw
our final conclusions in Chapter 6 discussing directions for future works.
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Chapter 2

The Memory Hierarchy

As mentioned in Chapter 1 microarchitectural attacks aim at (i) stealing or (ii)
corrupting data. This data needs to be stored on one of the many different levels of
the memory hierarchy. Comprehensive knowledge about this hierarchy is required
in order to understand the GPU architecture we present in Chapter 3 and the
primitives we introduce in Chapter 4 We start by giving a broad overview of the
memory ladder on modern systems. We then focus on the two rungs usually targeted
by microarchitectural attacks, namely caches and DRAM.

2.1 The memory pyramid

Modern systems are equipped with different layers of storages. The distinction
between these layers is usually made based on access time to the requested resources.
There is a direct correlation between performances, size and cost. Usually high
performances storages are very limited in size due to their high costs, while low
performances storages have usually sizes millions of times larger compared to the
former due to their affordable price.

Figure 2.1 depicts a simplified pyramid of the memory hierarchy on modern
architectures. Climbing up this pyramid we decrease the size while increasing speed
and cost. On top of the pyramid there are caches. These are the fastest storages
available to a processor — after registers. However, due to their price are usually very
limited in size. Below the caches, resides DRAM. DRAM chips are relatively fast
and provide a good compromise between price and performances. While caches are
usually in the order of KBs or MBs, modern systems, even lower end smartphones,
are usually equipped with GBs of storage space in DRAM chips providing the system
with enough memory to run complex applications and storing recently used items
for short- and mid- term operations. At the bottom of this hierarchy there are long-
term storages such as flash drives and hard drives. Among the two, flash drives are
significantly faster and more expensive. Nonetheless, they usually serve the same
purpose of long-term storage.

7



2. The Memory Hierarchy

Figure 2.1: Memory Hierarchy

2.2 Caches

Processors’ caches have been introduced to overcome the limitation imposed by the
slow memory bus accessing DRAM. To bypass this bandwidth bottleneck and speed
up processors’ computations a smaller and faster storage solution was introduced
closer to this unit. These fast storage units, if present, intercede almost every
memory access requested by the processors. If the content is found in the caches
(cache hit) then the data gets fetched faster. If the data is not stored on the caches
(cache miss), then the processor has to request such data to the memory controller
who fetches it from (slower) DRAM.

When designing a cache there are 2 main principles involved: spatial and temporal
locality. Spatial locality means that data — or instructions — stored close to recently
fetched data is likely to be fetched too. Temporal locality, instead, means that data
that has been recently used is likely to be re used in a short timespan. The goal of
the caches is this of optimizing these two principles. Depending on the purpose of
the cache, they might be engineered to maximize one or the other. We can ascertain
these choices by analyzing their architectural designs and sizes.

Cache organization

Depending on the system requirements these caches can follow different designs.
The usual architecture follows one of these 3 organization:

1. Direct mapping

2. Fully associative

3. Set associative

We now describe how each of these organizations uses the memory address to identify
if the requested content is currently stored in the cache.

8



2.2. Caches

Direct Mapping: Direct-mapped caches use a one-to-one mapping to store data
into the cache. This means that a memory address can be stored into one, and
only one, cacheline (i.e., the minimum storage unit in the cache). The mapping is
computed directly from the memory address. This can be either virtual or physical
depending on the system design. We describe memory addressing in Section 2.3.
Of this memory address the lowest k bits are the so-called offset. This allows the
processor to query the data stored in the cache at byte granularity. Hence, 2k bytes
of data are stored into a cache line. The following n bits are used as index. This
identifies the index of the cacheline. The remaining bits represent the tag. The tag
is used to identify if the cacheline stored at the specific index is the one belonging
to that address. Addresses mapping to the same cacheline are known as congruent.
Consecutive requests to congruent addresses generate cache misses for every access.

Figure 2.2: Direct-mapped cache

Fully associative: Fully associative caches do exactly the opposite of what direct
mapping does. While in direct-mapped caches each memory address can occupy just
a single index in fully associative caches there is no index at all and every memory
address can reside in any available slot (i.e., way). This type of architecture solves
the problem of congruent addresses present with direct mapping. However, memory
lookups get more expensive with bigger cache sizes due to the necessity of checking
multiple ways in the cache to retrieve the requested data — all the ways in the case
of a cache miss. This mapping is usually adopted in very small and fast caches such
as Translation Lookaside Buffers (TLBs).

Set associative: This architecture is a good compromise between direct-mapped
and fully associative caches. In this case the cache gets split into 2n sets and each set
contains a variable number m of ways. The n bits used as index in this architecture
are used to identify the cache set, contrarily to direct-mapped caches. Once identified
the cache set the cache behaves as a fully associative cache within the cache set.
Therefore, it compares the Tag extracted from the memory address against all the
ways within the identified cache set.

9



2. The Memory Hierarchy

Figure 2.3: Set associative cache

Cache replacement policy

Modern caches usually employ a set-associative organization. Cachelines within a
specific cache set then need to be handled in an efficient way in order to optimize
spatial and temporal locality. Depending on their usage, caches can enforce re-
placement policies of multiple natures. On modern CPU architectures the most
widespread replacement policy is least recently used (LRU1). This replacement pol-
icy keeps track of the last usage of a cacheline within a cache set evicting every time
the least recently used. This scheme highly optimizes temporal locality, keeping in
the cache cachelines that have recently being used.

While this replacement policy is enforced in most of x86 systems, On ARM
architectures, instead, a pseudo random replacement policy is usually adopted. This
is easy to implement in hardware [41] and is highly energy efficient compared to other
policies [42] making it perfectly suitable for mobile ARM platforms.

Multi level caches

Modern systems deploy multi level caches to further optimize their performances.
These systems follow the overall trend of “size vs performances” applied to the whole
memory hierarchy. They usually embed very little and faster L1 caches and relatively
bigger and slower L2 caches. The number of levels and their coherency strategies is
a design choice. Most of Intel CPUs are provided with 3 level caches with a private
per-core L1 and L2 and a larger L3 shared among the different cores. Whereas,
ARM architectures usually have just two level caches where L2 is shared among the
different cores due to space limitations on the SoC. The coherency policy between the
different caches can then be inclusive, exclusive or non-inclusive. Inclusive caches
require data to be stored on a lower level if present in a higher level. Exclusive
caches do the opposite keeping objects just in one of the two levels. Non-inclusive,
on the other hand, do not take any of this into consideration. Hence, a cacheline
can be stored in one of the two levels, both of them or none.

1when referring to LRU we means both LRU and pseudo LRU
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2.3. DRAM

2.3 DRAM

DRAM is placed just below the caches and represents the next rung in the memory
ladder. DRAM is a mid-term solution that represents a great compromise between
(expensive) fast caches and slow flash and hard drives.

DRAM organization

Figure 2.4: DRAM architecture

DRAM chips are organized in a structure of channels, DIMMs, ranks, banks, rows
and columns. Channels allow parallel memory accesses to increase the data trans-
fer rate. Each channel can accommodate multiple Dual In-line Memory Modules
(DIMMs). DIMMs are the typical module available in the stores (Figure 2.4). These
modules are commonly partitioned in either one or two ranks which they usually
correspond to the physical front and back of the DIMM. Each rank is then divided
into separate banks. It is frequent to find 8 banks on DDR3 chips and 16 on DDR4.
Finally every bank contains the memory array that is arranged in rows and columns.
The memory array contains the building blocks of a DRAM chip: cells. A cell is
made of a transistor and a capacitor. Each cell stores the information for a sin-
gle bit. Based on its capacitor’s charge and the specific encoding the value then
gets translated to 0 or 1. Capacitors’ charge is transient. Therefore, the memory
controller is responsible of recharging them in order to preserve the stored values.
This recharging operation is known as refreshing and it usually happens at 64 ms
intervals.

DRAM internally performs reads at row granularity. When the system wants
to access a specific byte, the DRAM chip activates a row and stores it in the row
buffer. The row buffer resembles a direct mapped cache within the DRAM chip.
This buffer loads a full row when a word is requested from it optimizing temporal
and spatial locality also at DRAM level. If the following request falls within the
boundaries of the currently active row this gets fetched directly from the row buffer

11



2. The Memory Hierarchy

(row hit). Otherwise, the active row needs to be restored before activating a new
row and loading it into the row buffer (row conflict).

Memory addressing

When the system is running applications are oblivious of all these details and work
with memory addresses that later get mapped to specific rows and columns. As
mentioned above in modern systems these memory addresses can be either virtual or
physical. The virtual space represents a wrapper of the physical address space and it
was introduced to solve the security issue of process isolation. By implementing this
system each process is provided with a specific address space independently from the
other processes running on the system. Modern systems employ paging to simplify
the translation between the two address spaces. This means that the minimum unit
they are able to physically allocate is a so-called page usually of the size of 4KB. And
the translation between virtual to physical addresses is then made on a page basis.
Virtual addresses are translated to physical addresses from theMemory Management
Unit (MMU). This conversion can take place before querying the caches, as for most
of the x86 systems, or even after, as we will see later in Chapter 3. Regardless of
when this conversion happens, DRAM is always queried using the physical addresses.
Every time the system wants to read a byte from system memory the physical address
eventually needs to be translated into a <channel, DIMM, rank, bank, row, column>
hextuple. This mapping is usually undocumented and has been subject of different
studies [16, 43].
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Chapter 3

A Primer on integrated GPUs

While CPU architectures have been subject of multiple studies[44, 45, 46], inner de-
tails of integrated GPUs on mobile (ARM) platforms are currently undocumented.
Since our final goal is this of performing microarchitectural attacks from these pro-
cessors we need to perform a detailed analysis of their architecture understanding
how they interact with the rest of the system.

Even though our analysis of the required primitives for microarchitectural at-
tacks is subject of Chapter 4, in this chapter, while providing a thorough analysis
of the integrated GPU architecture, we also investigate our fundamental prerequi-
site for any microarchitectural attack: access to shared resources. De facto, every
microarchitectural attack needs access to resources shared with other victim pro-
cesses. For instance, on a cache attack the attacker needs to share a cache set with
the victim and in a Rowhammer attack the attacker and the victim need to share
neighboring rows within a DRAM bank. As a consequence, the ability of sharing
resources with other (distrusting) processes is imperative for any type of microarchi-
tectural attack. We define this as our primitive P0 and throughout this chapter we
proceed to examine how an integrated GPU shares resources, not only with other
victim processes, but also with other victim processors.

We start our analysis by looking at the general architecture of integrated GPUs
understanding how these systems accelerate the rendering pipeline. Afterwards, we
describe how developers, and therefore attackers, have native access to these proces-
sors through the OpenGL API and remote access through its JavaScript wrapper
WebGL. To make our architectural analysis more concrete we then study a specific
GPU implementation of an ARM SoC: Adreno 330. We present a novel reverse
engineering technique that makes usage of OpenGL shaders to reconstruct the ar-
chitecture of the GPU caches and we show how these caches differ from the typical
model described in Chapter 2. Eventually, we conclude by discussing the advantages
of our approach.
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3.1 The GPU architecture

A Graphics Processing Unit is a specialized circuit conceived with the purpose of
accelerating image rendering. We now discuss how the GPU architecture implements
the rendering pipeline.

The rendering pipeline: The rendering pipeline consists of 2 main stages: ge-
ometry and rasterization. The geometry step primarily executes transformations
over polygons and their vertices while the rasterization extracts fragments from
these polygons and computes their output colors (i.e., pixels). Shaders are GPU
programs that carry out the aforementioned operations. The pipeline starts from
vertex shaders that perform geometrical transformations on the polygons’ vertices
provided by the CPU. In the rasterization step, the polygons are passed to the frag-
ment shaders which compute the output color value for each pixel typically using
external data obtained in the form of textures. This output of the pipeline is what
is then displayed to the user.

Figure 3.1: Stages of the Rendering Pipeline

Processing units: Figure 3.2 shows the general architecture of a GPU. The Stream
Processors (SPs) are the fundamental units of the GPU that are in charge of running
the shaders. To maximize throughput when handling inputs, modern GPUs are
designed following the SIMD paradigm (Same Instruction/Multiple Data), which
consists in running the same shader with multiple inputs (i.e., different veritces or
fragments). For this reason, GPUs include multiple SPs, each incorporating multiple
Arithmetic Logical Units (ALUs) to further parallelize the computations. Shaders
running on the SPs can then query the texture processors (TPs) to fetch additional
input data used during their execution. This data, as mentioned above, is typically
in the form of textures to which TPs apply filters of different natures (e.g., anti-
aliasing).

Caches: GPUs, to speed up their computations, exploit different type of caches
to optimize data transfers — both in input and output. Shaders, during their run,
make use of external data (e.g., vertices and textures). All this data is stored on
DRAM due to its large size. Since fetching data from DRAM is slow and can cause
pipeline stalls, the GPU includes a multi level cache to speed up accesses to vertices
and textures. These levels are usually two (i.e., L1 and L2). While the larger L2 is
used by multiple units of the system (e.g., SPs, to store vertices, and TPs, to store
textures), TPs make also use of a faster (but smaller) Texture L1 cache to further
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speed the inner execution of the shader. We later discuss the architecture of these
caches in the Adreno 330 GPU (Section 3.3).

Finally, in order to increase also the output performances when writing to frame-
buffers, integrated GPUs are usually equipped with smaller chunks of faster on-chip
memory (OCMEM ) that let them store portions of the render target and asyn-
chronously transfer them back to DRAM, as shown in Figure 3.2.

Figure 3.2: Building blocks of an integrated GPU

3.2 Programming the pipeline

Now that we know how how GPUs are able to accelerate the rendering pipeline,
we still need a bridge interface to get control over the latter. This interface is
usually provided by Graphics Libraries such as Direct3D and OpenGL that allow
developers to communicate with these processors. While all these provide similar
functionalities, OpenGL is the most widespread due to its cross-platform support.

OpenGL: OpenGL is a graphics API that exposes GPU hardware acceleration to
developers that seek higher performances for graphics rendering. This API is sup-
ported by every major operating system and architecture. For this reason, image
editing applications, video games and graphically intensive applications such as CAD
have been adopting it for decades in order to improve their performances. Devel-
opers employing OpenGL write their shaders using the OpenGL Shading Language
(GLSL). This is a C-like programming language part of the specification. Depending
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3. A Primer on integrated GPUs

on the version of the API supported from the underlying hardware different func-
tionalities are made available to the developer. Most of modern computers support
the latest major revision of the API (i.e., OpenGL ≥ 4). On mobile platforms, how-
ever, the standard API is usually not directly accessible, even if supported. Instead,
the (stripped) OpenGL ES is exposed to the developer. OpenGL ES 2 is the first
version of the API targeting programmable GPUs, hence making use of shaders.
This version, is support by every modern platform. Therefore, it is a fundamental
toolset throughout all our research.

WebGL: In recent years, with the raise of HTML5, users became more demand-
ing and expressed the wish of using high performance games and applications, not
only locally, but also on-line. Browsers, on the other hand, were not capable of
directly handling these applications completely in software. As a consequence, the
Web development paradigms underwent a complete revision which headed towards
the design of more powerful interfaces that balance applications’ workload among
different components of the system. WebGL is an example of this transformation.

The WebGL API exposes the GPU-accelerated rendering pipeline to the Web
to bolster the development of these Web Apps. Currently supported by every ma-
jor browser[47] it provides most of the functionalities accessible from its backbone,
namely OpenGL ES 2.0. Since it was conceived with the purpose of porting native
graphics applications to the Web, the anatomy of these two APIs is almost equiva-
lent. Shaders complying to the GLSL 100 standard (i.e., Shading Language available
in OpenGL ES 2.0) can be seamlessly compiled and run from both the environments.
Furthermore, the function calls required to deploy these shaders to the GPU are al-
most identical in native and JavaScript applications. In Listing 3.2.1 we show the
code necessary to run a basic shader such as the one we present in Listing 3.3.1 for
both the environments. We can see how the two snippets are identical with very mi-
nor syntax changes dictated by the different natures of the programming languages
(e.g. statically typed vs. dynamically typed).

This flawless commutativity was a design choice to help current OpenGL devel-
opers porting their applications to the Web bringing 3D accelerated content online.
In Chapter 4 we demonstrate how this design allows us to build equally powerful

1

2 var texLocation =

3 gl.getUniformLocation(prog, "tex");

4

5 gl.uniform1i(texLocation, 0);

6 gl.activeTexture(gl.TEXTURE0 + 0);

7 gl.bindTexture(gl.TEXTURE_2D, tex);

8 gl.drawArrays( gl.POINTS, 0, 1);

a: JavaScript code.

1

2 GLuint texLocation =

3 glGetUniformLocation(prog, "tex");

4

5 glUniform1i(texLocation, 0);

6 glActiveTexture(GL_TEXTURE0 + 0);

7 glBindTexture(GL_TEXTURE_2D, tex);

8 glDrawArrays( GL_POINTS, 0, 1);

b: C code.

Listing 3.2.1: Comparison between native and JavaScript APIs.
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microarchitectural attacks from both JavaScript and native applications.

3.3 The Adreno 330: A case study

To better understand the GPU architecture, we analyze a concrete example of a
modern system: the Adreno 330. The Adreno 330 is the integrated GPU found in
the common Snapdragon 800/801 mobile SoCs. These SoCs are embedded in many
Android devices such as LG Nexus 5, HTC One, LG G2 and OnePlus One.

The A330 exposes a similar architecture to what we described earlier in this
section. Main peculiarity of this system, however, is the presence of an IOMMU in
between DRAM and the UCHE cache (i.e., L2 cache using the proprietary termi-
nology). This essentially means that the GPU operates on virtual memory rather
than physical memory (Section 2.3), unlike the CPU cores.

P0. Access to shared resources: While, on some newer architectures, it is
possible for the CPU and GPU to share various levels of caches in the memory
hierarchy[48], this is not a guarantee in every system. However, at the very least,
every processor residing on the SoC needs to eventually share system memory with
the other co-processor. This provides us with our target: system memory.

Considering the architecture in Figure 3.2, an attacker has 3 main access points
to DRAM. She can access memory: (i) by inputing vertices to the vertex shaders,
(ii) fetching textures within the shaders themselves or (iii) by writing to the frame-
buffer. All these operations, however, need careful access patterns that avoid the
caches or the OCMEM in order to reach memory. We found that (i) buffers con-
taining vertices are lazily instantiated making it more difficult to obtain predictable
allocations. Furthermore, since the synchronization among the parallel executions
of the same shader over multiple SPs (i.e., SIMD) is implicit, it makes it difficult
for an attacker to achieve predictable behaviors, necessary when carrying out any
type of microarchitectural attack. Accessing memory through OCMEM (iii) is also
tricky given its large size and asynchronous transfers to system memory. We hence
opted for implementing our primitive P0 through the texture fetching functional-
ity (ii). Texture fetching takes place within the boundaries of a shader, providing
strong control over the order of memory accesses. Moreover, textures’ allocations
are easy to control, making it possible to obtain more predictable memory layouts
as we explain in Section 4.3.

The remaining obstacles are (i) dealing with L1 and L2 in between shaders and
DRAM, and (ii) the less obvious texture addressing necessary for converting from
pixel coordinates to (virtual) memory locations. We start by analyzing this mapping
function which allows us to access desired memory addresses before analyzing the
cache architecture in A330. We will then use this information to selectively flush
the GPU caches in order to reach DRAM in Chapter 4.
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3.3.1 Texture addressing

While the developer, when programming the shaders does not care about memory
location and can directly design them taking into consideration the coordinate sys-
tems of her 3D model, we, on the other hand, do care about the structure of the
data. This allows us to understand how the GPU caches handle their requests and,
to a certain extent, where the data we are accessing is positioned in memory.

Integrated GPUs partition textures in order to maximize spatial locality when
fetching them from DRAM [49]. This process is known as tiling, or binning, and
it is done by aggregating data from close texels (i.e. texture pixels) and storing
them consecutively in memory so that they can be collectively fetched. Tiling is
frequently used on integrated GPUs due to the limited bandwidth available to/from
system memory. These tiles, in the case of the A330, are 4 × 4 pixels. We can
store each pixel’s data in different internal formats, with RGBA8 being one of the
most common. This format stores each channel in a single byte. Therefore, a texel
occupies 4 bytes and a tile 64 bytes (i.e., 16px ∗ 4 = 64 bytes).

Without tiling, translation from (x, y) coordinates to virtual address space is as
simple as indexing in a 2D matrix. Unfortunately tiling makes this translation more
complex by using the following function to identify the pixel’s offset in an array
containing the pixels’ data:

f(x, y) =
( y

TH

∗
W + TW − 1

TW

+
x

TW

)

∗ (TW ∗ TH)+

(y mod TH) ∗ TW + x mod TW

Here W is the width of the texture and TW , TH are respectively width and height
of a tile.

With this function, we can now address any four bytes within our shader program
in the virtual address space. However, given that our primitive P0 targets DRAM,
we need to address them in the physical address space. Luckily, textures are page-
aligned objects. Hence, their virtual and physical addresses share the lowest 12 bits1.

3.3.2 Reverse engineering the caches

Now that we know how to access memory with textures, we need to figure out
the architecture of the two caches in order to be able to access DRAM through
them. The 4 attributes we need to recover are: (a) cacheline size, (b) cache size, (c)
associativity and (d) replacement policy. We describe our novel reverse engineering
technique and how we used it to obtain information about these attributes.

1On most modern architectures, a memory page is 4KB. Hence, 12 bits for the offset within
the page (212 = 4096)
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1 #define MAX max // max offset

2 #define STRIDE stride // access stride

3

4 uniform sampler2D tex;

5 attribute coord;

6 void main() {

7 vec2 texCoord;

8 vec4 val;

9 // for (a) we can omit the external loop

10 for (int i = 0; i < 2; i++) {

11 for (int x = 0; x < MAX; x += STRIDE) {

12 texCoord = offToPixel(x);

13 val += texture2D(tex, texCoord);

14 }

15 }

16 gl_Position = val;

17 }

Listing 3.3.1: Vertex shader used to measure the size of the GPU caches. To obtain
the cacheline size (a) we run the same code performing a single loop over the accesses.

Reversing primitives: To gain the aforementioned details we (ab)use the func-
tionalities provided by the GLSL code that runs on the GPU. Listing 3.3.1 presents
the code of the shader we used to obtain (b). We use similar shaders to obtain the
other attributes. The texture2D() function[50] interrogates the TP to retrieve the
pixels’ data from a texture in memory. It accepts two parameter: a texture and a
bidimensional vector (vec2) containing the pixel’s coordinates. The choice of these
coordinates is computed by the function offToPixel() which is based on the inverse
function g(off) = (x, y) of f(x, y) described earlier. The function texture2D() op-
erates with normalized device coordinates (NDC). These coordinates represent the
3D model to the 2D screen space and they are limited to the [-1, 1] range. For this
reason, we need to perform an additional conversion between pixel coordinates and
NDC. This merely consists in dividing the pixel (x, y) by (W,H).

With this code, we gain access to memory with 4 bytes granularity (dictated by
the size of RGBA8 format). We then monitor the usage of the caches (i.e., num-
ber of cache hits and misses) through the performance counters made available
by the GPU’s Performance Monitoring Unit (PMU). These performance counters
are directly accessible from OpenGL via the GL AMD performance monitor exten-
sion. This exposes performance counters that can be used to monitor L1 requests
(TPL1 TPPERF L1 REQUESTS) and misses (TPL1 TPPERF TP0 L1 MISSES) as well as
read requests to the memory controller (AXI READ REQUESTS TOTAL).
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3. A Primer on integrated GPUs

(a) L1 size (b) UCHE size

Figure 3.4: The two plots show the results obtained by the performance counters
when running the shader in Listing 3.3.1 with stride equal to the cacheline size.

Figure 3.5: Mapping of a UCHE cache-
line into multiple L1 cache sets

L1 UCHE

Size (KB) 1 32
Cacheline (bytes) 16 64
Associativity (#ways) 16 8
Replacement policy FIFO FIFO

Table 3.1: Details of the two caches.

Size: We can identify (a) and (b) with the shader in Listing 3.3.1 – we need to
apply minor changes to obtain (a). We initially recover the cacheline size by setting
STRIDE to the smallest possible value (i.e., 4 bytes) and sequentially increasing MAX

of the same value. We identify this value when Cmiss = 2. This means we overflowed
the content of a single cacheline, hence a new cacheline is loaded. Then we set the
STRIDE to the cacheline size and run the shader until Cmiss − Creq/2 6= 0. We run
the same experiment for both L1 and UCHE. Figure 3.4 shows the outcome of (b)
for both of the caches. We report the retrieved values in Table 3.1.

Associativity and replacement strategy: The non-perpendicular rising edge
in both of the plots in Figure 3.4 confirms they are set-associative caches and it
suggest a LRU or FIFO replacement policy. Based on the hypothesis regarding the
replacement policy we retrieved associativity (c) using dynamic eviction sets. We
depict this technique in the diagram in Figure 3.6. This consists in filling up the
cache with addresses belonging to a set S0 plus an additional evicting address E0,
and then sequentially adding the addresses evicted from S0 to the eviction set. Once
the address added to the eviction set is equal to E0 we have evicted, hence recovered,
every element inside the cache set. Finally, to identify the mapping function, we
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Figure 3.6: Dynamic eviction set to reconstruct the associativity and mapping func-
tion of the cache.

need to identify the common bits among the addresses belonging to the eviction set
(excluding the offset bits as explained in Section 2.2). These, are responsible for
indexing the cache set.

While UCHE resulted in a normal 8-way set associative cache behaving as the
caches described in Section 2.2, we identified 16 ways mapped with an unconventional
function for L1. Given a virtual address 0x9d142a14, considering just its 10 least
significant bits . . . 100|001|0100, bits [0,3] are used for the offset (log2(cacheline)),
while bits 4 and 6 are used to identify the cache set. The remainder creates the tag.
This mapping, as we will explain in the next paragraph, fills L1 with shuffled values
from UCHE.

Once identified the associativity we can recover the replacement strategy (d) by
filling up a cache set and accessing again the first element before performing the
first eviction. We use this technique, due to the prior assumption of a LRU or FIFO
replacement policy. Since the first element gets evicted even after a recent use in
both of the caches we deduce a FIFO replacement policy. This replacement policy
is quite unusual and not commonly seen on CPU caches.
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Synopsis: All the details about these two caches are summarized in Table 3.1. As
can be seen from this table, there are many peculiarities in the architecture of these
two caches and in their interaction. First, the two caches have different cacheline
sizes, which is unusual when comparing to CPU caches. Then, L1 presents twice
the ways UCHE has. One UCHE cacheline is split into 4 different L1 cachelines and
these 4 are then shuffled over two different L1 cache sets by the mapping function
explained above. We shown this mapping in Figure 3.5. We will exploit this property
when building efficient eviction sets in Section 4.3. Finally,the only missing detail
about these caches is their coherency policy. We discovered L1 and UCHE to be
non-inclusive caches. This was to be expected considering that L1 has more ways
than UCHE.

3.4 Generalization

Parallel programming libraries, such as CUDA or OpenCL, provide an attacker
with a more extensive toolset and have already been proven to be effective when
implementing side-channel attacks. Jiang et al. [51, 52] demonstrated two instances
of timing attacks on GPGPUs to recover AES keys. While Naghibijouybari et al. [53]
demonstrated a more generalized outcome demonstrating the possibility of building
covert-channels between two processes concurrently running on a GPU. All these
attacks, however, focus on general purpose discrete GPUs which are usually adopted
on cloud systems, whereas we targeted HSAs on commodity hardware which are not
as powerful and do not necessarily provide support for these libraries.

If confined to the OpenGL API, some newer versions provide other, more powerful,
means to gain access to memory such as image load/store, which supports memory
qualifiers (e.g., volatile usually employed for non-coherent memory accesses when
performing Rowhammer attacks) , or SSBOs (Shader Storage Buffer Objects), which
would have given us linear addressing instead of the tiled addressing explained in
Section 3.3.1. However, they confine the threat model to local attacks carried out
from a malicious application. As we will show in Chapters 4 and 5, we decided to
restrict our abilities to what provided by the OpenGL ES 2.0 API in order to relax
our threat model to remote WebGL-based attacks.

Finally, the reverse engineering technique we described in Section 3.3.2 can be ap-
plied to other OSes and architectures without much effort. Most of the GPUs avail-
able nowadays are equipped with performance counters (e.g. Intel, AMD, Qualcomm
Adreno, Nvidia) and they all provide a userspace interface to query them. We em-
ployed the GL AMD performance monitor OpenGL extension which is available on
Qualcomm, AMD and Intel GPUs. Nvidia, on the other hand, provides its own
performance analysis tool: PerfKit [54].

In the case of a restricted access to the PMU, or no performance counter provid-
ing the necessary data (i.e., cache misses), we could have obtained the same outcome
performing a timing attack. This consists in running the shader in Listing 3.3.1 and
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measuring the time it took after every iteration. We can identify the size of the
cache by identifying a spike on the time taken to access (twice) the elements in the
access pattern. Even if this makes the process slightly more complex, it does not
prevent an attacker from performing the analysis.
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Chapter 4

Attacker Primitives

Every type of attack base itself on a set of primitives. Microarchitectural attacks
are no exception. As mentioned in Chapter 1 we can divide microarchitectural
attacks in two macro families. Those that aim at stealing data and those that
aim at corrupting it. We restrict our analysis to the two most common types of
attacks within these two families, namely (i) timing side-channels, to steal data,
and (ii) Rowhammer attacks to corrupt it. In this chapter we define and recover
the necessary primitives to conduct these attacks from an integrated GPU, exploring
why the latter ”accelerates” these attacks; i.e., makes them more effective than their
CPU counterpart.

4.1 Defining the primitives

We start our investigation from side-channels, describing the current state of the art
in terms of attacks and defenses and identifying our necessary primitives to carry out
such attacks. Then we proceed in doing the same for Rowhammer attacks, giving
first an exhaustive introduction about the Rowhammer vulnerability and eventually
discussing required primitives and defenses.

4.1.1 Timing side-channels

A primary mechanism for leaking data using microarchitectural attacks is to time
operations over resources shared with a victim process (P0). For instance in any
type of cache attack, the attacker measures the difference between a cache hit and
a cache miss to reveal information about a secret operation. This hints at our first
primitive: timers.

Even though the most common family of timing side-channels are the so-called
cache attacks. Since our primitive P0 targets system memory we do not address this
family1, whereas we thoroughly describe the state of the art in timing side-channels
targeting DRAM. These attacks are known as DRAMA attacks.

1For an exhaustive analysis of this topic we suggest [55]
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DRAMA Attacks: As for the caches also DRAM chips present a similar concept
of cache hits and cache misses. This is exhibited by the row hits and row conflicts
generated by the row buffer. The time difference between row hit and row conflict
has been exploited for different purposes in the literature. While this difference was
already known [43], Pessl et al. [16] first described a full class of attacks based on
this property, coining the term DRAMA attacks. Pessl et al. [16] used the differ-
ence between row hit and row conflicts to develop a generalized reverse engineering
technique that can be used to retrieve the usually undocumented DRAM addressing
function on different architectures. Furthermore, they presented a cross-CPU covert
channel with high bandwidth and low error rate that exploits row conflicts in a
PRIME+PROBE2 fashion where the attacker repeatedly access a row while measuring
the access time. Bhattacharya et al. [56] exploited this time difference to identify
the DRAM bank of an RSA exponent to later corrupt it using a Rowhammer attack.
And finally, Schwarz et al. [20], following the trend of remote JavaScript attacks,
demonstrated the possibility of detecting this time difference even from a webpage
making it possible to build DRAM-based remote covert channels.

P1. Timers: Having access to high-resolution timers is a primary requirement for
building any type of timing side-channel. For example, in case of DRAMA attacks,
the attacker must be able to tell the difference between a row hit and a row conflict
with a difference of tens of nanoseconds. While there are many examples of timing
attacks executed natively[9, 10, 13, 15, 16, 57] — on both caches and DRAM —
recent work shows that it is also possible to perform these attacks in JavaScript
from the browser [19, 20, 21, 23, 24], extending their threat to the Internet users.

In response browser vendors reduced the resolution of the performance.now()

timer [33, 34, 35, 36] to 5µs — 100 ms in the case of the Tor browser — in order to
make it harder for attackers to perform timing attacks in JavaScript. However, recent
work shows that simply reducing the timers resolution is not enough. It is possible
to use another core as a timing source by exploiting the SharedArrayBuffer [21]
extension that atomically shares data among two threads. Or it is possible to use two
enhancing techniques known as (i) clock-edging or (ii) edge-thresholding to improve
the resolution of a coarse timer [20, 37]. Clock-edging (i) recovers higher resolution
from the coarsened performance.now() by calling this function in a tight loop until
the value changes. This allows an attacker to obtain a resolution of ∼ 500µs from a
5µs timer. Edge-thresholding (ii), on the other hand, uses a more advanced padding
technique to gain even higher resolution from limited resolution timers. In this case
the attacker uses a constant-time padding function (fP ) that allows her to fill the
gap between the execution of the secret function (fS) she is trying to measure and
the edge of the new clock (i.e., change of the performance.now() value from t to
t+ 5µs). The attacker can then leak information about fS , with 2ns precision, by
requesting the value of performance.now() after executing fS + fP and checking if

2PRIME+PROBE is a generalized attack that consists in (i) filling a cache set with attacker con-
trolled data (PRIME), (ii) waiting for a victim operation to run, and (iii) refilling the cache set while
measuring the time of this operation (PROBE).
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the new measurement has exceeded the new clock edge.

Defenses: As a consequence to these new timing techniques, more fundamental
approaches propose to restructure the architecture of the browser in order to limit,
or even eradicate, the possibility to leak data. Kolhbrenner et al. [37] designed
Fuzzyfox, a browser that introduces randomness in the JavaScript event loop to add
noise to timing measurements performed by an attacker destroying the reliability of
the measurement taken with the two aforementioned implementations and therefore
reducing the bandwidth of the side-channel. Cao et al. [38], instead, propose an
antithetical solution named DeterFox that attempts to make all interactions to/from
browser frames that have a secret deterministic in order to stop an attacker to time
operations that involve secret data making it completely impossible to build any
side-channel.

We show in Section 4.2 how WebGL can be used for building high-precision timing
primitives that are capable of measuring both CPU and GPU operations, bypassing
all existing, even advanced, defenses.

4.1.2 Rowhammer attacks

Rowhammer is a prime example of an attack that corrupts data by abusing a
software-based fault injection attack. In Section 2.3, we described the organiza-
tion of a DRAM chip explaining the concept of rows. These rows are composed
of cells where each cell stores the value of a bit in a capacitor. The charge of a
capacitor is transient, and therefore, DRAM needs to be recharged within a precise
interval (usually 64 ms).

Rowhammer is an fault attack that can be considered a fallout of this DRAM
property. By frequently activating specific rows an attacker can influence the charge
in the capacitors of adjacent rows, making it possible to induce bit flips in a victim
row without having access to its data [12].

There are two main variants of Rowhammer: (i) single-sided Rowhammer and (ii)
double-sided Rowhammer. (i) Single-sided Rowhammer access a specific aggressor
row n — and a random row n+ k needed just to cause a row conflict — triggering
bit flips on the two adjacent rows n − 1 and n + 1 (Figure 4.1a). (ii) Double-sided
Rowhammer, instead, amplifies the power of single-sided Rowhammer by reversing
the roles of these rows. Therefore, the attacker quickly accesses rows n−1 and n+1
(i.e., aggressor rows) in order to impose higher pressure on row n’s (i.e., victim row)
capacitors triggering more bit flips (Figure 4.1b).

The first recorded exploitation of this vulnerability is attributed to Seaborn
and Dullien who managed to gain kernel privileges by triggering bit flips on page
tables[17]. The same exploitation technique was reproposed in Rowhammer.js to
gain root privileges from a browser [23] and on Drammer to obtain the same on ARM
Android devices[32]. The main obstacles in performing these kind of attacks are (i)
knowing the physical location of the targeted row and (ii) fast memory accesses.
These define our next two primitives:
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(a) Single-sided Rowhammer (b) Double-sided Rowhammer

Figure 4.1: Two flavors of the Rowhammer attack. Single-sided hammers from a
single row causing bit flips in the adjacent rows. Double-sided hammers two rows
to trigger bit flips in the “sandwich” row.

P2. Knowledge of the physical location: Knowing the physical location of
allocated memory addresses is a requirement in order to understand which rows
to hammer. The typical approach is to either exploit information from interfaces
such as /proc/pagemap, or to exploit physically contiguous memory in order to gain
knowledge of relative physical addresses. Previous work abuses the transparent huge
page mechanism that is on-by-default on x86 64 variants of Linux [17, 18, 23], which
provided them with 2MB of contiguous physical memory. Huge pages are off-by-
default on ARM. To address this requirement, the Drammer attack [32] abuses the
physically contiguous memory provided by the Android ION allocator. This remains
a fundamental requirement even when approaching this from the GPU.

P3. Fast memory access: Accessing memory quickly is a necessary condition
when performing Rowhammer attacks. In order to be able to trigger bit flips, in
fact, the attacker needs to quickly access different DRAM rows. The CPU caches,
however, absorb most, if not all, of these reads from DRAM. On the x86 architecture,
flushing the CPU cache using the unprivileged clflush instruction is a common
technique to bypass the caches [17, 18, 31]. On most ARM platforms, flushing the
CPU cache is a privileged operation. Drammer [32] hence relies on uncached DMA
memory provided by the Android ION allocator for hammering.

In the browser, there is no possibility for executing cache flush instructions or
conveniently accessing DMA memory through JavaScript. Rowhammer.js [23] and
Dedup Est Machina [24] rely on eviction buffers to flush the caches. While this
works on x86, flushing CPU caches on ARM is too slow to trigger bit flips [32].
Hence, it remains an open question whether it is possible to perform Rowhammer
attacks from the browser on most mobile devices.
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Defenses: Current state-of-the-art defenses propose two main solutions to address
the Rowhammer issue:
– Monitor access patterns: This solution is based on the fundamental nature of
Rowhammer that requires to frequently access a specific aggressor row — or two
in the case of double-sided Rowhammer. By exploiting performance counters
to monitor these access patterns the system can perform targeted refreshes to
recharge the victim rows [40, 58].

– Physical memory isolation: By isolating domains with different privileges (i.e.,
kernel- and user- space), the attacker is (theoretically) incapable of obtaining
privilege escalation [39].

In section 4.3 we address primitive P2 and we discuss how we can use a novel
timing side-channel executed from the GPU that mixes the knowledge of the DRAM
architecture [16] and low-level memory management to find contiguous physical
regions of memory from the browser. Afterwards, in Section 4.4, we reuse this
primitive to enable the more efficient double-sided Rowhammer and report on the
first successful Rowhammer bit flip in the browser on ARM devices.
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4.2 The Timing Arms Race

To implement timing side-channel attacks, attackers need the ability to time a secret
operation (P1). In this section, we present explicit and implicit GPU-based timing
sources, demonstrating how state of the art defenses such as Fuzzyfox and DeterFox
are fundamentally flawed due to their incomplete threat model that does not take
the GPU into account. We start by presenting two explicit timing sources showing
how these allow us to time both GPU’s and CPU’s operations. We then present
two other commutable implicit timers based on the second revision of the WebGL
API. We test all these timers against major browsers as well as the state of the art
defenses mentioned above.

4.2.1 Explicit GPU timing sources

EXT DISJOINT TIMER QUERY is an OpenGL extension developed to provide develop-
ers with more detailed information about the performance of their applications [59].
This extension, if made available to the system by the GPU driver, is accessible from
both WebGL and WebGL2, and provides the JavaScript runtime with two timing
sources: (1 ) TIME ELAPSED EXT and (2 ) TIMESTAMP EXT. Such timers allow an at-
tacker to measure the timing of secret operations (e.g., memory accesses) performed
either by the CPU or the GPU.

TIME ELAPSED EXT

This functionality allows JavaScript code to query the GPU asynchronously to mea-
sure how much time the GPU took to execute an operation.

Since TIME ELAPSED EXT is based on a WebGL extension that requires the un-
derlying OpenGL extension to be accessible, its availability and resolution are driver
and browser dependent. The specification of the extension requires the return value
to be stored as a uint64 in a nanosecond variable as an implementation dependent
feature, it does not guarantee nanosecond resolution, even in a native environment.
Furthermore, when adding the browser’s JavaScript engine on top of this stack the
return value becomes browser-dependent as well. Firefox limits itself to casting the
value to an IEEE754 double in accordance to the ECMAScript specification which
does not support 64 bit integers, while Chrome rounds up the result to 1µs, reducing
the granularity of the actual measurements.

TIMESTAMP EXT

Besides the asynchronous timer, the extension also provides a synchronous func-
tionality for measuring CPU instructions. Specifically, by activating the extension
the OpenGL context acquires a new parameter, TIMESTAMP EXT, which the code
can poll using the WebGL getParameter() function. The result is a synchronous
timestamp returned from the GPU that can be used in lieu of the well-known
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performance.now() to measure CPU operations. As a consequence, techniques
such as clock-edging and edge-thresholding can both be applied to this timer too.

Like TIME ELAPSED EXT, this timer is driver- and browser-dependent. Firefox
supports it, while Chrome disables it due to compatibility issues [60].

4.2.2 WebGL2-based timers

The timers introduced in the previous section are made available through a WebGL
extension. This, similarly to the SharedArrayBuffer timer [21], can be argued to
be easily amendable, by simply disabling the extension. We now demonstrate how
WebGL represents a more fundamental issue in the timing arms race, by showing how
an attacker can craft homebrewed timers using only standard WebGL2 functions.
WebGL2 is the latest version of the API and, while not as widely available as
WebGL1 yet, it is supported by default in major browsers such as Chrome and
Firefox.

The API provides two almost commutable timing sources based on WebGLSync,
the interface that helps developers synchronize CPU and GPU operations. GLSync
objects are fences that get pushed to the GPU command buffer. This command
buffer is serialized and accepts commands sequentially. WebGL2 provides the de-
veloper with several functions to synchronize the two processors, and we use two of
them to craft our timers: clientWaitSync() and getSyncParameter().

clientWaitSync

This function waits until either the sync object gets signaled , or a timeout event oc-
curs. The attacker first sets a threshold and then checks the function’s return value
to see if the operation completed (CONDITION SATISFIED) or a timeout occurred
(TIMEOUT EXPIRED) Unfortunately, the timeout has an implementation-defined up-
per bound (MAX CLIENT WAIT TIMEOUT WEBGL) and therefore may not work in all
cases. For instance, Chrome sets this value to 0 to avoid CPU stalls. To address
this problem, we adopted a technique which we call ticks-to-signal (TTS) which is
similar to the clock-edging proposed by Kolhbrenner and Shacham [37]. It consists
of calling the clientWaitSync() function in a tight loop with the timeout set to
0 and counting until it returns ALREADY SIGNALED. The full timing measurement
consists of several smaller steps:

1. Flush the command buffer.

2. Dispatch the command to the GPU.

3. Issue the WebGLSync fence.

4. (Optional) Execute CPU operation.

5. Count the loops of clientWaitSync(0) until it is signaled.

Whether Step 4 is needed, depends on the secret the attacker is trying to leak, and
if this is a CPU or GPU operation. If measuring a secret GPU operation we use the
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Chrome Firefox FuzzyFox DeterFox

TIME ELAPSED EXT 1µs 100† ns - -

TIMESTAMP EXT - 1.8† µs - -

clientWaitSync 60ns 0.4ns 0.4ns 1.8ns

getSyncParameter 60ns 0.4ns 0.4ns 1.8ns

Table 4.1: Results on different browsers for the two families of timers. With † we
indicate driver dependent values.

CPU as ground truth, but if measuring a secret CPU operation, we require the GPU
operation to run in (relatively) constant time. Since the measurement requires a con-
text change it can be more noisy to the timers based on EXT DISJOINT TIMER QUERY.
Nonetheless, this technique is quite effective, as we show in Table 4.1.

getSyncParameter

This function provide an equivalent solution. If called with SYNC STATUS as parame-
ter after issuing a fence, it returns either SIGNALED or UNSIGNALED, which is exactly
analogous to clientWaitSync(0).

The timers we build using both these functions work on every browser that
supports the WebGL2 standard (such as Chrome and Firefox). In fact, in order
to comply with the WebGL2 specification none of these functions can be disabled.
Also, due to the synchronous nature of these timers, we can use them to measure
both CPU and GPU operations.

4.2.3 Evaluation

We evaluate our timers against Chrome and Firefox, as well as two Firefox-derived
browsers that implement state-of-the-art defenses in effort to stop high-precision
timing: Fuzzyfox [37] and DeterFox [38]. We use a laptop equipped with an Intel
Core i5-6200U processor that includes an integrated Intel HD Graphics 520 GPU for
the measurements. We further experimented with the same timers on an integrated
Adreno 330 GPU on an ARM SoC when developing our side-channel attack in
Section 4.3. However, since we were not able to compile Fuzzyfox and DeterFox for
Android platforms, we did not carry out our evaluation on such system to maintain
consistency over the measurements.

Table 4.1 shows the results of our experiments. The two explicit timers, as
mentioned before, are driver-/browser-dependent, but if available, return unam-
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biguous values. So far, we found that the extension is available only on Fire-
fox. Both Fuzzyfox and DeterFox disable it, without any mention of it in their
manuscripts [37, 38]. Chrome rounds up the value for TIME ELAPSED EXT to 1µs
and returns 0 for TIMESTAMP EXT. As mentioned earlier, the granularity of the mea-
surements obtained from TIMESTAMP EXT can be further improved by implementing
clock-edging or edge-thresholding.

The evaluation of the two WebGL2-based timers, on the other hand, demon-
strated them to be effective in all four browsers. On Chrome, we get a precision of
60ns — enough to distinguish a cache from a memory access. On Firefox, Fuzzy-
fox and DeterFox we managed to get ns and even sub-ns precision — close to the
frequency of our target processor.
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4.3 Side-Channel Attacks from the GPU

Now that we have access to high-precision timers (P1) and we described how an
attacker can gain access to shared resources (P0) through the texture fetch func-
tionality exposed to the shaders, we can exploit these two primitives to build a
timing side-channel. We use this side channel to build a novel attack that can leak
information about the state of physical memory. This information allows us to detect
contiguous memory allocation (P2) directly in JavaScript, mandatory requirement
for building effective Rowhammer attacks.

We start by describing how we are able to build efficient eviction sets to bypass
two levels of GPU caches to reach DRAM.We continue by explaining how we manage
to obtain contiguous memory allocations and finally we show how, by exploiting our
timing side channel, we are able to detect these allocations.

4.3.1 Cache Eviction

Figure 4.2: Efficient cache eviction strategy. The * represents an access to an address
n[4K ∗ i+ 32].

Considering the GPU architecture presented in Section 3.3, the main obstacles keep-
ing us from accessing the DRAM from the GPU is two levels of caches. There-
fore, we need to build efficient eviction strategies to bypass these caches. Recall-
ing the analysis in Section 3.3: UCHE and L1 have different cacheline size with
UCHEline = 4 ∗ L1line, L1 has 16 ways while UCHE just 8 and they are non-
inclusive caches. This last property, combined with the different number of ways,
makes it more difficult to identify canonical eviction sets. However, as shown in
Figure 3.5, 32 of the 64 bytes in a UCHE cacheline map to two 16-byte cachelines
in the same L1 set. We exploit this property to build an efficient eviction strategy.

UCHE sets have 8 ways, a FIFO replacement policy and they load addresses at the
stride of 4KB (i.e., addresses n[0] and n[0 + 4K] map to the same UCHE cache
set). Hence, we need at least 9 memory addresses that are 4KB away from each
other to evict a cacheline (i.e., n[4K ∗ i] with i ∈ [0, 8]). Figure 4.2 demonstrates
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how we use these 9 addresses to evict both of the caches. We start by accessing 8
memory addresses n[4K∗i] with i ∈ [0, 7] (1). These will load 8 64-byte cachelines on
UCHE and as many 16-byte cachelines on L1. Then, (2) we access the last memory
address n[32K] of our access pattern. This evicts one cacheline from UCHE while
loading a new one in L1. Finally, (3) we access again the initial 8 memory addresses
n[4K ∗ i], however, this time by shifting them of 32 bytes (i.e., n[4K ∗ i+ 32]). This
loads the same cachelines to UCHE while loading new cachelines in L1. While the
first 7 accesses cause evictions in UCHE and not in L1. The last access of this
sequence, apart from causing another cache miss in UCHE, will be a cache miss also
in L1 causing the first L1 eviction. Then, by iteratively alternating these 9 accesses
between n[4K ∗ i] and n[4K ∗ i + 32], we are able to load the same cacheline into
UCHE while loading a different cacheline into L1. This strategy allows us to evict
L1 by using the same eviction set for UCHE without incurring additional misses
using textures fetches within the shader. We hence can ignore L1 when mentioning
memory accesses from now on. Every memory access, however, iteratively represents
accessing both n[4K ∗ i] and n[4K ∗ i+ 32] as part of UCHE eviction.

4.3.2 Allocating contiguous memory

As describe in Section 3.3, our test chipsets (i.e., Snapdragon 800/801) operate on
virtual addresses due to the presence of an IOMMU. This means that the GPU is
capable of dealing with physically non-contiguous memory and it allows the GPU
driver to allocate it accordingly. The Android GPU driver for the Adreno GPU
allocates memory using the alloc page() macro in the Linux kernel which queries
its Buddy allocator for single pages [61].

The Buddy Allocator: The Buddy allocator manages free memory in chunks of
power-of-two number of pages [62]. The exponent of this expression is known as
order. When requesting a block of memory to Buddy this gets allocated from the
smallest order it can fit in. For instance, if 7 contiguous pages are requested, they
fit in an order 3 allocation (23 = 8 pages). If no chunk of order n is vacant a chunk
from the next first available order (i.e., n+ 1) is split in two halves. These are the
so-called buddies and they are both of order n. If there are no slots available at
order n+1, the operation is repeated recursively at order n+2 and higher. All the
allocated memory coming from order n + k is physically contiguous. Therefore, all
the consecutively allocated n-order chunks will be contiguous too. This property is
the backbone of primitive P2.

In order to obtain physically contiguous memory starting from order 0 alloca-
tions, we need to exhaust all the memory until we reach an order n that satisfies the
mandatory constraint of 3 consecutive rows to perform double-sided Rowhammer.
Pessl et al. [16] reverse engineered the function mapping physical addresses to DRAM
location for the Snapdragon 800/801 chipsets. Row n stores two consecutive pages
(i.e., 8KB) which are sub-split among two different ranks. Having 8KB per row in
each of the 8 banks translates to 64KB row alignment (Figure 4.3). This converts
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Figure 4.3: Snapdragon 800/801 Memory addressing layout. At the bottom the
physical address space. This maps two half pages to a row. The other half pages
are mapped to the same row but on a different rank.

to 16 pages. As described in Section 4.1.2, to carry out double-sided Rowhammer
attacks we need at least three rows. This translates to order ⌈log2(16 ∗ 3)⌉ = 6
allocations. Order 6 allocations cover 26 = 64 contiguous pages which spans over 4
complete rows.

4.3.3 Detecting contiguous memory

Due to the predictable behavior of the Buddy allocator just described, we know with
high probability that once we allocate some memory at one point we will allocate
some contiguous areas. Now we need to identify these contiguous areas to perform
double-sided Rowhammer attacks. In order to do so, we build a timing side-channel
that measures the time difference between row hits and row conflicts directly from
the GPU.

Design

With order ≥ 4 allocations covering one, or more, rows across every bank, we can
test for row hits accessing addresses mapping to the 16 pages in row n. Assuming
the first byte of row n to be n[0], we know that memory accesses at n[0] will cause
a row hit with memory accesses at n[0 + 4K], a row conflict with memory accesses
at n[0 + 64K ∗ i] and n[4K + 64K ∗ i] with i ≥ 0.

We previously explained that to obtain a block of order n + 1 from the Buddy
allocator we need to exhaust every n-order. This implies that allocations of order
n are likely to be followed by other allocations of the same order(left diagram in
Figure 4.4a). Since every allocation of order ≥ 4 will span over a full row across
every bank, accesses at 64 ∗ i KB are likely to generate row conflicts for every
allocations of order ≥ 4. Therefore, there is no point in triggering row conflicts to
detect contiguous allocations. Furthermore, this property of the Buddy allocator
degrades the granularity of our side-channel to a maximum detectable order of 4,
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(a) Allocations of order ≥ 4. Memory layout on the left and access to the hit-pattern on
the right. We see how the hit-pattern does not generate any row conflict (blue pages). The
yellow page represents the 16 access we removed from the access pattern.

(b) Allocations of order < 4. Memory layout on the left and access to the hit-pattern on
the right. We see that allocations, contrarily to what happens in Figure 4.4a, do not follow
a structured pattern. As a consequence they are very likely to generate row conflicts (red
pages) when accessing the hit-pattern.

Figure 4.4: The diagrams depict the 16 pages per row split among 8 banks of the
Snapdragon 800/801 architecture. It demonstrates why accesses following the hit-
pattern allow us to identify between allocations of oder ≥ 4 from allocations of order
< 4.

since every allocation of order ≥ 4 will behave identically. Nonetheless, we can still
adopt this side channel to gain an insight of the Buddy allocation trend. We can
discern between the two populations (i.e., order ≥ 4 and < 4) by measuring the time
it takes to access memory following a hit-pattern that tries to cause row hits among
its memory accesses (Figure 4.4).

Implementation

A full row spanning across every bank covers 16 pages of the physical address space
(i.e., order 4 allocation). In order to test for row hits we want to touch all these
pages and measure the time it took to perform this access pattern (i.e., n[0+4K ∗ i]
with i ∈ [0, 15]). However, for allocations of order ≥ 4, access patterns with n[0]
that is not row aligned (i.e., n[0] not accessing the first page of a complete row)
generate a row conflict between the first (n[0]) and last (n[0 + 4K ∗ 15]) access —
yellow page in the right diagram of Figure 4.4a. Since the alignment of any access
pattern is unknown, we then limit the hit-pattern to 15 addresses (i.e., n[0 + 4K ∗ i]
with i ∈ [0, 14]).

In order to obtain a single measurement, we test this sequence for multiple offsets
(i.e., 4KB stride) within a 512KB area of the address space and we then compute
the median to identify if the underlying block is backed by contiguous allocations.
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This allows us to maximize the number of row conflicts for allocations of order
< 4 while filtering out the noise from allocations of order ≥ 4. To obtain these
measurements, we employ the TIME ELAPSED EXT asynchronous timer presented in
Section 4.2 due to its explicit nature. Nonetheless, we can use any of the homebrewed
timers introduced in that section.

Evaluation

We evaluate our side channel to show how it can detect allocation trends of the
Buddy allocator. Figure 4.5 shows the mean access time over the allocation order.
Allocations of order ≥ 4 have a lower median and are less spread compared to alloca-
tions of order < 4. We can discern between the two different populations by testing
the median of the measurements taken within the boundaries of a 512KB sample
against a preset threshold value. Furthermore, we can filter out false-positives by
observing the traits of the two different distributions where allocations of order < 4
are more spread than those of orders ≥ 4. This is due to the varying possibility of
generating row conflicts depending on the offset under test.

95

119

143

167

0 1 2 3 4 5 6
Allocation Order

M
ea

n 
A

cc
es

s 
T

im
e 

(n
s)

Figure 4.5: Evaluation of contiguous memory timing side-channel.
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4.4 Rowhammer Attacks from the GPU

Now that we have access to contiguous physical memory directly in JavaScript using
our GPU-based side-channel attack discussed in Section 4.3 we can demonstrate
how we can remotely trigger Rowhammer bit flips on this contiguous memory by
exploiting the texture fetching functionality from aWebGL shader. We then evaluate
the results of our implementation.

4.4.1 Eviction-based Rowhammer on ARM

In order to trigger bit flips we need to be able to access the aggressor rows fast
enough to influence the victim row. Therefore, we need to build an access pattern
that allows us to optimize the access time to the aggressor rows. In Section 4.3,
we demonstrated an efficient cache eviction strategy to implement our contiguous
memory detection side-channel. This efficient technique gains even more relevance
when trying to trigger Rowhammer bit flips. The FIFO replacement policy requires
us to perform DRAM accesses to evict a cacheline. This is much slower compared
to architectures with the common LRU policy where the attacker can reuse cached
addresses for the eviction set. Nonetheless, we can benefit again from the limited
cache size and deterministic replacement policy in GPUs to build efficient access
patterns.

Since DRAM rows cover 8 KB areas (split among the ranks) of the virtual
address space and each UCHE set stores addresses at 4 KB of stride we can map
at most two addresses from each row to a cache set. Recalling the description in
Section 4.1.2, when performing double-sided Rowhammer we access rows n− 1 and
n+ 1 to trigger bit flips in row n. Which means that with two aggressor rows, and
two pages per row, we have at most 4 hammering-accesses in our access pattern.
With 8 ways per UCHE set we need to perform 5 more DRAM accesses in order to
evict the first element from the cache set. We call these accesses idle-accesses, and
we choose their addresses from other banks to keep the latency as low as possible.
Our access pattern interleaves hammering-accesses with idle-accesses in order to
obtain a pareto optimal situation between minimum and maximum idle time. This
access pattern is depicted in Figure 4.6a.

Since we currently have no knowledge about the row alignment among the dif-
ferent allocations we need to indiscriminately hammer every 4 KB offset. However,
not all of these alignments are effective in order to trigger bit flips. For instance,
Step 2 in Figure 4.6a, splits the hammering-accesses over 2 banks, dramatically
incrementing the mean time between these.

We can optimize this by building a timing side-channel similar to the one pre-
sented in Section 4.3. Recalling the description of the hit-pattern, we removed
n[4K ∗ 15] from the access pattern since it caused row conflicts for every sequence
with n[0] not row aligned. Now we can exploit this very property to detect the
alignment of the two pages. We can build an access pattern that aims at detecting
this row conflict. This follows the pattern presented in Figure 4.6b. As you can see
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(a) Hammer Pattern. In red the hammering-accesses that cause row conflicts. In blue the
idle-accesses that cause row hits on other banks.

(b) Access Pattern to detect row alignment. By measuring the time difference between
shifting this access pattern of 4KB we can identify where the row is starting and cut in half
the number of offsets we need to hammer.

Figure 4.6: Access patterns used for Rowhammer attacks. The numbers in the pages
represent the order of the accesses.

this access pattern allows a user to detect which alignments start at the beginning
of the row. By identifying this alignment we can reduce in half the number of offsets
we need to hammer increasing the stride after every execution from 4KB to 8KB.
Thus, we can skip Step 2 of Figure 4.6a.

4.4.2 Evaluation

Drammer [32] studies the correlation between median access time per read and
number of bit flips. The authors demonstrate that the threshold time needed to
trigger bit flips on ARM platforms is∼ 260ns for each memory access. We computed
the mean execution time over the 9 memory accesses following our hammer -pattern.
The mean access time for hammering-accesses is on average ∼ 180ns, which means
that our GPU-accelerated hammering is fast-enough for triggering bit flips. We
tested our implementation on 3 vulnerable smartphones: Nexus 5, HTC One M8
and LG G2. All of them including the Snapdragon 800/801 chipsets. We managed
to obtain bit flips on all three platforms3.

We compare our implementation against a native eviction-based implementation
running on the CPU adopting cache eviction strategies proposed by in Rowham-
mer.js [23]. Even on our most vulnerable platform (i.e., Nexus 5) and with perfect
knowledge of physical addresses for building optimal eviction sets, we did not man-
age to trigger any bit flip. The reason for this turned out to be the slow eviction of
CPU caches on ARM: each memory access, including the eviction of CPU caches,
takes 697ns which, compared to the threshold value of ∼ 260ns, is far too slow

3Out of these 3 smartphones, however, the HTC One M8 and LG G2 revealed a limited number
of vulnerable cells, hence triggering less bit flips. We verified this even with a native Drammer
implementation.
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Drammer Rowhammer.js∗ GPU∗

Nexus 5 X/ - - / - X/ X

HTC One M8 X/ - - / - X/ X

LG G2 X/ - - / - X/ X

Table 4.2: Ability to trigger bit flips from a native application (left) and remotely
(right) on ARM test platforms. * implements eviction-based Rowhammer.

to trigger Rowhammer bit flips. Table 4.2 summarizes our findings showing the
effectiveness of the currently known techniques to trigger bit flips on ARM. Our
GPU-based Rowhammer attack is the only known technique that can produce bit
flips with eviction-based Rowhammer on ARMv7 architecture. Moreover, due to
the seamless commutativity between OpenGL and WebGL our technique is the first
one to prove the possibility of performing remote Rowhammer attacks on mobile
platforms.

We demonstrate the advantages of GPU-accelerated microarchitectural attacks by
measuring the time to first bit flip and #flips/min on the Nexus 5. We excluded
the other two platforms due to their limited number of vulnerable cells. Time to first
bit flip includes in the measurements the time required to detect contiguous memory
via our side-channel attack presented in Section 4.3). This is to demonstrate the
practicality of such attack disproving the validity of the assumption made by Brasser
et al. [39] that remote Rowhammer attacks are too time consuming to be relevant
in a real scenario.

We run the experiment 15 times looking for 1-to-0 bit flips. After each exper-
iment, we restart the browser to bring the phone to its initial state. It took us
between 13 to 40 seconds to find our first bit flip with an average of 26 seconds.
This difference in the time that our attack takes to find its first bit flip is due to
locating contiguous memory given that the browser physical memory layout is dif-
ferent on each execution. De facto, finding bit flips usually takes few seconds once
we detect an allocation of order ≥ 4. Moreover, after identifying the first bit flip,
on average, we find 23.7 flips/min.
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Chapter 5

Exploitation & Mitigations

In this chapter, we describe how we managed to harmoniously coordinate all the
primitives presented in Chpater 4 to build a reliable exploit compromising a mobile
browser. We first exploit the timing side-channel presented in Section 4.3 to retrieve
the physical location of the memory and we afterwards exploit the Rowhammer
bit flips described in Section 4.4 to compromise a JavaScript object and obtain an
arbitrary memory read/write primitive. Before discussing our exploitation technique
we introduce our threat model. This model is not restricted to the exploit we present
in this chapter but has the goal of showing the extent of this far-reaching threat
answering the research question we initially posed in Chapter 1. We conclude this
chapter presenting our suggestions on how to mitigate, in software, such threat.

5.1 Threat Model

We consider an attacker with access to an integrated GPU. This can be achieved
either through a malicious (native) application or directly from JavaScript (and
WebGL) when the user visits a malicious website. For instance, the attack vector
can be a simple advertisement controlled by the attacker. To compromise the tar-
get system, we assume the attacker can only rely on microarchitectural attacks by
harnessing the primitives provided by the GPU. We also assume a target system
with all defenses up, including advanced research defenses (applicable to the ARM
platform), which hamper reliable timing sources in the browser [37, 38] and protect
kernel memory from Rowhammer attacks [39].

5.2 Exploitation

In order to compromise the JavaScript sandbox of the Firefox browser we need one
more primitive used in any standard exploitation technique. This is the arbitrary
memory read/write primitive. An attacker in possession of this primitive can read
and write any mapped region of the process virtual address space allowing her to
obtain remote code execution by overwriting a method pointer of a JavaScript object
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with arbitrary content [63]. While usually this is obtained by exploiting multiple
software bugs, we want to show that we can obtain such primitives solely by exploit-
ing our GPU-accelerated microarchitectural attacks. To do so we need to identify
a data structure that gives us such power if compromised by our bit flips. We call
this object hammer target and we define it in Section 5.2.2.

The exploitation consists in 4 main steps: (i) we first need to identify contiguous
memory, then (ii) we need to hunt for exploitable bit flips, afterwards (iii) we need to
land our hammer target on the vulnerable cell and finally (iv) we need to trigger the
bit flip to compromise our object in order to gain the arbitrary read/write primitive.
We describe each of these steps in a separate section.

5.2.1 Allocate and detect physically contiguous memory

First step to carry out our attack is what we described in Section 4.3, namely we
need to know the (relative) physical address of memory allocations to reliably mount
the more effective double-sided Rowhammer attacks. For this purpose, we exploit
our timing side-channel to coarsely identify contiguous memory up to 64KB. Then,
to discover allocations of order ≥ 6 we use the first bit flip as a side-channel. Con-
sidering the predictable behavior of the Buddy allocator we know that allocations of
order n are likely to be followed by allocations of order ≥ n. Since, with our timing
side-channel, we have recovered a block of the address space backed by an allocation
of order ≥ 4 we can now heuristically hammer the memory allocated after this area
while looking for bit flips to detect allocations of order ≥ 6. The first bit flip will
likely represent an allocation of this order. While this methodology is based on a
heuristic, we demonstrated its effectiveness in Section 4.4 with a mean time to first
bit flip of 26 s.

5.2.2 Bit flips hunt

Once we have obtained physically contiguous memory, we need to find exploitable
bit flips to later reuse to gain control over the memory (Figure 5.3a). This process
resembles what we explained in Section 4.4. The number of exploitable bit flips,
however, completely depends on the hammer target.

Hammer Target: The most common JavaScript objects used to retrieve an arbi-
trary read/write primitive are the ArrayBuffer objects. These buffers were intro-
duced to aid the usage of libraries such as WebGL which seek high performances and
need full control over raw data making it unfeasible to employ normal JavaScript
Array objects. With byte control over the stored data they implicitly provide ar-
bitrary read/write. However, this is scoped to attacker’s controlled data. While
initially these objects were stored in the heap with medatadata and data inlined
(Figure 5.1a), browsers’ developers quickly realized that it represented a terrible de-
sign in terms of security since every overflow could allow an attacker to overwrite the
metadata of the object following in the heap. As a consequence, in newer browsers
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(a) Metadata is inlined with the data. (b) Metadata and data are stored seperately

(c) 1-to-0 bit flip inside the data pointer al-
lows the attacker to pivot the pointer towards
other data structures.

(d) 0-to-1 bit flip inside the size field allows
the attacker to increase the size to cover the
metadata of the following object.

Figure 5.2: Heap layouts and exploitation.

versions these two parts of the objects are separated hardening their exploitation
(Figure 5.1b).

Bosman et al. [24] exploited these objects in their Dedup est Machina attack to
craft a fake object within the ArrayBuffer over which they had full control and
later performed pointer pivoting (i.e., changing the value of a pointer to point to
your fake object) by exploiting a Rowhammer bit flip, in order to gain access to
that object. This technique, however, relies on the assumption that the attacker
is in possession of an information leak to break ASLR and craft the fake object.
We decided to avoid this step to demonstrate that it is possible to build the same
primitive in a zero-knowledge scenario.

While we mentioned that all modern browsers currently separate ArrayBuffer’s
metadata and data, SpiderMonkey (i.e., Firefox JavaScript engine) still enforces
the inline design for ArrayBuffer objects that are initialized with size smaller than
96 bytes. When the size of these objects gets increased over this threshold the objects
get relocated and split between metadata and data. However, if we manage to gain
such overflow by exploiting our Rowhammer bit flips we can bypass these checks and
avoid to relocate the data buffer. The metadata of these objects is of 48 bytes and
it contains two possible targets for our bit flips. We can either (i) directly hammer
the size field triggering a 0-to-1 bit flip (Figure 5.1d), or we can (ii) trigger a 1-to-0
bit flip on the least significant bits of the data pointer (Figure 5.1c).

Exploitable bit flips: Now that we know the objects we want to hammer we
need to understand how many bit flips are exploitable within a page. SpideMonkey,
allocates these buffers in 3 sizes: 32, 64, 96 bytes. We discovered that each of
these sizes gets allocated in separate heaps in memory making it more difficult to
obtain effective memory layouts. Nonetheless, we analyzed the number of possible
arrangements and we discovered that a bit flip is exploitable in more than 22% of
locations within a page. This minimum value takes into consideration, not only
the layout of the objects, but also a conservative scenario where just 8 bits are
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(a) The attacker finds an exploitable bit flip. (b) The attacker releases the vulnerable page.

(c) The attacker triggers multiple JavaScript
allocations in order to reuse the vulnerable
page.

(d) The attacker execute the Shader and trig-
ger the bit flip on the hammer target.

Figure 5.4: Bit flip exploitation.

exploitable from the data pointer (i.e., pointer pivoting of at most 256 bytes, hence
within the page) and 25 most significant bits of the size field.

5.2.3 Memory reuse

Once we have identified our target exploitable bit, we need to land sensitive data
on the vulnerable location. We can accomplish this in two stages. First, we need to
free the vulnerable texture. Since the backing OpenGL library adopts some pooling
techniques to gain better performances, we need to force this release by releasing
multiple objects in order to fill up this pool. We discovered the pool to contain
2048 pages. By releasing this amount of memory we can systematically release our
vulnerable page back to the Buddy allocator (Figure 5.3b).

Then we need to trigger the JavaScript engine to request such page. We obtain
so by allocating multiple instances of our hammer target. This exhausts the current
memory reserved by the SpiderMonkey heap and requests newer pages from the
Buddy allocator (Figure 5.3c).

5.2.4 Data corruption

Now that our ArrayBuffer is landed on the vulnerable page we need to spawn again
our shader to the GPU in order to trigger the bit flip on the ArrayBuffer’s metadata
(Figure 5.3d). Depending on the field we are trying to hammer (i.e., (i) size or (ii)
data pointer) we then gain access either to the consecutive object (i) or to another
object stored at 2n bytes away, where n is the bit position we manged to flip.

We can finally identify the compromised object by iterating over the array of
allocated ArrayBuffer objects and checking the byteLength in case (i) or the con-
tent of the buffer in case (ii). Now we have control over the metadata of another
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object allowing us to corrupt this gaining control over the data pointer and the size
field, hence gaining an arbitrary read/write primitive.

5.3 Mitigations

Now that we have demonstrated how we can compromise a mobile browser sandbox
using only microarchitectural attacks, in this section we discuss possible mitigations
against GPU-accelerated attacks. We divide the discussion in two parts: 1. defend-
ing against side-channel attacks, and 2. possible solutions against browser-based
Rowhammer attacks.

5.3.1 Timing side channels

To protect the system against side-channel attacks, currently the only practical
solution in the browser is disabling all the possible timing sources. As we discussed
earlier, we do not believe that breaking timers alone represents a solid long-term
solution to address side-channel attacks. However, we do believe that eliminating
known timers makes it harder for attackers to leak information. Hence, we now
discuss how to harden the browser against the timers we built in Section 4.2.

First, we recommend disabling the explicit timers provided by the WebGL ex-
tension EXT DISJOINT TIMER QUERY. If disabling them does not represent a viable
option, we at least suggest reducing their granularity similar to what browser vendors
have done with performance.now() [33, 34, 35, 36]. As mentioned in Section 4.2,
Chrome already limits the precision of the TIMESTAMP EXT timer to 1µs. While
this does not stop an attacker from building the side-channel, it at leasts reduces
the bandwidth of the channel making it more difficult to exploit it in real world
scenarios.

Furthermore, we suggest impeding every type of explicit synchronization be-
tween JavaScript and the GPU context. Functions such as clientWaitSync() and
getSyncParameter() allow an attacker to build implicit timers that can be used
to leak – or transmit in the case of covert channels – sensitive data from both
CPU and GPU. As a consequence, they need to be redesigned in order to disrupt
these channels. A possible solution to fix the clientWaitSync() function could
be to implement it through a callback that executes in the JavaScript event loop
only when the GPU has concluded its operation. This callback will then be sub-
ject to recently proposed defenses in FuzzyFox [37] and DeterFox [38]. WebGL
functions that directly expose sensitive information to the JavaScript context such
as getSyncParameter(), if they cannot be disabled, should be at least coarsened
to report completion only after a certain amount of time has passed, similar to
performance.now().

We are currently following responsible disclosure and discussing these mitigations
with major browser vendors.
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(a) The attacker releases the vulnerable page. (b) The page released from the WebGL con-
text gets tagged and cannot be reused until
the context is active.

Figure 5.6: Page tagging mechanism to enforce conditional reuse.

5.3.2 GPU-accelerated Rowhammer

Ideally, Rowhammer should be addressed directly in hardware or vendors need to
provide hardware facilities to address Rowhammer in software. For example, In-
tel processors provide advanced PMU functionalities that allow efficient detection of
Rowhammer events as shown by previous work [40]. Unfortunately, such PMU func-
tionalities are not available on ARM platforms and, as a result, detecting Rowham-
mer events will be very costly, if at all possible. But given the extent of the vulner-
ability and the fact that we could trigger bit flips in the browser on all three phones
we tried, we urgently need software-based defenses against GPU-accelerated attacks
in the browser.

Page Tagging: As discussed in Section 4.4, to exploit Rowhammer bit flips, an
attacker needs to ensure that the victim rows are reused to store sensitive data (e.g.,
ArrayBuffer). Hence, we can prevent an attacker from hammering valuable data
by enforcing stricter policies for memory reuse. A solution may be enhancing the
physical compartmentalization initiated by G-CATT [39] to userspace applications.
For example, one can deploy a page tagging mechanism that does not allow the reuse
of pages tagged by an active WebGL context (Figure 5.6). By isolating pages that
are tagged by an active WebGL context using guard rows [39], one can protect the
rest of the browser from potential bit flips that may be caused by these contexts.

There are trade-offs in terms of complexity, performance, and capacity with
such a solution. Implementing a basic version of such an allocator with statically-
sized partitions for WebGL contexts is straightforward, but not flexible as it wastes
memory for contexts that do not use all the allocated pages. Dynamically allocating
(isolated) pages increases the complexity and has performance implications. We
intend to explore these trade-offs as part of our future work.
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Chapter 6

Conclusion

Research on microarchitectural attacks has shown their applicability in different
scenarios and with different purposes. Research on side-channels has shown how
these attacks can be used to compromise cryptographic algorithms [9, 13], break
ASLR [15, 45] and even reverse engineer systems’ microarchitectures [16, 53], while
research on Rowhammer has shown the possibility of compromising both cloud
VMs [18, 31] and browsers [23, 24], and also obtain privilege escalation [17, 32].
While these attacks cover a broad spectrum of goals, they all rely on the common
implicit assumption of a CPU as exploitation vector. As a consequence, all the
state-of-the-art defenses proposed in recent studies [37, 38, 39, 40] try to address
these issues placing only CPUs in the scope of their threat model.

The goal of our research was to question the validity of this assumption by trying
to build microarchitectural attacks on commodity platform employing a different
exploitation vector: integrated GPUs.

At the beginning of our study we posed the following research question:

What means does the GPU provide to an attacker for building microarchitectural at-
tacks? And how do currently proposed defenses against traditional implementations
cope with this new exploitation vector?

We now discuss our findings keeping the structural separation between side-channels
and Rowhammer attacks that we enforced throughout the manuscript. We then
conclude with some final remarks.

6.1 Side-channel attacks

One of the goals of this research was to identify how an integrated GPU aids the
process of building side-channel attacks. During our analysis in Chapter 4 we defined
“timers” as our necessary primitive for building timing side-channels. We showed
how the GPU directly provides an attacker with explicit timing sources and further
aids the process of crafting new homebrewed timers — allowing attackers to bypass
state-of-the-art defenses from both industry and academia. Moreover, the very high
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precision of the resulting timers can help crafting fast and reliable side-channel
attacks, minimizing the impact of noise. To substantiate this claim, we reported
on the first instance of a remote GPU-based side-channel attack that relies on (i)
the deterministic behavior of the GPU caches and (ii) the predictable nature of the
Buddy allocator to detect contiguous memory allocations (P2).

By presenting multiple examples of WebGL-based timers we aimed at demonstrating
how tackling the threat posed by timing side-channels by besieging timing sources
does not represent a viable and long-term solution to the issue. Furthermore, the
intent of crafting homebrewed timers based on the WebGL2 API was this of avoid-
ing criticism resulting from the insecure nature of the EXT DISJOINT TIMER QUERY

WebGL extension. In fact, while this extension, as already proposed for the timing-
prone browser extension SharedArrayBuffer [38], can be argued to be easily amend-
able by simply disabling it, WebGL, and its revision WebGL2, are deeply embedded
into many Web applications and disabling them is hardly a pain-free option.

We strongly believe that as long as the JavaScript context will synchronously
interact with external contexts such as WebWorkers [21], WebGL and potentially
others (e.g., audio), a diligent attacker will always be able to craft new timing sources
and our homebrewed timers are a demonstration of this. By targeting state-of-the-
art defenses (i..e, Fuzzyfox and DeterFox) we further wish to demonstrate a more
structural redesign of modern browser is required in order to implement security-
by-design in parallel with the main focus on performances.

Finally, while the aim of our side-channel was to obtain primitive P2 in order to
reuse it to build effective Rowhammer attacks, we believe that other remote side-
channel attacks through the GPU may be possible given that they can potentially
share more resources with the CPU cores [48]. We recommend this as a possible
topic for future studies. We hope with this work to spur further research in this area
to highlight the security implications of side-channel attacks from integrated GPUs.

6.2 Rowhammer

Van der Veen et al. [32] reported eviction-based Rowhammer on ARMv7 to be
too slow to trigger bit flips from the CPU. We confirmed their findings with the
experiment we conducted in Section 4.4. With our GPU-accelerated attack we
demonstrate how, by shifting the attack paradigms and employing an integrated
GPU as exploitation vector, we are able to overcome current limitations obtaining
the first eviction-based Rowhammer bit flip on this architecture. More dramatic
is the fact that the WebGL API allows us to trigger these bit flips from a website
without experiencing any complication, nor performance issue (i.e., difference in
number of bit flips), compared to a native environment.

With 26 s to the first bit flip and 23.7 flips/min following the prime, we establish
a powerful primitive for remote mobile Rowhammer attacks, demonstrating how
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dangerously erroneous is the assumption that remote Rowhammer attacks are not
practical [39], hence they do not need to be addressed.

Our GPU-accelerated Rowhammer attack serves as a proof of how we need to extend
our threat model to cover exploitation vectors other than CPUs, not only in the
context of side-channels, but also when building Rowhammer attacks. This issue
needs to be addressed in future studies. We believe that the best solution to thwart
this threat resides in software-based mitigations that rely on performance counter
such as ANVIL [40]. However, since these resources are currently not available for
these processors, we aim at investigating possible software-based defenses targeting
these types of attacks in our future work.

6.3 Conclusions

We showed that it is possible to perform advanced microarchitectural attacks di-
rectly from integrated GPUs found in almost all mobile devices. These attacks are
quite powerful, allowing circumvention of state-of-the-art defenses and advancing
existing CPU-based attacks. More alarming, these attacks can be launched from
the browser. Our exploit represents the first instance of a Web-based microarchi-
tectural attack on ARM platforms and aims at demonstrating how browsers’ GPU
acceleration, while brining faster graphics rendering, also paves the way to more
powerful microarchitectural attacks than possible before. While current research
addressing heterogeneous system architecture security merely suggests memory ac-
cess control [6], we show how these policies already enforced in different platforms,
such as our test system Nexus 5, do not protect the users from advanced microarchi-
tectural attacks. While we have plans for mitigations against these attack and we
are currently following responsible disclosure to discuss these with browser vendors,
we hope our efforts will make processor vendors more careful when embedding the
next specialized unit into our commodity processors.
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