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Summary

Objective Evaluation of Flight Simulator Motion
Cueing Fidelity Through a Cybernetic Approach

Daan M. Pool

Flight simulators provide a flexible, safe, efficient, andsleostly alternative to real
flight. For this reason, flight simulators are widely usedviaton, with applications in
both pilot training and a range of research and aircrafiesgstevelopment programs. Due
to the fact that the motion of a real aircraft induces foraes moments on pilots’ bodies
during flight, the importance of replicating thgsleysical motion stimuiin flight simulator
devices has been assumed and stressed since the verydirgpistat flight simulation. Due
to technological, practical, and financial limitationsyfpet one-to-one replication of the
physical motion stimuli that are experienced during flightground-based simulators is,
however, not feasible.

The extent to which a simulator is capable of replicatingdbeesponding in-flight en-
vironment and experience is typically referred to adidslity. In addition to the quality of
the simulatormotion system hardwarehe key factor that affects the fidelity of simulator
motion cueing is the distortion of the aircraft motion stlihy simulatormotion filter al-
gorithms Such motion filters transform the true aircraft rotatiomad translational motion
to a reduced representation of that motion, which is thesdusing a simulator’s motion
system. The most notable of these transformations are drexysindependergcaling to
reduce overall magnitude of the cued simulator motion,tdgh-pass filteringto attenuate
the low-frequency motion that is especially difficult to liepte. The extent of the distor-
tion of the true aircraft motion induced by a motion filterasgely determined by the values
of its parameters the scaling gains high- and low-pass filtebbreak frequenciesand other
parameters that together define the motion filter dynamics.

It has been argued that high-fidelity simulator motion cgemindispensable for the
training of low-level manual flying skills, that is, for adgng the correcskill-basedman-
ual aircraft control behavior. Current guidelines and regqaents for achieving high-fidelity
simulator motion cueing are, however, mostly technologgtered and largely disregard the
human perceptual processes that ultimately define a sionigldidelity. A limited under-
standing of human motion perception and how visual and physiotion stimuli are used
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for manual control still stands in the way of formulating silator motion cueing fidelity
requirements that adequately account for this human eleimegrent to flight simulation.

In this thesis, simulator motion cueing fidelity is evaluhte thebehaviorallevel, that
is, by considering a simulator’s ability to induce realdfligilot manual control behavior
This is achieved by comparing pilot manual control behatbietwveen real flight and in a
moving-base simulator and analyzing thehavioral discrepanciethat are induced in the
simulator as a result of limitations in the supplied motidimsli. For this evaluation of
behavioral simulator motion fidelity, @/bernetic approacks adopted in which the occur-
ring discrepancies in pilot control behavior are analyzgdgmultimodal pilot modelsThe
multimodal pilot models that are used in this thesis for griap the contribution of physical
motion feedback to pilot manual control behavior explicatcount for pilots’ responses to
visualandphysical motion stimuliFitting such pilot models to time-domain measurements
of pilot control behavior usingparameter estimation techniquatiows for theobjective
quantification of multimodal pilot control dynamics andatsaptation to variations in sim-
ulator motion fidelity. In this thesis, this approach isia8d to explicitly compare pilot
control behavior during skill-based manual control taskdgrmed inreal flight with con-
trol behavior observed, under a variation in motion filtettisgs, in a moving-base flight
simulator. The simulator motion cueing settings that yjldt control behavior that most
closely matches the measured real-flight behavior are taénedl to yield the highest level
of behavioral simulator motion fidelity.

The manual control tasks considered for the evaluation b&tieral simulator motion
fidelity are skill-based aircraft attitudeacking tasks It has been shown that the control
behavior adopted during such tracking tasks is sufficiestdyionary and time-invariant to
allow for modeling it withquasi-linear control-theoretical modelin the considered track-
ing tasks, pilot control behavior is induced using tieecing function signalswith the first
inserted as a reference signal that is to be followed, ansbend as an external disturbance
on the controlled aircraft dynamics. Two different typedratking tasks are considered in
this thesis for the evaluation of behavioral simulator miofiidelity. The first ar&eompen-
satorytracking tasks where the target and disturbance forcingtioims are independent
quasi-random multisine signalas it has been shown that the contributions of visual and
physical motion stimuli to the exhibited pilot tracking lzasfior can be reliably separated for
such tasks. In addition, tracking tasks in which a quasttoammultisine disturbance signal
is combined with aleterministictarget forcing function that consists of multiple rampelik
changes in target attitude are also considered, as such taste closely resemble oper-
ational manual flying and maneuvering tasks. For these dereiramp-tracking tasks
pilots, however, no longer use a purely compensatory cbstrategy. Therefore, an aug-
mentation to the multimodal pilot models that are used fodeliog compensatory tracking
behavior, which accounts for this change in manual conbllior through an additional
pilot feedforward response to the deterministic targetifay function signal, is proposed
and evaluated.

This thesis describes a number of experiments, all perfdimthe SIMONA Research
Simulator (SRS) at Delft University of Technology, in whipfiot tracking behavior was
measured under an applied variation in simulator motiolingugettings. The strongest and
most consistent changes in pilot control behavior that Bser/ed with increasing attenu-
ation of the supplied simulator motion, both resulting freeduced motion filter gains and
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increased motion filter break frequencies, are observeyilfitis’ responses to visually pre-
sented tracking errors. A compilation of the data from a neimd§ simulator experiments
described in this thesis and previous experiments destiiblgerature showed that, on av-
erage, the gain of the pilot visual response reduces witlmar@0% between tracking with
one-to-one motion feedback and tracking without physicatiom feedback. In addition to
this decrease in pilot gain, an around 30% increase in theiahod visual lead equalization
performed by pilots, and a slight reduction in the delay & gilot visual response were
also observed as highly consistent effects of motion fileerations on pilot tracking be-
havior. Pilots’ responses to physical motion stimuli wererfd to be largely unaffected by
variations in motion cueing settings.

The major milestone for the research described in thissheshe direct comparison of
multimodal pilot control behavior based on in-flight and slator measurements of pilot
tracking behavior, as this allows for the true evaluatiorsiofiulator fidelity with respect
to real flight. For the two roll attitude tracking tasks catesied for this comparison —
one with two multisine forcing function signals, the othec@nbined ramp-tracking and
disturbance-rejection task — the in-flight measuremente wellected using Delft Univer-
sity of Technology’s Cessna Citation Il laboratory airtr#fs it is known that pilot control
dynamics are also affected by important task variables asdhe display characteristics,
sidestick manipulator, and the controlled aircraft andtemrsystem dynamics, it was at-
tempted to match these variables as best as possible bebotethe experimental setups
in the laboratory aircraft and the SRS. This was done to ensat none of these factors
affected the desired isolated comparison of the effectanfing motion feedback settings
on pilot manual control behavior.

When comparing the considered metrics for the evaluatiom-dfight and simulator
measurements of pilot tracking behavior, it was found thatdontrol behavior observed in
real flight showed an obvious reliance on physical motiombeek, which clearly differ-
entiated the adopted control strategy from that observeémconditions without physical
motion feedback. A comparison of the control behavioral sneaments collected in real
flight and for the simulator motion cueing conditions withl motion closest to the true
aircraft roll motion in the SRS, however, showed slightlydmled task performance and
decreased control activity for the in-flight tracking tasksurthermore, the most notable
behavioral discrepancies that were observed from multahpitbt model analysis between
these sets of data were a decrease in the gain with whicts piésponded to visual and
physical motion stimuli, an increase in the latency of tegponses to visually presented
tracking errors, and a decrease in the natural frequencheoheuromuscular actuation
dynamics. Using measurements of single-loop tracking\iehaollected in both the lab-
oratory aircraft and the SRS, the different neuromuscuttuagion dynamics were shown
to result from the different sidestick and pilot seat ava#ain both experimental setups.
The remaining observed behavioral discrepancies couldh@dtaced back to similar dis-
crepancies in the controlled task variables between ttigint and simulator parts of the
experiments. The fact that the physical motion feedbacKabla in these SRS conditions
was in fact equivalent to that available in real flight suggéisat these behavioral discrep-
ancies are the result of pilot-centered variables, suchawation and stress, affecting the
comparison of in-flight and simulator measurements of gwtrol behavior. Thereby,
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these obtained results illustrate the complexity, andaesthe limitations, of such human-
centered in-flight to simulator comparisons.

The cybernetic approach to the evaluation of simulator emdfidelity as proposed and
evaluated in this thesis was found to provide valuable htsigto the effects of simula-
tor motion cueing fidelity on pilot manual control behavidthis cybernetic approach al-
lowed for the unequivocal confirmation of both the presenu# mature of the adaptation
of skill-based pilot tracking behavior to variations in higass motion filter settings. For
the compensatory roll attitude tracking task for which aplieX comparison of pilot track-
ing behavior measured in real flight and in a moving-base lsitouwas performed, it was
found that, despite the fact that a perfect match of pilottrmdrdynamics in both envi-
ronments was not observed, pilot control dynamics for a@rpamtal conditions with only
very limited attenuation by roll motion filters matched thesbline in-flight measurements
best. This was especially reflected in behavioral metrias Were shown to most clearly
reveal the adaptation of pilot control dynamics to variagian motion cueing, such as the
pilot visual gain and lead time constant. Despite the matlifientrol task due to the use
of a deterministic ramp forcing function signal, the same whserved for the roll attitude
ramp-tracking task for which this comparison of in-flightdasimulator behavior was also
performed. All experimental results described in this ih#®erefore suggest that achieving
the highest level of behavioral simulator motion fidelityrasponds to replicating the mo-
tion stimuli that are utilized by pilots during manual caitwith as limited attenuation as
possible

Due to the success of the adopted cybernetic approach irtifyirzag the behavioral
adaptation induced by motion filter dynamics, importantifatwork is thought to be the
extension of the adopted methods to true operational maoa#iol and maneuvering tasks.
This requires significant extension of the models of pilonoal control behavior that are
currently available, as well as demanding the developmEpammeter estimation tech-
nigues suitable for the identification of such models. Fenttore, to assess the severity
of the behavioral adaptations observed in this thesis fid#velopment of manual flying
skills in flight simulators where limited motion stimuli apgovided, it is important to ex-
plicitly analyze control-skill development, by appligati of the same cybernetic approach,
in investigations where the transfer of such simulatonirej is evaluated.
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Introduction

1.1 Background

1.1.1 Flight Simulation in Aviation

The first flight simulation devices appeared almost as sodhefirst functional aircraft
were developed at the beginning of the 20th century [Rolte3taples, 1986; Allen, 1993;
Allerton, 2009]. In these early days of aviation, pilotingsvstill a highly precarious oc-
cupation due to the relative aerodynamic instability andegal lack of structural strength,
engine power, and safety mechanisms of the aircraft that aeilable. Therefore, the need
for rigorous understanding of aircraft control, dynamigsd stability before attempting to
fly an actual aircraft were soon recognized. The first flightudator devices, of which two
examples, théntoinette Learning Barreand thelLink Trainerare shown in Fig. 1.1, were
therefore developed to facilitate the on-ground trainifilying tasks in order to bring down
in-flight accident rates.

Since these early efforts, the aviation industry’s releawon flight simulators for pi-
lot training has continuously increased [Allen, 1993; Aita, 2009, 2010]. Due to the
inherently safe environment, the increased efficiency enrdpeated execution of certain
maneuvers, and the reduced costs compared to in-flightrigaipilots currently conduct a
major part of their training in simulators, especially thteaining of critical and emergency
maneuvers. Active airline pilots are required to attendil@gsimulator training sessions
during the course of their careers to maintain their flyingjsknd to allow for monitoring
their proficiency. As the culmination of simulator-baseairing, the firstab initio pilots,
who during their education only received flight training iigiit simulators, are currently
active with a number of the world’s airlines {i&i-Cohen et al., 2001]. It has been ar-
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(a) The Antoinette Learning Barrel (b) The Link Trainer

]

Figure 1.1. Two examples of pioneering moving-base flight simulatorelices: theAntoinette
Learning Barrel (a) [Allerton, 2009] and theLink Trainer (b).

gued that without flight simulators, aviation would not héseen able to achieve its current
impressive level of safety [Allerton, 2009].

Pilot training is, however, no longer the sole function ajffli simulator devices. Flight
simulators have seen additional use as fundamental taolsgearch into flight control and
control interface design [Mulder and Mulder, 2005; Borstkf 2008; Lam et al., 2009;
Lombaerts et al., 2009], aircraft handling qualities [Bra964; Field et al., 2002b; Gou-
verneur et al., 2003; Damveld, 2009; Stroosma et al., 2@ii,human motion perception
and manual control behavior [Van Paassen, 1994; Schrot@@®; Stroosma et al., 2003;
Valente Pais et al., 2010]. Mirroring the same reasons foukitor usage in pilot train-
ing, flight simulators are also found to provide a flexibldijognt, safe and cost-effective
alternative to real flight for these research applications.

Most flight simulator devices include a number, if not all tieé following subsystems
[Sinacori, 1978; Baarspul, 1990]: a model that simulatesdynamics of the aircraft, true-
to-life flight instruments, loaded control manipulators, @ut-of-the-window visual view,
and a motion system to emulate the forces and moments thahgztots’ bodies during
flight. The current standard in moving-base flight simulaticommonly referred to as a
full motion flight simulator is a device equipped with a true-to-life aircraft cockpiida
flight instruments, a high-resolution and wide field-ofwieutside visual system, and a
hydraulically or electrically driven hexapod motion syste Two examples of such typical
moving-base flight simulators are depicted in Fig. 1.2. BE¥eugh the large majority of
the moving-base flight simulators that are currently in wesEmble the devices shown in
Fig. 1.2, devices with more advanced and exotic designsh-asithose including centrifuge
capabilities [Wentink et al., 2005; Valente Pais et al.,Z06erial robotic actuators, [Teufel
et al., 2007], and extremely large linear displacementadots [Aponso et al., 2009] — are
also in use, mostly for research purposes.

For some of the subsystems of flight simulator devices, aifgea satisfactory level
of correspondence with the aircraft that is to be simulatedsimulator fidelity is com-

IHexapod motion systems, which consist of six parallel lineauators, are also referred to sgnergistic
motion systemsStewart-Gough platformsor Stewart platforms The latter two names refer to their credited
inventor, Eric Gough, and the first scientific publicatiomihich such a system is described by Stewart [1966].
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(a) The SIMONA Research Simulator (b) The CAE 7000 Full Flight Simulator

Figure 1.2. Examples of modern moving-base flight simulator deviceshe SIMONA Research
Simulator at Delft University of Technology (a) and the CAE 7000 conmercial full flight simu-
lator (b) [CAE, 2009].

paratively straightforward. This is for instance the cameréplicating an aircraft’s physi-
cal cockpit environment and flight instruments, for whicimgly (replicas of) real aircraft
components can be installed. For other subsystems, asfisuch correspondence is not
nearly as straightforward, or can only be achieved at giesit @he most notable examples
of simulator subsystems for which this is the case, and fackvtherefore still some im-
provements with respect to the current standard in flightistion are possible, are those
used for generating realistic out-of-the-window views ,am@st notably, the motion sys-
tems used for the generation of physical sensations of motio

1.1.2 Simulator Motion Cueing

Compared to aircraft, which can move through the air vifyualthout limitations, moving-
base flight simulators such as those depicted in Fig. 1.2 alawaeys been severely limited
in their motion envelopes. This causes the generation ofomaiues in flight simulation
to be an inevitable compromise between the desired levetioEgable correspondence
between the motion cues supplied in simulators and thoseejable in real flight, and
the size and quality, and hence cost, of the simulator matystem [Schmidt and Conrad,
1970; Conrad et al., 1973; Advani et al., 1999]. For instatiee quality of the motion cues
supplied in moving-base flight simulators is strongly dejmt on the dynamics of the sim-
ulator motion system itself and its resulting charactesssuch as latency, bandwidth, and
smoothness [Chung, 2000; Advani and Hosman, 2006; Nieuweah, 2012]. In addition
to these effects of motion system hardware on motion custfidalsecond major factor in
the achieved level of simulator motion fidelity lies in thetimas that are typically applied
for the cueing itself.

The desire to limit the size and cost of simulator motioneyst has spurred the develop-
ment of smart methods for transforming the true aircraftiomoto a reduced representation
of that motion in flight simulators [Schmidt and Conrad, 19C0nrad et al., 1973]. This
transformation of (simulated) aircraft motion to simulataotion is commonly achieved by
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Figure 1.3. Classical simulator motion washout algorithm structureas defined by Reid and
Nahon [1985].

algorithms referred to amotion filtersor washout algorithmsThese algorithms take their
name from one of their main functions: ijtering the true aircraft motion they continu-
ously “wash-out the simulator rotational and linear accelerations toireés much of the
available motion space for cueing as possible. One of the frezgiently applied and most
intensively studied motion filters, referred to as ttassical washouélgorithm [Reid and
Nahon, 1985, 1986a,b; Grant, 1996], is depicted in Fig. 1.3.

As shown in Fig. 1.3, thelassical washouélgorithm transforms aircraft translational
specific forces and rotational rates into correspondingiksitor translational and rotational
motion through three different channels. The translatiand rotational high-pass channels
apply a combination o$calingand attenuation withigh-pass filters¢o the aircraft transla-
tional and rotational motion, respectively, in order touee their absolute magnitude and
to remove the low-frequency components that typicallyd/lafge amplitude simulator mo-
tion excursions [Schmidt and Conrad, 1970; Conrad et ar.3]L9n addition to these direct
high-pass channels, Fig. 1.3 further shows a coupling tvbeth these channels. This
coupling is implemented to allow for better cueing of sustdilow-frequency translational
specific forces by tilting the simulator cabin with respeagtavity, a motion cueing strategy
typically referred to aslt coordination

A large number of different motion filter algorithm designsdlamplementations have
been proposed, including algorithms with time-varying addptive elements [Parrish et al.,
1975; Riedel and Hofmann, 1978; Nahon et al., 1992] and mdtiter designs based on
linear optimal control theory [Kosut, 1979; Sturgeon, 198ivan et al., 1982; Telban et al.,
1999]. However, the basic attenuation of the true rotatiand translational aircraft motion
through frequency-independent scaling and high-passifidfeas also performed in the
high-pass channels of the classical washout algorithm showrig. 1.3, is common to
practically all of these proposed motion filter algorithms.
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As their main function is to manipulate the true aircraft imoto the extent that it can be
presented on moving-base flight simulators, motion filtgrgléfinition introduce discrep-
ancies between the true aircraft motion and the motion pedoke in the simulator. For a
given motion filter algorithm, the extent of the distortiditloe true aircraft motion induced
by this motion filter is determined by the values ofpsrametersthe scaling gains high-
and low-pass filtebreak frequencigsand other parameters that together define the motion
filter dynamics. Despite the inevitable discrepanciess iturrently accepted that with a
properly designed motion filter algorithm with properly aghparameters a reasonably ac-
curate presentation of those motion cues that are impddapitots can still be achieved in
moving-base flight simulation [Grant and Reid, 1997a,b].

1.1.3 Pilot Behavior and Moving-Base Simulator Training

Due to the undeniable availability of information on the rootof the aircraft through a
sensation of body motion in real flight, the standing belia$ lbeen that motion cueing
in flight simulators is absolutely indispensable for achigwoptimal transfer of simulator
training to true aircraft control, especially for the dey@ient of low-level manual flying
skills [Allen, 1993; Ray, 1996; Mulder et al., 2004; Allerta@2009]. In addition to providing
useful information to pilots, the sensation of motion in tiecraft is also argued to be
disorienting and confusing to pilots in some cases, leattitige conclusion that training in
the absence of this motion stimulation would not adequattrdpare pilots for their true task
[Gundry, 1977; Allerton, 2009]. Numerous studies have shdwwever, that the increased
realism intended with the motion cueing in flight simulat@siot needed for all aspects
of pilot training [Caro, 1973; Hosman, 1999; Hosman et &0X. Intuitively, this also
makes sense, as during some of the tasks that are traineghhdimulators, for instance
communication with air traffic control and modification oftapilot settings, pilot behavior
is most likely unaffected by the physical motion of the aftat all. Still, it has been argued
that for a final integration of all learned skills, and ford¢rassessment of the learned piloting
behavior, full flight simulators with the capability of pexging physical aircraft motion are
still required [Ray, 1996; Hosman, 1999].

Some of the controversy with respect to the requirementifoulator motion in pilot
training stems from the fact that it is not a single typebehaviorthat is trained by pilots
in flight simulator devices. For distinguishing betweensthélifferent types of behavior
that are of interest with respect to pilot training, the Iskilles-knowledge taxonomy of
Rasmussen [1983] is a highly valuable concept. Rasmusskesnaadistinction between
three different levels of human cognitive behavior:

e skill-based behavigrthe lowest level, represents the most elementary form ef hu
man information-processing and involves basic contrdigdbat are often executed
intuitively or subconsciously;

e rule-based behavigrthe intermediate level, represents human behavior thagris
formed based on rules and procedures that have been leartierpast; and

¢ knowledge-based behavjdhe highest level, is defined as behavior that is guided by
high-level cognitive problem solving skills.
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Figure 1.4. A schematic representation of a closed-loop skill-basedrcraft control performed
in an aircraft (a) and in a flight simulator (b).

For the training of rule-based and knowledge-based pilbatbier, it is accepted that
the current generation of flight simulators sufficiently gags the transfer of learned skills
to the real aircraft, also due to a reduced requirement fghr-Fidelity cueing of visual and
motion stimuli [Caro, 1973; Durlach et al., 2000; Hettinged Haas, 2003]. For skill-based
control behavior, however, for which training involvesgtdl’ intimate familiarization with
the inherent dynamics and handling qualities of the ait¢hedy are to fly, it is argued that
significantly higher levels of simulator fidelity are recedr[Hosman, 1999; Hosman et al.,
2001; Hettinger and Haas, 2003]. Schematic represensatibeuch a skill-based manual
aircraft control tasks, as performed in an aircraft and ino&ing-base flight simulator, are
depicted in Fig. 1.4.

Fig. 1.4(a), shows a skill-based manual control task peréatin a real aircraft, where
a pilot is exerting control on the aircraft based on feedbatdemation perceived from his
cockpit instruments, the out-of-the-window view, his plogssensation of motion, or some
other perceived cues. As indicated in Fig. 1.4(a), skifdghmanual aircraft control tasks
can typically be characterized as pilots’ efforts to brihg state of the aircraft to a certain
definedtarget state possibly in the presence of axternal disturbancéhat perturbs the
controlled aircraft. The pilot's objective in such a taskherefore essentially to limit the
magnitude of theracking error, that is, the difference between the commanded and actual
aircraft state. As described by McRuer and Jex [1967a], ébiexving this objective, pi-
lots typically identify those perceivable quantities thag suitable for achieving adequate
feedback control dynamics from all available stimuli anilizé these selected stimuli in
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a skill-based feedback-control strategy. Note that dusiach skill-based manual aircraft
control, the pilot effectively closes one or multiple loag®und the controlled aircraft dy-
namics, equivalent to how an automatic feedback-contsibsy would be constructed by a
control engineer.

Fig. 1.4(b) shows where possible differences in this cldeeg pilot-aircraft system can
occur when considered in a simulator environment. In a sitouglthe dynamics of the air-
craft need to be simulated using a mathematical model. Ttwracy of such mathematical
aircraft models is typically high, especially when simirigtaircraft responses well within
the flight envelope, as is the case under normal operatinditbmms. Recently, however,
some concern has arisen with respect to the fidelity of thmadtrmodels applied in flight
simulation for simulating aircraft responses at extrentidugies and during upset recovery
[Advani et al., 2010].

Assuming an accurate model of the aircraft's dynamics, lewehe main difference
between Figures 1.4(a) and (b) lies in the possible effdtiseosimulator cueing systems
that provide feedback of the aircraft state to the pilot tigto multiple sensorynodalities
such as the visual and vestibular systems. Discrepanctbe icueing of thesmultimodal
stimuli, for instance those resulting from the motion filkégorithms applied for simulator
motion cueing, may affect the “look and feel” provided by #imulator. Numerous in-
vestigations have shown that perceived handling qualifidsting technique, and control
performance are sensitive to the way these multimodal $tiene presented in simulators
[Reid and Nahon, 1986b; Knotts and Bailey, 1988; Schroeti@99; Field et al., 2002b;
Lee et al., 2003]. In extreme cases, it is feared that cuasaggepancies may result in pi-
lots learning manual flying skills that allow them to adeglafly the simulator, but which
do not transfer to the real aircraft. Due to the comparatileige discrepancies that oc-
cur in the presentation of physical motion stimuli in fligithslators, this concern applies
especially to simulator motion cueing fidelity.

1.1.4 Evaluating Simulator Motion Cueing Fidelity

The formulation of requirements and guidelines for acmig\adequate levels of simulator
motion cueing fidelity has shown to be a difficult problem ttrea flight simulation com-
munity has struggled with for decades [Anonymous, 1980kashs, 1986; Hosman, 1999;
Hosman et al., 2001]. The main reason for this difficulty ig@ted understanding of hu-
man motion perception, manual control behavior, and skallelopment under multimodal
cueing conditions. Progress is further hampered by thexgtdependency of these phe-
nomena, on the simulated aircraft, task, and scenario,iwhekes it extremely difficult to
draw generalized conclusions with respect to best practmeachieving a sufficient level
of simulator motion fidelity.

Different definitions offidelity as the metric for evaluating the quality of simulator cue-
ing devices have been proposed [Feddersen, 1962; Sina8a@8; Anonymous, 1980; Hef-
fley et al., 1981; Ashkenas, 1986]. Fig. 1.5 shows a schenmgpiesentation of these dif-
ferent definitions of fidelity. Note that in correspondendéhwrig. 1.4, Fig. 1.5 shows two
closed-loop pilot-vehicle systems, representative fdf-Bksed manual control tasks per-
formed in real flight and in a flight simulator, respectivele different definitions of sim-
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Figure 1.5. Schematic representation of how flight simulator fidelitycan be evaluated at me-
chanical, perceptual and behavioral levels.

ulator cueing fidelity, corresponding to different locatoin the closed-loop pilot-vehicle
systems where these systems are compared, are indicakedg/hite-filled arrows.

Perhaps the most workable definition of fidelity shown in High isobjective fidelity
(also referred to asngineering fidelity[Anonymous, 1980; Ashkenas, 1986], which is the
degree to which the simulator replicates the true aircrafin absolute sense. Objective
fidelity is therefore purely determined by the quality of #ieulated aircraft dynamics and
the simulator cueing systems, as can be verified from Fig.Asmircraft model fidelity is
typically considered separately, objective simulatorimgédelity is hence most often eval-
uated by explicitly considering the characteristics ofgimaulator cueing hardware. In fact,
the most notable available flight simulator fidelity requients are stated in terms of sim-
ulator hardware capabilities, for instance, by specifyimger limits for characteristics of
the visual and motion systems such as time delay and bardjidonymous, 2003, 2005,
2009]. Furthermore, most of the criteria that have beengseg for evaluating simulator
motion cueing fidelity also purely account for the dynamiarteteristics of the motion
filter algorithm and the motion system hardware [Sinac@¥, 7, Schroeder, 1999; Advani
and Hosman, 2006].

One drawback of evaluating simulator cueing fidelity at thgeotive level is that it can
only be considered for each cueing component and, in casetibmcueing, degree-of-
freedomseparately Evaluating theotal level of objective fidelity achieved in a simulator is
therefore not straightforward. Furthermore, when evatgabbjective fidelityany discrep-
ancy induced by the simulator cueing systems corresponddefinition, to a degradation
in fidelity. Even though optimization of simulator hardwaired cueing systems may indeed
go a long way in the optimization of simulator cueing fidelitydoes not take any of the
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limitations of the human perceptual system into accourt ¢ha be (and are) frequently
exploited in flight simulators [Brown et al., 1989]. Therefpoptimizing objective fidelity
does typically not result in the most efficient and costetffe simulator cueing solution.
This is especially true for simulator motion cueing. Witlr ourrent level of simulator tech-
nology, increasing the objective fidelity of motion cueingt®ms requires ever larger and
more expensive hardware.

To explicitly account for the influence of perceptual preessin the evaluation of sim-
ulator fidelity, it has alternatively been proposed to eatdperceptual fidelity As indi-
cated in Fig. 1.5, perceptual fidelity is defined to be high mvpidots’ perception of stimuli
presented in a simulator is indistinguishable from thogegieable during a real-flight ma-
neuver. Hence, perceptual fidelity pdot-centered as opposed to objective fidelity. The
main issue with perceptual fidelity, however, is finding aprapriate and reliable method
for measuring it. One method used for evaluating percefitlglity is the evaluation of the
perceptual errors induced by simulator cueing devicesgusiathematical models of the
“pilot perception” block shown in Fig. 1.5. Note that thields an evaluation of simula-
tor fidelity similar to that performed for determining obfee fidelity, where, additionally,
the characteristics and limitations of the human motiorcg@etion processes that are of in-
terest are taken into account through these perceptuallmdgeen though the individual
perceptual sensors are perhaps sufficiently understodbbve far modeling their response
[Gum, 1973; Fernandez and Goldberg, 1971; Hosman, 199@hieedl understanding of
how sensory outputs of these different sensors are intjnathe brain [Gum, 1973; Sina-
cori, 1978; Zacharias and Young, 1981; Borah et al., 1988; &wl Bles, 2002] still stands
in the way of truly allowing for evaluation of perceptual fiitle using this approach.

An alternative method for determining perceptual fideliastbeen to assesssiibjec-
tively by asking evaluation pilots to judge how well their perceptof the stimuli provided
in a simulator matches the real world case. Numerous sthdiesbeen performed in which
pilots were asked to indicate their perceived level of satwi motion fidelity through sub-
jective motion fidelity rating scales [Reid and Nahon, 1986kant and Reid, 1997b; Chung
et al., 1998; Mikula et al., 1999; Schroeder, 1999]. The faat motion perception is an
inherently subconscious process — that is, an activityithabrmally performed without a
conscious thought process — implies that the forced subgeetaluation of perceived stim-
uli might be difficult and not yield results that are reprdstine for perceptual processes
under “normal” conditions. Furthermore, such subjectival@ations of simulator fidelity
are typically found to be strongly affected by expectatiod personal preferences and bi-
ases. For instance, due to these factors, the evaluatioifferedt simulator motion filter
algorithms and motion filter parameter settings using suivje pilot indications of per-
ceived motion fidelity has been found to be a troublesome #&ed anrepeatable process
in a number of investigations [Parrish and Martin, 1976;0R&id Nahon, 1986b; Grant and
Reid, 1997a,b; Beukers et al., 2010].

Due to the difficulties in the measuring of perceptual figelithas also been suggested
to evaluate a simulator’'s cueing fidelity by its capacityriduce similarcontrol errors—
that is, errors in the attained aircraft response comparguktfect maneuver execution —
as observed in real flight. This definition of fidelity is typily referred to a®rror fidelity
[Ashkenas, 1986], and is indicated in Fig. 1.5 with the nigbst arrow. Note from Fig. 1.5
that error fidelity is a direct result of the pilot perceptaat control response processes. For
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this reason, measures of task performance have been usiota®ptered metrics of sim-
ulator cueing fidelity in a large number of investigationgiRand Nahon, 1986b; Zaichik
et al., 1999; Schroeder, 1999; Chung, 2000; Telban et 205180 A major issue with the
evaluation of this error fidelity is that when confrontediwitegraded simulator cueing, pi-
lots are likely to adapt their control response dynamicstoeve the best attainable level of
task performance under these modified conditions [Youn§91®IcRuer and Jex, 1967a].
Due to this behavioral adaptation, analysis of performamnetics is unlikely to capture the
full extent of the effects of degraded cueing fidelity on aseld-loop pilot-vehicle system as
depicted in Fig. 1.5 [Mulder et al., 2004].

The final definition of fidelity depicted in Fig. 1.5 eehavioral fidelity which has been
defined by Heffley et al. [1981] adte specific quality of a simulator that permits the
skilled pilot to perform a given task in the same way that ipé&formed in the actual
aircraft.”. In Fig. 1.5, this is indicated as the comparison of the gghgded “aircraft pilot”
and “simulator pilot” blocks. Behavioral fidelity is high & simulator induces pilots to
utilize the same control behavior, where the governingtgibmtrol dynamics are based on
the same selection of all available stimuli, as observedahftight. Of all fidelity definitions
depicted in Fig. 1.5, behavioral fidelity evaluates the iyaf a simulator in terms that most
directly apply to the skill-based manual control skillstthee to be developed. Even though
the measuring of pilots’ control dynamics and finding appieip behavioral metrics for
quantifying their control behavior are by no means easystaskan provide a pilot-centered
approach to the evaluation of simulator fidelity based gajelobjectivecontrol behavioral
measurements. For these two reasons, this thesis focugbe @valuation of simulator
motion cueing fidelity at this behavioral level.

1.2 Approach

This thesis describes an effort to evaluate simulator mdiielity based on explicit mea-
surements o$kill-based pilot control behavicand itsadaptabilityto the attenuation of the
supplied simulator motion cues by motion filter algorithriRarthermore, it is attempted to
relate observed changes in pilot control behavior to thecsetimotion filter parameters
The originality of the work described in this thesis lies ire bbjectiveand quantitative
evaluation of behavioral flight simulator motion fidelityathis performed. To facilitate this
quantitative approach, this thesis focuses on skill-basattol behavior irmanual tracking
tasks as it has been shown that for such continuous and staticoatyol tasks the adopted
pilot control dynamics can be accuratehodeledand determinedbjectivelyusingsystem
identificationandparameter estimation techniques

1.2.1 Manual Control Behavior During Tracking

Based on pioneering research into manual tracking behayidrustin [1947] and Elkind
[1956], an elaborate framework for the analysis and modadirskill-based manual control
behavior duringgompensatoryracking was formulated in the 1960s [McRuer and Krendel,
1959; Krendel and McRuer, 1960; McRuer et al., 1965; McRuer 3ex, 1967a; McRuer
and Krendel, 1974]. Much of our current knowledge on skisbéd manual control behavior
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stems from these investigations into pilot dynamics dusiingle-loopcompensatory track-
ing tasks, where pilots performed manual control tasks witly explicit feedback of the
tracking error from a visual display [Elkind, 1956; McRuéra¢, 1965; McRuer and Jex,
1967a]. As also observed in the description of Fig. 1.4 is thésis, the similarities between
automatic control systems and compensatory manual cdsgtavior were noted in these
early investigations into manual tracking. This spurreddpplication of methods that were
initially developed for the analysis and design of autometintrol systems to the analysis of
skill-based manual control behaviéiorcing function signalswhich were either inserted as
thetarget stateor external disturbancshown in Fig. 1.4, were used in these experiments to
induce pilot control behavior [Elkind, 1956; McRuer and Kdel, 1959]. Typically, these
forcing function signals werguasi-random multisine signalsvhich were constructed as
the sum of a number of individual sinusoids that spannedréguency range over which
manual control behavior was to be induced. In addition ttding easily reproducible sig-
nals that were perceived as sufficiently random to inducg ooimpensatory behavior, the
use of such multisine forcing functions facilitated theritiication of frequency-domain
describing functions of the pilot control dynamics for swcmpensatory tracking tasks.

From such measurements, pilot control dynamics under saobitions were found
to be sufficiently linear and time-invariant to allow for madithg them withquasi-linear
control-theoretical modelfMcRuer et al., 1965; McRuer and Jex, 1967a]. These quasi-
linear models consist of a linear part that describes pilesponses to all relevant perceived
variables using transfer function models of the adoptest piynamics, supplemented with
a remnantsignal that accounts for all otherwise unmodeled nonlitiear Such quasi-
linear models of single-loop compensatory tracking betraliave been used to analyze
manual control behavior in many later experiments [Van Gb8V8; Van der Vaart, 1992;
Van Paassen, 1994; Sentouh et al., 2009] and have also sbhobend valuable tool for
the prediction of pilot-vehicle system characteristicsaivide range of different man-
machine systems and applications [Ashkenas and McRueg; afinston and Aponso,
1988; Cameron et al., 2003].

One of the key properties of human manual control that wasbéshed from this ex-
tensive research into compensatory tracking behavioreigatt that human operators are
found to adapttheir own control dynamics to a myriad of factors. This is fiestance
reflected in the well-knowrossover modedlescribed by McRuer et al. [1965], which il-
lustrates and explains the adaptation of human manualaaytnamics to the dynamics of
the system (or vehicle) that is controlled. McRuer and J&TR] compiled an excellent
categorized overview all different variables that may etffeuman manual control behavior
during manual control, which is reproduced in Fig. 1.6.

As can be verified from Fig. 1.6, McRuer and Jex [1967a] deffoaddifferent groups
of variables that influence human manual control dynamics @tosed-loop pilot-vehicle
system. The most important of these factors arddbk variableswhich define the nature
and characteristics of the manual control task itself. Afidated in Fig. 1.6, important
task variables are the displays and ways in which feedbdoknration is presented to the
human pilot, the applied forcing function signals, and tiieainics of the control manipu-
lator and the controlled elemeriEnvironmental variableswvhich define the environment in
which the control task is performed, can further affect a nadigontrol system and its per-
formance. The same holds foperator-centered variablesuch as motivation and stress,
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Mission TASK VARIABLES

Forcing | " . . Diswbances N\ N .
Functions 1
Perceived Inputs, E :
Outputs and y Control y Outout
Commands Errors ' Actions utputs
Displays HPL’lirl?)atm 1 Manipulator Cé’g"[g’glftd >
i

Motion Feedbacks

ENVIRONMENTAL VARIABLES: OPERATOR-CENTERED VARIABLES: PROCEDURAL VARIABLES:

In-Flight vs. Fixed-Base Motivation Instructions
Vibration Stress Practice

G-Level Workload Experimental Design
Temperature Training Order of Presentation
Atmospheric Conditions Fatigue Etc.

Etc. Etc.

Figure 1.6. The variables that affect a pilot-vehicle system as defed by McRuer and Jex
[1967a].

andprocedural variablessuch as the received instructions and the time allowedrfme-p
tice. Changes in any of these variables are likely to resufidaptation of the adopted
manual control dynamics and can hence affect the overalimlyes and performance of the
closed-loop pilot-vehicle system.

As can be verified from Fig. 1.6/iotion feedbacKss also defined as one of the im-
portant task variables that affect pilot control behavigiMcRuer and Jex [1967a]. Many
subsequent investigations have indeed confirmed a stréex ef the presence of physical
motion feedback, and of variations in the level of fidelityttwivhich it is presented in a
simulator, on skill-based control behavior and trackingqgrenance during manual track-
ing [Shirley and Young, 1968; Stapleford et al., 1969; Lenignd Junker, 1977; Levison,
1978; Jex et al., 1981; Hosman, 1996; Van der Vaart, 199Z08der, 1993].

1.2.2 The Cybernetic Approach

This observed adaptation of skill-based manual controbtieh to variations in physical
motion feedback allows for the explicit evaluation of siatior motion fidelity at the behav-
ioral level using acybernetic approachSuch a cybernetic approach involves the studying
of the fundamental properties of the interaction betweenhihman operator and his en-
vironment centered around the presented stimuli, in thée ¢he information that is used
for manual control [Wiener, 1961; Mulder, 1999]. In this $i& this cybernetic approach
is implemented by explicitly quantifying the way in whichetiphysical motion feedback
that is supplied in moving-base flight simulators affectd aontributes to skill-based man-
ual control behavior through the use miathematical models of multimodal pilot control
behaviot



Introduction 13

To allow for isolated evaluation of the effects of simulatwotion cueing fidelity on pilot
control behavior, this thesis focuses on aircedfitudetracking tasks where in addition to
variables presented on a central visual display, most hottaé tracking errorpnly physical
motion feedback of the aircraft motion is available to Elof schematic representation of
such an attitude tracking task with physical motion fee#tbaod an example of quasi-
linear multimodal pilot modethat is used in this thesis for the analysis of manual control
behavior in such a task, is depicted in Fig. 1.7.
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Figure 1.7. An example of a multimodal pilot model as used for quantifiation of pilot control
behavior in this thesis.

The multimodal pilot model of Fig. 1.7 includes separat®tpilisual and motion re-
sponses that account for the portions of the pilot contrplirthat are attributable to re-
sponses to visually presented tracking errors and petenaion feedback, respectively.
The model has a multiple-input single-output structureictviielates the model inputs, the
tracking error and the supplied physical motion stimulosthie given pilot control inputs
that form the model output. As the linear responses with wvthiese input-output dynamics
are modeled cannot account for the nonlinearities thatéweréent to human manual control
behavior, gilot remnantsignal is included in this model, as is also done in the gliasar
modeling of single-loop compensatory tracking behaviocRer et al., 1965; McRuer and
Jex, 1967a]. The multimodal pilot model shown in Fig. 1.7ighly similar to the models
proposed for capturing pilot control dynamics in the preseof physical motion feedback
in a number of earlier investigations [Stapleford et alg9;Pex et al., 1981; Hosman, 1996;
Van der Vaart, 1992; Hess, 1990b].

As indicated in Fig. 1.7, the multimodal pilot models ud@iin this thesis model the
pilot dynamics adopted during tracking tasks with physmation feedback in terms of dis-
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tinct contributions that are physically interpretabler Fstance, the dynamics of the visual
and motion perceptiosensorsthat is, the eyes with which the tracking error is perceived
from a visual display and the semicircular canals of theibakstr system that are sensi-
tive to rotational motion stimulation, are explicitly acoded for in the model. It is known
that the perception of physical body motion is the resulhefintegration of the sensations
obtained from multiple modalities (vestibular, tactilepprioceptive) [Gum, 1973; Borah
et al., 1988; Zaichik et al., 1999]. Only the semicirculan&iadynamics are included in
the multimodal pilot model shown in Fig. 1.7, however, asds ibeen argued that for the
perception of rotational motion the SCC are the dominans@ef¥oung, 1966; Hosman
and Van der Vaart, 1978]. In addition to these sensor dyr&rttie model further accounts
for some of thdimitations of human manual control behavior that are found to affect pi-
lot control dynamics, such as the time delays incurred inpeeption and processing
of the visual and motion information and the neuromuscutémation dynamics. Finally,
the modelecequalizationdynamics in the visual and motion channels of the model repre
sent pilots’ interpretation and usage of the perceivedringion in the formulation of an
appropriate control input. For example, Fig. 1.7 shdsexl equalization dynamics in the
pilot visual response path, which can describe pilots’ oasps to both perceiveathcking
errors andtracking error rate On the other hand, the equalization dynamics in the pilot
motion response channel are seen to be a pure gain, indjeagiiot response that is purely
proportional to the physical motion perceived through tmigircular canals.

The multimodal pilot model shown in Fig. 1.7 has seven freelehparameters: the pi-
lot visual and motion response gail$ andk,,, the visual equalization lead time-constant
T7,, the visual and motion response delaysandr,,, and the natural frequency and damp-
ing ratio (w,,, and(,,,, respectively) of the model for the neuromuscular actuatip-
namics. These model parameters together fully charaetarid quantify the adopted pilot
control dynamics. Hence, in the cybernetic approach falbim this thesis, it is these pilot
model parameters that are considered as metrics for ewajuhe effects of varying motion
cueing settings on pilot control behavior.

The key to using such multimodal pilot model parameters asicsefor quantifying
changes in pilot control behavior is henc@arameter estimation methdtat is capable
of yielding reliable and accurate estimates of these pamsibased on measurements of
the model in- and outputs. One of the main observations matterespect to the ef-
fects of physical motion feedback on pilot tracking behaisahat for control tasks where
significant lead equalization is required for achievingsfattory pilot-vehicle system dy-
namics, the availability of physical motion feedback isrs&yield a drastic reduction in
the amount of visual lead equalization that is performedgt&tford et al., 1969; Jex et al.,
1981; Hosman, 1996; Van der Vaart, 1992]. Instead, parteféquired lead equalization
dynamics is then obtained from the available physical nmdgedback information through
the pilot motion response. Note that this implies that thetmd dynamics pilots adopt for
their responses to visual and motion stimuli can have inttgrsimilar dynamic charac-
teristics. This causes such multimodal pilot models todgity have anoverdetermined
model structure, that is, multiple different combinatiaisnodel parameters can yield an
almost identical model response and therefore provide #aslyngood fit to experimental
measurements [Zaal et al., 2009a]. For this reason, obtpgstimates of the parameters
of a multimodal pilot model as depicted in Fig. 1.7 that allfaw proper evaluation of the
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relative contributions of pilots’ visual and motion resges, and changes therein, is not
straightforward.

A number of different identification methods have been psapidfor estimating the pa-
rameters of such overdetermined multimodal pilot modeldrefjuently applied approach
consists of two steps, in which first frequency-domain dbsag functions of both the pilot
visual and motion responses are estimated using spectthbdwe[Stapleford et al., 1967;
Van Paassen and Mulder, 1998]. In the second step of such-stép@pproach, a paramet-
ric model as depicted in Fig. 1.7 is then fit to the obtainedtdie®g functions to obtain
the estimates of the model parameters. A drawback of suctostep approach is that
estimation errors in the determination of the describimcfion estimates in the first step
affect the reliability of the parameter estimates obtaifnech the second step. Furthermore,
the spectral methods typically used to obtain the desagihinction estimates in the first
step of this approach demand the use of two independentsinelfiorcing function signals
— which are typically inserted as target and disturbanceadsg see Fig. 1.7 — in order for
reliable separation of the pilot visual and motion resperisde obtained [Stapleford et al.,
1967; Van Paassen and Mulder, 1998]. Nieuwenhuizen et @8]Jzhave shown that the
estimation of frequency domain describing functions caw dle performed using linear
time-invariant models, such as Auto-Regressive models arite Xogeneous input (ARX).
Though still requiring a second step to estimate the multiahgilot model parameters,
this approach is found to yield more accurate describingtfan estimates with superior
frequency-domain resolution.

More recently, a one-step time-domain identification mdthased on maximum likeli-
hood estimation has been developed specifically for agjgitto the problem of estimating
multimodal pilot model parameters [Zaal et al., 2009a]. WAftis method it is possible to
estimate the parameters of a multimodal pilot model diyelttdm the time-domain mea-
surements, which has been shown to yield more accurate balleaesults than obtained
with two-step identification methods [Zaal et al., 2009aJtuther advantage of this time-
domain identification method is that, as long as sulfficiesttation of both pilot visual and
motion responses is retained, the forcing functions usethéucing pilot control behavior
are no longer required to be independent multisine sigriads.these reasons, this time-
domain identification method described by Zaal et al. [20@®applied in this thesis for
estimating the parameters of the utilized multimodal pihatdels.

1.3 Thesis Objective

The first objective of this thesis is to explicitly compareasarements of skill-based pilot
control behavior collected ireal flightwith measurements collected imesving-base flight
simulatorunder varying motion cueing conditions. The availabilifytwo state-of-the art
facilities at Delft University of Technology, the SIMONA Rearch Simulator (SRS) and the
Cessna Citation Il laboratory aircraft, facilitates thigedt direct comparison of skill-based
pilot control behavior measured in real flight and in a movirage flight simulator. The
second, and main, objective of this thesis isréae backdiscrepancies in multimodal pilot
control behavior that are observed through the adoptedioghie approach, to the way the
physical motion information is presented in the simulatoay is, to variations in high-pass
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motion filter parameter settings. A schematic represeamtaif the different steps in this
cybernetic approach to the assessment of simulator motlelityi is depicted in Fig. 1.8.

framework for evaluating behavioral simulator motion fidelity

@ control tasks, multimodal pilot models &
parameter estimation methods

A A A 4
)

M)

s s
@ quantify multimodal pilot @ quantify multimodal pilot
dynamics in real flight

dynamics in the simulator]

A

@ identify best match in multimodal pilot dynamics &
main behavioral adaptations due to washout variations

Figure 1.8. Graphical representation of the cybernetic approals adopted in this thesis.

The first step in achieving the objectives of this thesisésstlection of the control tasks
that are considered for the evaluation of simulator motidelfiy (Block (1) in Fig. 1.8).
This task selection is coupled to the development of muldiahgilot models and corre-
sponding parameter estimation methods that allow for egfitin of the desired cybernetic
approach. As indicated in Blod2), the selected control tasks are then performexin
flight to collect measurements pilot tracking behavior under ttimmd with true aircraft
motion feedbackThese in-flight measurements are then used as a baselim®imarison
with pilot tracking behavior, for exactly the same contihks, observed in a moving-base
flight simulator, for a wide variation in the simulator maotidilter settings (Bloc@).
From this comparison of tracking behavior measured in régthtfland in a moving-base
flight simulator the behavioral discrepanciesa\() that occur due to attenuated simulator
motion stimuli will be identified and used to indicate whicltion cueing settings yield the
best match of true in-flight tracking behavior. These bebralidiscrepancies are deduced
from the comparison of the identified values of the paramsefgains, time constants, de-
lays) of multimodal pilot models as depicted in Fig. 1.7, e¥thtogether fully quantify the
adopted multimodal pilot control dynamics. It should beautthat, equivalent to the defini-
tion of behavioral fidelity as proposed by Feddersen [1982ffley et al. [1981]; Ashkenas
[1986], the approach depicted in Fig. 1.8 is centered arthmdssumption that if the visual
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and motion information presented in a flight simulator sigfitly matches that perceived in
real flight, multimodal pilot control behavior equivaleotthat exhibited in real flight will
be adopted in this simulator.

For evaluating simulator motion fidelity according to theagach shown in Fig. 1.8,
it is of critical importance that the accuracy of the obtdin@lot model parameter esti-
mates that are used to characterize multimodal pilot cbdymmamics is as high as possible.
Due to the fact that tracking tasks performed with quaséoam multisine target and dis-
turbance forcing function signals have been shown to ctergly yield accurate estimates
of multimodal pilot model dynamics [Stapleford et al., 196Beuwenhuizen et al., 2008;
Zaal et al., 2009a], such tasks are also mainly consideréudrthesis. In addition, how-
ever, skill-based tracking tasks in which more deterministrget forcing function signals
consisting of multiple ramp-like changes in referencewde are also considered for evalu-
ating behavioral flight simulator motion fidelity in this #is. As opposed to the tracking of
guasi-random signals, sucamp forcing function signalgield a control task, and a corre-
sponding motion sensation, that is comparable to discrateenvering tasks that are often
performed during operational manual aircraft control,lsas a series of commanded alti-
tude captures or turn entries and exits [Pool et al., 2008k] &t al., 2010]. It should be
noted, however, that the currently available models of-8libed multimodal pilot control
behavior, as depicted in Fig. 1.7, have only been validategdrely compensatory track-
ing tasks with quasi-random multisine forcing functionrgits. Necessary extensions to
the available multimodal pilot models that can account fasgible deviations from purely
compensatory control behavior that occur during stadhp-tracking tasksare therefore
proposed and validated in this thesis (Bldgkin Fig. 1.8).

In-flight measurements of skill-based tracking behavigel flight similar to those de-
scribed in this thesis have been collected in a number ofeastperiments [Smith, 1966;
Newell and Smith, 1969; Mooij, 1973; Van Gool and Mooij, 19H&ss and Mnich, 1986;
Steurs et al., 2004]. In most of these earlier studies theflight measurements were also
compared to tracking behavior measured in fixed-base ornmgevase flight simulators.
The in-flight experiments described in this thesis, howestearly distinguish themselves
from these earlier efforts to compare in-flight and grouaddd tracking behavior for two
reasons. First, the analysis methods applied in theseesitidies did not permit the separa-
tion of pilots’ responses to visual and motion stimuli. bead, pilot dynamics were analyzed
based on a single, lumped, pilot describing function omesstiéd pilot-vehicle system dy-
namics. As opposed to the analysis with multimodal pilot sieds performed in this thesis,
analysis of such lumped describing functions does not pdroe interpretation of the ex-
tent to which visual and motion information is used by pilimtskill-based tracking tasks.
Hence, such an approach also does not allow for true evatuatithe possible differences
between the multimodal pilot dynamics that are adoptedahftight and in ground-based
simulators [Steurs et al., 2004; Kaljouw et al., 2004]. Imi&idn to this methodological
difference, a direct comparison pilot tracking behavioasweed in real flight and under a
wide variation in simulator motion filter parameter setipgs performed in this thesis, has
not been reported before.
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1.4 Thesis Structure

Fig. 1.9 shows a graphical representation of the structut@thesis. As is clear from this
figure, this thesis consists of three different parts, katbé&H1l. Furthermore, a distinction is
made in Fig. 1.9 between chapters that consider pilot cbioétwavior in tracking tasks with
only quasi-random forcing function signals (chapters fi} End chapters in which control
behavioral measurements for tracking tasks with detestigrmiamp forcing function signals
are evaluated (chapters at right). First, Part | of thisith@hapters 2 and 3) describes two
contributions to the development of the behavioral pilotdels that form the foundation
of the cybernetic approach adopted in this thesis (Bldglof Fig. 1.8). Part Il, consisting
of Chapters 4 and 5, then describes the reported effects tibmoueing variations on
pilot tracking as observed in a preliminary simulator expent performed in the SRS
and in a number of earlier studies reported in literaturert Paof this thesis describes
the comparison of pilot tracking behavior measured in réghfland for varying motion
cueing settings in a moving-base flight simulator, as indidéy Block$2)-(4) in Fig. 1.8.
Finally, the main conclusions, recommendations and soneetitins for future research are
described in Chapter 9.

Chapter 1:
Introduction
Multisine Forcing Function Combined Ramp and Multisine
Tracking Tasks Forcing Function Tracking Tasks
Part I Chapter 2: Chapter 3:
. : g Modeling Pilot Control of Aircraft Pitch Modeling Pilot Control During Ramp Tracking
Pilot Model Development D Py
ynamics Block (1), Fig. 1.7 Block (1), Fig. 1.7
Chapter 4:
Effects of Heave Washout During Pitch Tracking
Part II: Block (3), Fig. 1.7
Preliminary and Previous 4
Simulator Experiments Chapter 5:
Effects of Motion Filter Settings on Tracking
Behavior Block (3), Fig. 1.7
Chapter 6: Chapter 7:
Multisine-Tracking Behavior in Real and Ramp-Tracking Behavior in Real and
Part 111: Simulated Flight Block @7@ Fig. 1.7 Simulated Flight Block @7@ Fig. 1.7
In-Flight to Simulator E
Behavioral Comparisons Chapter 8:
Roll Motion Filter Settings and Multisine-
Tracking Behavior Block @_@ Fig. 1.7
Chapter 9:

Conclusions and Recommendations

Figure 1.9. Graphical representation of the structure of this thesis.
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It should be noted that all chapters of this thesis, excagtitiroduction and the con-
clusions of Chapter 9, have been written as papers that it presented at a scientific
conference or that have been (or are to be) submitted foiqaioin in scientific journals.
The papers that have already been published elsewherenefrdéd here with only minor
modifications. The fact that each chapter is in fact writteraaeparate paper has the ad-
vantage that it allows for all individual chapters to be reagarately. The first page of each
chapter provides a short introduction of the scope of thaptdr, how the work described
there relates to the overall thesis topic and to the resesstribed in other chapters of this
thesis. A short description of the scope and contents of elaapter is provided below.

Part I: Pilot Model Development

Chapter 2 describes an extension to the models of compensatory piftta behavior that
are described in literature that was found to be requireddéourate modeling of the visual
pilot equalization dynamics adopted during compensatontrol of typical conventional
longitudinal aircraft dynamics. Using collected measueata of pilot tracking behavior for
such a controlled element, the need for this pilot modelresita is illustrated and shown
to be required for correct interpretation of the effectshaf addition of physical motion
feedback based on fitted pilot model parameters.

Chapter 3 describes an experiment performed to evaluate the corghaMioral conse-
guences of using deterministic target forcing functiomalg consisting of multiple ramp-
like changes in reference attitude for the tracking tasksoamsidered in this thesis. Due
to the deterministic nature of these forcing function sign@ was thought to be likely
that they induce a control strategy that deviates from thelpuicompensatory control ob-
served for the tracking of unpredictable multisine signdiais chapter utilizes collected
measurements of ramp-tracking behavior to verify if pilatdal extensions are required for
modeling the manual control dynamics observed in such raagking tasks.

Part 11: Preliminary and Previous Simulator Tracking Exj@ents

Chapter 4 describes a pitch tracking experiment in which pilot contehavior was evalu-
ated for a variation in simulator pitch and heave motion mgeDuring pitch maneuvering
with a conventional aircraft, significant vertical heavetioo is perceivable in the cock-
pit in addition to the rotational pitch motion. Due to the eeylimitations in presenting
aircraft heave motion on typical moving-base flight simaoitat aircraft heave motion cues
are typically heavily attenuated by high-pass motion fltiersimulator motion filter algo-
rithms. The experiment that is described in this chaptendes on the effects of attenuating
the component heave motion that pilots may utilize duringraft pitch control on their
adopted control dynamics.

Chapter 5 gives an overview of the effects of high-pass motion filtetisgs on pi-
lot tracking behavior reported in a number of experimentcdbed in literature and this
thesis. By compiling the data of these different experiragihis attempted to identify con-
sistent trends with varying motion cueing settings in thiegv#oral metrics that are typically
considered for the evaluation of changes in pilot trackiagavior. Furthermore, for those
behavioral metrics that consistently show significantatésin with applied variations in mo-
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tion filter settings, linear prediction equations are dedlithat allow for offline prediction of
the behavioral adaptation induced by a certain high-pasemfilter setting.

Part 1ll: Comparisons of In-Flight and Simulator Pilot Traimg Behavior

Chapter 6 describes a direct comparison of compensatory pilot ratiting behavior mea-
sured in real flight and in a moving-base flight simulator faiol attitude tracking task
with quasi-random multisine target and disturbance fayéimction signals. This experi-
ment is a major milestone for the research described in tigisis, as it is one of the few
studies in which in-flight and simulator measurements aftmbntrol behavior are directly
compared and where pilot control behavior is analyzed usinigimodal pilot models. The
behavioral discrepancies that occur between real flightsder four different roll motion
cueing settings in a moving-base flight simulator are objelst quantified with the adopted
cybernetic approach. This chapter further includes a léetdescription of the setup of this
combined simulator and in-flight experiment and the expenindescribed in Chapter 7.

Chapter 7 provides the comparison between measurements of pildkigbehavior
collected in real flight and in a moving-base flight simuldtmra roll tracking task with a
deterministic ramp target forcing function signal. Durithis more operationally relevant
control task, a number of commanded turn maneuvers arerpextbby pilots. Due to the
coordinated nature of aircraft turn maneuvers, this yieldsfferent motion sensation, and
perhaps different usage of motion feedback for manual obritran for the compensatory
roll tracking task considered in Chapter 6. The analysisilot gontrol behavior for this
experiment relies heavily on the model proposed for the rigief pilot dynamics in
ramp-tracking tasks in Chapter 3.

Chapter 8 describes the results of an experiment performed to cadldditional ref-
erence simulator measurements for the comparison of casafy roll tracking behavior
with in-flight measurements described in Chapter 6. In thjgeement pilot roll tracking
behavior was measured for exactly the same roll trackingadasconsidered in Chapter 6.
Measurements of pilot tracking behavior were collecteddardifferent simulator roll mo-
tion cueing settings, defined by ten different settings ofst-firder high-pass roll motion
filter, spanning the full range of high to low motion fidelity defined by previously formu-
lated motion fidelity criteria.

The research described in this thesis was performed durgiyygear research project
with the title “A Cybernetic Approach to Assess Simulator Fidglfiyr which a “Vidi” grant
from the “Stichting voor de Technische Wetenschapg8mW) was awarded to Prof. dr. ir.
M. Mulder in 2005 (grant number 07058). Two PhD students wdrkn this project and
both wrote separate theses. The first thegtdpt Control Behavior Discrepancies Between
Real and Simulated Flight Caused by Limited Motion Stifrinyi Peter Zaal [2011], was
published more than a year before the completion of thisghasd complements the work
described here. It describes the majority of the work that performed, in collaboration
with the author of this thesis, in the development of the mdtlal pilot models and identi-
fication techniques that are also applied in this thesisqiB(@) of Fig. 1.8) and the details
of the design and implementation of the custom fly-by-wiratod system that was used
to collect the in-flight measurements of pilot tracking beba(Block (2) of Fig. 1.8). Fi-
nally, Zaal [2011] also describes a comparison of in-fligid gimulator control behavior,
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equivalent to that performed for roll attitude trackingksi this thesis, for a pitch attitude
tracking task, for which the effects of varying pitch and yeeaotion cueing settings on
pilot control behavior were evaluated.
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Modeling Pilot Control of
Aircraft Pitch Dynamics

The first step of the research project that has resulted in the writing oftli@sis (see
Fig. 1.8) involved further development of the current standard in muttahgilot mod-
eling and the identification techniques for estimating the parameters of sud¢hmpldels
from measured data. Most of the work from this phase of the reseangbcpis described
in the first thesis to come out of this research project [Zaal, 2011]. Thapter describes
one further contribution made in the field of modeling of pilot control betradkiming com-
pensatory tracking. An extension to the pilot models described in literatmesh was
found to be required for modeling the adopted pilot equalization during cbafrtypical
longitudinal aircraft dynamics, is proposed and validated using experiaieneasurement
data. The extension to modeling pilot control proposed in this chapter isduagplied in
Chapter 4 of this thesis and in other related papers [Zaal et al., 200289&0, 2011] for
modeling pilot control behavior during compensatory pitch tracking tasks

The contents of this chapter have been published as:
Pool, D.M., Zaal, P.M.T., Damveld, H.J., Van Paassen, M.Mn Wer Vaart, J.C., and Mulder,
M.,“Modeling Wide-Frequency-Range Pilot Equalization @ontrol of Aircraft Pitch Dynam-
ics”, Journal of Guidance, Control, and Dynamj@&(5), 2011, pp. 1529-1542.
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2.1 Introduction

Ever since the foundations for focused research into hurgaardics during manual con-
trol were laid by Elkind [1956] and McRuer et al. [1965] formpensatory tracking tasks,
the modeling of pilot manual control behavior has been dafredt to many applications
in the field of aerospace engineering ever since. Notablmples are the evaluation of
aircraft handling qualities [McRuer et al., 1960; Ashkeaasl McRuer, 1962; Hall, 1963;
Hess, 1995; Damveld, 2009], the assessment of flight sioutateing fidelity [Hess and
Malsbury, 1991; Zeyada and Hess, 2003; Steurs et al., 26t al., 2009b,a; Grant and
Schroeder, 2010], the design of aircraft flight control sgst [Hess, 1990a], and the evalu-
ation of manipulator characteristics [Johnston and Apph888; Mitchell et al., 1992] and
perspective guidance displays [Mulder and Mulder, 2005].

One of the key characteristics of pilot tracking behaviothiat human operators are
seen to adapt their control behavior to a myriad of externdliaternal factors [McRuer
and Jex, 1967a]. Perhaps the most apparent form of thisatttapts the fact that human
operators are seen to modify their own equalizing controlaglyics to yield an open-loop
pilot-vehicle system that has the properties of a wellglesil feedback control system,
that is, an open-loop system with approximately singlegrator dynamics over a limited
frequency range around the gain crossover frequency [McBual., 1965; McRuer and
Jex, 1967a). For modeling pilot dynamics in the crossowgiore including this adaptation
to the dynamics of the controlled element, McRuer et al. §19@wve proposed thextended
crossover modelwhich includes an explicit lag-lead pilot equalizatiomntethat can be
modified to model control of different types of controlleeents. Furthermore, as the
validity of the extended crossover modeas found to be restricted to a limited frequency
range around crossover, McRuer et al. proposed ftreicision modefor the modeling
of pilot dynamics over the full range of frequencies whertpilynamics are typically
evaluated. Compared to tiextended crossover mod#he precision modehas additional
terms to model very low-frequency pilot lag and the neurcrnles actuation dynamics that
are observed at frequencies well above crossover. preeision modefurther includes
the same lag-lead pilot equalization term as used for ciyotuilot equalization in the
crossover region in thextended crossover model

Recent experiments into the effects of physical motion lleed during compensatory
tracking tasks have indicated that considerable changeddhtracking behavior under
varying motion cueing settings not only occur around cresgdut also at frequencies that
are well above the pilot-vehicle system crossover frequéNeeuwenhuizen et al., 2008;
Zaal et al., 2009b; Damveld, 2009; Pool et al., 2010]. Furtioee, research into the char-
acteristics of the human neuromuscular system during nhameaaft control also focuses
on pilot dynamics outside of the crossover region [Damvell.e2009]. A number of these
experiments evaluated pilot tracking behavior for comtlelements that are representa-
tive for conventional aircraft elevator-to-pitch dynas[Zaal et al., 2009b; Damveld, 2009;
Pool et al., 2010]. Such conventional aircraft pitch dyresriave relatively complex dy-
namic characteristics over the frequency range where nhénacling behavior is typically
evaluated due to the presence of the short-period mode. Wireidering pilot behavior
over a wide frequency range, thereby including frequeraies/e and below the crossover
region, it is found that the lead-lag equalization term atuided in theprecision modetan
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not capture the equalization dynamics adopted for compiensaf the controlled element
characteristics around the short-period mode.

The main objective of the present study is to define and valida appropriate pilot
equalization model that captures the adopted pilot ecpt#diz over the full measurement
bandwidth during manual for a controlled element that regmnés the elevator-to-pitch dy-
namics of a small conventional jet aircraft. Furthermooe this type of controlled element
the importance of accurate modeling of the pilot equalimatiynamics for quantitative eval-
uation of the typical effects of physical motion feedbadkttére observed for compensatory
tracking tasks will be shown.

To achieve these objectives, measured pilot control behdkom the compensatory
pitch attitude tracking task from the experiment descrilrefZaal et al., 2009b] is ana-
lyzed. For this experiment, the controlled element was @aliized reduced-order model
of the pitch dynamics of a Cessna Citation | Ce500 busindssHerthermore, the pitch
tracking task was performed both with and without simulatation cues. To be able
to investigate the separate contributions of the visuahasdibular systems, a combined
disturbance-rejection and target-following task was grenked [Stapleford et al., 1969]. To
confirm that the requirement for a more complex model fortpéigualization is indeed
caused by the dynamic characteristics of the consideredhdtipitch dynamics, the pitch
tracking task of Zaal et al. [2009b] has been repeated fotrabof a system with double
integrator dynamics, both with and without physical motieadback, in the same experi-
mental setting.

This chapter is structured as follows. First, Section 2v&gjian overview of previous
research into the modeling of pilot equalization during pemsatory tracking. In addition,
this section will cover the relation between controllecadat dynamics and pilot equaliza-
tion dynamics, which will be used to propose an extendedlegtian model for control of
typical conventional aircraft pitch dynamics. Then, Satt2.3 describes the details of the
human-in-the-loop experiments that were performed toegatie required measurements
of human manual control behavior for evaluating the progasgualization models. The
model identification results are presented in Section 2. chapter ends with a discussion
and conclusions.

2.2 Pilot Compensation in Manual Control
2.2.1 Background

The foundations for much of the current knowledge on pilatatyics during manual con-
trol were obtained from investigations into pilot contreHavior and performance for single-
loop compensatory target tracking tasks with a visuallysented, random-appearing forc-
ing function [Elkind, 1956; McRuer et al., 1965]. A schensatépresentation of such a
single-loop compensatory control task is depicted in Figy. 2

Fig. 2.1 shows a pilot exerting contral)on a controlled element with dynamical char-
acteristics given byi.(jw), based only on information of the tracking ereoiThis tracking
error is defined as the difference between the actual stateeafontrolled elemert and
the desired state defined by the forcing function sighaBSuch compensatory manual con-



Modeling Pilot Control of Aircraft Pitch Dynamics 29

'HT—A Hy(jw) H.(jw) >

Figure 2.1. Schematic representation of a single-loop compensagacontrol task.

trol behavior has mainly been studied for tracking task$ witpredictable (quasi-random)
forcing function signalsf;, as these force the pilot adopt to a purely compensatoryaont
strategy [McRuer and Jex, 1967a]. Based on such measurewidi},(jw) for a wide va-
riety of controlled elements, McRuer et al. [1965] formelththe most well-known of all
models of human tracking behavior, tb@ssover model

Hy (o) Ho(jw) = ZZe3om (2.1)

The model defined by Eq. (2.1) implicitly captures the adémeof pilot dynamics to
those of the controlled element, by stating that the contbpilet-vehicle dynamics approx-
imate those of a single integratdk( jw) around the crossover frequengy, independent
of the controlled element dynamid3.(jw). The crossover model further accounts for
phase lags around crossover that can be attributed to thtelgitamicsH,, (jw) through the
equivalent pilot time delay..

Based on theicrossover modelwhich is has been shown capable of describing the
combined pilot-vehicle dynamics in the crossover regianafavide variety in controlled
element dynamics [McRuer and Jex, 1967a; McRuer, 1988], wdcRt al. [1965] further
introduced a number of quasi-linear models for describivggpilot dynamics,, (jw) dur-
ing compensatory tracking. The first of these models igtended crossover mogdelhich
is given by:

2.2)

Ty 1 .
H,(jw) = K, <W> e JwTe

T[jw +1

pilot equalization

Note that the low-frequency phase correction proposed pidc et al. [1965]¢ 72/«
is omitted from theextended crossover moda$ given by Eq. (2.2). As can be verified
from comparison of Equations (2.1) and (2.2), théended crossover modelsults from
the required combined pilot-vehicle system dynamics ddftmethe crossover model. The
adaptation of pilots’ dynamics as a control eleméhf(jw) to the dynamics of the con-
trolled systemH..(jw) is captured by the pilot equalization term in the model. Dejieg
on what type of equalization is required to satisfy Eq. (2ot)a given controlled element,
the lead-lag pilot equalization form of Eq. (2.2) may redtmea pure lead, a pure lag, or
even a pure gain. For instance, for modeling tracking beinder single and double inte-
grator controlled elements(./jw and K./ (jw)?, respectively), McRuer et al. [1965] have
shown that the equalization term can be reducelf j@nd K, (T, jw + 1), respectively.
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Both thecrossover moddEq. (2.1)) and thextended crossover modelthe form given
by Eg. (2.2) were meant for analyzing pilot-vehicle systgmainics in a limited frequency
range around the gain-crossover frequencyfjw)H,.(jw). As for instance stated by
McRuer and Jex [1967a], the combined pilot-vehicle systgmachics in the crossover
region ‘determine the dominant closed-loop modes and resporgas implies that for
many applications, such as the prediction of closed-lotgi-pehicle system performance,
these models provide satisfactory results, despite theates frequency range they are
applicable to.

Despite the modest contribution to the overall charadiesi®f the resulting combined
pilot-vehicle system, pilot dynamics during tracking exddo frequencies well above and
below crossover. For modeling these high and low-frequemilot dynamics, and to al-
low for quantitative evaluation of changes in tracking hebiin these frequency ranges,
McRuer et al. [1965] proposed a further extension togkinded crossover modgen
by Eqg. (2.2). In a form that compared to its definition in [MaReet al., 1965] omits the
indifference threshold describing function, tipiecision modeis given by:

pilot equalization low-freq. lag-lead
Trj 1 Tkj 1
Hy(jw) = Kp( Lj‘w+ ) ( 1/{].0J+ )
Trjw+1 Thjw+1
(2.3)
1 .
5 67]0.17
(Tnjw + 1) ([WJ“} e 1)
neuromuscular dynamics delay

Note that compared to thextended crossover modehe precision modebiven by
Eq. (2.3) includes an additional lag-lead term and an ektemsodel for the neuromuscular
actuation dynamics. These additional elements ensurghbatecision modehllows for
the modeling pilot dynamics over a wider frequency range tassible with therossover
andextended crossovenodels. A more subtle difference with these simpler modetaé
delay terme=7¢7. In theextended crossover mogéthe equivalent time delay. accounts
for more than just pilot time delay, as for instance the pHage induced by the neuro-
muscular actuation dynamics, which also affect pilot dyiearin the crossover region, are
also lumped intar, [McRuer et al., 1965]. As can be verified from Eq. (2.3), theliekt
inclusion of the neuromuscular dynamics in the model allfavg¢he modeling of a pure
pilot time delay in theprecision model

As can be verified from comparison of Equations (2.2) and)(248Ruer et al. [1965]
propose the same equalization term for bothekiended crossover modeid theprecision
modelto model the adaptation of the adopted pilot dynamics toglodshe controlled ele-
ment. The equalization dynamics required in the crossagon for achieving satisfactory
overall characteristics of the combined pilot-vehicletegs are, however, not necessarily
also applicable to frequencies that are well above crossasehe dynamics of many con-
trolled elements that are representative for manual veltichtrol may show considerable
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changes in their dynamic characteristics in the crossagton and for frequencies beyond
crossover. For instance, controlled elements of the fafA(jw(Tjw + 1)) — which are
representative for, among others, aircraft aileron-lbesmamics — are approximately.. /s
around crossover if /T > w.. However, the second-order dynamics at frequencies above
1/T may still require pilot lead compensation at frequenciesvatcrossover, especially
if 1/T ~ ws,. Moreover, previous research has indicated that markedgetsain pilot
dynamics at frequencies well above crossover occur dueriatizas in, for instance, ma-
nipulator feel-systems and dynamics [Johnston and Apdré&8; Mitchell et al., 1992] and
the availability of physical motion feedback of the conliedlelement state [Nieuwenhuizen
et al., 2008; Zaal et al., 2009b; Pool et al., 2010]. This tdapvestigates the equaliza-
tion model structure that is required for capturing piloti@ligation dynamics over a wider
frequency range for such applications, focusing on pittitude tracking tasks with a con-
trolled element that is representative for conventionaraft elevator-to-pitch dynamics, as
for instance considered in [Zaal et al., 2009b] and [Pool.e2810].

2.2.2 Control Task

Fig. 2.2 shows a schematic representation of the compewgsgaitoh attitude control task
that is considered in the present study. The tracking eni®presented to the pilot using the
compensatory visual display shown in Fig. 2.3. Trackingmsrand thereby pilot control
action, are induced using the target and disturbance fritinction signals,f; and f,,
respectively.

If the pitch motion of the controlled eleme#i, 5, is presented through physical mo-
tion cues in addition to the visually perceived trackingogran additional feedback path
is present that provides the pilot with explicit information the controlled pitch attitude,
0. Pilots’ responses to perceived visual tracking errorsgandical pitch motion are indi-
cated in Fig. 2.2 by the response functidiis, (jw) and H,,,, (jw), respectively. The main
reason for using both a target and a disturbance forcingifimsignal in the pitch control
tasks studied in this chapter is that this yields a combiaagkt-following and disturbance-
rejection task for which reliable separation and identifwaof 4, (jw) andH,  (jw) is
possible [Stapleford et al., 1969].

pilor |
visual response fd
ft + € ; . (5&' . + ¥+ 0
4t§?—:r> HI,‘,(‘]W) Kri A HH.O}(]‘U) > - e
! — 1T
3 motion response
0 )
o Hy ()

Figure 2.2. Compensatory pitch attitude control task. Note thathe pilot  Figure 2.3. Compen-
motion response is only present if physical motion cues are supplied.  satory display.

Fig. 2.2 differs from the single-loop tracking tasks coesatl by McRuer et al. [1965]
(as can be verified from comparison with Fig. 2.1) by the presef physical motion feed-
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back — and the corresponding pilot motion respaHse (jw) — and the disturbance signal
fa- Note, however, that if no motion feedback is availat#g, ( (jw) = 0) the tracking
errors introduced by the target and disturbance signalsiehwdre typically both signals
with a low-pass characteristic — are indistinguishablenfim compensatory display [Pool
et al., 2008a]. Therefore, despite the additional distaecbasignal, direct comparison with
the results of McRuer et al. is still possible for the contadk shown in Fig. 2.2 if no
physical motion feedback is available.

sensor

) 3 dynamics i 3 equalization i i limitations 3 n
Hy,(jw) } oo N :
+
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Figure 2.4. Multimodal pilot model.

2.2.3 Multimodal Pilot Model

Pilot control behavior in compensatory tracking tasks canrwdeled successfully using
quasi-linear pilot models [McRuer et al., 1965; McRuer aex}, 1967a], as those indicated
in Figures 2.1 and 2.2. Such models typically consist of edirpart that describes pilot
responses to all relevant perceived variables, and a rensigaraln that accounts for all
otherwise unmodeled nonlinearities. As for instance surized in [Grant and Schroeder,
2010], many different model structures have been derivguast studies to represent the
linear pilot's responses to perceived visual erdés (jw), perceived physical motion feed-
back H,,, (jw), or the combination of both. Examples are thiessover modelextended
crossover modedndprecision modethat were introduced in Section 2.2.1, thelti chan-
nel model[Van der Vaart, 1992], theescriptive mode]Hosman and Stassen, 1999], and
thestructural mode[Hess, 1990b].

Fig. 2.4 depicts the multimodal pilot model adopted in thesgnt study. The visual
channel of the pilot model is based on threcision mode]McRuer et al., 1965] and there-
fore largely equivalent to Eq. (2.3), where the low-frequelag-lead term has been omitted.
Similar to thee=7*/* term added to thextended crossover model[McRuer et al., 1965],
the low-frequency lag-lead term in Eq. (2.3) is included tateh pilot describing function
measurements at the lowest frequencies in the measuremedt(phase droop). For an
unstable first-order controlled element, McRuer et al. fl9@opose that the parameters
of this low-frequency lag-lead are equalT®@ = 3.33 s andT} = 20 s independent of
the forcing function bandwidth, yielding only negligiblfexts at frequencies higher than
the inverse lead time constahtTy, that is, 0.3 rad/s. As the additional lag-lead term in
Eq. (2.3) was intended to capture such very low frequencgelags and the measurement
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bandwidth of the experiment considered in this study rarfiges 0.38 to 17.56 rad/s (see
Section 2.3.1), this low-frequency lag-lead term is notstdared in this study.

For the pilot model defined in Fig. 2.4, the lead-lag equéliraterm of Eq. (2.3) has
been replaced by the generic frequency response funéfigiijw), and the third-order
neuromuscular term has been replacedHy, (jw). The characteristics aff.,(jw) as
considered in this study will be described in detail in Smtt2.2.5. The neuromuscular
term in theprecision modeproposed by McRuer et al. [1965] consists of a second-order
mass-spring-damper model combined with an additionatdirder lag, as can be verified
from Eq. (2.3). The neuromuscular system moHgl,, (jw) adopted here only considers
the second-order term of Eq. (2.3), yielding the followingdal with two parameters, the
natural frequency,,,,, and damping ratid,,,:

1

. 2
(l) + 2Cnmjw + 1

Wnm Wnm

Hpym(jw) = (2.4)

Previous investigations have indicated that this modehefrteuromuscular system dy-
namics typically suffices for approximating the neuromiescdynamics measured in the
frequency range that is considered for similar trackingggdohnston and Aponso, 1988;
Zaal et al., 2009b,a; Damveld et al., 2009; Pool et al., 2010]

The additional parallel motion channel of the pilot mod#l, , (jw), incorporates the
pilot’s response to his vestibular motion sensation as gse@ by Van der Vaart [1992]
and Hosman and Stassen [1999] in thainlti channel modeand descriptive modelre-
spectively. The dynamics of the semicircular canals (S@@) vestibular sensors that are
sensitive to angular motion, are definedBy.(jw), which is given by:

0.11jw + 1
(5.9jw + 1)(0.005jw + 1)

The form of Eq. (2.5), which relates angular acceleratigusiad to the SCC (in rad?3
to afferent neuron firing rate (in impulses per second, ipa$,been determined from sinu-
soidal stimulation of the vestibular organs of squirrel ikeys by Fernandez and Goldberg
[1971]. The parameters of the semicircular canal model o E§) as used here have been
adapted from those found by Fernandez and Goldberg usiregiexgntal measurements of
human motion perception thresholds [Hosman and Van deit,\E2ir8]. Note that despite
the possible presence of differences in SCC dynamics offeretlit individuals, here the
model of Eq. (2.5) is applied to the data from different expent participants. This same
approach was taken in a number of previous investigatidosmultimodal pilot control be-
havior [Van der Vaart, 1992; Hosman and Stassen, 1999; Zah) 2009b,a; Damveld et al.,
2009; Pool et al., 2010], where this assumption was foundgultin only modest modeling
errors. Note that in the frequency range of interest to miarelacle control, the output of
the SCC model of Eq. (2.5) is proportional to angular rateafoengular acceleration input
[Fernandez and Goldberg, 1971].

Hie(jw) = (2.5)
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2.2.4 Controlled Dynamics

In this chapter, data from two sets of experiments are coagpaBoth experiments evalu-
ated the effect of motion feedback in a pitch attitude tragkiask as depicted by Fig. 2.2.
The first experiment evaluated the effects of pitch and heavton cues on pilot control
behavior in a pitch control task [Zaal et al., 2009b]. Thetoalfed dynamicsHy s, (jw),

in this experiment were the reduced-order linearized pitgiamics of a Cessna Citation |
Ce 500 business jet aircraft, in cruise in the standard githere at an altitude of 10,000 ft
and at an airspeed of 160 kt, as given by:

. Ty, jw + 1
Hos. (jw) = Ko, _ %)
juw ((g“’) + By 4 1)
bp " (2.6)
1.01s + 1
— 138 ot

jw (0.13(jw)2 + 0.36jw + 1)

Note that Eqg. (2.6) is a typical fixed-airspeed approxinratid aircraft pitch attitude
dynamics [Bryan, 1911], as for instance considered in mangies into longitudinal air-
craft handling qualities [McRuer et al., 1960; Ashkenas &uRuer, 1962; Hall, 1963].
Furthermore, note that the units of the in- and output sgyoélEq. (2.6) -, and¥, re-
spectively — are both deg. The Bode frequency response ditbaft pitch dynamics is
depicted in Fig. 2.5. Note that in the frequency range ofragt the aircraft dynamics de-
fined by Eq. (2.6) are characterized by a lead tefi fw + 1) and the periodic short-period
eigenmode. The short-period mode of this specific aircrafihé given configuration has a
natural frequency,, and damping rati@,, of 2.76 rad/s and).50, respectively. As can
be verified from Eq. (2.6), the corresponding valuelpf is 1.01 s. Note the significant
magnitude peak and phase lead around the short-periocefiegin Fig. 2.5. Furthermore,
observe that due to the values@f, andw,, both features of Eq. (2.6) affect the dynamics
in the frequency range where the pilot-vehicle system oneessfrequency is expected to be
for compensatory tracking tasks, thatdsy — 5 rad/s [McRuer et al., 1965].

Previous experiments that investigated pilot manual cbiwfaircraft pitch dynamics
[Zaal et al., 2009b; Damveld, 2009; Pool et al., 2010] intidathat a pilot equalization
model as defined in Eqg. (2.3) is not sufficient for describihg measured pilot control
behavior. To support a comparison of these findings with éiselts described by McRuer
et al. [1965], the same pitch tracking task described in [Baal., 2009b] was repeated in
a later experiment with double integrator dynamics:

. Kos5.w2To,  10.62

Hoa0e) = =202 = Gup? @0

The frequency response of the system given by Eq. (2.7) ic@epin Fig. 2.5 in
gray. Note that the gain for this double integrator systens wlaosen to have its fre-
quency response coincide with the high-frequency mageitidhe Citation pitch dynam-
ics, Eq. (2.6). Furthermore, note from Fig. 2.5(b) that tineraft pitch dynamics given by
Eq. (2.6) are stable, while those of the double integratemnat. For this reason, control of
double integrator dynamics requires more stabilizing kegquhlization by the pilot, thereby
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Figure 2.5. Controlled dynamics frequency responses.

making such controlled elements markedly more difficult doteol [Shirley and Young,
1968].

2.2.5 Pilot Equalization

The main focus of the current chapter is on the model stradturthe pilot equalization
termH.,(jw) (see Fig. 2.4) required for modeling pilot dynamics duringteol of a system
Hy s, (jw) with dynamics given by Eq. (2.6) over a wide frequency rangée theory
of manual vehicle control as compiled by McRuer et al. [McRekal., 1965; McRuer
and Jex, 1967a; McRuer, 1988] states that pilots adapt ¢leialization dynamics around
crossover to the controlled element dynamics to yield atidhicle system that has the
properties close to those of a single integrator systemnartie crossover frequency. For
double integrator systems as defined by Eq. (2.7), it has §le@nn in literature that pilot
equalization takes the form of a pure lead in order to achigese open-loop characteristics
[McRuer et al., 1965].

For an expected range af. between2.5 and5 rad/s as proposed in [McRuer et al.,
1965], to achieve a pilot-vehicle system with approximaigle integrator characteristics
around crossover for control of dynamics as given by Eq)(pits would need to generate
lag at a frequency close 19T, to compensate for the gain-like dynamics introduced by the
lead term of the aircraft dynamics, as indicated in Fig. l@addition, due to the value of
wsp = 2.76 rad/s for the considered controlled element, it is alsdyikeat lead equalization
will be adopted to compensate for the second-order dynameipsnd the short-period mode
natural frequency. Note from Fig. 2.6 that equalizationayitsH .4 (jw) that include both
pilot lag at low frequencies and pilot lead at high frequesaivould yield a combined pilot-
vehicle systemH.,(jw)Hy s, (jw), with approximately single integrator dynamics over the
full range of frequencies considered here.
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Figure 2.6. Frequency response of theoretical pilot equalizationof control of aircraft pitch
dynamics.

Fig. 2.6 shows the proposed pilot equalization dynamicémtrol of a system with
dynamics described by Eg. (2.6). Eq. (2.3) defines the fullaégation term of the pilot
model proposed by McRuer et al. [1965] for modeling pilotéébr for a wide frequency
range. Comparison of both equalization forms shows thantbdel of Eq. (2.3) is not
capable of capturing the proposed equalization dynamiosnshn Fig. 2.6. As can be
verified from Fig. 2.6, an additional lead term is requiredntodel the combination of low-
frequency lag and high-frequency lead equalizatiotHin (jw). As this high-frequency
lead equalization is expected for this controlled elemengddition to the low-frequency
lag compensation required for achieving approximatelglsiintegrator dynamics around
crossover, it is anticipated that the addition of a secoad term to the equalization term
H.,(jw) will allow for better modeling of the pilot equalization dgmics that are adopted
for such a controlled element.

To further investigate this, four equalization models aral@ated for describing pilot
control behavior in a pitch attitude tracking task in thiadst These different forms of
H.q(jw) are listed in Table 2.1. Equalizations A and B represent pead and lead-lag
equalization terms that have been frequently applied éndttire. Equalizations C and D
both have an additional lead term, to allow for modeling ddtpéqualization of the form
depicted in Fig. 2.6. The difference between these is thatdwa for the additional lead
time constant],,, to have a different value than the first, — and thereby adds<aa pa-
rameter to the pilot equalization modél, (jw) — while C assumes both lead time constants
to be equal. This additional independent lead time constiéows for more freedom in the
equalization model and can therefore allow for attainingetidy fit than with equalization
C. However, due to fact that equalization D has two matheralliyiidentical lead terms,
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it yields an overdetermined pilot model structure, whichaidisadvantage from a model
identification view [Zaal et al., 2009a].

Table 2.1. Definition of equalization forms.

Symb. Form Equalizatiortcq (jw)
A lead Ky(Tpjw +1)
B lead » (TLJW + 1)
oe (Trjw + 1)
C lead? (TLjW + 1)2
lag Y (Trjw + 1)
D lead-lead K (TLl Jw + 1)(TL2jW + 1)
v
o (Trjw + 1)

Pilot lead equalization captures the pilots’ responsedaally perceived tracking error
rate. An additional lead term in the pilot model equalizatinodel, as is proposed here
for equalizations C and D (see Table 2.1), therefore suggestieling of pilots’ responses
to visually perceived accelerations. As for instance algnglHosman, 1996], however,
the human visual system is believed to be incapable of pénge(and inferring) acceler-
ation. Note from Table 2.1 that for certain settingsiof 77, and7y, , — most notably if
T; <« T1,, — both equalizations C and D can yield pilot equalizationaigits propor-
tional to (jw)? over a certain frequency range. As illustrated by Fig. 26 gffective pilot
equalization for control of dynamics as defined by Eq. (2.6uMt never be more than a
single lead (rate perception), due to the fact that pilotisagenerated at a frequency that
is well below the frequency range where lead equalizatioedsired, that is7 > 17, ,.
Care should, however, be taken in utilizing equalizationn@ B for modeling pilot con-
trol, as for certain combinations of the equalization partars these proposed equalization
terms can yield pilot equalization dynamics that are ure@ble for a human pilot.

2.3 Experiment

2.3.1 Forcing Functions

The pitch tracking task considered in the experiments dmetin this chapter (see Fig. 2.2)
was defined to be a disturbance-rejection task, where tirldénce of the pitch attitude
was induced by the disturbance sigrfal An additional target signaf, with reduced sig-
nal power (25% of the power of;) was inserted as well, this to facilitate multimodal pilot
model identification[Stapleford et al., 1969; Jex et al78Faal et al., 2009a]. As in the ex-
periments described by McRuer et al. [1965], the forcingfiom signals were constructed
as sums of ten sinusoids:
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Na,t

far(t) = Aqy(k)sin [wa(k)t + da(k)] (2.8)
k=1

Experimental measurement runs had a length of 110 secohddiich only the final
81.92 seconds were used as the measurement data. Remadvalrafitin time from the
measurement runs ensured stationary measurements df@dking, as initial transient and
stabilization effects were no longer present after 10 sgear tracking. The sinusoid fre-
quenciesw; andwgy, were distributed more or less evenly spaced on a logaritkogle over
the frequency range of 0.3 to 18 rad/s. The frequencies wefieeatl as integer multiples
of the experimental measurement time base frequengy, = 27 /T,,, with T,,, = 81.92
seconds — to allow for pilot model identification using spalcinethods [Stapleford et al.,
1969].

The frequency, amplitude, and phase distributiens; (k), A4+ (k), andeq . (k)) were
the same as those used in a previous experiment [Zaal et0O8ObP The frequencies,
amplitudes, and phases of the target and disturbance sigresummarized in Table 2.2.
The amplitude distributions of; and f; are depicted in Fig. 2.7(a); Fig. 2.7(b) shows a
part of the time traces of both forcing function signals. &\fsom Fig. 2.7(b) thaf,; yields
maximum pitch attitude excursions of no more than 3 degrees.

Table 2.2. Experiment forcing function properties.

disturbancefy target, f+
k nd wd Aq bd nt wt Ay lons
— — rad/s deg rad — rad/s deg rad

5 0.383 1.343 1.530 6 0.460 0.698 1.288
11 0.844 1.016 5.967 13 0.997 0.488 6.089
23 1.764 0.506 1.000 27 2.071 0.220 5.507
37 2.838 0.258 6.117 41 3.145 0.119 1.734
51 3.912 0.157 6.145 53 4.065 0.080 2.019
5446 0.095 2.692 73 5599 0.049 0.441
101 7.747 0.060 1.895 103 7.900 0.031 5.175
137 10.508 0.043 3.153 139 10.661 0.023 3.415
171 13.116 0.036 3.570 194 14.880 0.018 1.066
226 17.334 0.030 3590 229 17.564 0.016 3.479
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2.3.2 Apparatus

The experiments were performed in the SIMONA Research Sitou(SRS) at Delft Uni-
versity of Technology, see Fig. 2.8. The SRS motion systemusad to present the subjects
with rotational pitch motion cues during specific condigasf both experiments. The ver-
tical motion cues that are typically coupled to conventiamiecraft pitch rotations [Zaal
et al., 2009b] were not presented. The pitch motion of theikitor was driven directly by
the pitch motion of the simulated controlled element, teahibo motion filter was applied.

The time delay associated with the motion cues generatelteb$RS motion base 3 ms
[Berkouwer et al., 2005].
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Figure 2.7. Target and disturbance forcing function spectra andime traces.

Figure 2.8. The SIMONA Research Simulator.
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The pitch tracking error the participants were to minimizeing the tracking tasks was
presented on the primary flight display (PFD) in the SRS cibclys depicted in Fig. 2.3,
the instantaneous value of the tracking erornas depicted as the vertical displacement
of a moving horizontal line with respect to a fixed aircraftrdyol, which was centered on
the display. The update rate of the PFD wasHz and the time delay associated with the
generation of visual images on the SRS cockpit displays bas Hetermined to k&) — 25
ms [Stroosma et al., 2007].

In both experiments, subjects controlled the pitch dynamiith a sidestick with elec-
trical control loading. The sidestick had no break-out éoamd a maximum deflection of
14 deg. The stiffness of the stick was setltd N/deg for stick deflections undérdeg
and t02.6 N/deg for larger stick excursions. The stick roll axis, whigas not used during
the experiment, was kept fixed at the zero position. A sdidetgain — indicated with the
symbol K5, ,, in Fig. 2.2 — controlled the scaling between the sidestidkedton « and
the elevator input to the controlled dynamiés, To give optimal control authority for both
types of controlled dynamics, this gain was setth2865 or —0.4011 for the Citation pitch
and double integrator controlled elements, respectively.

2.3.3 Conditions, Participants and Experimental Procedure

Data from four different experimental conditions are esédal in this chapter. As indicated
in Table 2.3, the modeling of pilot control behavior will berapared for the aircraft pitch
dynamics Eg. (2.6) and the double integrator dynamics E@) (®picted in Fig. 2.5. For
direct comparison with the results described by McRuer.g.865] and evaluation of the
interpretation of observed effects of physical motion feszk on the adopted pilot dynam-
ics, the control task is performed both with and without &ddal pitch motion feedback.

Table 2.3. Experimental conditions.

no motion  motion

aircraft dynamics, Eqg. (2.6) C1 Cc2
double integrator dynamics, Eq. (2.7) C3 C4

Five subjects performed the four experimental condititsted in Table 2.3. All partic-
ipants were students or staff of the Faculty of Aerospacertesging. Two subjects were
pilots and all had extensive experience with similar maroagadtrol tasks from previous
human-in-the-loop experiments.

Participants were instructed to minimize the pitch traglkenror, that is, the signal that
was presented on the visual display. Five repetitions df eaperimental condition per sub-
ject were performed to collect the measurement data. Befulecting the measurements,
all subjects performed a considerable number of training,runtil their proficiency in per-
forming the tracking task had stabilized at a constant lef/#lacking performance. After
each run subjects were informed of their tracking score -nddfas the root-mean-square of
the error signat — in order to motivate them to improve their tracking perfarmoe during
initial familiarization and to maintain a constant levelpafrformance after their proficiency
had stabilized.
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2.3.4 Pilot Model Identification

The parameters of the multimodal pilot model depicted in Big were estimated using a
time-domain maximum likelihood estimation (MLE) proced(Zaal et al., 2009a] for all
experimental conditions listed in Table 2.3. As explainediétail by Zaal et al. [2009a],
this identification procedure yields more consistent pa&temestimates than obtained by
frequency-domain methods based on Fourier coefficientsgFlihear time-invariant mod-
els (ARX) [Nieuwenhuizen et al., 2008]. The free parameietbis estimation procedure
were the pilot perceptual time delays, @ndr,,), the neuromuscular frequency and damp-
ing ratio (v, and{,.,), the pilot motion gain k,,,), and the parameters of the pilot visual
equalization transfer functiori(,, 77 and?y, — or 1y, andT}, for equalization D). Note
that for conditions C1 and C3, where no motion cues wereabiailto the participants, only
the model for the pilot visual respongg,, (jw) (see Fig. 2.4) was fit to the data. For each
condition of every subject, the averaged time-domain deéa the measurement interval
(see Section 2.3.1) of the five measurement runs were usegatstd the estimation algo-
rithm, to remove part of the remnant present in these medsigaals before estimating
the model parameters. The same MLE parameter estimati@egwuoe for estimating pilot
model parameters has been used in [Beerens et al., 2009}dessfully replicate some of
the results of the experiments of [McRuer et al., 1965].

For all experimental conditions listed in Table 2.3 fouffaiént pilot models were fit to
each data set, corresponding to the pilot equalizatiowctsires listed in Table 2.1. Since the
modeling efforts in the original work of McRuer et al.[McRuet al., 1965; McRuer and Jex,
1967a] were based on experiments without physical moti@s,ctihe main comparison of
required pilot model equalization structures will be perfed using the experimental con-
ditions without physical motion (C1 and C3). The accuracthefpilot model identification
results for the different equalization structures is fartevaluated using the model variance
accounted for (VAF) [Zaal et al., 2009a]. The VAF indicatee amount of variance in
the measured pilot control signal that is captured by thealirmodel fit and expresses it in
the form of a percentage {00%). An additional evaluation of the suitability of the-di
ferent equalization structures will be performed for thaeditions where the aircraft pitch
dynamics were controlled by comparing the identified leadl lag time constants for all
equalization structures with the known characteristiqdiencies of the controlled element.
These results are then used to indicate which of the eqtializéorms listed in Table 2.1
are found to be most suitable for evaluation of the effectghyfsical motion feedback on
control behavior.

2.4 Results

2.4.1 Identified Equalization Dynamics

Figs. 2.9 and 2.10 depict the magnitude responses of théifiddrpilot equalization dy-
namicsH.,(jw), averaged over all subjects, for the no-motion conditioms eontrol of
the double integrator and aircraft dynamics (conditionsa@8 C1), respectively. Note that
the pilot equalization frequency responses shown in Figsad 2.10 were obtained from
identification of the full visual response of the pilot modéFig. 2.4 using MLE, according
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Figure 2.9. Average estimated pilot model equalization frequencyasponse functionsH ., (jw)
for control of double integrator dynamics (condition C3).

to the identification procedure detailed in Section 2.3.he Tour different graphs in each
figure show the identified frequency responses of the foumsoof H.,(jw) listed in Ta-
ble 2.1. Vertical dashed black lines indicate the frequenthat correspond to the average
estimated equalization lag and lead time constants, whaserical values are also given in
each figure. The frequency responses of the controlled eletiyaamicsH, 5, (jw), which
were calculated from Equations (2.6) and (2.7), are degbictgray for reference.

For control of double integrator dynamics it is well-knovnat pilots generate lead, typ-
ically starting from frequencies well below the pilot-velai system crossover frequency to
achieve single integrator dynamics in the crossover refjitmRuer et al., 1965]. McRuer
et al. [1965] reported pure lead equalization with a valu€pdf 5 sec for single-loop dou-
ble integrator control. Other investigations have regbvisual lead time constants between
1 and3 sec, depending on the bandwidth of the applied forcing fanctignals [Van der
Vaart, 1992; Beerens et al., 2009; Zollner et al., 2010]. Eig shows that the equalization
dynamics found for a double integrator controlled elemerthis experiment compare well
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Figure 2.10. Average estimated pilot model equalization frequencsesponse functionsH.q(jw)
for control of aircraft dynamics (condition C1).

with these previous findings, since all pilot equalizationis yield a frequency response
of H.,(jw) that is approximately a single lead with a lead time constatoundl sec.

Note that the parameters of the more extensive forn$.9f;w) (B—D) are estimated to
yield an overall response equivalent to that of the pure éspdhlization, A. For equalization
B this is achieved by setting the value’f to approximately zero, thereby yielding only a
minor effect of the additional lag term at very high frequiesc For the equalization struc-
tures with additional lead terms (C and D), the same effectduction ta, (T jw+ 1) is
obtained by either canceling the effect of the additionadileerm by settind; ~ 17, (C) or
by settingZ’; andT7},, to values outside of the frequency range of interest (D) hesadded
complexity of equalization forms B-D is not found to yieldfdirences in the estimated pilot
equalization dynamics, Fig. 2.9 therefore suggests thptira lead equalization term (A)
is sufficient for modelingd.,(jw) for control of double integrator dynamics over a wide
frequency range, as also found for pilot behavior in the ssweer region by McRuer et al.
[1965].
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As explained in Section 2.2.5, equalization forms C and bvaflor capturing the low-
frequency lag and high-frequency lead equalization thaigsired for modeling pilot equal-
ization dynamics if compensation for the aircraft pitch dgmcs given by Eq. (2.6) is per-
formed over a wide frequency range. As can be verified from Eit0, the estimates of
H.,(jw) obtained using both these equalization forms indeed shiow|pg starting from
0.7 rad/s and pilot lead compensation starting from arokird3 rad/s. AsT; > Ty, ,, the
resulting pilot equalization dynamics captured with eqaadions C and D indeed never pro-
vide more than a first order lead (rate perception), as poiote as an important condition
for application of these equalization forms in SectionZ.Note from Fig. 2.10(d) that for
equalization D the average identified dynamic$f (jw) are similar to the fit obtained for
equalization C (Fig. 2.10(c)), even though the averageesbi’;, and7}, were found
to differ considerably. It should be noted that the averaffjerdnce in the identified values
for both lead time constants mainly results from the datenfome participant. For the data
from all other participants only very small differencesveeen the values df;,, and77,
were observed: on average the difference between bothifiddriead time constants of
equalization D for these four participants wa85 sec.

As can be verified from Figures 2.10(a) and (b), equalizatiarand B are found to
provide a fit of the equalization dynamics that is differemani the results obtained with
equalizations C and D. Equalization A is found to capturey dngh-frequency pilot lead
compensation, which only affects frequencies that are al®ve crossover, thereby yield-
ing pure gain equalization dynamics in the crossover regidhe lead-lag equalization
model (B) captures only the adopted low-frequency lag egaiadn.

2.4.2 Comparison with Measured Pilot Describing Functions

In addition to estimating the parameters of the pilot modehg MLE, pilot describing
functions were calculated with the Fourier coefficients hodt [Stapleford et al., 1969].
This nonparametric identification method allows for ariabjtcalculation of pilot describ-
ing functions in the frequency domain and does thereforeremuire selection of an ap-
propriate pilot model structure. FC describing functiotireates are used here as a second
independent measurement of the adopted pilot dynamicsalidate the pilot model fits
obtained for the different equalization forms with MLE, agsented in Figures 2.9 and
2.10.

Figures 2.11 and 2.12 show the average pilot visual respmetions for conditions
C3 and C1, respectively, obtained from the identificatiorthaf pilot model of Fig. 2.4
using MLE. In both figures, only the estimated equalizatidnS are shown, as the model
fits obtained for C and D are found to be similar for both colgtbelements, see Figures
2.9 and 2.10. In addition to these identified pilot model frecy responses, the averaged
FC estimates of the corresponding pilot describing fumstiare provided in Figures 2.11
and 2.12 for reference. Finally, also the average piloteletsystem crossover frequencies
determined for both controlled elements using the deswilfinction measurements are
depicted as vertical solid lines. Note that these averamgsorer frequencies were found to
be2.93 rad/s and.36 rad/s for conditions C3 and C1, respectively, which is catesit with
the measurements from [McRuer and Jex, 1967a], where ar@sBequencies of arouritl
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rad/s are reported for double integrator control and highgres for more stable controlled
elements.

For the double integrator controlled element, Fig. 2.1shthat the pure lead equal-
ization dynamics that resulted from identification of th&fedent equalization models as
depicted in Fig. 2.9 yield a pilot model that correspondd wéh the calculated frequency-
domain pilot describing function. Note from Fig. 2.11 thlaé tmeasured pilot dynamics
indeed show lead equalization that extends to frequenaidisalvovew,.. As no apparent
discrepancies with the describing function are observed the full range of measurement
frequencies, this indicates that a pure lead equalizagion is sufficient for capturing pilot
dynamics during control of double integrator dynamics @veride frequency range.

As shown in Fig. 2.12(a), the magnitude response of the gedf& describing function
estimate found for control of the aircraft pitch dynamicskaf. (2.6) has a shape that is
consistent with the hypothetical pilot equalization dégicin Fig. 2.6. It shows decreasing
magnitudes of,, (jw) at low frequencies, suggesting pilot lag equalization iat tine-
guency range. The describing function phase response simofig. 2.12(b) also shows
around20 deg of pilot phase lag at low frequencies. The describingtfan further shows
a high-frequency pilot response that is similar to that oless for the double integrator
controlled element in Fig. 2.11 and indicates pilot lead pensation that is seen start from
frequencies around, or even just below, the crossover émoyu

As can be observed in Fig. 2.12, the lead-lag equalizatiors¢B Table 2.1) provides
an acceptable fit of the low frequency phase lag. As this épiadn form does not allow
for the modeling of high-frequency lead in addition to thg & low frequencies (see also
Fig. 2.10(b)), a degradation in model fit is observed for tighér frequencies. This yields
a model fit in which the lack of high-frequency lead is partynpensated for by selecting a
very low value for the heuromuscular damping ratign,, as evident from the sharp phase
drop of visible for equalization B di0 rad/s in Fig. 2.12(b). The pilot equalization with only
alead term (A) is able to capture the high-frequency magdeitesponse (Fig. 2.12(a)) with
reasonable accuracy. A significant deviation from the extthioh describing function can,
however, be observed in the gain and phase responses beksoeer (Fig. 2.12(a) and (b),
respectively). Equalization C, with its additional leachteis able to capture both the low-
frequency lag and high-frequency lead compensation obddrvthe Fourier coefficients
estimate off,, (jw) and provides a model fit over the entire range of measuredédrazes
that shows the least deviations from the average describirajion.

As a further verification of this observation, Fig. 2.13 depithe same data shown in
Fig. 2.12 for condition C1 for the aircraft pitch dynamicadking tasks performed with
physical pitch motion feedback (C2). Fig. 2.13 shows thedeisg function estimates of
both the pilot visual and motion responses, in addition ®ftequency responses of the
visual and motion channels of the multimodal pilot modelidig in Fig. 2.4. Again the
average identified model frequency responses for equializaf-C are depicted. Note from
Figures 2.13(c) and (d) that only minor differences in thiinested pilot motion responses
H,, (jw) occur for the different equalization forms. Fig. 2.13, huere shows the same
differences in the success with which the different ega#itin forms are able to capture
the adopted pilot dynamics for the pilot visual chanfg), (jw) as visible in Fig. 2.12.
Despite the fact that the estimated responses to motiorbde&dare hardly affected by
the equalization form selected fdf,, (jw) for the data presented here, this choice still
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Figure 2.11. Mean pilot model frequency responses estimated wittlifferent equalization set-
tings for double integrator dynamics (five subjects, condition C3)

102

10t

|Hp,, (jw)l, —

10°

(a) Magnitude

10

100 We

w, rad/s

ZLHp, (jw), deg

(b) Phase
90
O = oy
-90
-180
o FCatwgy -~
-270} |=— = Equalization Alead
i 1 .lead
260 — = Equalization B: f;g
—— Equalization C:lﬁz‘f
-450 I
101 10° we 10t

w, rad/s

Figure 2.12. Mean pilot model frequency responses estimated wittlifferent equalization set-
tings for aircraft pitch dynamics (five subjects, condition C1).
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influences the interpretation of the effects of physicaliomofeedback on pilot behavior, as
will be further discussed in Section 2.4.4.

2.4.3 Variance Accounted For Evaluation

Figures 2.12-2.13 showed differences in the accuracy witiclwthe different equalization
forms listed in Table 2.1 allowed for in matching frequertymain pilot describing func-
tion estimates. In this section, the accuracy with whicbtadynamics can be modeled over
the full measurement bandwidth will be evaluated furthethimtime domain by consider-
ing the pilot model VAF for the different equalization mosleFig. 2.14 depicts the mean
pilot model VAF obtained for the two different controlleceaeients and the four evaluated
pilot equalization models. The VAF values for the fits of oy, (jw) to data from the
no-motion conditions C1 and C3 are shown in Fig. 2.14(a))enRig. 2.14(b) presents the
VAF of the full pilot model of Fig. 2.4 with the different formof H,(jw) for conditions
C2 and C4. A one-way repeated measures Analysis of Varighlid®YA) was performed
to investigate possible differences in the VAF values atadifor the different equalization
forms, where a-value lower thar).05 was considered as a significant effect, whilg-a
value betweeif.05 and0.1 was considered to indicate a marginally significant effétte
data for condition C3 showed problems with sphericity, salie data from that condition
the conservative Greenhouse-Geisser sphericity casreatas applied [Field, 2005].

As expected from the results shown in Fig. 2.9, the diffeszntalization settings yield
approximately the same pilot model fit for the double intégralynamics (conditions C3
and C4), with average VAFs of around 82% for the no-motiorkgaand 88% for the
tasks with physical motion feedback. ANOVA results for thenditions indicate no
significant effect of the selected equalization from on tietpnodel VAF for condition
C3 (F(1.05,4.22) = 1.43, p > 0.05), while for C4 a significant effect was observed:
F(3,12) = 3.85, p < 0.05. Using post-hoc tests (pairwise comparisons), for whi@h th
Bonferroni adjustment for multiple comparisons was agplieeld, 2005], this latter sig-
nificant effect was found to result from the slightly lower MAalues found for the lag-lead
equalization (B), see Fig. 2.14(b). Fig. 2.14 thereby cardithe observation made from
the results presented in Fig. 2.9, that is, that for modedimgple integrator control behavior
over the full measurement bandwidth the addition of extealland lag terms to the pure
lead equalization form A does not improve the quality of piteodel fit.

For the aircraft dynamics, Fig. 2.14 shows that the achi®&#delis on average found to
be 2-5% higher for equalizations C and D. This increase in VAF imparable for both the
data from the no-motion and motion conditions (C1 and C2¢xaected from the compar-
ison with measured describing functions shown in Figurég 2nd 2.13. The variation in
VAF with the selected equalization form is found to be hig$ilynificant: F'(3, 12) = 6.83,

p < 0.05andF(3,12) = 18.52, p < 0.05 for conditions C1 and C2, respectively. Post-hoc
analysis showed that for both the no-motion and motion dagamost significant pairwise
comparisons were those between the VAF values of equalimt\-B and C-D. Further-
more, compared to equalization C, the additional freedothénequalization model pro-
vided by the two separate lead time constants in equaliz&igsee Table 2.1) was not
found to yield significantly more accurate modeling of pbehavior for control of the con-
sidered aircraft pitch dynamics for both condition C1 and E18. 2.14 even shows a minor
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Figure 2.14. Mean pilot model VAF for different equalization settings (five subjects, motion and
no motion).

reduction in model VAF if equalization D is used. This indeEsithe second independent
lead term is unneeded for modeling pilot behavior for thesadered aircraft pitch dynamics

and even negatively affects the quality of the obtained pilodel identification results, as

suggested in Section 2.2.5.

Based on the results shown in Figs. 2.9 to 2.14 it can be cdedlthat equalization
forms A and C yield the most concise pilot models that are lolepaf representing the
adopted pilot dynamics over the complete measurement fangentrol of double integra-
tor and the aircraft pitch dynamics considered in this stuelspectively.

2.4.4 Effects of Physical Motion Feedback on Pilot Equalization

Other experiments that investigated the effects of phi/sicéion feedback on pilot tracking
behavior revealed considerable changes in pilot behasémecially in pilots’ responses to
visually presented tracking error&ly, (jw), see Fig. 2.4) at the higher frequencies in the
measurement bandwidth [Nieuwenhuizen et al., 2008; Zaal,€2009b; Pool et al., 2010].
In addition to the adaptation of the neuromuscular actnalynamics as reported in [Zaal
et al., 2009b] and [Pool et al., 2010], the most defining ¢ftég@hysical motion feedback
on compensatory tracking behavior that is typically obedris a decrease in visual lead
equalization, which is allowed for due to the additionadeampensation that is available
from the vestibular respondé,, (jw), see Fig. 2.13. The human vestibular system — that
is, the SCC for rotational motion as considered here, setoBe2.2.3 — provides a much
more efficient way of providing lead information than can l#ained from visual lead
equalization, due to the smaller time delay associated weistibular perception compared
to visual lead perception [Hosman and Stassen, 1999].

The results presented in Sections 2.4.1 to 2.4.3 showedahatodeling pilot control
behavior over the full measurement bandwidth for the tyi@aaraft pitch dynamics given



50 Chapter 2

by Eq. (2.6), the use of equalization C as the pilot equatinadynamicsH.,(jw) yielded
the best modeling results, as indicated by higher VAF vahres better correlation with
measured pilot describing functions. For modeling contrfotiouble integrator dynam-
ics, no additions to the pure lead equalization term, pregdyy McRuer et al. [1965] for
modeling equalization around crossover, were found to eired when considering pilot
equalization over a wider frequency range. The averagampeas of the multimodal pilot
model defined in Fig. 2.4 that were estimated for all four expental conditions, using
these two settings for the equalization tef, (jw), are summarized in Table 2.4.

Table 2.4. Average pilot model parameters for each condition.

Cond. Heq (]w) Ky Ty, Ty K’m Tv Tm Wnm Cnm
- S s deg/ips s S rad/ls —
C1 C 407 044 132 — 021 -— 1050 0.14
Cc2 C 565 0.32 0.90 3.79 0.26 0.19 1274 0.18
C3 A 0.62 098 — — 023 -— 1041 0.14
C4 A 144 038 - 3.55 0.28 0.17 1278 0.18

The average pilot model identification results presentethliie 2.4 show nearly iden-
tical values for the parameters of the neuromuscular dotuahodel given by Eq. (2.4)
for both controlled elements, both for the conditions withand with motion feedback
(C1 and C3, and C2 and C4, respectively). These results sugigeilar adaptation of the
high-frequency neuromuscular actuation dynamics wheriomdeedback is made avail-
able across different controlled elements. In additior, garameters of the pilot motion
responsei,,  (jw) — the pilot motion gair,, and the motion delay,, — and the).05 sec
increase irr,, observed for the conditions with motion feedback are alsadito be largely
invariant for the two considered controlled elements.

Of special interest to the application of pilot modeling siolered in this chapter are
the observed changes in the identified pilot equalizatioarpaters. For the double inte-
grator controlled element, for which equalization form Ai(p lead) was adopted, these
equalization parameters are the visual g&inand the visual lead time constafit. As
can be verified from Table 2.4, the effect of physical motieedback on these equalization
parameters consists of a decreasgjirfrom 0.98 sec for condition C3 t6.38 sec for con-
dition C4 —that is, a decrease of nearly 40% — which is allofeedby the alternative lead
compensation available from the SCC. Furthermore, theepresof physical motion feed-
back is found to yield a large increase in the value of thet pikkual gain, which indicates
pilots were able to respond to visually presented trackingre with a much higher gain for
condition C4. These results of physical motion feedbackitmt @gynamics during control
of double integrator systems are consistent with previesearch [Hosman and Stassen,
1999; Van der Vaart, 1992].

To illustrate the importance of the proposed pilot equéliraterm extension for the
interpretation of such changes in pilot equalization dyieardue to the presence of physical
motion feedback for the considered aircraft pitch dynamikdg. 2.15 depicts the average
values of; andT}, that were identified using equalizations A, B, and C for ctiods C1
and C2. Furthermore, these identified parameter valuesoanpared to the corresponding
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characteristic time constants of the controlled aircréftipdynamics. As suggested by
McRuer et al. [McRuer et al., 1965; McRuer and Jex, 1967&]atnount of visual lag and
lead equalization adopted during tracking is related toctieracteristics of the controlled
element. For the aircraft pitch dynamics of the form giverHoy (2.6), these characteristics
are defined by the values of the aircraft dynamics lead tinmstemt7}, and the inverse
short-period frequency/w,,, respectively. Note that as equalization A does not havg a la
term, no data for this equalization is shown in Fig. 2.15{&)e variance bars in Fig. 2.15
depict the 95% confidence intervals of the mean identifiedrpaters.

(a) Pilot lag (b) Pilot lead
4 3.0
T92 l/wsp
—=— T7, Eq. B:% 25 —a— 711, Eq. Aclead
2|
3 —0-Tr, Eq. Cii53g —8- T7, Eq. B: lead
2.0 —0— Ty, Eq. Cilsady
[%2] %]
g’ 2 Eé 1.5
1.0
1
T
o2 05
1/wsp
0 0.0
Cl Cc2 C1 Cc2
condition condition

Figure 2.15. Pilot lag and lead constants compared to aircraft dynaics characteristic frequen-
cies (conditions C1 and C2, equalization A-C).

In line with the differences observed in the average pilodeidrequency responses
depicted in Figures 2.12 and 2.13, Fig. 2.15 shows that deraile differences in the iden-
tified values off’; andT}, are found when attempting to capture the full bandwidthtpilo
dynamics with equalizations A-C. Equalization A shows canagively low values ofl,
due to the fact that only high-frequency lead is capturedhizyeéqualization model, while
the low-frequency lag compensation visible in the measde=ttribing functions is not ac-
counted for. The results for equalization B show very higlues?’; and7},, and also more
spread in the obtained identification results than obsefmethe other equalization forms.
Note that for condition C1 the pilot lead time constants tded with equalization B are
found to be even higher on average than those observed fdoth#e integrator controlled
element for condition C3, see Table 2.4. Fig. 2.15 showsftraqualization C the identi-
fied pilot lag and lead time constants are found to be closéketvalues of the characteristic
time constants ofy s_ (jw), as would be expected for compensation of the controlled ele
ment dynamics [McRuer et al., 1965; McRuer and Jex, 1967g].Z-15(a) shows that for
both conditions C1 and CZ; is found to be aroundy,. In addition, the identified values
for the pilot lead constant shown in Fig. 2.15(b) indicatdrargy correlation betweeff;,
andl/wsy.
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In addition, as visible from the matches of identified piloddaels with the measured
describing functions depicted in Figures 2.12 and 2.13jdhatified results for equaliza-
tion C shown in Fig. 2.15 also allow for quantitative evaloatof changes in the adopted
equalization over a wide frequency range. As can be verifiet fTable 2.4, the values of
T;, estimated for condition C1 are found to be slightly highemth/w,,, implying pilot
lead is on average generated starting at slightly lowerueagies than required for exact
compensation of the aircraft dynamics. For condition €2,is found to be beloww;,
and around 27% lower than the lead time constants found faditon C1. As expected
based on the overview of the magnitude of effects of physiuation feedback given in
[Shirley and Young, 1968], the decrease in visual lead érptadn observed for the aircraft
pitch dynamics is smaller than that observed for the douttlegrator controlled element.
A more modest increase in pilot gain (see Table 2.4), a 38¥¢#&se compared to the more
than doubling ofK, observed for the double integrator system, further confitmss re-
duced effect of physical motion feedback for this contdtement. The results shown in
Fig. 2.15 indicate that equalization C yields pilot modearntfication results that allow for
valid quantification and the most intuitive interpretatadfrcthanges in pilot control behavior
over a wide frequency range for the considered aircrafhgiymamics.

2.5 Discussion

The study described in this chapter emphasizes the valdedafuasi-linear models intro-
duced by McRuer et al. [1965] for describing and analyzirfgtpiontrol behavior during
compensatory tracking, not only in the frequency range radaihe pilot-vehicle system
crossover frequency, but also for the full range of freqiesiover which pilot dynamics
are of interest. Many studies have shown that these modetsagable of modeling manual
control behavior during tracking tasks with pure gain, &ngtegrator, double integrator,
or more complex controlled elements representative fdemint types of vehicle systems
[McRuer and Jex, 1967a; McRuer, 1988; Grant and Schroe@4Q]2 In addition, pilot
model estimation results from the current study confirm thatlead-lag pilot equalization
term included in this model suffices for describing the pélguialization that is adopted over
a wide frequency range during control of double integratarashics.

However, for a controlled element that is representativedoventional aircraft elevator-
to-pitch dynamics, measured pilot describing functiordidate that the pilot equalization
term included in therecision modetlescribed in [McRuer et al., 1965] does not allow for
modeling of the adopted equalization dynamics over a frequeange that extends beyond
the crossover region. Describing function measurement® shat pilots compensate for
the dynamics of this controlled element around the shaibdenode natural frequency by
performing both low-frequency lag and high-frequency leadalization, where the latter
extends to frequencies well above crossover. The additicn second lead term to the
lead-lag pilot equalization transfer function proposedtfee precision models found to
provide the required freedom for modeling this combinatidrpilot lag and lead equal-
ization dynamics. Furthermore, using an analysis of the \@¢AEhe obtained pilot model
fits for varying equalization models, this additional lead was found to yield a signifi-



Modeling Pilot Control of Aircraft Pitch Dynamics 53

cant increase in the accuracy with which manual control iehaan be modeled for such
aircraft pitch dynamics.

For the aircraft pitch dynamics considered in the presardystfor which the natural
frequency of the short-period mode was in the crossoveonedf was found that the lead
time constant of this additional lead term could be couptetth¢ lead term already present
in the model, yielding an equalization transfer functiothad single lag and a squared lead
term (equalization C). Even though the time constants df keatd terms are not necessarily
equal, no improvement in model fit was observed for an eqatédiz with two independent
lead terms (D) for the presented data. Differences in theegabf both lead time constants
for this equalization model were found to be small for theadedm all subjects except one.
Furthermore, the extra model parameter, combined withabethat both lead terms are —
from a model identification perspective — mathematicalbnidcal, leaves the pilot model
identification problem overdetermined. Note, however, tlegending on the adopted pilot-
vehicle system crossover frequency and the value of the-gleoiod natural frequency for
such a controlled element, the additional independent fieael constant might still need
to be considered for modeling the adopted pilot equalimatipnamics. Evaluation of the
applicability of the proposed equalization model extendio controlled elements of this
form, but with different values for the short-period modeunal frequency, is planned for
future research.

Previous experiments have shown considerable changdsimpnamics, especially in
pilots responses to visually presented tracking errorsegtiencies above crossover when
physical motion feedback of the controlled element stateade available [Nieuwenhuizen
et al., 2008; Zaal et al., 2009b; Damveld, 2009; Pool et &1,02 To show the impor-
tance of selecting an appropriate equalization model ferirtkerpretation of these effects
of physical motion feedback on pilot control behavior ovewide frequency range, mea-
sured effects of providing rotational pitch motion cues eveompared for the considered
aircraft pitch dynamics and a double integrator controbéeiment. For the aircraft pitch
dynamics, measured pilot describing functions indicad¢ pilots select the same combina-
tion of low-frequency lag and high-frequency lead equaiiafor tasks with and without
physical motion cues. Furthermore, by comparing identifidéat model lead and lag time
constants with the characteristic modes of the aircrafthpitynamics, the extended pilot
equalization model with a squared lead term was found toigeoa quantification of pi-
lot control behavior over a wide frequency range that betats observed changes in the
adopted lead and lag equalization and explicitly shows huataptation to the dynamics
of the controlled element, as proposed by McRuer et al. [MgRtal., 1965; McRuer and
Jex, 1967a; McRuer, 1988]. The effects of motion feedbackitwt control behavior as
presented in this chapter, which were quantified using tbpgsed pilot model extension,
are found to be consistent with findings from previous redefBhirley and Young, 1968;
Hosman and Stassen, 1999; Zaal et al., 2009b; Pool et abD].201

2.6 Conclusions

Using frequency-domain describing function measuremaipfiot tracking behavior, both
with and without physical motion feedback, it was shown fbaa controlled element that is
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representative for conventional aircraft pitch dynamite@ended pilot model equalization
term is needed for modeling the adopted equalization dycemier the full measurement
frequency range. These describing function measuremkeots that pilots perform a com-
bination of low-frequency lag and high-frequency lead censgation, the latter extending
to frequencies well above crossover, to compensate forttheacteristics of such aircraft
pitch dynamics that result from the short-period mode. foisnd that an extended pilot
model equalization term, which consists of a squared leddaasingle lag term, provides
the most accurate and consistent results for the modelipgaifmanual control behavior
for such aircraft dynamics. Furthermore, compared to ézatadn models that lack the
second lead term, this extended equalization term was aigalfto yield a significant in-
crease in the average quality of fit of the pilot model to tidmenain data. Finally, using a
comparison with measurements for a double integrator obbedr element, it is shown that
the proposed equalization model allows for intuitive gitative evaluation of the effects
of physical motion feedback on pilot tracking behavior, mmostably the high-frequency
adaptation of pilots’ responses to visually presenteckingcerrors.



Modeling Pilot Control During
Ramp Tracking

To extend the evaluation of the effects of simulator motion cueing variatiopgadmman-

ual control behavior to other control tasks than compensatory trackiisgs with quasi-
random forcing function signals, tracking tasks with target forcing functioashnsist of
a number of discrete ramp-like changes in target attitude are also caesidie this thesis.
Tracking such alternative reference signals yields a control task that idasito discrete

maneuvering tasks that are often performed during real manual dtreantrol. Due to
the deterministic nature of such ramp forcing function signals, they may éndwontrol

strategy that deviates from the purely compensatory control observéukftracking of an
unpredictable multisine signal and hence require a different pilot madettire for mod-

eling measured control behavior. In this chapter, this is evaluated bgidering manual
control behavior for single-loop pitch tracking tasks (no physical motieul@ck) where
participants were asked to track target signals consisting of four rampehieeges in target
pitch attitude.

The contents of this chapter have been published as:
Pool, D. M., Van Paassen, M. M., and Mulder, M., “Modeling Humaynamics in Com-
bined Ramp-Following and Disturbance-Rejection TasRsdceedings of the AIAA Guidance,
Navigation, and Control Conference, Aug. 2-5, Toronto, &m 2010, AIAA-2010-7914
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3.1 Introduction

The theory of Successive Organization of Perception (SQPYqth by McRuer et al.
[1968] defines three different levels of manual control érathat can be adopted dur-
ing manual tracking tasks. Depending on the defining feataféhe control task, such as
the display format and the applied forcing functions, huroparators may revert to com-
pensatory, pursuit, or precognitive control strategigscauld be switching between any
combination of these SOP levels. Most research into humarataontrol behavior has
focused on purely compensatory control, a typical type dflveor found for control tasks
where tracking errors were induced by quasi-random foréimgtion signals. Consider-
able success has also been achieved in the modeling of ceatpgn manual control in
both single-loop [Elkind, 1956; McRuer et al., 1965] and timibdal control tasks [Jex
et al., 1978; Hosman, 1996; Zaal et al., 2009c]. Despite dlbethat most real-life man-
ual control tasks are not purely compensatory, but induegsyituor precognitive control
strategies [McRuer et al., 1968], modeling of these higheels of manual control behav-
ior has received significantly less attention and has natybaen as successful as that of
compensatory tracking.

This chapter focuses on manual control behavior in manuatratasks where a de-
terministic reference trajectory, defined as a number afrdte ramp-like changes in target
attitude, is to be tracked using a pursuit display. In additia quasi-random disturbance
signal is applied to perturb the controlled element dynam@ompared to the control tasks
that are typically used for studying the effects of physivaltion feedback during man-
ual control, where two quasi-random forcing function sigreae applied [Stapleford et al.,
1969; Jex et al., 1978; Zaal et al., 2009c], such ramp taigetks yield more realistic
manual control tasks, similar to in-flight maneuvers such agn entry or altitude change
[Zaal et al., 2008; Pool et al., 2009b]. Furthermore, it isvgh in Appendix B that, depend-
ing on ramp forcing function signal design, reliable id&astion of the multimodal pilot
models that are used for modeling compensatory manualaamder such multimodal
cueing conditions is possible using measurements takeéngdaombined ramp-tracking
and disturbance-rejection tasks.

For repetitive manual tracking of such deterministic ralikp-reference signals using
a pursuit display, however, it is likely that human opersitwill develop a control strategy
that corresponds to a SOP level that exceeds purely compepnseacking. First, despite
the fact that the use of a pursuit display does not directlglyrthe adoption of pursuit be-
havior by a human operator [Wasicko et al., 1966; Hess, 198&]Juse of a pursuit display
in combination with ramp signals with predictable maneuirees and rates of change does
provide ample opportunity for pursuit tracking. In additjidchuman operators may be able
to acquire such familiarity with the reference signal andtoalled element dynamics that
it allows for generation of open-loop precognitive conirgduts [Pew et al., 1967; McRuer
et al., 1968; McRuer and Krendel, 1974; McRuer, 1980; Yaritash989, 1990]. Many
researchers have illustrated the differences betweeneasapory and pursuit tracking be-
havior with experimental measurements [Chernikoff et H55; Elkind, 1956; Wasicko
et al., 1966; McRuer and Jex, 1967b; Allen and Jex, 1968; He&l]. Convincing ex-
perimental evaluations of precognitive behavior duriragking are, however, sparse. In
addition, models have been proposed for modeling both filaed precognitive tracking
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behavior, see for instance [McRuer et al., 1968], but haveegdly not been validated by
fitting them to experimental measurements of tracking bieinav

Due to the adaptive nature of human control behavior [McRaiaal., 1968; Young,
1969], it is likely that the type of control behavior (comgatory, pursuit, precognitive)
that is adopted in the ramp-tracking tasks considered ghahapter is dependent on both
the characteristics of the ramp signals (steepness, nuagniand the controlled element
dynamics. In addition, previous experimental work hasddnat suppression of pursuit
operation when an additional disturbance forcing funcsigmal is present [Reid, 1970], as
disturbances on the controlled element can only be attedusing compensatory control.
It is the purpose of this chapter to evaluate if the considlesenp-tracking tasks induce
a control strategy that differs from pure compensatorykiragand to determine how this
depends on the key characteristics of the control task. i§hdsne by fitting a dual-mode
model for human ramp-tracking behavior, similar to the megeoposed by McRuer et al.
[1968] and Allen and McRuer [1979] for pursuit and precoigrittracking behavior, to
collected human-in-the-loop measurements of ramp-tnackehavior. The model used for
this analysis includes a compensatory response that esptompensatory control inputs,
and a feedforward response on the target signal that carumictar possible additional
pursuit and precognitive control inputs.

This chapter describes an experiment in which single-l@pp-tracking behavior is
measured for control of both single and double integratoradyics. Ramp-tracking tasks
with ramp target signals with two different ramp steepngsse considered, both with and
without the presence of an additional quasi-random disiurb signal that perturbs the con-
trolled element. The considered ramp target signals ardia to two of the ramp signal
settings also evaluated in Appendix B. Note that the effe€{shysical motion feedback
on manual control, which are the main focus of this thesisnat considered in this study.
Rather, the focus of this chapter lies on the human dynamétotcur during ramp-tracking
with only visually presented information, to which the effeof additional motion feedback
are expected to be added in later work.

This chapter is structured as follows. First, Section 3@ jules a detailed description
of the manual control task and gives an overview of the théiment literature on mod-
eling manual control behavior for the considered type oft@driask. Then, Section 3.3
describes the details of the human-in-the-loop experirtieitwas performed to gather the
required measurements of human manual control behavia.r@$ults of this experiment
are presented in Section 3.4. The chapter ends with a disaumsd conclusions.

3.2 Background
3.2.1 Control Task

This chapter considers manual control behavior in a pittihtele tracking task performed
with a pursuit display. Fig. 3.1 depicts a schematic repriegimn of such a manual control
task, where a human operator controls the pitch attitidé the controlled element with
dynamicsH.(s). Two forcing function signals are indicated in Fig. 3.1: theget forcing

function f; defines the reference trajectory that should be followeda@sely as possible,
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while f; represents an external disturbance that works on the dleatedement. Note from
Fig. 3.1 that due to the use of a pursuit display, as depicté&dg. 3.2, the operator can use
information on the target signd}, the tracking erroe, and the controlled element stdte
to achieve a suitable control input

ft i f d
j pior | -y
- € control v H.(s) — —>
a 0 dynamics

Figure 3.1. Schematic representation of a combined target-folloing and disturbance-rejection
task performed with a pursuit display.
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Figure 3.2. Pursuit display.
Figure 3.3. Time traces of the multisine dis-

turbance forcing function (MS) and both
ramp target forcing function signals (R1
and R10).

Pursuit tracking tasks similar to the one depicted in Fid.l8ave been studied exten-
sively [Wasicko et al., 1966; McRuer et al., 1968; Allen andRdier, 1979; Hess, 1981], but
mainly for control tasks with quasi-random target forcingdtion signals {;) and without
external disturbanceg{). As a continuation of previous research [Zaal et al., 2008&)!
et al., 2009b], this chapter addresses manual control b@hi@vr tracking tasks in which
the target signal is composed of a series of discrete rakepzhanges in reference attitude
and where an additional quasi-random disturbance signaleisent. Fig. 3.3 depicts the
two ramp target forcing functions (R1 and R10, which havéed#nt ramp steepnesses) and
the quasi-random multisine disturbance signal (MS) thatansidered in this chapter. The
details of these forcing function signals are provided int®a 3.3.

Human dynamics during compensatory tracking have beenrstowe highly adapt-
able to the dynamics of the controlled eleméht(s) [McRuer et al., 1965]. As a similar
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dependence oH.(s) is also likely with respect to the development of higher lsewé con-
trol behavior in the considered ramp-tracking and distackarejection task [McRuer et al.,
1968], this chapter investigates ramp-tracking contrdidvér for both single and double
integrator controlled element dynamics, given by:

Ho(s) = 25, Ho(s) = o @D

3.2.2 Successive Organization of Perception

Inthe 1960s, McRuer et al. [1968] developed their theoryuaitessive Organization of Per-
ception (SOP). This SOP theory defines three distinct lesieskill-based manual control
behavior that