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Summary

Objective Evaluation of Flight Simulator Motion
Cueing Fidelity Through a Cybernetic Approach

Daan M. Pool

Flight simulators provide a flexible, safe, efficient, and less costly alternative to real
flight. For this reason, flight simulators are widely used in aviation, with applications in
both pilot training and a range of research and aircraft system development programs. Due
to the fact that the motion of a real aircraft induces forces and moments on pilots’ bodies
during flight, the importance of replicating thesephysical motion stimuliin flight simulator
devices has been assumed and stressed since the very first attempts at flight simulation. Due
to technological, practical, and financial limitations, perfect one-to-one replication of the
physical motion stimuli that are experienced during flight in ground-based simulators is,
however, not feasible.

The extent to which a simulator is capable of replicating thecorresponding in-flight en-
vironment and experience is typically referred to as itsfidelity. In addition to the quality of
the simulatormotion system hardware, the key factor that affects the fidelity of simulator
motion cueing is the distortion of the aircraft motion stimuli by simulatormotion filter al-
gorithms. Such motion filters transform the true aircraft rotationaland translational motion
to a reduced representation of that motion, which is thencuedusing a simulator’s motion
system. The most notable of these transformations are frequency-independentscaling, to
reduce overall magnitude of the cued simulator motion, andhigh-pass filtering, to attenuate
the low-frequency motion that is especially difficult to replicate. The extent of the distor-
tion of the true aircraft motion induced by a motion filter is largely determined by the values
of its parameters: thescaling gains, high- and low-pass filterbreak frequencies, and other
parameters that together define the motion filter dynamics.

It has been argued that high-fidelity simulator motion cueing is indispensable for the
training of low-level manual flying skills, that is, for acquiring the correctskill-basedman-
ual aircraft control behavior. Current guidelines and requirements for achieving high-fidelity
simulator motion cueing are, however, mostly technology-centered and largely disregard the
human perceptual processes that ultimately define a simulator’s fidelity. A limited under-
standing of human motion perception and how visual and physical motion stimuli are used
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for manual control still stands in the way of formulating simulator motion cueing fidelity
requirements that adequately account for this human element inherent to flight simulation.

In this thesis, simulator motion cueing fidelity is evaluated at thebehaviorallevel, that
is, by considering a simulator’s ability to induce real-flight pilot manual control behavior.
This is achieved by comparing pilot manual control behaviorbetween real flight and in a
moving-base simulator and analyzing thebehavioral discrepanciesthat are induced in the
simulator as a result of limitations in the supplied motion stimuli. For this evaluation of
behavioral simulator motion fidelity, acybernetic approachis adopted in which the occur-
ring discrepancies in pilot control behavior are analyzed usingmultimodal pilot models. The
multimodal pilot models that are used in this thesis for analyzing the contribution of physical
motion feedback to pilot manual control behavior explicitly account for pilots’ responses to
visualandphysical motion stimuli. Fitting such pilot models to time-domain measurements
of pilot control behavior usingparameter estimation techniquesallows for theobjective
quantification of multimodal pilot control dynamics and itsadaptation to variations in sim-
ulator motion fidelity. In this thesis, this approach is utilized to explicitly compare pilot
control behavior during skill-based manual control tasks performed inreal flight with con-
trol behavior observed, under a variation in motion filter settings, in a moving-base flight
simulator. The simulator motion cueing settings that yieldpilot control behavior that most
closely matches the measured real-flight behavior are then defined to yield the highest level
of behavioral simulator motion fidelity.

The manual control tasks considered for the evaluation of behavioral simulator motion
fidelity are skill-based aircraft attitudetracking tasks. It has been shown that the control
behavior adopted during such tracking tasks is sufficientlystationary and time-invariant to
allow for modeling it withquasi-linear control-theoretical models. In the considered track-
ing tasks, pilot control behavior is induced using twoforcing function signals, with the first
inserted as a reference signal that is to be followed, and thesecond as an external disturbance
on the controlled aircraft dynamics. Two different types oftracking tasks are considered in
this thesis for the evaluation of behavioral simulator motion fidelity. The first arecompen-
satory tracking tasks where the target and disturbance forcing functions are independent
quasi-random multisine signals, as it has been shown that the contributions of visual and
physical motion stimuli to the exhibited pilot tracking behavior can be reliably separated for
such tasks. In addition, tracking tasks in which a quasi-random multisine disturbance signal
is combined with adeterministictarget forcing function that consists of multiple ramp-like
changes in target attitude are also considered, as such tasks more closely resemble oper-
ational manual flying and maneuvering tasks. For these consideredramp-tracking tasks
pilots, however, no longer use a purely compensatory control strategy. Therefore, an aug-
mentation to the multimodal pilot models that are used for modeling compensatory tracking
behavior, which accounts for this change in manual control behavior through an additional
pilot feedforward response to the deterministic target forcing function signal, is proposed
and evaluated.

This thesis describes a number of experiments, all performed in the SIMONA Research
Simulator (SRS) at Delft University of Technology, in whichpilot tracking behavior was
measured under an applied variation in simulator motion cueing settings. The strongest and
most consistent changes in pilot control behavior that are observed with increasing attenu-
ation of the supplied simulator motion, both resulting fromreduced motion filter gains and
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increased motion filter break frequencies, are observed forpilots’ responses to visually pre-
sented tracking errors. A compilation of the data from a number of simulator experiments
described in this thesis and previous experiments described in literature showed that, on av-
erage, the gain of the pilot visual response reduces with around 20% between tracking with
one-to-one motion feedback and tracking without physical motion feedback. In addition to
this decrease in pilot gain, an around 30% increase in the amount of visual lead equalization
performed by pilots, and a slight reduction in the delay of the pilot visual response were
also observed as highly consistent effects of motion filter variations on pilot tracking be-
havior. Pilots’ responses to physical motion stimuli were found to be largely unaffected by
variations in motion cueing settings.

The major milestone for the research described in this thesis is the direct comparison of
multimodal pilot control behavior based on in-flight and simulator measurements of pilot
tracking behavior, as this allows for the true evaluation ofsimulator fidelity with respect
to real flight. For the two roll attitude tracking tasks considered for this comparison –
one with two multisine forcing function signals, the other acombined ramp-tracking and
disturbance-rejection task – the in-flight measurements were collected using Delft Univer-
sity of Technology’s Cessna Citation II laboratory aircraft. As it is known that pilot control
dynamics are also affected by important task variables suchas the display characteristics,
sidestick manipulator, and the controlled aircraft and control system dynamics, it was at-
tempted to match these variables as best as possible betweenboth the experimental setups
in the laboratory aircraft and the SRS. This was done to ensure that none of these factors
affected the desired isolated comparison of the effects of varying motion feedback settings
on pilot manual control behavior.

When comparing the considered metrics for the evaluation of in-flight and simulator
measurements of pilot tracking behavior, it was found that the control behavior observed in
real flight showed an obvious reliance on physical motion feedback, which clearly differ-
entiated the adopted control strategy from that observed under conditions without physical
motion feedback. A comparison of the control behavioral measurements collected in real
flight and for the simulator motion cueing conditions with roll motion closest to the true
aircraft roll motion in the SRS, however, showed slightly degraded task performance and
decreased control activity for the in-flight tracking tasks. Furthermore, the most notable
behavioral discrepancies that were observed from multimodal pilot model analysis between
these sets of data were a decrease in the gain with which pilots responded to visual and
physical motion stimuli, an increase in the latency of theirresponses to visually presented
tracking errors, and a decrease in the natural frequency of the neuromuscular actuation
dynamics. Using measurements of single-loop tracking behavior collected in both the lab-
oratory aircraft and the SRS, the different neuromuscular actuation dynamics were shown
to result from the different sidestick and pilot seat available in both experimental setups.
The remaining observed behavioral discrepancies could notbe traced back to similar dis-
crepancies in the controlled task variables between the in-flight and simulator parts of the
experiments. The fact that the physical motion feedback available in these SRS conditions
was in fact equivalent to that available in real flight suggests that these behavioral discrep-
ancies are the result of pilot-centered variables, such as motivation and stress, affecting the
comparison of in-flight and simulator measurements of pilotcontrol behavior. Thereby,
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these obtained results illustrate the complexity, and perhaps the limitations, of such human-
centered in-flight to simulator comparisons.

The cybernetic approach to the evaluation of simulator motion fidelity as proposed and
evaluated in this thesis was found to provide valuable insight into the effects of simula-
tor motion cueing fidelity on pilot manual control behavior.This cybernetic approach al-
lowed for the unequivocal confirmation of both the presence and nature of the adaptation
of skill-based pilot tracking behavior to variations in high-pass motion filter settings. For
the compensatory roll attitude tracking task for which an explicit comparison of pilot track-
ing behavior measured in real flight and in a moving-base simulator was performed, it was
found that, despite the fact that a perfect match of pilot control dynamics in both envi-
ronments was not observed, pilot control dynamics for experimental conditions with only
very limited attenuation by roll motion filters matched the baseline in-flight measurements
best. This was especially reflected in behavioral metrics that were shown to most clearly
reveal the adaptation of pilot control dynamics to variations in motion cueing, such as the
pilot visual gain and lead time constant. Despite the modified control task due to the use
of a deterministic ramp forcing function signal, the same was observed for the roll attitude
ramp-tracking task for which this comparison of in-flight and simulator behavior was also
performed. All experimental results described in this thesis therefore suggest that achieving
the highest level of behavioral simulator motion fidelity corresponds to replicating the mo-
tion stimuli that are utilized by pilots during manual control with as limited attenuation as
possible.

Due to the success of the adopted cybernetic approach in quantifying the behavioral
adaptation induced by motion filter dynamics, important future work is thought to be the
extension of the adopted methods to true operational manualcontrol and maneuvering tasks.
This requires significant extension of the models of pilot manual control behavior that are
currently available, as well as demanding the development of parameter estimation tech-
niques suitable for the identification of such models. Furthermore, to assess the severity
of the behavioral adaptations observed in this thesis for the development of manual flying
skills in flight simulators where limited motion stimuli areprovided, it is important to ex-
plicitly analyze control-skill development, by application of the same cybernetic approach,
in investigations where the transfer of such simulator training is evaluated.
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1
Introduction

1.1 Background

1.1.1 Flight Simulation in Aviation

The first flight simulation devices appeared almost as soon asthe first functional aircraft
were developed at the beginning of the 20th century [Rolfe and Staples, 1986; Allen, 1993;
Allerton, 2009]. In these early days of aviation, piloting was still a highly precarious oc-
cupation due to the relative aerodynamic instability and general lack of structural strength,
engine power, and safety mechanisms of the aircraft that were available. Therefore, the need
for rigorous understanding of aircraft control, dynamics,and stability before attempting to
fly an actual aircraft were soon recognized. The first flight simulator devices, of which two
examples, theAntoinette Learning Barreland theLink Trainerare shown in Fig. 1.1, were
therefore developed to facilitate the on-ground training of flying tasks in order to bring down
in-flight accident rates.

Since these early efforts, the aviation industry’s reliance on flight simulators for pi-
lot training has continuously increased [Allen, 1993; Allerton, 2009, 2010]. Due to the
inherently safe environment, the increased efficiency in the repeated execution of certain
maneuvers, and the reduced costs compared to in-flight training, pilots currently conduct a
major part of their training in simulators, especially their training of critical and emergency
maneuvers. Active airline pilots are required to attend regular simulator training sessions
during the course of their careers to maintain their flying skills and to allow for monitoring
their proficiency. As the culmination of simulator-based training, the firstab initio pilots,
who during their education only received flight training in flight simulators, are currently
active with a number of the world’s airlines [Bürki-Cohen et al., 2001]. It has been ar-
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(a) The Antoinette Learning Barrel (b) The Link Trainer

Figure 1.1. Two examples of pioneering moving-base flight simulator devices: theAntoinette
Learning Barrel (a) [Allerton, 2009] and theLink Trainer (b).

gued that without flight simulators, aviation would not havebeen able to achieve its current
impressive level of safety [Allerton, 2009].

Pilot training is, however, no longer the sole function of flight simulator devices. Flight
simulators have seen additional use as fundamental tools for research into flight control and
control interface design [Mulder and Mulder, 2005; Borst etal., 2008; Lam et al., 2009;
Lombaerts et al., 2009], aircraft handling qualities [Bray, 1964; Field et al., 2002b; Gou-
verneur et al., 2003; Damveld, 2009; Stroosma et al., 2011],and human motion perception
and manual control behavior [Van Paassen, 1994; Schroeder,1999; Stroosma et al., 2003;
Valente Pais et al., 2010]. Mirroring the same reasons for simulator usage in pilot train-
ing, flight simulators are also found to provide a flexible, efficient, safe and cost-effective
alternative to real flight for these research applications.

Most flight simulator devices include a number, if not all, ofthe following subsystems
[Sinacori, 1978; Baarspul, 1990]: a model that simulates the dynamics of the aircraft, true-
to-life flight instruments, loaded control manipulators, an out-of-the-window visual view,
and a motion system to emulate the forces and moments that acton pilots’ bodies during
flight. The current standard in moving-base flight simulation, commonly referred to as a
full motion flight simulator, is a device equipped with a true-to-life aircraft cockpit and
flight instruments, a high-resolution and wide field-of-view outside visual system, and a
hydraulically or electrically driven hexapod motion system1. Two examples of such typical
moving-base flight simulators are depicted in Fig. 1.2. Eventhough the large majority of
the moving-base flight simulators that are currently in use resemble the devices shown in
Fig. 1.2, devices with more advanced and exotic designs – such as those including centrifuge
capabilities [Wentink et al., 2005; Valente Pais et al., 2009], serial robotic actuators, [Teufel
et al., 2007], and extremely large linear displacement actuators [Aponso et al., 2009] – are
also in use, mostly for research purposes.

For some of the subsystems of flight simulator devices, achieving a satisfactory level
of correspondence with the aircraft that is to be simulated,or simulator fidelity, is com-

1Hexapod motion systems, which consist of six parallel linear actuators, are also referred to assynergistic
motion systems, Stewart-Gough platforms, or Stewart platforms. The latter two names refer to their credited
inventor, Eric Gough, and the first scientific publication inwhich such a system is described by Stewart [1966].
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(a) The SIMONA Research Simulator (b) The CAE 7000 Full Flight Simulator

Figure 1.2. Examples of modern moving-base flight simulator devices: the SIMONA Research
Simulator at Delft University of Technology (a) and the CAE 7000 commercial full flight simu-
lator (b) [CAE, 2009].

paratively straightforward. This is for instance the case for replicating an aircraft’s physi-
cal cockpit environment and flight instruments, for which simply (replicas of) real aircraft
components can be installed. For other subsystems, achieving such correspondence is not
nearly as straightforward, or can only be achieved at great cost. The most notable examples
of simulator subsystems for which this is the case, and for which therefore still some im-
provements with respect to the current standard in flight simulation are possible, are those
used for generating realistic out-of-the-window views and, most notably, the motion sys-
tems used for the generation of physical sensations of motion.

1.1.2 Simulator Motion Cueing

Compared to aircraft, which can move through the air virtually without limitations, moving-
base flight simulators such as those depicted in Fig. 1.2 havealways been severely limited
in their motion envelopes. This causes the generation of motion cues in flight simulation
to be an inevitable compromise between the desired level of achievable correspondence
between the motion cues supplied in simulators and those perceivable in real flight, and
the size and quality, and hence cost, of the simulator motionsystem [Schmidt and Conrad,
1970; Conrad et al., 1973; Advani et al., 1999]. For instance, the quality of the motion cues
supplied in moving-base flight simulators is strongly dependent on the dynamics of the sim-
ulator motion system itself and its resulting characteristics such as latency, bandwidth, and
smoothness [Chung, 2000; Advani and Hosman, 2006; Nieuwenhuizen, 2012]. In addition
to these effects of motion system hardware on motion cue fidelity, a second major factor in
the achieved level of simulator motion fidelity lies in the methods that are typically applied
for the cueing itself.

The desire to limit the size and cost of simulator motion systems has spurred the develop-
ment of smart methods for transforming the true aircraft motion to a reduced representation
of that motion in flight simulators [Schmidt and Conrad, 1970; Conrad et al., 1973]. This
transformation of (simulated) aircraft motion to simulator motion is commonly achieved by
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Figure 1.3. Classical simulator motion washout algorithm structureas defined by Reid and
Nahon [1985].

algorithms referred to asmotion filtersor washout algorithms. These algorithms take their
name from one of their main functions: byfiltering the true aircraft motion they continu-
ously “wash-out” the simulator rotational and linear accelerations to retain as much of the
available motion space for cueing as possible. One of the most frequently applied and most
intensively studied motion filters, referred to as theclassical washoutalgorithm [Reid and
Nahon, 1985, 1986a,b; Grant, 1996], is depicted in Fig. 1.3.

As shown in Fig. 1.3, theclassical washoutalgorithm transforms aircraft translational
specific forces and rotational rates into corresponding simulator translational and rotational
motion through three different channels. The translational and rotational high-pass channels
apply a combination ofscalingand attenuation withhigh-pass filtersto the aircraft transla-
tional and rotational motion, respectively, in order to reduce their absolute magnitude and
to remove the low-frequency components that typically yield large amplitude simulator mo-
tion excursions [Schmidt and Conrad, 1970; Conrad et al., 1973]. In addition to these direct
high-pass channels, Fig. 1.3 further shows a coupling between both these channels. This
coupling is implemented to allow for better cueing of sustained low-frequency translational
specific forces by tilting the simulator cabin with respect to gravity, a motion cueing strategy
typically referred to astilt coordination.

A large number of different motion filter algorithm designs and implementations have
been proposed, including algorithms with time-varying andadaptive elements [Parrish et al.,
1975; Riedel and Hofmann, 1978; Nahon et al., 1992] and motion filter designs based on
linear optimal control theory [Kosut, 1979; Sturgeon, 1981; Sivan et al., 1982; Telban et al.,
1999]. However, the basic attenuation of the true rotational and translational aircraft motion
through frequency-independent scaling and high-pass filtering, as also performed in the
high-pass channels of the classical washout algorithm shown in Fig. 1.3, is common to
practically all of these proposed motion filter algorithms.
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As their main function is to manipulate the true aircraft motion to the extent that it can be
presented on moving-base flight simulators, motion filters by definition introduce discrep-
ancies between the true aircraft motion and the motion perceivable in the simulator. For a
given motion filter algorithm, the extent of the distortion of the true aircraft motion induced
by this motion filter is determined by the values of itsparameters: thescaling gains, high-
and low-pass filterbreak frequencies, and other parameters that together define the motion
filter dynamics. Despite the inevitable discrepancies, it is currently accepted that with a
properly designed motion filter algorithm with properly tuned parameters a reasonably ac-
curate presentation of those motion cues that are importantto pilots can still be achieved in
moving-base flight simulation [Grant and Reid, 1997a,b].

1.1.3 Pilot Behavior and Moving-Base Simulator Training

Due to the undeniable availability of information on the motion of the aircraft through a
sensation of body motion in real flight, the standing belief has been that motion cueing
in flight simulators is absolutely indispensable for achieving optimal transfer of simulator
training to true aircraft control, especially for the development of low-level manual flying
skills [Allen, 1993; Ray, 1996; Mulder et al., 2004; Allerton, 2009]. In addition to providing
useful information to pilots, the sensation of motion in theaircraft is also argued to be
disorienting and confusing to pilots in some cases, leadingto the conclusion that training in
the absence of this motion stimulation would not adequatelyprepare pilots for their true task
[Gundry, 1977; Allerton, 2009]. Numerous studies have shown, however, that the increased
realism intended with the motion cueing in flight simulatorsis not needed for all aspects
of pilot training [Caro, 1973; Hosman, 1999; Hosman et al., 2001]. Intuitively, this also
makes sense, as during some of the tasks that are trained in flight simulators, for instance
communication with air traffic control and modification of autopilot settings, pilot behavior
is most likely unaffected by the physical motion of the aircraft at all. Still, it has been argued
that for a final integration of all learned skills, and for true assessment of the learned piloting
behavior, full flight simulators with the capability of presenting physical aircraft motion are
still required [Ray, 1996; Hosman, 1999].

Some of the controversy with respect to the requirement for simulator motion in pilot
training stems from the fact that it is not a single type ofbehaviorthat is trained by pilots
in flight simulator devices. For distinguishing between these different types of behavior
that are of interest with respect to pilot training, the skills-rules-knowledge taxonomy of
Rasmussen [1983] is a highly valuable concept. Rasmussen makes a distinction between
three different levels of human cognitive behavior:

• skill-based behavior, the lowest level, represents the most elementary form of hu-
man information-processing and involves basic control tasks that are often executed
intuitively or subconsciously;

• rule-based behavior, the intermediate level, represents human behavior that isper-
formed based on rules and procedures that have been learned in the past; and

• knowledge-based behavior, the highest level, is defined as behavior that is guided by
high-level cognitive problem solving skills.
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Figure 1.4. A schematic representation of a closed-loop skill-basedaircraft control performed
in an aircraft (a) and in a flight simulator (b).

For the training of rule-based and knowledge-based pilot behavior, it is accepted that
the current generation of flight simulators sufficiently supports the transfer of learned skills
to the real aircraft, also due to a reduced requirement for high-fidelity cueing of visual and
motion stimuli [Caro, 1973; Durlach et al., 2000; Hettingerand Haas, 2003]. For skill-based
control behavior, however, for which training involves pilots’ intimate familiarization with
the inherent dynamics and handling qualities of the aircraft they are to fly, it is argued that
significantly higher levels of simulator fidelity are required [Hosman, 1999; Hosman et al.,
2001; Hettinger and Haas, 2003]. Schematic representations of such a skill-based manual
aircraft control tasks, as performed in an aircraft and in a moving-base flight simulator, are
depicted in Fig. 1.4.

Fig. 1.4(a), shows a skill-based manual control task performed in a real aircraft, where
a pilot is exerting control on the aircraft based on feedbackinformation perceived from his
cockpit instruments, the out-of-the-window view, his physical sensation of motion, or some
other perceived cues. As indicated in Fig. 1.4(a), skill-based manual aircraft control tasks
can typically be characterized as pilots’ efforts to bring the state of the aircraft to a certain
definedtarget state, possibly in the presence of anexternal disturbancethat perturbs the
controlled aircraft. The pilot’s objective in such a task istherefore essentially to limit the
magnitude of thetracking error, that is, the difference between the commanded and actual
aircraft state. As described by McRuer and Jex [1967a], for achieving this objective, pi-
lots typically identify those perceivable quantities thatare suitable for achieving adequate
feedback control dynamics from all available stimuli and utilize these selected stimuli in
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a skill-based feedback-control strategy. Note that duringsuch skill-based manual aircraft
control, the pilot effectively closes one or multiple loopsaround the controlled aircraft dy-
namics, equivalent to how an automatic feedback-control system would be constructed by a
control engineer.

Fig. 1.4(b) shows where possible differences in this closed-loop pilot-aircraft system can
occur when considered in a simulator environment. In a simulator, the dynamics of the air-
craft need to be simulated using a mathematical model. The accuracy of such mathematical
aircraft models is typically high, especially when simulating aircraft responses well within
the flight envelope, as is the case under normal operating conditions. Recently, however,
some concern has arisen with respect to the fidelity of the aircraft models applied in flight
simulation for simulating aircraft responses at extreme attitudes and during upset recovery
[Advani et al., 2010].

Assuming an accurate model of the aircraft’s dynamics, however, the main difference
between Figures 1.4(a) and (b) lies in the possible effects of the simulator cueing systems
that provide feedback of the aircraft state to the pilot through multiple sensorymodalities,
such as the visual and vestibular systems. Discrepancies inthe cueing of thesemultimodal
stimuli, for instance those resulting from the motion filteralgorithms applied for simulator
motion cueing, may affect the “look and feel” provided by thesimulator. Numerous in-
vestigations have shown that perceived handling qualities, piloting technique, and control
performance are sensitive to the way these multimodal stimuli are presented in simulators
[Reid and Nahon, 1986b; Knotts and Bailey, 1988; Schroeder,1999; Field et al., 2002b;
Lee et al., 2003]. In extreme cases, it is feared that cueing discrepancies may result in pi-
lots learning manual flying skills that allow them to adequately fly the simulator, but which
do not transfer to the real aircraft. Due to the comparatively large discrepancies that oc-
cur in the presentation of physical motion stimuli in flight simulators, this concern applies
especially to simulator motion cueing fidelity.

1.1.4 Evaluating Simulator Motion Cueing Fidelity

The formulation of requirements and guidelines for achieving adequate levels of simulator
motion cueing fidelity has shown to be a difficult problem thatthe flight simulation com-
munity has struggled with for decades [Anonymous, 1980; Ashkenas, 1986; Hosman, 1999;
Hosman et al., 2001]. The main reason for this difficulty is a limited understanding of hu-
man motion perception, manual control behavior, and skill-development under multimodal
cueing conditions. Progress is further hampered by the strong dependency of these phe-
nomena, on the simulated aircraft, task, and scenario, which makes it extremely difficult to
draw generalized conclusions with respect to best practices for achieving a sufficient level
of simulator motion fidelity.

Different definitions offidelity as the metric for evaluating the quality of simulator cue-
ing devices have been proposed [Feddersen, 1962; Sinacori,1978; Anonymous, 1980; Hef-
fley et al., 1981; Ashkenas, 1986]. Fig. 1.5 shows a schematicrepresentation of these dif-
ferent definitions of fidelity. Note that in correspondence with Fig. 1.4, Fig. 1.5 shows two
closed-loop pilot-vehicle systems, representative for skill-based manual control tasks per-
formed in real flight and in a flight simulator, respectively.The different definitions of sim-
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Figure 1.5. Schematic representation of how flight simulator fidelitycan be evaluated at me-
chanical, perceptual and behavioral levels.

ulator cueing fidelity, corresponding to different locations in the closed-loop pilot-vehicle
systems where these systems are compared, are indicated with white-filled arrows.

Perhaps the most workable definition of fidelity shown in Fig.1.5 isobjective fidelity
(also referred to asengineering fidelity) [Anonymous, 1980; Ashkenas, 1986], which is the
degree to which the simulator replicates the true aircraft in an absolute sense. Objective
fidelity is therefore purely determined by the quality of thesimulated aircraft dynamics and
the simulator cueing systems, as can be verified from Fig. 1.5. As aircraft model fidelity is
typically considered separately, objective simulator cueing fidelity is hence most often eval-
uated by explicitly considering the characteristics of thesimulator cueing hardware. In fact,
the most notable available flight simulator fidelity requirements are stated in terms of sim-
ulator hardware capabilities, for instance, by specifyinglower limits for characteristics of
the visual and motion systems such as time delay and bandwidth [Anonymous, 2003, 2005,
2009]. Furthermore, most of the criteria that have been proposed for evaluating simulator
motion cueing fidelity also purely account for the dynamic characteristics of the motion
filter algorithm and the motion system hardware [Sinacori, 1977; Schroeder, 1999; Advani
and Hosman, 2006].

One drawback of evaluating simulator cueing fidelity at the objective level is that it can
only be considered for each cueing component and, in case of motion cueing, degree-of-
freedomseparately. Evaluating thetotal level of objective fidelity achieved in a simulator is
therefore not straightforward. Furthermore, when evaluating objective fidelityanydiscrep-
ancy induced by the simulator cueing systems corresponds, by definition, to a degradation
in fidelity. Even though optimization of simulator hardwareand cueing systems may indeed
go a long way in the optimization of simulator cueing fidelity, it does not take any of the
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limitations of the human perceptual system into account that can be (and are) frequently
exploited in flight simulators [Brown et al., 1989]. Therefore, optimizing objective fidelity
does typically not result in the most efficient and cost-effective simulator cueing solution.
This is especially true for simulator motion cueing. With our current level of simulator tech-
nology, increasing the objective fidelity of motion cueing systems requires ever larger and
more expensive hardware.

To explicitly account for the influence of perceptual processes in the evaluation of sim-
ulator fidelity, it has alternatively been proposed to evaluateperceptual fidelity. As indi-
cated in Fig. 1.5, perceptual fidelity is defined to be high when pilots’ perception of stimuli
presented in a simulator is indistinguishable from those perceivable during a real-flight ma-
neuver. Hence, perceptual fidelity ispilot-centered, as opposed to objective fidelity. The
main issue with perceptual fidelity, however, is finding an appropriate and reliable method
for measuring it. One method used for evaluating perceptualfidelity is the evaluation of the
perceptual errors induced by simulator cueing devices using mathematical models of the
“pilot perception” block shown in Fig. 1.5. Note that this yields an evaluation of simula-
tor fidelity similar to that performed for determining objective fidelity, where, additionally,
the characteristics and limitations of the human motion perception processes that are of in-
terest are taken into account through these perceptual models. Even though the individual
perceptual sensors are perhaps sufficiently understood to allow for modeling their response
[Gum, 1973; Fernandez and Goldberg, 1971; Hosman, 1996], a limited understanding of
how sensory outputs of these different sensors are integrated in the brain [Gum, 1973; Sina-
cori, 1978; Zacharias and Young, 1981; Borah et al., 1988; Bos and Bles, 2002] still stands
in the way of truly allowing for evaluation of perceptual fidelity using this approach.

An alternative method for determining perceptual fidelity has been to assess itsubjec-
tivelyby asking evaluation pilots to judge how well their perception of the stimuli provided
in a simulator matches the real world case. Numerous studieshave been performed in which
pilots were asked to indicate their perceived level of simulator motion fidelity through sub-
jective motion fidelity rating scales [Reid and Nahon, 1986b; Grant and Reid, 1997b; Chung
et al., 1998; Mikula et al., 1999; Schroeder, 1999]. The factthat motion perception is an
inherently subconscious process – that is, an activity thatis normally performed without a
conscious thought process – implies that the forced subjective evaluation of perceived stim-
uli might be difficult and not yield results that are representative for perceptual processes
under “normal” conditions. Furthermore, such subjective evaluations of simulator fidelity
are typically found to be strongly affected by expectation and personal preferences and bi-
ases. For instance, due to these factors, the evaluation of different simulator motion filter
algorithms and motion filter parameter settings using subjective pilot indications of per-
ceived motion fidelity has been found to be a troublesome and often unrepeatable process
in a number of investigations [Parrish and Martin, 1976; Reid and Nahon, 1986b; Grant and
Reid, 1997a,b; Beukers et al., 2010].

Due to the difficulties in the measuring of perceptual fidelity, it has also been suggested
to evaluate a simulator’s cueing fidelity by its capacity to induce similarcontrol errors–
that is, errors in the attained aircraft response compared to perfect maneuver execution –
as observed in real flight. This definition of fidelity is typically referred to aserror fidelity
[Ashkenas, 1986], and is indicated in Fig. 1.5 with the rightmost arrow. Note from Fig. 1.5
that error fidelity is a direct result of the pilot perceptualand control response processes. For
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this reason, measures of task performance have been used as pilot-centered metrics of sim-
ulator cueing fidelity in a large number of investigations [Reid and Nahon, 1986b; Zaichik
et al., 1999; Schroeder, 1999; Chung, 2000; Telban et al., 2005b]. A major issue with the
evaluation of this error fidelity is that when confronted with degraded simulator cueing, pi-
lots are likely to adapt their control response dynamics to achieve the best attainable level of
task performance under these modified conditions [Young, 1969; McRuer and Jex, 1967a].
Due to this behavioral adaptation, analysis of performancemetrics is unlikely to capture the
full extent of the effects of degraded cueing fidelity on a closed-loop pilot-vehicle system as
depicted in Fig. 1.5 [Mulder et al., 2004].

The final definition of fidelity depicted in Fig. 1.5 isbehavioral fidelity, which has been
defined by Heffley et al. [1981] as “the specific quality of a simulator that permits the
skilled pilot to perform a given task in the same way that it isperformed in the actual
aircraft.”. In Fig. 1.5, this is indicated as the comparison of the gray-shaded “aircraft pilot”
and “simulator pilot” blocks. Behavioral fidelity is high ifa simulator induces pilots to
utilize the same control behavior, where the governing pilot control dynamics are based on
the same selection of all available stimuli, as observed in real flight. Of all fidelity definitions
depicted in Fig. 1.5, behavioral fidelity evaluates the quality of a simulator in terms that most
directly apply to the skill-based manual control skills that are to be developed. Even though
the measuring of pilots’ control dynamics and finding appropriate behavioral metrics for
quantifying their control behavior are by no means easy tasks, it can provide a pilot-centered
approach to the evaluation of simulator fidelity based solely onobjectivecontrol behavioral
measurements. For these two reasons, this thesis focuses onthe evaluation of simulator
motion cueing fidelity at this behavioral level.

1.2 Approach

This thesis describes an effort to evaluate simulator motion fidelity based on explicit mea-
surements ofskill-based pilot control behaviorand itsadaptabilityto the attenuation of the
supplied simulator motion cues by motion filter algorithms.Furthermore, it is attempted to
relate observed changes in pilot control behavior to the selectedmotion filter parameters.
The originality of the work described in this thesis lies in the objectiveandquantitative
evaluation of behavioral flight simulator motion fidelity that is performed. To facilitate this
quantitative approach, this thesis focuses on skill-basedcontrol behavior inmanual tracking
tasks, as it has been shown that for such continuous and stationarycontrol tasks the adopted
pilot control dynamics can be accuratelymodeledand determinedobjectivelyusingsystem
identificationandparameter estimation techniques.

1.2.1 Manual Control Behavior During Tracking

Based on pioneering research into manual tracking behaviorby Tustin [1947] and Elkind
[1956], an elaborate framework for the analysis and modeling of skill-based manual control
behavior duringcompensatorytracking was formulated in the 1960s [McRuer and Krendel,
1959; Krendel and McRuer, 1960; McRuer et al., 1965; McRuer and Jex, 1967a; McRuer
and Krendel, 1974]. Much of our current knowledge on skill-based manual control behavior



Introduction 11

stems from these investigations into pilot dynamics duringsingle-loopcompensatory track-
ing tasks, where pilots performed manual control tasks withonly explicit feedback of the
tracking error from a visual display [Elkind, 1956; McRuer et al., 1965; McRuer and Jex,
1967a]. As also observed in the description of Fig. 1.4 in this thesis, the similarities between
automatic control systems and compensatory manual controlbehavior were noted in these
early investigations into manual tracking. This spurred the application of methods that were
initially developed for the analysis and design of automatic control systems to the analysis of
skill-based manual control behavior.Forcing function signals, which were either inserted as
thetarget stateor external disturbanceshown in Fig. 1.4, were used in these experiments to
induce pilot control behavior [Elkind, 1956; McRuer and Krendel, 1959]. Typically, these
forcing function signals werequasi-random multisine signals, which were constructed as
the sum of a number of individual sinusoids that spanned the frequency range over which
manual control behavior was to be induced. In addition to yielding easily reproducible sig-
nals that were perceived as sufficiently random to induce only compensatory behavior, the
use of such multisine forcing functions facilitated the identification of frequency-domain
describing functions of the pilot control dynamics for suchcompensatory tracking tasks.

From such measurements, pilot control dynamics under such conditions were found
to be sufficiently linear and time-invariant to allow for modeling them withquasi-linear
control-theoretical models[McRuer et al., 1965; McRuer and Jex, 1967a]. These quasi-
linear models consist of a linear part that describes pilots’ responses to all relevant perceived
variables using transfer function models of the adopted pilot dynamics, supplemented with
a remnantsignal that accounts for all otherwise unmodeled nonlinearities. Such quasi-
linear models of single-loop compensatory tracking behavior have been used to analyze
manual control behavior in many later experiments [Van Gool, 1978; Van der Vaart, 1992;
Van Paassen, 1994; Sentouh et al., 2009] and have also shown to be a valuable tool for
the prediction of pilot-vehicle system characteristics ina wide range of different man-
machine systems and applications [Ashkenas and McRuer, 1962; Johnston and Aponso,
1988; Cameron et al., 2003].

One of the key properties of human manual control that was established from this ex-
tensive research into compensatory tracking behavior is the fact that human operators are
found to adapt their own control dynamics to a myriad of factors. This is forinstance
reflected in the well-knowncrossover modeldescribed by McRuer et al. [1965], which il-
lustrates and explains the adaptation of human manual control dynamics to the dynamics of
the system (or vehicle) that is controlled. McRuer and Jex [1967a] compiled an excellent
categorized overview all different variables that may affect human manual control behavior
during manual control, which is reproduced in Fig. 1.6.

As can be verified from Fig. 1.6, McRuer and Jex [1967a] definedfour different groups
of variables that influence human manual control dynamics ina closed-loop pilot-vehicle
system. The most important of these factors are thetask variables, which define the nature
and characteristics of the manual control task itself. As indicated in Fig. 1.6, important
task variables are the displays and ways in which feedback information is presented to the
human pilot, the applied forcing function signals, and the dynamics of the control manipu-
lator and the controlled element.Environmental variables, which define the environment in
which the control task is performed, can further affect a manual control system and its per-
formance. The same holds foroperator-centered variables, such as motivation and stress,
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Figure 1.6. The variables that affect a pilot-vehicle system as defined by McRuer and Jex
[1967a].

andprocedural variables, such as the received instructions and the time allowed for prac-
tice. Changes in any of these variables are likely to result in adaptation of the adopted
manual control dynamics and can hence affect the overall dynamics and performance of the
closed-loop pilot-vehicle system.

As can be verified from Fig. 1.6, “motion feedbacks” is also defined as one of the im-
portant task variables that affect pilot control behavior by McRuer and Jex [1967a]. Many
subsequent investigations have indeed confirmed a strong effect of the presence of physical
motion feedback, and of variations in the level of fidelity with which it is presented in a
simulator, on skill-based control behavior and tracking performance during manual track-
ing [Shirley and Young, 1968; Stapleford et al., 1969; Levison and Junker, 1977; Levison,
1978; Jex et al., 1981; Hosman, 1996; Van der Vaart, 1992; Schroeder, 1993].

1.2.2 The Cybernetic Approach

This observed adaptation of skill-based manual control behavior to variations in physical
motion feedback allows for the explicit evaluation of simulator motion fidelity at the behav-
ioral level using acybernetic approach. Such a cybernetic approach involves the studying
of the fundamental properties of the interaction between the human operator and his en-
vironment centered around the presented stimuli, in this case the information that is used
for manual control [Wiener, 1961; Mulder, 1999]. In this thesis, this cybernetic approach
is implemented by explicitly quantifying the way in which the physical motion feedback
that is supplied in moving-base flight simulators affects and contributes to skill-based man-
ual control behavior through the use ofmathematical models of multimodal pilot control
behavior.
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To allow for isolated evaluation of the effects of simulatormotion cueing fidelity on pilot
control behavior, this thesis focuses on aircraftattitudetracking tasks where in addition to
variables presented on a central visual display, most notably the tracking error,onlyphysical
motion feedback of the aircraft motion is available to pilots. A schematic representation of
such an attitude tracking task with physical motion feedback, and an example of aquasi-
linear multimodal pilot modelthat is used in this thesis for the analysis of manual control
behavior in such a task, is depicted in Fig. 1.7.
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Figure 1.7. An example of a multimodal pilot model as used for quantification of pilot control
behavior in this thesis.

The multimodal pilot model of Fig. 1.7 includes separate pilot visual and motion re-
sponses that account for the portions of the pilot control input that are attributable to re-
sponses to visually presented tracking errors and perceived motion feedback, respectively.
The model has a multiple-input single-output structure, which relates the model inputs, the
tracking error and the supplied physical motion stimulus, to the given pilot control inputs
that form the model output. As the linear responses with which these input-output dynamics
are modeled cannot account for the nonlinearities that are inherent to human manual control
behavior, apilot remnantsignal is included in this model, as is also done in the quasi-linear
modeling of single-loop compensatory tracking behavior [McRuer et al., 1965; McRuer and
Jex, 1967a]. The multimodal pilot model shown in Fig. 1.7 is highly similar to the models
proposed for capturing pilot control dynamics in the presence of physical motion feedback
in a number of earlier investigations [Stapleford et al., 1969; Jex et al., 1981; Hosman, 1996;
Van der Vaart, 1992; Hess, 1990b].

As indicated in Fig. 1.7, the multimodal pilot models utilized in this thesis model the
pilot dynamics adopted during tracking tasks with physicalmotion feedback in terms of dis-
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tinct contributions that are physically interpretable. For instance, the dynamics of the visual
and motion perceptionsensors, that is, the eyes with which the tracking error is perceived
from a visual display and the semicircular canals of the vestibular system that are sensi-
tive to rotational motion stimulation, are explicitly accounted for in the model. It is known
that the perception of physical body motion is the result of the integration of the sensations
obtained from multiple modalities (vestibular, tactile, proprioceptive) [Gum, 1973; Borah
et al., 1988; Zaichik et al., 1999]. Only the semicircular canal dynamics are included in
the multimodal pilot model shown in Fig. 1.7, however, as it has been argued that for the
perception of rotational motion the SCC are the dominant sensor [Young, 1966; Hosman
and Van der Vaart, 1978]. In addition to these sensor dynamics, the model further accounts
for some of thelimitations of human manual control behavior that are found to affect pi-
lot control dynamics, such as the time delays incurred in theperception and processing
of the visual and motion information and the neuromuscular actuation dynamics. Finally,
the modeledequalizationdynamics in the visual and motion channels of the model repre-
sent pilots’ interpretation and usage of the perceived information in the formulation of an
appropriate control input. For example, Fig. 1.7 showslead equalization dynamics in the
pilot visual response path, which can describe pilots’ responses to both perceivedtracking
errors and tracking error rate. On the other hand, the equalization dynamics in the pilot
motion response channel are seen to be a pure gain, indicating a pilot response that is purely
proportional to the physical motion perceived through the semicircular canals.

The multimodal pilot model shown in Fig. 1.7 has seven free model parameters: the pi-
lot visual and motion response gainsKv andKm, the visual equalization lead time-constant
TL, the visual and motion response delaysτv andτm, and the natural frequency and damp-
ing ratio (ωnm and ζnm, respectively) of the model for the neuromuscular actuation dy-
namics. These model parameters together fully characterize and quantify the adopted pilot
control dynamics. Hence, in the cybernetic approach followed in this thesis, it is these pilot
model parameters that are considered as metrics for evaluating the effects of varying motion
cueing settings on pilot control behavior.

The key to using such multimodal pilot model parameters as metrics for quantifying
changes in pilot control behavior is hence aparameter estimation methodthat is capable
of yielding reliable and accurate estimates of these parameters based on measurements of
the model in- and outputs. One of the main observations made with respect to the ef-
fects of physical motion feedback on pilot tracking behavior is that for control tasks where
significant lead equalization is required for achieving satisfactory pilot-vehicle system dy-
namics, the availability of physical motion feedback is seen to yield a drastic reduction in
the amount of visual lead equalization that is performed [Stapleford et al., 1969; Jex et al.,
1981; Hosman, 1996; Van der Vaart, 1992]. Instead, part of the required lead equalization
dynamics is then obtained from the available physical motion feedback information through
the pilot motion response. Note that this implies that the control dynamics pilots adopt for
their responses to visual and motion stimuli can have inherently similar dynamic charac-
teristics. This causes such multimodal pilot models to typically have anoverdetermined
model structure, that is, multiple different combinationsof model parameters can yield an
almost identical model response and therefore provide a similarly good fit to experimental
measurements [Zaal et al., 2009a]. For this reason, obtaining estimates of the parameters
of a multimodal pilot model as depicted in Fig. 1.7 that allowfor proper evaluation of the
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relative contributions of pilots’ visual and motion responses, and changes therein, is not
straightforward.

A number of different identification methods have been proposed for estimating the pa-
rameters of such overdetermined multimodal pilot models. Afrequently applied approach
consists of two steps, in which first frequency-domain describing functions of both the pilot
visual and motion responses are estimated using spectral methods [Stapleford et al., 1967;
Van Paassen and Mulder, 1998]. In the second step of such a two-step approach, a paramet-
ric model as depicted in Fig. 1.7 is then fit to the obtained describing functions to obtain
the estimates of the model parameters. A drawback of such a two-step approach is that
estimation errors in the determination of the describing function estimates in the first step
affect the reliability of the parameter estimates obtainedfrom the second step. Furthermore,
the spectral methods typically used to obtain the describing function estimates in the first
step of this approach demand the use of two independent multisine forcing function signals
– which are typically inserted as target and disturbance signals, see Fig. 1.7 – in order for
reliable separation of the pilot visual and motion responses to be obtained [Stapleford et al.,
1967; Van Paassen and Mulder, 1998]. Nieuwenhuizen et al. [2008] have shown that the
estimation of frequency domain describing functions can also be performed using linear
time-invariant models, such as Auto-Regressive models with an eXogeneous input (ARX).
Though still requiring a second step to estimate the multimodal pilot model parameters,
this approach is found to yield more accurate describing function estimates with superior
frequency-domain resolution.

More recently, a one-step time-domain identification method based on maximum likeli-
hood estimation has been developed specifically for application to the problem of estimating
multimodal pilot model parameters [Zaal et al., 2009a]. With this method it is possible to
estimate the parameters of a multimodal pilot model directly from the time-domain mea-
surements, which has been shown to yield more accurate and reliable results than obtained
with two-step identification methods [Zaal et al., 2009a]. Afurther advantage of this time-
domain identification method is that, as long as sufficient excitation of both pilot visual and
motion responses is retained, the forcing functions used for inducing pilot control behavior
are no longer required to be independent multisine signals.For these reasons, this time-
domain identification method described by Zaal et al. [2009a] is applied in this thesis for
estimating the parameters of the utilized multimodal pilotmodels.

1.3 Thesis Objective

The first objective of this thesis is to explicitly compare measurements of skill-based pilot
control behavior collected inreal flightwith measurements collected in amoving-base flight
simulatorunder varying motion cueing conditions. The availability of two state-of-the art
facilities at Delft University of Technology, the SIMONA Research Simulator (SRS) and the
Cessna Citation II laboratory aircraft, facilitates this direct direct comparison of skill-based
pilot control behavior measured in real flight and in a moving-base flight simulator. The
second, and main, objective of this thesis is totrace backdiscrepancies in multimodal pilot
control behavior that are observed through the adopted cybernetic approach, to the way the
physical motion information is presented in the simulator,that is, to variations in high-pass
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motion filter parameter settings. A schematic representation of the different steps in this
cybernetic approach to the assessment of simulator motion fidelity is depicted in Fig. 1.8.

∆

framework for evaluating behavioral simulator motion fidelity

1
control tasks, multimodal pilot models &
parameter estimation methods

2
quantify multimodal pilot
dynamics in real flight

3
quantify multimodal pilot
dynamics in the simulator

4
identify best match in multimodal pilot dynamics &
main behavioral adaptations due to washout variations

Figure 1.8. Graphical representation of the cybernetic approach adopted in this thesis.

The first step in achieving the objectives of this thesis is the selection of the control tasks
that are considered for the evaluation of simulator motion fidelity (Block 1 in Fig. 1.8).
This task selection is coupled to the development of multimodal pilot models and corre-
sponding parameter estimation methods that allow for application of the desired cybernetic
approach. As indicated in Block2 , the selected control tasks are then performed inreal
flight to collect measurements pilot tracking behavior under conditions with true aircraft
motion feedback. These in-flight measurements are then used as a baseline in acomparison
with pilot tracking behavior, for exactly the same control tasks, observed in a moving-base
flight simulator, for a wide variation in the simulator motion filter settings (Block 3 ).
From this comparison of tracking behavior measured in real flight and in a moving-base
flight simulator the behavioral discrepancies (“∆”) that occur due to attenuated simulator
motion stimuli will be identified and used to indicate which motion cueing settings yield the
best match of true in-flight tracking behavior. These behavioral discrepancies are deduced
from the comparison of the identified values of the parameters (gains, time constants, de-
lays) of multimodal pilot models as depicted in Fig. 1.7, which together fully quantify the
adopted multimodal pilot control dynamics. It should be noted that, equivalent to the defini-
tion of behavioral fidelity as proposed by Feddersen [1962];Heffley et al. [1981]; Ashkenas
[1986], the approach depicted in Fig. 1.8 is centered aroundthe assumption that if the visual
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and motion information presented in a flight simulator sufficiently matches that perceived in
real flight, multimodal pilot control behavior equivalent to that exhibited in real flight will
be adopted in this simulator.

For evaluating simulator motion fidelity according to the approach shown in Fig. 1.8,
it is of critical importance that the accuracy of the obtained pilot model parameter esti-
mates that are used to characterize multimodal pilot control dynamics is as high as possible.
Due to the fact that tracking tasks performed with quasi-random multisine target and dis-
turbance forcing function signals have been shown to consistently yield accurate estimates
of multimodal pilot model dynamics [Stapleford et al., 1969; Nieuwenhuizen et al., 2008;
Zaal et al., 2009a], such tasks are also mainly considered inthis thesis. In addition, how-
ever, skill-based tracking tasks in which more deterministic target forcing function signals
consisting of multiple ramp-like changes in reference attitude are also considered for evalu-
ating behavioral flight simulator motion fidelity in this thesis. As opposed to the tracking of
quasi-random signals, suchramp forcing function signalsyield a control task, and a corre-
sponding motion sensation, that is comparable to discrete maneuvering tasks that are often
performed during operational manual aircraft control, such as a series of commanded alti-
tude captures or turn entries and exits [Pool et al., 2009b; Zaal et al., 2010]. It should be
noted, however, that the currently available models of skill-based multimodal pilot control
behavior, as depicted in Fig. 1.7, have only been validated for purely compensatory track-
ing tasks with quasi-random multisine forcing function signals. Necessary extensions to
the available multimodal pilot models that can account for possible deviations from purely
compensatory control behavior that occur during suchramp-tracking tasksare therefore
proposed and validated in this thesis (Block1 in Fig. 1.8).

In-flight measurements of skill-based tracking behavior inreal flight similar to those de-
scribed in this thesis have been collected in a number of earlier experiments [Smith, 1966;
Newell and Smith, 1969; Mooij, 1973; Van Gool and Mooij, 1976; Hess and Mnich, 1986;
Steurs et al., 2004]. In most of these earlier studies these in-flight measurements were also
compared to tracking behavior measured in fixed-base or moving-base flight simulators.
The in-flight experiments described in this thesis, however, clearly distinguish themselves
from these earlier efforts to compare in-flight and ground-based tracking behavior for two
reasons. First, the analysis methods applied in these earlier studies did not permit the separa-
tion of pilots’ responses to visual and motion stimuli. Instead, pilot dynamics were analyzed
based on a single, lumped, pilot describing function or estimated pilot-vehicle system dy-
namics. As opposed to the analysis with multimodal pilot models as performed in this thesis,
analysis of such lumped describing functions does not permit true interpretation of the ex-
tent to which visual and motion information is used by pilotsin skill-based tracking tasks.
Hence, such an approach also does not allow for true evaluation of the possible differences
between the multimodal pilot dynamics that are adopted in real flight and in ground-based
simulators [Steurs et al., 2004; Kaljouw et al., 2004]. In addition to this methodological
difference, a direct comparison pilot tracking behavior measured in real flight and under a
wide variation in simulator motion filter parameter settings, as performed in this thesis, has
not been reported before.
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1.4 Thesis Structure

Fig. 1.9 shows a graphical representation of the structure of this thesis. As is clear from this
figure, this thesis consists of three different parts, labeled I–III. Furthermore, a distinction is
made in Fig. 1.9 between chapters that consider pilot control behavior in tracking tasks with
only quasi-random forcing function signals (chapters at left) and chapters in which control
behavioral measurements for tracking tasks with deterministic ramp forcing function signals
are evaluated (chapters at right). First, Part I of this thesis (Chapters 2 and 3) describes two
contributions to the development of the behavioral pilot models that form the foundation
of the cybernetic approach adopted in this thesis (Block1 of Fig. 1.8). Part II, consisting
of Chapters 4 and 5, then describes the reported effects of motion cueing variations on
pilot tracking as observed in a preliminary simulator experiment performed in the SRS
and in a number of earlier studies reported in literature. Part III of this thesis describes
the comparison of pilot tracking behavior measured in real flight and for varying motion
cueing settings in a moving-base flight simulator, as indicated by Blocks 2 – 4 in Fig. 1.8.
Finally, the main conclusions, recommendations and some directions for future research are
described in Chapter 9.

Combined Ramp and Multisine

Forcing Function Tracking Tasks

Multisine Forcing Function

Tracking Tasks

Chapter 9:

Conclusions and Recommendations

Chapter 2:

Modeling Pilot Control of Aircraft Pitch

Dynamics

Chapter 3:

Modeling Pilot Control During Ramp Tracking

Chapter 4:

Effects of Heave Washout During Pitch Tracking

Chapter 7:

Ramp-Tracking Behavior in Real and

Simulated Flight

Part I:

Pilot Model Development

Part II:

Preliminary and Previous

Simulator Experiments

Part III:

In-Flight to Simulator

Behavioral Comparisons

Chapter 1:

Introduction

–2 4Block , Fig. 1.7

Block , Fig. 1.73

Block , Fig. 1.71Block , Fig. 1.71

Chapter 6:

Multisine-Tracking Behavior in Real and

Simulated Flight –2 4Block , Fig. 1.7

Chapter 5:

Effects of Motion Filter Settings on Tracking

Behavior Block , Fig. 1.73

Chapter 8:

Roll Motion Filter Settings and Multisine-

Tracking Behavior –2 4Block , Fig. 1.7

Figure 1.9. Graphical representation of the structure of this thesis.
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It should be noted that all chapters of this thesis, except this introduction and the con-
clusions of Chapter 9, have been written as papers that were either presented at a scientific
conference or that have been (or are to be) submitted for publication in scientific journals.
The papers that have already been published elsewhere were included here with only minor
modifications. The fact that each chapter is in fact written as a separate paper has the ad-
vantage that it allows for all individual chapters to be readseparately. The first page of each
chapter provides a short introduction of the scope of that chapter, how the work described
there relates to the overall thesis topic and to the researchdescribed in other chapters of this
thesis. A short description of the scope and contents of eachchapter is provided below.

Part I: Pilot Model Development

Chapter 2 describes an extension to the models of compensatory pilot control behavior that
are described in literature that was found to be required foraccurate modeling of the visual
pilot equalization dynamics adopted during compensatory control of typical conventional
longitudinal aircraft dynamics. Using collected measurements of pilot tracking behavior for
such a controlled element, the need for this pilot model extension is illustrated and shown
to be required for correct interpretation of the effects of the addition of physical motion
feedback based on fitted pilot model parameters.

Chapter 3 describes an experiment performed to evaluate the control behavioral conse-
quences of using deterministic target forcing function signals consisting of multiple ramp-
like changes in reference attitude for the tracking tasks asconsidered in this thesis. Due
to the deterministic nature of these forcing function signals, it was thought to be likely
that they induce a control strategy that deviates from the purely compensatory control ob-
served for the tracking of unpredictable multisine signals. This chapter utilizes collected
measurements of ramp-tracking behavior to verify if pilot model extensions are required for
modeling the manual control dynamics observed in such ramp-tracking tasks.

Part II: Preliminary and Previous Simulator Tracking Experiments

Chapter 4 describes a pitch tracking experiment in which pilot control behavior was evalu-
ated for a variation in simulator pitch and heave motion cueing. During pitch maneuvering
with a conventional aircraft, significant vertical heave motion is perceivable in the cock-
pit in addition to the rotational pitch motion. Due to the severe limitations in presenting
aircraft heave motion on typical moving-base flight simulators, aircraft heave motion cues
are typically heavily attenuated by high-pass motion filters in simulator motion filter algo-
rithms. The experiment that is described in this chapter focuses on the effects of attenuating
the component heave motion that pilots may utilize during aircraft pitch control on their
adopted control dynamics.

Chapter 5 gives an overview of the effects of high-pass motion filter settings on pi-
lot tracking behavior reported in a number of experiments described in literature and this
thesis. By compiling the data of these different experiments, it is attempted to identify con-
sistent trends with varying motion cueing settings in the behavioral metrics that are typically
considered for the evaluation of changes in pilot tracking behavior. Furthermore, for those
behavioral metrics that consistently show significant variation with applied variations in mo-
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tion filter settings, linear prediction equations are derived that allow for offline prediction of
the behavioral adaptation induced by a certain high-pass motion filter setting.

Part III: Comparisons of In-Flight and Simulator Pilot Tracking Behavior

Chapter 6 describes a direct comparison of compensatory pilot roll tracking behavior mea-
sured in real flight and in a moving-base flight simulator for aroll attitude tracking task
with quasi-random multisine target and disturbance forcing function signals. This experi-
ment is a major milestone for the research described in this thesis, as it is one of the few
studies in which in-flight and simulator measurements of pilot control behavior are directly
compared and where pilot control behavior is analyzed usingmultimodal pilot models. The
behavioral discrepancies that occur between real flight andunder four different roll motion
cueing settings in a moving-base flight simulator are objectively quantified with the adopted
cybernetic approach. This chapter further includes a detailed description of the setup of this
combined simulator and in-flight experiment and the experiment described in Chapter 7.

Chapter 7 provides the comparison between measurements of pilot tracking behavior
collected in real flight and in a moving-base flight simulatorfor a roll tracking task with a
deterministic ramp target forcing function signal. Duringthis more operationally relevant
control task, a number of commanded turn maneuvers are performed by pilots. Due to the
coordinated nature of aircraft turn maneuvers, this yieldsa different motion sensation, and
perhaps different usage of motion feedback for manual control, than for the compensatory
roll tracking task considered in Chapter 6. The analysis of pilot control behavior for this
experiment relies heavily on the model proposed for the modeling of pilot dynamics in
ramp-tracking tasks in Chapter 3.

Chapter 8 describes the results of an experiment performed to collectadditional ref-
erence simulator measurements for the comparison of compensatory roll tracking behavior
with in-flight measurements described in Chapter 6. In this experiment pilot roll tracking
behavior was measured for exactly the same roll tracking task as considered in Chapter 6.
Measurements of pilot tracking behavior were collected forten different simulator roll mo-
tion cueing settings, defined by ten different settings of a first-order high-pass roll motion
filter, spanning the full range of high to low motion fidelity as defined by previously formu-
lated motion fidelity criteria.

The research described in this thesis was performed during asix-year research project
with the title “A Cybernetic Approach to Assess Simulator Fidelity”, for which a “Vidi” grant
from the “Stichting voor de Technische Wetenschappen” (STW) was awarded to Prof. dr. ir.
M. Mulder in 2005 (grant number 07058). Two PhD students worked on this project and
both wrote separate theses. The first thesis, “Pilot Control Behavior Discrepancies Between
Real and Simulated Flight Caused by Limited Motion Stimuli” by Peter Zaal [2011], was
published more than a year before the completion of this thesis, and complements the work
described here. It describes the majority of the work that was performed, in collaboration
with the author of this thesis, in the development of the multimodal pilot models and identi-
fication techniques that are also applied in this thesis (Block 1 of Fig. 1.8) and the details
of the design and implementation of the custom fly-by-wire control system that was used
to collect the in-flight measurements of pilot tracking behavior (Block 2 of Fig. 1.8). Fi-
nally, Zaal [2011] also describes a comparison of in-flight and simulator control behavior,
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equivalent to that performed for roll attitude tracking tasks in this thesis, for a pitch attitude
tracking task, for which the effects of varying pitch and heave motion cueing settings on
pilot control behavior were evaluated.
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Part I

Pilot Model Development





2
Modeling Pilot Control of

Aircraft Pitch Dynamics

The first step of the research project that has resulted in the writing of thisthesis (see
Fig. 1.8) involved further development of the current standard in multimodal pilot mod-
eling and the identification techniques for estimating the parameters of such pilot models
from measured data. Most of the work from this phase of the research project is described
in the first thesis to come out of this research project [Zaal, 2011]. Thischapter describes
one further contribution made in the field of modeling of pilot control behavior during com-
pensatory tracking. An extension to the pilot models described in literature,which was
found to be required for modeling the adopted pilot equalization during control of typical
longitudinal aircraft dynamics, is proposed and validated using experimental measurement
data. The extension to modeling pilot control proposed in this chapter is further applied in
Chapter 4 of this thesis and in other related papers [Zaal et al., 2009b,c, 2010, 2011] for
modeling pilot control behavior during compensatory pitch tracking tasks.

The contents of this chapter have been published as:

Pool, D.M., Zaal, P.M.T., Damveld, H.J., Van Paassen, M.M., Van der Vaart, J.C., and Mulder,
M.,“Modeling Wide-Frequency-Range Pilot Equalization for Control of Aircraft Pitch Dynam-
ics”, Journal of Guidance, Control, and Dynamics, 34(5), 2011, pp. 1529-1542.
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2.1 Introduction

Ever since the foundations for focused research into human dynamics during manual con-
trol were laid by Elkind [1956] and McRuer et al. [1965] for compensatory tracking tasks,
the modeling of pilot manual control behavior has been of interest to many applications
in the field of aerospace engineering ever since. Notable examples are the evaluation of
aircraft handling qualities [McRuer et al., 1960; Ashkenasand McRuer, 1962; Hall, 1963;
Hess, 1995; Damveld, 2009], the assessment of flight simulator cueing fidelity [Hess and
Malsbury, 1991; Zeyada and Hess, 2003; Steurs et al., 2004; Zaal et al., 2009b,a; Grant and
Schroeder, 2010], the design of aircraft flight control systems [Hess, 1990a], and the evalu-
ation of manipulator characteristics [Johnston and Aponso, 1988; Mitchell et al., 1992] and
perspective guidance displays [Mulder and Mulder, 2005].

One of the key characteristics of pilot tracking behavior isthat human operators are
seen to adapt their control behavior to a myriad of external and internal factors [McRuer
and Jex, 1967a]. Perhaps the most apparent form of this adaptation is the fact that human
operators are seen to modify their own equalizing control dynamics to yield an open-loop
pilot-vehicle system that has the properties of a well-designed feedback control system,
that is, an open-loop system with approximately single integrator dynamics over a limited
frequency range around the gain crossover frequency [McRuer et al., 1965; McRuer and
Jex, 1967a]. For modeling pilot dynamics in the crossover region, including this adaptation
to the dynamics of the controlled element, McRuer et al. [1965] have proposed theextended
crossover model, which includes an explicit lag-lead pilot equalization term that can be
modified to model control of different types of controlled elements. Furthermore, as the
validity of theextended crossover modelwas found to be restricted to a limited frequency
range around crossover, McRuer et al. proposed theirprecision modelfor the modeling
of pilot dynamics over the full range of frequencies where pilot dynamics are typically
evaluated. Compared to theextended crossover model, theprecision modelhas additional
terms to model very low-frequency pilot lag and the neuromuscular actuation dynamics that
are observed at frequencies well above crossover. Theprecision modelfurther includes
the same lag-lead pilot equalization term as used for capturing pilot equalization in the
crossover region in theextended crossover model.

Recent experiments into the effects of physical motion feedback during compensatory
tracking tasks have indicated that considerable changes inpilot tracking behavior under
varying motion cueing settings not only occur around crossover, but also at frequencies that
are well above the pilot-vehicle system crossover frequency [Nieuwenhuizen et al., 2008;
Zaal et al., 2009b; Damveld, 2009; Pool et al., 2010]. Furthermore, research into the char-
acteristics of the human neuromuscular system during manual aircraft control also focuses
on pilot dynamics outside of the crossover region [Damveld et al., 2009]. A number of these
experiments evaluated pilot tracking behavior for controlled elements that are representa-
tive for conventional aircraft elevator-to-pitch dynamics [Zaal et al., 2009b; Damveld, 2009;
Pool et al., 2010]. Such conventional aircraft pitch dynamics have relatively complex dy-
namic characteristics over the frequency range where manual tracking behavior is typically
evaluated due to the presence of the short-period mode. When considering pilot behavior
over a wide frequency range, thereby including frequenciesabove and below the crossover
region, it is found that the lead-lag equalization term as included in theprecision modelcan
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not capture the equalization dynamics adopted for compensation of the controlled element
characteristics around the short-period mode.

The main objective of the present study is to define and validate an appropriate pilot
equalization model that captures the adopted pilot equalization over the full measurement
bandwidth during manual for a controlled element that represents the elevator-to-pitch dy-
namics of a small conventional jet aircraft. Furthermore, for this type of controlled element
the importance of accurate modeling of the pilot equalization dynamics for quantitative eval-
uation of the typical effects of physical motion feedback that are observed for compensatory
tracking tasks will be shown.

To achieve these objectives, measured pilot control behavior from the compensatory
pitch attitude tracking task from the experiment describedin [Zaal et al., 2009b] is ana-
lyzed. For this experiment, the controlled element was a linearized reduced-order model
of the pitch dynamics of a Cessna Citation I Ce500 business jet. Furthermore, the pitch
tracking task was performed both with and without simulatormotion cues. To be able
to investigate the separate contributions of the visual andvestibular systems, a combined
disturbance-rejection and target-following task was performed [Stapleford et al., 1969]. To
confirm that the requirement for a more complex model for pilot equalization is indeed
caused by the dynamic characteristics of the considered aircraft pitch dynamics, the pitch
tracking task of Zaal et al. [2009b] has been repeated for control of a system with double
integrator dynamics, both with and without physical motionfeedback, in the same experi-
mental setting.

This chapter is structured as follows. First, Section 2.2 gives an overview of previous
research into the modeling of pilot equalization during compensatory tracking. In addition,
this section will cover the relation between controlled element dynamics and pilot equaliza-
tion dynamics, which will be used to propose an extended equalization model for control of
typical conventional aircraft pitch dynamics. Then, Section 2.3 describes the details of the
human-in-the-loop experiments that were performed to gather the required measurements
of human manual control behavior for evaluating the proposed equalization models. The
model identification results are presented in Section 2.4. The chapter ends with a discussion
and conclusions.

2.2 Pilot Compensation in Manual Control

2.2.1 Background

The foundations for much of the current knowledge on pilot dynamics during manual con-
trol were obtained from investigations into pilot control behavior and performance for single-
loop compensatory target tracking tasks with a visually presented, random-appearing forc-
ing function [Elkind, 1956; McRuer et al., 1965]. A schematic representation of such a
single-loop compensatory control task is depicted in Fig. 2.1.

Fig. 2.1 shows a pilot exerting control (u) on a controlled element with dynamical char-
acteristics given byHc(jω), based only on information of the tracking errore. This tracking
error is defined as the difference between the actual state ofthe controlled elementθ and
the desired state defined by the forcing function signalft. Such compensatory manual con-
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Figure 2.1. Schematic representation of a single-loop compensatory control task.

trol behavior has mainly been studied for tracking tasks with unpredictable (quasi-random)
forcing function signalsft, as these force the pilot adopt to a purely compensatory control
strategy [McRuer and Jex, 1967a]. Based on such measurements ofHp(jω) for a wide va-
riety of controlled elements, McRuer et al. [1965] formulated the most well-known of all
models of human tracking behavior, thecrossover model:

Hp(jω)Hc(jω) =
ωc

jω
e−jωτe (2.1)

The model defined by Eq. (2.1) implicitly captures the adaptation of pilot dynamics to
those of the controlled element, by stating that the combined pilot-vehicle dynamics approx-
imate those of a single integrator (K/jω) around the crossover frequencyωc, independent
of the controlled element dynamicsHc(jω). The crossover model further accounts for
phase lags around crossover that can be attributed to the pilot dynamicsHp(jω) through the
equivalent pilot time delayτe.

Based on theircrossover model, which is has been shown capable of describing the
combined pilot-vehicle dynamics in the crossover region for a wide variety in controlled
element dynamics [McRuer and Jex, 1967a; McRuer, 1988], McRuer et al. [1965] further
introduced a number of quasi-linear models for describing the pilot dynamicsHp(jω) dur-
ing compensatory tracking. The first of these models is theextended crossover model, which
is given by:

Hp(jω) = Kp

(
TLjω + 1

TIjω + 1

)

︸ ︷︷ ︸

pilot equalization

e−jωτe (2.2)

Note that the low-frequency phase correction proposed by McRuer et al. [1965],e−jα/ω,
is omitted from theextended crossover modelas given by Eq. (2.2). As can be verified
from comparison of Equations (2.1) and (2.2), theextended crossover modelresults from
the required combined pilot-vehicle system dynamics defined by the crossover model. The
adaptation of pilots’ dynamics as a control elementHp(jω) to the dynamics of the con-
trolled systemHc(jω) is captured by the pilot equalization term in the model. Depending
on what type of equalization is required to satisfy Eq. (2.1)for a given controlled element,
the lead-lag pilot equalization form of Eq. (2.2) may reduceto a pure lead, a pure lag, or
even a pure gain. For instance, for modeling tracking behavior for single and double inte-
grator controlled elements (Kc/jω andKc/(jω)

2, respectively), McRuer et al. [1965] have
shown that the equalization term can be reduced toKp andKp(TLjω + 1), respectively.
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Both thecrossover model(Eq. (2.1)) and theextended crossover modelin the form given
by Eq. (2.2) were meant for analyzing pilot-vehicle system dynamics in a limited frequency
range around the gain-crossover frequency ofHp(jω)Hc(jω). As for instance stated by
McRuer and Jex [1967a], the combined pilot-vehicle system dynamics in the crossover
region “determine the dominant closed-loop modes and response”. This implies that for
many applications, such as the prediction of closed-loop pilot-vehicle system performance,
these models provide satisfactory results, despite the restricted frequency range they are
applicable to.

Despite the modest contribution to the overall characteristics of the resulting combined
pilot-vehicle system, pilot dynamics during tracking extend to frequencies well above and
below crossover. For modeling these high and low-frequencypilot dynamics, and to al-
low for quantitative evaluation of changes in tracking behavior in these frequency ranges,
McRuer et al. [1965] proposed a further extension to theextended crossover modelgiven
by Eq. (2.2). In a form that compared to its definition in [McRuer et al., 1965] omits the
indifference threshold describing function, thisprecision modelis given by:

Hp(jω) =

pilot equalization
︷ ︸︸ ︷

Kp

(
TLjω + 1

TIjω + 1

)

low-freq. lag-lead
︷ ︸︸ ︷
(
TKjω + 1

T ′
Kjω + 1

)

·

(2.3)
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(TN jω + 1)

([
jω

ωnm

]2

+ 2ζnmjω
ωnm

+ 1

)







︸ ︷︷ ︸

neuromuscular dynamics

e−jωτ

︸ ︷︷ ︸

delay

Note that compared to theextended crossover model, the precision modelgiven by
Eq. (2.3) includes an additional lag-lead term and an extensive model for the neuromuscular
actuation dynamics. These additional elements ensure thattheprecision modelallows for
the modeling pilot dynamics over a wider frequency range than possible with thecrossover
andextended crossovermodels. A more subtle difference with these simpler models is the
delay terme−jωτ . In theextended crossover model, the equivalent time delayτe accounts
for more than just pilot time delay, as for instance the phaselags induced by the neuro-
muscular actuation dynamics, which also affect pilot dynamics in the crossover region, are
also lumped intoτe [McRuer et al., 1965]. As can be verified from Eq. (2.3), the explicit
inclusion of the neuromuscular dynamics in the model allowsfor the modeling of a pure
pilot time delay in theprecision model.

As can be verified from comparison of Equations (2.2) and (2.3), McRuer et al. [1965]
propose the same equalization term for both theextended crossover modeland theprecision
modelto model the adaptation of the adopted pilot dynamics to those of the controlled ele-
ment. The equalization dynamics required in the crossover region for achieving satisfactory
overall characteristics of the combined pilot-vehicle system are, however, not necessarily
also applicable to frequencies that are well above crossover, as the dynamics of many con-
trolled elements that are representative for manual vehicle control may show considerable
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changes in their dynamic characteristics in the crossover region and for frequencies beyond
crossover. For instance, controlled elements of the formKc/(jω(Tjω + 1)) – which are
representative for, among others, aircraft aileron-to-roll dynamics – are approximatelyKc/s
around crossover if1/T > ωc. However, the second-order dynamics at frequencies above
1/T may still require pilot lead compensation at frequencies above crossover, especially
if 1/T ≈ ωsp. Moreover, previous research has indicated that marked changes in pilot
dynamics at frequencies well above crossover occur due to variations in, for instance, ma-
nipulator feel-systems and dynamics [Johnston and Aponso,1988; Mitchell et al., 1992] and
the availability of physical motion feedback of the controlled element state [Nieuwenhuizen
et al., 2008; Zaal et al., 2009b; Pool et al., 2010]. This chapter investigates the equaliza-
tion model structure that is required for capturing pilot equalization dynamics over a wider
frequency range for such applications, focusing on pitch attitude tracking tasks with a con-
trolled element that is representative for conventional aircraft elevator-to-pitch dynamics, as
for instance considered in [Zaal et al., 2009b] and [Pool et al., 2010].

2.2.2 Control Task

Fig. 2.2 shows a schematic representation of the compensatory pitch attitude control task
that is considered in the present study. The tracking errore is presented to the pilot using the
compensatory visual display shown in Fig. 2.3. Tracking errors, and thereby pilot control
action, are induced using the target and disturbance forcing function signals,ft and fd,
respectively.

If the pitch motion of the controlled elementHθ,δe is presented through physical mo-
tion cues in addition to the visually perceived tracking error, an additional feedback path
is present that provides the pilot with explicit information on the controlled pitch attitude,
θ. Pilots’ responses to perceived visual tracking errors andphysical pitch motion are indi-
cated in Fig. 2.2 by the response functionsHpv

(jω) andHpm
(jω), respectively. The main

reason for using both a target and a disturbance forcing function signal in the pitch control
tasks studied in this chapter is that this yields a combined target-following and disturbance-
rejection task for which reliable separation and identification ofHpv

(jω) andHpm
(jω) is

possible [Stapleford et al., 1969].

Hθ,δe(jω)
ft u

−

e θ

fd

θ

n

Hpv(jω)

Hpm(jω)

δe

−
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Kδe,u
+ +

+
+

+

visual response

motion response

Figure 2.2. Compensatory pitch attitude control task. Note that the pilot
motion response is only present if physical motion cues are supplied.

e

Figure 2.3. Compen-
satory display.

Fig. 2.2 differs from the single-loop tracking tasks considered by McRuer et al. [1965]
(as can be verified from comparison with Fig. 2.1) by the presence of physical motion feed-
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back – and the corresponding pilot motion responseHpm
(jω) – and the disturbance signal

fd. Note, however, that if no motion feedback is available (Hpm
(jω) = 0) the tracking

errors introduced by the target and disturbance signals – which are typically both signals
with a low-pass characteristic – are indistinguishable from a compensatory display [Pool
et al., 2008a]. Therefore, despite the additional disturbance signal, direct comparison with
the results of McRuer et al. is still possible for the controltask shown in Fig. 2.2 if no
physical motion feedback is available.

θ

Hpv
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e

sensor

dynamics
equalization limitations
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−
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Figure 2.4. Multimodal pilot model.

2.2.3 Multimodal Pilot Model

Pilot control behavior in compensatory tracking tasks can be modeled successfully using
quasi-linear pilot models [McRuer et al., 1965; McRuer and Jex, 1967a], as those indicated
in Figures 2.1 and 2.2. Such models typically consist of a linear part that describes pilot
responses to all relevant perceived variables, and a remnant signaln that accounts for all
otherwise unmodeled nonlinearities. As for instance summarized in [Grant and Schroeder,
2010], many different model structures have been derived inpast studies to represent the
linear pilot’s responses to perceived visual errorsHpv

(jω), perceived physical motion feed-
backHpm

(jω), or the combination of both. Examples are thecrossover model, extended
crossover modelandprecision modelthat were introduced in Section 2.2.1, themulti chan-
nel model[Van der Vaart, 1992], thedescriptive model[Hosman and Stassen, 1999], and
thestructural model[Hess, 1990b].

Fig. 2.4 depicts the multimodal pilot model adopted in the present study. The visual
channel of the pilot model is based on theprecision model[McRuer et al., 1965] and there-
fore largely equivalent to Eq. (2.3), where the low-frequency lag-lead term has been omitted.
Similar to thee−jω/α term added to theextended crossover modelin [McRuer et al., 1965],
the low-frequency lag-lead term in Eq. (2.3) is included to match pilot describing function
measurements at the lowest frequencies in the measurement band (phase droop). For an
unstable first-order controlled element, McRuer et al. [1965] propose that the parameters
of this low-frequency lag-lead are equal toTK = 3.33 s andT ′

K = 20 s independent of
the forcing function bandwidth, yielding only negligible effects at frequencies higher than
the inverse lead time constant1/TK , that is, 0.3 rad/s. As the additional lag-lead term in
Eq. (2.3) was intended to capture such very low frequency phase lags and the measurement
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bandwidth of the experiment considered in this study rangesfrom 0.38 to 17.56 rad/s (see
Section 2.3.1), this low-frequency lag-lead term is not considered in this study.

For the pilot model defined in Fig. 2.4, the lead-lag equalization term of Eq. (2.3) has
been replaced by the generic frequency response functionHeq(jω), and the third-order
neuromuscular term has been replaced byHnm(jω). The characteristics ofHeq(jω) as
considered in this study will be described in detail in Section 2.2.5. The neuromuscular
term in theprecision modelproposed by McRuer et al. [1965] consists of a second-order
mass-spring-damper model combined with an additional first-order lag, as can be verified
from Eq. (2.3). The neuromuscular system modelHnm(jω) adopted here only considers
the second-order term of Eq. (2.3), yielding the following model with two parameters, the
natural frequencyωnm and damping ratioζnm:

Hnm(jω) =
1

(
jω

ωnm

)2

+ 2ζnm

ωnm
jω + 1

(2.4)

Previous investigations have indicated that this model of the neuromuscular system dy-
namics typically suffices for approximating the neuromuscular dynamics measured in the
frequency range that is considered for similar tracking tasks [Johnston and Aponso, 1988;
Zaal et al., 2009b,a; Damveld et al., 2009; Pool et al., 2010].

The additional parallel motion channel of the pilot model,Hpm
(jω), incorporates the

pilot’s response to his vestibular motion sensation as proposed by Van der Vaart [1992]
and Hosman and Stassen [1999] in theirmulti channel modelanddescriptive model, re-
spectively. The dynamics of the semicircular canals (SCC),the vestibular sensors that are
sensitive to angular motion, are defined byHsc(jω), which is given by:

Hsc(jω) =
0.11jω + 1

(5.9jω + 1)(0.005jω + 1)
(2.5)

The form of Eq. (2.5), which relates angular accelerations applied to the SCC (in rad/s2)
to afferent neuron firing rate (in impulses per second, ips),has been determined from sinu-
soidal stimulation of the vestibular organs of squirrel monkeys by Fernandez and Goldberg
[1971]. The parameters of the semicircular canal model of Eq. (2.5) as used here have been
adapted from those found by Fernandez and Goldberg using experimental measurements of
human motion perception thresholds [Hosman and Van der Vaart, 1978]. Note that despite
the possible presence of differences in SCC dynamics over different individuals, here the
model of Eq. (2.5) is applied to the data from different experiment participants. This same
approach was taken in a number of previous investigations into multimodal pilot control be-
havior [Van der Vaart, 1992; Hosman and Stassen, 1999; Zaal et al., 2009b,a; Damveld et al.,
2009; Pool et al., 2010], where this assumption was found to result in only modest modeling
errors. Note that in the frequency range of interest to manual vehicle control, the output of
the SCC model of Eq. (2.5) is proportional to angular rate foran angular acceleration input
[Fernandez and Goldberg, 1971].
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2.2.4 Controlled Dynamics

In this chapter, data from two sets of experiments are compared. Both experiments evalu-
ated the effect of motion feedback in a pitch attitude tracking task as depicted by Fig. 2.2.
The first experiment evaluated the effects of pitch and heavemotion cues on pilot control
behavior in a pitch control task [Zaal et al., 2009b]. The controlled dynamics,Hθ,δe(jω),
in this experiment were the reduced-order linearized pitchdynamics of a Cessna Citation I
Ce 500 business jet aircraft, in cruise in the standard atmosphere at an altitude of 10,000 ft
and at an airspeed of 160 kt, as given by:

Hθ,δe(jω) = Kθ,δe

Tθ2jω + 1

jω

((
jω
ωsp

)2

+
2ζsp
ωsp

jω + 1

)

= 1.38
1.01s+ 1

jω (0.13(jω)2 + 0.36jω + 1)

(2.6)

Note that Eq. (2.6) is a typical fixed-airspeed approximation of aircraft pitch attitude
dynamics [Bryan, 1911], as for instance considered in many studies into longitudinal air-
craft handling qualities [McRuer et al., 1960; Ashkenas andMcRuer, 1962; Hall, 1963].
Furthermore, note that the units of the in- and output signals of Eq. (2.6) –δe andθ, re-
spectively – are both deg. The Bode frequency response of theaircraft pitch dynamics is
depicted in Fig. 2.5. Note that in the frequency range of interest, the aircraft dynamics de-
fined by Eq. (2.6) are characterized by a lead term (Tθ2jω+1) and the periodic short-period
eigenmode. The short-period mode of this specific aircraft in the given configuration has a
natural frequencyωsp and damping ratioζsp of 2.76 rad/s and0.50, respectively. As can
be verified from Eq. (2.6), the corresponding value ofTθ2 is 1.01 s. Note the significant
magnitude peak and phase lead around the short-period frequency in Fig. 2.5. Furthermore,
observe that due to the values ofTθ2 andωsp both features of Eq. (2.6) affect the dynamics
in the frequency range where the pilot-vehicle system crossover frequency is expected to be
for compensatory tracking tasks, that is,2.5− 5 rad/s [McRuer et al., 1965].

Previous experiments that investigated pilot manual control of aircraft pitch dynamics
[Zaal et al., 2009b; Damveld, 2009; Pool et al., 2010] indicated that a pilot equalization
model as defined in Eq. (2.3) is not sufficient for describing the measured pilot control
behavior. To support a comparison of these findings with the results described by McRuer
et al. [1965], the same pitch tracking task described in [Zaal et al., 2009b] was repeated in
a later experiment with double integrator dynamics:

Hθ,δe(jω) =
Kθ,δeω

2
spTθ2

(jω)2
=

10.62

(jω)2
(2.7)

The frequency response of the system given by Eq. (2.7) is depicted in Fig. 2.5 in
gray. Note that the gain for this double integrator system was chosen to have its fre-
quency response coincide with the high-frequency magnitude of the Citation pitch dynam-
ics, Eq. (2.6). Furthermore, note from Fig. 2.5(b) that the aircraft pitch dynamics given by
Eq. (2.6) are stable, while those of the double integrator are not. For this reason, control of
double integrator dynamics requires more stabilizing leadequalization by the pilot, thereby
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Figure 2.5. Controlled dynamics frequency responses.

making such controlled elements markedly more difficult to control [Shirley and Young,
1968].

2.2.5 Pilot Equalization

The main focus of the current chapter is on the model structure for the pilot equalization
termHeq(jω) (see Fig. 2.4) required for modeling pilot dynamics during control of a system
Hθ,δe(jω) with dynamics given by Eq. (2.6) over a wide frequency range.The theory
of manual vehicle control as compiled by McRuer et al. [McRuer et al., 1965; McRuer
and Jex, 1967a; McRuer, 1988] states that pilots adapt theirequalization dynamics around
crossover to the controlled element dynamics to yield a pilot-vehicle system that has the
properties close to those of a single integrator system around the crossover frequency. For
double integrator systems as defined by Eq. (2.7), it has beenshown in literature that pilot
equalization takes the form of a pure lead in order to achievethese open-loop characteristics
[McRuer et al., 1965].

For an expected range ofωc between2.5 and5 rad/s as proposed in [McRuer et al.,
1965], to achieve a pilot-vehicle system with approximate single integrator characteristics
around crossover for control of dynamics as given by Eq. (2.6), pilots would need to generate
lag at a frequency close to1/Tθ2 to compensate for the gain-like dynamics introduced by the
lead term of the aircraft dynamics, as indicated in Fig. 2.6.In addition, due to the value of
ωsp = 2.76 rad/s for the considered controlled element, it is also likely that lead equalization
will be adopted to compensate for the second-order dynamicsbeyond the short-period mode
natural frequency. Note from Fig. 2.6 that equalization dynamicsHeq(jω) that include both
pilot lag at low frequencies and pilot lead at high frequencies would yield a combined pilot-
vehicle system,Heq(jω)Hθ,δe(jω), with approximately single integrator dynamics over the
full range of frequencies considered here.
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dynamics.

Fig. 2.6 shows the proposed pilot equalization dynamics forcontrol of a system with
dynamics described by Eq. (2.6). Eq. (2.3) defines the full equalization term of the pilot
model proposed by McRuer et al. [1965] for modeling pilot behavior for a wide frequency
range. Comparison of both equalization forms shows that themodel of Eq. (2.3) is not
capable of capturing the proposed equalization dynamics shown in Fig. 2.6. As can be
verified from Fig. 2.6, an additional lead term is required tomodel the combination of low-
frequency lag and high-frequency lead equalization inHeq(jω). As this high-frequency
lead equalization is expected for this controlled element,in addition to the low-frequency
lag compensation required for achieving approximately single integrator dynamics around
crossover, it is anticipated that the addition of a second lead term to the equalization term
Heq(jω) will allow for better modeling of the pilot equalization dynamics that are adopted
for such a controlled element.

To further investigate this, four equalization models are evaluated for describing pilot
control behavior in a pitch attitude tracking task in this study. These different forms of
Heq(jω) are listed in Table 2.1. Equalizations A and B represent purelead and lead-lag
equalization terms that have been frequently applied in literature. Equalizations C and D
both have an additional lead term, to allow for modeling of pilot equalization of the form
depicted in Fig. 2.6. The difference between these is that D allows for the additional lead
time constant,TL2

, to have a different value than the first, – and thereby adds anextra pa-
rameter to the pilot equalization modelHeq(jω) – while C assumes both lead time constants
to be equal. This additional independent lead time constantallows for more freedom in the
equalization model and can therefore allow for attaining a better fit than with equalization
C. However, due to fact that equalization D has two mathematically identical lead terms,
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it yields an overdetermined pilot model structure, which isa disadvantage from a model
identification view [Zaal et al., 2009a].

Table 2.1. Definition of equalization forms.

Symb. Form Equalization,Heq(jω)

A lead Kv(TLjω + 1)

B lead
lag

Kv
(TLjω + 1)

(TIjω + 1)

C lead2

lag
Kv

(TLjω + 1)2

(TIjω + 1)

D lead·lead
lag

Kv
(TL1

jω + 1)(TL2
jω + 1)

(TIjω + 1)

Pilot lead equalization captures the pilots’ response to visually perceived tracking error
rate. An additional lead term in the pilot model equalization model, as is proposed here
for equalizations C and D (see Table 2.1), therefore suggests modeling of pilots’ responses
to visually perceived accelerations. As for instance argued in [Hosman, 1996], however,
the human visual system is believed to be incapable of perceiving (and inferring) acceler-
ation. Note from Table 2.1 that for certain settings ofTI , TL, andTL1,2

– most notably if
TI ≪ TL1,2

– both equalizations C and D can yield pilot equalization dynamics propor-
tional to(jω)2 over a certain frequency range. As illustrated by Fig. 2.6, the effective pilot
equalization for control of dynamics as defined by Eq. (2.6) would never be more than a
single lead (rate perception), due to the fact that pilot lagis generated at a frequency that
is well below the frequency range where lead equalization isrequired, that is,TI > TL1,2

.
Care should, however, be taken in utilizing equalization C and D for modeling pilot con-
trol, as for certain combinations of the equalization parameters these proposed equalization
terms can yield pilot equalization dynamics that are unachievable for a human pilot.

2.3 Experiment

2.3.1 Forcing Functions

The pitch tracking task considered in the experiments described in this chapter (see Fig. 2.2)
was defined to be a disturbance-rejection task, where the disturbance of the pitch attitude
was induced by the disturbance signalfd. An additional target signalft with reduced sig-
nal power (25% of the power offd) was inserted as well, this to facilitate multimodal pilot
model identification[Stapleford et al., 1969; Jex et al., 1978; Zaal et al., 2009a]. As in the ex-
periments described by McRuer et al. [1965], the forcing function signals were constructed
as sums of ten sinusoids:
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fd,t(t) =

Nd,t∑

k=1

Ad,t(k) sin [ωd,t(k)t+ φd,t(k)] (2.8)

Experimental measurement runs had a length of 110 seconds, of which only the final
81.92 seconds were used as the measurement data. Removal of the run-in time from the
measurement runs ensured stationary measurements of pilottracking, as initial transient and
stabilization effects were no longer present after 10 seconds of tracking. The sinusoid fre-
quencies,ωt andωd, were distributed more or less evenly spaced on a logarithmic scale over
the frequency range of 0.3 to 18 rad/s. The frequencies were defined as integer multiples
of the experimental measurement time base frequency –ωm = 2π/Tm, with Tm = 81.92
seconds – to allow for pilot model identification using spectral methods [Stapleford et al.,
1969].

The frequency, amplitude, and phase distributions (ωd,t(k), Ad,t(k), andφd,t(k)) were
the same as those used in a previous experiment [Zaal et al., 2009b]. The frequencies,
amplitudes, and phases of the target and disturbance signals are summarized in Table 2.2.
The amplitude distributions offt andfd are depicted in Fig. 2.7(a); Fig. 2.7(b) shows a
part of the time traces of both forcing function signals. Note from Fig. 2.7(b) thatfd yields
maximum pitch attitude excursions of no more than 3 degrees.

Table 2.2. Experiment forcing function properties.

disturbance,fd target,ft

k nd ωd Ad φd nt ωt At φt
− − rad/s deg rad − rad/s deg rad

1 5 0.383 1.343 1.530 6 0.460 0.698 1.288
2 11 0.844 1.016 5.967 13 0.997 0.488 6.089
3 23 1.764 0.506 1.000 27 2.071 0.220 5.507
4 37 2.838 0.258 6.117 41 3.145 0.119 1.734
5 51 3.912 0.157 6.145 53 4.065 0.080 2.019
6 71 5.446 0.095 2.692 73 5.599 0.049 0.441
7 101 7.747 0.060 1.895 103 7.900 0.031 5.175
8 137 10.508 0.043 3.153 139 10.661 0.023 3.415
9 171 13.116 0.036 3.570 194 14.880 0.018 1.066

10 226 17.334 0.030 3.590 229 17.564 0.016 3.479

2.3.2 Apparatus

The experiments were performed in the SIMONA Research Simulator (SRS) at Delft Uni-
versity of Technology, see Fig. 2.8. The SRS motion system was used to present the subjects
with rotational pitch motion cues during specific conditions of both experiments. The ver-
tical motion cues that are typically coupled to conventional aircraft pitch rotations [Zaal
et al., 2009b] were not presented. The pitch motion of the simulator was driven directly by
the pitch motion of the simulated controlled element, that is, no motion filter was applied.
The time delay associated with the motion cues generated by the SRS motion base is30 ms
[Berkouwer et al., 2005].
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Figure 2.8. The SIMONA Research Simulator.
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The pitch tracking error the participants were to minimize during the tracking tasks was
presented on the primary flight display (PFD) in the SRS cockpit. As depicted in Fig. 2.3,
the instantaneous value of the tracking errore was depicted as the vertical displacement
of a moving horizontal line with respect to a fixed aircraft symbol, which was centered on
the display. The update rate of the PFD was60 Hz and the time delay associated with the
generation of visual images on the SRS cockpit displays has been determined to be20− 25
ms [Stroosma et al., 2007].

In both experiments, subjects controlled the pitch dynamics with a sidestick with elec-
trical control loading. The sidestick had no break-out force and a maximum deflection of
14 deg. The stiffness of the stick was set to1.1 N/deg for stick deflections under9 deg
and to2.6 N/deg for larger stick excursions. The stick roll axis, which was not used during
the experiment, was kept fixed at the zero position. A selectable gain – indicated with the
symbolKδe,u in Fig. 2.2 – controlled the scaling between the sidestick deflection u and
the elevator input to the controlled dynamics,δe. To give optimal control authority for both
types of controlled dynamics, this gain was set to−0.2865 or−0.4011 for the Citation pitch
and double integrator controlled elements, respectively.

2.3.3 Conditions, Participants and Experimental Procedure

Data from four different experimental conditions are evaluated in this chapter. As indicated
in Table 2.3, the modeling of pilot control behavior will be compared for the aircraft pitch
dynamics Eq. (2.6) and the double integrator dynamics Eq. (2.7) depicted in Fig. 2.5. For
direct comparison with the results described by McRuer et al. [1965] and evaluation of the
interpretation of observed effects of physical motion feedback on the adopted pilot dynam-
ics, the control task is performed both with and without additional pitch motion feedback.

Table 2.3. Experimental conditions.

no motion motion

aircraft dynamics, Eq. (2.6) C1 C2
double integrator dynamics, Eq. (2.7) C3 C4

Five subjects performed the four experimental conditions listed in Table 2.3. All partic-
ipants were students or staff of the Faculty of Aerospace Engineering. Two subjects were
pilots and all had extensive experience with similar manualcontrol tasks from previous
human-in-the-loop experiments.

Participants were instructed to minimize the pitch tracking error, that is, the signal that
was presented on the visual display. Five repetitions of each experimental condition per sub-
ject were performed to collect the measurement data. Beforecollecting the measurements,
all subjects performed a considerable number of training runs, until their proficiency in per-
forming the tracking task had stabilized at a constant levelof tracking performance. After
each run subjects were informed of their tracking score – defined as the root-mean-square of
the error signale – in order to motivate them to improve their tracking performance during
initial familiarization and to maintain a constant level ofperformance after their proficiency
had stabilized.
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2.3.4 Pilot Model Identification

The parameters of the multimodal pilot model depicted in Fig. 2.4 were estimated using a
time-domain maximum likelihood estimation (MLE) procedure [Zaal et al., 2009a] for all
experimental conditions listed in Table 2.3. As explained in detail by Zaal et al. [2009a],
this identification procedure yields more consistent parameter estimates than obtained by
frequency-domain methods based on Fourier coefficients (FC) or linear time-invariant mod-
els (ARX) [Nieuwenhuizen et al., 2008]. The free parametersin this estimation procedure
were the pilot perceptual time delays (τv andτm), the neuromuscular frequency and damp-
ing ratio (ωnm andζnm), the pilot motion gain (Km), and the parameters of the pilot visual
equalization transfer function (Kv, TI andTL – or TL1

andTL2
for equalization D). Note

that for conditions C1 and C3, where no motion cues were available to the participants, only
the model for the pilot visual responseHpv

(jω) (see Fig. 2.4) was fit to the data. For each
condition of every subject, the averaged time-domain data over the measurement interval
(see Section 2.3.1) of the five measurement runs were used as input to the estimation algo-
rithm, to remove part of the remnant present in these measured signals before estimating
the model parameters. The same MLE parameter estimation procedure for estimating pilot
model parameters has been used in [Beerens et al., 2009] to successfully replicate some of
the results of the experiments of [McRuer et al., 1965].

For all experimental conditions listed in Table 2.3 four different pilot models were fit to
each data set, corresponding to the pilot equalization structures listed in Table 2.1. Since the
modeling efforts in the original work of McRuer et al.[McRuer et al., 1965; McRuer and Jex,
1967a] were based on experiments without physical motion cues, the main comparison of
required pilot model equalization structures will be performed using the experimental con-
ditions without physical motion (C1 and C3). The accuracy ofthe pilot model identification
results for the different equalization structures is further evaluated using the model variance
accounted for (VAF) [Zaal et al., 2009a]. The VAF indicates the amount of variance in
the measured pilot control signal that is captured by the linear model fit and expresses it in
the form of a percentage (0−100%). An additional evaluation of the suitability of the dif-
ferent equalization structures will be performed for the conditions where the aircraft pitch
dynamics were controlled by comparing the identified lead and lag time constants for all
equalization structures with the known characteristic frequencies of the controlled element.
These results are then used to indicate which of the equalization forms listed in Table 2.1
are found to be most suitable for evaluation of the effects ofphysical motion feedback on
control behavior.

2.4 Results

2.4.1 Identified Equalization Dynamics

Figs. 2.9 and 2.10 depict the magnitude responses of the identified pilot equalization dy-
namicsHeq(jω), averaged over all subjects, for the no-motion conditions and control of
the double integrator and aircraft dynamics (conditions C3and C1), respectively. Note that
the pilot equalization frequency responses shown in Figs. 2.9 and 2.10 were obtained from
identification of the full visual response of the pilot modelof Fig. 2.4 using MLE, according
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Figure 2.9. Average estimated pilot model equalization frequency response functionsHeq(jω)
for control of double integrator dynamics (condition C3).

to the identification procedure detailed in Section 2.3.4. The four different graphs in each
figure show the identified frequency responses of the four forms ofHeq(jω) listed in Ta-
ble 2.1. Vertical dashed black lines indicate the frequencies that correspond to the average
estimated equalization lag and lead time constants, whose numerical values are also given in
each figure. The frequency responses of the controlled element dynamicsHθ,δe(jω), which
were calculated from Equations (2.6) and (2.7), are depicted in gray for reference.

For control of double integrator dynamics it is well-known that pilots generate lead, typ-
ically starting from frequencies well below the pilot-vehicle system crossover frequency to
achieve single integrator dynamics in the crossover region[McRuer et al., 1965]. McRuer
et al. [1965] reported pure lead equalization with a value ofTL of 5 sec for single-loop dou-
ble integrator control. Other investigations have reported visual lead time constants between
1 and3 sec, depending on the bandwidth of the applied forcing function signals [Van der
Vaart, 1992; Beerens et al., 2009; Zollner et al., 2010]. Fig. 2.9 shows that the equalization
dynamics found for a double integrator controlled element in this experiment compare well
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Figure 2.10. Average estimated pilot model equalization frequencyresponse functionsHeq(jω)
for control of aircraft dynamics (condition C1).

with these previous findings, since all pilot equalization forms yield a frequency response
of Heq(jω) that is approximately a single lead with a lead time constantof around1 sec.

Note that the parameters of the more extensive forms ofHeq(jω) (B–D) are estimated to
yield an overall response equivalent to that of the pure leadequalization, A. For equalization
B this is achieved by setting the value ofTI to approximately zero, thereby yielding only a
minor effect of the additional lag term at very high frequencies. For the equalization struc-
tures with additional lead terms (C and D), the same effective reduction toKv(TLjω+1) is
obtained by either canceling the effect of the additional lead term by settingTI ≈ TL (C) or
by settingTI andTL2

to values outside of the frequency range of interest (D). As the added
complexity of equalization forms B-D is not found to yield differences in the estimated pilot
equalization dynamics, Fig. 2.9 therefore suggests that, apure lead equalization term (A)
is sufficient for modelingHeq(jω) for control of double integrator dynamics over a wide
frequency range, as also found for pilot behavior in the crossover region by McRuer et al.
[1965].
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As explained in Section 2.2.5, equalization forms C and D allow for capturing the low-
frequency lag and high-frequency lead equalization that isrequired for modeling pilot equal-
ization dynamics if compensation for the aircraft pitch dynamics given by Eq. (2.6) is per-
formed over a wide frequency range. As can be verified from Fig. 2.10, the estimates of
Heq(jω) obtained using both these equalization forms indeed show pilot lag starting from
0.7 rad/s and pilot lead compensation starting from around2− 3 rad/s. AsTI > TL1,2

, the
resulting pilot equalization dynamics captured with equalizations C and D indeed never pro-
vide more than a first order lead (rate perception), as pointed out as an important condition
for application of these equalization forms in Section 2.2.5. Note from Fig. 2.10(d) that for
equalization D the average identified dynamics ofHeq(jω) are similar to the fit obtained for
equalization C (Fig. 2.10(c)), even though the average values ofTL1

andTL2
were found

to differ considerably. It should be noted that the average difference in the identified values
for both lead time constants mainly results from the data from one participant. For the data
from all other participants only very small differences between the values ofTL1

andTL2

were observed: on average the difference between both identified lead time constants of
equalization D for these four participants was0.05 sec.

As can be verified from Figures 2.10(a) and (b), equalizations A and B are found to
provide a fit of the equalization dynamics that is different from the results obtained with
equalizations C and D. Equalization A is found to capture only high-frequency pilot lead
compensation, which only affects frequencies that are wellabove crossover, thereby yield-
ing pure gain equalization dynamics in the crossover region. The lead-lag equalization
model (B) captures only the adopted low-frequency lag equalization.

2.4.2 Comparison with Measured Pilot Describing Functions

In addition to estimating the parameters of the pilot model using MLE, pilot describing
functions were calculated with the Fourier coefficients method [Stapleford et al., 1969].
This nonparametric identification method allows for analytical calculation of pilot describ-
ing functions in the frequency domain and does therefore notrequire selection of an ap-
propriate pilot model structure. FC describing function estimates are used here as a second
independent measurement of the adopted pilot dynamics, to validate the pilot model fits
obtained for the different equalization forms with MLE, as presented in Figures 2.9 and
2.10.

Figures 2.11 and 2.12 show the average pilot visual responsefunctions for conditions
C3 and C1, respectively, obtained from the identification ofthe pilot model of Fig. 2.4
using MLE. In both figures, only the estimated equalizationsA-C are shown, as the model
fits obtained for C and D are found to be similar for both controlled elements, see Figures
2.9 and 2.10. In addition to these identified pilot model frequency responses, the averaged
FC estimates of the corresponding pilot describing functions are provided in Figures 2.11
and 2.12 for reference. Finally, also the average pilot-vehicle system crossover frequencies
determined for both controlled elements using the describing function measurements are
depicted as vertical solid lines. Note that these average crossover frequencies were found to
be2.93 rad/s and3.36 rad/s for conditions C3 and C1, respectively, which is consistent with
the measurements from [McRuer and Jex, 1967a], where crossover frequencies of around3
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rad/s are reported for double integrator control and highervalues for more stable controlled
elements.

For the double integrator controlled element, Fig. 2.11 shows that the pure lead equal-
ization dynamics that resulted from identification of the different equalization models as
depicted in Fig. 2.9 yield a pilot model that corresponds well with the calculated frequency-
domain pilot describing function. Note from Fig. 2.11 that the measured pilot dynamics
indeed show lead equalization that extends to frequencies well aboveωc. As no apparent
discrepancies with the describing function are observed over the full range of measurement
frequencies, this indicates that a pure lead equalization term is sufficient for capturing pilot
dynamics during control of double integrator dynamics overa wide frequency range.

As shown in Fig. 2.12(a), the magnitude response of the average FC describing function
estimate found for control of the aircraft pitch dynamics ofEq. (2.6) has a shape that is
consistent with the hypothetical pilot equalization depicted in Fig. 2.6. It shows decreasing
magnitudes ofHpv

(jω) at low frequencies, suggesting pilot lag equalization in that fre-
quency range. The describing function phase response shownin Fig. 2.12(b) also shows
around20 deg of pilot phase lag at low frequencies. The describing function further shows
a high-frequency pilot response that is similar to that observed for the double integrator
controlled element in Fig. 2.11 and indicates pilot lead compensation that is seen start from
frequencies around, or even just below, the crossover frequency.

As can be observed in Fig. 2.12, the lead-lag equalization (B, see Table 2.1) provides
an acceptable fit of the low frequency phase lag. As this equalization form does not allow
for the modeling of high-frequency lead in addition to the lag at low frequencies (see also
Fig. 2.10(b)), a degradation in model fit is observed for the higher frequencies. This yields
a model fit in which the lack of high-frequency lead is partly compensated for by selecting a
very low value for the neuromuscular damping rationζnm, as evident from the sharp phase
drop of visible for equalization B at10 rad/s in Fig. 2.12(b). The pilot equalization with only
a lead term (A) is able to capture the high-frequency magnitude response (Fig. 2.12(a)) with
reasonable accuracy. A significant deviation from the estimated describing function can,
however, be observed in the gain and phase responses below crossover (Fig. 2.12(a) and (b),
respectively). Equalization C, with its additional lead term, is able to capture both the low-
frequency lag and high-frequency lead compensation observed in the Fourier coefficients
estimate ofHpv

(jω) and provides a model fit over the entire range of measured frequencies
that shows the least deviations from the average describingfunction.

As a further verification of this observation, Fig. 2.13 depicts the same data shown in
Fig. 2.12 for condition C1 for the aircraft pitch dynamics tracking tasks performed with
physical pitch motion feedback (C2). Fig. 2.13 shows the describing function estimates of
both the pilot visual and motion responses, in addition to the frequency responses of the
visual and motion channels of the multimodal pilot model depicted in Fig. 2.4. Again the
average identified model frequency responses for equalizations A-C are depicted. Note from
Figures 2.13(c) and (d) that only minor differences in the estimated pilot motion responses
Hpm

(jω) occur for the different equalization forms. Fig. 2.13, however, shows the same
differences in the success with which the different equalization forms are able to capture
the adopted pilot dynamics for the pilot visual channelHpv

(jω) as visible in Fig. 2.12.
Despite the fact that the estimated responses to motion feedback are hardly affected by
the equalization form selected forHpv

(jω) for the data presented here, this choice still
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Figure 2.11. Mean pilot model frequency responses estimated withdifferent equalization set-
tings for double integrator dynamics (five subjects, condition C3).
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tings for aircraft pitch dynamics (five subjects, condition C1).
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influences the interpretation of the effects of physical motion feedback on pilot behavior, as
will be further discussed in Section 2.4.4.

2.4.3 Variance Accounted For Evaluation

Figures 2.12-2.13 showed differences in the accuracy with which the different equalization
forms listed in Table 2.1 allowed for in matching frequency-domain pilot describing func-
tion estimates. In this section, the accuracy with which pilot dynamics can be modeled over
the full measurement bandwidth will be evaluated further inthe time domain by consider-
ing the pilot model VAF for the different equalization models. Fig. 2.14 depicts the mean
pilot model VAF obtained for the two different controlled elements and the four evaluated
pilot equalization models. The VAF values for the fits of onlyHpv

(jω) to data from the
no-motion conditions C1 and C3 are shown in Fig. 2.14(a), while Fig. 2.14(b) presents the
VAF of the full pilot model of Fig. 2.4 with the different forms ofHeq(jω) for conditions
C2 and C4. A one-way repeated measures Analysis of Variance (ANOVA) was performed
to investigate possible differences in the VAF values obtained for the different equalization
forms, where ap-value lower than0.05 was considered as a significant effect, while ap-
value between0.05 and0.1 was considered to indicate a marginally significant effect.The
data for condition C3 showed problems with sphericity, so for the data from that condition
the conservative Greenhouse-Geisser sphericity correction was applied [Field, 2005].

As expected from the results shown in Fig. 2.9, the differentequalization settings yield
approximately the same pilot model fit for the double integrator dynamics (conditions C3
and C4), with average VAFs of around 82% for the no-motion tasks and 88% for the
tasks with physical motion feedback. ANOVA results for these conditions indicate no
significant effect of the selected equalization from on the pilot model VAF for condition
C3 (F (1.05, 4.22) = 1.43, p > 0.05), while for C4 a significant effect was observed:
F (3, 12) = 3.85, p < 0.05. Using post-hoc tests (pairwise comparisons), for which the
Bonferroni adjustment for multiple comparisons was applied [Field, 2005], this latter sig-
nificant effect was found to result from the slightly lower VAF values found for the lag-lead
equalization (B), see Fig. 2.14(b). Fig. 2.14 thereby confirms the observation made from
the results presented in Fig. 2.9, that is, that for modelingdouble integrator control behavior
over the full measurement bandwidth the addition of extra lead and lag terms to the pure
lead equalization form A does not improve the quality of pilot model fit.

For the aircraft dynamics, Fig. 2.14 shows that the achievedVAF is on average found to
be 2−5% higher for equalizations C and D. This increase in VAF is comparable for both the
data from the no-motion and motion conditions (C1 and C2), asexpected from the compar-
ison with measured describing functions shown in Figures 2.12 and 2.13. The variation in
VAF with the selected equalization form is found to be highlysignificant:F (3, 12) = 6.83,
p < 0.05 andF (3, 12) = 18.52, p < 0.05 for conditions C1 and C2, respectively. Post-hoc
analysis showed that for both the no-motion and motion data,the most significant pairwise
comparisons were those between the VAF values of equalizations A-B and C-D. Further-
more, compared to equalization C, the additional freedom inthe equalization model pro-
vided by the two separate lead time constants in equalization D (see Table 2.1) was not
found to yield significantly more accurate modeling of pilotbehavior for control of the con-
sidered aircraft pitch dynamics for both condition C1 and C2. Fig. 2.14 even shows a minor
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Figure 2.14. Mean pilot model VAF for different equalization settings (five subjects, motion and
no motion).

reduction in model VAF if equalization D is used. This indicates the second independent
lead term is unneeded for modeling pilot behavior for the considered aircraft pitch dynamics
and even negatively affects the quality of the obtained pilot model identification results, as
suggested in Section 2.2.5.

Based on the results shown in Figs. 2.9 to 2.14 it can be concluded that equalization
forms A and C yield the most concise pilot models that are capable of representing the
adopted pilot dynamics over the complete measurement rangefor control of double integra-
tor and the aircraft pitch dynamics considered in this study, respectively.

2.4.4 Effects of Physical Motion Feedback on Pilot Equalization

Other experiments that investigated the effects of physical motion feedback on pilot tracking
behavior revealed considerable changes in pilot behavior,especially in pilots’ responses to
visually presented tracking errors (Hpv

(jω), see Fig. 2.4) at the higher frequencies in the
measurement bandwidth [Nieuwenhuizen et al., 2008; Zaal etal., 2009b; Pool et al., 2010].
In addition to the adaptation of the neuromuscular actuation dynamics as reported in [Zaal
et al., 2009b] and [Pool et al., 2010], the most defining effect of physical motion feedback
on compensatory tracking behavior that is typically observed is a decrease in visual lead
equalization, which is allowed for due to the additional lead compensation that is available
from the vestibular responseHpm

(jω), see Fig. 2.13. The human vestibular system – that
is, the SCC for rotational motion as considered here, see Section 2.2.3 – provides a much
more efficient way of providing lead information than can be obtained from visual lead
equalization, due to the smaller time delay associated withvestibular perception compared
to visual lead perception [Hosman and Stassen, 1999].

The results presented in Sections 2.4.1 to 2.4.3 showed thatfor modeling pilot control
behavior over the full measurement bandwidth for the typical aircraft pitch dynamics given
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by Eq. (2.6), the use of equalization C as the pilot equalization dynamicsHeq(jω) yielded
the best modeling results, as indicated by higher VAF valuesand better correlation with
measured pilot describing functions. For modeling controlof double integrator dynam-
ics, no additions to the pure lead equalization term, proposed by McRuer et al. [1965] for
modeling equalization around crossover, were found to be required when considering pilot
equalization over a wider frequency range. The average parameters of the multimodal pilot
model defined in Fig. 2.4 that were estimated for all four experimental conditions, using
these two settings for the equalization termHeq(jω), are summarized in Table 2.4.

Table 2.4. Average pilot model parameters for each condition.

Cond. Heq(jω)
Kv TL TI Km τv τm ωnm ζnm

− s s deg/ips s s rad/s −

C1 C 4.07 0.44 1.32 − 0.21 − 10.50 0.14
C2 C 5.65 0.32 0.90 3.79 0.26 0.19 12.74 0.18
C3 A 0.62 0.98 − − 0.23 − 10.41 0.14
C4 A 1.44 0.38 − 3.55 0.28 0.17 12.78 0.18

The average pilot model identification results presented inTable 2.4 show nearly iden-
tical values for the parameters of the neuromuscular actuation model given by Eq. (2.4)
for both controlled elements, both for the conditions without and with motion feedback
(C1 and C3, and C2 and C4, respectively). These results suggest similar adaptation of the
high-frequency neuromuscular actuation dynamics when motion feedback is made avail-
able across different controlled elements. In addition, the parameters of the pilot motion
responseHpm

(jω) – the pilot motion gainKm and the motion delayτm – and the0.05 sec
increase inτv observed for the conditions with motion feedback are also found to be largely
invariant for the two considered controlled elements.

Of special interest to the application of pilot modeling considered in this chapter are
the observed changes in the identified pilot equalization parameters. For the double inte-
grator controlled element, for which equalization form A (pure lead) was adopted, these
equalization parameters are the visual gainKv and the visual lead time constantTL. As
can be verified from Table 2.4, the effect of physical motion feedback on these equalization
parameters consists of a decrease inTL from 0.98 sec for condition C3 to0.38 sec for con-
dition C4 – that is, a decrease of nearly 40% – which is allowedfor by the alternative lead
compensation available from the SCC. Furthermore, the presence of physical motion feed-
back is found to yield a large increase in the value of the pilot visual gain, which indicates
pilots were able to respond to visually presented tracking errors with a much higher gain for
condition C4. These results of physical motion feedback on pilot dynamics during control
of double integrator systems are consistent with previous research [Hosman and Stassen,
1999; Van der Vaart, 1992].

To illustrate the importance of the proposed pilot equalization term extension for the
interpretation of such changes in pilot equalization dynamics due to the presence of physical
motion feedback for the considered aircraft pitch dynamics, Fig. 2.15 depicts the average
values ofTI andTL that were identified using equalizations A, B, and C for conditions C1
and C2. Furthermore, these identified parameter values are compared to the corresponding
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characteristic time constants of the controlled aircraft pitch dynamics. As suggested by
McRuer et al. [McRuer et al., 1965; McRuer and Jex, 1967a], the amount of visual lag and
lead equalization adopted during tracking is related to thecharacteristics of the controlled
element. For the aircraft pitch dynamics of the form given byEq. (2.6), these characteristics
are defined by the values of the aircraft dynamics lead time constantTθ2 and the inverse
short-period frequency1/ωsp, respectively. Note that as equalization A does not have a lag
term, no data for this equalization is shown in Fig. 2.15(a).The variance bars in Fig. 2.15
depict the 95% confidence intervals of the mean identified parameters.
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Figure 2.15. Pilot lag and lead constants compared to aircraft dynamics characteristic frequen-
cies (conditions C1 and C2, equalization A-C).

In line with the differences observed in the average pilot model frequency responses
depicted in Figures 2.12 and 2.13, Fig. 2.15 shows that considerable differences in the iden-
tified values ofTI andTL are found when attempting to capture the full bandwidth pilot
dynamics with equalizations A-C. Equalization A shows comparatively low values ofTL
due to the fact that only high-frequency lead is captured by this equalization model, while
the low-frequency lag compensation visible in the measureddescribing functions is not ac-
counted for. The results for equalization B show very high valuesTI andTL, and also more
spread in the obtained identification results than observedfor the other equalization forms.
Note that for condition C1 the pilot lead time constants identified with equalization B are
found to be even higher on average than those observed for thedouble integrator controlled
element for condition C3, see Table 2.4. Fig. 2.15 shows thatfor equalization C the identi-
fied pilot lag and lead time constants are found to be closest to the values of the characteristic
time constants ofHθ,δe(jω), as would be expected for compensation of the controlled ele-
ment dynamics [McRuer et al., 1965; McRuer and Jex, 1967a]. Fig. 2.15(a) shows that for
both conditions C1 and C2TI is found to be aroundTθ2 . In addition, the identified values
for the pilot lead constant shown in Fig. 2.15(b) indicate a strong correlation betweenTL
and1/ωsp.
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In addition, as visible from the matches of identified pilot models with the measured
describing functions depicted in Figures 2.12 and 2.13, theidentified results for equaliza-
tion C shown in Fig. 2.15 also allow for quantitative evaluation of changes in the adopted
equalization over a wide frequency range. As can be verified from Table 2.4, the values of
TL estimated for condition C1 are found to be slightly higher than 1/ωsp, implying pilot
lead is on average generated starting at slightly lower frequencies than required for exact
compensation of the aircraft dynamics. For condition C2,TL is found to be belowωsp

and around 27% lower than the lead time constants found for condition C1. As expected
based on the overview of the magnitude of effects of physicalmotion feedback given in
[Shirley and Young, 1968], the decrease in visual lead equalization observed for the aircraft
pitch dynamics is smaller than that observed for the double integrator controlled element.
A more modest increase in pilot gain (see Table 2.4), a 38% increase compared to the more
than doubling ofKv observed for the double integrator system, further confirmsthis re-
duced effect of physical motion feedback for this controlled element. The results shown in
Fig. 2.15 indicate that equalization C yields pilot model identification results that allow for
valid quantification and the most intuitive interpretationof changes in pilot control behavior
over a wide frequency range for the considered aircraft pitch dynamics.

2.5 Discussion

The study described in this chapter emphasizes the value of the quasi-linear models intro-
duced by McRuer et al. [1965] for describing and analyzing pilot control behavior during
compensatory tracking, not only in the frequency range around the pilot-vehicle system
crossover frequency, but also for the full range of frequencies over which pilot dynamics
are of interest. Many studies have shown that these models are capable of modeling manual
control behavior during tracking tasks with pure gain, single integrator, double integrator,
or more complex controlled elements representative for different types of vehicle systems
[McRuer and Jex, 1967a; McRuer, 1988; Grant and Schroeder, 2010]. In addition, pilot
model estimation results from the current study confirm thatthe lead-lag pilot equalization
term included in this model suffices for describing the pilotequalization that is adopted over
a wide frequency range during control of double integrator dynamics.

However, for a controlled element that is representative for conventional aircraft elevator-
to-pitch dynamics, measured pilot describing functions indicate that the pilot equalization
term included in theprecision modeldescribed in [McRuer et al., 1965] does not allow for
modeling of the adopted equalization dynamics over a frequency range that extends beyond
the crossover region. Describing function measurements show that pilots compensate for
the dynamics of this controlled element around the short-period mode natural frequency by
performing both low-frequency lag and high-frequency leadequalization, where the latter
extends to frequencies well above crossover. The addition of a second lead term to the
lead-lag pilot equalization transfer function proposed for the precision modelis found to
provide the required freedom for modeling this combinationof pilot lag and lead equal-
ization dynamics. Furthermore, using an analysis of the VAFof the obtained pilot model
fits for varying equalization models, this additional lead term was found to yield a signifi-
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cant increase in the accuracy with which manual control behavior can be modeled for such
aircraft pitch dynamics.

For the aircraft pitch dynamics considered in the present study, for which the natural
frequency of the short-period mode was in the crossover region, it was found that the lead
time constant of this additional lead term could be coupled to the lead term already present
in the model, yielding an equalization transfer function with a single lag and a squared lead
term (equalization C). Even though the time constants of both lead terms are not necessarily
equal, no improvement in model fit was observed for an equalization with two independent
lead terms (D) for the presented data. Differences in the values of both lead time constants
for this equalization model were found to be small for the data from all subjects except one.
Furthermore, the extra model parameter, combined with the fact that both lead terms are –
from a model identification perspective – mathematically identical, leaves the pilot model
identification problem overdetermined. Note, however, that depending on the adopted pilot-
vehicle system crossover frequency and the value of the short-period natural frequency for
such a controlled element, the additional independent leadtime constant might still need
to be considered for modeling the adopted pilot equalization dynamics. Evaluation of the
applicability of the proposed equalization model extension to controlled elements of this
form, but with different values for the short-period mode natural frequency, is planned for
future research.

Previous experiments have shown considerable changes in pilot dynamics, especially in
pilots responses to visually presented tracking errors, atfrequencies above crossover when
physical motion feedback of the controlled element state ismade available [Nieuwenhuizen
et al., 2008; Zaal et al., 2009b; Damveld, 2009; Pool et al., 2010]. To show the impor-
tance of selecting an appropriate equalization model for the interpretation of these effects
of physical motion feedback on pilot control behavior over awide frequency range, mea-
sured effects of providing rotational pitch motion cues were compared for the considered
aircraft pitch dynamics and a double integrator controlledelement. For the aircraft pitch
dynamics, measured pilot describing functions indicate that pilots select the same combina-
tion of low-frequency lag and high-frequency lead equalization for tasks with and without
physical motion cues. Furthermore, by comparing identifiedpilot model lead and lag time
constants with the characteristic modes of the aircraft pitch dynamics, the extended pilot
equalization model with a squared lead term was found to provide a quantification of pi-
lot control behavior over a wide frequency range that best reflects observed changes in the
adopted lead and lag equalization and explicitly shows human adaptation to the dynamics
of the controlled element, as proposed by McRuer et al. [McRuer et al., 1965; McRuer and
Jex, 1967a; McRuer, 1988]. The effects of motion feedback onpilot control behavior as
presented in this chapter, which were quantified using the proposed pilot model extension,
are found to be consistent with findings from previous research [Shirley and Young, 1968;
Hosman and Stassen, 1999; Zaal et al., 2009b; Pool et al., 2010].

2.6 Conclusions

Using frequency-domain describing function measurementsof pilot tracking behavior, both
with and without physical motion feedback, it was shown thatfor a controlled element that is
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representative for conventional aircraft pitch dynamics an extended pilot model equalization
term is needed for modeling the adopted equalization dynamics over the full measurement
frequency range. These describing function measurements show that pilots perform a com-
bination of low-frequency lag and high-frequency lead compensation, the latter extending
to frequencies well above crossover, to compensate for the characteristics of such aircraft
pitch dynamics that result from the short-period mode. It isfound that an extended pilot
model equalization term, which consists of a squared lead and a single lag term, provides
the most accurate and consistent results for the modeling ofpilot manual control behavior
for such aircraft dynamics. Furthermore, compared to equalization models that lack the
second lead term, this extended equalization term was also found to yield a significant in-
crease in the average quality of fit of the pilot model to time-domain data. Finally, using a
comparison with measurements for a double integrator controlled element, it is shown that
the proposed equalization model allows for intuitive quantitative evaluation of the effects
of physical motion feedback on pilot tracking behavior, most notably the high-frequency
adaptation of pilots’ responses to visually presented tracking errors.



3
Modeling Pilot Control During

Ramp Tracking

To extend the evaluation of the effects of simulator motion cueing variations onpilot man-
ual control behavior to other control tasks than compensatory trackingtasks with quasi-
random forcing function signals, tracking tasks with target forcing functions that consist of
a number of discrete ramp-like changes in target attitude are also considered in this thesis.
Tracking such alternative reference signals yields a control task that is similar to discrete
maneuvering tasks that are often performed during real manual aircraft control. Due to
the deterministic nature of such ramp forcing function signals, they may induce a control
strategy that deviates from the purely compensatory control observed for the tracking of an
unpredictable multisine signal and hence require a different pilot model structure for mod-
eling measured control behavior. In this chapter, this is evaluated by considering manual
control behavior for single-loop pitch tracking tasks (no physical motion feedback) where
participants were asked to track target signals consisting of four ramp-likechanges in target
pitch attitude.

The contents of this chapter have been published as:

Pool, D. M., Van Paassen, M. M., and Mulder, M., “Modeling Human Dynamics in Com-
bined Ramp-Following and Disturbance-Rejection Tasks”,Proceedings of the AIAA Guidance,
Navigation, and Control Conference, Aug. 2-5, Toronto, Canada, 2010, AIAA-2010-7914
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3.1 Introduction

The theory of Successive Organization of Perception (SOP) put forth by McRuer et al.
[1968] defines three different levels of manual control behavior that can be adopted dur-
ing manual tracking tasks. Depending on the defining features of the control task, such as
the display format and the applied forcing functions, humanoperators may revert to com-
pensatory, pursuit, or precognitive control strategies, or could be switching between any
combination of these SOP levels. Most research into human manual control behavior has
focused on purely compensatory control, a typical type of behavior found for control tasks
where tracking errors were induced by quasi-random forcingfunction signals. Consider-
able success has also been achieved in the modeling of compensatory manual control in
both single-loop [Elkind, 1956; McRuer et al., 1965] and multimodal control tasks [Jex
et al., 1978; Hosman, 1996; Zaal et al., 2009c]. Despite the fact that most real-life man-
ual control tasks are not purely compensatory, but induce pursuit or precognitive control
strategies [McRuer et al., 1968], modeling of these higher levels of manual control behav-
ior has received significantly less attention and has not nearly been as successful as that of
compensatory tracking.

This chapter focuses on manual control behavior in manual control tasks where a de-
terministic reference trajectory, defined as a number of discrete ramp-like changes in target
attitude, is to be tracked using a pursuit display. In addition, a quasi-random disturbance
signal is applied to perturb the controlled element dynamics. Compared to the control tasks
that are typically used for studying the effects of physicalmotion feedback during man-
ual control, where two quasi-random forcing function signals are applied [Stapleford et al.,
1969; Jex et al., 1978; Zaal et al., 2009c], such ramp target signals yield more realistic
manual control tasks, similar to in-flight maneuvers such asa turn entry or altitude change
[Zaal et al., 2008; Pool et al., 2009b]. Furthermore, it is shown in Appendix B that, depend-
ing on ramp forcing function signal design, reliable identification of the multimodal pilot
models that are used for modeling compensatory manual control under such multimodal
cueing conditions is possible using measurements taken during combined ramp-tracking
and disturbance-rejection tasks.

For repetitive manual tracking of such deterministic ramp-like reference signals using
a pursuit display, however, it is likely that human operators will develop a control strategy
that corresponds to a SOP level that exceeds purely compensatory tracking. First, despite
the fact that the use of a pursuit display does not directly imply the adoption of pursuit be-
havior by a human operator [Wasicko et al., 1966; Hess, 1981], the use of a pursuit display
in combination with ramp signals with predictable maneuvertimes and rates of change does
provide ample opportunity for pursuit tracking. In addition, human operators may be able
to acquire such familiarity with the reference signal and controlled element dynamics that
it allows for generation of open-loop precognitive controlinputs [Pew et al., 1967; McRuer
et al., 1968; McRuer and Krendel, 1974; McRuer, 1980; Yamashita, 1989, 1990]. Many
researchers have illustrated the differences between compensatory and pursuit tracking be-
havior with experimental measurements [Chernikoff et al.,1955; Elkind, 1956; Wasicko
et al., 1966; McRuer and Jex, 1967b; Allen and Jex, 1968; Hess, 1981]. Convincing ex-
perimental evaluations of precognitive behavior during tracking are, however, sparse. In
addition, models have been proposed for modeling both pursuit and precognitive tracking
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behavior, see for instance [McRuer et al., 1968], but have generally not been validated by
fitting them to experimental measurements of tracking behavior.

Due to the adaptive nature of human control behavior [McRueret al., 1968; Young,
1969], it is likely that the type of control behavior (compensatory, pursuit, precognitive)
that is adopted in the ramp-tracking tasks considered in this chapter is dependent on both
the characteristics of the ramp signals (steepness, magnitude) and the controlled element
dynamics. In addition, previous experimental work has hinted at suppression of pursuit
operation when an additional disturbance forcing functionsignal is present [Reid, 1970], as
disturbances on the controlled element can only be attenuated using compensatory control.
It is the purpose of this chapter to evaluate if the considered ramp-tracking tasks induce
a control strategy that differs from pure compensatory tracking and to determine how this
depends on the key characteristics of the control task. Thisis done by fitting a dual-mode
model for human ramp-tracking behavior, similar to the models proposed by McRuer et al.
[1968] and Allen and McRuer [1979] for pursuit and precognitive tracking behavior, to
collected human-in-the-loop measurements of ramp-tracking behavior. The model used for
this analysis includes a compensatory response that captures compensatory control inputs,
and a feedforward response on the target signal that can account for possible additional
pursuit and precognitive control inputs.

This chapter describes an experiment in which single-loop ramp-tracking behavior is
measured for control of both single and double integrator dynamics. Ramp-tracking tasks
with ramp target signals with two different ramp steepnesses are considered, both with and
without the presence of an additional quasi-random disturbance signal that perturbs the con-
trolled element. The considered ramp target signals are identical to two of the ramp signal
settings also evaluated in Appendix B. Note that the effectsof physical motion feedback
on manual control, which are the main focus of this thesis, are not considered in this study.
Rather, the focus of this chapter lies on the human dynamics that occur during ramp-tracking
with only visually presented information, to which the effects of additional motion feedback
are expected to be added in later work.

This chapter is structured as follows. First, Section 3.2 provides a detailed description
of the manual control task and gives an overview of the the pertinent literature on mod-
eling manual control behavior for the considered type of control task. Then, Section 3.3
describes the details of the human-in-the-loop experimentthat was performed to gather the
required measurements of human manual control behavior. The results of this experiment
are presented in Section 3.4. The chapter ends with a discussion and conclusions.

3.2 Background

3.2.1 Control Task

This chapter considers manual control behavior in a pitch-attitude tracking task performed
with a pursuit display. Fig. 3.1 depicts a schematic representation of such a manual control
task, where a human operator controls the pitch attitudeθ of the controlled element with
dynamicsHc(s). Two forcing function signals are indicated in Fig. 3.1: thetarget forcing
functionft defines the reference trajectory that should be followed as closely as possible,
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while fd represents an external disturbance that works on the controlled element. Note from
Fig. 3.1 that due to the use of a pursuit display, as depicted in Fig. 3.2, the operator can use
information on the target signalft, the tracking errore, and the controlled element stateθ
to achieve a suitable control inputu.

ft + e
−

θ

ft

u θ
Hc(s)

fd

+
+pilot

control

dynamics

Figure 3.1. Schematic representation of a combined target-following and disturbance-rejection
task performed with a pursuit display.
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Figure 3.2. Pursuit display.
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Figure 3.3. Time traces of the multisine dis-
turbance forcing function (MS) and both
ramp target forcing function signals (R1
and R10).

Pursuit tracking tasks similar to the one depicted in Fig. 3.1 have been studied exten-
sively [Wasicko et al., 1966; McRuer et al., 1968; Allen and McRuer, 1979; Hess, 1981], but
mainly for control tasks with quasi-random target forcing function signals (ft) and without
external disturbances (fd). As a continuation of previous research [Zaal et al., 2008;Pool
et al., 2009b], this chapter addresses manual control behavior for tracking tasks in which
the target signal is composed of a series of discrete ramp-like changes in reference attitude
and where an additional quasi-random disturbance signal ispresent. Fig. 3.3 depicts the
two ramp target forcing functions (R1 and R10, which have different ramp steepnesses) and
the quasi-random multisine disturbance signal (MS) that are considered in this chapter. The
details of these forcing function signals are provided in Section 3.3.

Human dynamics during compensatory tracking have been shown to be highly adapt-
able to the dynamics of the controlled elementHc(s) [McRuer et al., 1965]. As a similar
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dependence onHc(s) is also likely with respect to the development of higher levels of con-
trol behavior in the considered ramp-tracking and disturbance-rejection task [McRuer et al.,
1968], this chapter investigates ramp-tracking control behavior for both single and double
integrator controlled element dynamics, given by:

Hc(s) =
Kc

s
, Hc(s) =

Kc

s2
(3.1)

3.2.2 Successive Organization of Perception

In the 1960s, McRuer et al. [1968] developed their theory of Successive Organization of Per-
ception (SOP). This SOP theory defines three distinct levelsof skill-based manual control
behavior that can be adopted during manual tracking, depending on the nature and charac-
teristics of the control task. Block-diagram representations of these three levels of manual
control behavior are depicted in Fig. 3.4.

(a) Initial phase: single-loop compensatory behavior
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human pilot
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(b) Second phase: multi-loop pursuit behavior
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(c) Final phase: open-loop precognitive behavior
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Figure 3.4. The different phases in the Successive Organization of Perception. Adapted from
[McRuer et al., 1968].
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The lowest level of manual control behavior is referred to ascompensatory behavior,
which is depicted in Fig. 3.4(a). During compensatory control, the human operator only acts
on the perceived tracking errore, thereby closing a single loop around the controlled element
Hc(s). Compensatory behavior is, for instance, adopted during control tasks where tracking
errors induced by an unpredictable quasi-random forcing function signal are depicted on a
compensatory display [McRuer et al., 1965].

If information other than the tracking errore is also available to the human operator, such
as for instance provided on the pursuit display shown in Fig.3.2, he may choose to utilize
pursuit tracking behavior as depicted in Fig. 3.4(b). Even though the explicit presentation
of ft andθ on a pursuit display would allow the human operator to also operate on both
those quantities, thereby utilizing a multi-loop control strategy, this is no guarantee for the
adoption of a pursuit tracking strategy. As rightly pointedout by Hess [1981], a distinction
needs to be made between the variables that are made available to a human operator and the
internal organization of the control strategy he adopts during manual control.

The ultimate stage in the SOP process depicted in Fig. 3.4 is precognitive control. As
indicated in Fig. 3.4(c), precognitive control behavior isobserved in control tasks where the
level of familiarity with the controlled element and the commanded maneuver allows for
responding with a preprogrammed learned response upon a certain trigger provided by the
reference signalft. Fig. 3.4(c) shows that different mechanisms may underly the execution
of such a precognitive response. A clear example of is the tracking of a forcing function sig-
nal consisting of a single sinusoid, for which, given enoughpractice, operators are typically
found to respond quicker than can be expected given the latency inherent to a closed-loop
compensatory response [Pew et al., 1967]. Note that this instance of precognitive control
behavior corresponds to the block labeled “synchronous generator” in Fig. 3.4(c).

Manual control tasks with predictable forcing function signals as considered in this
chapter (see Fig. 3.3) are an example of a control task that, given extensive training and
familiarization, would also support the utilization of a precognitive control strategy. The
key characteristic of precognitive behavior, which distinguishes it from for instance pursuit
tracking, is that it involves an open-loop response to a trigger or recognized pattern inft
that is entirely independent of the perceivable information at the moment it is given and
depends solely on the human operator’s internal representation of the control task.

The taxonomy of control behavior summarized in the SOP theory and Fig. 3.4 is a
useful starting point for the evaluation of control behavior in the combined ramp-tracking
and disturbance-rejection tasks studied in this chapter. As can be verified from all three
block diagrams depicted in Fig. 3.4, a disturbance signal onthe controlled element output
can only be attenuated through a compensatory feedback control strategy. Even though the
presence of an additional disturbance forcing function hasbeen reported to affect pursuit
tracking operation [Reid, 1970], to what extent the presence of such a disturbance signal
interferes with the human dynamics required for following of ramp target signals is as of
yet unknown. The same holds for the modeling of these pilot control dynamics.
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3.2.3 Modeling Manual Control Behavior

3.2.3.1 Modeling Compensatory Control

The modeling of compensatory control behavior as depicted in Fig. 3.4(a) has been well
established since the work of McRuer et al. [1965]. Using measurements of pilot dynamics
for a multitude of different controlled elements and forcing function signals, McRuer et al.
developed models and accompanying sets of rules of thumb that have proven to be widely
applicable for describing compensatory pilot dynamics. Here, the following model, which
is based on the work of McRuer et al. [1965], is used for modeling compensatory manual
tracking dynamics:

Hpe
(s) = Kpe

(1 + sTLe
) e−sτeHnm(s) (3.2)

In Eq. (3.2),Kpe
(1+sTLe

) represents the pilot equalization characteristic, as discussed
in detail in Chapter 2. Note that in the original model as described in [McRuer et al., 1965]
this equalization characteristic was defined as a lead-lag transfer function. McRuer et al.
[1965], however, established that human operators adapt their equalization characteristics
to yield an open-loop system (Hpe

(s)Hc(s)) with approximately single integrator dynamics
around gain-crossover. This implies that for single integrator controlled element dynamics,
the equalization characteristic as given in Eq. (3.2) is reduced to only the proportional gain
Kpe

. For double integrator dynamics, low-frequency lead needsto be generated to achieve
K/s dynamics around crossover. Therefore, the full equalization characteristic listed in
Eq. (3.2) is needed for describing human dynamics during compensatory double integrator
control. Note, however, that lag equalization is required for neither controlled elements and
has therefore been omitted from Eq. (3.2). The delay parameter τe accounts for any delays
internal to the pilot that accumulate in generating a compensatory control input. Finally, the
transfer functionHnm(s) represents the combined dynamics of the neuromuscular actuation
and the manipulator, which are approximated here as a second-order mass-spring-damper
system [Damveld et al., 2009]:

Hnm(s) =
ω2
nm

s2 + 2ζnmωnms+ ω2
nm

(3.3)

The neuromuscular frequencyωnm and damping factorζnm are free parameters of this
compensatory model, as areKpe

, τe, andTLe
(the latter for double integrator control only).

3.2.3.2 Modeling Pursuit/Precognitive Control

Compared to the modeling of compensatory manual control behavior, the modeling of pur-
suit and precognitive tracking has received only moderate attention [Wasicko et al., 1966;
McRuer et al., 1968; McRuer and Krendel, 1974; Allen and McRuer, 1979; Hess, 1981].
One of the reasons for this is the fact that during both pursuit tracking and control tasks
where precognitive inputs are given, the adopted control strategy is no longer defined as
pure tracking error minimization based on a single explicitly presented variable. Control
behavior for these higher SOP levels might involve multipleresponses to (implicitly or
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explicitly) perceived or internally generated variables,as is, for instance, clear for a pur-
suit display configuration as presented in Fig. 3.2. This fact makes the modeling of such
multimodal control behavior significantly more complex than the modeling of purely com-
pensatory behavior [Wasicko et al., 1966; Hess, 1981].

For pursuit tracking, Wasicko et al. [1966] have shown that due to the fact thate = ft−θ,
pursuit control behavior can be captured by considering only two of the three pilot responses
depicted in Fig. 3.4(b),Hpt

(s), Hpe
(s), andHpθ

(s). Allen and McRuer [1979] have pro-
posed to model pursuit control behavior with only theHpt

(s) andHpe
(s) channels depicted

in Fig. 3.4(b), that is, as a closed-loop compensatory control strategy combined with feed-
forward control operations on the target signal. In an excellent overview of adaptation
in manual control, Young [1969] also proposed that the dominant characteristics of pilot
pursuit tracking behavior can be modeled with onlyHpt

(s) andHpe
(s): “ In the pursuit

situation [the human operator]has performance blocks acting on the error, input and re-
sponse, although it is established that the response block is probably not used for anything
except perhaps controlled element adaptation.” Wasicko et al. [1966] and McRuer and
Jex [1967b] have shown with describing function measurements that this is indeed a likely
model structure for pursuit tracking behavior.

The development of methods for modeling precognitive control behavior has received
far less attention than those for pursuit tracking. The purely open-loop precognitive response
representation proposed by McRuer et al. [1968] as depictedin Fig. 3.4(c) is only feasible
if the human operator’s internal representation of the reference signalft and the controlled
element dynamicsHc(s) allows for perfect execution of the appropriate control response.
For the ramp-tracking tasks considered in this chapter, andperhaps for most applications in
manual tracking, this can, however, be expected to hardly ever be the case.

This is also recognized by McRuer et al. [1968], who argue that for the tracking of a step
reference signal a combination of open-loop precognitive and closed-loop compensatory
behavior is adopted. This is illustrated by Fig. 3.5(a), which shows that after an inevitable
delay in the human operator response (phase I), the occurrence of a step in the reference
signal results in an initial, possibly precognitive, rapidresponse (phase II) with which the
controlled system response is brought to the step’s final valueA. McRuer et al. [1968] argue
that this initial response, which in most instances will notresult in perfect tracking of the
step input, is followed by a final, compensatory, error reduction phase (III), with which the
controlled element response is stabilized aroundA.

For ramp tracking, as considered in this chapter, a similar combined response as pro-
posed by McRuer et al. [1968] for step tracking can be anticipated, see Fig. 3.5(b). This
hypothetical response to a ramp input shows a time delay phase (I) and a compensatory
error reduction phase (III) equivalent to that shown for step tracking in Fig. 3.5(a). Further-
more, a rapid response that largely eliminates the difference between the controlled element
output and the ramp input, which is very similar to phase II ofthe step-tracking response,
is indicated as phase IIa. For ramp tracking, however, an additional phase IIb is also shown
in Fig. 3.5(b). As indicated by phase IIb, Once the controlled element output is sufficiently
close to the reference signal, the human operator might end up in a state where he merely
matches the rates of change ofθ andft as visible on the pursuit display shown in Fig. 3.2.
This would require a different control strategy than hypothesized for phase IIa. Note that
the proportion of time spent in phases IIa and IIb depends on the characteristics of the ramp
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Figure 3.5. Hypothetical responses of controlled element outputduring manual tracking of step
and ramp target signals. Adapted from [McRuer et al., 1968].

ft + e
−

Hpe(s)

human pilot

+
+

Hpt
(s)

ft

n

+
+ u θ

Hc(s)

fd

+
+

Figure 3.6. Two-channel model of pursuit/precognitive control.Adapted from [McRuer et al.,
1968].

signal. For instance, for very steep ramp signals that approximate a step input phase IIb
might never be reached, as the reference signal might already have reached its maximum
valueA before the system response has caught up.

For modeling the dual-mode control behavior that may be anticipated for step tracking
based on Fig. 3.5(a), where the human operator is hypothesized to switch between pre-
cognitive and compensatory tracking upon a certain trigger, McRuer et al. [1968] propose
a control theoretic structure that includes bothHpt

(s) andHpe
(s) equal to that proposed

by Allen and McRuer [1979] for pursuit tracking, see Fig. 3.6. Therefore, previous work
on pursuit tracking and precognitive control behavior suggests that the control theoretical
structure with a closed-loop compensatory responseHpe

(s) and an open-loop feedforward
responseHpt

(s) shown in Fig. 3.6 might be appropriate for modeling pilot dynamics dur-
ing both these modes of operation. Due to this hypothesized equivalence of the models
for pursuit and precognitive operation for the considered ramp-tracking tasks, it may prove
difficult to separate both. For this reason, in this chapter the feedforward responseHpt

(s)
will in the remainder of this chapter no longer be referred toas either pursuit or precogni-
tive, but merely used to capture any feedforward behavior that is observed in addition to the
compensatory responseHpe

(s).
For the modeling of the compensatory response in the two-channel model of Fig. 3.6,

some authors have suggested to use the form of Eq. (3.2) [Wasicko et al., 1966; McRuer
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et al., 1968], thereby assuming similar compensatory humandynamics as encountered for
pure compensatory control. For modeling possible additional pursuit or precognitive con-
trol action, an equivalent feedforward pilot response on the target signal is proposed for
both. Reflecting the internal representation of the controlled element dynamics required
for both pursuit and precognitive behavior [McRuer et al., 1968; Neilson et al., 1988], it
has been argued that the feedforward responseHpt

(s) for both pursuit and precognitive
behavior should approximate the inverse of the controlled element dynamics. This yields
Hpt

(s)Hc(s) ≈ 1 [Wasicko et al., 1966; McRuer et al., 1968; Hess, 1981], which, as can
be verified from Fig. 3.6, will ensureθ approximatesft, yieldinge ≈ 0. Due to the fact that
it is anticipated that the applied feedforward control inputs are, however, likely not perfect
for both the pursuit and precognitive modes, in this chapterthe following model for the total
feedforward responseHpt

(s) is proposed:

Hpt
(s) = Kpt

1

Hc(s)
Heqt(s)e

−sτt (3.4)

In Eq. (3.4),Kpt
and τt are the gain an time delay associated with this feedforward

response. These parameters are equivalent toKpe
andτe in the compensatory model of

Eq. (3.2). Further dynamics ofHpt
(s) are then governed by the inverse controlled element

dynamics and the transfer functionHeqt(s), which represents equalization performed by the
operator on the target signal, analogous to the lead equalization in Eq. (3.2), or limitations
in generating the feedforward response prohibit achievingHpt

(s)Hc(s) ≈ 1. Here it is
proposed, as a starting point for further investigation, tosetHeqt(s) to:

Heqt(s) =
1

1 + sTIt
(3.5)

This first-order lag is included in the model forHpt
(s) to allow for capturing lags that

may accumulate in this feedforward channel. These lags could result, for instance, from
limitations on the inversion ofHc(s) by the human operator, or, as it is unlikely that human
operators will attempt to precisely followft, especially for steep changes in reference value,
represent internal filtering or smoothing of the input. Notefrom comparing Equations (3.2)
and (3.4) that the neuromuscular actuation dynamics are notincluded in the latter model
for the feedforward response. The reason for this is that thehuman operator is implicitly
assumed to be capable of accounting for his own neuromuscular actuation dynamics through
the feedforward, thereby effectively canceling the effectof Hnm(s) onHpt

(s). Again, if
this cancellation ofHnm(s) is not fully achieved, the remaining dynamics are also captured
by the feedforward equalization term, Eq. (3.5).

To visualize the responses the model of Eq. (3.4) is capable of describing, Fig. 3.7
shows theoretical control inputs for both ramp signals depicted in Fig. 3.3, and for both
single and double integrator controlled elements. For generating the data shown in Fig. 3.7,
the following parameter values have been used:Kpt

= 1, τt = 0.3 sec, andTIt = 0.05 s.
It should be noted that the model for ramp tracking behavior proposed in this sec-

tion does not include the explicit switching between the feedforward and compensatory
responses as, for instance, proposed by McRuer et al. [1968]. Instead, Fig. 3.6 shows a
two-channel model of pilot behavior for which bothHpe

(s) andHpt
(s) are continuous

time-invariant processes that are driven bye andft, respectively. For the application to
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Figure 3.7. Example feedforward control inputs resulting from the proposed model of Eq. (3.4).

control tasks with ramp target forcing functions as those depicted in Fig. 3.3, however, the
feedforward responseHpt

(s), which is driven byft, is implicitly disabled when there is no
change in the reference signal value. Hence, as also visiblein Fig. 3.7, the modeled feed-
forward responseHpt

(s) for this case will still only contribute to the model output during
the intervals where feedforward control operations are anticipated.

3.3 Experiment

3.3.1 Apparatus

To gather the data needed for testing the model proposed for ramp-tracking behavior in
Section 3.2.3, an experiment was performed in the SIMONA Research Simulator (SRS) at
Delft University of Technology, see Fig. 3.8. During the tracking tasks performed for this
experiment, both the motion system and the outside visual system of the simulator were
switched off. The (foveal) pursuit display (see Fig. 3.2) was projected on the primary flight
display (PFD) in the SRS cockpit. The PFD update rate was 60 Hzand the time delay of the
image generation on this PFD has been measured to be in the order of 20-25 ms (including
the projection) using a custom visual delay measurement system [Stroosma et al., 2007].

Participants used the pitch axis of a Moog FCS Ecol-8000 electrical sidestick to give
their control inputs,u. The sidestick was adjusted to have no break-out force and a maxi-
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mum deflection of±13 deg in pitch. Stick stiffness was set to 1.5 N/deg over the full range
of pitch stick deflections. Manipulator inertia and inherent damping were equal to 0.0031
Ns2/deg and 0.035 Ns/deg, respectively. The roll axis of the sidestick was locked during the
experiment.

Figure 3.8. The SIMONA Research Simulator.

3.3.2 Controlled Element Dynamics

As already stated in Section 3.2, the feedforward part of precognitive and pursuit control
behavior is hypothesized to be proportional to the inverse of the controlled element dynam-
ics,Hpt

(s)Hc(s) ≈ 1 [Wasicko et al., 1966; McRuer et al., 1968; Hess, 1981]. For this
reason, two different controlled elements were consideredin this experiment: single (Kc/s)
and double (Kc/s

2) integrator dynamics (Eq. (3.1)). The controlled element gainKc was
tuned to yield similarly optimal control authority with respect to the disturbance signal (see
Fig. 3.3) for both controlled elements within the range of sidestick inputs (±13 deg). For
the single integrator dynamicsKc was set to 1.5, while for the double integratorKc was
taken equal to 8.

3.3.3 Forcing Functions

The target and disturbance forcing function signals that were applied in the experiment are
depicted in Fig. 3.3. The ramp target signals, both consisting of one positive and one nega-
tive commanded pitch excursion, are the same as those considered in the theoretical investi-
gation into multimodal pilot identification using such forcing function signals described in
Appendix B. This previous work indicated improved identification results for target signals
with steeper ramps. In addition, as both pursuit and precognitive control are modeled with
a response (Hpt

(s)) to which the target signalft is the input, control inputs were also ex-
pected to change as a function of ramp signal steepness, as illustrated by Fig. 3.7. For these
reasons, two levels of ramp steepness were considered in this experiment: 1 and 10 deg/s.
Note that these two values of ramp steepness represent the extreme values of those consid-
ered in Appendix B, the former being relatively benign, the latter practically approximating
a step input. These two ramp target forcing function signalsare referred to in the following
as R1 and R10, respectively, and are shown in Fig. 3.3.



68 Chapter 3

ω, rad/s

S
f
d
f
d
(j
ω
),

de
g2
·s

amplitude filter

spectrum

amplitude distribution

10-1 100 101
10-6

10-4

10-2

100

102

Figure 3.9. Quasi-random disturbance forcing
function spectrum and amplitude distribution.

Table 3.1. Multisine disturbance forcing
function data.

nd ωd Ad φd
− rad/s deg rad

3 0.230 0.959 1.269
4 0.307 0.935 2.677

11 0.843 0.686 4.523
12 0.920 0.648 1.122
23 1.764 0.342 4.159
24 1.841 0.323 1.700
37 2.838 0.174 1.408
38 2.915 0.167 6.271
51 3.912 0.106 5.993
52 3.988 0.103 0.606
71 5.446 0.0643 0.366
72 5.522 0.0630 4.849

101 7.747 0.0402 0.906
102 7.823 0.0398 4.481
137 10.508 0.0291 1.474
138 10.585 0.0289 5.883
171 13.116 0.0243 3.882
172 13.192 0.0242 5.161
225 17.257 0.0206 0.813
226 17.334 0.0205 4.344

The time trace of the multisine disturbance signalfd, referred to as MS in the remainder
of this chapter, is also depicted in Fig. 3.3. This signal wasgenerated as a sum ofNd = 20
sinusoids:

fd(t) =

Nd∑

k=1

Ad(k) sin [ωd(k)t+ φd(k)] =

Nd∑

k=1

Ad(k) sin [nd(k)ωmt+ φd(k)] (3.6)

The sinusoid frequenciesωd were chosen to cover the complete frequency range of inter-
est for evaluation of pilot dynamics (0.1-20 rad/s). To allow for measurement of frequency-
domain pilot describing functions for the compensatory pilot dynamicsHpe

(s) and evalu-
ation of coherence of pilot control with respect to the disturbance signal [Damveld et al.,
2009], pairs of neighboring frequencies were selected thatall fit an integer number of times
(nd) into the experimental measurement timeTm. All sinusoid frequencies were therefore
integer multiples of the experimental measurement base frequencyωm = 2π/Tm. The
experimental measurement time for this experiment was 81.92 seconds, yielding a base
frequency ofωm = 0.0767 rad/s.

Sinusoid amplitudesAd were defined according to the same low-pass filter amplitude
distribution used in previous experiments [Zaal et al., 2009b; Damveld et al., 2009]. Am-
plitudes were scaled to yield a disturbance signal with a time-domain variance of 1.5 deg2.
The spectrum offd, showing this low-pass distribution, is depicted in Fig. 3.9. The filter
frequency response is depicted in gray, while the full spectrum of fd is depicted in black.
Circular markers indicate the magnitudes ofSfdfd(jω) equivalent to the selected sinusoid
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amplitudesAd. The sinusoid phasesφd were selected from a large number of randomly
generated sets of phases to yield a disturbance signal with average cresting – average max-
imum absolute forcing function excursion, rate and acceleration – and an approximately
Gaussian distribution [Damveld, 2009; Damveld et al., 2010]. The numerical values for all
disturbance forcing function parameters are listed in Table 3.1.

3.3.4 Independent Variables

Due to their hypothesized effect on manual control behaviorfor the control task depicted in
Fig. 3.1, three different independent variables were varied in the experiment: the controlled
element dynamics, the steepness of the ramps in the target forcing function signal, and the
presence of the quasi-random disturbance signal. For both single and double integrator con-
trolled elements, the tracking task was performed in a baseline compensatory configuration
where onlyfd was present (ft = 0). A further four conditions for each controlled element
resulted from the factorial variation of ramp signal steepness (R1 and R10) and the presence
of the multisine disturbance signal (MS). This yielded a total number of ten experimental
conditions, which are listed in Table 3.2.

Table 3.2. Experimental conditions.

Symbol Hc(s) ft fd
S1

Kc

s

− MS
S2 R1 −
S3 R1 MS
S4 R10 −
S5 R10 MS
D1

Kc

s2

− MS
D2 R1 −
D3 R1 MS
D4 R10 −
D5 R10 MS

In the following, these different experimental conditions– that is, combinations of set-
tings forHc(s), ft, andfd – will be referred to using the symbols listed in Table 3.2. For
instance, the pure compensatory conditions for single and double integrator controlled ele-
ments are indicated by S1 and D1, respectively.

3.3.5 Participants, Experimental Procedures, and Instructi ons

Six subjects were asked to perform the tracking task for the ten experimental conditions
listed in Table 3.2. All participants were students or staffof the Faculty of Aerospace
Engineering and all had extensive experience with manual tracking tasks from previous
human-in-the-loop experiments. All participants were male, and their ages ranged from 25
to 47 years old.

As indicated in Table 3.3, all subjects performed the experiment in two separate sessions,
which were both completed in the same week. Each session consisted of all variations in
target and disturbance forcing function settings (see Table 3.2) for one of the controlled
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elements. For both controlled elements, the different forcing function conditions were ran-
domized over the different subjects according to a balancedLatin square design. In addition,
half of the participants performed the single integrator control tasks (gray shaded cells in Ta-
ble 3.3) in the first session, while the other half first performed the double integrator control
tasks.

Table 3.3. Experiment Latin square design.

subject session I session II

1 S5 S1 S2 S3 S4 D5 D3 D4 D2 D1
2 D1 D4 D5 D3 D2 S3 S4 S5 S1 S2
3 S1 S2 S3 S4 S5 D4 D2 D3 D1 D5
4 D2 D5 D1 D4 D3 S2 S3 S4 S5 S1
5 S4 S5 S1 S2 S3 D3 D1 D2 D5 D4
6 D1 D4 D3 D2 D5 S1 S2 S4 S3 S5

The individual tracking runs of the experiment lasted 90 seconds, of which the last 81.92
seconds were used as the measurement data. For each experimental condition, participants’
tracking performance was monitored by the experimenter. When participants had reached a
constant operating point, five repetitions at this constantlevel of tracking performance were
collected as the measurement data. Typically, two short breaks (max. 30 minutes) were
taken during each session, always after finishing the measurements for one condition and
before starting the next. On average, each session took 2.5-3 hours to complete.

Participants were instructed to continuously attempt to minimize the pitch tracking error
e presented on the visual displays, by minimizing the deviation of the target line with respect
to the aircraft symbol (see Fig. 3.2). After each run subjects were informed of their tracking
score, defined by the root mean square (RMS) of the error signal e, in order to provide them
with feedback of their level of performance, during both thetraining and measurement
phases of the experiment.

3.3.6 Dependent Measures

During the experiment, the time traces of the error signale, the control signalu, and the
pitch attitudeθ were recorded for each measurement run. From these measuredtime traces,
several dependent measures are calculated to give insight into the effects of the independent
variables that were manipulated during the experiment on the measured manual control be-
havior. First, tracking performance and control activity –expressed as the time-domain
variances (σ2) of the error and control signals, respectively – are evaluated briefly for com-
parison with compensatory measurements from previous work[McRuer et al., 1965].

The main dependent measures considered in this chapter, however, are those related to
the models of manual control behavior introduced in Section3.2.3. Using time-domain
identification methods [Zaal et al., 2009a], the compensatory (Hpe

(s)) and feedforward
(Hpt

(s)) models proposed in this section have been fit to the measuredtime traces sepa-
rately, in order to show to what extent these models capture the measured control inputs
for the different conditions. In addition, the fit of the proposed combined model of pilot
ramp-tracking behavior as depicted in Fig. 3.6, which includes both these compensatory
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and feedforward responses, is also evaluated in this chapter. It should be noted that the
feedforward lag time constantTIt was kept constant in the fitting of the combined model,
due its limited contribution to the model response, which made estimation of this parameter
difficult. For the fits of the combined model, this parameter was therefore kept fixed at the
approximately constant values obtained for both controlled elements over the different ramp
forcing function settings.

In addition to the estimated model parameters, the extent towhich the identified models
succeed in describing the measured control inputsu is quantified. For this, two measures of
the quality of the time-domain model fit are considered. The first is the model variance ac-
counted for (VAF), which can be calculated from the measuredand modeled control signals
– u andû, respectively – according to:

VAF =

[

1−
∑N

k=1(u(k)− û(k))2
∑N

k=1 u
2(k)

]

× 100% (3.7)

The VAF defines the percentage of the measured control signalu that is explained (or
captured) by the model. As can be verified from Eq. (3.7), the VAF is calculated as the
sum of the squared modeling error(u(k)− û(k))2, normalized by the sum-of-squares of the
measured control signalu. As the sum-of-squares ofu is expected to vary widely over the
different ramp-tracking tasks considered in the experiment, as is intuitive from observation
of the hypothetical ramp-tracking responses presented in Fig. 3.7, also the mean square error
(MSE) betweenu andû is considered. The MSE is defined as:

MSE=
1

N

N∑

k=1

(u(k)− û(k))2 (3.8)

3.3.7 Hypotheses

It is anticipated that due to the repetitive tracking of deterministic target input signals, some
evidence of feedforward operations on the target signal – either resulting from pursuit or
precognitive control behavior – can be observed from the behavioral measurements. Espe-
cially for the conditions without the quasi-random disturbance signal (S2, S4, D2, and D4),
the combination of the pursuit display and the predictable target signals is expected to allow
for a control strategy in whichHpt

(s) is dominant.
Furthermore, it is expected that the presence of the quasi-random disturbance signal

might put more emphasis on the compensatory control loop thehuman operator needs to
close, thereby possibly (partly) suppressing open-loop feedforward control in favor of a
more stable closed-loop. This would suggest tracking performance and compensatory pilot
model parameters for conditions S3/S5 and D3/D5 are anticipated to be similar to those
found for the pure compensatory conditions S1 and D1, respectively. Due to its less promi-
nent effect on task performance, this effect is expected to be largest for the lowest steepness
ramp signal (R1). Furthermore, the marginally stable double integrator controlled element
also requires more emphasis on compensatory stabilizationthan the single integrator control
tasks. For this reason, reduced prominence of feedforward control inputs is expected to be
found for the ramp-tracking tasks performed with double integrator dynamics.
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The suspected decrease in the adoption of feedforward control for the experimental
conditions where the disturbance signal is present and for theKc/s

2 controlled element is
expected to be apparent from changes in the fitted parametersof the proposed combined
compensatory and feedforward model. Reduced values ofKpt

and increased values ofTIt
indicate reduced effectiveness of the feedforward response and are hence expected to be
found for these experimental conditions.

3.4 Results

3.4.1 Measured Time Traces

Fig. 3.10 presents sample time traces of the tracking error,control input, and pitch attitude
recorded during the experiment for subject 1 in control of single integrator dynamics. Each
row of graphs depicts these three signals for each of the five variations in forcing function
settings (see Table 3.2). Each graph depicts the forcing function signal (scaled down for
the graphs ofe andu for plotting purposes) in gray. The time-domain average of the five
collected measurements of the depicted variable is depicted in black. Note that for each set
of time traces, the graphs for the different experimental conditions have the same scaling
of the vertical axis, to allow for straightforward qualitative comparison. Furthermore, note
that only 40 seconds of the total run length (90 seconds) are depicted here, which include
only the first (positive) ramp-like excursion and the corresponding return to zero.

First of all, Fig. 3.10 shows the effect of the disturbance signal on the recorded signals.
Where for the conditions wherefd is not present (S2 and S4) the depicted signals only show
activity around the interval where a ramp inft occurs, the disturbance signal continuously
induces tracking errors and hence control inputs. Furthermore, Fig. 3.10 also shows an
effect of ramp signal steepness. Figures 3.10(j) and (m) show significant build-up of the
tracking error directly after the occurrence of a R10 ramp due to the delay in the operator’s
response, as illustrated by Fig. 3.5. As can be verified from Figures 3.10(d) and (g), the
effect of the R1 ramps on the tracking error is of markedly lower magnitude.

The corresponding graphs of the control signalu show a similar strong effect of the
varying ramp signal steepness, which is especially visiblefor the conditions where the dis-
turbance signal is present (S3 and S5). For condition S5, thecontrol inputs that are per-
formed in response to the target signal clearly stand out from those needed to attenuate the
disturbance, while they appear to be lost in the compensatory control action for conditions
S3. Finally, note from the time traces of the pitch attitudeθ that overshoots in the following
of the ramp signals are typically larger for the steeper ramps (S4 and S5) than for R1 (S2
and S3). Highly similar measurements to those depicted in Fig. 3.10 were also obtained for
the double integrator dynamics and for the other participants in the experiment.

3.4.2 Tracking Performance and Control Activity

To evaluate the average effect of the independent variablesof the experiment on the tracking
error and control input signals, Fig. 3.11 depicts the meansof the tracking error and control
input variance (σ2

e andσ2
u, respectively) taken over the six experiment participants. The
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Figure 3.10. Measured time traces ofe, u, and θ for control of single integrator dynamics (con-
ditions S1-S5, subject 1).
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variance bars indicate the corresponding 95% confidence intervals. The depicted data has
been corrected for between-subject variance.
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Figure 3.11. Average tracking performance and control activity.

Fig. 3.11(a) shows that tracking performance was found to besignificantly worse (higher
σ2
e ) for the double integrator controlled element,F (1, 5) = 55.98, p < 0.05. This is

an expected result based on previous work [McRuer et al., 1965; Shirley and Young, 1968;
Junker and Replogle, 1975], due to the fact that double integrator dynamics are significantly
more difficult to control than single integrator dynamics. Fig. 3.11(a) also shows thatσ2

e is
significantly affected by the applied variation in forcing function signals (F (4, 20) = 43.79,
p < 0.05). For instance, the tracking errors for conditions S2 and D2, where only the R1
ramp signal was present, are very small compared to those forthe other conditions. This
shows that participants were able to track this low-steepness ramp signal very accurately,
as can also be verified from Fig. 3.10. For the steeper ramp signal (conditions S4 and D4)
tracking errors were found to be markedly larger. This can beattributed to the more rapid
build-up of tracking error for these steeper ramps, which already yields appreciable tracking
errors within in the human operator’s reaction time (compare the ramp and step responses
during phase I shown in Fig. 3.10).

As is clear from Fig. 3.11(a), the observed effects of the applied differences in the forc-
ing function signals are found to be largely independent of the effect of the considered
variation inHc(s). Still, a statistically significant interaction between the effects of the dif-
ferent controlled elements and forcing function signals onσ2

e was found,F (4, 20) = 37.97,
p < 0.05. This interaction effect is attributable to the much largerincrease in tracking error
variance due to the addition of the multisine disturbance signal observed from condition D4
to D5 than found between S4 and S5. For the low ramp steepness conditions, on the other
hand, the addition of the disturbance signal during ramp tracking is seen to increase track-
ing error variance by approximately the error variance found for the S1 and D1 conditions.
Note from Fig. 3.11(a) that this implies almost equal tracking performance for the S/D1 and
S/D3 conditions for both controlled elements. Post-hoc tests (pairwise comparisons) con-
firmed the absence of significant differences between the measured tracking error variances
for these sets of conditions.
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Fig. 3.11(b) depicts the measured control signal variance for all conditions of the ex-
periment. Note that control activity for the condition withonly the disturbance signal (MS)
is found to be almost equal for the single and double integrator controlled elements. This
confirms the selection of appropriate values for the controlled element gainKc as described
in Section 3.3.2. Overall, a strong effect of the different forcing function settings onσ2

u

is found,F (4, 20) = 54.65, p < 0.05. Fig. 3.11(b) shows very low control activity for
both controlled elements for the conditions with only the R1target, as also expected from
Fig. 3.7. Surprisingly, control activity is found to be slightly lower for the control tasks
with both the R1 target and the disturbance signal (S3 and D3)than for the correspond-
ing conditions with only the disturbance signal (S1 and D1).For tracking of the steeper
ramp signal, consistently higher control activity is found, which would be expected from
the peaks during ramp tracking depicted in Fig. 3.10.

Differences in the measured control signal variances for both controlled elements are
only observed for the conditions with the R10 ramp signals, yielding both a significant main
effect ofHc(s) (F (1, 5) = 23.11, p < 0.05) and a significant interaction with the applied
forcing function settings (F (4, 20) = 19.54, p < 0.05). As is clear from Fig. 3.11(b),
control activity is found to be markedly higher for the single integrator data (conditions S4
and S5) than for the D4 and D5 conditions.

3.4.3 Pilot Modeling Results for Pure Compensatory Tasks

For the conditions where no ramp target signal was present, but only the effects of the
quasi-random disturbance signal were to be attenuated (that is, S1 and D1), a compensatory
control task equivalent to those considered by McRuer et al.[1965] is obtained. Therefore,
pilot control behavior for these conditions can be described with the compensatory pilot
model described in Section 3.2.3.1. Fig. 3.12 depicts the frequency responses of the fits of
Eq. (3.2) to data from conditions S1 and D2 for subject 1. In addition to the model fit shown
in gray, Fig. 3.12 also depicts the describing function estimate, calculated at the frequencies
of fd.

Fig. 3.12 shows that the estimated describing functions, which are independent of the
selected pilot model, correspond well with the frequency responses of the fitted compen-
satory pilot models. In addition, note that the VAFs of the pilot model fits for conditions S1
and D1 are around 75 and 85%, respectively, indicating that the remnantn is confirmed to
contribute a typical 20-25% to the variance of the control signalu [Zaal et al., 2009a].

Furthermore, Fig. 3.12 shows the marked difference betweenthe compensatory control
of single and double integrator dynamics, as expected basedon the work of McRuer et al.
[1965]. As can be verified from Fig. 3.12(a) and (c) human dynamics for control of aKc/s
system are approximately those of a pure gain, with the peak attributed to the combined
neuromuscular and manipulator dynamics just above 10 rad/s. In comparison, Fig. 3.12(b)
and (d) (condition D1) show control behavior where significant phase lead is generated by
the human operator, to compensate for the controlled doubleintegrator dynamics [McRuer
et al., 1965].

Model fits highly similar to those shown in Fig. 3.12 were obtained for the other par-
ticipants in the experiment. Table 3.4 presents the averageestimated compensatory model
parameters for conditions S1 and D1, in addition to the average VAF of the model fit. The
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Figure 3.12. Example pilot describing functions and compensatory model fits for compensatory
conditions (S1 and D1, subject 1).

Table 3.4. Average compensatory parameters and model VAF forconditions S1 and D1.

Condition Kpe TLe
, s τe, s ωnm, rad/s ζnm VAF, %

S1 1.95 − 0.16 13.93 0.16 84.36
D1 0.25 1.33 0.23 11.33 0.18 86.03
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final column of Table 3.4 indicates an average model VAF of around 85% for both the S1
and D1 conditions. Furthermore, the estimated parameter values listed in Table 3.4 reflect
the different control behavior shown in Fig. 3.12. On average participants were generat-
ing low-frequency lead for frequencies above 0.75 rad/s forcondition D1, at the cost of
a marked increase in the compensatory time delayτe. These results are highly consistent
with those reported in [McRuer et al., 1965] and later publications on compensatory manual
control [Stapleford et al., 1969; Hosman, 1996; Van der Vaart, 1992; Beerens et al., 2009;
Zollner et al., 2010].

3.4.4 Pilot Modeling Results for Ramp-Tracking Tasks

To investigate the need for extending models of compensatory tracking behavior for the
ramp-tracking tasks considered in this chapter, the compensatory model given by Eq. (3.2)
and the feedforward model given by Eq. (3.4) were fit to measured time traces of the con-
trol signalu individually, in addition to the combined model that includes bothHpt

(s) and
Hpe

(s), see Fig. 3.6. This section first evaluates the fit provided bythese different models in
the time domain, both qualitatively by evaluating the modelresponses with respect to mea-
sured control signal time traces and quantitatively using the VAF and MSE of the obtained
model fits. Then the identified model parameters obtained from the different model forms
are compared and differences in the estimated parameters ofthe combined model over the
different experimental conditions are evaluated.

3.4.4.1 Time-Domain Pilot Model Fits

To investigate to what extent the models forHpt
(s) andHpe

(s) proposed in Section 3.2.3.2
can individually describe measured control inputs for the experimental conditions where
a ramp target signal was present, these models were both fit tothe average time traces of
u. These average measurements were obtained by averaging thefive repeated time-domain
measurements of this signal for each subject. Note that the full time traces ofu were used
to fit one set of parameters, yielding parameter estimates based on control inputs for all
four ramp-like changes in reference attitude occurring in the target signal (see Fig. 3.3).
Fig. 3.13 depicts typical results of fitting the model of Eq. (3.4) to measurements ofu for all
ramp-tracking conditions where the disturbance signal wasnot present, that is, S2, S4, D2,
and D4 (see Table 3.2). Fig. 3.14 shows the fit of the compensatory model of Eq. (3.2) to
the same experimental data. Note that in both figures the VAF of the presented pilot model
fit is indicated in the legend of each graph. The results shownin Figures 3.13 and 3.14 were
obtained for subject 1, but highly similar results were obtained for all other participants.

Note from Fig. 3.13 that the model of Eq. (3.4) is able to capture the initial control in-
put given after a ramp in the target signal for all four pure ramp-tracking conditions. As
for instance visible in Fig. 3.13(b) and (d), the fit of the proposed model forHpt

(s) also
captures the delay in the control response, as defined in Fig.3.5(b). Fig. 3.13, however, also
illustrates that the model forHpt

(s) is not capable of explaining all measured control in-
puts. For all conditions, the measured time traces ofu show some overshoots and additional
oscillatory inputs compared to the modeled control signals. In addition, as illustrated best
by Fig. 3.13(c), even in the absence offd the double integrator controlled element dynam-
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Figure 3.13. Feedforward control signal fits
for pure ramp-tracking conditions (S2, S4,
D2, and D4) for subject 1.
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D2, and D4) for subject 1.
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ics required significant (compensatory) control inputs forstabilization, also during periods
where the ramp target signal was constant.

Fig. 3.14 depicts the resulting modeled control signals forthe purely compensatory
model of pilot tracking behavior given by Eq. (3.2). Fig. 3.14(a) shows that for condi-
tion S2, the control inputs given to follow the R1 target signal can not be explained by the
compensatory control model. The reason for this is the fact that, except for small errors
due to the time between the occurrence of a ramp and the first control input, ramp tracking
errors are negligible, as can be verified from Fig. 3.10(e). Note, however, by comparing
Figures 3.13(a) and 3.14(a), that the compensatory model does capture the overshoots and
slight oscillations present in the measured time traces ofu that the model forHpt

(s) cannot
describe.

Surprisingly, the model time traces depicted in Fig. 3.14 for the remaining three con-
ditions reveal that the complete measured control signals –that is, both the initial and the
final error-reducing compensatory control inputs (so, phases II and III in Fig. 3.5(b)) – are
captured at reasonably high accuracy by the compensatory model of Eq. (3.2). This espe-
cially holds for the conditions with the steeper R10 ramps. The similarity of the error and
control signals for condition S4 depicted in Fig. 3.10 explains this, as enough tracking er-
rors build up to fit the model forHpe

(s) on. Note, however, that despite the accurate fits of
the compensatory model it can not be concluded that pure compensatory control behavior
was utilized for these conditions. For instance, with parameter values that differ from those
expected for pure compensatory tracking (see Table 3.4), the model of Eq. (3.2) might be
able to at least partially capture a non-compensatory behavior. Furthermore, judging the
results shown in Fig. 3.13, the total measured control inputcould also be a weighted sum
of both theHpe

(s) andHpt
(s) responses. This will be addressed in more detail in the

discussion of the estimated model parameters in Section 3.4.4.2. Fig. 3.14, however, does
show that the model of Eq. (3.2) is highly capable of capturing the oscillatory control in-
puts the model forHpt

(s) fails to describe, thereby suggesting that a compensatory tracking
behavior component is present for all considered experimental conditions.

Fig. 3.15 shows the time-domain fits of the combined compensatory and feedforward
model depicted in Fig. 3.6 for all experimental conditions except the pure compensatory
conditions S1 and D1. Again, only data and model fits obtainedfor subject 1 are presented
for brevity.

Note from comparison of the model fits shown in Fig. 3.15 for the conditions without the
disturbance signal (conditions S2, S4, D2, and D4) with those presented in Figures 3.13(a)-
(b) and 3.14(a)-(b) that the combined model captures more ofthe measured control signal
than the individually fitted compensatory and feedforward responses. This is especially
visible for the S2 condition, where the combined model is shown able of modeling both the
block-shaped input captured by the feedforward model in Fig. 3.13(a) and the more high-
frequency oscillations accounted for by the model forHpe

(s), see Fig. 3.14(a). This is also
reflected in higher VAF values for all of the combined model fits compared to those shown
in Figures 3.13 and 3.14 for these four conditions.

Fig. 3.15 further shows that also for all ramp-tracking tasks performed with the addi-
tional disturbance signal present (S3, S5, D3, and D5) the combined feedforward and com-
pensatory model provides a good fit to the measured control signal time traces, with VAFs
higher than 80% for all four conditions. As is clear from Figures 3.15(c) and (d), for both
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Figure 3.15. Combined compensatory and feedforward model control signal fits for conditions
S2-S5 and D2-D5 (subject 1).
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considered controlled elements the control inputs given for compensatory attenuation of the
disturbance forcing function signal dominate those required for following the low-steepness
R1 ramp signal. For the R10 ramp signal, for which more pronounced control inputs are
required, far more evidence for a response to the ramp targetsignal is visible in the mea-
sured control signals, as can be verified from Figures 3.15(g) and (h). This suggests that for
control tasks where the steepness (or power, see Appendix B)of the applied ramp forcing
function signals is increasingly more dominant over that ofexternal disturbances, the pro-
posed combined feedforward and compensatory pilot model will likely show increasingly
more benefit for modeling measured tracking behavior.

This observation is tested through further evaluation of the average pilot model VAF
and MSE corresponding to the fits of the three considered pilot models, which are presented
in Fig. 3.16. For each experimental condition, Fig. 3.16 shows the average VAF and MSE
over the data from the six participants for the pure compensatory model (Eq. (3.2)), the
pure feedforward model (Eq. (3.4)), and the combined model using white, gray, and black-
filled markers, respectively. The variance bars indicate the 95% confidence intervals of the
presented means. For the calculation of these confidence intervals the presented data were
compensated for between-subject variability.
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Figure 3.16. Average VAF and MSE of the fits of the pure compensatory, pure feedforward, and
combined pilot models for all experimental conditions.

Fig. 3.16 shows that for the pure disturbance-rejection conditions (S1 and D1) the pure
compensatory and combined models result in the same pilot model fit, as for this condi-
tion ft, and hence the output of the feedforward channelHpt

(s), is equal to zero. For the
ramp-tracking conditions, the pure feedforward model is found to result in the lowest VAFs
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and highest MSEs, indicating the worst quality of fit, for allconditions except S2. The pure
compensatory model fits are found to provide comparatively high VAFs and low MSEs,
only showing compensatory model VAFs lower than those measured for pure compensatory
tracking (conditions S1 and D1) for conditions S2 and D2. However, Fig. 3.16 shows that
the combined model on average yields the most accurate fit of the time-domain measure-
ments ofu for all ramp-tracking conditions. It should be noted, however, that especially for
the conditions with theKc/s

2 controlled element and the disturbance signal present (con-
ditions D3 and D5) the improvement in fit with respect to the pure compensatory model is
only comparatively modest. The quality-of-fit results presented in Fig. 3.16 thereby suggest
a diminishing effect of feedforward control contributionswith increasing controlled element
order and increasing power of external disturbances.

3.4.4.2 Pilot Model Parameter Estimates

Figures 3.17 and 3.18 show the estimated parameters for the feedforward model of Eq. (3.4)
and the compensatory model given by Eq. (3.2), respectively, for all three fitted pilot mod-
els. As also done in Fig. 3.16, the estimated parameters corresponding to fits of the pure
compensatory model, the pure feedforward model, and the combined model are presented
using white, gray, and black-filled markers, respectively.Note that as the feedforward model
parameters were not estimated for the pure compensatory model and those of the compen-
satory model were not estimated for the pure feedforward model, both Figures 3.17 and
3.18 only show data for two of the three considered model fits.

Fig. 3.17(a) shows the estimated values for the feedforwardgainKpt
obtained from fit-

ting the pure feedforward model (gray markers) and the combined model (black markers).
The estimates ofKpt

obtained for the pure feedforward model presented in Fig. 3.17(a)
show values around or slightly above 1 for the single and double integrator controlled el-
ements, respectively. Recall that for optimal feedforwardcontrol dynamicsKpt

should be
around unity, as thenHpt

(s)Hc(s) ≈ 1. On the other hand, except for condition S2, the
feedforward gain values corresponding to the fits of the combined model are found to be
around half those found for the pure feedforward model, suggesting that the pilot control
response can not fully be attributed to the feedforward response in the pure feedforward
model, but partly results from compensatory control.

For both fitted models, the estimates ofKpt
for the conditions where the R1 ramp signal

was to be followed in the presence of the disturbance signal (S3 and D3) show the largest
spread or values that are not consistent with those obtainedfor the other experimental con-
ditions. This is what would be expected based on the time-domain model fits shown in
Fig. 3.15 for these conditions, as the measured control signal time traces suggest a negli-
gible contribution of the response that can be described with the feedforward model. The
estimated feedforward gains for the combined feedforward and compensatory model show
lower values for the double integrator controlled element than observed for the single inte-
grator conditions. Furthermore, when considering the datafor all experimental conditions,
Kpt

is found to decrease for the steeper ramp signals and with theaddition of the distur-
bance signal. Both these variations inKpt

over the different controlled elements and forcing
function settings are found to be statistically significant: F (1, 5) = 10.09, p < 0.05 and
F (3, 15) = 27.07, p < 0.05, respectively. Furthermore, note that both the significantef-
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Figure 3.17. Average feedforward pilot model parameters for allexperimental conditions.

fect of the controlled element dynamics and the reduction inKpt
for the conditions with

fd present are consistent with the hypothesis that decreased feedforward response power is
adopted for control tasks where more emphasis on compensatory control is required.

As explained in Section 3.3.6, the feedforward lag time-constantTIt was only estimated
for the pure feedforward model. As is clear from Fig. 3.17(b), this parameter was kept fixed
for the combined model at values that were found to be representative for ramp-tracking
with single and double integrator controlled element dynamics from the pure feedforward
model fits. The values ofTIt that were estimated for the pure feedforward model indeed
show approximately constant values for both controlled elements over all different forcing
function settings. Except for condition S3, for which it is anticipated that too little in-
formation on the pilot feedforward response is present in the recorded pilot control signal
time traces (see Fig. 3.15(c)) for accurate estimation of the feedforward model parameters,
TIt is found to on average be around 0.076 s for the single integrator controlled element.
For the double integrator measurements, feedforward lag time-constants of around 0.26 s
are measured. The larger feedforward lag time-constant values found for the double inte-
grator data indicate that for this controlled element the ramp-tracking control inputs given
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through the feedforward response showed larger deviationsfrom the optimal feedforward
(Hpt

(s)Hc(s) ≈ 1). This is consistent with the increased emphasis on compensatory con-
trol behavior anticipated for this controlled element. As explained in Section 3.3.6, due to
the invariance ofTIt over the different experimental conditions, this parameter was kept
fixed at the reported values for both controlled elements in the fitting of the combined feed-
forward and compensatory model.

Fig. 3.17(c) shows the estimated feedforward delay parametersτt for both models that
include the pilot feedforward response. As also observed for the feedforward gain and
lag time-constant, the estimated results for the S3 condition show significant spread and
parameter values that are not consistent with those estimated for the other conditions. For
both controlled elements, the estimated feedforward delayparameters obtained from fitting
the pure feedforward model show lower values forτt for the conditions with the R10 ramps,
suggesting a faster initial response for these steeper rampsignals. As can be verified from
Fig. 3.17(c), this trend is not observable in the estimates of τt obtained from fitting the
combined model. Due to the significant spread in the estimated values ofτt, no significant
effects of the applied variation in both controlled elementdynamics and forcing function
signals are observed on the feedforward delay parameters estimated with the combined
pilot model. Based on the estimated values for the feedforward delay parameter presented
in Fig. 3.17(c) it can therefore only be concluded that the delay in the feedforward response
is in the range of 0.2-0.4 s.

Fig. 3.18 presents the estimated compensatory model parameters, including those of the
neuromuscular actuation dynamics given by Eq. (3.3), for the pure compensatory and com-
bined model fits. Estimated parameters for the pure compensatory and combined models
are indicated with white and black markers, respectively.

Fig. 3.18(a) shows that the pure compensatory and combined models yield highly com-
parable estimates of the compensatory pilot gainKpe

for conditions S1, S3, and S5. Similar
consistency, but at a much lower value ofKpe

, is observed for all double integrator con-
ditions. Note that for the double integrator conditions, the variance bars of the presented
Kpe

data suggest that the compensatory pilot gain could become negative. This is, however,
not the case. No negative values ofKpe

were measured and the depicted variance bars re-
sult from the correction for between-subject variance thatwas applied to the data from all
experimental conditions for the calculation of the presented 95% confidence intervals.

The pure compensatory model fits for the S2 and S4 conditions,wherefd was not
present, show values ofKpe

that are considerably higher and show markedly more spread
than those found for the other single integrator conditions. As is especially visible from the
time-domain fit of the compensatory model for condition S2 – as presented in Fig. 3.14 –
these discrepancies in the estimated compensatory model parameters are the result of this
model’s inability to describe the measured data for these conditions. The fact that the values
of Kpe

obtained from fitting the combined model, which as shown in Fig. 3.15 provides a
much better representation of the measured control inputs,are distinctly different from those
resulting from the fits of the pure compensatory model is further proof of this. Though still
showing larger spread, on average the combined model fit for condition S4 is even found
to yield estimated values ofKpe

that are consistent with those observed for S1, S3, and
S5. The comparatively lowKpe

found from the fitted combined model for condition S2,
however, suggests reduced emphasis on compensatory control for this condition compared
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Figure 3.18. Average compensatory pilot model parameters for all experimental conditions.
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to all other single integrator tasks. The observed difference in the estimated compensatory
gains for both controlled elements was found to be statistically significant,F (1, 5) = 82.12,
p < 0.05. Furthermore, note that the slight drop inKpe

for condition S3 compared to the
pure compensatory condition S1 is consistent with the observed reduction in control activity
(see Fig. 3.11) for this condition. Fig. 3.18(a) therefore suggests that this decreased control
activity is the result of the selection of a reduced crossover frequency for the compensatory
loop in the presence of the R1 ramp signal. Note that this decrease in compensatory gain is
not found to occur for the steeper R10 ramp forcing functions.

As in compensatory tracking lead equalization is only required for controlled elements
that are approximatelyK/s2 in the crossover region [McRuer et al., 1965], the lead term
in the compensatory pilot model of Eq. (3.2) was only included for the double integrator
ramp-tracking tasks performed in the current experiment. Hence, Fig. 3.18(b) only shows
estimated values of the visual lead time-constant for conditions D1-D5. Similar to the es-
timates ofKpe

for conditions S2 and S4, the estimated values ofTLe
are also found to

show less consistent results for the conditions where the disturbance signal was not present
(D2 and D4). The values ofTLe

obtained for conditions D1 and D3 with both the pure
compensatory and combined pilot models are very similar andhighly consistent with val-
ues reported for previous experiments that considered tracking tasks with double integrator
controlled elements, such as [McRuer et al., 1965; Hosman, 1996; Van der Vaart, 1992;
Beerens et al., 2009] and Chapter 2. Finally, both fitted models consistently predict a con-
siderable increase inTLe

, to 3-3.5 s, for condition D5 compared to the values measuredfor
D1 and D3. This would suggest that for following the steep R10ramp signals in the pres-
ence of the disturbance signal, the participants performedmarkedly more lead equalization
in the compensatory loop.

Figures 3.18(c), (d), and (e) depict the estimated values ofthe compensatory time delay
τe and the neuromuscular actuation model parameters (Eq. (3.3)). These parameters show
largely the same variation over the different experimentalconditions as observed forKpe

andTLe
. Estimates with deviating values and increased spread are obtained for the con-

ditions where the disturbance signal was not present, especially for the control tasks per-
formed with the single integrator controlled element. For the other conditions, Fig. 3.18(c)
shows average values ofτe of around 0.15 s for the control tasks with theKc/s dynam-
ics. For the double integrator control tasks, however, consistently higher values ofτe of
around 0.23 s are observed, a significant effect:F (1, 5) = 67.97, p < 0.05. As also rec-
ognized for the pure compensatory conditions S1 and D1 in Section 3.4.3, this difference
in compensatory time delay between control ofKc/s andKc/s

2 systems has been reported
in previous research and is a direct result of the required lead equalization during control
of the latter system [McRuer et al., 1965; McRuer and Jex, 1967a]. The neuromuscular
model natural frequencyωnm (see Fig. 3.18(d)) also shows to be affected by the controlled
element dynamics and is found to be around 14 and 11.5 rad/s for theKc/s andKc/s

2

tasks, respectively. The damping ratioζnm is found to be approximately constant over both
controlled elements at around 0.2.
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3.5 Discussion

This chapter investigated the modeling of human dynamics incontrol tasks where pre-
dictable target forcing function signals, consisting of multiple ramp-like changes in ref-
erence attitude, are tracked using a pursuit display. Basedon the SOP theory described
by McRuer et al. [1968], it would be expected that the use of predictable forcing function
signals might result in the adoption of a partially precognitive control strategy. In addition,
the use of a pursuit display would theoretically allow for using a pursuit tracking strategy.
For these reasons, the requirement for extending commonly applied compensatory tracking
models for more complex control tasks, such as the ramp-tracking tasks studied in this chap-
ter, was investigated. For this investigation, an experiment was performed in which control
behavior was measured in tracking tasks with single and double integrator controlled ele-
ment dynamics. These control tasks were performed with two different ramp target forcing
function signals with ramp steepnesses of 1 and 10 deg/s. In addition, the effects of the
presence of an additional quasi-random disturbance signalon the adopted control strategy
were evaluated.

Previous work that considered manual control behavior for more complex tasks than
pure compensatory tracking – most notably the work of Wasicko et al. [1966], Allen and
McRuer [1979], and McRuer and Krendel [1974] – suggests thatboth pursuit and precog-
nitive control can be modeled using a model of human behaviorthat combines closed-loop
compensatory control with open-loop feedforward operations on the reference signal. These
previous studies also proposed, but did not provide compelling validation with experimental
measurements, that for optimal feedforward control performance the adopted feedforward
control dynamics should be proportional – and most preferably equal – to the inverse of the
controlled element dynamics. As human feedforward controldynamics were anticipated
to not be perfect, this chapter proposed a model that yieldeda feedforward response pro-
portional to the inverse of the controlled element dynamics, but filtered by a first-order lag
and a pure time delay. In the proposed combined compensatoryand feedforward model,
this feedforward model was combined with a model of compensatory tracking behavior as
proposed and validated by McRuer et al. [1965].

The proposed combined compensatory and feedforward model was tested by fitting it to
time-domain measurements of tracking behavior collected for all ramp-tracking conditions
of the experiment. In addition, the model fit and model parameter estimates obtained for
this combined model were compared to the results obtained from fitting only the individ-
ual compensatory and feedforward response models to the same data. This comparison of
fitted models showed that for all conditions performed with the single integrator dynamics,
the proposed combined model best reproduced the measured control inputs, as indicated
by the highest VAF and lowest MSE values of all three fitted models. The strength of the
contribution of the modeled feedforward response was foundto be greatest for the condi-
tions that required the least compensatory control inputs,most notably for the condition
with single integrator dynamics, the low-steepness 1 deg/sramp signal, and no disturbance
forcing function signal. For the double integrator controltasks, the improvement in model
fit achieved with the combined model compared to the pure compensatory model was found
to be only modest. Estimated model parameters for the combined model indicate a reduc-
tion in the gain of the feedforward response for the conditions where the disturbance signal
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was present. Furthermore, this gain was also found to be significantly lower for the ramp-
tracking tasks performed with the double integrator dynamics than for all corresponding
conditions with single integrator controlled element. These results are consistent with the
observations made from the VAF and MSE comparison with the pure compensatory and
feedforward models. The results presented in this chapter therefore confirm the hypothe-
sis that for control tasks where increased compensatory control behavior is required – for
instance for the conditions where the low-steepness ramp signal was combined with the
quasi-random disturbance and for all double integrator control tasks – reduced feedforward
control power is adopted. This further implies that, to someextent, pure compensatory
modeling of manual control behavior might still be acceptable for such conditions.

The measurement of pure compensatory pilot dynamics for both single and double inte-
grator controlled element dynamics during tracking with only the quasi-random disturbance
signal yielded estimates of the compensatory model parameters that are highly consistent
with previous research [McRuer et al., 1965]. In addition, for the data from the tasks where
the same disturbance signal was applied in addition to a ramptarget signal, highly similar
compensatory model estimates were obtained, suggesting nearly constant compensatory hu-
man operator dynamics, even for tasks where behavior was found to be not purely compen-
satory. However, for the single integrator ramp-tracking tasks where the disturbance signal
was not present (conditions S2 and S4), the estimated parameters of the proposed combined
model indicate different human compensatory control dynamics, especially a somewhat
lower compensatory gain, for these cases that required lesscompensatory control inputs. To
what extent compensatory control dynamics are equivalent for purely compensatory control
and when additional pursuit or precognitive control strategies are applied, as suggested by
McRuer and Krendel [1974] and Wasicko et al. [1966], is deemed an important question
with respect to increasing our understanding of human manual control behavior. The ex-
perimental measurements presented in this chapter are not sufficiently conclusive to support
such a generalization, but future experiments are planned to further address this question
explicitly.

McRuer et al. [1968] did not only propose the different levels of the SOP theory to make
a distinction between the different types of control behavior that can be adopted, but also as
a set of consecutive stages in skill development during manual tracking. They hypothesize
that upon being confronted with an unfamiliar control task,human operators first utilize
the lowest SOP level of compensatory behavior. Then, depending on whether the defining
features of the control task allow for it, familiarization with the control task may induce
transition to the pursuit and precognitive levels. In the current experiment, ramp-tracking
behavior was measured in an experiment in which each condition was evaluated completely,
that is, training was performed and measurements were taken, before moving on the next
condition. The proposed model was fitted to measurement datafor subject who had exten-
sively familiarized themselves with the control task they were to perform and had reached
the end of their learning curve. Hence, for the behavior measured in this experiment the
subjects received ample opportunity for reaching the higher levels of tracking behavior as
proposed by the SOP theory. For manual control tasks performed in an operational environ-
ment, it is seldom that exactly the same control task or maneuver is executed repetitively.
Even though extensive familiarity with the controlled element is likely still present in most
cases, the performed maneuvers are likely not identical every time. One important question
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that therefore needs to be addressed for extending the results of this research to opera-
tionally relevant conclusions is how strong this effect of training and skill development on
the development of a feedforward control strategy, as modeled in this chapter, is.

The current experiment data and the fitted behavioral modelssuggest a decreasing con-
tribution of feedforward control inputs with a decrease in the relative control power required
for following the ramp target signal and that required for compensatory disturbance rejec-
tion. The same is observed when comparing measurements taken with single and double
integrator controlled elements, likely due to the fact thatfor the latter more (compensatory)
controlled element stabilization is typically required. The current experiment only consid-
ered a severely limited number of different measurement conditions to evaluate both these
effects and more experimental measurements are required for fully understanding these
adaptation processes. In a follow-up study to the experiment considered in this chapter,
which is described by Drop [2011], the effect of varying the relative power of the applied
ramp target and multisine disturbance signals on measured pilot control dynamics during
single-integrator control is evaluated over a wider range than considered for the experiment
in this paper. Research is currently being performed to clarify the relation between feedfor-
ward control dynamics and controlled element dynamics during ramp-tracking tasks. Even-
tually, this research effort is expected to yield an extension the theory of manual control
as compiled by McRuer et al. [1965] for purely compensatory tracking, including extended
behavioral models and practical mathematical rules for offline tuning of these models to
specific task variables, to more complex and operationally relevant control tasks.

3.6 Conclusions

The modeling of manual control behavior in control tasks where predictable forcing func-
tion signals, such as signals consisting of multiple ramp-like changes in target attitude, are
applied could require models of human behavior that accountfor both compensatory behav-
ior and feedforward operations on the reference signal. This chapter described the results
of an experiment and corresponding modeling effort aimed atrevealing if such dual-mode
models are indeed required for modeling the tracking of rampsignals. Due to the expected
effect of these task variables on the benefit and occurrence of this combined compensatory
and feedforward control strategy, target signals with different ramp steepnesses were con-
sidered in the experiment, as well as both single and double integrator controlled element
dynamics. Furthermore, due to possible suppression of sucha dual-mode control strategy
when an additional quasi-random disturbance forcing function is present, which can only
be attenuated through compensatory control, the differentramp signal and controlled ele-
ment settings were also evaluated both with and without suchan external disturbance being
present. Only a marginal improvement in model fit with the combined compensatory and
feedforward model compared to a purely compensatory model of tracking behavior was
observed for the experimental conditions performed with the double integrator controlled
element dynamics and those where the control inputs required for ramp-tracking were small
compared to those required for attenuating the disturbancesignal. This suggests that in the
presence of comparatively large external disturbances, orfor marginally stable controlled
element dynamics, a predominantly compensatory control strategy is adopted for the con-
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sidered ramp-tracking tasks performed with a pursuit display. For single integrator control
tasks where the ramp signal power is sufficiently large with respect to the external dis-
turbances that need to be attenuated, however, the proposedcombined compensatory and
feedforward model of pilot control dynamics was found to provide a consistently more ac-
curate fit of measured control inputs than a pure compensatory model, thereby suggesting
use was made of a control strategy more complex than purely compensatory tracking.
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4
Effects of Heave Washout

During Pitch Tracking

With the limited motion space available in typical moving-base flight simulators, perhaps
the largest discrepancies between the true aircraft motion and the motion cues presented
in the simulator are observed for the vertical degree-of-freedom. Due to the significant
amount of vertical aircraft motion that results from such maneuvers, longitudinal aircraft
control tasks were therefore thought to be of special interest to the research described in this
thesis. For this reason, two of the first experiments performed in this project focused on the
effects of the available motion cues on pilot tracking behavior during aircraft pitch attitude
control tasks. The first – which is described in [Zaal et al., 2009b] and [Zaal, 2011] – mea-
sured the individual and combined effects of the perceivable rotational pitch and vertical
heave motion cues, by independently varying their presence in a simulatedpitch control
task. The research described in this chapter was performed as a follow-up to the experi-
ment of Zaal et al. [2009b] to explicitly evaluate the effects of varying heave motion filter
settings on pilot tracking. Together with the experiment performed by Zaalet al. [2009b],
this experiment thereby served as an important reference for the comparison between pitch
tracking behavior measured in real flight and for varying motion cueing settings in a flight
simulator, as described in detail in the thesis by Zaal [2011]. Furthermore, the measured
effects of variations in heave washout filter settings observed in this chapter are also in-
cluded in the literature overview of reported effects of washout on pilot tracking behavior
and performance described in Chapter 5.

The contents of this chapter have been published as:

Pool, D.M., Zaal, P.M.T., Van Paassen, M.M., and Mulder, M.,“Effects of Heave Washout
Settings in Aircraft Pitch Disturbance Rejection”,Journal of Guidance, Control and Dynamics,
Vol. 33, No. 1, Jan-Feb, 2010, pp. 29-41.
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4.1 Introduction

Compared to aircraft, flight simulators are severely limited in their motion envelope. This
causes the generation of motion cues in flight simulation to be an inevitable compromise
between the desired level of motion cue fidelity and the available motion space. Since the
1970s, it has become common practice to use washout algorithms for transforming aircraft
rotational and linear accelerations to simulator motion [Schmidt and Conrad, 1970]. Such
washout algorithms typically use linear high- and low-passfilters to attenuate simulated
aircraft motion states both in magnitude (scaling) and in phase (washout). In addition to
the attenuation of the real aircraft motions, the washout performed by motion filters is also
known to result in false motion cues [Grant and Reid, 1997a].

Numerous studies in literature have shown that simulator washout filter settings affect
pilots’ perception and acceptance of simulator motion [Ringland and Stapleford, 1971; Jex
et al., 1978; Reid and Nahon, 1986b; Schroeder, 1999; Gouverneur et al., 2003; Telban
et al., 2005b]. In addition, it has been shown that the designand tuning of motion washout
filters is heavily dependent on the maneuver that is to be simulated [Hosman et al., 1979].
Therefore, insight into the effects of the rotational and linear motion components involved
in a specific maneuver, and their effect on pilots’ motion perception and control behavior,
is required for proper motion washout filter design. To achieve the optimal level of simu-
lator motion fidelity, those motion components that provideimportant feedback to the pilot
must be replicated at high accuracy, while those that are less likely to affect pilots’ control
behavior can be attenuated to save valuable simulator motion space.

An example of a piloting task for which this relative importance of the different perceiv-
able motion components is of interest, is a manual aircraft pitch attitude stabilizing task.
Zaal et al. [2009b] describe an experiment in which the effects of two different vertical mo-
tion components on pilot control behavior in a pitch attitude disturbance-rejection task have
been investigated, which they referred to as “pitch-heave”and “c.g. heave”. The first re-
sults from the fact that pilots are generally seated well in front of the aircraft center of pitch
rotation and that rotational pitch accelerations therefore cause correlated vertical (heave)
accelerations at the pilot station. In addition, changes inpitch attitude cause vertical motion
of the aircraft center of gravity, which yields a second component of the total heave mo-
tion. The results described in [Zaal et al., 2009b] indicatethat, because similar information
can be deduced from rotational pitch motion and the pitch-heave motion component, pilot
control behavior is affected by both these motion cues in a similar way.

The effects of pitch-heave on pilot performance and controlbehavior found by Zaal et al.
[2009b] were, however, significantly lower in magnitude than those of rotational pitch mo-
tion. In that experiment, pitch motion was presented one-to-one, as it would rarely exceed
plus or minus 5 degrees, but the heave motion was filtered using a third-order linear high-
pass filter. This motion filter was required for attenuating the high-magnitude low-frequency
c.g. heave motion and, to allow for fair comparison of both heave motion components, was
also used to filter the pitch-heave accelerations. The relatively lower magnitude of the ef-
fects of pitch-heave may therefore be partly explained by the heave motion filter used in this
experiment.

This chapter describes an investigation into the effects ofheave washout filter settings on
pilot control behavior in the same pitch tracking task as wasstudied by Zaal et al. [2009b].
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By varying the parameters of the heave washout filter, some insight into the effects of the
gain and phase attenuation induced by such linear filters on pilot skill-based control behavior
can be obtained. Due to the significant correlation between pitch and pitch-heave motion
during aircraft pitch maneuvering, it can be anticipated that the effects of degrading heave
motion cues by washout will have less impact when pitch motion is also present.

In this chapter, first some of the details of the considered pitch attitude disturbance-
rejection task will be described and, using data from the experiment performed by Zaal
et al. [2009b], the effect of the washout filter adopted in this previous experiment on the
supplied heave motion cues will be illustrated. Then, the setup of the current human-in-
the-loop experiment that was performed in the SIMONA Research Simulator (SRS) at Delft
University of Technology will be described in detail. In this experiment, different heave mo-
tion attenuation settings were tested, to allow for evaluation of the effects of heave washout
on pilot control behavior. Objective measurements of pilotcontrol behavior from the cur-
rent experiment will be presented and compared to results ofthe experiment described in
[Zaal et al., 2009b]. The chapter ends with a discussion and conclusions.

4.2 Heave Motion During Pitch Maneuvering

During aircraft pitch maneuvering, pilots’ motion sensation will not consist solely of physi-
cal pitch rotation. Due to aircraft geometry and dynamical responses, some additional linear
motion will also be perceivable, most notably vertical heave motion. In this section, the
heave motion cues associated with aircraft pitch control, the heave motion filter, and some
of the main trends that were observed in the experiment described by Zaal et al. [2009b]
will be discussed.

4.2.1 Heave Motion Components

As indicated in Fig. 4.1, Zaal et al. [2009b] made a distinction between two components of
the total vertical motion at the pilot station. The first, referred to as “pitch-heave” motion
and indicated with the symbolazθ in Fig. 4.1, represents the vertical motion that is a direct
result of the pitch rotation and the distance between the pilot station and the center of gravity,
l. A second contribution to the vertical motion pilots perceive during pitch maneuvering,
referred to as “c.g. heave” (azcg ), results from changes in aircraft altitude that are causedby
the changes in aircraft pitch. Note that this breakdown intovertical motion of the aircraft
c.g. and heave motion with respect to the c.g. could alternatively have been performed using
the instantaneous center of pitch rotation as described in literature [Field et al., 2002a].
However, due to the modest size of the aircraft considered inthis study, a Cessna Citation I,
the difference between both definitions is small.

The two distinct components of heave motion identified in [Zaal et al., 2009b] yield
highly different motion sensations at the pilot station. For pure pitching maneuvers, the
pitch-heave accelerations are linearly related to the second derivative of the aircraft pitch
attitude through:

azθ = −lθ̈ (4.1)
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c.g.
pilot station

θ, θ̇, θ̈

l

azcg
azcg + azθ

Figure 4.1. Motion cues at the center of gravity and pilot station during a pitch maneuver.

As indicated by this relation, the pitch-heave component ofthe vertical motion at the
pilot station essentially provides a vertical presentation of the aircraft’s pitching motion. For
a Cessna Citation I, the distance between the aircraft center of gravity and the pilot station
is approximately3.2 meters. As a result, the magnitude of this heave motion component is
relatively modest: for pitch attitudes between±5 deg, only±0.28 meters of vertical motion
space would be required for one-to-one presentation of the pitch-heave motion.

The pitch-heave accelerationsazθ are a high-pass response to elevator control inputs.
The c.g. heave component of the vertical motion, however, isa high-magnitude low-pass
response to an elevator input. As changes in aircraft altitude are typically in the order of
meters, one-to-one presentation of this component of vertical motion is not possible in most
full-motion flight simulators. The analysis of pilot control behavior described by Zaal et al.
[2009b] revealed that pilot control behavior during pitch tracking is affected by both pitch-
heave and c.g. heave motion. The investigation of the effects of heave washout on pilot
control behavior described in this paper, however, requires a baseline condition in which
heave motion is presented one-to-one. Therefore, the center of gravity heave component of
the vertical linear motion during pitch maneuvering could not be considered in the current
study.

4.2.2 Heave Motion Filter

A linear high-pass heave motion filter, as typically adoptedin motion base flight simulators,
was used for attenuating the aircraft heave motion in the experiment of Zaal et al. [2009b].
To achieve significant low-frequency attenuation, a third-order high-pass filter was used,
whose transfer function is given by:

Hmf (s) = Kmf
s2

s2 + 2ζnmf
ωnmf

s+ ω2
nmf

s

s+ ωbmf

(4.2)

In Eq. (4.2),Kmf represents the motion filter gain, which was set to 0.6. The filter
break frequencies,ωnmf

andωbmf
, and the damping factorζnmf

, which together define the
dynamical characteristics of the washout filter, were fixed to 1.25 and 0.3 rad/s, and 0.7,
respectively.

This washout filter was required for attenuation of the c.g. heave component of the
total vertical motion, but not for the pitch-heave motion component. Despite the fact that
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pitch-heave motion could be replicated one-to-one for the Citation I aircraft used in the
experiment of Zaal et al. [2009b], both heave motion components were attenuated by the
washout filter of Eq. (4.2), to allow for fair comparison of their respective effects on pilot
control behavior during pitch tracking.

Fig. 4.2 depicts the frequency response of the high-pass filter of Eq. (4.2). In addition,
the average spectrum of the aircraft pitch-heave accelerations measured by Zaal et al. for
their seven subjects is shown alongside (circles indicate disturbance signal frequencies).
Note the high-pass characteristic of the pitch-heave accelerations. Furthermore, observe
that the motion filter corner frequencies were chosen such that the main filter amplitude
attenuation did not affect the frequencies where the pitch-heave acceleration had the most
power. Finally, note from Fig. 4.2 that both filter break frequencies were also selected to be
significantly below the short-period frequency of the Citation dynamics,ωsp = 2.76 rad/s.
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Figure 4.2. Average pitch-heave acceleration
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and filtered heave motion (Zaal et al. [2009b]’s
motion filter).

Fig. 4.2 suggests that when the pitch-heave accelerations are attenuated by the motion
filter defined by Eq. (4.2), the resulting motion cues will nothave been attenuated much
in the frequency range where they hold the most power. This isfurther illustrated by the
top graph in Fig. 4.3, which shows a comparison of unfiltered and filtered pitch-heave ac-
celeration time traces. Note that the gain attenuation of0.6 is clearly visible, but hardly
any phase shift is observable from the acceleration time traces. As illustrated by the bottom
graph of Fig. 4.3, this no longer holds when the accelerationsignals are integrated to vertical
position, as the washout clearly reduces the magnitude of the simulator excursions.
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4.2.3 Observed Effects of Heave

One of the main findings of the experiment described by Zaal etal. [2009b] was that rota-
tional pitch motion and translational pitch-heave motion were found to have highly similar
effects on pilot performance and control behavior during pitch tracking. As the pitch-heave
acceleration component is directly related to pitch acceleration through Eq. (4.1), this was
hypothesized before the experiment was performed. The magnitude of the effects ofazθ
on pilot control behavior and performance were, however, found to be significantly lower
than those observed for rotational pitch motion. This is illustrated in Fig. 4.4, where the
time-domain variances of the tracking error signal and the pilot control signal are depicted
as measures of pilot performance and control activity, respectively.
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Figure 4.4. Effects of pitch and pitch-heave motion on tracking performance and control activity
(data from [Zaal et al., 2009b]).

Fig. 4.4 clearly illustrates that both tracking performance and control activity were found
to increase when rotational pitch motion was made available(lower σ2

e signifies better
tracking performance). In addition, note the similar but reduced effect of the addition of
pitch-heave motion, which is most clearly observed for the error variance data shown in
Fig. 4.4(a). Highly similar trends were visible in the underlying pilot control behavior.
From the analysis of the motion filter used by Zaal et al. [2009b] for their experiment, this
reduced magnitude of the effects of pitch-heave motion compared to rotational pitch motion
is believed to be at least partly due to the use of this motion filter. This warrants more re-
search into the effect of motion washout filters on pilot control behavior in attitude control
tasks.

4.3 Experiment

An experiment was performed on the SIMONA Research Simulator (SRS) at Delft Uni-
versity of Technology, to investigate the influence of heavemotion attenuation on pilot
control behavior in a pitch tracking task. This section describes the experimental method
and hypotheses. The control task, experimental procedures, and apparatus of the current
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experiment are equal to those of the experiment described in[Zaal et al., 2009b], to allow
for valid comparison of both sets of results.

4.3.1 Method

4.3.1.1 The Aircraft Pitch Control Task

To investigate the effects of heave motion attenuation on pilot behavior during aircraft pitch
control, control behavior was evaluated in the pitch control task depicted in Fig. 4.5. In this
task, a pilot controls the pitch angleθ of the controlled element (Hθ,δe(s)) by compensating
for deviations from the desired pitch attitude by minimizing the tracking errore as shown
on a compensatory display (Fig. 4.6). In addition to this visual information, continuous
feedback of physical pitch and pitch-heave motion is available. This yields a pilot response,
which is a summation of a visual responseHpe

(jω), a pitch motion responseHpθ
(jω),

a pitch-heave motion responseHpaz
(jω), and a remnant signaln, that accounts for the

nonlinear behavior.
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Figure 4.5. Schematic representation of a closed-loop pitch control task with pitch and pitch-
heave motion cues.

e

Figure 4.6. Compensatory display.

The controlled dynamics for the pitch attitude control taskare the elevator to pitch at-
titude dynamics of a Cessna Citation I Ce500, linearized at an altitude of 10,000 ft and an
airspeed of 160 kt. The transfer function of this controlledelement is given by:

Hθ,δe(s) = −10.6189
s+ 0.9906

s(s2 + 2.756s+ 7.612)
(4.3)
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Table 4.1. Experiment forcing function properties.

disturbance,fd target,ft
nd, – ωd, rad/s Ad, deg φd, rad nt, – ωt, rad/s At, deg φt, rad

5 0.383 0.344 -1.731 6 0.460 0.698 1.288
11 0.844 0.452 4.016 13 0.997 0.488 6.089
23 1.764 0.275 -1.194 27 2.071 0.220 5.507
37 2.838 0.180 4.938 41 3.145 0.119 1.734
51 3.912 0.190 5.442 53 4.065 0.080 2.019
71 5.446 0.235 2.274 73 5.599 0.049 0.441

101 7.747 0.315 1.636 103 7.900 0.031 5.175
137 10.508 0.432 2.973 139 10.661 0.023 3.415
171 13.116 0.568 3.429 194 14.880 0.018 1.066
226 17.334 0.848 3.486 229 17.564 0.016 3.479

The control input scaling gainKue,u, which defined the scaling of stick deflections to
model elevator inputs, was set to−0.2865 to yield optimal control authority. To induce
pitch attitude tracking errors that pilots needed to compensate for, target and disturbance
forcing function signals – denoted with the symbolsft andfd in Fig. 4.5, respectively –
were inserted into the closed-loop system as shown in Fig. 4.5. These forcing function sig-
nals were constructed as quasi-random sum-of-sines signals, as also used in many previous
research efforts [McRuer et al., 1965; McRuer and Jex, 1967a; McRuer and Krendel, 1974;
Van der Vaart, 1992; Hosman, 1996]. The same target and disturbance signals as adopted
by Zaal et al. [2009b] were also used for this experiment, yielding a control task in which
the disturbance-rejection element was dominant. The sum-of-sines signals were constructed
according to:

fd,t(t) =

Nd,t∑

k=1

Ad,t(k) sin(ωd,t(k)t+ φd,t(k)) , (4.4)

where the subscriptsd andt indicate the disturbance or target forcing function, respectively.
In Eq. (4.4),A(k), ω(k) andφ(k) indicate the amplitude, frequency and phase of thekth

sine infd or ft. N indicates the number of sines in the signals. The propertiesof the sine
components of both forcing function signals are given in Table 4.1.

4.3.1.2 Independent Variables

This study aims to investigate the effects of heave washout settings on the usefulness of
the pitch-heave component of heave motion during pitch attitude disturbance-rejection. As,
for the control task described in Section 4.3.1.1, no washout filter is in fact required for
replicating the pitch-heave accelerationsazθ in the SRS, the effects of a linear washout
filter in heave can be compared to a full motion case. Five different heave washout settings
will be considered in this experiment. The motion filter gains and break frequencies for
these five experimental conditions are depicted graphically in Fig. 4.7.

Heave conditions K0.0 and K1.0 represent conditions with noheave motion and one-to-
one heave motion, respectively. The combination of heave filter break frequency and gain
that was used for the experiment described in [Zaal et al., 2009b] is depicted by condition
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Figure 4.7. Graphical representation of heave
motion filter conditions.

Table 4.2. Heave motion filter settings.

condition
Kmf ωnmf

ωbmf
ζnmf

− rad/s rad/s −
K0.0 0 − − −
F0.6 0.6 1.25 0.3 0.7
F1.0 1 1.25 0.3 0.7
K0.6 0.6 − − −
K1.0 1 − − −

F0.6. Heave filter F1.0 has the same break frequency as used for F0.6, but has unity gain.
K0.6 has the same gain as condition F0.6, but with a break frequency of zero. These con-
ditions are expected to reveal if a possible reduction in usefulness of the heave motion is a
result of the gain attenuation (Kmf ) or of the phase shifts induced by the washout, whose
impact can be characterized by the value of the break frequenciesωnmf

andωbmf
.

The properties of the five heave filters used in the experimentare summarized in Ta-
ble 4.2. All five heave conditions will be performed with and without the presence of one-
to-one rotational pitch motion cues, as an interaction between heave filter settings and the
availability of pitch motion is anticipated. This means a total of 10 conditions were per-
formed in the experiment.

4.3.1.3 Dependent Measures

A number of dependent measures from the experiment were considered to be of interest.
First of all, the variances of the recorded error signale and control signalu were calculated
as measures of tracking performance and control activity inthe time domain, respectively.
In addition, a multimodal pilot model – defined in detail in Section 4.3.1.4 – was fitted to
the time-domain data using a genetic maximum likelihood (MLE) procedure [Zaal et al.,
2009a]. To evaluate the accuracy of the pilot model in the time domain, the variance ac-
counted for (VAF) was calculated using the measured pilot control signal and the output of
the linear pilot model [Nieuwenhuizen et al., 2008]. The changes in pilot model parame-
ters were used to quantify changes in pilot control strategyfor the different attenuations of
heave motion. The performance of the attenuation of the disturbance and target errors was
evaluated by calculating the crossover frequencies and phase margins of the disturbance and
target open-loop response, respectively.
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4.3.1.4 Pilot Model

The structure of the quasi-linear pilot model used in this study is shown in Fig. 4.5. It
consists of parallel linear responses to all perceived visual and physical motion cues, sup-
plemented with a remnant signaln to account for all nonlinearities. The model of the pilot
visual response, given by Eq. (4.5), is based on the work of McRuer et al. [1965] and was
shown to be suitable for modeling pilot control of the aircraft dynamics defined in Eq. (4.3)
in Chapter 2 of this thesis.

Hpe
(jω) = Kv

(1 + TLjω)
2

1 + TIjω
e−jωτvHnm(jω) (4.5)

In Eq. (4.5),Kv andτv represent the pilot visual gain and visual perception time de-
lay, respectively. The visual equalization characteristic is defined using the lead and lag
constants,TL andTI . The neuromuscular actuation dynamics are included through the neu-
romuscular system modelHnm(jω), which is assumed to be a second-order mass-spring-
damper system:

Hnm(jω) =
ω2
nm

(jω)2 + 2ζnmωnmjω + ω2
nm

(4.6)

The dynamics of the neuromuscular system are characterizedwith the second-order
system natural frequency and damping ratio,ωnm andζnm, which are both free parameters
of the pilot model. The pilot model for the no motion condition of the experiment (F0.0,
without pitch motion) consisted solely of Eqs. (4.5) and (4.6).

In literature, pilots’ responses to physical motion cues have often been described with
models that included only contributions from the human vestibular motion sensors [Van der
Vaart, 1992; Hosman, 1996; Zaal et al., 2009b], that is, the semicircular canals for rotational
motion and the otoliths for linear motion (specific forces).Pilot vestibular motion responses
to rotational motion have for instance been modeled successfully as:

Hpθ
(jω) = Km(jω)2Hsc(jω)e

−jωτmHnm(jω), (4.7)

in numerous previous experiments in which the effects of rotational motion feedback on pi-
lot tracking behavior was evaluated [Van der Vaart, 1992; Hosman, 1996; Pool et al., 2008b;
Praamstra et al., 2008; Zaal et al., 2009b; Nieuwenhuizen etal., 2008; Zaal et al., 2009c]. In
Eq. (4.7),Km andτm are the pilot motion response gain and time delay, respectively. The
frequency response functionHsc(jω), with Tsc1 = 0.11 s,Tsc2 = 5.9 s, andTsc3 = 0.005
s, represents the response of the human semicircular canalsto rotational acceleration inputs,
as described in literature [Hosman, 1996]:

Hsc(jω) =
1 + Tsc1jω

(1 + Tsc2jω)(1 + Tsc3jω)
(4.8)

Eq. (4.7) describes a pilot’s response to rotational motionfrom a physical perspective,
by making use of knowledge of the underlying physical motionperception processes. Due
to the fact that the the semicircular canals are sensitive torotational accelerations, and that
their dynamics are a single integrator in the frequency range of interest for human manual
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vehicular control, the model defined by Eq. (4.7) effectively provides additional pilot lead
– that is, a response to rotational velocity – in parallel to the lead generated from the visual
response (Eq. (4.5)). Despite the fact that the otoliths aresensitive to specific forces and
yield a sensation of linear acceleration [Hosman, 1996], pilots are known to integrate these
sensed accelerations to rates during manual control tasks to yield a lead contribution that is
highly similar to that obtained from the semicircular canals [Hosman et al., 2005].

This additional lead from the vestibular sensors is often stated to be superior to visual
lead due to the lower perceptual latency [Hosman, 1996]. Previous experiments, which
investigated control behavior in control tasks similar to the one depicted in Fig. 4.5, have
indeed shown that pilots substitute lead from physical motion stimuli, if available, for the
lead generated from visual information [Zaal et al., 2009b,c]. For the experiment described
in this paper, it is hypothesized that this additional lead information is present in both the
rotational pitch motion and the vertical pitch-heave motion. Therefore, the contribution of
the pitch and heave motion channels of the pilot model were combined. To achieve this,
both motion response channels are defined to take the form of apure lead with a time delay
on the pitching motion:

Hpθ
(jω) = Kmjωe

−jωτmHnm(jω) (4.9)

Hpaz
(jω) =

−1

l(jω)2
Hpθ

(jω) =
−Km

ljω
e−jωτmHnm(jω) (4.10)

For conditions with only heave motion, Eq. (4.10), which includes the distance between
the center of gravity and the pilot stationl, is included in the pilot model. For conditions
where pitch motion is present (including those with additional heave), only Eq. (4.9) is used
for modeling the pilot motion response. This approach allows for comparison of the pilot
model parameters that are of interest – mainly the visual lead constantTL and the motion
gainKm – over all conditions of the experiment. A validation of thismodeling approach
will be provided in Section 4.4.3.1 using experimental data.

4.3.1.5 Apparatus

The experiment was performed in the SRS at Delft University of Technology, see Fig. 4.8.
Pitch and heave motion cues were generated with the six degree-of-freedom SRS motion
system, which consists of six hydraulic actuators in a hexapod configuration. The SRS
motion system latency is30 ms [Berkouwer et al., 2005].

Subjects were seated in the right pilot seat. The compensatory visual display shown in
Fig. 4.6 was depicted on the right primary flight display in the SRS cockpit. The time delay
associated with the generation of visual images on the cockpit displays has been determined
to be around20-25 ms [Stroosma et al., 2007].

A sidestick with electrical control loading was used to givecontrol inputs to the con-
trolled aircraft dynamics, Eq. (4.3). The sidestick was defined to have no breakout force
and a maximum pitch axis deflection of±14 degrees. The stick roll axis was kept fixed at
the zero position. The stiffness of the stick was set to1.1 N/deg for stick deflections under
9 degrees, and to2.6 N/deg for larger stick excursions.
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Figure 4.8. The SIMONA Research Simulator.

4.3.1.6 Participants and Experimental Procedures

Seven subjects participated in the experiment. All participants were male and their ages
ranged from 23 to 47 years old. Four of the participants had experience as pilots of single
or multi-engine aircraft. The others had extensive experience with manual vehicle control
tasks from previous human-in-the-loop experiments. Before the start of the experiment, the
participants were briefed on the objective of the experiment and the experimental method.
The main instruction to the subjects was to minimize the pitch tracking errore presented on
the visual display, within their capabilities. After the end of each experiment run the subjects
were informed of their score in order to motivate them to perform at their maximum level
of performance.

The experiment had a balanced Latin square design, that is, the conditions were pre-
sented in quasi-random order. The subjects were trained on the task until they performed at
a stable level of performance. When five repetitions of each condition had been collected
at a stable performance level, the experiment was terminated. No fixed number of training
runs was defined prior to the experiment. On average, 9 to 10 repetitions of each exper-
imental condition were sufficient to gather the measurementdata. Typically, each subject
performed 16 runs, that is, two repetitions of all conditions, in between breaks. This allowed
each subject to complete the experiment in approximately 4 hours.

An individual experiment run was defined to last 90 seconds, of which the final 81.92
seconds were used as the measurement data. The first 8.08 seconds of data from each run
were discarded for analysis, to remove the initial transient response resulting from pilots
stabilizing the system dynamics. Data were logged at a frequency of 100 Hz.

4.3.2 Hypotheses

Based on the experiment described in [Zaal et al., 2009b] andother experiments on the
effects of motion attenuation on pilot performance and control behavior [Steurs et al., 2004;
Dehouck et al., 2006], some hypotheses can be formulated. Filtering pitch-heave motion
is hypothesized to yield lower tracking performance. This decrease is expected to be less
when, in addition, rotational pitch motion is present. As both types of motion give the same
information, the pitch motion then compensates for the lower fidelity pitch-heave motion.
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For the pilot model parameters it is hypothesized that as thefidelity of the motion is
increased, the visual and physical motion perception gainswill increase. In addition, the
visual lead is thought to decrease, as the additional motioncues provide a more efficient
source of lead information. The disturbance crossover frequency is thought to increase, ac-
companied by a decrease in disturbance phase margin. For thetarget crossover frequency
and phase margin the opposite trend to the disturbance crossover frequency and phase mar-
gin is anticipated when motion fidelity is increased. Furthermore, it is hypothesized that
one-to-one pitch-heave motion affects pilot performance and control behavior in the same
order of magnitude as one-to-one rotational pitch motion.

4.4 Results

This section presents the results of the human-in-the-loopexperiment. First, the effects of
variation of pitch and heave motion on tracking performanceand control activity are pre-
sented. Second, pilot-vehicle system crossover frequencyand phase margin – with respect
to both the disturbance and target signals used in the control task – are presented as measures
of combined pilot-vehicle system stability and bandwidth.Finally, changes in pilot control
behavior over the different motion conditions are analyzedexplicitly using the multimodal
pilot model introduced in Section 4.3.1.4. The statisticalsignificance of the results is iden-
tified, where possible, using a two-way repeated-measures analysis of variance (ANOVA)
that considers the effects of pitch and heave motion cues as separate factors.

4.4.1 Tracking Performance and Control Activity

Fig. 4.9 depicts the mean tracking performance and control activity – expressed in terms
of the variances of the error and control signals,e andu – for the ten conditions of the
experiment. Black data points indicate measurements for conditions without pitch motion;
data from the corresponding heave motion conditions with additional pitch motion are de-
picted with white squares. Variance bars indicate the 95% confidence intervals of the means
for each condition over the seven experiment subjects. For calculation of the confidence
intervals, the data were corrected for between-subject effects. Repeated-measures ANOVA
results for the data depicted in Fig. 4.9 are summarized in Table 4.3.

From Fig. 4.9(a) a clear difference in achieved tracking performance for runs with and
without pitch motion can be observed. This decrease inσ2

e when pitch motion cues were
available is a highly significant effect,F (1, 6) = 41.15, p < 0.05. In addition, heave mo-
tion fidelity was also found to affect control task performance significantly (F (1.3, 8.0) =
22.24, p < 0.05), as increased heave motion fidelity clearly yielded lower error signal
variances. Note from Table 4.3 that Mauchly’s test indicated a violation of the sphericity
assumption for the main effect of heave onσ2

e and that thus the conservative Greenhouse-
Geisser correction was applied.

The effect of heave motion settings on tracking performanceis found to be significantly
reduced when pitch motion cues are also available. Additionof heave motion is still found to
increase performance, but the effect is much smaller than for the corresponding conditions
without pitch. This reduced effect of heave motion fidelity for conditions with pitch motion
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Figure 4.9. Mean tracking performance and control activity.

Table 4.3. Two-way repeated-measures ANOVA results for tracking performance and control
activity.

Independent Dependent measures

variables σ2
e σ2

u

Factor df F Sig. df F Sig.

pitch 1,6 41.15 ∗∗ 1,6 9.24 ∗∗
heave 1.3,8.0gg 22.24 ∗∗ 1.6,9.8gg 6.95 ∗∗
pitch×heave 4,24 10.74 ∗∗ 4,24 1.22 −

∗∗ = highly-significant (p < 0.05) gg = Greenhouse-Geisser sphericity correction
∗ = significant (0.05 ≤ p < 0.1)
− = not significant (p ≥ 0.1)
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is also evident from the significant interaction found for both types of motion cues from the
ANOVA, F (4, 24) = 10.74, p < 0.05.

Fig. 4.9(b) clearly shows increased control activity both with increased heave fidelity
and when additional pitch motion cues are made available. These effects of pitch and heave
onσ2

u are both significant:F (1, 6) = 9.24, p = 0.023 andF (1.6, 9.8) = 6.95, p = 0.016,
respectively. In addition, the increase in control activity with increasing heave fidelity is
found to be more or less equal in magnitude with and without availability of pitch motion,
which is also supported by the insignificant interaction between pitch and heave motion
found forσ2

u, F (4, 24) = 1.22, p = 0.33.
The gray data shown in Fig. 4.9 depict the error and control signal variances measured

during the experiment of Zaal et al. [2009b] for the K0.0 and F0.6 heave motion conditions,
which were shared by both experiments. Note that the observed trends between these con-
ditions are highly similar for both sets of data, but that theaverage tracking performance for
these shared conditions was clearly better during the previous experiment than found from
the current data. Average control activity is also found to be markedly higher for the data
from [Zaal et al., 2009b]. To illustrate the origin of this discrepancy, average tracking per-
formance and control activity for the K0.0 and F0.6 conditions from the current experiment
are depicted in Fig. 4.10 alongside the individual subject data from [Zaal et al., 2009b],
shown in gray.

Fig. 4.10 illustrates that three of the subjects that performed the experiment of Zaal et al.
[2009b] can be characterized as achieving above average tracking performance (lowσ2

e ) and
adopting a comparatively high-gain control strategy (highσ2

u). The data measured during
the current experiment nicely coincide with the data from the remaining participants of the
previous experiment. For the current experiment, a more homogeneous group of subjects
was used, as all of them were comparatively low-gain controllers. Note that despite the
clear offset in the data of the different participants in Fig. 4.10, the observed trends are
remarkably consistent for all subjects, especially for theerror signal varianceσ2

e . This same
consistency was also observed for the data from the current experiment.

4.4.2 Crossover Frequencies and Phase Margins

As indicated in Section 4.3.1.1, the control task studied inthis experiment was a combined
disturbance-rejection and target-following task, in which the disturbance-rejection element
was made dominant by downscaling the target forcing function signal. For such a combined
task, the suppression of tracking errors induced by both forcing function signals determines
overall closed-loop system performance. The crossover frequencies and phase margins of
the open-loop response functions with respect to both target and disturbance signals can give
an indication of pilot-vehicle system performance and stability [Jex et al., 1978]. These
target and disturbance open-loop response functions can becalculated from time-domain
measurements according to [Zaal et al., 2009b]:

Hol,d(jωd) = −Ue(jωd)

δe(jωd)
, Hol,t(jωt) =

θ(jωt)

E(jωt)
(4.11)

In Eq. (4.11),Ue(jωd), δe(jωd), θ(jωt), andE(jωt) represent the Fourier transforms
– evaluated at the frequencies of the sinusoids in eitherfd or ft – of the signalsue, δe,
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Figure 4.10. Comparison of mean tracking performance and control activity during current
experiment with individual subject data from the experiment of Zaal et al. [2009b] for identical
motion conditions.

θ, ande as defined in Fig. 4.5. Fig. 4.11 depicts the average crossover frequencies and
phase margins that have been determined fromHol,d(jωd) andHol,t(jωt). The error bars
again indicate the 95% confidence intervals of the means for each condition over the seven
subjects. Furthermore, for calculation of the 95% confidence intervals, subject means of the
data shown in Fig. 4.11 have been corrected, in order to account for between-subject effects.
Table 4.4 summarizes the ANOVA results for the crossover data depicted in Fig. 4.11. Data
from the experiment described in [Zaal et al., 2009b] are shown in gray for reference. Note
again the offset between the data from both experiments, which reflects the influence of the
subjects with high-gain control strategies in the gray data.

First of all, note from Fig. 4.11 and Table 4.4 that the presence of pitch motion signif-
icantly affects both target and disturbance-loop crossover frequencies and phase margins.
A clear increase inωc,d of approximately 1 rad/s is observed when pitch motion is made
available (F (1, 6) = 176.15, p < 0.05), which is accompanied by a significant reduction
of disturbance-loop phase marginϕm,d (F (1, 6) = 23.40, p < 0.05) of around 10 deg.
Pitch motion cues are found to induce the opposite changes inthe target open-loop response
function: a significant decrease in crossover frequency (F (1, 6) = 40.37, p < 0.05) and a
significant increase in phase margin (F (1, 6) = 24.49, p < 0.05) are observed in Figures
4.11(b) and (d), respectively.

The variation in heave motion cues over the different experimental conditions also in-
duced some significant changes in the crossover frequenciesand phase margins shown in
Fig. 4.11. Table 4.4 indicates that the increase in disturbance crossover frequency with in-
creasing heave motion fidelity observed in Fig. 4.11(a) is statistically significant,F (4, 24) =
24.52, p < 0.05. Similar to the effects of pitch motion observed above, a marginally sig-
nificant decreasing trend in disturbance phase margin (F (4, 24) = 2.78, p = 0.05) is also
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Figure 4.11. Mean disturbance and target loop crossover frequency and phase margin.

Table 4.4. Two-way repeated-measures ANOVA results for crossover data.

Independent Dependent measures

variables ωc,d ϕm,d ωc,t ϕm,t

Factor df F Sig. df F Sig. df F Sig. df F Sig.

pitch 1,6 176.15 ∗∗ 1,6 23.40 ∗∗ 1,6 40.37 ∗∗ 1,6 24.49 ∗∗
heave 4,24 24.52 ∗∗ 4,24 2.78 ∗ 1.8,10.5gg 3.34 ∗ 1.7,10.4gg 9.06 ∗∗
pitch×heave 4,24 2.44 ∗ 4,24 0.83 − 4,24 1.15 − 4,24 0.40 −

∗∗ = highly-significant (p < 0.05) gg = Greenhouse-Geisser sphericity correction
∗ = significant (0.05 ≤ p < 0.1)
− = not significant (p ≥ 0.1)
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observed. Note that, compared to the no-heave conditions (K0.0),ωc,d andϕm,d are not sig-
nificantly different for the washout conditions (F0.6 and F1.0), both with and without pitch
motion. Rather, the sharp changes in disturbance crossoverfrequency and phase margin for
the conditions where heave motion without washout was present (K0.6 and K1.0), are the
cause of the significant main effects listed in Table 4.4.

The target-loop crossover frequency is found to be significantly less affected by vary-
ing levels of heave motion fidelity thanωc,d. A slight decreasing trend is observed with
increasing heave fidelity, mainly for the conditions where pitch motion was available in ad-
dition to unfiltered heave, but this effect is only marginally significant,F (1.8, 10.5) = 3.34,
p = 0.08. The target phase margin is seen to decrease when filtered heave motion cues are
made available (K0.6) and reduces even further when the filter gain is increased to unity
(K1.0). For the conditions where heave motion was presentedwithout washout,ϕm,t is
seen to increase again to roughly the same level as when no heave motion was available.
As can be verified from Table 4.4, this is a highly significant effect, F (1.7, 10.4) = 9.06,
p < 0.05.

As is clearly visible from Fig. 4.11, the trends in target anddisturbance loop crossover
frequency and phase margin observed for the different levels of heave motion fidelity appear
to be independent of the availability of additional pitch motion. This observation is sup-
ported by the ANOVA results listed in Table 4.4, as the interaction of pitch and heave shows
no significant effects on any of the crossover parameters. For the disturbance crossover fre-
quency, this interaction is close to statistically significant (F (4, 24) = 2.44, p = 0.074),
however, which can be explained by the fact that the increasein ωc,d with heave motion
fidelity appears slightly larger when pitch motion is not available.

Finally, note that all main trends in target and disturbance-loop crossover frequency and
phase margin with the addition of pitch and heave motion cuesas shown in Fig. 4.11 – that
is, an overall increase inωc,d andϕm,t and a corresponding decrease inωc,t andϕm,d –
are highly similar to findings from other experiments [Hosman, 1996; Van der Vaart, 1992;
Zaal et al., 2009b,c; Pool et al., 2008b].

4.4.3 Pilot Modeling Results

The marked variation in crossover frequencies and phase margins described in Section 4.4.2
hints at significant changes in pilot control behavior over the different motion conditions.
To quantify these possible shifts in pilot control strategy, a multimodal pilot model has been
fit to the measurement data using a time-domain maximum likelihood estimation technique
[Zaal et al., 2009a].

4.4.3.1 Pilot Model Validation

The use of the generic model given by Equations (4.9) and (4.10) for describing pilots’
responses to pitch and heave motion cues is a simplification compared to physical models
as the one defined by Eq. (4.7). Fig. 4.12 shows average pilot model frequency responses
that were estimated for the condition with only pitch motion(pitch motion, K0.0) for both
the physical and generic pilot motion response models. The visual response model was
that of Eq. (4.5) for both model fits. In addition to these model frequency responses, pilot
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describing functions calculated using a Fourier coefficients estimation method [Stapleford
et al., 1969; Van Paassen and Mulder, 1998] are shown for reference.
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Figure 4.12. Comparison of generic and physical pilot model fits forthe condition with pitch
and K0.0 heave motion.

Fig. 4.12 shows that the generic pilot model provides a fit to the measurement data that is
highly comparable to the fit of the physical model. The difference in VAF for both models is
less than 0.1%. The VAF is a measure often used in system identification for indicating the
percentage of the variance in the measured model output signal that can be explained by the
model [Nieuwenhuizen et al., 2008]. This small difference in VAF for both models depicted
in Fig. 4.12 indicates that they perform equally well in describing the measured pilot control
signal for the condition with only pitch motion. For modeling pilot heave motion responses
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Figure 4.13. Mean pilot model variance accounted for (VAF).

similar negligible differences were found between using a physical model, which included
otolith dynamics, and the generic model of Eq. (4.10).

To further illustrate the accuracy of the pilot modeling approach adopted in this paper,
Fig. 4.13 depicts the mean pilot model variance accounted for, for all conditions of the
experiment. Fig. 4.13 shows that the linear part of the pilotmodel is able to describe around
86% of the variance in the control signalu, and therefore provides an accurate fit, for all
conditions. The slightly decreased VAF found for the conditions with the unity gain washout
filter (F1.0) suggests slightly decreased linearity of pilot control behavior for this condition.
This may have been caused by the high gain on the filtered heavecues in this condition,
which made the desired heave motion but also the false cues generated by the washout more
perceivable.

4.4.3.2 Pilot Model Parameter Estimates

Fig. 4.14 depicts the mean pilot-model parameter estimatesfor all ten conditions of the
experiment. The error bars indicate the 95% confidence intervals of the means taken over
all seven participants of the experiment. The repeated-measures ANOVA results are given
in Tables 4.5 to 4.7. Note that the two-way repeated-measures ANOVA used to analyze all
other dependent measures could not be performed for the pilot model motion gainKm and
time delayτm, because these parameters are not available for the no motion condition. For
these two parameters, a one-way repeated-measures ANOVA was performed instead, with
a single factor (“motion”) that had nine levels, see Table 4.7.

Fig. 4.14(a) shows that the pilot visual gainKv was found to increase both when pitch
motion was made available and with increasing level of heavefidelity. As can be verified
from Table 4.5, both these effects were found to be statistically significant:F (1, 6) = 14.60,
p < 0.05 andF (4, 24) = 6.89, p < 0.05, respectively. In addition, Fig. 4.14(a) clearly
shows reduced effect of heave fidelity onKv if pitch motion is also present. This interaction
between pitch and heave motion was also found to be significant: F (4, 24) = 3.24, p =
0.029.
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Table 4.5. Two-way repeated-measures ANOVA results for visualchannel model parameters.

Independent Dependent measures

variables Kv TL TI τv

Factor df F Sig. df F Sig. df F Sig. df F Sig.

pitch 1,6 14.60 ∗∗ 1,6 51.10 ∗∗ 1,6 17.26 ∗∗ 1,6 10.43 ∗∗
heave 4,24 6.89 ∗∗ 4,24 29.21 ∗∗ 1.2,7.2gg 11.24 ∗∗ 4,24 5.73 ∗∗
pitch×heave 4,24 3.24 ∗∗ 4,24 5.12 ∗∗ 4,24 3.26 ∗ 4,24 4.45 ∗∗

Table 4.6. Two-way repeated-measures ANOVA results for neuromuscular system model pa-
rameters.

Independent Dependent measures

variables ωnm ζnm

Factor df F Sig. df F Sig.

pitch 1,6 22.01 ∗∗ 1,6 0.37 −
heave 1.6,9.6gg 5.04 ∗∗ 1.4,8.7 1.72 −
pitch×heave 4,24 2.67 ∗ 4,24 2.99 ∗

Table 4.7. One-way repeated-measures ANOVA results for motionchannel model parameters.

Independent Dependent measures

variables Km τm

Factor df F Sig. df F Sig.

motion 8,48 30.88 ∗∗ 8,48 10.69 ∗∗

∗∗ = highly-significant (p < 0.05) gg = Greenhouse-Geisser sphericity correction
∗ = significant (0.05 ≤ p < 0.1)
− = not significant (p ≥ 0.1)
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The pilot visual lead and lag time constants (see Figures 4.14(b) and (c)) show highly
similar trends over the different conditions of the experiment. Such apparent coupling be-
tweenTL andTI has also been observed in the experiment of Zaal et al. [2009b]. The
visual lead time constant is found to decrease significantlyif pitch motion cues are avail-
able,F (1, 6) = 51.01, p < 0.05. A generally decreasing trend inTL is also visible with
increasing heave fidelity, which is also found to be highly significant: F (4, 24) = 29.21,
p < 0.05. Finally, also a statistical significant interaction was found forTL (F (4, 24) =
5.11, p < 0.05), which is caused by the comparatively high value of the visual lead constant
for the no motion condition. The effects of pitch and heave motion on the lag time constant
TI were found to be similar to those found forTL, but slightly less statistically significant
(see Table 4.5). A high-pass motion filter as defined by Eq. (4.2) introduces some phase lead
on the supplied heave accelerations, (see Fig. 4.2). Figures 4.14(b) and (c) clearly show that
the visual lead and lag constants are found to be markedly lower for the conditions with
heave washout, that is F0.6 and F1.0, than for the equivalentconditions without washout
(K0.6 and K1.0). This marked decrease in the amount of visuallead pilots generated for
conditions F0.6 and F1.0 seems to indicate that the presenceof a high-pass washout fil-
ter reduces the amount of visual lead compensation requiredfrom pilots for stable attitude
control, and thereby clearly affects their adopted controlstrategy.

The identified values for the pilot motion gain shown in Fig. 4.14(d) show an increase
in Km when pitch motion is made available. In addition,Km is found to increase further
with increasing heave fidelity when pitch motion is also available. These two trends are
responsible for the statistically significant effect of thesupplied motion on the pilot motion
gain shown in Table 4.7,F (8, 48) = 30.88, p < 0.05. Post-hoc analysis indeed revealed
that no significant differences inKm were present for the conditions without pitch motion
(black data in Fig. 4.14(d)).

Despite the fact that changes in both pilot model time delaysappear to be relatively
modest from Figures 4.14(e) and (f), the ANOVAs performed onthe values found for both
parameters revealed the changes are significant effects (see Tables 4.5 and 4.7, respectively).
Both delays are found to be slightly higher for the conditions where pitch motion was avail-
able. In addition, a decreasing trend inτm with increasing heave fidelity can be observed
from Fig. 4.14(f).

The final two pilot model parameters shown in Fig. 4.14 are theneuromuscular system
eigenfrequencyωnm and damping factorζnm. The neuromuscular frequency is found to
increase both with the addition of pitch motion and with increasing heave fidelity. Despite
the relatively large error bars shown in Fig. 4.14(g), both these effects were statistically
significant:F (1, 6) = 22.01, p = 0.003 andF (1.60, 9.59) = 5.04, p = 0.037 for pitch
and heave, respectively. Such increases inωnm with increasing motion strength have also
been reported for other experiments [Pool et al., 2008b; Zaal et al., 2009b]. As can be
judged from Table 4.6, no significant main effects were foundfor the neuromuscular system
damping factorζnm.
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4.5 Discussion

Seven subjects participated in an experiment investigating the effects of heave washout set-
tings on pilot performance and control behavior in a pitch attitude disturbance-rejection
task. The effect of heave motion fidelity was investigated byindependently adjusting the
gain and break frequency of a third-order linear washout filter. All heave motion conditions
were performed with and without additional rotational pitch motion. The current experi-
ment has shown that the relatively small impact of pitch-heave on pilot control behavior,
compared to rotational pitch motion, found in a previous experiment performed by Zaal
et al. [2009b] was a result of the heave washout filter used in that study. Here, almost equal
performance and pilot control behavior were observed for the conditions with only rota-
tional pitch and only one-to-one pitch-heave motion, as expected from the linear relation
between both motion cues.

Pilot performance and control activity are found to be significantly reduced if the heave
motion is attenuated using a washout filter. If rotational pitch motion is available, the re-
duction is markedly smaller. The presence of washout is seento degrade performance and
control activity more than pure gain attenuation. In addition, the control strategy of the pilot
is found to be significantly affected when heave motion is attenuated, as seen by a change in
disturbance and target crossover frequencies and phase margins. The disturbance crossover
frequency is significantly increased when the fidelity of theheave motion is increased.

This change in control strategy is also reflected by significant changes in the identified
pilot model parameters. With increasing heave motion fidelity, the visual and motion per-
ception gains of the pilot model are seen to increase, while the visual lead decreases. The
increase in motion perception gain and the decrease in visual lead constant observed for
conditions with increased heave motion fidelity indicate that pilots will clearly prefer the
availability of lead information from these heave motion cues. Additionally, by increasing
heave motion fidelity, the visual and physical motion perception time delays increase and
decrease, respectively. This is further evidence of an increase in the usefulness of the motion
cues when the fidelity is increased. Crossover frequencies,phase margins, and pilot model
parameters show similar trends with and without additionalpitch motion.

The conditions with washout on the supplied heave motion (F0.6 and F1.0) show some
interesting results for the pilot visual lead in addition tothe observed global trends. The
visual lead for these conditions is lower compared to the conditions where the heave motion
is attenuated with only a gain. This could be explained by thefact that extra lead information
is present due to the high-pass washout filter characteristics, as can be seen in Fig. 4.2. The
extra lead that results from the presence of washout reducesthe need for the pilot to perform
lead equalization, allowing the visual lead constant to be reduced. However, this effect on
the generated visual lead does not seem to affect the remaining dependent measures.

Overall, it can be concluded that all attenuation of the heave motion as considered in this
experiment resulted in changes in pilot control behavior. Even a reduction in heave motion
gain to a value of 0.6, which is still stated to be quite acceptable in some publications, al-
ready shows significant degradation of tracking performance, pilot crossover frequency, and
the contribution of motion feedback to pilot control behavior, as indicated by a reduction in
the pilot model motion perception gain. The effect of the phase attenuation caused by the
addition of heave washout is clearly seen to further increase this discrepancy in pilot con-
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trol behavior with respect to the condition with one-to-oneheave motion. Though lower in
magnitude, these effects of heave motion fidelity are still observable even when additional
one-to-one pitch motion cues are available. As, within the limitations of the current experi-
ment, the condition where both pitch and pitch-heave motionwere presented one-to-one is
arguably the most representative of real flight, these findings suggest that it is highly prefer-
able to present motion cues that pilots might rely on in continuous aircraft control tasks at
the highest achievable level of motion fidelity.

Only part of the total vertical aircraft motion that occurs during pitch maneuvering was,
however, considered in the current study. Heave motion originating from movement of the
aircraft center of gravity was not simulated in the current experiment, as it can not be rep-
resented one-to-one. Based on the findings of Zaal et al. [2009b], center of gravity heave is
hypothesized to act as a disturbance on the remaining motioncomponents during pitch con-
trol and could therefore degrade pilot tracking performance compared to the condition with
one-to-one rotational pitch and pitch-heave motion. In that experiment, a non-significant
decrease in performance was observed with the addition of filtered c.g. heave motion, in
addition to a surprising increase in the amount of lead pilots generated visually, that is,
opposite effects to those found for pitch and pitch-heave motion. The addition of this c.g.
heave could therefore result in different results on the effects of pitch-heave and rotational
pitch motion on pilot performance and control behavior as described in this paper. Future
experiments, in which pilot control behavior for tracking tasks similar to the one described
here will be compared in real flight and in the simulator, are expected to show how the
effects of simulator washout measured in the current experiment compare to true in-flight
pilot control behavior.

The pilot model used in the present study contains a generic motion perception chan-
nel with only a lead term. This motion perception channel is applied for modeling both
the perception of heave and rotational pitch motion, as bothare shown to effectively yield
additional pilot lead. In the case of heave motion, only a factor is added to compensate
for the distance between the center of gravity and the pilot station. The proposed model
proved to be accurate in replicating the measured time-domain data, as is indicated by the
high VAF for all conditions. Furthermore, due to the difficulty in separating pilot responses
to the proprioceptive, somatosensory, and vestibular stimuli that result from physical mo-
tion cueing, the physical pilot models described in literature often attribute the total pilot
motion response to the dominant motion sensor, that is, the vestibular system for rotational
motion. Alternatively, the generic model used in this studylumps all separate contributions
together in a single generic model structure, which may be a preferred approach in future
experiments on pilot modeling.

The current study was performed for a Cessna Citation I aircraft, which has a relatively
small distance of 3.2 m between the center of gravity and the pilot station, while for typical
airliners this distance can be more than ten times larger. This also yields a much higher
magnitude of the pitch-heave component for an airliner, compared to the small aircraft used
in this experiment. In some dependent measures, such as pilot performance, the trend in the
data as a result of the heave motion attenuation was reduced when rotational pitch motion
was present. This may suggest that rotational pitch motion is more dominant than pitch-
heave motion if both are present. If the pitch-heave motion is larger in magnitude compared
to the current experiment, however, the trend as a result of the pitch-heave attenuation could
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also be more pronounced when rotational pitch motion is present. This topic may be covered
in future research.

4.6 Conclusions

An experiment was performed to investigate how pilot performance and control behavior
in an aircraft pitch control task are affected by attenuation of the associated heave motion
by a high-pass washout filter. When both are presented one-to-one, the effects of pitch and
heave motion on pilot control behavior were found to be highly similar. Pilot performance
and control activity are found to be significantly reduced, however, when the heave motion
is filtered or only attenuated with a gain. This reduction is smaller in magnitude if rotational
pitch motion is available in addition to the heave motion. The additional phase attenuation
caused by the third-order heave washout filter is found to affect tracking performance and
pilot control behavior more than pure gain attenuation. Thechanges in crossover frequen-
cies, phase margins, and the estimated pilot model parameters show that if the fidelity of the
heave motion is increased, pilots will rely more on these motion cues to improve their task
performance. This is mainly reflected by an increase in visual and motion perception gains,
and a decrease in pilot visual lead.
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5
Effects of Motion Filter

Settings on Tracking Behavior

A number of studies predating the work described in this thesis have been performed into
the effects of high-pass motion filter settings on pilot tracking behavior. In some of these
studies, these effects were measured for manual control tasks similar to those considered
in this thesis using comparable methods and compatible behavioral metrics.This chapter
describes an effort to combine the measured results of some of these individual experiments
and to identify consistent trends in typical metrics that are considered for theevaluation
of changes in pilot tracking behavior: estimated pilot model parameters,pilot-vehicle sys-
tem crossover frequencies and phase margins, and measures of tracking performance and
control activity. Data from a number of studies available in literature at the time of writ-
ing of this chapter, which include those of the experiments described in Chapters 4 and 6,
are included in this compilation effort. Furthermore, from this compiled data anattempt
is made to develop a set of equations that capture the observed trends in the data and can
be used to predict changes in the considered behavioral metrics basedon parameters that
define the high-pass motion filter settings. The prediction equations derivedin this chapter
are evaluated in Chapter 8 by comparing their results with behavioral measurements for a
roll tracking task for which a large number of different motion filter settings were tested.

The contents of this chapter are to be published as:

Pool, D.M., Damveld, H.J., Van Paassen, M.M., and Mulder, M.,“Prediction of Behavioral
Pilot Model Parameters for Given Motion Filter Settings”,Journal of Guidance, Control, and
Dynamics.
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5.1 Introduction

Much of our current knowledge on human manual control behavior has come from the
considerable database of behavioral measurements that have been collected for single-loop
compensatory tracking tasks [McRuer et al., 1965]. Using this extensive database, it has
been shown that single-loop pilot tracking behavior duringcompensatory tracking tasks can
be modeled at high accuracy using quasi-linear pilot models[McRuer et al., 1965; McRuer
and Jex, 1967a]. The fitting of such quasi-linear pilot models to measurements of pilot
tracking behavior has allowed for a quantitative evaluation of changes in pilot dynamics
due to a number of different factors, thereby increasing ourunderstanding of human opera-
tion during manual control. Furthermore, rules have been developed that allow for intuitive
tuning of such single-loop models of pilot tracking behavior to the defining features of the
considered control task, such as the dynamics of the controlled element and the characteris-
tics of the applied forcing function signals [McRuer et al.,1965; McRuer and Jex, 1967a].
This set of rules thereby allows for prediction of pilot control behavior during tracking for
certain combinations of controlled elements and forcing function signals without having to
resort to experimental evaluation of pilot control behavior and has shown its merit in various
areas of human-machine interaction research.

The presence of physical motion feedback of the controlled element state has been
shown to yield pilot control behavior during compensatory control tasks that is markedly
different from that observed for single-loop tasks where motion feedback is not available
[Shirley and Young, 1968; Jex et al., 1978]. To the question to what extent, and exactly how,
pilot tracking behavior is affected by the application of simulator motion cueing strategies
as commonly adopted in full-motion flight simulation, however, no satisfactory answer has
yet been found [Schroeder and Grant, 2010; Grant and Schroeder, 2010]. To answer this
question, and to allow for the prediction of changes in pilotbehavior due to a selected sim-
ulator motion cueing strategy, a set of rough tuning rules for incorporating the approximate
effects of cueing settings on pilot behavior into pilot models – preferably validated through
extensive experimental measurements – would be a valuable tool. Unfortunately, largely
due to the complexity of human perceptual processes and manual control behavior in mul-
timodal environments, such a standardized set of rules for pilot model tuning that includes
the effects of the supplied physical motion cues does not exists yet.

The research described in this thesis attempts to contribute to solving this problem by
tracing observed changes in measured pilot tracking behavior during tracking tasks with
physical motion feedback back to the selected flight simulator motion cueing settings. The
final objective of this study is to use these measurements of pilot behavior, and a comparison
with measurements of true in-flight tracking behavior, to define a behavioral flight simulator
motion fidelity criterion. Given a certain control task or maneuver, this criterion is meant to
allow for selecting a flight simulator motion cueing settingthat will yield pilot behavior that
is as close to that observed in real flight as possible. Despite not being representative for
all aspects of aircraft control, compensatory tracking tasks where physical motion feedback
is available in addition to visual error information are used in this study to evaluate the un-
derlying multimodal motion perception and integration processes that are important during
manual aircraft control. Similar to the single-loop case studied by McRuer et al. [1965],
these multimodal tracking tasks have been shown to allow forthe modeling, and thereby the
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explicit quantification, of changes in pilot control strategy by using quasi-linear multimodal
pilot models [Stapleford et al., 1969; Jex et al., 1978].

This chapter provides the results of an effort to compile data from a number of ex-
periments from which measurements of multimodal pilot behavior under varying motion
cueing conditions are available. Data have been collected from a number of investigations
performed at Delft University of Technology – [Steurs et al., 2004; De Vroome et al., 2009;
Van Wieringen et al., 2011] and the experiments described inChapters 4 and 6 – and from
a number of studies found in literature [Stapleford et al., 1969; Bergeron, 1970; Jex et al.,
1978; Van Gool, 1978; Bray, 1985]. This chapter provides a short overview of the scope
and setup of all these different experiments. The main objective of this chapter, however,
is to use the total set of collected data to identify consistent trends in typical dependent
measures of pilot control strategy and the parameters that define the applied motion cueing
setting. The main dependent measures by which the effect of simulator motion cueing on
pilot tracking behavior are evaluated in this chapter are:

1. tracking performance and control activity

2. pilot-vehicle system crossover frequencies and phase margins

3. identified multimodal pilot model parameters

A relation is sought between these different dependent measures of pilot tracking behav-
ior and typical metrics that quantify the level of simulatormotion attenuation by the motion
filter. Examples of metrics that are considered are the motion filter parameters (gain, break
frequency) and motion filter gain and phase distortion at a certain frequency, for example,
the 1 rad/s evaluation frequency proposed by Sinacori [1977]. A rudimentary set of pilot
model tuning rules will be obtained by fitting a linear regression through combinations of
dependent measures and motion fidelity metrics for which a clear correlation is present.

5.2 Background

5.2.1 Simulator Motion Fidelity

Due to severe limitations on the motion capabilities of flight simulators, motion washout
algorithms are required for attenuating and limiting the simulated aircraft motion. A large
diversity in washout algorithms has been developed over theyears [Schmidt and Conrad,
1970; Reid and Nahon, 1985; Telban et al., 2000]. One of the biggest challenges, however,
has been finding an appropriate criterion for the evaluationof simulator motion cueing fi-
delity and defining the minimum requirements for simulator motion cueing for pilot training
and other flight simulator applications.

One of the first efforts to define a structured and practical methodology for the assess-
ment of simulator motion fidelity was the work of Sinacori [1977], who proposed a motion
fidelity criterion based on the combination of motion filter gain and phase distortion intro-
duced by motion filters at a frequency of 1 rad/s. This frequency, though still the topic
of much debate, was selected as much of the activity during manual aircraft control was
thought to be centered around this frequency range. The criterion proposed by Sinacori was



Effects of Motion Filter Settings on Tracking Behavior 125

later modified and validated by Schroeder [1999] using subjective motion fidelity assess-
ments for various helicopter tasks.

Hess et al. [1993] defined a more analytical methodology for evaluating simulator mo-
tion fidelity from the effect of a motion filter on the dynamicsof the combined simulator,
aircraft, and pilot system in a flight simulator. For a helicopter lateral translational ma-
neuver, Hess et al. showed that their chosen criterion was indeed sensitive to variations in
motion cueing fidelity. Hess and Marchesi [2009] later showed this analytical method to
also be applicable to other types of aircraft and maneuvers.

The most recent effort into the formulation of a standard forthe assessment of flight
simulator motion fidelity is the work of Advani and Hosman [2006]. Their proposed mo-
tion fidelity criterion, which is currently being included in the ICAO 9625 manual for the
qualification of flight simulator devices [Anonymous, 2009], considers the dynamics of the
simulator motion hardware in addition to those of the motioncueing algorithm, and evalu-
ates the total motion cueing dynamics over a frequency rangethat is thought to be important
for manual aircraft control.

The work described in this thesis is part of a research effortthat attempts to develop
a framework for assessing simulator motion fidelity from measurements of pilot control
behavior. By measuring changes in pilot control behavior that result from applied changes
in simulator motion cueing it is hoped that some experimental validation of the criteria
proposed for evaluating simulator motion fidelity can be provided.

5.2.2 Pilot Tracking Behavior

Fig. 5.1 shows a generalized and extensive schematic representation of a closed-loop air-
craft manual tracking task performed in a flight simulator environment, which is valid for
the tracking tasks performed in all of the studies into the effects of motion filter dynamics
on pilot behavior considered in this chapter. The target anddisturbance forcing function
signals that induce pilot tracking behavior and thereby define the type of tracking task un-
der consideration (target following, disturbance rejection, or the combination of both) are
depicted in Fig. 5.1 with the symbolsft and fd, respectively. As can be verified from
Fig. 5.1, a distinction is made between simulator, pilot, and controlled element dynamics.
Simulator dynamics include the characteristics of the simulator visual and simulator mo-
tion cueing systems (Hsv (s) andHsm(s), respectively), in addition to the dynamics of the
applied motion filter which are indicated by theHmf (s) block.

ft u
−

es x

fd

ÿs

n

Hpv(s)

Hpm(s)

δc

−

Pilot

Ks

+ +
+

+
+

visual response

motion response

Hÿ,x(s)

Controlled element

e
Hsv(s)

Hsm(s)

Simulator

ÿmf
Hmf(s)

ÿ

uc
Hc(s)

ÿ

controlled dynamics

motion dynamics

Figure 5.1. Schematic representation of a compensatory tracking task with motion feedback.



126 Chapter 5

As can be verified from Fig. 5.1, this study considers controltasks for which pilot con-
trol behavior can be represented as the sum of two parallel responses to visual and motion
information [Stapleford et al., 1969]. The pilot visual responseHpv

(s) captures pilots’ con-
trol dynamics in response to presented tracking errorses, while the pilot motion response
Hpm

(s) models pilots’ responses to cued motion informationÿs. The remnantn, which
accounts for the portion of the pilot control inputu that is not correlated with the forcing
function signals – resulting, among others, from pilot-injected noise and nonlinear and non-
steady control operations [McRuer and Jex, 1967a] – completes this quasi-linear model of
pilot tracking behavior.

The controlled element dynamics are defined to consist of twoseparate parts: the con-
trolled dynamics and the motion dynamics. The former,Hc(s), are the dynamics that drive
the vehicle state that is controlled by the pilot,x. The motion dynamicsHÿ,x(s) define
the transformation from the controlled statex to the variable that enters the pilot’s motion
response channelHpm

(s). WhenHpm
(s) captures pilots’ responses to angular or trans-

lational cues perceived through the vestibular system (through the semicircular canals or
otoliths, respectively)[Hosman, 1996] – as is the case for most control tasks considered in
this chapter – motion cueing provides pilots with feedback of the acceleration of the con-
trolled element state, soHÿ,x(s) = s2. However, more extensive transformations between
controlled state and motion feedback quantities exist in some studies, for instance for the
aircraft pitch control tasks with variation in the coupled heave motion cueing considered in
Chapter 4 and [Zaal et al., 2009b]. Finally, the gainKs accounts for the scaling of pilot con-
trol inputs, such as results from a control input to control surface deflection gearing ratio,
that is present in some of the considered studies.

5.2.3 Motion Fidelity and Tracking Behavior

As can be verified from Fig. 5.1, the closed-loop pilot-vehicle system dynamics in a closed-
loop control task will be affected by the presence of a motionfilter. For instance, the follow-
ing relations can be derived from Fig. 5.1 for the disturbance and target open-loop responses,
whose crossover frequencies and phase margins can be used for assessing closed-loop pilot-
vehicle system performance and stability for disturbance rejection and target-following, re-
spectively [Jex et al., 1978]:

Hol,d(s) = −Uc(s)

δc(s) (5.1)

= [Hsv (s)Hpv
(s) +Hÿ,x(s)Hmf (s)Hsm(s)Hpm

(s)]KsHc(s)

Hol,t(s) =
X(s)

E(s)
=

Hsv (s)Hpv
(s)KsHc(s)

1 +Hÿ,x(s)Hmf (s)Hsm(s)Hpm
(s)KsHc(s)

(5.2)

Similarly, the corresponding closed-loop forcing function to error responses, which are
indicative of the success of the closed-loop system depicted in Fig. 5.1 in attenuatingfd and
following ft, are given by:
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He,fd(s) =
E(s)

Fd(s) (5.3)

=
−Hc(s)

1 + [Hsv (s)Hpv
(s) +Hÿ,x(s)Hmf (s)Hsm(s)Hpm

(s)]KsHc(s)

He,ft(s) =
E(s)

Ft(s) (5.4)

=
1 +Hÿ,x(s)Hmf (s)Hsm(s)Hpm

(s)KsHc(s)

1 + [Hsv (s)Hpv
(s) +Hÿ,x(s)Hmf (s)Hsm(s)Hpm

(s)]KsHc(s)

First of all, Equations (5.1) to (5.4) indicate that the effect of the motion filter dynamics
Hmf (s) on these open-loop and closed-loop relations depends on thedynamics of all other
elements shown in Fig. 5.1. In addition, compared to the casewhere no motion filter is
present (Hmf (s) = 1), pilots may adapt their control dynamics in response to a motion
filter with certain dynamics being introduced to (partially) compensate for the effect the
motion filter dynamics have on the closed-loop system. The most elementary example that
can be given is the case where motion cues are attenuated by a pure gain,Hmf (s) = K.
As long as the gain does not cause the motion cues to become smaller than human motion
perception thresholds [De Vroome et al., 2009], pilots could simply respond to the lower
magnitude motion information (̈ys) with a higher gain. If they succeed in increasing the gain
of Hpm

(s) with approximately1/K, this means the governing open-loop and closed-loop
dynamics remain approximately the same, as can be verified from Eqs. (5.1) to (5.4).

Much like the work of Hess et al. [1993], this project is concerned with the effects of the
presence of a motion filter on the dynamics of the closed-looppilot-vehicle system as de-
picted in Fig. 5.1. However, unlike previous work on this topic, the focus is on investigating
how changes in these closed-loop dynamics resulting from the presence of such a motion fil-
ter might induce changes in pilot control behavior and to obtain quantitative measurements
of these changes in pilot behavior from human-in-the-loop evaluations.

5.3 Method

5.3.1 Selection Criteria: Dependent Measures

A large number of studies have been dedicated to the evaluation of the effects of simulator
motion cueing on pilot performance, motion perception, andcontrol behavior. An excellent
recent overview of a large number of these studies is given bySchroeder and Grant [2010].
For the current chapter, only a specific subset of the large body of literature on the effects
of motion filters is of interest due to the focus on measured changes in pilot behavior. The
main requirement for a study to be included in this overview is that it should provide data for
some behavioral metric measured over a number of different motion cueing conditions, most
preferably in terms of explicit measurements of pilots’ control dynamics. The pilot visual
and motion responses –Hpv

(jω) andHpm
(jω), respectively – accounted for in Fig. 5.1
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are typically modeled with linear models that can be deducedfrom or are equivalent to the
equations given by:

Hpv
(jω) = Kv

(1 + TLjω)
2

1 + TIjω
e−jωτvHnm(jω) (5.5)

Hpm
(jω) = KmHm(jω)e−jωτmHnm(jω) (5.6)

Hnm(jω) =
1

(
jω

ωnm

)2

+ 2ζnm

ωnm
jω + 1

(5.7)

Eq. (5.5) defines the most elaborate form of the modeled pilotresponse to visual cues
considered in this study, consisting of a pure gain, a lead-lag equalization element, a pure
delay term, and the low-pass neuromuscular actuation dynamics model given by Eq. (5.7).
As detailed in Chapter 2, the full lead-lag equalization element shown Eq. (5.5) is required
for capturing pilot dynamics during control of certain conventional aircraft pitch dynamics,
but may, for instance, be reduced to a pure first-order lead ora pure gain for controlled
elements that have approximately double or single integrator dynamics in the crossover
region, respectively [McRuer et al., 1965].

For modeling of pilots’ responses to motion information, typically models of the form of
Eq. (5.6) are adopted. Similar to the model for the pilot visual response, these models also
include pure gain and pure delay terms and the same neuromuscular actuation model. In
addition, Eq. (5.6) includes the further unspecifiedHm(jω) term, which represents further
possible contributions to the pilot motion dynamicsHpm

(jω) such as (vestibular) sensory
dynamics and possible equalization dynamics, similar to the lead-lag element in Eq. (5.5). In
this chapter, analysis of pilot tracking behavior is limited to relative changes in the measure-
ments of the pilot motion gainKm and delayτm. For this reason, the remaining dynamics
of pilots’ motion responses as modeled in Eq. (5.6) byHm(jω) are not further considered.

Table 5.1 lists the full set of dependent measures selected for the overview of motion
filter effects provided by this chapter. In addition to the parameters of the considered be-
havioral models of pilot behavior listed in the final column of Table 5.1, two additional
groups of dependent measures are considered: performance measures and pilot-vehicle sys-
tem crossover characteristics. In many studies into the effects of motion cueing on pilot
behavior, performance measures such as the variance of the recorded tracking error and
control signals are considered as dependent measures, as these metrics are often found to
signal underlying changes in pilot behavior. Similarly, pilot-vehicle system crossover pa-
rameters reveal how possible changes in pilot behavior affect the dominant characteristics
of the combined open-loop pilot-vehicle system in the important frequency range around
gain crossover [McRuer et al., 1965]. Note that due to the different open-loop response
definition for target-following and disturbance-rejection tasks [Jex et al., 1978], see Equa-
tions (5.1) and (5.2), crossover frequencies and phase margins for both target-following and
disturbance-rejection loops are separated.
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Table 5.1. Considered dependent measures.

Category Symbol Definition

Performance Measures
σ2
e Tracking error variance
σ2
u Control input variance

Crossover Characteristics

ωc,d Disturbance crossover frequency
ωc,t Target crossover frequency
ϕm,d Disturbance phase margin
ϕm,t Target phase margin

Behavioral Parameters

Kv Pilot visual (error) gain
TL Pilot visual lead time constant
TI Pilot visual lag time constant
Km Pilot motion gain
τv Pilot visual delay
τm Pilot motion delay
ωnm Neuromuscular system natural frequency
ζnm Neuromuscular system damping ratio

5.3.2 Predictors: Motion Fidelity Measures

For attenuating the simulated aircraft motion and for washing out flight simulator motion
typically a combination of gain attenuation and high-pass filtering is adopted in flight simu-
lation [Schmidt and Conrad, 1970]. Due to the fact that the required amount of attenuating
and filtering is highly dependent on the vehicle, maneuver, simulator axis, and perhaps even
the pilot who is executing the maneuver, there is quite some variation in the dynamics of
the adopted washout filter dynamics (Hmf (jω) in Fig. 5.1). For the studies considered in
this chapter, washout dynamics vary from zeroth order (puregain) to third-order high-pass
filters:

zeroth order: Hmf (s) = K (5.8)

first order: Hmf (s) = K
s

s+ ωn
(5.9)

second order: Hmf (s) = K
s2

s2 + 2ζnωns+ ω2
n

(5.10)

third order: Hmf (s) = K
s2

s2 + 2ζnωns+ ω2
n

s

s+ ωb
(5.11)

The washout filter order has a dominant effect on the level of fidelity of the supplied
simulator motion cues. For constant parameter settings, motion fidelity decreases with in-
creasing filter order, as increasingly more low-frequency motion is attenuated and phase
distortion increases rapidly for higher order filters. The level of motion fidelity is of course
also affected by the parameters of the different washout filters listed in Eq. (5.8) to (5.11)
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define the level of supplied motion fidelity. Generally higher filter gainsK and lower (dom-
inant) break frequenciesωn correspond to higher fidelity motion cueing [Sinacori, 1977].

The objective of this study is to relate measured changes in any of the dependent mea-
sures listed in Table 5.1 to some important measure of simulator motion fidelity. If a clear
correlation exists between some combination of dependent measure and fidelity measure,
this means that this fidelity measure can be used as a predictor for the observed change in the
dependent measure. A natural first choice for measures of motion fidelity are of course the
washout filter parameters: the filter gainK, the filter break frequencyωn, the filter damping
ratio ζn, and the additional first-order filter break frequencyωb. The dominant parameters
with the largest effect on the washout filter dynamics are thefilter gainK and (for third-
order filters) the filter break frequencyωn. Hence, these two parameters were selected as a
first set of possible predictor variables.

Filter parameters, however, do not account for the effect offilter order. This makes
comparison of the level of motion fidelity by evaluating these parameters between studies
with different order washout filters difficult. This was alsorecognized by Sinacori [1977],
who therefore proposed the usage of the gain and phase distortion at a frequency of 1 rad/s
induced by the motion filter as indicators of motion fidelity:

KS = |Hmf (jω)| with ω = 1 rad/s (5.12)

φS = ∠Hmf (jω) with ω = 1 rad/s (5.13)

The motion filter gain and phase distortion at a certain evaluation frequency are, of
course, a function of the filter order in addition to the filterparameters. Furthermore, it
should be noted that in addition to the filter order,φS is only affected by the washout dy-
namics and hence the selected value ofωn (assuming constantζn andωb). The absolute
value ofHmf (jω), however, is not only affected by the filter gainK, but also by the filter
break frequencyωn. This makesKS a metric that captures, to some extent, the cumulative
effect of variations in filter gain and break frequency.

In addition to the motion filter gain and phase distortion at 1rad/s as given by Eqs. (5.12)
and (5.13), also other evaluation frequencies – such as 0.5 and 2, and 3 rad/s – were con-
sidered as fidelity metrics in this study. This chapter, however, will only analyze trends in
the dependent measures as a function ofKS andφS , as the other evaluation frequencies
were not found to yield markedly different results for the considered set of experimental
measurements.

5.3.3 Selected Studies

Tables 5.2 and 5.3 present the details of the ten studies withtranslational and rotational
motion cueing variations, respectively, that have so far been included in the data base con-
sidered in this chapter. In addition to a short description of the considered control task,
Tables 5.2 and 5.3 present the motion filter dynamics and the different sets of motion filter
parameters evaluated in each study. Fig. 5.2 further depicts the motion filter dynamics eval-
uated in all studies in the form of the motion fidelity criterion proposed by Sinacori [1977],
using the definition of the different fidelity regions proposed by Schroeder [1999].



Effects of Motion Filter Settings on Tracking Behavior 131

Ta
bl

e
5.

2.
S

tu
di

es
w

ith
tr

an
sl

at
io

na
lm

ot
io

n
cu

ei
ng

va
ria

tio
n

in
cl

ud
ed

in
th

e
lit

er
at

ur
e

ov
er

vi
ew

.

S
ym

b.
R

ef
.

C
on

tr
ol

Ta
sk

F
ilt

er
F

ilt
er

S
et

tin
gs

T.
A

C
ha

pt
er

4

C
on

ve
nt

io
na

l
ai

rc
ra

ft
pi

tc
h

co
nt

ro
l

ta
sk

(t
ar

ge
t-

fo
llo

w
in

g
an

d
di

st
ur

ba
nc

e-
re

je
ct

io
n,

la
tte

r
do

m
in

an
t)

,
C

es
sn

a
C

ita
tio

n
co

nt
ro

lle
d

el
em

en
t

dy
na

m
ic

s,
va

ry
in

g
tr

an
sl

at
io

na
l

he
av

e
cu

ei
ng

,
he

av
e

cu
es

re
pr

es
en

tm
ot

io
n

w
rt

.
ai

rc
ra

ft
ce

nt
er

of
gr

av
ity

,
ad

di
tio

na
l

1-
to

-1
ro

ta
tio

na
lp

itc
h

m
ot

io
n

on
/o

ff

K
s
2

s
2
+

2
ζ
n
ω
n
s
+

ω
2 n

s
s
+

ω
b

T
.A

1
:

K
=

0
.0

T
.A

2
:

K
=

0
.6

ω
n

=
1
.2
5
r/

s
ζ
n

=
0
.7

ω
b
=

0
.3

r/
s

T
.A

3
:

K
=

1
.0

ω
n

=
1
.2
5
r/

s
ζ
n

=
0
.7

ω
b
=

0
.3

r/
s

T
.A

4
:

K
=

0
.6

T
.A

5
:

K
=

1
.0

T.
B

[V
an

W
ie

rin
ge

n
et

al
.,

20
11

]C
on

ve
nt

io
na

l
ai

rc
ra

ft
pi

tc
h

co
nt

ro
l

ta
sk

(t
ar

ge
t-

fo
llo

w
in

g
an

d
di

st
ur

ba
nc

e-
re

je
ct

io
n)

,
B

oe
in

g
74

7
co

nt
ro

lle
d

el
em

en
t

dy
na

m
ic

s,
va

ry
in

g
tr

an
sl

at
io

na
l

he
av

e
cu

ei
ng

,
he

av
e

cu
es

re
pr

es
en

t
m

ot
io

n
w

rt
.

ai
rc

ra
ft

ce
nt

er
of

gr
av

ity
,

ad
di

tio
na

l1
-t

o-
1

ro
ta

tio
na

lp
itc

h
m

ot
io

n
on

/o
ff

K
s
2

s
2
+

2
ζ
n
ω
n
s
+

ω
2 n

s
s
+

ω
b

T
.B

1
:

K
=

0
.0

T
.B

2
:

K
=

0
.5

ω
n

=
0
.5

r/
s

ζ
n

=
0
.7

ω
b
=

0
.3

r/
s

T
.B

3
:

K
=

0
.7

ω
n

=
1
.2
5
r/

s
ζ
n

=
0
.7

ω
b
=

0
.3

r/
s

T
.B

4
:

K
=

0
.3

ω
n

=
0
.8
5
r/

s
ζ
n

=
0
.7

ω
b
=

0
.3

r/
s

T.
C

[B
ra

y,
19

85
]

H
el

ic
op

te
r

tr
an

sl
at

io
na

l
he

av
e

co
nt

ro
l

ta
sk

,
va

ry
in

g
he

av
e

m
ot

io
n

cu
ei

ng
,

se
p-

ar
at

e
ta

rg
et

-f
ol

lo
w

in
g

an
d

di
st

ur
ba

nc
e-

re
je

ct
io

n
ta

sk
s,

he
lic

op
te

r
dy

na
m

ic
s

w
ith

“g
oo

d”
an

d
“s

lig
ht

ly
de

gr
ad

ed
”

ve
rt

ic
al

re
sp

on
se

s

K
s
2

s
2
+

2
ζ
n
ω
n
s
+

ω
2 n

T
.C

1
:

K
=

1
.0

ω
n

=
0
.2

r/
s

ζ
n

=
0
.7

T
.C

2
:

K
=

1
.0

ω
n

=
0
.5

r/
s

ζ
n

=
0
.7

T
.C

3
:

K
=

1
.0

ω
n

=
1
.2
5
r/

s
ζ
n

=
0
.7

T.
D

[S
te

ur
s

et
al

.,
20

04
]

C
on

ve
nt

io
na

l
ai

rc
ra

ft
pi

tc
h

at
tit

ud
e

ta
rg

et
-f

ol
lo

w
in

g
ta

sk
,

C
es

sn
a

C
ita

tio
n

co
nt

ro
lle

d
el

em
en

t
dy

na
m

ic
s,

va
ry

in
g

tr
an

sl
at

io
na

l
he

av
e

cu
ei

ng
,

he
av

e
cu

es
re

pr
es

en
t

m
ot

io
n

w
rt

.
ai

rc
ra

ft
ce

nt
er

of
gr

av
ity

,
th

re
e

le
ve

ls
of

ad
di

tio
na

l
ro

ta
tio

na
lp

itc
h

cu
ei

ng
(K

=
0
.0

,
0
.5

,
an

d
1
.0

)

K
s
2

s
2
+

2
ζ
n
ω
n
s
+

ω
2 n

T
.D

1
:

K
=

0
.0

T
.D

2
:

K
=

0
.1

ω
n

=
0
.7
5
r/

s
ζ
n

=
0
.7

T
.D

3
:

K
=

0
.5

ω
n

=
2
.0

r/
s

ζ
n

=
0
.7



132 Chapter 5

Table
5.3.

S
tudies

w
ith

rotationalm
otion

cueing
variation

included
in

the
literature

overview
.

S
ym

b.
R

ef.
C

ontrolTask
F

ilter
F

ilter
S

ettings

R
.A

C
hapter

6

C
onventional

aircraft
roll

control
task

(com
bined

target-follow
ing

and
disturbance-

rejection
task),

C
essna

C
itation

controlled
elem

ent
dynam

ics,
varying

rotational
roll

cueing,
no

com
pensation

for
lateral

specific
force

cues
resulting

from
sim

ulator
roll

K
s

s
+

ω
n

R
.A

1
:

K
=

0
.0

R
.A

2
:

K
=

0
.5

ω
n

=
0
.5

r/
s

R
.A

3
:

K
=

1
.0

ω
n

=
0
.5

r/
s

R
.A

4
:

K
=

1
.0

ω
n

=
0
.0

r/
s

R
.B

[D
e

V
room

e
etal.,2009] P

itch
attitude

control
task

(dom
inant

target-
follow

ing
and

dom
inantdisturbance-rejection

tasks
perform

ed
separately),double

integrator
controlled

elem
ent

dynam
ics,

pure
scaling

of
the

supplied
pitch

m
otion

cues
(no

w
ashout) K

R
.B

1
:

K
=

0
.2
5

R
.B

2
:

K
=

0
.5

R
.B

3
:

K
=

0
.7
5

R
.B

4
:

K
=

1
.0

R
.C

[S
tapleford

etal.,1969] R
oll

attitude
control

task
(com

bined
target-

follow
ing

and
disturbance-rejection

task),tw
o

controlled
elem

ents:K
/
(s
(s

+
1
0
))

and
K
/
s
2,priority

IIIconditions

K
s

s
+

ω
n

R
.C

1
:

K
=

1
.0

ω
n

=
0
.5

r/
s

R
.C

2
:

K
=

1
.0

ω
n

=
1
.0

r/
s

R
.C

3
:

K
=

1
.0

ω
n

=
2
.0

r/
s

R
.D

[B
ergeron,1970]

Tw
o-axis

pitch
and

yaw
attitude

disturbance-
rejection

task,
single

integrator
controlled

el-
em

ent
dynam

ics
in

both
axes,

pure
scaling

of
the

supplied
pitch

m
otion

cues
(no

w
ashout) K

R
.D

1
:

K
=

0
.0

R
.D

2
:

K
=

0
.0
6
2
5

R
.D

3
:

K
=

0
.1
2
5

R
.D

4
:

K
=

0
.2
5

R
.D

3
:

K
=

0
.5

R
.D

4
:

K
=

1
.0

R
.E

[Jex
etal.,1978]

C
onventionalaircraftrollattitude

controltask
(com

bined
target-follow

ing
and

disturbance-
rejection

task),controlled
elem

entrepresenta-
tive

ofa
fighter

aircraft

K
s

s
+

ω
n

a
n
d

K
s
2

s
2
+

2
ζ
n
ω
n
s
+

ω
2n

R
.E

1
:

K
=

1
.0

R
.E

2
:

K
=

1
.2

ω
n

=
0
.8
5
r/

s
ζ
n

=
0
.7

2
n
d
o
rd

e
r

R
.E

3
:

K
=

1
.0

ω
n

=
1
.0

r/
s

R
.E

4
:

K
=

0
.7

ω
n

=
0
.4

r/
s

R
.E

5
:

K
=

0
.5
3

R
.E

6
:

K
=

0
.0

R
.F

[Van
G

ool,1978]

C
onventional

aircraft
pitch

and
roll

attitude
disturbance-rejection

tasks
(perform

ed
sepa-

rately),controlled
elem

entrepresentative
ofa

D
C

9-10
in

the
landing/approach

configuration K
s
2

s
2
+

2
ζ
n
ω
n
s
+

ω
2n

R
.F

1
:

K
=

1
.0

ω
n

=
0
.2

r/
s

ζ
n

=
1
.0

R
.F

2
:

K
=

1
.0

ω
n

=
0
.2
5
r/

s
ζ
n

=
1
.0

R
.F

3
:

K
=

1
.0

ω
n

=
0
.5

r/
s

ζ
n

=
1
.0

R
.F

4
:

K
=

0
.0



Effects of Motion Filter Settings on Tracking Behavior 133

KS , -

φ
S

,d
eg

(a) Translational

T.A1

T.A2 T.A3

T.A4 T.A5
T.B1

T.B2

T.B3

T.B4

T.C1

T.C2

T.C3

T.D1

T.D2

T.D3

T.A

T.B

T.C

T.D

high fidelity

med. fidelity
low fidelity

0 0.2 0.4 0.6 0.8 1
0

30

60

90

120

150

180

KS , -
φ
S

,d
eg

(b) Rotational

R.A1
R.A2

R.A3

R.A4R.B1 R.B2
R.B3 R.B4

R.C1

R.C2

R.C3

R.D1

R.D2R.D3
R.D4 R.D5

R.D6
R.E1

R.E2

R.E3

R.E4

R.E5
R.E6

R.F1
R.F2

R.F3

R.F4

R.A

R.B
R.C

R.D
R.E

R.F
high fidelity

med. fidelity
low fidelity

0 0.2 0.4 0.6 0.8 1
0

30

60

90

120

150

180

Figure 5.2. Compiled translational and rotational motion filter settings from literature evaluated
against simulator motion fidelity criteria from literature [Sinacori, 19 77; Schroeder, 1999].

Note from Tables 5.2 and 5.3 and Fig. 5.2 that more studies that evaluated pilot tracking
behavior with variations in rotational cueing are available than those that considered differ-
ent translational motion cueing settings. Furthermore, translational motion is typically a lot
more problematic with respect to the cueing in flight simulators than rotational motion, due
to the large stroke required for presenting, especially low-frequency, aircraft translational
motion. This is also observable from Fig. 5.2, which shows that the motion filter settings
that were evaluated for rotational cueing (Fig. 5.2(b)) were typically less restrictive – that
is, were closer to the dark gray high-fidelity region – than those considered for translational
cueing experiments (Fig. 5.2(a)).

5.3.4 Pilot Model Tuning Rule Development

5.3.4.1 Data Normalization

The goal of this study is to obtain a quantitative indicationof the magnitude of pilot behav-
ioral adjustments in response to the presence of a motion filter with certain dynamics. The
collected behavioral measurements from the studies listedin Tables 5.2 and 5.3, thereby
combining measurements that were taken for variations in translational and rotational mo-
tion cueing, will therefore be used to see if consistent variations in any of the dependent
measures listed in Table 5.1 and any of the predictor variables introduced in Section 5.3.2
can be found. For a dependent measureZ and a predictor variableY , this means that we
are looking for a prediction equationZ(Y ).

It should be noted that differences in the defining characteristics of the compensatory
control tasks (for example, controlled element dynamics, forcing function signals, and
adopted display formats) naturally lead to large offsets insome of the dependent measures
listed in Table 5.1. For instance, a controlled element withdouble integrator dynamics
as used in the experiment of De Vroome et al. [2009] requires markedly more pilot lead
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equalization (higherTL) than typical aircraft pitch and roll dynamics as controlled in the
experiment of Van Gool [1978]. As the relative change in the considered dependent mea-
sures due to changes in motion filter dynamics is of interest to this study, the data from all
dependent measures has been normalized with the mean of thisdependent measure over
all conditions for each experiment. For values of a dependent measureZ taken from an
experiment withNz different motion filter conditions, this gives:

Z[n] =
Z[n]

1
Nz

∑Nz

k=1 Z[k]
with n = 1 . . . Nz (5.14)

To illustrate the necessity of this normalization, Fig. 5.3shows a side-by-side compar-
ison of the raw data and the result of the normalization of allmeasurements for the pilot
visual lead time constantTL. Note from Fig. 5.3(b) that due to the normalization according
to Eq. (5.14), the normalized dependent measure representsthe percentage-wise variation
in the dependent measure over the range of the selected predictor.
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Figure 5.3. Example data normalization according to Eq. (5.14) forpilot visual lead time con-
stant TL.
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5.3.4.2 Linear Regression Modeling

For all dependent measures, the normalized data were testedfor correlation with the consid-
ered measures of motion filter characteristics (see Section5.3.2) by calculating Pearson’s
correlation coefficientR. For absolute values ofR of 0.3 and higher, the correlation between
two variables is considered to be of “medium” strength, whileR > 0.5 is typically referred
to as a “strong” correlation [Cohen, 1977; Field, 2005]. Still, as argued by Cohen [1977]
the interpretation of the magnitude ofR is heavily dependent on the field of research. In
the physical sciences, typically very high values ofR are found, while Cohen [1977] claims
that for many applications in the behavioral sciences correlation coefficients larger than 0.6
are rarely observed due to markedly larger spread in typicalobtained measurements.

Due to the variation in the experiments from which data is compiled here, the typically
low numbers of participants for which data was collected, and the considerable measure-
ment noise typically present in behavioral measurements asconsidered here, a correlation
coefficient larger than 0.3 was deemed to be strong enough to allow for modeling of the
trend in the data using a linear regression. In addition, when evaluating the statistical sig-
nificance of the linear correlations it was found that for alloccurrences ofR > 0.3 the
correlation was found to be statistically significant. Note, however, thatR = 0.3 indicates
that0.32 = 0.09 = 9% of the variance in the measured data can be explained with a linear
regression. This linear regression represents a relation between the normalized dependent
measureZ and the independent (predictor) variableY given by:

Z(Y ) = β(Y − Yref ) + αYref
(5.15)

In Eq. (5.15),Yref represents the reference value of the predictor variableY , with re-
spect to which the trend inZ is to be predicted. The symbolsβ andαYref

are the linear
regression coefficient and offset, which are determined by fitting the model of Eq. (5.15) to
the normalized data using a least-squares fitting procedure. It should be noted that for data
as presented in Fig. 5.3(b) a different choice inYref (for instanceKS = 0 or KS = 1)
affects the value ofαYref

for the corresponding regression model, but not the value ofβ.
When converting Eq. (5.15) back to the non-normalized dependent measureZ(Y ) (note
thatαYref

= Z(Yref ) and use Eq. (5.14)) an equation results that can be used for linear
prediction of the considered dependent measure based on theparameters of the fitted linear
regression:

Z(Y ) = Z(Yref )

[
β

αYref

(Y − Yref ) + 1

]

(5.16)

In Eq. (5.16),Z(Yref ) represents the value of the dependent measure at the reference
value ofY . For a control task where pilot behavior and pilot-vehicle system performance
and crossover characteristics are known for a reference predictor setting,Z(Yref ), this al-
lows for prediction of changes inZ for other values ofY according to Eq. (5.16). Note
from Eq. (5.16) that the coefficient that defines the magnitude of the change inZ due to a
variation inY is given as the fraction ofβ andαYref

, and hence is dependent on the choice
of the reference predictor valueYref .
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5.4 Results

5.4.1 Predictor Variable Selection

As explained in Section 5.3.4, four different variables were considered as predictors for
observed trends in the dependent measures listed in Table 5.1: the motion filter gainK, the
(dominant) motion filter break frequencyωn, the motion filter gain at 1 rad/sKS , and the
motion filter phase distortion at 1 rad/sφS . For all combinations of dependent measure and
predictor variables plots as those depicted in Fig. 5.3 wereevaluated to investigate possible
correlation between the two considered metrics. Furthermore, the correlation coefficients
R calculated for all considered combinations of dependent measures and predictors were
calculated and are presented in Table 5.4.

Table 5.4. Correlation coefficients for all considered combinationsof dependent measure and
predictor. Bold font indicates |R| > 0.3.

Dependent Predictor
Measures K ωn KS φS

σ2
e -0.30 0.47 -0.60 0.18
σ2
u 0.53 0.12 0.54 -0.17
ωc,d 0.37 -0.61 0.69 -0.52
ωc,t -0.09 0.57 -0.26 0.38
ϕm,d -0.02 0.49 -0.30 0.41
ϕm,t 0.05 -0.47 0.28 -0.42
Kv 0.39 -0.17 0.60 -0.18
TL -0.33 -0.05 -0.49 0.06
TI -0.62 -0.23 -0.33 -0.57
Km -0.17 0.18 -0.12 -0.16
τv 0.31 -0.41 0.40 -0.25
τm -0.41 -0.20 -0.30 -0.05
ωnm 0.27 0.06 0.35 -0.23
ζnm 0.25 -0.49 0.27 -0.03

Mean|R| 0.28 0.33 0.37 0.25

Each column in Table 5.4 presents the values ofR for one of the considered dependent
measures (see Table 5.1). The final column of Table 5.4 shows the average absolute correla-
tion coefficient calculated across all dependent measures.As can be verified from this final
column, the strongest average|R| across all dependent measures is present for the motion
filter gain at 1 rad/s (KS). Based on this strongest average correlation across all depen-
dent measures – although a number of medium and strong correlations are also found for
the other predictors and considering that the average correlation coefficient forωn is nearly
as high as found forKS – the choice is made in this chapter to focus onKS as the most
promising predictor variable.

Another reason for favoringKS as the predictor in this chapter can be observed from
Tables 5.2 and 5.3 and Fig. 5.2. Some of the included studies considered pure-gain motion
filter dynamicsK [Bergeron, 1970; De Vroome et al., 2009], so no variation inωn and
φS was available for these experiments. Furthermore, as explained in Section 5.3.2,KS

is the only considered predictor variable that is a functionof both the motion filter gain
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(K) and filter characteristics (ωn). Though different combinations ofK andωn can still
give the same value for this predictor,KS is still selected here as the most promising of the
considered predictor variables because of this property. All results presented in this chapter,
and also the derived pilot model tuning rules, will utilizeKS as the predictor.

It should be noted that the frequency of 1 rad/s at whichKS was selected for correspon-
dence with the fidelity criteria of Sinacori [1977] and Schroeder [1999], but that evaluation
of the filter dynamics at other frequencies in the range of interest to manual control (see
Section 5.3.2) yielded highly similar results.

For prediction of changes in behavior due to variations in motion cueing, here the con-
dition where no motion filter is present, yielding one-to-one presentation of motion cues,
will be considered as the baseline. For the selected predictor variable this corresponds to
the case whereKS = 1. Naturally, tuning rules could also be defined with respect to the
no-motion case (KS = 0), but for interpreting the effects of motion filters on pilotbehav-
ior, the chosen convention was thought to be more intuitive.Substitution ofY = KS and
Yref = KSref

= 1 in Eq. (5.16) results in the following structure for the linear prediction
equations that will be derived in this chapter:

Z(KS) = Z(1)

[
β

α1
(KS − 1) + 1

]

(5.17)

In Eq. (5.17),Z(1) represents the value of the considered dependent measure for the
reference case whereKS = 1. The symbolsβ andα1 are the parameters of the fitted linear
regression model (see Section 5.3.4.2).

5.4.2 Notable Trends in Dependent Measures

5.4.2.1 Tracking Performance and Control Activity

Fig. 5.4 presents the normalized tracking error and controlinput variance data for the studies
included in this overview. Fig. 5.4 depicts the normalized data for both dependent measures
as black markers, while the linear regression that was fit through the data is shown as a
solid gray line. The legend entry for the measured data liststhe value ofR and its statistical
significance (ifp < 0.05, the correlation is statistically significant); the entry for the fitted
regression lists the corresponding estimated values of theregression parametersβ andα1.

As can be verified from Fig. 5.4, for bothσ2
e andσ2

u a strong correlation (|R| > 0.5)
with the variation inKS is present. Fig. 5.4 shows that an increase inKS is found to yield
improved tracking performance (lowerσ2

e ) and increased control activity (higherσ2
u). Sub-

stitution of the fitted values ofβ andα1 (indicated in the bottom legend entries in Fig. 5.5)
in the prediction equation given by Eq. (5.17) yields the following tuning rules forσ2

e and
σ2
u:

σ2
e(KS) = σ2

e(1) [−0.48 (KS − 1) + 1] (5.18)

σ2
u(KS) = σ2

u(1) [ 0.17 (KS − 1) + 1] (5.19)
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(a) Tracking error variance
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Figure 5.4. Variation in tracking performance and control activit y as a function ofKS .

In Eqs. (5.18) and (5.19),σ2
e(1) andσ2

u(1) represent the level of tracking performance
and control activity for the case whereKS = 1, respectively. As can be verified from
Fig. 5.4(a) and Eq. (5.18), tracking performance on averagedegrades by 48% forKS = 0
compared toKS = 1. Similarly, Eq. (5.19) shows that control input variance isfound to
decrease by 17% under the same variation ofKS .

5.4.2.2 Crossover Frequencies and Phase Margins

Figures 5.5 and 5.6 show the compiled data and fitted linear regressions for the target
and disturbance open-loop crossover frequencies and phasemargins, respectively. As can
be verified from the correlation coefficients listed in Table5.4, only the crossover fre-
quency and phase margin of the disturbance open-loop response show|R| > 0.3 with KS .
Fig. 5.5(a) shows a strong positive correlation betweenωc,d andKS , indicating disturbance
crossover frequencies are typically found to increase withincreasingKS . For the corre-
sponding phase margin, the reverse trend is observed from Fig. 5.6(a), asϕm,d is found
to reduce with increasing motion filter gain at 1 rad/s. The target crossover frequency and
phase margin data presented in Figures 5.5(b) and 5.6(b), respectively, still show smaller
and opposite trends withKS than observed for the corresponding disturbance open-loop
parameters. Note that these trends are consistent with the results reported in a number of the
individual studies that were included, [De Vroome et al., 2009; Bray, 1985] and Chapter 4.
These trends, however, do not sufficiently correlate with the variation inKS (|R| < 0.3) to
meet the requirement for tuning rule development. This gives the following tuning rules for
ωc,d, ωc,t, ϕm,d, andϕm,t, corresponding to the data shown in Figures 5.5 and 5.6:
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(a) Disturbance crossover frequency

motion filter gain at 1 rad/s (KS ), -

ω
c
,d

,−

Data,R = 0.69, p < 0.05
Regression,β = 0.25, α1 = 1.11

0 0.2 0.4 0.6 0.8 1

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

(b) Target crossover frequency

motion filter gain at 1 rad/s (KS ), -

ω
c
,t

,−

Data,R = −0.26, p < 0.1
Regression,β = −0.04, α1 = 0.98

0 0.2 0.4 0.6 0.8 1

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Figure 5.5. Variation in the disturbance and target open-loop crossover frequencies as a function
of KS .

(a) Disturbance phase margin
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ωc,d(KS) = ωc,d(1) [ 0.23 (KS − 1) + 1] (5.20)

ωc,t(KS) = ωc,t(1) (5.21)

ϕm,d(KS) = ϕm,d(1) [−0.10 (KS − 1) + 1] (5.22)

ϕm,t(KS) = ϕm,t(1) (5.23)

Eq. (5.20) indicates a variation of around 23% over the rangeof KS values from 0 to 1
for ωc,d. For the disturbance phase marginϕm,d, see Eq. (5.22), this variation is found to
be around 10%.

5.4.2.3 Pilot Behavioral Parameters

Fig. 5.7 shows the normalized measurement data as a functionof KS for the three most
interesting pilot model parameters of the visual response channel with respect to the effects
of motion cueing variations: the pilot visual gainKv, the pilot visual lead time constantTL,
and the pilot visual time delayτv. ForTI too little data was thought to be available for identi-
fying a consistent trend, as only the experiments describedin Chapter 4 and [Van Wieringen
et al., 2011] provide data for this parameter.

Fig. 5.7 shows a strong positive correlation withKS for the pilot visual gainKv, while
for TL andτv medium values for the correlation coefficient are found (0.3 < R ≤ 0.5).
Pilot visual gains are consistently found to be higher for higher values ofKS , indicating
pilots respond with a higher gain to visually presented tracking errors when motion cueing
is of higher fidelity, a finding that is indeed reported in manystudies. Here, an average
change inKv of nearly 20% is found over the full range ofKS .

One of the most consistent effects that is reported in many studies that investigate the
effects of motion feedback on manual control behavior is that the presence of motion feed-
back allows for a reduction in the amount of visual lead equalization that pilots need to
adopt, see for instance [Hosman, 1996; Van der Vaart, 1992; De Vroome et al., 2009; Zaal
et al., 2009b] and Chapters 2, 4, and 6. This reduction in visual lead stems from the fact
that the motion cues, which are, for instance, perceived with the vestibular system, provide
information on the rates of the controlled element state directly, thereby removing the re-
quirement to generate lead visually [Shirley and Young, 1968; Hosman, 1996]. Fig. 5.7(b)
shows that this is also apparent from the collected data of all experiments listed in Tables
5.2 and 5.3. Values for the visual lead time constantTL are seen to increase with decreasing
KS , with a total variation of 29% over the full range ofKS = 0 to 1.

A correlation withR > 0.3 is also found for the pilot visual delayτv. Even though
the trend in this dependent measure is not as large as those found forKv andTL (only 7%
variation forKS ranging from0 to1), still a highly consistent increase inτv is observed with
increasingKS . This effect is often seen to occur in series with a reductionin the amount
of visual lead equalization (lowerTL), and is believed to result from the fact that due to
the added information from motion feedback, a control strategy that requires less workload,
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Figure 5.7. Variation in pilot model visual response parameters as afunction of KS .
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but induces more high-frequency phase lag in the pilot visual control responseHpv
(jω), is

permissible without significantly affecting the dominant closed-loop characteristics.

(a) Pilot motion gain
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Figure 5.8. Variation in pilot model motion response parameters as afunction of KS .

(a) Neuromuscular system natural frequency
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(b) Neuromuscular system damping ratio
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Figure 5.9. Variation in neuromuscular actuation parameters as a function of KS .

Fig. 5.8 shows the data and fitted regressions for the two defining parameters of the pilot
model motion response channel, the pilot motion gainKm and the pilot motion time delay
τm. The collected data for the pilot motion gainKm andτm are not found to yield values
of |R| > 0.3 (thoughτm is close). Especially the nearly constant values ofKm under a
variation ofKS are notable, as this implies that pilots appear to be unable to increase their
Km to compensate for reductions in motion cue magnitude, as suggested in Section 5.2.3.
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These results for the pilot motion gain therefore suggest a reducing contribution of motion
feedback to pilot control behavior with reducingKS .

The collected results for the two pilot model parameters that are typically used for
quantification of the neuromuscular actuation dynamics as given by Eq. (5.7) are shown
in Fig. 5.9. As can be verified from Fig. 5.9, an increasing trend with increasingKS is ob-
served for both the neuromuscular system natural frequencyωnm and damping ratioζnm,
however, only forωnm a correlationR > 0.3 is found. Increasedωnm has been argued
to indicate an increase in muscle co-contraction [Damveld et al., 2009], which would im-
ply pilots hold a tighter grip on the manipulator for increasing motion fidelity and motion
amplitudes.

The linear pilot model parameter tuning equations that can be derived from the linear
regression models fit to the data presented in Figures 5.7 to 5.9 are given by:

Kv(KS) = Kv(1) [ 0.19 (KS − 1) + 1] (5.24)

TL(KS) = TL(1) [−0.29 (KS − 1) + 1] (5.25)

Km(KS) = Km(1) (5.26)

τv(KS) = τv(1) [ 0.069 (KS − 1) + 1] (5.27)

τm(KS) = τm(1) (5.28)

ωnm(KS) = ωnm(1) [0.058 (KS − 1) + 1] (5.29)

ζnm(KS) = ζnm(1) (5.30)

Again, Eqs. (5.24) to (5.30) indicate the change in the values ofKv to τm relative to the
case whereKS = 1. Hence, the parametersKv(1) to ζnm(1) indicate the values of these
pilot model parameters that would be suitable for pilot control behavior when motion cues
are presented one-to-one (KS = 1).

5.5 Discussion

This chapter presented the results of an effort to develop some rudimentary tuning rules
for adaptation of pilot behavioral tracking model parameters to variations in motion feed-
back. Data from a number of studies that investigated the effects of variations in motion
cueing settings on pilot tracking behavior and performancewere compiled, compared to se-
lected measures of motion cueing fidelity, and used to fit linear regression models for those
combinations of predictor variables and dependent measures for which a sufficiently strong
correlation was observed. Using the motion filter gain at 1 rad/s as the predictor variable, a
set of mathematical equations was obtained that allows for tuning multimodal pilot model
parameters to a selected motion filter setting, granted thatthe pilot dynamics for the control
task where no motion filter is present in the motion feedback path are known.



144 Chapter 5

The choice of the predictor variable to use for pilot model tuning rules as attempted
in this chapter is a very important and complicated one, as itessentially requires a single
numerical metric that summarizes the total motion filter dynamics. Here the motion filter
gain at 1 rad/s (KS) was selected as the most promising predictor variable, as this metric
is indeed affected by both variations in motion cue scaling (motion filter gainK) and mo-
tion cue filtering (motion filter break frequencyωn). However, it should be noted that this
choice of metric also has some drawbacks. For instance, the choice of the 1 rad/s evaluation
frequency implies that all motion filters for whichωn ≪ 1 rad/s essentially become pure
gain attenuation filters, as in that caseKS is not affected by the filter dynamics governed
by ωn. Therefore, a more in-depth investigation of this effect ofthe frequency at whichKS

is evaluated than described here, and the testing of furtherpossible predictor variables, is
thought to be valuable to the work described in this chapter.

In this chapter, only linear regression models were fit to thecollected data, thereby
yielding a set of linear prediction or interpolation equations to adjust pilot model parameters.
In reality, it is unlikely that only linear variations of parameters that define pilot control
behavior with respect to a selected predictor variable willoccur. However, for investigating
for which dependent measures this might be appropriate and for deriving valid higher-order
prediction models from collected data as used in this study,a significantly larger number of
measurements is needed.

The observed trends in the dependent measures for which tuning equations have been
derived in this chapter are mostly highly consistent over the different experiments consid-
ered in this study. There are, however, some exceptions thatresult from differences in the
defining elements of the considered control tasks, which should be taken into account when
applying the equations from this chapter. One notable example is the observed reduction
in the pilot visual lead time constantTL with increasingKS . This trend is consistent over
studies in which the controlled element state is the dominant motion cue that is perceivable
to the pilot. For control tasks for which this is not the case,most notably for pitch tracking
tasks with conventional aircraft as considered in a number of previous studies [Steurs et al.,
2004; Zaal et al., 2009b; Van Wieringen et al., 2011], where heave motion is the dominant
motion cue rather than rotational pitch motion, an oppositetrend inTL is observed. This is
believed to be a result of the fact that this heave motion provides less useful motion feed-
back to pilots than only rotational pitch motion would. Sucheffects, however, are not yet
explicitly included in the tuning rules as described in thischapter.

It should be noted that predicting human manual control behavior is always going to
remain a difficult problem, mainly due to the sheer number of factors that affect the adopted
control strategy [McRuer and Jex, 1967a]. Hence, the equations for predicting changes
in tracking performance, pilot-vehicle crossover frequencies, and behavioral pilot model
parameters as developed in this chapter should always be used with some caution. The
tuning rules developed in this chapter will be updated when new sets of data are added to
the database.
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5.6 Conclusions

Using data from ten different investigations into the effects of motion filter characteristics
on pilot tracking behavior and performance, this chapter developed a rudimentary set of tun-
ing rules that can be used to predict changes in tracking performance, pilot-vehicle system
crossover frequencies and phase margins, and the values of behavioral pilot model param-
eters that reflect pilots’ adaptation to a selected motion filter setting. The motion filter gain
at 1 rad/s, which is also used as a metric in a well-known criterion for evaluating simulator
motion cueing fidelity, was found to be the most promising metric to use for the prediction
of changes in pilot control strategy. Consistent changes inpilot behavior due to variations
in motion filter dynamics that were revealed for the data usedin this study include increased
pilot visual gains, reduced pilot visual lead equalization, and increased pilot visual response
delays when the predicted level of motion fidelity is increased. Linear regression models
were fit to data for these parameters to define a set of mathematical equations that can be
used to predict the values of these parameters for a specific motion filter setting.
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Part III

In-Flight to Simulator
Behavioral Comparisons





6
Multisine-Tracking Behavior in

Real and Simulated Flight

A major milestone for the research described in this thesis is the measurement of pilot track-
ing behavior in real flight. These in-flight tracking behavior measurements are used as a
baseline for evaluating changes in behavior that result from varying motioncueing settings
in a flight simulator. Three different tracking tasks were performed in the Cessna Citation II
laboratory aircraft: a pitch tracking task with two multisine forcing functions, a roll track-
ing task with two multisine forcing functions, and a roll tracking task with a ramp target
signal. For all these three tasks, the pilots for whom in-flight behavioral measurements
were collected also performed the same tracking tasks for a small number of different mo-
tion cueing settings in the SIMONA Research Simulator at Delft University of Technology.
The comparison of in-flight and simulator measurements for the pitch tracking task is de-
scribed in [Zaal et al., 2011] and Zaal [2011]’s thesis. For the roll tracking tasks, this
chapter includes the details of the experimental setup and the results of the multisine roll
tracking task. The data from the roll ramp tracking tasks are analyzed in Chapter 7.

The contents of this chapter are to be published as:

Pool, D. M., Zaal, P. M. T., Damveld, H. J., Van Paassen, M. M., and Mulder, M., “Evaluat-
ing Simulator Motion Fidelity using In-Flight and Simulator Measurements of Roll Tracking
Behavior”,Journal of Guidance, Control, and Dynamics.
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6.1 Introduction

It is an accepted fact that human manual control behavior is ahighly adaptive process and
that the control dynamics human operators utilize for a certain control task are a function of
a large number of variables internal and external to the operator [McRuer and Jex, 1967a].
In this chapter this knowledge is used to evaluate behavioral simulator motion fidelity using
measurements of pilot tracking behavior. For evaluating behavioral motion fidelity, objec-
tive measurements of pilot tracking behavior are collectedin real flight, and for exactly the
same control task but with varying simulator motion cueing settings in a flight simulator.
The in-flight measurements, for which the supplied motion feedback is by definition equal
to the true aircraft motion, are to be used as the baseline forevaluating changes in pilot
tracking behavior that result from changes in simulator motion cueing settings. Through
this approach, it is hoped that some validation of existing criteria proposed for evaluating
simulator motion fidelity, such as those proposed by Sinacori [1977] and Schroeder [1999],
can be provided from a behavioral perspective.

With the objective of evaluating simulator motion fidelity against the motion cues per-
ceivable in real aircraft, a number of studies have been performed that explicitly compared
pilot tracking behavior in real flight and in a representative flight simulator setup [Smith,
1966; Newell and Smith, 1969; Mooij, 1973; Van Gool and Mooij, 1976; Steurs et al.,
2004]. Despite the fact that good correspondence between in-flight and simulator behav-
ior was obtained for many of these efforts, none of them resulted in definitive conclusions
on differences in usage of visual and physical motion cues onpilot tracking behavior and,
hence, simulator motion fidelity. The main reason for this isthe fact that the techniques
utilized in these studies for measuring pilot dynamics onlyallowed for identification of a
lumped pilot describing function, which represented the cumulative effects of pilots’ re-
sponses to visual and motion information.

This chapter will evaluate simulator motion fidelity from a behavioral perspective for
a compensatory roll tracking task with physical roll motionfeedback. A combined target-
following and disturbance-rejection task, with two independent quasi-random sum-of-sines
forcing function signals, is used as such a task allows for reliable separation of pilot visual
and motion responses using both frequency-domain and time-domain identification methods
[Stapleford et al., 1969; Zaal et al., 2009a]. Measurementsof pilot tracking behavior in
the same roll tracking task are taken in Delft University of Technology’s (DUT) Cessna
Citation II laboratory aircraft and in the SIMONA Research Simulator (SRS) for varying
roll motion cueing settings. By comparing measured tracking behavior over these different
experimental conditions it is attempted to indicate when pilots start adapting their tracking
behavior to changes in washout filter dynamics.

The roll tracking task selected for evaluating behavioral motion fidelity in this chapter is
especially suitable for this purpose as the aircraft roll motion cues can be presented 1-to-1 on
the SRS motion base, allowing for explicit comparison of pilot behavior with full aircraft
roll motion in both facilities [Schroeder and Grant, 2010].The experiment described in
the current chapter was performed using the same experimental setup as the pitch tracking
experiments described in [Zaal et al., 2011; Zaal, 2011].

This chapter is structured as follows. First, Section 6.2 will provide the details of the roll
attitude tracking task considered in this study for evaluating simulator roll motion fidelity.
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Here also the multimodal pilot model, which is a key element in the proposed behavioral
evaluation of motion fidelity, is introduced. Then Section 6.3 presents the results of an
offline pilot model analysis performed to assess the effect of introducing washout filter
dynamics in the closed-loop pilot-vehicle system and how this affects its open-loop and
closed-loop dynamics. The details of the experiment performed to measure pilot tracking
behavior in real flight and in a flight simulator for a variation in roll motion cueing are
described in Section 6.4. The experimental results, and a comparison of these experimental
measurements with the results of the offline analysis, are then presented in Section 6.5. The
chapter ends with a discussion and conclusions.

6.2 Behavioral Simulator Motion Fidelity

6.2.1 Roll Tracking Task

6.2.1.1 Control Task

Fig. 6.1 shows a schematic representation of the closed-loop aircraft roll tracking task con-
sidered for the evaluation of flight simulator motion fidelity in this chapter. Fig. 6.1 distin-
guishes between cueing, pilot, and controlled aircraft dynamics. The pilot controls the roll
attitudeφ of an aircraft with roll dynamics given byHc(s), for which he receives visual
feedback of the tracking errore and physical motion feedback of the controlled aircraft roll
acceleration̈φ. The tracking error information is presented using the compensatory display
shown in Fig. 6.2. The cueing dynamics include the dynamic characteristics of the visual
and motion cueing systems (Hsv (s) andHsm(s), respectively) used to present information
to the pilot, in addition to the dynamics of an applied motionfilter, which are indicated by
theHmf (s) block. The target and disturbance forcing function signalsthat are used to in-
duce compensatory tracking behavior are depicted with the symbolsft andfd, respectively.
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Figure 6.1. Schematic representation of the compensatory roll tracking task with motion feed-
back.

As explained in detail in Section 6.2.1.3, for the roll tracking task considered in this
chapter the controlled element dynamicsHc(s) were the combined Cessna Citation II roll
and fly-by-wire (FBW) control system dynamics as representative for Delft University of
Technology’s Cessna Citation II laboratory aircraft. Furthermore, pilot control inputsu,
which were defined as the output voltage of the sidestick manipulator used for the in-flight
tracking tasks (see Section 6.4.1.1), are weighed by a gainKs = 0.3 before being used as a
FBW command.
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es

Figure 6.2. Compensatory roll tracking display.

Pilot tracking behavior for compensatory tracking tasks with physical motion feedback
of the controlled element state as depicted in Fig. 6.1 can berepresented as the sum of
two parallel responses to visual and motion information [Stapleford et al., 1969]. The pilot
visual responseHpv

(s) captures pilots’ control dynamics in response to presentedtracking
errorses, while the pilot motion responseHpm

(s) models pilots’ responses to cued motion
informationφ̈s. The remnant signaln, which accounts for all nonlinear contributions to the
pilot control inputu [McRuer and Jex, 1967a], completes this quasi-linear modelof pilot
tracking behavior.

This chapter discusses a comparison of measurements of pilot tracking behavior for the
roll tracking task shown in Fig. 6.1 taken in real flight and ina flight simulator for varying
settings of a first-order high-pass roll washout filter, as iscommonly applied for rotational
degrees of freedom in moving-base flight simulation. The dynamics of such a high-pass
motion filter are given by:

Hmf (s) =
s2φmf (s)

s2φ(s)
= Kmf

s

s+ ωmf
(6.1)

The first-order filter given by Eq. (6.1) has two parameters: the motion filter gainKmf

and the filter break frequencyωmf . Together with the dynamics of the motion cueing sys-
tem,Hsm(s), the motion filter dynamicsHmf (s) cause a discrepancy between the true
aircraft roll accelerations̈φ and the roll accelerations to which the pilot is subjected,φ̈s.
As explained in more detail in Section 6.4, for the in-flight tracking tasks, which are per-
formed in DUT’s Cessna Citation II laboratory aircraft, no motion filter and motion cue-
ing dynamics are present (Hmf (s) = 1 andHsm(s) = 1). For the simulator tracking
tasks performed in the SIMONA Research Simulator (SRS) at DUT, the motion cueing
dynamics are approximately equal to a pure delay of 30 ms [Berkouwer et al., 2005],
Hsm(s) = e−sτsm = e−0.03s, while a variation in the settings ofHmf (s) is considered.

The visual cueing dynamicsHsv (s) are also assumed to be a pure time delay. The
delay in the presentation of the visual tracking error information was determined for both
experimental setups using the custom delay measurement system described in [Stroosma
et al., 2007]. For both the visual cueing delay was found to bearound 25 ms, giving
Hsv (s) = e−sτsv = e−0.025s.
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6.2.1.2 Forcing Functions

To allow for reliable separation of the pilot visual and motion responsesHpv
(s) andHpm

(s)
using both frequency domain [Stapleford et al., 1969] and time-domain [Zaal et al., 2009a]
pilot model identification techniques, the target and disturbance forcing functions used to
induce pilot tracking behavior in the control task depictedin Fig. 6.1 were two independent
quasi-random multisine signals. Both signals were constructed as the sum ofNd,t = 10
individual sinusoids as defined by:

fd,t(t) =

Nd,t∑

k=1

Ad,t(k) sin [ωd,t(k)t+ φd,t(k)] (6.2)

In Eq. (6.2),Ad,t(k), ωd,t(k), andφd,t(k) represent the amplitude, frequency and phase
shift of thekth sinusoid in the forcing function signal. The disturbance and target forcing
function signals consisted of sinusoids with interleavingfrequencies to obtain two indepen-
dent multisine signals. All forcing function frequencies were defined as integer multiples
of the measurement window base frequencyωm = 2π/Tm, whereTm is the measurement
window, which for this experiment was equal to 81.92 s. Forcing function frequencies were
then related toωm throughωd,t(k) = ωmnd,t(k), wherend,t(k) represents the integer fac-
tor. Forcing function amplitudes had a low-pass characteristic, defined by the magnitude
characteristic of the same second order low-pass filter alsoused in [Zaal et al., 2009b; Pool
et al., 2010]. The target forcing function amplitudes were scaled to yield a signal with a vari-
ance of 0.4 deg2. The disturbance signal was pre-shaped with the inverse of the controlled
element dynamics and scaled to yield a perturbation of the roll attitude with the desired
low-pass characteristic and a variance of 0.4 deg2. The forcing function phases were se-
lected from a large number of randomly generated sets of phases according to the method
described in [Damveld et al., 2010] to yield signals with an approximately Gaussian distri-
bution and an average crest factor. The numerical values of all forcing function properties
are given in Table 6.1.

Table 6.1. Multisine disturbance and target forcing function properties.

disturbance,fd target,ft

nd ωd, rad/sAd, V φd, rad nt ωt, rad/sAt, deg φt, rad

5 0.383 0.014 -1.764 6 0.460 0.698 1.288
11 0.844 0.023 2.792 13 0.997 0.489 6.089
23 1.764 0.026 -1.575 27 2.071 0.220 5.507
37 2.838 0.026 4.641 41 3.145 0.119 1.734
51 3.912 0.029 5.512 53 4.065 0.078 2.019
71 5.446 0.035 2.687 73 5.599 0.049 0.441

101 7.747 0.049 2.321 103 7.900 0.031 5.175
137 10.508 0.068 3.821 139 10.661 0.023 3.415
171 13.116 0.090 4.363 194 14.880 0.018 1.066
226 17.334 0.123 4.558 229 17.564 0.016 3.479
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6.2.1.3 Controlled Element

Pilot tracking behavior is known to be adaptable to the dynamics of the controlled element
[McRuer et al., 1965; McRuer and Jex, 1967a]. For the experiment described in this chapter,
the controlled element dynamicsHc(s) are defined as the combination of Cessna Citation II
aileron to roll dynamics and the dynamics of the custom fly-by-wire (FBW) system that was
developed for this laboratory aircraft, whose characteristics are described in detail in [Zaal
et al., 2009d; Zaal, 2011]. As explained in more detail in Section 6.4.1, for the tracking tasks
analyzed in this chapter the FBW system was used to achieve aircraft aileron deflections
δa equal to the tracking task control commandsδc (see Fig. 6.1), that is, the sum of the
disturbance signalfd and the weighted control inputuc.

Due to limiting of control commandsδc by the FBW system, either because of physical
limitations of system components or resulting from saturation limits imposed for safety rea-
sons, the FBW system has nonlinear dynamics. For the FBW system dynamics, a nonlinear
structural model has been developed and identified using in-flight measurements [Mulder
et al., 2009]. However, this limiting by the FBW system can beavoided by ensuring that
δc stays well away from system limitations. With the forcing function signals defined for
the roll tracking tasks (see Section 6.2.1.2), this was mostly the case and as shown in [Zaal
et al., 2010, 2011], the dynamics of the FBW system can be modeled as a pure gain with a
delay over the full range of forcing function frequencies.

For the Cessna Citation II roll dynamics no mathematical model was available. There-
fore, data from the experiment of [Zaal et al., 2010] and further test-flight data were used
to identify linearized aircraft roll dynamics for the flightcondition for which the in-flight
measurements were collected (V = 160 kt, h = 17, 000 ft). Typically, conventional aircraft
aileron-to-roll dynamics are given by the following transfer function:

φ(s)

δa(s)
= Kφ

s2

ω2
φ

+
2ζφ
ωφ
s+ 1

s(Trs+ 1)
(

s2

ω2
d

+ 2ζd
ωd
s+ 1

) (6.3)

In Eq. (6.3),Tr represents the time constant of the roll subsidence mode, while the
second-order denominator term defined by the natural frequencyωd and damping factorζd
represents the dutch roll. The second-order numerator termtypically partially cancels out
the dutch roll mode poles (ωφ ≈ ωd), leaving aileron-to-roll dynamics that are approxi-
matelyK/s below a frequency of1/Tr, and resembleK/s2 for higher frequencies.

For modeling the Cessna Citation II aileron-to-roll dynamics, the standard form of
Eq. (6.3) was found to be too extensive. Especially due to thepartial cancellation of the
periodic numerator and denominator terms, yielding an overdetermined model structure,
the estimation of the model given by Eq. (6.3) proved impossible. Instead, a reduced trans-
fer function form, where the second-order numerator term and the first-order roll subsidence
mode pole were approximated as a first-order lead, was fit to the available data. When in-
cluding the FBW system dynamics, the full linearized controlled element dynamics for the
roll tracking task studied in this chapter are then given by:
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Hc(s) =
φ(s)

δc(s)
= Kφ

Tφs+ 1

s
(

s2

ω2
φ

+
2ζφ
ωφ
s+ 1

)e−τφs

(6.4)

= 0.29
0.51s+ 1

s
(

s2

2.702 + 2·0.81
2.70 s+ 1

)e−0.09s

Note that Eq. (6.4) represents a controlled element with approximatelyK/s dynamics
belowωφ and approximatelyK/s2 dynamics aboveωφ. For the fitted value ofωφ = 2.70
rad/s, this transition from single to double integrator dynamics occurs in the 1-5 rad/s fre-
quency range where the pilot-vehicle system crossover frequency is expected [McRuer et al.,
1965]. Hence, it is likely that pilots will show lead equalization to compensate for the high-
frequencyK/s2 dynamics. Finally, note that the FBW system delay was found to be equal
to 0.09 s.

Fig. 6.3 shows a frequency-domain comparison of the fitted model given by Eq. (6.4)
and describing function estimates obtained for the controlled element dynamics at the fre-
quencies of the disturbance forcing function for the data from [Zaal et al., 2010]. Note that
the fitted model corresponds very well with the measured describing function estimates.
Furthermore, the controlled element model variance accounted for (VAF), the percentage
of measured model response explained by the model [Zaal et al., 2009a], was found to be
higher than 98%, indicating that the model of Eq. (6.4) is able to capture the time-domain
response of the combined FBW system and Cessna Citation II roll dynamics during the roll
tracking tasks studied in this chapter at high accuracy. More details on the verification of
the aircraft model given by Eq. (6.4) can be found in AppendixE.
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Figure 6.3. Comparison of the frequency response of the identified FBW system and Cessna
Citation II roll dynamics with an average estimated frequency domain describing function.
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6.2.2 Modeling Multimodal Pilot Tracking Behavior

For control tasks where continuous physical motion feedback of the controlled variable
was available, it has been shown in many previous investigations that pilot tracking be-
havior can be successfully modeled with a model consisting of parallel visual and motion
responses [Stapleford et al., 1969; Jex et al., 1978; Hosman, 1996; Van der Vaart, 1992], as
depicted in Fig. 6.1. Fig. 6.4 shows the definition of the pilot visual and motion responses,
indicated withHpv

(s) andHpm
(s) in Fig. 6.1, respectively, used for modeling multimodal

pilot tracking behavior in the roll tracking task studied inthis chapter.

sensor dynamics equalization limitations

Km e−jωτm

Kv(1 + jωTL) e−jωτv

φ̈s

Hpv(jω)

es

Hpm(jω)

5.97(1 + jω 0.11)

(1 + jω 5.9)(1 + jω 0.005)

︸ ︷︷ ︸

Hsc(jω)
︸ ︷︷ ︸

Hnm(jω)

ω2
nm

(jω)2 + 2ζnmωnmjω + ω2
nm

uv

um

u

n

+

+

−

Figure 6.4. The multimodal pilot model used for modeling pilot controlof aircraft roll attitude.

Note from Fig. 6.4 that the multimodal pilot model consists of separate terms that cap-
ture sensory dynamics, pilot equalization dynamics, and pilot limitations. The model for the
pilot visual responseHpv

(jω) is based on McRuer et al.’s precision model [McRuer et al.,
1965]. Note that as pilot lead equalization is expected for the controlled element given by
Eq. (6.4), the visual equalization dynamics are modeled with a gain-lead element [McRuer
et al., 1965]. Furthermore, a pure time delay is assumed to beassociated with a response
to visually presented tracking errors, and the control input given by the pilot is further as-
sumed to be limited by the combined neuromuscular actuationand manipulator dynamics
Hnm(jω). Note thatHnm(jω) is modeled as a second-order mass-spring-damping system,
which has been shown to be an acceptable model of the lumped dynamics associated with
neuromuscular actuation [McRuer et al., 1965; Zaal et al., 2009b; Damveld et al., 2009].

The model for the pilot motion responseHpm
(jω) assumes a pilot response proportional

to the output of the semicircular canals of the vestibular system. The model forHpm
(jω)

therefore has the supplied roll accelerationφ̈mf as the input. The supplied roll acceleration
is converted to an afferent neuron firing rate by the semicircular canal dynamicsHsc(jω),
whose dynamics as shown in Fig. 6.4 are taken from previous investigations into manual
control in multimodal environments [Hosman, 1996]. This afferent firing rate, whose unit
is here defined as impulses per unit of time (IPUT), is known tobe proportional to rota-
tional velocity over a fairly wide frequency range [Fernandez and Goldberg, 1971; Hosman,
1996]. Note from Fig. 6.4 that the same normalization of the semicircular canal dynamics
as proposed by Groen et al. [2006] is considered here, which ensures thatHsc(jω) has unity
magnitude at1 rad/s and hence has dynamics that approximate1/s in the frequency range
between1/5.9 and1/0.11 rad/s. Therefore, the considered model for the semicircular canal
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dynamics differs from the model used in Chapters 2 and 4 by thegain of5.97, which ensures
this property. As a result of this convention, the pilot motion response gainKm has the unit
V/IPUT, as can be verified from Fig. 6.4. Finally, equivalentto the model for the pilot visual
response, a pure delay and the neuromuscular actuation dynamics are also included in the
model forHpm

(jω).
It is known that human roll motion perception is the result ofmore than just the percep-

tion with the semicircular canals [Hosman, 1996]. For instance, pilots may also respond to
changes in the lateral specific force or somatosensory cues that result from the rotational
roll motion instead of or in addition to the actual roll accelerations. Still, as for instance
shown in Chapter 4, the pilot motion response is typically found to be proportional to the
rate of the controlled element state over a wide frequency range, independent of the degree
of freedom of the cued and perceived motion. Note that such a response proportional to the
supplied roll rateφ̇s also results from the proposed form ofHpm

(jω) shown in Fig. 6.4 over
the 0.1-10 rad/s frequency range where the semicircular canal dynamics are approximately
K/s.

For fitting the model of Fig. 6.4 to measured data fore, φ̈mf , andu, the semicircular
canal dynamics are assumed to be fixed. This leaves a total of seven model parameters to
be estimated: the pilot model gainsKv andKm, the visual lead time constantTL, the pilot
visual and motion delaysτv and τm, and the parameters of the neuromuscular actuation
modelωnm andζnm.

6.2.3 Motion Filter and Pilot-Vehicle System Dynamics

As proposed by McRuer et al. [1965] in the crossover model, human operators adapt their
own dynamics to those of the controlled element to achieve a combined pilot-vehicle system
with desirable characteristics, especially in the frequency range around the pilot-vehicle sys-
tem crossover frequency. For control tasks that are more complicated than the single-loop
compensatory tracking tasks for which the crossover model was developed, there may be
more elements in the closed-loop control task that affect the pilot-vehicle system dynamics.
For instance, as can be verified from Fig. 6.1, for the roll tracking task with motion feedback
considered in this chapter, the closed-loop pilot-vehiclesystem dynamics are also affected
by the presence of a motion filter and the visual and motion cueing dynamics. To illus-
trate this, the following relations can be derived from Fig.6.1 for the disturbance and target
open-loop responses, whose crossover frequencies and phase margins are often used for as-
sessing closed-loop pilot-vehicle system performance andstability for disturbance rejection
and target-following, respectively [Jex et al., 1978]:

Hol,d(s) = −Uc(s)

δc(s)
=

[
Hsv (s)Hpv

(s) + s2Hsm(s)Hpm
(s)

]
KsHc(s) (6.5)

Hol,t(s) =
φ(s)

E(s)
=

Hsv (s)Hpv
(s)KsHc(s)

1 + s2Hmf (s)Hsm(s)Hpm
(s)KsHc(s)

(6.6)

Note from Eqs. (6.5) and (6.6) that if the pilot motion responseHpm
(s) is set to 0, which

indicates no use was made of motion feedback, both these relations reduce to the single-loop
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open-loop responseHol(s) = Hsv (s)Hpv
(s)KsHc(s). If Hpm

(s) 6= 0, however, it is clear
that if pilot behavior remains constant, a change in the dynamics of the motion filterHmf (s)
will result in changes in the dynamics of both the disturbance-rejection and target-following
open-loop systems as defined by Eqs. (6.5) and (6.6), respectively.

If this gives undesirable pilot-vehicle system dynamics, pilots might then adapt their
control dynamics in response to the presence of a motion filter with certain dynamics to
(partially) compensate for the effect ofHmf (s) on the closed-loop system. The most ele-
mentary example of this would be the case where motion cues are attenuated by a pure gain,
Hmf (s) = Kmf , compared to where they are presented 1-to-1 (Kmf = 1). As long as
the gain does not cause the motion cues to become smaller thanhuman motion perception
thresholds [De Vroome et al., 2009], pilots could simply respond to the lower magnitude
motion information (̈φmf ) with a higher gainKm. If they succeed in increasing the gain
of Hpm

(s) with around1/Kmf , this means the open-loop dynamics as given by Eqs. (6.5)
and (6.6) remain approximately the same.

Similarly, a motion filter with certain dynamics also affects the corresponding closed-
loop forcing function to error responses given by:

He,fd(s) =
E(s)

Fd(s)
=

−Hc(s)

1 + [Hsv (s)Hpv
(s) + s2Hmf (s)Hsm(s)Hpm

(s)]KsHc(s)
(6.7)

He,ft(s) =
E(s)

Ft(s)
=

1 + s2Hmf (s)Hsm(s)Hpm
(s)KsHc(s)

1 + [Hsv (s)Hpv
(s) + s2Hmf (s)Hsm(s)Hpm

(s)]KsHc(s)
(6.8)

He,fd andHe,ft as given by Eqs. (6.7) and (6.8) are indicative of the successof the
closed-loop system depicted in Fig. 6.1 in attenuatingfd and following ft. Changes to
these closed-loop responses due toHmf (s) may yield unsatisfactory performance of the
closed-loop pilot-vehicle system, especially if they result in degraded performance around
crossover, thereby perhaps forcing pilots to change their own control dynamics to alleviate
these effects.

6.3 Offline Pilot-Vehicle System Analysis

6.3.1 Analysis Setup

To evaluate the effect of the dynamics of a motion filter in themotion feedback path of
the closed-loop control task (see Fig. 6.1) on the overall pilot-vehicle system dynamics, an
offline control-theoretic analysis was performed. The parameters used to define the pilot-
vehicle system dynamics for the roll attitude control task considered in this chapter are taken
from a previous experiment that measured roll tracking behavior in real flight ([Zaal et al.,
2010]) and will be provided in Section 6.3.2.

Using these pilot dynamics that are appropriate for the casewhereHmf (s) = 1 it is
possible to evaluate the effect of changes in motion filter dynamics on the performance and
stability of the pilot vehicle system, assuming no pilot adaptation. Even though it is not
possible to infer how pilots will adapt their control dynamics in response to the introduction
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of a motion filter with certain dynamics, such an analysis does give insight into how impor-
tant pilot-vehicle system characteristics are affected byHmf (s). For instance, Eqs. (6.5)
to (6.8) give some of the important open-loop and closed-loop transfer functions that are
related to pilot-vehicle system performance and stability. To evaluate the discrepancies,
which in the remainder of this chapter will be referred to with the symbol “∆”, that occur
in these transfer functions as a result of varyingHmf (s), the following relation is defined:

∆H(s) =
H(s)|Hmf (s)

H(s)|Hmf (s)=1
(6.9)

Eq. (6.9) shows how a change in a generic transfer functionH(s) that is a function of
the motion filter dynamicsHmf (s) with respect to the case where no motion filter is present
(Hmf (s) = 1 ) can be evaluated. Similarly, for a derived quantitative measureX – which
could for example be the achieved tracking performance expressed as the variance of the
error signale (σ2

e ) or the disturbance open-loop crossover frequencyωc,d – a similar “∆”
can be defined as:

∆X = X|Hmf (s) −X|Hmf (s)=1 (6.10)

Using Eqs. (6.9) and (6.10) this section will attempt to quantify the effect of a first-order
high-pass motion filter with dynamicsHmf (s) as given by Eq. (6.1) on the pilot-vehicle
system depicted in Fig. 6.1. Seven different quantitative measures of pilot-vehicle system
performance and stability (X in Eq. (6.10)) will be analyzed in this section:

• The target and disturbance open-loop crossover frequencies,ωc,d andωc,t

• The target and disturbance open-loop phase margins,ϕm,d andϕm,t

• The tracking error signal varianceσ2
e and the separate variance contributions of the

disturbance and target forcing functions,σ2
e,d andσ2

e,t

For the analysis of the effect ofHmf (s) only first-order high-pass motion filter dynamics
as given by Eq. (6.1) were considered. The two motion filter parameters, the motion filter
gainKmf and the filter break frequencyωmf were varied independently over a range of
typical values. ForKmf values between 0 and 1 (steps of 0.05) were considered, whilethe
effect of the filter break frequency was evaluated forωmf ranging from 0 to 3 rad/s, with
0.1 rad/s increments.

6.3.2 Analysis Parameters

The dynamics and settings of most of the elements in the closed-loop control task depicted
in Fig. 6.1, such as the controlled element dynamicsHc(s) and the forcing function sig-
nalsfd andft, have already been defined in Section 6.2.1. The only important element to
define for the analysis that will be performed in this sectionare the dynamics of the pilot
visual and motion responsesHpv

(s) andHpm
(s). For this analysis, parameters for the mul-

timodal pilot model described in Section 6.2.2 were taken from [Zaal et al., 2010], which
presents identified pilot model parameters (pilot 2) for an in-flight roll attitude tracking task
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performed in DUT’s Cessna Citation II laboratory aircraft with quasi-random target and
disturbance forcing function signals (condition C3). The pilot model parameters that were
used to setHpv

(s) andHpm
(s) for the analysis are listed in the left column of Table 6.2.

Table 6.2. Offline analysis parameters and derived measures.

Analysis parameters Derived measures

Symbol Value Unit Symbol Value Unit

Kv 0.3749 V/deg ωc,d 2.6147 rad/s
TL 0.2230 s ωc,t 1.5244 rad/s
Km 0.0869 V/IPUT ϕm,d 53.5120 deg
τv 0.2740 s ϕm,t 64.9336 deg
τm 0.1290 s σ2

e 0.2688 deg2

ωnm 9.5930 rad/s σ2
e,d

0.1052 deg2

ζnm 0.1920 σ2
e,t 0.1636 deg2

σ2
u 0.0617 V2

Kmf 1.0 σ2
u,d

0.0366 V2

ωmf 0.0 rad/s σ2
u,t 0.0251 V2

The difference in the pilot model gainsKv andKm listed in Table 6.2 compared to the
data presented in [Zaal et al., 2010] results from the fact that Zaal et al. considered the
signaluc as the pilot model output instead ofu. Furthermore, the inputs to the pilot model
were considered in rad rather than deg, yielding a difference in the values ofKv andKm

of π/(180Ks). Finally, due to the different gain of the semicircular canal dynamics model
used in the multimodal pilot model in this chapter (see Section 6.2.2), the value ofKm

differs an additional factor1/5.97 with the value reported by [Zaal et al., 2010].
In addition to the pilot model parameters used for the analysis, Table 6.2 also shows

the reference values of the quantitative measures that willbe analyzed for the reference
case whereKmf = 1 andωmf = 0 rad/s, yieldingHmf (s) = 1. These values are cal-
culated from the model of the control task of Fig. 6.1 using the listed settings of the pilot
model and motion filter parameters. The values obtained for the target and disturbance loop
crossover frequencies and phase margins, and the fact that the disturbance loop shows a
higher crossover frequency and a lower phase margin, are consistent with previous research
[Hosman, 1996; Van der Vaart, 1992; Zaal et al., 2009b,c; Pool et al., 2010; Zaal et al.,
2011]. Also the fact that tracking errors resulting from a disturbance signal are more ef-
fectively attenuated than those resulting from a target signal (both signals here resulted in
a total error variance of 0.4 deg2 if not compensated for) is consistent with earlier findings
[Hosman, 1996; Van der Vaart, 1992; Zaal et al., 2009c, 2011].

6.3.3 Analysis Results

6.3.3.1 Pilot-Vehicle System Open-Loop Dynamics

Figures 6.5 and 6.6 depict the discrepancies according to the definition of Eq. (6.9) that
would occur in the pilot-vehicle system disturbance and target open-loop responses as de-
fined by Equations (6.5) and (6.6) without pilot adaptation for variations in the filter break
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frequencyωmf and the filter gainKmf , respectively. Note that for the data shown in
Fig. 6.5, the filter gain is equal toKmf = 1. Similarly, Fig. 6.6 shows data for a variation
in Kmf for the case where no washout is present (ωmf = 0 rad/s). In all graphs in Figures
6.5 and 6.6 the gray shaded area indicates the crossover region, that is, the 1-5 rad/s range
where the pilot-vehicle system crossover frequency is typically located for compensatory
tracking.

Fig. 6.5 shows that the introduction of a washout filter in themotion feedback path
degrades both the characteristics ofHol,d(s) andHol,t(s). For the disturbance open-loop
response, for which the visual and motion feedback paths areparallel, an almost constant
decrease in open-loop magnitude in the crossover region, which increases with increasing
ωmf , can be observed in Fig. 6.5(a). Forωmf = 2 rad/s the open-loop gain is seen to reduce
with a factor of around 0.7 in the crossover region. In addition to this discrepancy in open-
loop gain, Fig. 6.5(c) also shows an increase in the disturbance open-loop phase lag, mainly
in the lower frequency range and extending into the lower part of the crossover region.

For the target open-loopHol,t(s) a different effect ofωmf on the open-loop magnitude
is observed. As can be verified from Fig. 6.5(b), rather than an approximately constant
discrepancy in open-loop gain as observed forHol,d(s), a steepening of the slope of the
open-loop response in the crossover region is found to occurfor Hol,t(s) with increasing
ωmf . Note that this is consistent with the increased target open-loop phase lag visible in
Fig. 6.5(d). The drop in open-loop phase is found to be largerfor the target open-loop than
for Hol,d(s).

A decrease in the gain of a pure-gain washout filter is also seen to affect the disturbance
and target open-loop responses, see Fig. 6.6. For the disturbance open-loop, decreasing
Kmf is seen to yield a slight reduction in the gain ofHol,d(s) at the higher frequencies in
the crossover region and a marked drop in the open-loop phasethat increases with frequency.
Fig. 6.6(c) shows that for lowKmf this drop in open-loop phase reaches over 30 deg in the
crossover region, that is, a reduction ofϕm,d to 40% of its nominal value (see Table 6.2).
For the target open-loop, Fig. 6.6(b) shows a strong increase in the low-frequency gain of
Hol,t(s) with decreasingKmf , which extends well into the crossover region. A decrease in
open-loop phase that increases with frequency, similar to yet slightly smaller than observed
for Hol,d(s), is further visible in Fig. 6.6(d).

Figures 6.5 and 6.6 show that when a pilot does not adapt his control behavior to the
introduction of a washout filter with a certain gainKmf and break frequencyωmf , this
leads to changes in the disturbance and target open-loop dynamics that are typically asso-
ciated with degraded pilot-vehicle system dynamics. The most prominent examples are the
observed reduction in the gain ofHol,d(s) and the increased magnitude of the target open-
loop, which have been reported to signal decreasing tracking performance [McRuer et al.,
1965; Hosman, 1996; Pool et al., 2008a]. Furthermore, the decreased phase of both in the
crossover region is indicative of reduced stability margins and closed-loop damping.

6.3.3.2 Crossover Frequencies and Phase Margins

Figures 6.5 and 6.6 presented the individual effects of variations inKmf andωmf on the
disturbance and target open-loop responses. For the full variation in both motion filter pa-
rameters considered for the offline analysis (see Section 6.3.1), Figures 6.7 and 6.8 show
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Figure 6.5. Offline analysis prediction of the discrepancies in the pilot-vehicle system open-loop
responses as a function ofωmf for Kmf = 1.
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Figure 6.6. Offline analysis prediction of the discrepancies in the pilot-vehicle system open-loop
responses as a function ofKmf for ωmf = 0 rad/s.



164 Chapter 6

the corresponding changes in the disturbance and target open-loop crossover frequencies,
respectively. For both measures, graph (a) shows the two-dimensional variation as a func-
tion of both motion filter parameters, while graphs (b) and (c) show curves that represent the
observed discrepancies along trajectories A-C and D-F, respectively, as indicated in graph
(a) with dashed black lines. Note that trajectories C and D correspond to the data presented
in Figures 6.5 and 6.6, respectively.

In line with the data presented in Figures 6.5 and 6.6, Fig. 6.7 shows that the disturbance
crossover frequency is highly sensitive to changes inωmf and is seen to decrease with
increasing motion filter break frequency. The largest discrepancies inωc,d are seen to occur
for Kmf = 1, for which a drop in disturbance crossover frequency of nearly 0.8 rad/s is
observed aroundωmf = 2 rad/s, a 30% drop compared to the nominal value listed in 6.2.
Fig. 6.7(b) shows that the sensitivity to changes inωmf largely disappears for values of the
filter break frequency above 1.5-2 rad/s. Furthermore, Figures 6.7(a) and (b) show a clear
effect of the interaction betweenKmf andωmf on the disturbance crossover frequency.
For instance, the total variation inωc,d along intersections B and C – which correspond
to Kmf = 0.5 andKmf = 1, respectively – is approximately equal to 0.3 and 0.8 rad/s,
respectively, over the full range of considered values forωmf . Furthermore, Fig. 6.7(c)
clearly shows that if no washout is present (ωmf = 0 rad/s),ωc,d increases with increasing
Kmf , as expected from Eq. (6.5), while already for modest filter break frequency settings
the opposite trend is observed.

The discrepancies in the open-loop dynamics presented in Figures 6.5 and 6.6 showed
that the magnitude of the target open-loop responseHol,t(s) was affected more strongly
by changes inKmf than by changes inωmf . This same effect is also clearly visible in
Fig. 6.8(a), where the largest variation in the target open-loop crossover frequencyωc,t is
observed a direction parallel to the longitudinalKmf axis. Fig. 6.8(c) shows an almost
linear increase inωc,t with decreasing motion filter gains, a trend on which the different
values ofωmf for trajectories D-F are found to only have minor impact. Note that the nearly
1 rad/s increase inωc,t observed for very low values ofKmf is especially large compared
to the nominal value ofωc,t = 1.52 rad/s listed in Table 6.2.

Figures 6.9 and 6.10 show the variation in the disturbance and target open-loop phase
margin that result from changes in the motion filter gain and break frequency in the same for-
mat as that used for Figures 6.7 and 6.8. It should be noted, however, that the presented pre-
dictions of changes inϕm,d andϕm,t are less directly a result ofKmf andωmf than those
obtained forωc,d andωc,t. This is caused by the fact that the phase margin is calculated at
the corresponding crossover frequency. The phase of the open-loop transfer functions given
by Equations (6.5) and (6.6) typically continuously decreases with increasing frequency.
Therefore, a change in phase margin as shown in Figures 6.9 and 6.10 always results from
the combined effects of the discrepancies in the open-loop phase responses caused byKmf

andωmf (as shown in Figures 6.5 and 6.6) and the change in the corresponding crossover
frequency value.

Fig. 6.9 shows a clear example of this. The increase in disturbance open-loop phase
margin visible forKmf > 0.75 and0 < ωmf < 2.5 rad/s does not result from reduced
phase lag inHol,d(s), as Figures 6.5 and 6.6 both show phase lag increases with increasing
ωmf and decreasingKmf , respectively. This gain inϕm,d is the result of the decrease in
ωc,d, on average 0.5 rad/s for this range of values ofKmf andωmf , as shown in Fig. 6.7.
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The decrease inϕm,d with decreasingKmf shown in Fig. 6.9(c), around 30 deg over the
full range of considered motion filter gains, however, confirms the drop in open-loop phase
observed in Fig. 6.6(c).

As can be verified from Fig. 6.10, the target phase marginϕm,t is found to decrease as
a result of both decreasingKmf and increasingωmf . Figures 6.10(b) and (c) show that the
largest variation inϕm,t occurs forKmf = 1, for which a drop of around 25 deg is observed
betweenωmf = 0 and3 rad/s. ForKmf = 0.5 the effect ofωmf is found to be smaller
(around 15 deg reduction over the full range ofωmf ), however, with added phase lag that
results from the drop inKmf .

Figures 6.7 to 6.10 show that with no adaptation of pilot dynamics, increasingωmf and
decreasingKmf both lead to changes in the disturbance and target crossoverfrequencies
and phase margins, and hence to changes in pilot-vehicle system performance and stability.
The decrease inωc,d, the increase inωc,t, and the decrease in both phase margins for settings
of Kmf andωmf that correspond to a lower level of motion fidelity are all indicators of
unfavorable changes to the dynamic characteristics of the pilot-vehicle system.

6.3.3.3 Closed-Loop Tracking Performance

Degraded pilot-vehicle system crossover frequencies and stability margins during compen-
satory tracking are typically found to result in degraded tracking performance, especially
in the frequency range around crossover [McRuer et al., 1965; McRuer and Jex, 1967a].
Figures 6.11 and 6.12 show the discrepancies in the closed-loop disturbance-to-error and
target-to-error responses as defined by Equations (6.7) and(6.8), respectively, for the same
variation inωmf andKmf for which the discrepancies in the corresponding open-loopre-
sponses are presented in Figures 6.5 and 6.6.

Figures 6.11 and 6.12 show that both increasingωmf and decreasingKmf yields in-
creased magnitude of bothHe,fd(s) andHe,ft(s) in the crossover region, which indicates
degraded tracking performance. Note that as the degradation in closed-loop error attenu-
ation is strongest in the1-5 rad/s frequency range, these effects of varying motion filter
dynamics are mainly felt for control tasks and forcing function signals that induce signif-
icant control power in this frequency range. The example frequency responses shown in
Figures 6.11 and 6.12 suggest that the degradation in tracking performance resulting from
reducingKmf is larger than the effect of increasingωmf , as the peaking in the crossover
region is much more severe for the former as can be judged fromFig. 6.12.

Figures 6.13 and 6.14 show the corresponding variation in the disturbance and target
components of the tracking error variance –σ2

e,d andσ2
e,t, respectively – that result for the

full variation in the motion filter gain and break frequency considered in the offline analysis.
Figures 6.13 and 6.14 confirm the dominant effect ofKmf on closed-loop pilot vehicle
system performance suggested by Figures 6.11 and 6.12, as both σ2

e,d andσ2
e,t are found

to increase markedly with decreasingKmf while remaining comparatively constant with
changes in motion filter break frequency. Note from comparison of Figures 6.13(c) 6.14(c)
thatσ2

e,d is more sensitive to small reductions inKmf from 1, while for σ2
e,t the effect of

Kmf is less pronounced forKmf > 0.5. It should be noted that the degradation in tracking
performance observed in Figures 6.13 and 6.14 is marked, considering the reference values
of σ2

e,d = 0.11 deg2 andσ2
e,t = 0.16 deg2 for Kmf = 1 andωmf = 0 rad/s (see Table 6.2).
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6.4 Experiment Setup

6.4.1 Apparatus

6.4.1.1 Cessna Citation II Laboratory Aircraft

For the experiment performed to measure pilot tracking behavior both in-flight and for vary-
ing roll motion cueing settings in a flight simulator, two different facilities were used. The
first is the Cessna Citation II laboratory aircraft that is owned by the Faculty of Aerospace
Engineering of Delft University of Technology and the Netherlands’ National Aerospace
Laboratory (NLR) shown in Fig. 6.15. The Citation II is a twin-jet business aircraft with
two Pratt & Whitney JT15D-4 turbofan engines. The maximum operating altitude of the air-
craft is 43,000 ft and the maximum cruising speed is 385 kt. Inaddition to a custom Flight
Test Instrumentation System (FTIS) that is available in theaircraft [Zaal et al., 2009d], extra
sensors can be installed on a nose boom, roof rack, or external pod underneath the aircraft.

The experimental setup in the laboratory aircraft used for the current experiment was
highly similar to that used for the earlier experiments described in [Zaal et al., 2010] and
[Zaal et al., 2011]. The aircraft was equipped with a nose boom with alpha and beta vanes,
which allowed for more accurate measurements of the undisturbed angle of attack and the
sideslip angle, respectively, during the experiment. At the right pilot seat a programmable
LCD display was installed in front of the instrument panel, see Fig. 6.17. This LCD display
was used to present the compensatory display shown in Fig. 6.2 to the pilots. The update
rate of the LCD display was 60 Hz and, as also stated in Section6.2.1, the latency of this
display (including the projection) was measured to be 25 ms.

Fig. 6.17 further shows the side stick manipulator that was used for the experiment.
This BG Systems JFf force stick was used to give control inputs during the in-flight track-
ing tasks. As explained in detail in [Zaal et al., 2009d, 2010], the side stick commands
and the disturbance forcing function signal were fed to a custom Experiment Computer
present in the aircraft, which in turn used the electrical actuators of the Honeywell SP-200
(4008519-941) automatic control system to move the aircraft control surfaces. Note that as
the mechanical control architecture is used by the automatic control system, side stick inputs
and the disturbance forcing function signal yielded movement of the control column (see
Fig. 6.17). To avoid effects of this moving control column and pilots’ view of the outside
world on their control strategy during the pitch tracking task, participants were required to
wear a hood (see Fig. 6.19) that limited their field of view to the LCD display during the
in-flight measurements.

6.4.1.2 SIMONA Research Simulator

The flight simulator portion of the experiment was performedin the SIMONA Research
Simulator (SRS) at Delft University of Technology, see Fig.6.16. The SRS has a hydraulic
six degree-of-freedom hexapod motion system, which was used to supply participants with
the considered pitch and heave motion cues. Details of the motion cueing implementation
for this experiment are given in Section 6.4.2. The time delay of the motion cues generated
by the SRS motion base is no more than 30 ms [Berkouwer et al., 2005].
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Figure 6.15. The Cessna Citation II labora-
tory aircraft.

Figure 6.16. The SIMONA Research Simula-
tor.

Figure 6.17. The Cessna Citation II labora-
tory aircraft cockpit.

Figure 6.18. The SIMONA Research Simula-
tor cockpit.

Figure 6.19. Experiment pilot wearing the hood during in-flight measurements.
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As can be verified from Fig. 6.18, the experimental setup in the SRS was highly similar
to that in the Citation. Participants were seated in the right pilot seat and used a Moog FCS
Ecol-8000 electrical side stick to give control inputs. Thecompensatory display (Fig. 6.2)
was shown on the primary flight display (PFD) directly in front of them. No other visual
cues, for instance from the outside visual system, were provided during the experiment. The
PFD update rate was 60 Hz and the delay in the image generationon the PFD in the SRS
has been measured to be in the order of 25 ms, that is, approximately equal to the delay of
the LCD display used for the Citation experiments.

6.4.1.3 Side Stick Manipulator

Due to the limited space available in the Citation cockpit, aforce stick was used for the
experiment. As opposed to a deflection stick, a force stick has very high stiffness and no
manipulator deflections are required for giving a control input. Rather, the control input
given by the pilot is proportional to the force applied to themanipulator. For the force
stick installed in the Citation cockpit the output voltage,which was used as the pilot con-
trol input u (see Fig. 6.1), was between±2.5 V. As detailed in Appendix C, the relation
between applied force and output voltage was determined from static measurements, where
known weights were used to induce known stick forces. The resulting output voltageu was
then measured. The force-voltage characteristic of the Citation force stick was found to
be approximately linear over the full range ofu. The electrical side stick in the SRS was
configured to have the same characteristics as the Citation force stick, that is, a linear force-
voltage characteristic with a gradient of 14 N/V. Note that the stiffness in the roll axis of the
force stick was lower than the stiffness in the pitch axis (24N/V) as used for the experiment
of [Zaal et al., 2011]. The electrical side stick in the SRS was also configured as a force
stick and set to have exactly the same force-output characteristics as the Citation force stick.

6.4.2 Simulator Motion Cueing

During the roll tracking tasks performed in the SRS simulator roll motion equivalent to
that present in the Citation was presented. As can be verifiedfrom Fig. 6.20, the axis
around which the SRS cabin performs roll motion –Xs, which completes the right-handed
simulator reference frame indicated byYs andZs and points forward through the Upper
Gimbal Point (UGP) – is located 0.55 m to the left and 1.2075 m below the design position
of the right pilot’s eye. As also indicated in Fig. 6.20, the axis around which the Cessna
Citation II laboratory aircraft performed rolling motion was measured to be closer to the
right pilot position. To achieve the same lateral and vertical specific forces at the pilot eye
position directly due to rotational accelerations around the axis of roll rotation, the simulator
roll axis was displaced 0.215 m in lateral direction and -0.2025 m in vertical direction.

As explained in Section 6.2.1, roll motion cues were presented for varying settings of
the first-order washout filter given by Eq. (6.1). In the simulator part of the experiment,
four different roll cueing conditions were evaluated, which will be explained in detail in
Section 6.4.3.

In addition to the simulator roll motion cueing, a pre-positioning filter similar to that
adopted in [Beukers et al., 2010] was used to move the SRS to the trim pitch attitudeθ0
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Figure 6.20. Positioning of the axis of simulator roll motion with respect to the SRS Upper
Gimbal Point (UGP), Design Eye Reference Point (DERP), and the right pilot eye position.

of the Citation in the flight condition in which the experiment was performed (V = 160
kt, h = 17, 000 ft). This trim pitch attitude to which the simulator was pre-positioned was
equal to 4.34 deg. The pre-positioning filter was defined as:

Hpp(s) =
s2

s2 + 2ζnpp
ωnpp

s+ ω2
npp

· s

s+ ωbpp

(6.11)

The values of the parameters of Eq. (6.11) were set toωnpp
= 1.0 rad/s,ζnpp

= 1.0,
andωbpp = 2.0 rad/s. The pre-positioning was done before the start of eachmeasurement
run. Note that also for the tracking tasks performed withoutroll motion cueing (see Sec-
tion 6.4.3) the SRS was pre-positioned toθ0.

6.4.3 Independent Variables

This chapter presents the results of an experiment that investigates the effect of flight sim-
ulator motion cueing on pilot control behavior in the roll attitude tracking task shown in
Fig. 6.1. This experiment was designed to allow for comparison of in-flight measurements
of pilot tracking behavior with those obtained in the SRS fordifferent motion cueing set-
tings. The different conditions under which pilot control behavior during roll tracking was
evaluated in this combined in-flight and simulator experiment are listed in Table 6.3.

First of all, the middle four conditions listed in Table 6.3 indicate the four different
simulator roll motion cueing settings for which pilot tracking behavior was evaluated in the
SRS. For these conditions, labeled as S0-S3, the corresponding values of the roll motion
filter gainKmf and break frequencyωmf are listed in the final column of Table 6.3 in the
format(Kmf , ωmf ).

As can be verified from Table 6.3, S0 was a condition with no simulator motion feed-
back, performed to allow for direct comparison with earlierwork on single-loop compen-
satory tracking behavior [McRuer et al., 1965; McRuer and Jex, 1967a]. As motion feed-
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Table 6.3. Experimental conditions.

condition apparatus description filter,(Kmf , ωmf )

C0 Citation aircraft no motion (0,0)

S0 SIMONA no motion (0,0)
S1 SIMONA medium-fidelity filter (0.5,0.5)
S2 SIMONA high-fidelity filter (1,0.5)
S3 SIMONA simulator 1-to-1 motion (1,0)

CIT Citation aircraft 1-to-1 motion −

back is increasingly attenuated by a motion filter, human operators are typically seen to
revert to a control strategy that approximates single-loopcompensatory control [Jex et al.,
1978; Pool et al., 2010], hence it was found important to evaluate S0 as a reference mea-
surement. On the other hand, S3 indicates the condition in which aircraft roll motion cues
were presented 1-to-1, that is,Hmf = 1.

The remaining two conditions, S1 and S2, indicate two different settings of the high-
pass washout filter of Eq. (6.1): both had a break frequency of0.5 rad/s and filter gains
of 0.5 and 1, respectively. Fig. 6.21 depicts the characteristics of the four motion cueing
settings tested in the SRS against the simulator motion fidelity criterion proposed by Sina-
cori [1977], with fidelity regions as suggested by Schroeder[1999]. As can be observed
from Fig. 6.21 condition S2 (1,0.5) represents a high fidelity filter setting according to the
criterion proposed by Schroeder, while condition S1 would be considered medium fidelity.

S0: (0,0)
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Figure 6.21. Evaluation of the rotational simulator motion fidelity criterion proposed by Sina-
cori [1977], with modified fidelity regions from [Schroeder, 1999], for the different experimental
conditions.

The condition indicated with CIT in Table 6.3 indicates the in-flight roll tracking tasks
performed in the Citation II laboratory aircraft. As the true aircraft motion was presented to
the pilots in this condition, no motion filter dynamics are listed in Table 6.3. Note, however,
that the physical roll motion to which pilots were subjectedfor the CIT and (1,0) conditions
was equivalent.
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Finally, Table 6.3 lists one further condition that was performed in the Citation labo-
ratory aircraft: C0. For this condition the roll tracking task was performed using the ex-
perimental setup utilized for the in-flight measurements ofcondition CIT, but pilots were
controlling the same model of the Citation and FBW system dynamics used in the SRS
conditions rather than the aircraft itself. Condition C0 was performed on the ground and
therefore yielded a condition that should be equivalent to S0, and therefore allowed for di-
rect comparison of pilot tracking behavior in both cockpit setups. Even though extreme care
was taken to ensure the important elements of the experimental setups in the Citation and
SRS were as equal as possible (as detailed in Section 6.4.1),these additional measurements
were performed to quantify possible discrepancies in control behavior due to remaining
differences in the experimental setup and the environment in which pilot control was mea-
sured. It should be noted that for condition C0 the participants did not wear the hood they
were required to wear during the in-flight measurements.

6.4.4 Participants

Seven subjects performed the roll attitude tracking task ofFig. 6.1 under the six conditions
listed in Table 6.3. At the time of the experiments, all participants were active Cessna Cita-
tion II pilots employed by Delft University of Technology and all except one had experience
with similar tracking tasks from previous simulator and in-flight experiments. The partic-
ipants’ flight experience ranged from1,500-14,000 hrs on a multitude of different aircraft.
Their ages ranged from34 to 72 years (µ = 51.1, σ = 14.3).

6.4.5 Experimental Procedure

All participants performed the simulator part of the experiment before the in-flight and
no-motion measurements in the Citation laboratory aircraft were taken. During both the
in-flight and simulator parts of the experiment, participants performed a number of training
runs – typically 4-6 repetitions of each experimental condition – until their proficiency in
performing the tracking task had reached a consistent level. Then five more repetitions of
each experimental condition were collected as the measurement data.

6.4.5.1 Simulator Measurements

During the simulator part of the experiment the motion conditions listed in Table 6.3 (S0-S3)
were presented in random order (Latin square) throughout both the training and measure-
ment phases of the experiment. Breaks were taken regularly,on average after every 16 track-
ing runs (four repetitions of all conditions), to avoid fatigue. As explained in Section 6.4.2,
the simulator was prepositioned to the aircraft trim pitch attitude before each tracking run
was started, even for the condition without any further motion cues, S0. The experimenter
then counted down from three and started the run. Directly after a run ended the simulator
was tilted back to zero pitch attitude, after which participants were required to give a sub-
jective judgment of motion fidelity for the run they just completed (see Section 6.4.6). After
this subjective evaluation was completed participants were informed of their tracking score,
defined as the root mean square of the tracking error signale as recorded for the last run.
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6.4.5.2 In-Flight Measurements

During the in-flight measurements, two pilots were always required for each flight. One
pilot functioned as the safety pilot and was responsible formonitoring the aircraft during the
experiment and ensuring the aircraft was in the desired trimstate (velocity, altitude) before
each run. The other pilot, referred to as the experiment pilot, performed the experiment.

The two conditions of the in-flight part of the experiment (see Table 6.3) were always
performed in the same order. Before take-off, the measurements for the C0 condition were
taken. The main reason for taking these measurements first was that this allowed for initial
re-familiarization with the control task in a more controlled environment than available
during flight. In addition, it was thought to reduce the number of training runs required for
the in-flight measurements.

For condition C0, the experimenter initiated the start of a run (after counting down
from three), as was also the case during the simulator part ofthe experiment. For the CIT
condition, where the experiment pilot actually controlledthe aircraft, the experiment pilot
started the tracking runs himself using the pilot interfaceshown above the LCD screen in
Fig. 6.17. For more details on this pilot interface, please refer to [Zaal et al., 2009d, 2010].
After completion of an in-flight tracking run, the FBW systemwould disengage itself, after
which the safety pilot would take control of the aircraft andbring it back in the desired trim
state for the next run of the experiment. The experimenter then notified the experiment pilot
of his performance for the last run.

6.4.6 Dependent Measures

A number of different dependent measures are considered forthis experiment to evaluate the
effects of the variation in motion fidelity on pilot control behavior and tracking performance.
First of all, during the conditions of the experiment performed in the SRS, participants were
asked to give a subjective indication of the level of motion fidelity for each tracking run.
For this, the rating scale depicted in Fig. 6.22 was used. On this visual analogue scale
(VAS) the participants gave their motion fidelity rating by drawing a vertical line through
the horizontal bar of the scale, which had a total length of 10cm. For these experiments,
which were designed to allow for an objective evaluation of simulator motion fidelity, these
subjective ratings merely served as a reference.

How would you rate motion fidelity for this condition with respect to the aircraft?

0% 100%

Figure 6.22. Visual analogue motion fidelity rating scale.

In addition to the subjective motion fidelity ratings, a number of objective measures of
pilot tracking performance, control activity and control strategy were considered. Tracking
performance and control activity were evaluated from the time-domain variances of the
recorded time traces of the pitch tracking error (e) and pilot control signal (u), respectively.
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In addition, using a spectral method described in [Jex et al., 1978], the contributions of the
target and disturbance forcing functions and pilot remnantto these signal variances were
evaluated separately.

To assess changes in pilot-vehicle system open-loop dynamics, frequency-domain de-
scribing function estimates were calculated at the forcingfunction frequencies [Stapleford
et al., 1969; Jex et al., 1978] for the disturbance and targetopen-loop responses as given by
Eqs. (6.5) and (6.6), respectively. From these frequency-domain describing functions, the
values of the disturbance and target loop crossover frequencies (ωc,d andωc,t) and phase
margins (ϕm,d andϕm,t) were then calculated.

Finally, for explicitly evaluating changes in pilot control strategy over the different ex-
perimental conditions, the multimodal pilot model introduced in Section 6.2.2 was fit to
the experimental measurement data using the time-domain parameter estimation procedure
described in [Zaal et al., 2009a]. As shown in Fig. 6.4, the input to the visual channel of
the pilot model was the measured tracking error signale, while the model output was the
measured pilot control inputu. For the in-flight tracking tasks, no measurement ofφ̈ was
available to be used as the input of the pilot model motion channelHpm

(s). Therefore, the
aircraft roll rateφ̇, which was measured for the in-flight tracking tasks using anon-board
IMU, was used as the input toHpm

(s) for the model identification and an extra differen-
tiator was added to the model for the pilot motion dynamics. For the data from the SRS
conditions also the supplied simulator roll rates, soφ̇s, were used for the identification of
the multimodal pilot model.

Before being used for model identification, the high-frequency noise present in all sig-
nals – that is, the noise above 30 rad/s, so well above the highest frequency sinusoids inft
andfd, see Table 6.1 – was filtered out. The five repetitions of thesesignals collected for
each subject and condition were then averaged, to yield one identification data set for each
condition and participant. It should be noted that for conditions S0 and C0 only the visual
response of the model,Hpv

(s) was fit to measurements ofe andu, as no motion feedback
was available for these conditions.

6.4.7 Hypotheses

The experiment described in this chapter attempts a challenging comparison of pilot control
behavior in two different environments: a real in-flight cockpit and a full-motion flight sim-
ulator. As pointed out by McRuer and Jex [1967a] human operator behavior for a certain
control task is affected by a multitude of variables, of which environmental factors – such
as vibration level, temperature, ambient lighting conditions, etc. – form an important group.
Differences in pilot control behavior resulting from differences in such environmental fac-
tors would complicate the interpretation of the effect of motion cueing on pilot behavior as
made in this chapter.

To assess possible differences in control strategy that resulted from the difference in ex-
perimental setup and environmental factors, an additionalsingle-loop roll tracking task was
performed in the setup used for the in-flight part of the experiment (condition C0, see Ta-
ble 6.3). The measurements taken for this condition can be compared directly to those taken
for the equivalent S0 condition in the SRS. As explained in detail in Section 6.4.1, extreme
care was taken to ensure the conditions under which the in-flight and flight simulator exper-
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iments were performed were as similar as possible. Hence, differences in control strategy
observed for the S0 and C0 conditions were expected to be relatively minor compared to the
effect of the variation in motion cueing.

The variation in simulator motion cueing evaluated for the comparison with in-flight
measurements of pilot tracking behavior consists of a no-motion and a 1-to-1 roll cueing
setting, in addition to two conditions with simulator roll washout. Based on the significant
effects of motion feedback on pilot tracking behavior in similar tracking tasks reported in
previous studies [Shirley and Young, 1968; Jex et al., 1978;Stapleford et al., 1969; Van der
Vaart, 1992; Hosman, 1996; Zaal et al., 2009b; Pool et al., 2010; Zaal et al., 2011] it is
expected that clear differences in tracking performance and control behavior will be ob-
servable between conditions (0,0) and (1,0). Evaluation ofthe two roll motion conditions
with first-order washout against the motion fidelity criterion proposed by Schroeder [1999]
(see Fig. 6.21) suggests that condition S1 (0.5,0.5) yieldsmedium motion fidelity, while S2
(1,0.5) yields high motion fidelity. Here it is expected thatthis difference will also be visible
in the measured tracking behavior, yielding behavior closest to the no-motion tracking be-
havior of condition (0,0) for S1. Correspondingly, only minor differences in pilot tracking
behavior compared to tracking with 1-to-1 motion are expected for condition S2.

Finally, comparison of the results of the offline pilot-vehicle system analysis described
in Section 6.3 with the experimental measurements is believed to provide a method for
objectively pointing out pilot adaptation over the different conditions of the experiment.
Based on the results of this offline analysis, it is expected that adaptation of pilot tracking
behavior compared to the measurements for 1-to-1 motion occurs for both the no-motion
condition (0,0) and the condition with the filter with a breakfrequency of 0.5 rad/s and a
gain of 0.5 (0.5,0.5).

6.5 Results

This section presents the main experimental results from both the in-flight and simulator
parts of the experiment. This section only compares the datafor the four conditions per-
formed in the SRS and the in-flight tracking tasks (CIT). A comparison of the reference
single-loop tracking measurements taken in the Citation setup (condition C0) and the SRS
(S0) can be found in Appendix F.

Data are presented as the mean over all seven experiment participants and error bars in-
dicating the 95% confidence interval of the mean. As the experiment had a within-subjects
design, the data have been corrected for between-subject variability for calculating the 95%
confidence intervals. All the calculated dependent measures were analyzed using a one-
way repeated-measures analysis of variance (ANOVA) to reveal statistically significant ef-
fects. Before analyzing data with an ANOVA, data were checked for normality using a
Kolmogorov-Smirnov test. Furthermore, Mauchly’s test of sphericity was performed to
check if the assumption of sphericity was met. If for a certain dependent measure the
sphericity assumption was not met, the conservative Greenhouse-Geisser sphericity cor-
rection was applied in the interpretation of the ANOVA results. For data with a distribution
significantly different from normal, as indicated by the performed Kolmogorov-Smirnov
tests, a nonparametric Friedman’s ANOVA was performed instead of an ANOVA.
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6.5.1 Subjective Motion Fidelity Ratings

Fig. 6.23 shows the subjective motion fidelity ratings collected with the VAS shown in
Fig. 6.22. No normalization of the measured ratings was performed: the data in Fig. 6.23
show the true percentages measured from the VAS rating scales for each subject.
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Figure 6.23. Mean subjective motion fidelity ratings for roll multisine tracking.

Fig. 6.23 shows that the different subjects were relativelyconsistent in their ratings, all
rating the no-motion condition (0,0) the lowest and the motion cueing settings closest to
the 1-to-1 case ((1,0.5) and (1,0)) the highest. Only the ratings given by subject 3 stand
out, as he used a markedly smaller portion of the scale than the other subjects. Due to the
data from subject 3, the ratings for conditions S0 were foundto show a distribution sig-
nificantly different from normal,D(7) = 0.53, p < 0.05. For this reason, nonparametric
tests had to be applied to assess the statistical significance of the presented rating results. A
Friedman’s ANOVA showed a significant main effect of the applied variation motion cueing
settings on the subjective fidelity ratings,χ2(3) = 17.91, p < 0.05. Pairwise comparisons
of the ratings for all experimental conditions performed using Wilcoxon Signed Ranks tests
revealed strong differences between the given ratings for all different motion cueing con-
ditions, except those for (1,0.5) and (1,0). With a minimump-value of0.018, however,
none of the six pairwise comparisons were found to be statistically significant at the ad-
justed significance level according to the Bonferroni correction for multiple comparisons
(α = 0.05/6 = 0.008).

6.5.2 Tracking Performance and Control Activity

Fig. 6.24 shows the measured error and control signal variances for the different experiment
conditions. These are analyzed here as measures of trackingperformance and control activ-
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ity, respectively. The bars shown in Fig. 6.24 show the average total error and control signal
variances as the total height of the bars. The error bars indicate the 95% confidence inter-
vals of the means ofσ2

e andσ2
u. The differently colored portions of each bar indicate the

contributions of the disturbance signalfd, the target signalft, and pilot remnantn to these
signal variances. These different components were calculated using the spectral method
described in [Jex et al., 1978]. The dashed gray and solid black lines in Fig. 6.24 show
the predicted disturbance variance components and the sum of the disturbance and target
variance components, respectively, from the offline analysis described in Section 6.3. Note
that these trends indicate the change in these measures thatwould occur without adaptation
of control behavior from what is appropriate for condition (1,0). Furthermore, note that the
contribution of remnant toσ2

e andσ2
u is not included in these offline analysis predictions.
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Figure 6.24. Mean error and control signal variance decompositions for roll multisine tracking.

Table 6.4. Statistical analysis results for tracking error and control signal variances.

Dependent Statistical analysis results

measures Test Results Sig.

σ2
e Friedman’s ANOVA χ2(4) = 13.94, p < 0.05 ∗∗

σ2
e,d

One-way repeated-measures ANOVAgg F (1.4, 8.4) = 5.17, p < 0.05 ∗∗

σ2
e,t One-way repeated-measures ANOVAF (4, 24) = 0.79, p ≥ 0.05 −

σ2
e,n Friedman’s ANOVA χ2(4) = 6.97, p ≥ 0.05 −

σ2
u One-way repeated-measures ANOVAgg F (1.2, 7.3) = 7.95, p < 0.05 ∗∗

σ2
u,d

One-way repeated-measures ANOVAF (4, 24) = 9.79, p < 0.05 ∗∗

σ2
u,t One-way repeated-measures ANOVAF (4, 24) = 1.18, p ≥ 0.05 −

σ2
u,n One-way repeated-measures ANOVAgg F (1.2, 7.1) = 7.06, p < 0.05 ∗∗

∗∗ = significant (p < 0.05) gg = Greenhouse-Geisser sphericity correction
− = not significant (p ≥ 0.05)
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The statistical analysis results that correspond to the experimental data presented in
Fig. 6.24, including test results for both the total error and control signal variances and the
different variance components, are listed in Table 6.4. Note that the data for the total error
varianceσ2

e and its remnant componentσ2
n were found to show distributions significantly

different from normal for a number of experimental conditions. Hence, nonparametric tests
were applied to analyze the variation over the different experimental conditions for these
dependent measures.

Fig. 6.24(a) shows only a modest variation in tracking errorvariance over the different
experimental conditions. When comparing tracking performance for the different condi-
tions performed in the SRS with motion cueing ((0.5,0.5) to (1,0)), a slight decreasing trend
with increasing motion fidelity is observed, indicating more accurate tracking, as also re-
ported for a number of other tracking studies in literature (see Chapter 5). The decrease
in tracking error variance observed here mainly results from a decrease in the disturbance
componentσ2

e,d, which suggests increasing the level of simulator motion fidelity allowed
pilots to achieve more accurate disturbance rejection. Notable is that tracking performance
for (0.5,0.5) is found to be slightly worse than for the no-motion case. Fig. 6.24(a) further
shows that tracking performance for the in-flight tracking tasks of the CIT condition was
found to be worse than that achieved for the conditions that were closest in terms of the
supplied motion information, (1,0.5) and (1,0). The total error variance and the different
variance components for the CIT condition are remarkably similar to those measured for
(0.5,0.5).

The statistical analyses performed on the tracking error variance data (see Table 6.4)
show that both the total error varianceσ2

e and the disturbance error variance componentσ2
e,d

vary significantly over the different experimental conditions. Pairwise comparisons indicate
that the measuredσ2

e,d for conditions (1,0.5) and (1,0) is significantly differentfrom that
measured for the no-motion condition (0,0). Similarly, pairwise comparisons evaluated for
σ2
e using the nonparametric Wilcoxon Signed Ranks test also indicated that the strongest

observed differences were those between the relatively high tracking error variance found
for condition (0.5,0.5) and the data for both conditions with a unity motion filter gain. The
total tracking error variance and the disturbance error variance component measured for the
in-flight condition (CIT) were both not found to be significantly different from their values
obtained for any of the SRS conditions.

The control signal variances presented in Fig. 6.24(b) showa much stronger variation
over the different experimental conditions than observed forσ2

e . For the different conditions
performed in the SRS, a clear increase inσ2

u is observed with increasing simulator motion
fidelity, which mainly results from increases in the disturbance and remnant components.
This is confirmed by the ANOVA results shown in Table 6.4, which indicate that the vari-
ations inσ2

u, σ2
u,d, andσ2

u,n over the different experimental conditions are all statistically
significant. Compared to the highest motion fidelity SRS conditions, measured control ac-
tivity for the in-flight tracking tasks is found to be markedly lower. Fig. 6.24(b) suggests
that this drop in control signal variance mainly results from a lower average remnant com-
ponentσ2

u,n. Post-hoc tests, however, showed no significant differences in σ2
u, σ2

u,d, and
evenσ2

u,n between conditions (1,0.5), (1,0), and CIT.
Finally, comparison with the offline analysis results for the components ofσ2

e andσ2
u

that are correlated with both forcing function signals, indicated with the solid black and
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dashed gray lines in Fig. 6.24, shows that the predictions ofthe tracking error variance for
condition (1,0) are more accurate than those for the controlsignal variance. Experimental
measurements that differ markedly from the predicted data indicate that for conditions for
which this is the case, participants adapted their control strategy (pilot dynamics) compared
to the reference (1,0) case. Evaluation of the predicted trends and the experimental mea-
surements in Fig. 6.24 shows that these clearly differ for the no-motion condition (0,0). The
predicted worsening of tracking performance for condition(0.5,0.5) is also consistent with
the experimental data, however, the measured drop inσ2

u,d is not present in the predicted
data. As both tracking performance and control activity predictions match well for condi-
tion (1,0.5), comparison of experimental and offline analysis results forσ2

e andσ2
u suggests

a change in pilot tracking behavior for conditions (0,0) and(0.5,0.5) compared to (1,0).

6.5.3 Crossover Frequencies and Phase Margins

Fig. 6.25 shows the disturbance and target open-loop crossover frequencies and phase mar-
gins that were measured for the different experimental conditions. In addition to the means
and 95% confidence intervals, which are indicated with the solid square markers and the
error bars, respectively, Fig. 6.25 also shows the measurements for the individual subjects.
The dashed black lines indicate the offline analysis data, taken from the data shown in Fig-
ures 6.7 to 6.10, for the different motion filter settings evaluated in the experiment.

Fig. 6.25 shows that despite the fact that marked differences in the crossover frequencies
and phase margins can be observed between the different participants, the variation over the
different experimental conditions is very similar for all participants. For the four conditions
performed in the SRS, an increase in roll motion fidelity is seen to yield an increase in
the disturbance open-loop crossover frequencyωc,d and a decrease in the corresponding
phase marginϕm,d. The effects on the crossover frequency and phase margin of the target
open-loop are found to be less pronounced, however, a slightdecrease inωc,t and a small
increase inϕm,t are observed with increasing motion fidelity. Compared to the condition
with 1-to-1 roll motion in the SRS, the in-flight measurements for the CIT condition show
lower disturbance crossover frequencies and phase margins, in addition to a small drop in
ϕm,t. The lower disturbance crossover frequency is consistent with the reduced control
activity observed for the CIT measurements in Fig. 6.24.

As expected from Fig. 6.25, only the differences in the disturbance crossover frequency
and phase margin over the different experimental conditions are found to be statistically
significant, see Table 6.5. Forωc,d, post-hoc tests only show a significant difference be-
tween two groups of conditions: the low-fidelity conditions(0,0) and (0.5,0.5), and the
high-fidelity conditions (1,0.5), (1,0), and CIT. Despite the consistently smaller value for
ωc,d obtained from the in-flight measurements, this implies thatthe difference in the dis-
turbance crossover frequency for conditions (1,0) and CIT is not statistically significant.
Pairwise comparisons performed on the disturbance phase margin data show that the same
holds forϕm,d. Still, considering the consistency of both effects over the data from the
different participants, the fact that the differences in both parameters between the SRS and
in-flight data are not found to be statistically significant is believed to be a result of the
relatively small number of available samples and the spreadin the measurements.
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Figure 6.25. Average disturbance and target crossover frequencies and phase margins.

Table 6.5. One-Way Repeated Measures ANOVA results for crossover data.

Dependent ANOVA statistics

measures df F Sig.

ωc,d 1.74,10.46gg 16.38 ∗∗

ϕm,d 4,24 13.40 ∗∗

ωc,t 4,24 0.40 −

ϕm,t 4,24 1.57 −

∗∗ = significant (p < 0.05) gg = Greenhouse-Geisser sphericity correction
− = not significant (p ≥ 0.05)
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Finally, comparison of the measured crossover frequenciesand phase margins with the
predictions from the offline analysis yields some interesting observations. First of all, the
predicted crossover frequencies and phase margins match the measurements for the (1,0)
very well, as expected for the prediction made based on the data from [Zaal et al., 2010].
Second, the offline analysis data for condition (1,0.5) are also highly consistent with the
experimental measurements and even correctly predicts themagnitudes of the drop inωc,d,
the increases inϕm,d andϕm,t, and the constantωc,t compared to the data for condition
(1,0). For the other two conditions, (0,0) and (0.5,0.5), marked differences between the
experimental measurements and the offline analysis predictions are observed. Compared to
the predictions for these conditions, the experimental measurements show lower disturbance
and target crossover frequencies and do not reflect the same drop in ϕm,d andϕm,t. The
clear match between offline analysis and experimental results observed for both conditions
(1,0) and (1,0.5), and the mismatch that is seen to occur for the low motion fidelity condi-
tions, provides strong evidence that pilots only changed their control dynamics compared to
the case where one-to-one motion is available for conditions (0,0) and (0.5,0.5). Note that
this conclusion was also drawn from the comparison of experimental and offline analysis
results for the tracking error and control signal variancespresented in Fig. 6.24.

6.5.4 Pilot Control Behavior

Figures 6.26 and 6.27 shows the estimated values of parameters of the multimodal pilot
model of Fig. 6.4 that were obtained by fitting the model to data from all experimental con-
ditions. In addition to the seven parameters of the pilot model, Fig. 6.26(c) also shows the
product of the pilot visual gain and the visual lead time constantKvTL, which represents the
gain with which pilots responded to visual error rate information. As also done in Fig. 6.25,
both the means and 95% confidence intervals are shown, in addition to the individual sub-
ject data. The corresponding ANOVA results for all eight parameters are listed in Table 6.6.
Finally, the parameter values used in the offline analysis described in Section 6.3, which
are representative for tracking with 1-to-1 roll motion cues (condition (1,0)) and were taken
from [Zaal et al., 2010], are depicted in each graph with a dashed black line.

For the data from the different motion cueing conditions performed in the SRS, a num-
ber of changes in pilot tracking behavior are clear from Figures 6.26 and 6.27. First, Figures
6.26(a) and (b) show the same decrease in pilot visual gain and increase in visual lead time
constant for decreasing motion fidelity also reported in earlier investigations, as summa-
rized in Chapter 5. For reference, Fig. 6.26(b) shows the inverse of the frequency where the
controlled element dynamics transition from approximately single to approximately double
integrator dynamics (ωφ, see Section 6.2.1.3). Note that, as expected, for the no-motion
condition (0,0) pilots on average generate lead starting aroundωφ to compensate for the
second-order controlled element dynamics. For conditionswhere physical roll motion feed-
back is available, the identified visual lead time constantsare seen to drop below1/ωφ,
indicating less lead is generated visually in the presence of physical motion feedback, as
also reported in many earlier investigations (see for example Chapters 2 and 4).

As can be observed from Fig. 6.26(c), the increase inTL and decrease inKv nearly
perfectly offset each other to yield a constantKvTL over all SRS conditions. Note that this
implies a low-frequency gain adaptation of the pilot visualresponse, whileHpv

(jω) remains
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Figure 6.26. Mean estimated multimodal pilot model parameters.
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Figure 6.27. Mean estimated neuromuscular actuation model parameters.

Table 6.6. One-Way Repeated Measures ANOVA results for multimodal pilot model parameters.

Dependent ANOVA statistics

measures df F Sig.

Kv 4,24 14.33 ∗∗

TL 4,24 7.09 ∗∗

KvTL 4,24 0.23 −

Km 1.31,7.86gg 5.37 ∗∗

τv 4,24 2.15 −

τm 3,18 1.62 −

ωnm 4,24 6.39 ∗∗

ζnm 4,24 1.42 −

∗∗ = significant (p < 0.05) gg = Greenhouse-Geisser sphericity correction
− = not significant (p ≥ 0.05)
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largely unaffected at the higher frequencies, where the gain is equal toKvTL. The pilot
motion gainKm, whose identified values are shown in Fig. 6.26(d), is also found to remain
approximately constant over the different SRS conditions.Note that this implies pilots
did not simply compensate for the lower motion cueing gain ofthe (0.5,0.5) condition by
increasing their motion response gain. Furthermore, note that due to the chosen convention
in the model forHsc(jω) (see Section 6.2.2), the absolute values ofKvTL andKm can be
compared directly, as both parameters define the gain of a response proportional to rotational
velocity in the frequency range covered by the experiment forcing functions. A comparison
of Figures 6.26(c) and (d) suggests that, for the consideredroll tracking task, the effective
lead contributions of the pilot visual and motion responsesare almost equal.

Figures 6.26(e) and (f) present the identified values of the visual and motion time delay
parameters,τv andτm. Except perhaps for slightly increased values ofτv for (1,0) and of
τm for (0.5,0.5), both pilot model delay parameters remain approximately constant at 0.2
and 0.15 s forτv andτm, respectively. The identified values of the second-order neuromus-
cular actuation model parameters, which are depicted in Fig. 6.27, also appear to remain
approximately constant for the different simulator motioncueing conditions. The neuro-
muscular frequencyωnm, however, does show slightly higher values for the conditions for
the conditions with the largest motion amplitudes (Kmf = 1), a finding also reported for
other experiments, such as the one described in Chapter 4.

Comparing the estimates of all eight parameters depicted inFigures 6.26 and 6.27 for
the in-flight tracking tasks (CIT) with those of the 1-to-1 roll motion condition performed
in the SRS (1,0), some differences that are highly consistent over the different participants
can be observed. First of all, Figures 6.26(a) and (d) indicate that both the pilot visual and
motion gainsKv andKm are found to be consistently lower for the in-flight trackingdata.
This indicates that the pilots responded to both visually presented tracking errors and to
physical motion stimuli with a lower gain than they did in thesimulator. These decreased
gains are consistent with the reduced control activity and disturbance crossover frequencies
that were also observed for the CIT condition.

For pitch tracking tasks performed in the same setup as the roll tracking tasks described
in this chapter, Zaal et al. [2011] reported increased pilotdelays for the in-flight measure-
ments compared to those taken for the simulator conditions with the highest level of motion
fidelity. For the pilot visual delayτv this increase was found to be appreciable, with an av-
erage of 50 ms. As can be verified from Figures 6.26(e) and (f),such increased pilot delays
are not clear from the in-flight roll tracking data. The spread in the estimates ofτv in pre-
sented in Fig. 6.26, however, is appreciable, especially for conditions (1,0) and CIT. When
comparing the average delays of conditions (1,0.5) and CIT,a difference in delay similar to
that noted by Zaal et al. [2011] is observed.

Finally, also the neuromuscular frequencyωnm shows identified values that are around
1.5 rad/s lower for the in-flight data than for the simulator conditions. Zaal et al. [2011]
reported a similar difference in neuromuscular actuation dynamics between measurements
taken in the setups in the laboratory aircraft and flight simulator, especially for the reference
single-loop tracking measurements taken in both setups. Ascan be verified from Appendix
F, such a drop in neuromuscular frequency is also the sole difference observed between the
reference single-loop tracking measurements taken in bothexperimental setupts for the roll
tracking task investigated here. For this reason, this change inωnm is not considered to be
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an effect of possible differences in motion cueing, but merely an artifact of remaining differ-
ences between both experimental setups, most notably the sidestick and possible differences
in posture resulting from different chairs and cockpit geometries.

As can be verified from Table 6.6, the variations inKv, TL, Km, andωnm over the
different experimental conditions are found to be statistically significant. Pairwise compar-
isons indicate thatKv is not significantly different for conditions (1,0.5), (1,0), and CIT. The
visual gains for conditions (1,0.5) and (1,0) are, however,found to be significantly different
from the values ofKv found for both (0,0) and (0.5,0.5), indicating a clear effect of simula-
tor motion fidelity on pilot control gain. For bothKv andωnm post-hoc tests indicate that
the sole significant difference in the data for these parameters is caused by the lower values
measured for the in-flight tracking tasks. ForKm, this could not be proven with post-hoc
tests, which showed no statistically significant differences between any of the experimental
conditions. This is likely due to the large spread in the identified parameter values forKm,
which is at least partly the result of the data from subject 1,who shows a trend inKm not
consistent with the data from the other subjects.

Fig. 6.28 shows the variance accounted for (VAF) corresponding to the pilot model
parameter estimates presented in Figures 6.26 and 6.27. As can be verified from Fig. 6.28, a
strong between-subject effect is present, with average VAFvalues over all conditions for the
different subjects ranging between 70 and almost 90%. On average, however, the VAFs for
the different experimental conditions are not found to differ significantly,F (4, 24) = 0.50,
p = 0.74, indicating the pilot model fits describe the data equally well for all evaluated
conditions.

The multimodal pilot model fits obtained for the different experimental conditions allow
for a final evaluation of the contribution of the supplied motion feedback to the observed
pilot tracking behavior. By separately evaluating the contributions of the fittedHpv

(jω)
andHpm

(jω) to the modeled pilot control signalu, indicated asuv andum in Figures
6.1 and 6.4, the variances of both these contributions can becalculated and compared.
Fig. 6.29(a) shows the averages ofσ2

uv
andσ2

um
obtained for all experimental conditions,

while Fig. 6.29(b) depicts the fraction of both as a measure of the relative contribution of
physical motion feedback tou.

Fig. 6.29(a) shows that for the flight simulator conditions both the visual and motion
contributions to the control signal variance are seen to increase with increasing motion
fidelity, which is consistent with the previously reported increased pilot visual gainsKv and
control activityσ2

u. For the in-flight tracking tasks of the CIT condition,σ2
uv

is found to be
similar to the values found for (1,0) and (1,0.5), even though the variation ofσ2

uv
is not found

to be be statistically significant,F (1.6, 9.7) = 4.11, p = 0.057. The contribution of the
motion response, however, is found to be nearly 50% lower forthe CIT condition than for
the high-fidelity simulator conditions. The change inσ2

um
over the different experimental

conditions is found to be statistically significant:F (1.5, 9.0) = 8.22, p < 0.05.
The pilot model channel variance fractions for the different experimental conditions

shown in Fig. 6.29(b) show that for the simulator conditions(0,0) to (1,0) the increase in
σ2
um

is dominant over the increase observed for the visual contributionσ2
uv

. This shows a
relatively larger effect of the information received from physical motion feedback on pilot
tracking behavior for the conditions with a higher level of simulator motion fidelity. For
the CIT condition, the variance fraction is found to be only slightly higher than observed
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for the low-fidelity (0.5,0.5) condition performed in the SRS. This shows pilots made com-
paratively less use of physical motion feedback during the in-flight tracking tasks than they
do under high-fidelity motion cueing conditions in the flightsimulator. The variation of
σ2
um
/σ2

uv
shown in Fig. 6.29(b) is found to be statistically significant, F (1.3, 7.6) = 8.95,

p < 0.05.

6.6 Discussion

Seven experienced pilots participated in an experiment where a comparison was made be-
tween multimodal pilot roll attitude tracking behavior measured in real flight and for varying
motion cueing settings in a moving-base flight simulator. The in-flight tracking measure-
ments, for which pilots were controlling a real aircraft andhence the perceived roll motion
was the true aircraft motion, were to serve as the baseline toevaluate changes in behavior
resulting from degraded simulator motion fidelity against.Due to the adaptability of pilot
tracking behavior to a myriad of factors internal and external to the pilot, the utmost care
was taken to ensure the differences in the experimental setups and conditions under which
the in-flight and simulator measurements were collected were minimal, to allow for proper
isolation of the effect of motion cueing variations on pilottracking behavior

The results from the simulator part of the experiment suggest clear effects of variations
in simulator motion fidelity on pilot tracking behavior. Pilot control activity, disturbance
open-loop crossover frequency and the gain with which pilots respond to visually presented
tracking error information are all seen to significantly increase with increasing motion fi-
delity. The effects of variations in motion fidelity on pilottracking behavior observed for this
roll tracking task are highly consistent with previous experiments, such as those described
in [Van Gool, 1978; Jex et al., 1978] and Chapters 5 and 4. In addition, the subjective mo-
tion fidelity ratings taken during the simulator experiments using a VAS rating scale showed
the pilots were also able to distinguish between the evaluated high and low-fidelity motion
cueing settings.

Comparison of the in-flight and simulator tracking measurements showed that pilot
tracking behavior in real flight was found to be very similar to tracking behavior in a
moving-base flight simulator. Despite the care taken to minimize differences between the in-
flight and simulator parts of the experiment, however, differences in tracking performance,
control activity, and pilot control strategy were still observed. Tracking performance was
found to be slightly worse in the aircraft compared to the condition with one-to-one roll
motion fidelity performed in the simulator. In addition, consistently lower values were ob-
served for the control signal variance (control activity),the disturbance open-loop crossover
frequency, and the gains with which pilots respond to both visual and motion informa-
tion. The observed difference in neuromuscular actuation dynamics, which showed that the
neuromuscular system natural frequencyωnm was around 1.5 rad/s lower for the in-flight
tracking tasks than in the simulator, was traced back to a difference in the experimental se-
tups used for both parts of the experiment using a comparisonof reference single-loop (no
motion feedback) tracking tasks performed in both the experimental setups in the laboratory
aircraft and the flight simulator (see Appendix F).
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The observed differences in multiple dependent measures related to pilot tracking be-
havior between the in-flight measurements and the high-fidelity simulator conditions indi-
cate that pilots were performing less high-bandwidth and high-gain control in real flight,
resulting in relatively poorer performance for the roll tracking task. The extensive valida-
tion of the hard- and software used for both experiments (seeAppendices C and D) and
the aircraft and fly-by-wire control system models used for collecting the flight simulator
measurements (see Appendix E) and further pilot-in-the-loop tests performed to evaluate
the effect of the hood pilots wore during the in-flight measurements (Appendix G) suggest
the source of the observed behavioral discrepancies does not lie in factors external to the
pilot, but might be caused by factors internal to the pilots that are difficult to control in an
experimental setting. The reduced control gain observed inthe behavioral measurements
from the in-flight tracking tasks could for instance also result from the pilots performing the
control task a bit more careful in the aircraft than they did in the simulator. For instance, in
a recent paper Schroeder and Grant [2010] claim that comparison of measurements taken in
real flight and in a simulator environment might be inherently flawed as “some argue that
the pilot’s mindset is different in the two environments”. Behavioral differences that result
from such operator-centered factors [McRuer and Jex, 1967a] are impossible to separate
and signal for the approach taken in this chapter, and therefore could heavily complicate the
comparison between behavioral measurements attempted here.

When focusing on the differences in pilot tracking behavior observed from the simulator
measurements, thereby taking the condition where 1-to-1 roll motion cues were presented
as the baseline for evaluating changes in control strategy,the offline analysis of effects of
the washout filter dynamics on the closed-loop pilot-vehicle system described in this chap-
ter is found to provide valuable insights. Especially for interpreting changes in pilot-vehicle
system crossover frequencies and phase margins, which can result both from the applied
changes in washout filter settings and adapted pilot dynamics, the comparison of offline
analysis predictions and experimental measurements was found to aid in pointing which
motion filter settings resulted in different pilot trackingbehavior than observed with 1-to-1
motion feedback. Especially the correct prediction of changes in crossover parameters that
result from the motion filter dynamics for high-fidelity condition (1,0.5), for which pilot
model analysis indeed showed no change in pilot dynamics, give faith in this approach. As
such an offline analysis requires knowledge of the pilot dynamics for this reference case,
possible broader application of this method requires more knowledge on pilot dynamics
under varying conditions and simple procedures for adapting pilot models to defining con-
trol task characteristics such as controlled element dynamics and forcing function signal
characteristics.

The four motion cueing settings evaluated in the simulator part of the experiment, of
which one was a no-motion case and another supplied pilots with 1-to-1 roll motion, only
allow for a limited evaluation of the effect of different motion filter gain and break fre-
quency settings on pilot tracking behavior. The two experimental conditions where a roll
washout filter was present – that is, conditions (0.5,0.5) and (1,0.5), both with a filter break
frequency of 0.5 rad/s and filter gains of 0.5 and 1, respectively – do show potentially in-
teresting results, for instance for the validation of accepted simulator motion fidelity crite-
ria using behavioral measurements. According to the motionfidelity criteria proposed by
Sinacori [1977] and Schroeder [1999], the (0.5,0.5) and (1,0.5) conditions evaluated in this
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experiment represent medium and high motion fidelity motionfilter settings, respectively.
The fact that for the roll tracking task considered in this chapter pilot tracking behavior with
the high-fidelity motion filter was found to be equivalent to behavior measured with 1-to-1
motion, while significant differences in behavior were observed for the condition with the
medium-fidelity filter, is consistent with and adds to the validity of these previously devel-
oped fidelity criteria. The limited variation in motion filter gain and break frequency values
tested in this experiment does, however, severely limit theconclusions that can be drawn
from this research with respect to optimal selection of motion filter parameters. Still more
measurements of pilot tracking behavior under different motion filter settings are believed
to be required to support the drawing of such conclusions. The follow-up experiment de-
scribed in Chapter 8 was performed to provide a first step towards this goal, by evaluating
pilot tracking behavior for the same roll tracking task as analyzed here for a larger number
of different roll motion filter settings.

6.7 Conclusions

To allow for evaluating the effect of changes in simulator motion fidelity on pilot tracking
behavior, an experiment was performed in which a roll tracking task was performed both
in real flight and in a moving-base flight simulator for a number of different roll motion
cueing settings. The considered roll tracking task was especially suited for this comparison
of in-flight and simulator measurements, as the roll motion during the task could be pre-
sented 1-to-1 in the simulator. The utmost care was taken to minimize differences in the
experimental setups used for collecting the measurements in the aircraft and the simulator.
Still, pilots were found to utilize a more low-gain control strategy during the in-flight track-
ing tasks than they did for the 1-to-1 simulator motion configuration, resulting in consistent
discrepancies in pilot tracking behavior that are not attributable to differences in motion
cueing. The simulator part of the experiment, aided by an offline analysis of the effect of
changes in washout dynamics on the dynamic characteristicsof the pilot-vehicle system,
was found to show clear changes in pilot tracking behavior under variations in roll motion
cueing. Enhanced disturbance-rejection performance and increased disturbance open-loop
crossover frequencies were found for conditions with better motion fidelity. In addition, the
gains with which pilots responded to both visual and motion information were shown to be
larger with high-fidelity roll motion, leading to an increased contribution of motion feedback
to pilot control behavior when roll motion approximated the1-to-1 case. The experimental
results further confirm the classification of the consideredmotion filter settings according to
previously proposed simulator fidelity criteria, thereby providing further validation of these
criteria using objective measurements of pilot behavior.



7
Ramp-Tracking Behavior in

Real and Simulated Flight

Chapter 6 described a comparison of multimodal pilot roll tracking behavior measured in
the Cessna Citation II laboratory aircraft and in the SIMONA Research Simulator. For
the roll tracking task considered in Chapter 6, the applied target and disturbance forcing
function signals were independent quasi-random multisine signals, yieldinga tracking task
where purely compensatory tracking behavior was adopted. The sameroll tracking task was
also performed with an additional deterministic target signal – consisting of anumber of
ramp-like excursions in commanded roll attitude – that was superimposedon the multisine
target forcing function used for the roll tracking task of Chapter 6. For this roll ramp-
tracking task also use was made of a display with a pursuit configuration. This yielded a
more operationally relevant roll tracking task where pilots were requiredto perform a series
of commanded turn entries and exits, for which evaluation of the effect of motion feedback
on pilot tracking behavior was also thought to be of interest. Though stretching the currently
available knowledge of manual control behavior and analysis methods,as explained in more
detail in Chapter 3, such a more realistic maneuvering task is believed to be avaluable
addition to the research project this thesis is the result of. This chapter applies the same
methodology as also applied in Chapter 6 to the collected ramp-tracking measurements.
For the analysis of pilot tracking behavior in this ramp-tracking task extensive use is made
of the concepts and models introduced in Chapter 3.
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7.1 Introduction

The evaluation of behavioral motion fidelity presented in this thesis mainly considers the
effects of simulator motion fidelity on compensatory tracking behavior. The main reason
for this is that during purely compensatory tracking, pilots’ control behavior is sufficiently
stationary and linear to allow for modeling it with quasi-linear time-invariant control theo-
retical models [McRuer and Jex, 1967a]. Furthermore, for compensatory tracking tasks with
physical motion feedback, it has been shown that reliable separation of pilots’ responses to
visual and motion information is possible using frequency-domain [Stapleford et al., 1969]
and time-domain identification methods [Zaal et al., 2009a], allowing for objective evalua-
tion of changes in pilot control behavior. As illustrated bythe experimental results reported
in Chapters 5, 6, and 8, significant changes in compensatory pilot behavior are typically
observed with varying motion fidelity.

Most studies that evaluated the effects of varying simulator motion fidelity through other
methods than the behavioral approach taken in this thesis considered manual flying tasks as
pilots would also perform regularly in real flight [Reid and Nahon, 1986a,b; Telban et al.,
2005b]. For example, a number of investigations have considered the requirements for
lateral yaw, roll, and sway motion cueing for helicopter sidestep maneuvers [Hess et al.,
1993; Chung et al., 1998; Mikula et al., 1999] and yaw attitude capture tasks [Schroeder,
1996, 1999; Hosman et al., 2005; Grant et al., 2006; Ellerbroek et al., 2008]. Similarly, for
fixed-wing aircraft operational flying tasks such as take-offs and landings [Heffley et al.,
1981; Heffley and Schulman, 1981; Heffley et al., 1982; Reid and Nahon, 1986b; Pouliot
et al., 1998; Groen et al., 2001; Telban et al., 2005b] and decrab maneuvers [Groen et al.,
2007; Beukers et al., 2010] are typically considered for evaluating simulator motion cueing
settings. These discrete maneuvering tasks are typically selected for these evaluations of
simulator motion because of their operational relevance and the suspected importance of
physical motion feedback in these situations. Furthermore, these maneuvering tasks tend to
result in aircraft motion that is difficult to replicate on a moving-base flight simulator with
a limited workspace.

Instead of explicitly evaluating changes in pilot behaviorduring these flying tasks, most
of the studies that evaluated simulator motion fidelity for operational flying tasks relied on
subjective pilot ratings and metrics of task performance (as indirect indicators of changes in
pilot control behavior) to compare different levels of simulator motion fidelity. Some anal-
ysis methods and metrics for evaluating and quantifying control behavior during discrete
maneuvering tasks have been proposed [Heffley, 1982; Ferguson et al., 1984] and applied
for interpreting pilot control strategies during, among others, manual landing flares and
helicopter sidestep or bob-up maneuvers. These techniques, however, have never been con-
vincingly applied for objective evaluation of the effects of variations in simulator motion
fidelity on pilot control behavior in discrete maneuvering tasks. Furthermore, none of the
studies that considered simulator motion fidelity for operational flying tasks included an ex-
plicit comparison of these flying tasks performed in real flight and in a moving-base flight
simulator environment that would allow for a strong evaluation of the effects of varying
levels of simulation fidelity with respect to the true in-flight case.

Chapter 6 and Zaal [2011] describe comparisons of in-flight measurements of compen-
satory tracking behavior for roll and pitch tracking tasks,respectively, with those collected



196 Chapter 7

in a moving-base flight simulator for varying motion cueing settings. This chapter applies
the same methodology to a roll tracking task where, in addition to quasi-random target and
disturbance forcing function signals, an additional deterministic reference signal is used that
consists of a number of ramp-like changes in target roll attitude. The additional ramp target
signal, with maximum absolute reference values of positiveor negative 10 deg, induces a
control task in which two commanded turn entry and exit maneuvers are performed. This
yields a control task that more resembles a real flying task than the compensatory tracking
tasks with only multisine forcing function signals considered in Chapter 6 and [Zaal, 2011].
This chapter describes the results of a combined in-flight and simulator experiment that
evaluated pilot control behavior for this roll attitude ramp-tracking task. This experiment
was performed in exactly the same experimental setups in theCessna Citation II laboratory
aircraft and SIMONA Research Simulator (SRS) at Delft University of Technology as the
compensatory roll and pitch attitude tracking tasks described in Chapter 6 and [Zaal, 2011].
Similar to the experiment described in Chapter 6, for the ramp-tracking tasks performed
in the SRS five different motion cueing conditions were evaluated. These different motion
cueing settings consisted of a no-motion task, equivalent to the ramp-following tasks eval-
uated in Chapter 3, and four conditions with a first-order high-pass roll washout filters, for
which a factorial evaluation of motion filter gains of 1 and 0.5 and filter break frequencies
of 0.5 and 1 rad/s was considered.

As described in more detail in Chapter 3, given the predictable nature of the maneuvers
executed during such a ramp-tracking task it is likely that pilots will not use a purely com-
pensatory control strategy. It is likely that they will at least partly revert to an open-loop or
feedforward control strategy during the ramp-tracking portions of the control tasks to exe-
cute these maneuvers successfully. For modeling and quantifying changes in ramp-tracking
behavior with varying motion cueing settings, the extension to compensatory pilot models
proposed in Chapter 3 for control tasks with ramp forcing function signals is considered.
Furthermore, the extent to which the disturbance-rejection and ramp-following elements of
the control task, and the effects the supplied motion feedback has on both, can be sepa-
rated using the methodology adopted in this thesis is evaluated. It has been argued that a
difference may exist between the function of physical motion feedback for vehicle motion
originating external to the pilot, typically referred to as“disturbance motion”, and for “ma-
neuvering motion” as a direct result of pilot control inputs[Gundry, 1977; Heffley et al.,
1981; Schroeder et al., 2000]. The addition of a ramp forcingfunction signal yields a con-
trol task in which the maneuvering motion might be more important than the compensatory
tasks considered in the rest of this thesis, thereby possibly yielding different conclusions
with respect to the effects of degraded simulator motion fidelity on pilot control behavior.

This chapter is structured as follows. First, Section 7.2 describes the details of the
considered roll attitude ramp-tracking task and the multimodal pilot model proposed for
modeling pilot tracking behavior during this task. Section7.3 describes the details of the
combined in-flight and simulator experiment that was performed for collecting measure-
ments of pilot behavior in the considered ramp-tracking task. Note, however, that due to
the fact that these measurements were collected in the same experimental setups in the
Citation II laboratory aircraft and the SIMONA Research Simulator (SRS) at Delft Univer-
sity of Technology, Section 7.3 only describes those aspects of the experiment described in
this chapter that differ from those described for the experiment of Chapter 6. Section 7.4
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presents the experimental results obtained from the collected ramp-tracking data. Finally,
this chapter ends with a discussion and conclusions.

7.2 Control Task

7.2.1 Roll Ramp-Tracking Task

Fig. 7.1 depicts the roll attitude ramp-tracking task with roll motion feedback considered for
evaluating simulator motion fidelity from a behavioral perspective in this chapter. Similar to
the compensatory roll tracking task considered in Chapter 6, Fig. 7.1 shows a pilot control-
ling the roll attitude of an aircraft with aileron-input-to-roll dynamics given byHc(s). The
target and disturbance forcing functions – which the pilot is to follow and attenuate, respec-
tively, in order to minimize the tracking errore – are indicated with the symbolsft andfd.
In addition to this tracking error, the pilot is also presented with explicit visual feedback of
the current aircraft rollφ and the target forcing functionft from the pursuit display shown
in Fig. 7.2.
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Figure 7.1. Schematic representation of the considered roll ramp-tracking task with motion
feedback.
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Figure 7.2. Pursuit roll tracking display.

The controlled aircraft dynamics in the roll tracking task considered in this chapter are
the combined fly-by-wire (FBW) control system and Cessna Citation II roll dynamics also
utilized for the experiment of Chapter 6. The nonlinear model of these aircraft dynamics,
which was developed for performing the roll tracking task ina simulator environment, is
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described in detail in Appendix E. This model was determinedfor the flight condition
in which the in-flight measurements were collected, at an altitude h of 17, 000 ft and an
airspeedV of 160 kt. A linearization of these controlled element dynamics isgiven by:

Hc(s) =
φ(s)

δc(s)
= Kφ

Tφs+ 1

s
(

s2

ω2
φ

+
2ζφ
ωφ
s+ 1

)e−sτφ

(7.1)

= 0.29
0.51s+ 1

s
(

s2

2.702 + 2·0.81
2.70 s+ 1

)e−0.09s

As was shown in more detail in Chapter 6, the controlled element given by Eq. (7.1)
has approximatelyK/s dynamics at low frequencies, approximatelyK/s2 dynamics at fre-
quencies aboveωφ = 2.7 rad/s, and includes a fly-by-wire control system response latency
of 90 ms. The control input scaling gainKs, which scaled pilot control inputsu to fly-by-
wire control commandsuc (see Fig. 7.1), was equal to0.3.

Similar to the comparison of in-flight and simulator measurements of compensatory
tracking behavior described in Chapter 6, this chapter considers a comparison of ramp-
tracking behavior measured in real flight using Delft University of Technology’s Cessna
Citation II laboratory aircraft and in the SIMONA Research Simulator (SRS) for varying
motion cueing settings. As explained in more detail in Section 7.2.3, pure simulator roll
motion cueing is considered for providing physical motion feedback in the considered ramp-
tracking task. Equivalent to the variation in simulator motion cueing considered in Chap-
ter 6, the effects of attenuating simulator roll motion witha first-order high-pass washout
filter on pilot ramp-tracking behavior are evaluated. This first-order roll washout filter is
given by:

Hmf (s) =
s2φmf (s)

s2φ(s)
= Kmf

s

s+ ωmf
(7.2)

The symbolsKmf andωmf represent the filter gain and filter break frequency, respec-
tively. For a high-pass filter as given by Eq. (7.2), decreasing Kmf and increasingωmf

yields larger discrepancies between the filtered roll motion φmf and the true aircraft roll
motionφ. Note that by definitionHmf (s) = 1 for the in-flight ramp-tracking tasks.

To account for differences in the cueing of visual and motioninformation in both exper-
imental setups, the visual and motion cueing dynamicsHsv (s) andHsm(s) are included in
Fig. 7.1. Using the custom visual delay measurement system described by Stroosma et al.
[2007], the delay in the visual presentation of the display shown in Fig. 7.2 was measured
to be around25 ms in both the experimental setups, yieldingHsv (s) = e−sτsv = e−0.025s.
The motion cueing dynamics of the SRS are known to approximate a pure delay of30 ms
[Berkouwer et al., 2005], givingHsm(s) = e−sτsm = e−0.03s. As for the ramp-tracking
tasks performed in real flight the perceived motion resultedfrom the true aircraft motion,
by definitionHsm(s) = 1 for the in-flight tasks.

As will be explained in more detail in Section 7.2.4, pilot behavior in the multimodal
ramp-tracking task shown in Fig. 7.1 is modeled with three linear responses to perceived
variables, supplemented with a pilot remnant signaln. First, analogous to the analyses of
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pursuit tracking behavior by Wasicko et al. [1966] and Allenand McRuer [1979] and the
investigation into ramp-tracking behavior described in Chapter 3, ramp-tracking behavior
based on the information presented on a pursuit display is modeled with two independent
responses to the target forcing function and the tracking error. In addition to these responses
to ft ande, an additional pilot response to the supplied simulator roll motion φ̈sm is also
considered for the multimodal control task considered in this chapter. The contributions of
these pilot feedforward, visual, and motion responses to the total pilot control inputu are
indicated with the symbolsut, uv, andum in Fig. 7.1, respectively.

7.2.2 Forcing Functions

For studying manual control behavior, the applied target and disturbance forcing functions,
indicated withft andfd in Fig. 7.1 have two important functions. First of all, they force
the occurrence of manual control behavior by inducing tracking errorse that need to be
compensated and thereby to a large extent define the nature ofthe control task [McRuer
et al., 1965; Damveld et al., 2010]. Furthermore, especially for multimodal control tasks
where pilots’ responses to multiple perceived variables are evaluated, the applied forcing
function signals provide the excitation of the pilot-vehicle system required to ensure that
these different pilot responses can be measured accurately[Stapleford et al., 1969; Zaal
et al., 2009a].

With respect to the first function of forcing function signals, most research into manual
control behavior has been performed with quasi-random forcing functions, for which forc-
ing function signal bandwidth [McRuer et al., 1965; Beerenset al., 2009; Damveld, 2009]
and whether the forcing function signal was inserted as a target or disturbance signal [Hos-
man and Stassen, 1999; Van der Vaart, 1992; Zaal et al., 2009c] have been shown to affect
pilot tracking behavior. Such quasi-random forcing functions induce stationary tracking be-
havior that can be argued to not be directly representative for pilot control behavior during
the manual control tasks that typically occur during operational manual aircraft control.

In an attempt to extend the methods applicable to modeling compensatory tracking for
modeling pilot control behavior in more realistic control tasks, Chapter 3 described an ex-
periment in which tracking behavior was measured for purelyvisual (no motion feedback)
control tasks where a target signal consisting of multiple ramp-like changes in target attitude
was used, in addition to an applied disturbance forcing function. This chapter attempts to
extend the single-loop measurements of manual ramp-tracking behavior described in Chap-
ter 3 to a situation with physical motion feedback, effectively yielding a control task in
which pilots are required to perform a number of commanded turn maneuvers in the pres-
ence of an external disturbance.

Similar to the approach taken in earlier experiments into the effects of motion feedback
on compensatory pilot tracking behavior [Stapleford et al., 1969; Jex et al., 1978; Zaal
et al., 2009c], in this chapter a combined target-followingand disturbance-rejection task is
considered due to the desire to separate pilots’ visual and motion responses, as indicated
in Fig. 7.1. To maintain the presence of two independent multisine forcing functions, as
required for separating pilots’ responses to visual and physical motion feedback, it was
decided to utilize a target forcing function signal that combined multiple discrete ramp-
like changes in target roll attitude with a superimposed quasi-random target signal (see
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Fig. 7.3(a)) for the experiment described in this chapter. The ramp target forcing function
signal, referred to in the remainder of this chapter asftramp

, was defined to command two
roll attitude changes, one to10 deg and one to−10 deg, with a maximum roll rate of 3
deg/s. As opposed to the truly discrete ramp-like changes commanded by the ramp forcing
functions of Chapter 3, the ramp forcing function signal used for the experiment in this
chapter had smooth transitions between the horizontal and slanted portions of the signal, as
indicated in Fig. 7.3(a).
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Figure 7.3. Target and disturbance forcing function time traces.

The same multisine target and disturbance forcing functions – indicated with symbols
ftms

andfd, respectively – as used for the compensatory roll tracking experiment of Chap-
ter 6 were also applied for this experiment. These multisineforcing function signals were
defined as sums ofNd,t = 10 sinusoids according to:

fd,tms
(t) =

Nd,t∑

k=1

Ad,t(k) sin [ωd,t(k)t+ φd,t(k)] (7.3)

The sinusoid frequenciesωd,t, amplitudesAd,t, and phasesφd,t were the same as those
used for the experiment described in Chapter 6. The power of the multisine target signal
was, however, scaled down with a factor0.5 by multiplying the target signal amplitudes by√
0.5, yielding variances offtms

and the effective roll attitude disturbance induced byfd of
0.2 and0.4 deg2, respectively. The properties of the multisine target and disturbance forcing
function sinusoids are listed in Table 7.1. Time traces of the multisine (ftms

) and the total
target forcing function (ft) are shown in Fig. 7.3(a). The time trace of the disturbance signal,
as inserted before the controlled element dynamics (see Fig. 7.1), is depicted in Fig. 7.3(b).
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Table 7.1. Multisine disturbance and target forcing function properties.

disturbance,fd target,ft

nd ωd, rad/sAd, V φd, rad nt ωt, rad/sAt, deg φt, rad

5 0.383 0.014 -1.764 6 0.460 0.494 1.288
11 0.844 0.023 2.792 13 0.997 0.345 6.089
23 1.764 0.026 -1.575 27 2.071 0.156 5.507
37 2.838 0.026 4.641 41 3.145 0.084 1.734
51 3.912 0.029 5.512 53 4.065 0.056 2.019
71 5.446 0.035 2.687 73 5.599 0.035 0.441

101 7.747 0.049 2.321 103 7.900 0.022 5.175
137 10.508 0.068 3.821 139 10.661 0.016 3.415
171 13.116 0.090 4.363 194 14.880 0.013 1.066
226 17.334 0.123 4.558 229 17.564 0.012 3.479

7.2.3 Aircraft Motion During Ramp-Tracking

Fig. 7.4 shows recorded time traces of the aircraft attitude(φ, θ, ψ), angular rates (p, q,
r), and the specific forces at the aircraft center of gravity (fx, fy, fz) during a roll attitude
ramp-tracking task with the forcing functions defined in Section 7.2.2 performed in real
flight. The depicted data were collected using the HoneywellVG-14 vertical gyro and an
inertial measurement unit (IMU), consisting of three AlliedSignal QA3000 accelerometers
and three LITEFµFORS fiber optic rate gyros, that are part of the flight test instrumentation
system (FTIS) installed in the Cessna Citation II laboratory aircraft. For reference, the ramp
target signal is depicted alongside the recorded time traces with a dashed gray line. Note that
ftramp

has been scaled to fit the graphs for the angular rates and specific forces. Fig. 7.4(d)
further shows the trim pitch attitude determined for the flight condition in which the in-flight
experiments were performed (h = 17, 000 ft, V = 160 kt), θ0 = 4.34 deg as indicated with
the dashed black line.

Figures 7.4(a) and (d) show that during the ramp-tracking task the aircraft roll attitudeφ
varied as commanded byftramp

, while the aircraft pitch attitudeθ was maintained at its trim
value. Fig. 7.4(g) further shows that the offset roll attitudes of±10 deg induced a change of
nearly20 deg in aircraft heading. Figures 7.4(b), (e), and (h) show that the dominant angular
rate cue perceivable during the ramp-tracking task is the aircraft roll ratep. The pitch rate
q is seen to be very small, while the yaw rater only shows some constant (low-frequency)
offsets that are proportional to the changes in roll attitudeφ. Finally, Figures 7.4(c), (f), and
(i) also show comparatively little variation in the perceivable specific forces during the turn
maneuvers induced byftramp

. The lateral specific forcefy shows small peaks at the turn
entries and exits, but specific forces are seen to be close to zero during the turns themselves,
as expected for this coordinated maneuver [Ariel and Sivan,1984; Reid and Nahon, 1985].

Given that the human vestibular system is sensitive to angular accelerations (semicir-
cular canals) and specific forces (otoliths) [Fernandez andGoldberg, 1971; Hosman and
Van der Vaart, 1978; Hosman, 1996], Fig. 7.4 shows that the important motion cues to repli-
cate in a moving-base flight simulator for the selected ramp-tracking task are the rotational
roll motion and the (coordinated) lateral specific force. Inone of the first structured re-
search effort into simulator motion cueing, Schmidt and Conrad [1970] already stress the
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Figure 7.4. In-flight recordings of aircraft attitude, angular rat e, and specific force for the ramp-
tracking task considered in this chapter.

importance of coordinating rotational and translational motion cueing, and propose differ-
ent schemes for doing so. As for instance described by Telbanet al. [2005a], motion cueing
for coordinated maneuvers involves the minimization of theperceivable specific forces, ei-
ther through reducing and washing-out the simulator angular motion, through compensating
simulator translational motion, or a combination of both.

As explained in Section 7.2.1, in this chapter pure simulator roll motion will be consid-
ered, where the simulator roll motion is washed-out during the turn maneuvers by applying
a first-order high-pass roll motion filter as defined by Eq. (7.2). Fig. 7.5 shows what this
implies for the simulator angular motion and specific forces, by presenting time traces of
the simulator roll attitudeφ and lateral specific forcefy for three different values of the
roll motion filter break frequencyωmf for Kmf = 1. The simulator motion resulting from
using filter break frequencies of0, 0.5, and1 rad/s are shown, in addition to the true aircraft
motion that is depicted with a solid gray line.

Fig. 7.5 shows that one-to-one roll motion, corresponding to a break frequency setting
of 0 rad/s, would perfectly replicate the aircraft roll motion,but would yield a compara-
tively large lateral specific force of around2 m/s2 during the period whereφ ≈ 10 deg.
Washing-out the simulator roll motion by increasingωmf is seen to markedly reduce the
perceivable specific forces resulting from simulator tilt.As is clear from Fig. 7.5(a), how-
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roll motion filter break frequencies.

ever, this roll washout also introduces differences between the aircraft and simulator roll
attitude responses.

7.2.4 Modeling Multimodal Ramp-Tracking Behavior

As shown in Fig. 7.1, in this chapter pilot control behavior for the considered is modeled
with three independent responses, indicated withHpt

(s), Hpv
(s), andHpm

(s). Compared
to the multimodal pilot model used in Chapter 6 for modeling pilot roll tracking behavior,
the proposed model for multimodal ramp-tracking behavior only differs in the presence of
the feedforward responseHpt

(s). In Chapter 3 it was shown that the addition of such a
feedforward response to a traditional model of compensatory tracking behavior success-
fully captured measured control inputs for ramp-tracking tasks. For this reason, a similar
approach is taken in this chapter for modeling pilot controlbehavior in the considered ramp-
tracking task with motion feedback, where the compensatorymultimodal pilot model of
Chapter 6 is extended with a feedforward response as proposed in Chapter 3. The transfer
function models proposed for modeling the three pilot responses indicated in Fig. 7.1 are
given by:

Hpt
(s) =

Ut(s)

Ftramp
(s)

= Kt
1

Hc(s)Ks
e−sτt (7.4)

Hpv
(s) =

Uv(s)

Es(s)
= Kv (TLs+ 1) e−sτvHnm(s) (7.5)

Hpm
(s) =

Um(s)

φ̈sm(s)
= KmHsc(s)e

−sτmHnm(s) (7.6)
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In Equations (7.4) to (7.6), the symbolsUt(s), Uv(s), andUm(s) indicate the Laplace
transforms of the control signal contributionsut, uv, and um, respectively. Similarly,
Ftramp

(s), Es(s), andφ̈sm(s) indicate the Laplace transforms of the signals that are used
as the inputs to the three pilot model channels,ftramp

, es, andφ̈sm , respectively.

7.2.4.1 Feedforward Pilot Response Model

Eq. (7.4) gives the proposed model for the pilot feedforwardresponse. In Chapter 3 it
was shown that during ramp tracking, pilots select their feedforward responseHpt

(s) to
be proportional to the inverse of the controlled element dynamicsHc(s), as this ensures
adequate following of the target signal through the feedforward. In this chapter, a target
signalft is considered that consists of a signal made-up of multiple ramp-like changes in
roll attitude – much like the ramp signals considered in Chapter 3 – with a superimposed
multisine target signal. As the feedforward control inputsobserved for ramp-tracking in
Chapter 3 were only found during pilots’ responses to the ramps in the used target signals,
here the input to the feedforward response of the pilot modelis also taken to be the ramp
target signalftramp

and not the total target signalft.
Furthermore, note from Eq. (7.4) that the control input scaling gain is considered as

a part of the controlled element compensation term. This convention ensures a “perfect”
feedforward response, yieldingφ = ftramp

, forKt = 1 andτt = 0 s. The feedforward gain
Kt and time delayτt are the free parameters of the model forHpt

(s) and will be used in this
chapter for evaluating changes in the pilot feedforward response dynamics. The proposed
model forHpt

(s) contains no further equalization dynamics in the feedforward response, as
were considered for the ramp-tracking tasks evaluated in Chapter 3. Note that this implies
that for the model of Eq. (7.4) all phase shifts induced by thepilot feedforward response
will be attributed to the included delay term.

As explained in Section 7.2.1, the controlled element dynamicsHc(s) are approximately
K/s at low frequencies and approximatelyK/s2 at frequencies aboveωφ. As ftramp

pre-
dominantly has power at low frequencies, as shown for slightly different ramp forcing func-
tion signals in Appendix B, it is acceptable to not use the full controlled element dynamics
as given by Eq. (7.1) in the model forHpt

(s), but a low-frequency approximation given by:

Hc(s) =
Kφ/ω

2
φ

s
(7.7)

Fig. 7.6 shows a comparison of the frequency responses of thefull controlled element
dynamics and the low-frequency approximation given by Equations (7.1) and (7.7), respec-
tively. As is clear from Figures 7.6(a) and (b), the dynamicsof the reduced controlled
element dynamics given by Eq. (7.7) approximate the true controlled element dynamics
very well at frequencies up to 1 rad/s.

Fig. 7.6(c) shows a comparison of the modeled time traces of the feedforward control
signalut (see Fig. 7.1) that are obtained with the full and reduced controlled element dy-
namics. These signals were obtained by simulating Eq. (7.4)with ftramp

as the input and
with Kt = 1 andτt = 0 s. As indicated by the depicted ramp target forcing functiontime
trace (dashed gray data), only the response ofHpt

(s) to the first positive ramp-like excur-
sion offtramp

is depicted. As is clear from Fig. 7.6(c), the differences inthe feedforward
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Figure 7.6. Comparison of the frequency responses of the full controlled element dynamics
model and the reduced controlled element dynamics model and the modeled feedforward re-
sponses resulting from their implementation in the multimodal pilot model feedforward chan-
nel.

control signalsut provided by using either the full or reduced controlled element dynamics
in Eq. (7.4) are only very small. Hence, in the remainder of this chapter, Eq. (7.7) is used
with Eq. (7.4) in the proposed model forHpt

(s).

7.2.4.2 Compensatory Pilot Response Models

The compensatory part of the proposed pilot model, as given by Equations (7.5) and (7.6),
is the same model used for describing pilots’ responses to visually presented tracking er-
rors (es) and physical (simulator) roll motion accelerations (φ̈s) in Chapter 6. The pilot
visual responseHpv

(s) is modeled with a model based on the Precision Model proposed
by McRuer et al. [1965]. The lead equalization term(TLs+ 1) is included to capture pilot
lead equalization that is performed to compensate for the approximatelyK/s2 dynamics
of the controlled element given by Eq. (7.1) aboveωφ. In addition to the lead time con-
stantTL, the parameters of this visual response model are the pilot visual gainKv and time
delayτv. As can be verified from Eq. (7.5), a model for the neuromuscular actuation and
manipulator dynamicsHnm(s) associated with generation of a pilot response are also ac-
counted for. These neuromuscular dynamics are modeled as a two-parameter second-order
mass-spring-damper system:

Hnm(s) =
ω2
nm

s2 + 2ζnmωnms+ ω2
nm

(7.8)

As indicated by Eq. (7.6),Hpm
(s) is modeled as a response that is proportional to the

output of the semicircular canal dynamicsHsc(s) to a rotational roll acceleration input
[Hosman, 1996; Van der Vaart, 1992]. Similar to the visual response model of Eq. (7.5), the
free parameters of the model forHpm

(s) are the pilot motion gainKm and delayτm and
it also includes the neuromuscular actuation model given byEq. (7.8). The semicircular
canal dynamics are modeled as a second-order transfer function that relates a rotational
acceleration input to an afferent neuron firing rate, which is here defined to have impulses
per unit of time (IPUT) as a unit. Over the frequency range between0.1-6 rad/s, this afferent
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firing rate is known to be proportional to rotational velocity [Fernandez and Goldberg, 1971;
Hosman and Van der Vaart, 1978]. The model forHsc(s) used in this chapter, which is the
same as that considered in Chapter 6, is given by:

Hsc(s) = 5.97
0.11s+ 1

(5.9s+ 1) (0.005s+ 1)
(7.9)

In total, the three-channel pilot model proposed for describing ramp-tracking behavior
with motion feedback in this chapter, as described by Equations (7.4) to (7.6), has nine free
model parameters that will be used for characterizing pilots’ control strategies under varying
motion cueing settings. These free model parameters are thethree response channel gains
(Kt, Kv, andKm) and time delays (τt, τv, andτm), the visual lead time constantTL, and
the neuromuscular actuation model natural frequency and damping ratio (ωnm andζnm).

7.2.5 Discrete Maneuvering Analysis using Phase-Planes

For analyzing human manual control behavior during discrete vehicle maneuvering tasks,
some authors have proposed to evaluate the executed maneuvers using their phase-plane
representations, in which the change in the controlled vehicle state is plotted against its rate
[Heffley, 1982; Heffley et al., 1982; Ferguson et al., 1984; Schroeder, 1999; Ellerbroek et al.,
2008]. From these phase-plane trajectories, the characteristic dynamics of the executed ma-
neuvers can be read, compared, and quantified using metrics such as the maximum velocity
attained during the maneuver and the maximum overshoot at the desired end position.

Fig. 7.7(a) shows a typical recorded time trace of the roll attitudeφ during the ramp-
tracking task considered in this chapter, depicted with a solid black line. The ramp target
signalftramp

and the total target signalft are indicated with dashed black and solid gray
lines, respectively. The four ramp segments offtramp

, during which a change inφ of ±10

deg is commanded, are numbered1 to 4 . Fig. 7.7(b) shows the corresponding phase-
plane representation of the ramp-tracking run plotted in Fig. 7.7(a). Note that the phase-
plane representations of the ramp and total target forcing functions are depicted with the
same colors as used in Fig. 7.7(a) and that the different rampmaneuvers are again indicated
with symbols 1 to 4 .

As for instance shown by Heffley [1982], Ferguson et al. [1984], and Ellerbroek et al.
[2008], the characteristics of the phase-plane representation of discrete maneuvers can be
used to assess the performance with which these maneuvers are executed. Such an ap-
proach could have proven valuable for assessing ramp-tracking performance under varying
motion cueing settings as considered in this chapter. However, as indicated by the example
ramp-tracking phase-plane shown in Fig. 7.7(b), the presence of the multisine disturbance
and target forcing functions result in considerable variation in the phase-plane trajectories
on top of the discrete maneuvers commanded byftramp

. Given that the roll rate and roll
attitude deviations induced by the selected multisine forcing function signals are compar-
atively large compared to those commanded by the ramp targetsignal, they are thought to
interfere too much with phase-plane analysis of the ramp-tracking maneuvers. Therefore,
such phase-plane analysis of the executed ramp-tracking maneuvers will not be further con-
sidered in this chapter. Instead, this chapter relies on themultimodal pilot model proposed
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in Section 7.2.4 for quantifying changes in pilot ramp-tracking behavior under varying roll
motion cueing settings.

7.3 Experiment

7.3.1 Apparatus

This section will provide the details of the experiment performed to measure the effect of
varying levels of simulator motion fidelity on pilot ramp-tracking behavior, with a compar-
ison to tracking behavior for exactly the same control task measured in real flight. As this
experiment was performed in the same experimental setups inthe Cessna Citation II lab-
oratory aircraft and the SIMONA Research Simulator (SRS) available at Delft University
of Technology as used for the experiment described in Chapter 6, only comparatively brief
descriptions of some aspects of these experimental setups are described here. For more
details, please refer to Section 6.4.1.

In the Citation II laboratory aircraft a BG Systems JFf forcestick was installed at the
right pilot seat, with which control inputsu to the fly-by-wire control system were given (for
details, see [Zaal et al., 2009d] and [Zaal, 2011]). As described in Appendix C, the roll axis
of this force stick had an approximately linear applied force-output voltage characteristic
with a gradient of around 14 N/V over the full range of attainable output voltages (±2.5
V). In the SRS, the characteristics of this BG Systems JFf force stick were mimicked on a
Moog FCS Ecol-8000 electrical side stick that was installednext to the right pilot seat in
the SRS cabin. In both experimental setups, LCD displays mounted directly in front to the
right pilot seats were used for presenting pilots with the visual display shown in Fig. 7.2.
The update rates of both displays were 60 Hz and, as also explained in Section 7.2.1, the
delay associated with the visual presentation on both thesedisplays was measured to be
around 25 ms (see [Stroosma et al., 2007] and Appendix C). In the simulator part of the
experiment, simulator roll motion cues were provided usingthe hydraulic six degree-of-
freedom hexapod motion system of the SRS. The motion base dynamics of the SRS are
known to be approximately a unity gain with a delay of 30 ms over the frequency range
important for this experiment [Berkouwer et al., 2005].

7.3.2 Independent Variables

This chapter considers pilot control behavior during the roll attitude ramp-tracking task
shown in Fig. 7.1 for six different experimental conditions, see Table 7.2. First of all, pilot
ramp-tracking behavior is measured in real flight, with the true aircraft motion as depicted
in Fig. 7.4, for the CIT condition. Furthermore, for the simulator measurements collected
for comparison with the in-flight measurements, five different simulator roll motion cueing
settings were considered. As can be verified from Table 7.2, these five SRS conditions rep-
resent a variation in the characteristics of the first-orderhigh-pass roll motion filter defined
by Eq. (7.2).

The first SRS condition listed in Table 7.2 is the no-motion condition SR0. In this
condition the participants received no physical simulatormotion information, yielding a
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Table 7.2. Experimental conditions.

condition apparatus description filter,(Kmf , ωmf )

SR0 SRS no motion (0,0)
SR1 SRS low gain, strong washout (0.5,1)
SR2 SRS low gain, weak washout (0.5,0.5)
SR3 SRS high gain, strong washout (1,1)
SR4 SRS high gain, weak washout (1,0.5)

CIT Citation aircraft 1-to-1 motion −

ramp-tracking task similar to those considered in Chapter 3. Conditions SR1-SR2 represent
a factorial evaluation of two settings for both the motion filter gainKmf and the filter break
frequencyωmf . For the filter gain values of 1 and 0.5 were considered, whilefilter break
frequencies of 0.5 and 1 rad/s were evaluated. Note that one-to-one simulator roll motion, as
considered for the compensatory roll tracking tasks described in Chapter 6 is not considered
here, because of the significant lateral specific forces due to roll tilt that would be perceiv-
able for pure roll motion cueing (see Fig. 7.5). The five considered simulator motion cueing
settings are depicted in the rotational motion fidelity criterion proposed by Sinacori [1977],
with the modified fidelity regions proposed by Schroeder [1999], in Fig. 7.8. Note from
Fig. 7.8 that when purely considering the roll motion filter settings, SR4 would correspond
to a high level of motion fidelity, while SR2 and SR3 are both considered to be medium
fidelity. Condition SR1 and the no-motion setting SR0 are both low-fidelity according to
the criterion regions proposed by Schroeder [1999].
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Figure 7.8. Evaluation of the rotational simulator motion fidelity crit erion proposed by Sinacori
[1977], with modified fidelity regions from [Schroeder, 1999], forthe different experimental
conditions.

7.3.3 Participants

The same seven Citation II pilots that performed the experiment described in Chapter 6 were
the participants in the current experiment. At the time of the in-flight and simulator exper-
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iments, all participants were active Cessna Citation II pilots employed by Delft University
of Technology and all except one had experience with similartracking tasks from previ-
ous simulator and in-flight experiments. The participants’flight experience ranged from
1,500-14,000 hrs on a multitude of different aircraft. Their ages ranged from34 to 72 years
(µ = 51.1 years,σ = 14.3 years).

7.3.4 Dependent Measures

A number of different dependent measures are considered forevaluating the effects of vary-
ing roll motion fidelity for the roll ramp-tracking task evaluated in this chapter. First of all,
for all experimental conditions performed in the SRS (SR0-SR4, see Table 7.2), the partic-
ipants were asked to give a subjective indication of the level of motion fidelity using the
same verbal analogue scale (VAS) described in Chapter 6. On this rating scale, the pilots
had to give a subjective motion fidelity rating by drawing a vertical line through a horizontal
10 cm axis that ranged from0-100% correspondence of the simulator motion to what would
be expected in the real aircraft.

In addition to these subjective motion fidelity ratings, objective metrics of how the pilots
performed the considered ramp-tracking task under the different experimental conditions
listed in Table 7.2 were considered. First, the attained tracking performance and control
activity were evaluated from the variances of the tracking error and control signals,σ2

e and
σ2
u, respectively. Furthermore, using the spectral techniqueproposed by Jex et al. [1978],

the contributions of the multisine target and disturbance forcing functions to these signal
variances, and the remainder that in this case contains bothpilot remnant and contributions
resulting fromftramp

, are separated. In addition, to further quantify the contribution of
the ramp target signal to the observed levels of tracking performance and control activity,
the totalσ2

e andσ2
u are also evaluated separately during and outside of the portions of the

tracking runs whereftramp
induced a change in reference roll attitude.

Finally, the model of multimodal pilot ramp-tracking behavior described in Section 7.2.4
is fitted to time-domain measurements offtramp

, e, φ̈sm , andu using the time-domain iden-
tification procedure described in [Zaal et al., 2009a]. For fitting the pilot model, the time-
domain averages of the five repeated measurements of these signals that were collected for
each condition were used. Note that as no physical motion feedback was present for condi-
tion SR0, only the pilot feedforward and visual responses (Hpt

(s) andHpv
(s), respectively)

were included in the pilot model that was fit to the data from this condition. The estimated
parameter values for the nine parameters of this pilot modelare used to explicitly evaluate
changes in pilot control behavior under the different experimental conditions. Before an-
alyzing the observed changes in pilot control behavior using these pilot model parameter
estimates, some validation of the proposed model of ramp-tracking behavior will be pro-
vided by evaluating the fit of the model to the time-domain measurements ofu and using
the model variance accounted for (VAF), as for instance defined in Chapter 3.

7.3.5 Experimental Procedures

As was also the case for the experiment of Chapter 6, all participants performed the sim-
ulator part of the experiment before the measurements of in-flight ramp-tracking behavior
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were collected. During both the in-flight and simulator parts of the experiment, participants
were first trained until their proficiency in performing the tracking task had reached a con-
sistent level. Their tracking performance was monitored bythe experimenter by evaluating
the root mean square of the tracking error signale. For the ramp-tracking task, reaching a
stable level of tracking performance required, on average,around five repetitions of the ex-
perimental conditions evaluated in the in-flight and simulator parts of the experiment. Five
further measurements were then collected for each experimental condition as the measure-
ment data at this consistent level of tracking performance.

In the simulator part of the experiment, the participants were presented with the five
different roll motion cueing settings (SR0-SR4, see Table 7.2) in a random order, which
was defined using a balanced Latin square, throughout both the training and measurement
phases of the experiment. As explained in more detail in Chapter 6, before each tracking run
the simulator was prepositioned in pitch to the trim pitch attitude of the aircraft during the
in-flight measurements (θ = 4.34 deg). The experimenter initiated each tracking run after
counting down from three. After each tracking run, the simulator was titled back to zero
pitch, after which the pilots were asked to fill out the subjective motion fidelity rating form
for the run they had just completed. After indicating they had completed their subjective
motion fidelity rating, the participants were informed of their tracking performance (root
mean square ofe) for the completed tracking run.

As opposed to the additional single-loop measurements collected in the experimental
setup in the Citation II laboratory aircraft for the compensatory roll tracking task considered
in Chapter 6, only in-flight measurements (condition CIT) ofpilot control behavior were
collected for the ramp-tracking task considered in this chapter. Given that the in-flight pitch
and roll tracking measurements described in Zaal [2011] andChapter 6 were collected on
the same day as the ramp-tracking measurements considered here, there was not enough
time to also perform these reference measurements for the roll ramp-tracking task. As
described in more detail in Chapter 6, two pilots performed the in-flight control tasks on
each four-hour flight. One pilot, referred to as the safety pilot, ensured the aircraft was in
the desired flight condition (altitude, velocity) before the start of a tracking run. The other
pilot, referred to as the experiment pilot, would engage thefly-by-wire control system used
for the in-flight experiments and initiate and perform a tracking run. When a tracking run
was completed the experiment software would disengage the fly-by-wire control system,
after which the safety pilot would again be in control of the aircraft. The experimenter then
notified the experiment pilot of his performance for the lastrun.

For the in-flight ramp-tracking tasks the participants wererequired to wear a hood (see
Appendix G) that limited their field of view to the LCD displayon which the pursuit display
shown in Fig. 7.2 was presented, to avoid effects of this moving control column and pilots’
view of the outside world on their control strategy during the pitch tracking task. During
the ramp-tracking tasks performed in the SRS, the participants did not wear this hood.

7.3.6 Hypotheses

As also done for a compensatory roll tracking task with two multisine forcing functions in
Chapter 6, this chapter attempts a comparison between pilotcontrol behavior measured in
real flight and in a moving-base flight simulator for a more operationally relevant control
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task that also involves the manual tracking of discrete ramp-like changes in roll attitude.
In addition to subjective motion fidelity ratings, quantitative measurements of pilot control
behavior, obtained from fitting a proposed behavioral pilotmodel thought to be appropriate
for such a task, are used to evaluate the effects of varying simulator motion fidelity. As
also shown in Chapter 6, comparing pilot control behavior measured in real flight and in
a simulator environment is challenging, even for a control task for which the models that
can be used for describing human behavior have been validated extensively. Here such a
behavioral comparison is described for a control task for which pilot behavior has been
studied significantly less extensively.

For the compensatory disturbance-rejection function performed by the pilots, reducing
the level of simulator motion fidelity is typically found to result in reduction in the gain
with which pilots respond to visual error information and anincrease in the amount of
visual lead equalization that is performed, as can be verified from, for instance, Chapters
5 and 6. As the same multisine disturbance and target forcingfunction signals used for
the experiment of Chapter 6 are still utilized for the ramp-tracking task considered in this
chapter in addition toftramp

it is expected that the effects of varying motion filter settings
on pilot tracking behavior might be highly similar to those observed in Chapter 6. This will
especially hold for the estimated parameters of the compensatory portion of the proposed
model for multimodal ramp-tracking behavior (the visual and motion responsesHpv

(s) and
Hpm

(s)) and for the contributions offtms
andfd to the error and control signal variances.

Overall, despite the added ramp-tracking element, it is therefore anticipated that the ramp-
tracking task considered in this chapter may show effects ofvarying washout settings on
pilot control behavior that are highly similar to those described in Chapters 5 and 6 for
tracking tasks with only multisine forcing function signals.

The combined ramp-tracking and disturbance-rejection task considered in this chapter
differs from the purely compensatory roll tracking task that was used for evaluating be-
havioral simulator motion fidelity in Chapter 6 in the ramp-tracking element that has been
added to the task. As explained in Chapter 3 and Section 7.2.4this has consequences for the
type of control behavior that is adopted for such a task and how this should be modeled. Fur-
thermore, as explained in Section 7.2.3, the variation in roll motion fidelity and especially
filter break frequency settings may show an effect on pilot behavior during ramp-tracking
because of manipulation of the simulator roll motion by the roll motion washout. Here it is
hypothesized that similar to compensatory tracking, pilotramp-tracking behavior is affected
by variations in roll motion washout. Degraded roll motion fidelity and especially increased
values ofωmf are expected to show a degradation in ramp-tracking performance and feed-
forward ramp-tracking behavior that shows larger discrepancies with optimal feedforward
operation (Hpt

(s) ≈ 1/Hc(s)). For conditions where degraded feedforward response dy-
namics occur, the fits of the proposed multimodal ramp-tracking pilot model are therefore
anticipated to show reduced values of the feedforward gainKt and increased values of the
feedforward time delayτt.

Finally, when comparing the in-flight measurements of pilottracking behavior with
measurements taken in the SRS, it was found in Chapter 6 that pilot tracking behavior for
the high-fidelity roll motion cueing setting referred to in this chapter as SR4 (identical to
condition S2 in Chapter 6) closely matched the in-flight measurements. Still, consistently
lower pilot response gains, increased visual delaysτv, and lower neuromuscular frequencies
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were observed for the tracking behavior measured in real flight compared to all simulator
measurements. For this reason, similar differences between the control behavior measured
for the CIT condition and for all conditions evaluated in theSRS are also anticipated for the
considered ramp-tracking task. Based on the analysis of theaircraft motion that is typical
for the ramp-tracking task considered in this chapter and onthe typical effects of variations
in simulator motion washout on pilot tracking behavior, however, it is anticipated that the
high-fidelity roll motion cueing condition SR4 (Kmf = 1 andωmf = 0.5 rad/s) will show
the smallest behavioral discrepancies with respect to the in-flight measurements.

7.4 Results

This section presents the results of the combined in-flight and simulator experiment in which
simulator roll motion fidelity was evaluated for a combined roll attitude ramp-tracking and
disturbance-rejection task. The experiment had a within-subjects design and, as explained
in Section 7.3.2, only considered a variation in one independent variable, that is, the dif-
ferent roll motion cueing settings for which ramp-trackingbehavior and performance was
evaluated. One-way repeated measures analyses of variance(ANOVA) were performed
to evaluate possible significant variations in the considered metrics over the different ex-
perimental conditions. However, if for any of the considered metrics the measured data
was found to show a sample distribution significantly different from normal (as indicated
by a Kolmogorov-Smirnov test) for at least one experimentalcondition, a nonparametric
Friedman’s ANOVA was used for evaluating statistical significance instead of the repeated
measures ANOVA [Field, 2005].

7.4.1 Subjective Motion Fidelity Ratings

Fig. 7.9 shows the subjective motion fidelity ratings collected for all experimental conditions
performed in the SRS using the VAS rating scale. The gray datashow the average ratings
provided by the seven experiment participants, while the black markers and variance bars
indicate the means over the data of all participants and the corresponding 95% confidence
intervals of the mean, respectively.

As can be verified from Fig. 7.9, for the no-motion condition SR0 the subjective motion
fidelity ratings typically show very low values, indicatinglittle correspondence between the
supplied simulator motion and the motion feedback expectedin the aircraft. The sole excep-
tion to this is subject 3, who on average rated this conditionat around 80% correspondence
to true aircraft motion. On average, the highest motion fidelity ratings were given for both
conditions with a roll motion gain of 1 (SR3 and SR4). The slightly higher mean rating
observed for condition SR4 indicates that the pilots, on average, perceived this condition to
yield the highest level of simulator motion fidelity for the task they were to perform. Still,
some of the subjects – most notably subjects 3 and 7 – indicated they felt a reduced roll
motion gain of 0.5 yielded higher simulator motion fidelity than theKmf = 1 conditions
SR3 and SR4. Due to this disagreement between the ratings given by the different experi-
ment participants, the spread in the average rating data is found to be comparatively large,
especially for theKmf = 0.5 conditions SR1 and SR2.
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Figure 7.9. Mean subjective motion fidelity ratings for roll ramp tr acking.

A Kolmogorov-Smirnov test performed on the subjective ratings shown in Fig. 7.9 indi-
cated that the ratings for condition SR0 showed a distribution that significantly differs from
normal (D(7) = 0.37, p < 0.05) due to the extremely high ratings provided by subject 3.
Despite the comparatively large spread in the data, a Friedman’s ANOVA still showed that
the motion fidelity ratings changed significantly over the different experimental conditions,
χ2(4) = 10.2, p < 0.05. Wilcoxon signed-rank tests were used to evaluate possiblesignifi-
cant differences between the ratings given for individual conditions. For these ten pairwise
comparisons a Bonferroni correction was applied, yieldingan adjusted level of significance
for these tests of0.005 (0.05/10). Though not significant at the corrected significance level,
only the comparisons between the no-motion ratings and those for all conditions with roll
motion feedback were found to show close-to-significant differences.

7.4.2 Tracking Performance and Control Activity

Fig. 7.10 presents the average tracking error and control signal variances,σ2
e andσ2

u, which
are considered as metrics for assessing changes in the attained level of tracking perfor-
mance and control activity, respectively. The average total error and control signal vari-
ances measured for all experimental conditions are indicated by the total height of the bars
in Fig. 7.10 and the presented variance bars show the corresponding 95% confidence inter-
vals of the means ofσ2

e andσ2
u. Using the spectral technique described by Jex et al. [1978],

the contributions of the multisine disturbance and target forcing functions to these signal
variances have been evaluated separately. The averages of these disturbance and target vari-
ance components are presented as the black and white-filled portions of the bars in Fig. 7.10,
respectively. The parts of the error and control signal variances that are not correlated with
fd andftms

are indicated with the gray portions of the bars. For controltasks that only
consider multisine forcing function signals, such as the roll tracking task considered by Jex
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et al. [1978], this component is attributable to pilot remnant. It should be noted, however,
that for the ramp-tracking task considered in this chapter the remnant componentsσ2

e,n and
σ2
u,n also include the contributions offtramp

, as this ramp signal’s contribution is not dis-
tinguishable from remnant in the frequency-domain, as it does not provide excitation at a
number of discrete frequencies (see Appendix B).
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Figure 7.10. Average tracking error and control signal variancedecompositions for all experi-
mental conditions.

Fig. 7.10(a) shows that the total tracking error variance was found to be markedly lower
for all conditions performed with roll motion feedback in the SRS (SR1-SR4) compared
to the no-motion measurements of condition SR0. Furthermore, σ2

e is found to decrease
slightly with increasing simulator roll motion fidelity, however, this effect is only compar-
atively minor. Similar to the observation made for the pure multisine roll tracking task
considered in Chapter 6, tracking performance for the in-flight CIT condition was found to
be considerably worse than observed for those motion conditions evaluated in the SRS that
are high fidelity according to the criterion of Schroeder [1999]. For the ramp-tracking task
considered here,σ2

e measured in-flight is on average found to be approximately equal to the
level of tracking performance attained for the no-motion task in the SRS (SR0). Due to the
comparatively bad task performance attained by pilot 5, there are severe issues withσ2

e data
normality for a number of experimental conditions. A Friedman’s ANOVA indicates that the
observed variation in total tracking performance is statistically significant,χ2(5) = 16.4,
p < 0.05. Pairwise comparisons (Wilcoxon signed-rank tests) indicate that this significant
effect is mainly attributable to the lowerσ2

e observed for conditions SR1-SR4 compared to
conditions SR0 and CIT.

The different components ofσ2
e show largely the same trend over the different experi-

mental conditions as observed for the total error variance.Compared to the data for condi-
tion SR0,σ2

e,d, σ2
e,t, andσ2

e,n are all found to be slightly lower for all conditions performed
with roll motion feedback in the SRS. Furthermore, the in-flight measurements (condition
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CIT) are found to result in average variance components thatare almost equivalent to those
of the no-motion condition SR0. This variation over the different experimental conditions
was found to be statistically significant forσ2

e,t andσ2
e,n: F (5, 30) = 2.90, p < 0.05 and

F (5, 30) = 2.81, p < 0.05, respectively. Mauchly’s Test indicated that the assumption of
sphericity was violated for theσ2

e,d data:χ2(14) = 38.58, p < 0.05. With application of
the conservative Greenhouse-Geisser sphericity correction, the observed variation inσ2

e,d is
not found to be statistically significant,F (1.3, 7.7) = 3.17, p ≥ 0.05.

Equivalent to the results reported in Chapter 6, Fig. 7.10(b) shows a clear increase in
control signal variance with decreasing motion attenuation (from SR0 to SR4) over the
different SRS conditions. In addition,σ2

u measured for the in-flight condition CIT is found
to be highly similar to the control activity measured for thehigh-fidelity roll motion setting
SR4, as also observed for the multisine roll tracking task considered in Chapter 6. Due to the
comparatively high control activity registered for subject 2 (mean ofσ2

u for subject 2 over
all conditions: 0.36 deg2), Kolmogorov-Smirnov tests indicated violation of the normality
assumption for theσ2

u data for nearly all experimental conditions. A Friedman’s ANOVA
indicated that the increasing trend in control signal variance shown in Fig. 7.10(b) is highly
statistically significant:χ2(5) = 25.5, p < 0.05.

When considering the different contributions toσ2
u, Fig. 7.10(b) shows thatσ2

u,d and
σ2
u,n also show the increasing trend with increasing motion fidelity observed for the total

control signal variance. This increasing trend was found tobe significant forσ2
u,n (χ2(5) =

24.6, p < 0.05), however, Mauchly’s Test indicated a violation of the sphericity assumption
for σ2

u,d: χ2(14) = 32.89, p < 0.05. With application of the Greenhouse-Geisser sphericity
correction the variation inσ2

u,d was not found to be statistically significant,F (1.8, 10.8) =
3.90, p ≥ 0.05. As can also be verified from Fig. 7.10(b), the multisine target control
signal variance component was found to remain approximately constant over the different
experimental conditions,F (2.2, 13.4) = 1.45, p ≥ 0.05.

The variance component data presented in Fig. 7.10 does not allow for separate evalu-
ation of the contribution offtramp

to σ2
e andσ2

u due to the fact that this signal introduces
power at all frequencies. To still allow for some evaluationof the contribution of the ramp
target signal to the error and control signal variances, these have been calculated over the
time windows where the ramp target signal commands a maneuver from φ = 0 to ±10 deg
or back. Fig. 7.11 shows example time traces of the tracking error and control signals. In
addition, to indicate the location of the different ramps inftramp

, the (scaled) ramp target
signal is plotted in Fig. 7.11 with a dashed black line. The windows whereftramp

induces a
change in roll attitude, defined to span 8 s around the midpoint of the ramps, are indicated
with the gray shaded areas. Note from Fig. 7.11 that bothe andu show comparatively larger
excursions within these ramp windows than during the stageswhereftramp

is constant.
Fig. 7.12 shows the tracking error and control signal variances calculated within the

gray-shaded areas depicted in Fig. 7.11 (black markers) andoutside of the gray-shaded areas
(white markers). Furthermore,σ2

e andσ2
u calculated over the complete run, corresponding

to the total height of all bars depicted in Fig. 7.10, are indicated with horizontal gray bars
for each condition. Note from Fig. 7.12 that for bothσ2

e andσ2
u the variation in the depicted

ramp window variances follows largely the same trend as observed for the total error and
control signal variances in Fig. 7.10. As shown in Fig. 7.12(a), the tracking error variances
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Figure 7.11. Example tracking error and control signal time traces with the windows defined
for evaluation of the additional contribution of the ramp target fo rcing function signal to these
signals (subject 1, CIT condition, run 1).
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is found to consistently be around 0.3 deg2 higher during the ramp windows than outside
of them. Similarly, a consistent increase inσ2

u within the ramp windows of over 0.05 V2

is also observed from Fig. 7.12(b). The clear differences between the values ofσ2
e and

σ2
u measured within and outside of the ramp windows suggest a significant contribution of
ftramp

to the measured tracking performance and control activity.Furthermore, the fact that
both the variances measured within and outside of the ramp windows show largely the same
trend over the different experimental conditions suggeststhat ramp-tracking performance
and behavior are affected in a similar fashion by varying simulator motion cueing settings
as observed for tracking tasks with only multisine forcing function signals in Chapter 6.

7.4.3 Pilot Modeling Results

To evaluate possible changes in pilot control behavior overthe different experimental con-
ditions, the multimodal pilot model described in Section 7.2.4 was fit to (measured) time
traces offtramp

, e, φ̈sm , andu. First, the quality-of-fit of the proposed model for multimodal
ramp-tracking behavior will be evaluated in this section. Then, the obtained estimates of the
model parameters will be used for quantifying changes in pilot control behavior due to the
applied variation in roll motion cueing.

7.4.3.1 Pilot Model Quality of Fit

As for instance explained in Chapters 2 and Chapter 3, the variance accounted for (VAF) is a
metric that is typically used for evaluating the quality-of-fit of fitted pilot models. The VAF
indicates the fraction of the variance of the measured modeloutput signal, in this case the
pilot control signalu, that is explained by the fitted model and expresses it as a percentage.
A VAF of 100% indicates that the model fully explains the measured signal. Fig. 7.13 shows
the VAF values obtained for the fits of the multimodal pilot model described in Section 7.2.4
to the measured data for all experimental conditions. Equivalent to the format of Fig. 7.9, the
individual subject data is shown in gray and the mean VAF overall participants is depicted
with black square markers.

Fig. 7.13 shows that the VAF values obtained for the fits of themultimodal ramp-
tracking pilot model do not differ significantly over the different experimental conditions.
A repeated measures ANOVA performed on the VAF data confirms this,F (5, 30) = 2.07,
p ≥ 0.05. On average, VAFs of around 85% are obtained for all conditions of the exper-
iment, which is highly similar to the VAFs that are typicallyobtained for purely compen-
satory tracking tasks [Zaal et al., 2009a].

The model proposed for modeling multimodal ramp-tracking behavior in Section 7.2.4
differs from the models typically used for describing compensatory tracking behavior with
motion feedback (see, for instance, Chapter 6) only by the presence of the feedforward re-
sponseHpt

(s), as given by Eq. (7.4). In Chapter 3 it was shown that the addition of such a
feedforward response significantly improved the modeling of ramp-tracking behavior, com-
pared to purely compensatory models of manual control behavior. To also evaluate this for
the multimodal ramp-tracking task considered in this chapter, a pilot model that only con-
sidered the pilot visual responseHpv

(s) and the motion responseHpm
(s), thereby yielding

exactly the same model of compensatory behavior as considered in Chapter 6, was also fit
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Figure 7.13. Mean multimodal ramp-tracking pilot model variance accounted for.

to the same measurement data. The VAF values of the fits of thismodel withoutHpt
(s)

are shown in Fig. 7.13 with white-filled square markers. As can be verified from Fig. 7.13,
not considering the pilot feedforward responseHpt

(s) causes an average reduction of over
10% in the model VAF, indicating a severely reduced capacityof this purely compensatory
model’s ability to describe the measured ramp-tracking behavior.

The reason for this is illustrated by Fig. 7.14, which depicts a comparison of the mea-
sured control signalu, shown in gray, with the time traces of the feedforward (ut, see
Fig. 7.1) and compensatory (uv + um) contributions to the total model output and the total
control signal modeled by the proposed multimodal ramp-tracking pilot model. Note that in
Fig. 7.14 example model responses for three different experimental conditions – SR0, SR4,
and CIT – are presented. For the other conditions highly similar responses were obtained,
but these are not shown for brevity. Note that Fig. 7.14 only shows the time traces for the
first (positive) excursion in roll attitude commanded byftramp

and the corresponding return
to φ = 0 deg.

As can be verified from Figures 7.14(a), (d), and (g), the control response modeled by
the feedforward dynamicsHpt

(s) accurately matches the off-zero excursions in the mea-
suredu around the occurrence of a ramp inftramp

. As also shown for ramp-tracking tasks
performed with single integrator controlled element dynamics in Chapter 3, these ramp-
tracking responses can not be fully explained using a compensatory model of pilot tracking
behavior. As can be verified from Figures 7.14(c), (f), and (i), combining this modeled
feedforward response with a compensatory control response(Figures 7.14(b), (e), and (h),
respectively) yields a total model fit that captures both thecontrol inputs given to follow
ftramp

and those corresponding to compensatory attenuation of tracking errors induced by
ftms

andfd. Omitting the pilot feedforward response, as done for the VAFs indicated with
the white markers in Fig. 7.13, yields a total model fit that isonly marginally better than the
fits shown for the compensatory part of the total pilot model in Figures 7.14(b), (e), and (h).
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(g) Feedforward fit, CIT
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(h) Compensatory fit, CIT
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Figure 7.14. Example responses of the feedforward and compensatory portions of the fitted
model of pilot multimodal ramp-tracking behavior (subject 1, conditions SR0, SR4, and CIT).
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7.4.3.2 Pilot Model Parameter Estimates

Figures 7.13 and 7.14 showed that the proposed model for describing multimodal ramp-
tracking behavior was found to accurately capture measuredpilot control inputs, both those
given to attenuate tracking errors from both multisine forcing function signals and those
given for following the ramp target signal. In this section,the corresponding estimates of
the nine pilot model parameters are analyzed to reveal possible changes in pilot control
behavior over the different experimental conditions and asa result of the applied variation
in roll motion cueing settings.

Fig. 7.15 shows the estimates of the two parameters of the model for the pilot feed-
forward response defined by Eq. (7.4), the feedforward gainKt and the feedforward time
delayτt. Fig. 7.15 shows the estimated parameters for the differentexperiment participants
in gray to illustrate inter-subject differences. The average over the seven participants and
the corresponding 95% confidence intervals are indicated with the black square markers and
variance bars, respectively.
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Figure 7.15. Mean estimated pilot feedforward response model parameters.

In previous experiments that evaluated ramp-tracking behavior, such as the experiment
of Chapter 3, it was shown that the gain of the pilot feedforward response tends to vary for
different controlled elements and ramp signals with different steepnesses. In this chapter,
the same controlled element andftramp

were considered for all experimental conditions.
Instead a variation in the supplied roll motion cueing was considered, for which the varying
strength of the roll washout, as illustrated in Section 7.2.3, was anticipated to affect the pilot
feedforward response dynamics. As can be verified from Fig. 7.15(a),Kt is found to remain
approximately constant at around0.6 for all experimental conditions including the in-flight
ramp-tracking task (CIT). A repeated-measures ANOVA performed on the presented values
of Kt confirmed that there was no significant change in the pilot feedforward gain over the
different experimental conditions,F (5, 30) = 0.27, p ≥ 0.05.



222 Chapter 7

Fig. 7.15(b) shows the estimated values of the feedforward delay parameterτt. Note
thatτt alone defines the phase characteristics of the considered model forHpt

(s): no fur-
ther lag or lead equalization dynamics are considered in themodel for the pilot feedforward
response given by Eq. (7.4). Over the different SRS conditions, Fig. 7.15(b) shows a clear
decrease inτt with increasing roll motion fidelity, on average showing showing feedfor-
ward delays of around0.4 s in the presence of high-fidelity roll motion cueing (SR4) and
extremely high values of around1.3 s for the no-motion condition SR0. The comparatively
high values of the feedforward response delay presented in Fig. 7.15(b), which are all higher
than the values of around0.3 reported for the ramp-tracking tasks analyzed in Chapter 3,
are the result of the fact that in the model used forHpt

(s) all phase shifts in the feed-
forward response are attributed toτt. Despite this modeling insufficiency, the trend inτt
over the different SRS conditions visible in Fig. 7.15(b) still indicates that, on average, the
experiment participants achieved a ramp-tracking response with reducing phase lag with
increasing simulator roll motion fidelity. For the in-flightramp-tracking tasks (condition
CIT), however, the estimated feedforward delay parametersshow clearly increased values
compared to those measured for the conditions with high and medium-fidelity roll motion
in the SRS, with values ofτt that are almost as high as those observed for SR0. This indi-
cates that for the in-flight ramp-tracking tasks there was a comparatively large delay in the
response to a ramp target input, which is consistent with theincreasedσ2

e observed for the
CIT condition in Fig. 7.10. The overall variation inτt over the six experimental conditions
was found to be statistically significant:F (5, 30) = 6.87, p < 0.05. Pairwise comparisons
indicate that the most significant differences between individual experimental conditions
are observed for the conditions performed with motion feedback in the SRS (SR1-SR4) and
the SR0 and CIT conditions.

Fig. 7.16 shows the estimated values of the parameters of thepilot error and motion
response models included in the model proposed for describing multimodal ramp-tracking
behavior in Section 7.2.4. Again, note that this part of the proposed pilot model is identical
to the multimodal pilot model considered in Chapter 6 for modeling pilot tracking behavior
in a compensatory roll tracking task with physical roll motion feedback and two multisine
forcing functions. As explained in Section 7.3.6, given thefact that the same disturbance
forcing function was present in the ramp-tracking task as used for the experiment of Chap-
ter 6, it was expected that the pilots would show similar adaptation of their compensatory
control dynamics given byHpv

(s) andHpm
(s) as observed there.

The estimates of the two parameters that showed to be the mostsensitive to changes in
roll motion cueing in Chapter 6, the pilot visual gainKv and the visual lead time constant
TL, are shown in Figures 7.16(a) and (b), respectively. For theSRS conditions, these figures
show increasing values ofKv and decreasing values ofTL with increasing roll motion
fidelity. Furthermore, the pilot visual gains and lead time constants obtained from the in-
flight measurements are found to be highly similar to those observed for the high roll motion
fidelity condition SR4. Similar to the conclusions drawn in Chapter 6, these effects onKv

andTL are found to be highly statistically significant:F (5, 30) = 10.68, p < 0.05 and
F (5, 30) = 4.48, p < 0.05, respectively. Note that the estimated values for both parameters
– ranging from0.2-0.35 for Kv and from around0.2-0.37 for TL – are nearly identical to
those measured for the experiment described in Chapter 6. This indicates that pilots selected
visual response dynamics (Hpv

(s)) for the ramp-tracking task considered in this chapter that
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are equivalent to those adopted for purely compensatory tracking. Finally, also note from
comparing the estimated visual lead time constants with thevalue of 1/ωφ indicated in
Fig. 7.16(b) that for the no-motion condition SR0 the pilotson average performed visual
lead equalization to nearly fully compensate for theK/s2 controlled element dynamics
aboveωφ. Consistent with many previous investigations, for instance [Shirley and Young,
1968; Jex et al., 1978; Hosman, 1996; Van der Vaart, 1992; Zaal et al., 2009b], for the
conditions with roll motion feedback the availability of physical roll motion information is
found to allow for a reduction inTL.

Fig. 7.16(c) presents the estimated values of the gain of thepilot motion response
Hpm

(s). For the SRS conditions, a slight reduction inKm is observed when moving from
the high-fidelity condition SR4 towards lower levels of simulator motion fidelity. Further-
more, the lowest values ofKm are observed for the in-flight CIT condition. For SR0 the
estimates ofKm showed a distribution significantly different from normal (Kolmogorov-
Smirnov test,D(7) = 0.39, p < 0.05). A Friedman’s ANOVA indicated no significant dif-
ferences in the pilot motion gain over the different experimental conditions,χ2(4) = 8.34,
p ≥ 0.05. Note from comparison with the data presented in Chapter 6 that also the es-
timated values ofKm presented in Fig. 7.16(c) match those observed for compensatory
tracking without the ramp target signal very well.

Figures 7.16(d) and (e) show the estimated values of the pilot visual and motion response
delaysτv andτm. The visual delay is found to be around0.2 s for all experimental condi-
tions, with slightly higher averages of around0.25 s for conditions SR3 and CIT. Note that
especially this approximately 50 ms increase inτv observed for the CIT conditions is highly
consistent with the results of Chapter 6. Due to markedly varying inter-subject differences
over the six experimental conditions, Mauchly’s Test indicated a violation of the sphericity
assumption for theτv data presented in Fig. 7.16(d),χ2(14) = 27.54, p < 0.05. After
applying the Greenhouse-Geisser sphericity correction, the pilot visual delay was not found
to differ significantly over the considered experimental conditions,F (2.0, 12.0) = 2.73,
p ≥ 0.05. Mirroring the results obtained for the experiment of Chapter 6, Fig. 7.16(e) shows
pilot model delays of around0.15 s for the conditions with the highest level of roll motion
fidelity (CIT included) and slightly elevated values under conditions with lower-fidelity roll
motion cueing. This increase inτm with decreasing simulator roll motion fidelity is found
to be a statistically significant effect,F (4, 24) = 4.69, p < 0.05.

Fig. 7.17 presents the estimated values of the two parameters of the neuromuscular ac-
tuation model defined by Eq. (7.8). Fig. 7.17(a) shows that the neuromuscular frequency
ωnm is found to be approximately constant for all SRS conditionsat slightly above9 rad/s.
Slightly lower values ofωnm are obtained for the in-flight ramp-tracking tasks (CIT), but the
drop inωnm is not as sharp as observed for the purely compensatory in-flight roll tracking
task considered in Chapter 6. Overall, no significant variation in the neuromuscular fre-
quency is observed over the different experimental conditions,F (5, 30) = 1.20, p ≥ 0.05.

Chapter 6 reported slightly increased values of the neuromuscular damping ratioζnm
for the conditions with a unity roll motion gain, an effect which was, however, not found
to be statistically significant. Fig. 7.17(b) shows that a similar increase inζnm is observed
here for condition SR3 and SR4, indicating slightly better damped neuromuscular actuation
dynamics for these conditions. As is clear from Fig. 7.17(b), the distribution of measured
values forζnm differs significantly from a normal distribution for all conditions due to the
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comparatively high values measured for subject 5. A nonparametric Friedman ANOVA
indicates a significant variation over the different conditions χ2(5) = 19.00, p < 0.05.
Pairwise comparisons (Wilcoxon signed-rank tests) confirmthat the most significant dif-
ferences between individual conditions result from the consistently higher values forζnm
found for the conditions with unity roll motion cueing gain in the SRS (SR3 and SR4).

7.5 Discussion

This chapter evaluated the effects of varying roll motion settings on pilot control behavior in
roll tracking task with quasi-random multisine disturbance and target forcing functions and
a superimposed ramp target forcing function that commandeda number of 10 deg changes
in roll attitude. For this evaluation, measurements of control behavior were collected in the
SIMONA Research Simulator (SRS) and in real flight using TU Delft’s Cessna Citation II
laboratory aircraft. Five different roll motion cueing settings were evaluated in the simulator
part of the experiment, including a no-motion condition. The remaining four conditions
consisted of a factorial variation in the gain (values of0.5 and 1) and break frequency
(values of0.5 and1 rad/s) for the first-order roll motion filter that was used forwashing-out
the simulator roll motion and thereby limiting the perceivable lateral specific forces due to
simulator roll tilt.

For quantifying possible changes in pilot control behaviordue to variations in roll mo-
tion cueing a three-channel model of pilot control behaviorwas proposed for the considered
multimodal ramp-tracking task. Compared to the models of compensatory tracking behav-
ior applied in earlier research that measured the effects ofdifferences in simulator motion
fidelity for tracking tasks with only quasi-random multisine forcing function signals, this
proposed model for ramp-tracking behavior included an additional feedforward response
channel that accounted for pilot feedforward operations onthe deterministic ramp target
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signal. In Chapter 3 strong evidence of such a feedforward response was found for single-
loop (no motion feedback) ramp-tracking tasks. The data from the experiment described in
this chapter suggest that this is also the case for ramp-tracking tasks performed with mo-
tion feedback, as a pilot model that did not include the proposed feedforward response was
found to explain markedly less of the measured pilot controlinputs.

For the pilot feedforward response a model was proposed thatprovided a response pro-
portional to that of the inverse of the controlled element dynamics, scaled by the pilot feed-
forward gainKt and delayed by the pilot feedforward delayτt. No further equalization
dynamics, such as the feedforward lag term considered in Chapter 3, were included in the
proposed model for the feedforward response. The values of the feedforward time delay
parameter obtained from fitting the final proposed model to measured data were found to
be comparatively large, reaching values of higher than1.0 s for the SR0 and CIT condi-
tions. Given the lack of further assumed dynamics in the feedforward response model, the
phase characteristics of this model are only affected by variations inτt so that all further
lags incurred in the pilot feedforward response are attributed to this delay parameter in the
proposed model. The high estimated values ofτt suggest that extension of the proposed
feedforward response model, for instance with further equalization dynamics as also con-
sidered in Chapter 3, is in fact required. Addressing this extended modeling of the pilot
feedforward response for the ramp-tracking task considered in this chapter is heavily rec-
ommended for future work.

Analysis of the adopted control strategy for the different experimental conditions per-
formed in the SRS using the proposed multimodal model of pilot ramp-tracking behav-
ior showed highly similar pilot adaptation as observed for the roll tracking task with only
quasi-random multisine forcing function signals considered in Chapter 6. Increasing the
roll motion filter break frequency and reducing the roll motion gain was found to result in
a decreased gain of pilots’ response to visually presented tracking errors and an increase in
the amount of visual lead equalization that was performed. As can be verified from Chap-
ter 5, both these effects are highly typical for tracking with reduced fidelity of the supplied
physical motion feedback. The reason for this equivalence of the observed behavioral varia-
tion for the ramp-tracking task considered in this chapter with these previous measurements
is a result of the fact that, in addition to the ramp target signal, also multisine target and
disturbance signals were still present in this task. The presence of these two quasi-random
forcing function signals ensured pilots still needed to exhibit largely the same compensatory
control behavior as adopted for the multisine tracking taskof Chapter 6.

The estimated pilot model parameters that characterize thepilot feedforward control dy-
namics in the proposed model, the pilot feedforward gain andtime delay, showed significant
differences in the pilot feedforward response over the different experimental conditions, in
addition to the observed variation in the compensatory behavioral component. The gain of
the feedforward response was found to remain approximatelyconstant for all experimental
conditions (including the in-flight ramp-tracking tasks).For the feedforward time delay,
however, significantly higher values were observed for the experimental conditions with re-
duced motion fidelity compared to the considered high-fidelity roll motion condition. This
increased response delay suggests a more sluggish and less optimal pilot feedforward re-
sponse under conditions of reduced motion fidelity. Consistent with this increased feedfor-
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ward response delay, the tracking error variance was also found to be largest for conditions
with the highest feedforward delays, indicating reduced tracking performance.

The control behavior measured for the in-flight ramp-tracking tasks was found to match
the simulator measurements reasonably well. Tracking performance, however, was found
to be poorer for the in-flight ramp-tracking tasks than observed for all conditions with mo-
tion feedback performed in the SRS and, in fact, found to be almost equal to the level of
tracking performance attained for the no-motion SRS condition. Comparatively high pilot
feedforward and visual response delays were observed for the in-flight ramp-tracking tasks,
in addition to slightly reduced pilot motion response gains, which can explain this degraded
tracking performance. Despite the fact that some disagreement was present between the
opinions of the different pilots that performed the experiment, subjective motion fidelity
ratings indicated that, on average, the pilots indicated that the considered high-fidelity roll
motion condition (unity gain and0.5 rad/s break frequency) yielded simulator motion clos-
est to that perceived in real flight. Except for the three parameters listed above, the remain-
ing estimated pilot model parameters also showed comparatively small differences between
this high-fidelity SRS condition and the in-flight measurements. For this reason, this con-
dition is concluded to yield the best simulator motion fidelity, from an objective behavioral
analysis perspective, for the ramp-tracking task considered in this chapter.

The variation in motion cueing settings evaluated in the simulator part of the experiment
described in this chapter considered of different sets filter gain and break frequencies for a
first-order high-pass roll washout filter. Using only simulator roll motion, the motion filter
setting that most closely replicated the aircraft roll and translational motion was sought.
This chosen implementation of the motion cueing for a coordinated maneuver as induced
by the used ramp forcing function signal, which relies on thehigh-pass roll motion filter
for ensuring zero lateral specific forces by washing-out thesimulator roll motion, is the
most simple method for replicating the aircraft motion typical for such maneuvers on a
moving-base flight simulator. Extensive research has led tomore advanced motion cueing
implementations that have been proposed for such coordinated lateral maneuvers [Schmidt
and Conrad, 1970; Ariel and Sivan, 1984; Reid and Nahon, 1985; Telban et al., 2005a;
Chung et al., 1998; Mikula et al., 1999]. Further research into the effects of simulator
motion cueing settings on pilot control behavior in maneuvering tasks similar to the one
analyzed in this chapter should therefore focus on the evaluation of these proposed methods
for achieving satisfactory motion cueing for coordinated rotational and translational motion
cues.

This chapter briefly evaluated a method for evaluating changes in pilot control behavior
during discrete maneuvering tasks proposed by Heffley [1982]. This method, with which
the executed discrete maneuvers are evaluated using their phase-plane representation, has
shown its merit for pointing out differences in the way some fixed-wing and rotorcraft dis-
crete maneuvering tasks were performed under varying experimental conditions in a number
of earlier investigations [Heffley, 1982; Ferguson et al., 1984; Schroeder, 1999; Ellerbroek
et al., 2008]. For the ramp-tracking task considered in thischapter, however, the pres-
ence of the quasi-random forcing function signals was foundto render analysis of ramp-
tracking behavior using the maneuvers’ phase-plane representation impossible because of
the considerable distortion of the phase-plane profiles dueto these additional forcing func-
tion signals. Given that the analysis of pilot control behavior with the proposed multimodal
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ramp-tracking pilot model suggested differences in the control behavior adopted during
ramp-tracking under variations in roll motion cueing, analysis of the execution of the ramp-
tracking portion of this control task with the method proposed by Heffley [1982] is still
expected to provide additional insight. This could, for instance, be tested with further ramp-
tracking experiments with varying physical motion feedback settings with no further, or
much smaller, quasi-random forcing function signals.

7.6 Conclusions

This chapter described the results of an experiment that wasperformed to evaluate the ef-
fects of varying levels of simulator motion fidelity on pilotcontrol behavior in a combined
roll attitude ramp-tracking and disturbance-rejection task. Control behavioral measurements
for this task were collected from seven experienced pilots both in real flight, using a Cessna
Citation II laboratory aircraft, and for five different settings of a first-order high-pass roll
washout filter in a moving-base flight simulator. Changes in pilot control behavior due
to variations in the level of simulator motion fidelity were analyzed through the fitting of
a multimodal pilot model that included an additional feedforward response for modeling
ramp-tracking behavior. This explicit quantification of changes in control behavior showed
largely the same effects of degrading motion fidelity as observed for tracking tasks with only
quasi-random forcing function signals, most notably a decrease in the gain with which pi-
lots respond to visually presented tracking errors and an increase in visual lead equalization.
The fitted feedforward response parameters further indicated increased latency in the pilot
ramp-tracking control inputs with decreasing motion fidelity levels. Overall, control behav-
ior for a high-fidelity roll motion condition, with a unity gain and a break frequency of0.5
rad/s for the first-order roll washout filter, was found to be closest to that measured in real
flight. Subjective motion fidelity ratings collected for theramp-tracking tasks performed
in the flight simulator also showed that the pilots, on average, indicated that this condi-
tion provided simulator motion cues that were closest to those available in real flight. Still,
compared to the behavioral measurements for this high-fidelity roll motion cueing setting,
degraded tracking performance and a significant increase inthe feedforward ramp-tracking
response delay were observed for the ramp-tracking tasks performed in real flight.
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Roll Motion Filter Settings and

Multisine-Tracking Behavior

Chapter 6 presented the results of a comparison between pilot roll tracking behavior mea-
sured in real flight in TU Delft’s Cessna Citation II laboratory aircraft and measurements
taken for varying roll motion cueing conditions in the SIMONA Research Simulator (SRS).
In the simulator part of the experiment described in Chapter 6 only a limited number of
four different roll motion cueing settings could be evaluated, which also limitedthe con-
clusions that could be drawn with respect to recommendations for selectingmotion filter
parameters based on these behavioral measurements. This chapter therefore describes an
additional experiment that was performed in the SRS, which featured the same roll tracking
task considered in Chapter 6 with a much larger number of evaluated roll motion cueing
settings. The four conditions of the experiment of Chapter 6 were repeated in the experiment
described in this chapter. An explicit side-by-side comparison of the results from both ex-
periments for these overlapping conditions is not included in this chapter, but can be found
in Appendix I.

The contents of this chapter are to be published as:

Pool, D. M., Damveld, H. J., Van Paassen, M. M., and Mulder, “Effects of Motion Filter
Gain and Break Frequency Variations on Pilot Roll Tracking Behavior”,Journal of Guidance,
Control, and Dynamics.
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8.1 Introduction

Flight simulator motion excursions are typically limited by applying high-pass washout fil-
ters to the simulated aircraft motion. Reducing the washoutfilter gain and increasing the
filter break frequency typically lead to larger discrepancies between the true aircraft motion
and the motion cued in the simulator, which can result in reduced motion fidelity. With the
severely limited motion envelopes available in most current moving-base flight simulators,
the selection of washout filter parameter settings typically involves a trade-off between re-
taining a sufficiently high motion gain, while limiting the phase distortion induced by the
washout filter. This trade-off is also reflected in the commonly applied motion fidelity cri-
teria proposed by Sinacori [1977] and Schroeder [1999], which define levels of simulator
motion fidelity in terms of the gain and phase distortion induced by the high-pass motion
filter at 1 rad/s.

However, selecting a proper combination of filter gain and break frequency is still a
problem for which no all-purpose solution or even a structured and well-motivated approach
is available. One of the main reasons for this is our limited understanding of human motion
perception processes that play a role in simulator cueing. In this chapter, an attempt is made
to tackle the problem of motion filter parameter selection from a behavioral standpoint, by
focusing on the effect of washout filter settings on skill-based pilot manual control behav-
ior. Pilot tracking behavior is known to be highly adaptableto a large number of factors
internal and external to the pilot [McRuer and Jex, 1967a]. Here, it is attempted to exploit
this adaptability by measuring pilot dynamics during tracking in order to reveal for which
motion filter gain and break frequency settings pilots adapttheir control strategy. Despite
the fact that such an approach can be applied to, and likely results in different results for, all
degrees of freedom that need to be considered in flight simulation, this chapter focuses on
pilot tracking behavior in roll tracking tasks with physical roll motion feedback.

A number of previous studies have considered and measured pilot tracking behavior
in a roll tracking task under a variation in motion cueing settings to this same end, [Jex
et al., 1978; Van Gool, 1978; Stapleford et al., 1969; Ringland and Stapleford, 1971] and
Chapter 6. However, none of these studies have considered a true factorial variation in
washout gain and break frequency, thereby precluding the drawing of conclusions that are
of interest to simulator motion cueing. Furthermore, with the exception of the experiment
described in Chapter 6, none of these investigations made use of measurements of pilot
tracking behavior collected in real flight to compare the measured effects of motion filter
variations in a flight simulator against.

The objective of this chapter is to evaluate, and explicitlycompare, the effects of inde-
pendently varying motion filter gain and break frequency settings on pilot tracking behavior.
To achieve this, an experiment is described in which pilot tracking behavior is measured for
a factorial variation in roll motion filter gain and break frequency settings. Three settings
for both motion filter parameters are evaluated in the experiment, in addition to a reference
no-motion (single-loop tracking) condition, yielding a total number of ten roll motion fil-
ter settings that range from high to low motion fidelity according to the criteria proposed
by Sinacori [1977] and Schroeder [1999]. From this experiment data conclusions will be
drawn as to where, from a behavioral point of view, the focus of washout filter tuning should
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be: on minimizing gain distortion, the impact of washout filtering on the supplied simulator
motion cues, or both.

For this evaluation of behavioral simulator motion fidelitythe same compensatory roll
tracking task with Cessna Citation II roll dynamics as investigated in Chapter 6 is consid-
ered, for a number of reasons. First, in the experiment of Chapter 6 a combined target-
following and disturbance-rejection task with two quasi-random multisine forcing function
signals was considered, as such a task allows for analysis ofpilot tracking behavior us-
ing estimated frequency-domain describing functions [Stapleford et al., 1967] and fitted
multimodal pilot model parameters [Zaal et al., 2009a]. These methods yield objective
measurements that give insight into whether, and how, pilottracking behavior is affected
by certain changes in motion filter settings. Second, the motion profiles resulting from the
combined target-following and disturbance-rejection task can be presented one-to-one on
the simulator, thereby allowing for collecting behavioralmeasurements for a true reference
condition with one-to-one roll motion cues as is very desirable for such human-in-the-loop
measurements [Schroeder and Grant, 2010]. Finally, as the same Cessna Citation II pilots
who also performed the experiment of Chapter 6 were to perform the current experiment,
this allows for a straightforward comparison of the currentflight simulator measurements
with the in-flight measurements of roll tracking behavior described in Chapter 6.

This chapter is structured as follows. First, some background information on the com-
bined target-following and disturbance-rejection task that is considered for evaluating the
effects of motion filter gain and break frequency variationson pilot tracking behavior is
provided in Section 8.2. This section also describes the multimodal pilot model used for
quantifying changes in pilot tracking behavior, and gives asummary of some of the previ-
ously developed methods for predicting changes in pilot control behavior due to changes in
washout settings. Section 8.3 describes the setup of the experiment that was performed to
measure pilot tracking behavior for ten different roll motion cueing settings in a moving-
base flight simulator. The experimental results are presented in Section 8.4, where the
current findings are also compared to previously proposed offline prediction analysis results
(see Chapters 5 and 6) and the in-flight roll tracking resultsreported in Chapter 6. The
chapter ends with a discussion and conclusions.

8.2 Background

8.2.1 Roll Tracking Task

Fig. 8.1 shows a schematic representation of the compensatory aircraft roll tracking task
considered in this chapter. It is a combined target-following and disturbance-rejection task,
where the target and disturbance forcing functions –ft andfd, respectively – are indepen-
dent quasi-random multisine signals to allow for measurement of two describing functions
using spectral methods [Stapleford et al., 1967]. The pilot’s task is to minimize the tracking
errore, which is continuously induced by the target and disturbance forcing function signals.
The pilot is shown to provide control inputsu to the controlled element dynamics based on
visually presented tracking error information (e) and feedback of the controlled element roll
acceleration (̈φ) through the simulator motion system. The measurements of pilot tracking
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behavior for the control task shown in Fig. 8.1 described in this chapter are collected using
the SIMONA Research Simulator (SRS) at Delft University of Technology. For the SRS,
the visual and motion cueing dynamics – indicated with theHsv (s) andHsm(s) blocks in
Fig. 8.1 – are modeled as pure delays of 25 and 30 ms, respectively [Stroosma et al., 2007;
Berkouwer et al., 2005].
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Figure 8.1. Schematic representation of a compensatory roll attitude tracking task with motion
feedback.

As can be verified from Fig. 8.1, the dynamics of a roll motion filter that transforms the
aircraft model roll accelerations̈φ into the roll accelerations that are cued in the simulator
φ̈mf are also included in the motion cueing dynamics. In this chapter, a first-order high-
pass roll washout filter, which is often applied for cueing rotational degrees-of-freedom in
moving-base flight simulators [Schmidt and Conrad, 1970; Sinacori, 1973; Grant and Reid,
1997a; Hagiwara et al., 2008], is considered:

Hmf (s) =
s2φmf (s)

s2φ(s)
= Kmf

s

s+ ωmf
(8.1)

Eq. (8.1) also shows the two parameters that need to be set forthis first-order washout
filter: the filter gainKmf and the filter break frequencyωmf . The filter gainKmf can be
used to apply a frequency-independent scaling to the aircraft roll accelerations. The break
frequencyωmf controls the washout dynamics: it defines the amount of low-frequency gain
attenuation and the low-frequency phase distortion induced byHmf (s).

The controlled element dynamicsHc(s) in the roll tracking task analyzed in this chapter
are a linear approximation of the nonlinear model of the combined fly-by-wire control sys-
tem and Cessna Citation II roll dynamics used for the experiment of Chapter 6. The details
of these linearized roll dynamics will be provided in Section 8.3.2. Finally,Ks indicates the
control input gain, which is equal to 0.3 for the roll tracking task considered in this chapter.

8.2.2 Modeling Multimodal Pilot Tracking Behavior

Pilot tracking behavior in combined target-following and disturbance-rejection tasks with
physical motion feedback as considered in this chapter has been shown to be successfully
modeled with the two-channel model structure depicted in Fig. 8.1 [Stapleford et al., 1969].
Pilot tracking behavior is modeled as two parallel linear responses, one to visually presented
tracking errors and another to roll acceleration cues received through physical motion stimu-
lation, indicated with the symbolsHpv

(s) andHpm
(s) in Fig. 8.1, respectively. In addition,

a remnant signaln, which accounts for all nonlinear contributions to the pilot control signal
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u [McRuer and Jex, 1967a], completes this quasi-linear modelof multimodal pilot tracking
behavior.

A more detailed representation of the multimodal pilot model considered in this chapter
is shown in Fig. 8.2. As can be verified from Fig. 8.2, the pilotvisual responseHpv

(s) is
modeled with a gain-lead equalization characteristic, a pure time delayτv, and a model for
the neuromuscular actuation and manipulator dynamicsHnm(s). This model is based on the
models for single-loop compensatory tracking behavior proposed by McRuer et al. [1965].
The equalization transfer functionKv(1 + TLs) allows for capturing the lead equalization
that is adopted by pilots to achieve desired open-loop characteristics around the crossover
frequency for controlled elements that are approximatelyK/s2 at frequencies sufficiently
close to the crossover region [McRuer et al., 1965]. As will be shown in Section 8.3.2, this
is also the case for the controlled element considered in this chapter.

sensor dynamics equalization limitations

Km e−jωτm

Kv(1 + jωTL) e−jωτv

φ̈s

Hpv(jω)

es

Hpm(jω)

5.97(1 + jω 0.11)

(1 + jω 5.9)(1 + jω 0.005)

︸ ︷︷ ︸

Hsc(jω)
︸ ︷︷ ︸

Hnm(jω)

ω2
nm

(jω)2 + 2ζnmωnmjω + ω2
nm

uv

um

u

n

+

+

−

Figure 8.2. The multimodal pilot model used for modeling pilot controlof aircraft roll attitude.

As proposed by Hosman [1996] and Van der Vaart [1992] – and as successfully applied
in many later investigations into multimodal pilot tracking behavior, for instance [Zaal et al.,
2009b,c, 2010] and Chapters 4 and 6 – pilots’ responses to rotational roll motion feedback
are modeled as a response proportional to the perceived rollmotion, that is, the output of
the semicircular canals of the vestibular system. Despite the fact that it is known that other
sensory systems, such as the proprioceptive and somatosensory systems, are also available
for physical motion perception, physiological research has suggested that the vestibular sys-
tem is the dominant sensor for physical motion stimulation [Benson, 1990]. Furthermore,
as shown in detail in Chapter 4, measured describing functions for pilots’ physical motion
responses have been shown to be modeled accurately with a model that only considers the
vestibular response. Similar to the model for the pilot visual response, the model ofHpm

(s)
used here accounts for a time delay in the response to the rollmotion cues and for the neu-
romuscular actuation dynamicsHnm(s). The model for the semicircular canal dynamics
Hsc(s), which relates the input simulator roll accelerationsφ̈s to an afferent neuron firing
rate with unit impulses per unit of time (IPUT), is the same asthat used in Chapters 6 and
7. The parameters of this model of the semicircular canal dynamics, which are taken from
previous research [Hosman, 1996; Groen et al., 2006], are assumed to be constants of the
multimodal pilot model.

In total, the pilot model shown in Fig. 8.2 has seven free parameters that characterize
pilot tracking behavior under certain conditions: the pilot visual gainKv, the visual lead
time-constantTL, the pilot motion gainKm, the pilot visual and motion delaysτv andτm,
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and the neuromuscular actuation model’s natural frequencyωnm and damping ratioζnm.
For direct correspondence with the experiment described inChapter 6, where the control
signalu was defined as the output voltage of the sidestick manipulator that formed the input
to the Cessna Citation II laboratory aircraft fly-by-wire control system, the control signal
in the current experiment is also defined in Volt (V). Note that because of this convention,
the pilot visual and motion gains have the units V/deg and V/IPUT, respectively. The mul-
timodal pilot model shown in Fig. 8.2 is used here to objectively quantify changes in pilot
tracking behavior that may result from changes in the motionfilter dynamicsHmf (s), by
estimating its seven parameters based on time-domain measurements ofe, φ̈mf , andu [Zaal
et al., 2009a].

8.2.3 Previously Reported Behavioral Effects of Roll Washout

A number of previous studies have explicitly investigated the effects of different roll washout
settings on compensatory tracking behavior for tracking tasks highly similar to the one stud-
ied in this chapter (see Section 8.2.1). As described in Chapter 5, even more studies provide
relevant measurements of the effects of variations in motion cueing settings on pilot track-
ing behavior, however, only investigations that considered roll tracking and variations in roll
motion cueing are summarized here.

First, Stapleford et al. [1969] and Ringland and Stapleford[1971] describe the results
of the same experiment that considered pilot roll tracking behavior under variations in con-
trolled element dynamics, roll and coordinated sway washout settings. Furthermore, they
also varied the presence of an additional multisine target forcing function, in addition to the
disturbance signal that was present in all experimental conditions. The tested roll washout
filters were first-order high-pass filters with unity gain. Three different filter break frequen-
cies were evaluated: 0.5, 1, and 2 rad/s. Even though measurements to evaluate the effects
of roll washout were only collected with three pilots (describing function data for only one),
Stapleford et al. [1969] and Ringland and Stapleford [1971]report a slight reduction in pilot
gain and crossover frequency for the highest break frequency setting (2 rad/s). In addition,
degraded tracking performance was observed for two of the three subjects for the conditions
with break frequencies of 1 rad/s and higher. Without further elaboration, Stapleford et al.
[1969] indicate that the presence of a washout filter might not always degrade tracking per-
formance by stating that with increasing the motion filter break frequency “the amplitude
of the roll response at the lower frequencies is decreased and the phase lead is increased.
The reduced amplitude should degrade the pilot’s use of thiscue but the increased lead is
helpful.”

Jex et al. [1978] considered a combined target-following and disturbance-rejection task
much like the one studied here, where the controlled elementdynamics were those of a
typical (loaded) fighter aircraft. The participants in thisexperiment were not experienced
pilots, but a later experiment performed with pilot subjects [Jex et al., 1979] showed no
differences between the results obtained for both groups ofsubjects, except for the reduced
training required for the pilot group. A wide variety of different roll motion cueing con-
ditions was considered, ranging from conditions with one-to-one roll motion and one with
pure gain attenuation to conditions with first- and second-order washouts. Compared to the
conditions with one-to-one or scaled roll motion (no washout), tracking performance was
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found to be worse when roll washout was present. Analysis of measured pilot describing
functions showed that the most notable effect of roll washout was observed for the target
open-loop describing function, where the the presence of a washout filter was found to cause
a clear increase in low-frequency gain and phase lag. Based on the presented comparison of
subjective ratings and behavioral tracking measurements,the condition with the first-order
washout combined with gain attenuation was concluded to be the best washout configura-
tion for a roll-only flight simulator. As suggested roll washout parameters to use for this
case Jex et al. [1978] propose to use a motion filter gain between 0.5 and 0.7 and first-order
break frequency between 0.3 and 0.5 rad/s.

Van Gool [1978] evaluated the effects of different motion filter break frequency settings
for both pitch and roll tracking tasks with a DC9-10 aircraftmodel (landing configuration,
120 kts). The evaluated pitch and roll washouts were second-order high-pass filters with
unity gain and damping ratio, for which the filter break frequency was varied from 0.1,
0.25, 0.5 to∞ (fixed base) rad/s. Due to the use of only a disturbance forcing function
in this experiment only a single (lumped) pilot describing function could be determined for
evaluation of the effects of the washout variation on pilot tracking behavior. Pilot describing
functions showed no differences for filter break frequencies ranging from 0.1 to 0.5 rad/s,
however, compared to the fixed-base results all conditions with roll motion feedback showed
increased low-frequency gain and crossover frequencies and reduced high-frequency phase
lag. As also no differences in tracking performance and subjective pilot ratings were ob-
served between the three conditions with break frequenciesranging from 0.1 to 0.5 rad/s, it
was concluded that pilot tracking behavior in the considered disturbance-rejection tasks is
negligibly influenced by variations in the filter break frequency.

Finally, Chapter 6 describes an experiment in which pilot tracking behavior was mea-
sured for the same combined target-following and disturbance-rejection task with a Cessna
Citation II controlled element as considered in this chapter. Pilot tracking behavior for four
different roll motion cueing conditions is compared in Chapter 6: a fixed-base and a one-to-
one roll motion condition, supplemented with two conditions with a first-order roll washout
filter with a break frequency of 0.5 rad/s and filter gain settings of 1 and 0.5. Subjective
motion fidelity ratings, measured tracking performance, and the estimated parameters of
the same pilot model introduced in Section 8.2.2 all indicate no significant differences be-
tween the conditions with one-to-one roll motion and the unity-gain filter with a 0.5 rad/s
break frequency. Note that these results are consistent with the findings of Jex et al. [1978]
and Van Gool [1978], who also report no significant effects onpilot tracking behavior for
filters with break frequencies of 0.5 rad/s or lower. The experiment of Chapter 6, however,
does show a change in pilot tracking behavior and performance towards those measured for
the fixed-base configuration for the condition where the rollmotion filter gain was equal to
0.5. Using multimodal pilot model analysis, it was shown that this effect of degrading roll
motion fidelity was mainly visible from decreased pilot visual response gains and increased
visual lead equalization. These results suggest that the filter gains between 0.5 and 0.7 as
proposed by Jex et al. [1978] could still result in a significant adaptation of pilot tracking
behavior in some cases.
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8.2.4 Offline Prediction and Analysis of Washout Effects

Earlier work has provided some useful tools to aid in the analysis of the effects of variations
in washout filter parameters on pilot tracking behavior performed in this chapter. First, in
Chapter 6 a method is described that allows for assessing theeffect of changes in pilot track-
ing behavior on the crossover frequencies and phase marginsof the disturbance and target
open-loop responses, by separating it from the effect of theapplied variation in the washout
dynamics itself on these parameters. In addition, Chapter 5provides some equations that can
be used to predict changes in pilot behavioral parameters, and open-loop system crossover
frequencies and phase margins, based on a compilation of themeasured results of a number
of previous experiments. Both these methods will be concisely described in the following,
and their results will be compared to the current experimental measurements in Section 8.4.

8.2.4.1 No Pilot-Adaptation Analysis

For a combined target-following and disturbance-rejection task as depicted in Fig. 8.1, two
open-loop responses can be evaluated to assess the closed-loop system’s performance and
stability in the attenuation of the disturbance forcing function fd and in the following of a
reference signalft [Jex et al., 1978]. From Fig. 8.1 the following equations canbe derived
for these disturbance and target open-loop responses:

Hol,d(s) = −Uc(s)

δc(s) (8.2)

= [Hsv (s)Hpv
(s) +Hÿ,x(s)Hmf (s)Hsm(s)Hpm

(s)]KsHc(s)

Hol,t(s) =
X(s)

E(s)
=

Hsv (s)Hpv
(s)KsHc(s)

1 +Hÿ,x(s)Hmf (s)Hsm(s)Hpm
(s)KsHc(s)

(8.3)

As can be verified from Equations (8.2) and (8.3), the disturbance and target open-loop
transfer functionsHol,d(s) andHol,t(s), and hence the crossover frequencies and phase
margins derived from them, are affected by both changes in the pilot responsesHpv

(s)
andHpm

(s), and the dynamics of the washout filterHmf (s). This implies that observed
changes in the disturbance and target open-loop crossover frequencies (ωc,d andωc,t) and
phase margins (ϕm,d andϕm,t) do not directly reflect changes in pilot control behavior, but
can also be caused by differences inHmf (s) directly.

To assess this problem, a method was proposed and applied in Chapter 6 that evalu-
ated the change in the crossover frequencies and phase margins that would result from only
varying the dynamics ofHmf (s), that is, assuming no adaptation of the pilot dynamics
to compensate for to this variation in washout dynamics. With knowledge of baseline pi-
lot tracking behavior (Hpv

(s) andHpm
(s)) for the case where physical motion cues are

presented one-to-one, evaluating Equations (8.2) and (8.3) for both this one-to-one case
(Hmf (s) = 1) and for a certain washout settingHmf (s) allows for quantification of the
direct effect of the washout filter dynamics onωc,d, ωc,t, ϕm,d, andϕm,t.

The required settings ofHpv
(s) andHpm

(s) that are representative for the case where
Hmf (s) = 1 were taken from a previous experiment, described by Zaal et al. [2010], for
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the analysis performed in Chapter 6. Here, due to the similarity between both experiments,
the choice is made to use the measurements for the one-to-oneroll motion condition from
the experiment described in Chapter 6 instead. The pilot model parameters and the derived
measures for both these reference settings are listed in Table 8.1. As can be verified from
Table 8.1, the difference between the reference parametersthat were used in Chapter 6 and
those used here is comparatively minor.

Table 8.1. Offline analysis parameters and derived measures.

Analysis parameters Derived measures

Symbol Unit
Value

Symbol Unit
Value

Ch. 6 Current Ch. 6 Current

Kv V/deg 0.37 0.37 ωc,d rad/s 2.61 2.90
TL s 0.22 0.23 ωc,t rad/s 1.52 1.46
Km V/IPUT 0.087 0.092 ϕm,d deg 53.51 54.36
τv s 0.27 0.23 ϕm,t deg 64.93 71.13
τm s 0.13 0.14 σ2

e deg2 0.27 0.25
ωnm rad/s 9.59 10.06 σ2

e,d
deg2 0.11 0.099

ζnm − 0.19 0.21 σ2
e,t deg2 0.16 0.15
σ2
u V2 0.062 0.081

Kmf − 1.0 1.0 σ2
u,d

V2 0.037 0.057
ωmf rad/s 0.0 0.0 σ2

u,t V2 0.025 0.024

8.2.4.2 Prediction of Washout Effects on Pilot Tracking

In Chapter 5 data from a number of experiments that measured pilot tracking behavior
under different motion cueing conditions was used to formulate linear prediction equations
that can be used to assess changes in selected behavioral parameters based on knowledge of
the washout filter settings. The most suitable predictor variable was found to be the motion
filter gain distortion at 1 rad/s – in this chapter indicated with the symbolKS – as also
used as the evaluation frequency in the motion fidelity criteria proposed by Sinacori [1977]
and Schroeder [1999], due to its ability to capture both the effects of filter gain and break
frequency settings. For the first-order filter defined by Eq. (8.1),KS is easily calculated
from the values ofKmf andωmf through:

KS = |Hmf (jω)|ω=1 rad/s

(8.4)
=

Kmf
√

ω2
mf + 1

The prediction equations derived in Chapter 5 allow for estimating the values of the
parameters of the behavioral pilot model introduced in Section 8.2.2 and the disturbance
and target open-loop crossover frequencies and phase margins that might result for a certain
motion filter setting based on its value ofKS . These equations were derived to provide a
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prediction of these parameters based on their values that are representative for pilot track-
ing behavior with one-to-one motion cues (KS = 1), similar to the method described in
Section 8.2.4.1. These prediction equations, which are taken from Chapter 5, are given by:

ω̂c,d(KS) = ωc,d(1) [ 0.23 (KS − 1) + 1] (8.5)

ω̂c,t(KS) = ωc,t(1) (8.6)

ϕ̂m,d(KS) = ϕm,d(1) [−0.10 (KS − 1) + 1] (8.7)

ϕ̂m,t(KS) = ϕm,t(1) (8.8)

K̂v(KS) = Kv(1) [ 0.19 (KS − 1) + 1] (8.9)

T̂L(KS) = TL(1) [−0.29 (KS − 1) + 1] (8.10)

K̂m(KS) = Km(1) (8.11)

τ̂v(KS) = τv(1) [ 0.069 (KS − 1) + 1] (8.12)

τ̂m(KS) = τm(1) (8.13)

ω̂nm(KS) = ωnm(1) [0.058 (KS − 1) + 1] (8.14)

ζ̂nm(KS) = ζnm(1) (8.15)

For instance, in Eq. (8.5), the prediction equation for the disturbance crossover fre-
quency, the value ofωc,d that is representative forKS = 1 is indicated asωc,d(1). Note
from Equations (8.5) to (8.15), that only the disturbance open-loop crossover frequency
ωc,d and phase marginϕm,d, the pilot visual gainKv, lead time-constantTL, visual delay
τv, and neuromuscular system natural frequencyωnm are predicted to change under varying
motion cueing settings. For the other behavioral parameters, the experimental data collected
in Chapter 5 did not show a sufficiently large or consistent variation withKS to permit the
formulation of a prediction equation. Note that the numerical factor in Equations (8.5) to
(8.15) defines the percentage change in the value of the considered metrics over the full
range ofKS . For instance, Eq. (8.5) indicates that the disturbance crossover frequency is
expected to be 23% lower forKS = 0 than forKS = 1.

As the roll tracking task considered in this chapter is identical to the task performed
in the experiment that is described in Chapter 6, the reference values forKS = 1 to use
with Equations (8.5) to (8.15) can simply be taken from the experimental measurements
collected there. These values are listed in Table 8.1, in thecolumns labeled “Current”.
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8.3 Experiment Setup

8.3.1 Apparatus

The experiment described in this chapter was conducted in the SIMONA Research Simu-
lator (SRS) at Delft University of Technology. This simulator has a six degree-of-freedom
hydraulic hexapod motion system capable of a maximum cabin roll of ±26 degrees. The
time delay of the motion system is 30 ms [Berkouwer et al., 2005].

During the experiment, the participants were seated in the right pilot seat. Control inputs
were given using a Moog FCS Ecol-8000 electrical sidestick.The sidestick was set to
operate as a force stick, where the force put on the stick by the participant was used as the
control input. The sidestick was locked in place in the neutral position for both the pitch
and roll axes by implementing a 1,000 N break-out force. As was the case for the in-flight
and simulator tracking tasks described in Chapter 6, the pilot control inputs (indicated with
u in Fig. 8.1) could be between±2.5 V. The applied force-output voltage characteristic was
set to 14 N/V to match the experiment of Chapter 6.

es

Figure 8.3. Compensatory
roll tracking display.

For presenting the tracking error to the participants, use
was made of the same visual display that was used for the
experiment of Chapter 6. This display, which presented the
tracking error (es, see Fig. 8.1) as the rotation of a target line
with respect to a fixed aircraft symbol as shown in Fig. 8.3,
was depicted on the primary flight display (PFD) directly in
front of the participants. The update rate of the PFD was 60 Hz
and the PFD latency, including the projection, was measured
to be 25 ms [Stroosma et al., 2007].

To mask the acoustic noise made by the motion-base actu-
ators, participants wore a noise-canceling headset. As opposed
to the experiment described in Chapter 6, no recorded aircraft engine noise was played over
the headphones to further cancel the actuator noise. The reason for this was that the modest
roll motion excursions and velocities achieved during thisexperiment hardly produced any
audible actuator movement.

8.3.2 Controlled Element

The controlled element in this experiment was a linearized model of the combined fly-by-
wire control system and Cessna Citation II roll dynamics that were controlled in the tracking
tasks evaluated in Chapter 6. The transfer function of this controlled element, which was
determined from time-domain measurements ofδc andφ from the in-flight tracking tasks of
Chapter 6, is given by:
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Hc(s) =
φ(s)

δc(s)
= Kφ

Tφs+ 1

s
(

s2

ω2
φ

+
2ζφ
ωφ
s+ 1

)e−τφs

(8.16)

= 0.29
0.51s+ 1

s
(

s2

2.702 + 2·0.81
2.70 s+ 1

)e−0.09s

As explained in more detail in Chapter 6 and Appendix E, the controlled element dy-
namics of the form given by Eq. (8.16) represent a minimum parameter form that accurately
captures the combined FBW system, including the control system delay incurred from us-
ing this FBW system dynamics, and the aircraft roll dynamicsover the frequency range
of interest for the considered tracking task. Due to the factthat ωφ > 1/Tφ, Hc(s) in
this experiment is approximatelyK/s for frequencies belowωφ and approximatelyK/s2

at frequencies exceedingωφ. As ωφ is in the 2-5 rad/s frequency range where the pilot-
vehicle system crossover frequency is expected for compensatory tracking [McRuer et al.,
1965], this implies that pilot lead equalization is likely to be adopted to compensate for the
approximately double integrator dynamics of this controlled element at higher frequencies.

8.3.3 Forcing Functions

The target and disturbance forcing function signals used for the experiment were both quasi-
random multisine signals, which both consisted ofNd,t = 10 different sinusoids, as defined
by:

fd,t(t) =

Nd,t∑

k=1

Ad,t(k) sin [ωd,t(k)t+ φd,t(k)] (8.17)

The forcing function signals were generated for a measurement intervalTm of 81.92
seconds, with a 100 Hz data rate. To avoid spectral leakage over the measurement win-
dowTm and to ensure two independent forcing function signals, which is required to allow
for estimating separate describing functions for the pilotvisual and motion responses us-
ing spectral methods [Stapleford et al., 1967], the sinusoid frequencies were calculated as
an integer multiple of the measurement time base frequencyωm = 2π/Tm according to
ωd,t(k) = nd,t(k)ωm Note that the integer factornd,t(k) defines the number of times the
sinusoids fit intoTm.

Both ft and the effective disturbance of the roll attitude induced by fd – that is,fd fil-
tered by the controlled element dynamicsHc(s), see Fig. 8.1 – were exactly those also used
in the experiment of Chapter 6. Both signals had a time-domain variance of 0.4 deg2. The
numerical properties of the sinusoid frequency factorsnd,t(k), frequenciesωd,t(k), ampli-
tudesAd,t(k), and phasesφd,t(k) for bothfd andft as used in this experiment are listed
in Table 8.2. Note that the amplitudes and phases listed forfd have been pre-shaped with
the inverse controlled element dynamics as given by Eq. (8.16). Due to the fact that these
controlled element dynamics were slightly different from those used for the experiment of
Chapter 6, also slightly different values ofAd,t(k) andφd,t(k) are listed in Table 8.2 than
are reported for this previous experiment.
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Table 8.2. Experiment target and disturbance forcing function properties.

disturbance,fd target,ft

nd ωd, rad/s Ad, V φd, rad nt ωt, rad/sAt, deg φt, rad

5 0.384 0.0153 1.372 6 0.460 0.698 1.288
11 0.844 0.0245 5.763 13 0.997 0.489 6.089
23 1.764 0.0240 1.257 27 2.071 0.220 5.507
37 2.838 0.0213 7.416 41 3.145 0.119 1.734
51 3.912 0.0214 8.248 53 4.065 0.078 2.019
71 5.446 0.0237 5.407 73 5.599 0.049 0.441

101 7.747 0.0293 -1.171 103 7.900 0.031 5.175
137 10.508 0.0387 0.490 139 10.661 0.023 3.415
171 13.116 0.0502 1.216 194 14.880 0.018 1.066
226 17.334 0.0741 1.677 229 17.564 0.016 3.479

To minimize the initial controlled element stabilization required at the start of a tracking
run, both the target and disturbance forcing functions werefaded in, using a linear fade-in,
over the first three seconds of each run.

8.3.4 Simulator Motion Cueing

During the experiment, pilots were presented with pure rotational roll motion cues (no coor-
dinated lateral cueing), which were generated by passing the controlled element roll motion
through the first-order high-pass filter given by Eq. (8.1). As was also the case for the exper-
iment described in Chapter 6, the participants were seated at the right pilot position during
the experiment. The supplied roll was defined to be around an axis of rotation that was 1.0
m above and 0.34 m left of the right pilot position, as is also the case in DUT’s Cessna
Citation II laboratory aircraft (see Chapter 6). This ensured that the lateral and vertical ac-
celerations at the pilots’ heads that resulted directly from the offset with respect to the axis
of roll rotation were equivalent to those in the real aircraft.

During the first seconds of each run, which were not considered for data analysis, the
simulator cabin was pre-positioned to the trim pitch attitude of 4.34 deg, equal to the pitch
attitude the Citation laboratory aircraft had during the in-flight measurements described in
Chapter 6. At the end of each tracking run, the simulator was brought back to the neutral
cueing position of 0 deg cabin pitch and roll.

8.3.5 Independent Variables

The experiment described in this chapter compares measurements of pilot tracking behavior
taken for ten different settings of the roll motion filter given by Eq. (8.1). Fig. 8.4 shows the
different experimental conditions, indicated with solid black square markers and labeled C0-
C9, in the graphical representation of the simulator fidelity criterion proposed for rotational
simulator motion by Sinacori [1977] and Schroeder [1999]. The details of these ten motion
filter settings are listed in Table 8.3. Fig. 8.4 further shows the roll motion filter settings
that were used in a number of previous studies, among which are also the investigations that
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explicitly measured roll tracking behavior for a number of different motion cueing settings
summarized in Section 8.2.3. White-, gray-, and black-filledmarkers indicate pure gain,
first-order washout, and second-order washout filter settings, respectively. The details of
each of these roll motion cueing settings taken from literature can be found in the table in
Fig. 8.4.

As can be verified from Fig. 8.4, the roll motion cueing settings evaluated in this chapter
consist of nine conditions that are distributed over the high- and medium-fidelity regions as
defined by Schroeder [1999], supplemented with a reference fixed-base single-loop tracking
condition C0. Conditions C1 to C9 represent a factorial variation in motion filter gainKmf

and break frequencyωmf , where three different levels are considered for each motion filter
parameter. As can be verified from Table 8.3, motion filter gains of 0.5, 0.75, and 1 are
considered, whileωmf is varied from 0 rad/s (no washout) to 0.5 and 1 rad/s.

Table 8.3. Experimental conditions.

condition Kmf ωmf description

C0 0.0

0 rad/s

no motion evaluated in Ch. 6
C1 0.5 no washout, low gain
C2 0.75 no washout, medium gain
C3 1.0 no washout, high gain evaluated in Ch. 6

C4 0.5 medium washout, low gain evaluated in Ch. 6
C5 0.75 0.5 rad/s medium washout, medium gain
C6 1.0 medium washout, high gain evaluated in Ch. 6

C7 0.5 strong washout, low gain
C8 0.75 1 rad/s strong washout, medium gain
C9 1.0 strong washout, high gain

As also indicated in Table 8.3, for four of the ten roll motioncueing conditions evaluated
in this chapter measurements of pilot roll tracking behavior were also collected in the exper-
iment of Chapter 6. A side-by-side comparison of the resultsobtained for the overlapping
conditions of both these experiments is provided in Appendix I.

8.3.6 Participants

Six of the seven DUT Cessna Citation II pilots who participated in the experiment described
in Chapter 6 were asked to also perform the current simulatorexperiment. At the time of
the experiment, one of these pilots was still employed as an airline pilot, but was no longer
active on the Cessna Citation II. The participants’ flight experience ranged from 1,500 to
over 14,000 hrs on a multitude of different aircraft. Their ages ranged from 35 to 73 years
(µ = 51.3 years,σ = 15.5 years).

8.3.7 Experimental Procedure

The participants performed the entire experiment on one day. Before starting the exper-
iment, they received an extensive briefing on the scope and objective of the experiment.
They were informed that they would be subjected to the different motion cueing settings
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Motion Filter Settings From Literature
Symbol Reference Condition Symbol Reference Condition

K-1 Bray [1996] F2-1 Jex et al. [1978] W2
K-2 Jex et al. [1978] A F2-2 Sinacori [1977] A
K-3 Schroeder [1999] Roll gain 0.2 F2-3 Sinacori [1977] B
K-4 Schroeder [1999] Roll gain 0.4 F2-4 Sinacori [1977] C
K-5 Schroeder [1999] Roll gain 0.6 F2-5 Sinacori [1977] D
K-6 Schroeder [1999] Roll gain 1.0 F2-6 Schroeder et al. [1996]
K-7 Chapters 6 & 7 (0,0) F2-7 Chung et al. [1998] High fidelity
F1-1 Jex et al. [1978] W1 F2-8 Chung et al. [1998] Medium fidelity
F1-2 Jex et al. [1978] W1,A F2-9 Chung et al. [1998] Low fidelity
F1-3 Jex et al. [1979] F2-10 Mikula et al. [1999] A1
F1-4 Stapleford et al. [1969] Roll pole at 0.5 rad/s F2-11 Mikula et al. [1999] A2
F1-5 Stapleford et al. [1969] Roll pole at 1.0 rad/s F2-12 Mikula et al. [1999] A3
F1-6 Stapleford et al. [1969] Roll pole at 2.0 rad/s F2-13 Mikula et al. [1999] A4
F1-7 Schroeder et al. [1998] Small motion F2-14 Chung [2008] Medium fidelity
F1-8 Gouverneur et al. [2003] F2-15 Chung [2008] Typical
F1-9 Reid and Nahon [1986a] CW1 F2-16 Van Gool [1978] R(0.1)
F1-10 Reid and Nahon [1986a] CW2 F2-17 Van Gool [1978] R(0.25)
F1-11 Pool et al. [2009b] F2-18 Van Gool [1978] R(0.5)
F1-12 Chapter 7 (0.5,1) F2-19 Schroeder et al. [1998] Large motion
F1-13 Chapter 7 (1,1) F2-20 Reid and Nahon [1986a] CW3
F1-14 Chapters 6 & 7 (0.5,0.5) F2-21 Beukers et al. [2010] high gain
F1-15 Chapters 6 & 7 (1,0.5) F2-22 Beukers et al. [2010] low gain
F1-16 Chapter 6 (1,0)

Figure 8.4. The roll motion cueing settings considered in the current experiment and different
settings evaluated in literature compared to the rotational simulator motion fidelity criterion
proposed by Sinacori [1977] with modified fidelity regions as suggested by Schroeder [1999].
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listed in Table 8.3. The main instruction they received before the experiment was that it was
their task to minimize the roll tracking error, that is, to minimize the excursion of the target
line on the compensatory display shown in Fig. 8.3.

In addition, the pilots were asked to provide a subjective motion fidelity rating for each
run using the same verbal analog scale (VAS) also used for theexperiments described in
Chapters 6 and 7. Furthermore, they were also encouraged (but not required) to provide
further verbal feedback of their opinions on the different motion conditions throughout the
experiment. These subjective comments were recorded by theexperimenter and can be
found in Appendix H, for reference.

Immediately after the pilots received their instructions the experiment started. Each
tracking run lasted 90 s, of which the final 81.92 s were used asthe measurement data. The
first 8.08 s of each run were not considered for data analysis.During this run-in time the
forcing function signals were faded in (first three seconds,see Section 8.3.3), the simulator
was tilted back to a trim pitch attitude of 4.34 deg (see Section 8.3.4), and the pilots were
performing initial stabilization of the controlled element after the run start. The full 90 s
runs were logged at a frequency of 100 Hz.

After a 90 s tracking run ended, the simulator was rotated back to 0 deg pitch and roll
attitude. The pilots were then asked to give a subjective motion fidelity rating for the run
they had just completed on the supplied rating form. After they had filled out the rating
form and provided further feedback of their opinion on the motion cueing setting they had
just been subjected to, pilots were informed of their performance for the last run, expressed
in terms of the root mean square of the tracking error signale.

The pilots performed the tracking task for the different roll motion cueing settings listed
in Table 8.3 in randomized blocks of all ten of the experimental conditions. Typically, two
blocks of all ten experimental conditions were completed inbetween breaks. These breaks
were typically short (max. 20 minutes), but a longer lunch break was taken halfway the
experiment.

No planned division between training and measurement runs was made before the exper-
iment. Pilots’ performance for the tracking task was monitored by the experimenter during
the entire experiment. When a participant had familiarized himself with the tracking task
and had attained a consistent level of tracking performance, five repetitions of each exper-
imental condition were collected, after which the experiment was terminated. On average,
a total of eight to nine repetitions of each experimental condition, corresponding to 80-90
tracking runs, were performed by each participant.

8.3.8 Dependent Measures

A number of different dependent measures are considered forevaluating the level of roll
motion fidelity as evaluated with the current experiment. First of all, the subjective motion
fidelity ratings collected using the VAS rating scale are analyzed as a reference metric for
pilots’ subjective impression of simulator motion fidelity. As explained in more detail in
Chapter 6, on this rating scale the pilots were to indicate how well they believed the supplied
motion cues to correspond to what they would expect in the aircraft (0-100%, along a 10
cm scale).
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The main focus of the current chapter, however, is on a numberof dependent measures
that are commonly considered to evaluate changes in pilot tracking behavior. First of all, the
time-domain variances of the error signale and the pilot control signalu are considered as
measures of the attained levels of tracking performance andcontrol activity, respectively. In
addition, the use of two independent multisine forcing function signals allows for separat-
ing the contributions of the target, disturbance, and remnant signals to these signal variances
[Jex et al., 1978]. These variance contributions are used toseparate possibly different effects
of the applied variation in motion cueing on disturbance-rejection and target-following per-
formance. To the same end, measured values of the disturbance and target open-loop system
crossover frequencies and phase margins are also considered as dependent measures.

Finally, using the recorded time traces ofe, φmf , andu the parameters of the multimodal
pilot model introduced in Section 8.2.2 are estimated usingthe time-domain identification
procedure described by Zaal et al. [2009a]. The seven pilot model parameters are used to
quantify the true changes in pilot tracking behavior that underlie the observed variations
in tracking performance and open-loop system dynamics. Furthermore, using the estimated
model parameters, the relative contribution of the roll motion feedback provided to the pilots
on their control inputs is evaluated by considering the modeled output of the pilot visual and
motion responses, indicated withuv andum in Figures 8.1 and 8.2.

8.3.9 Hypotheses

The current experiment evaluates roll tracking behavior for a wide variation in the settings
of a first-order high-pass roll motion filter. For the behavioral evaluation of simulator mo-
tion fidelity performed in this chapter, a high level of motion fidelity is obtained if pilot
tracking behavior is not significantly adapted compared to what is observed for the one-
to-one cueing condition C3. For degraded roll motion fidelity, which could either result
from decreasedKmf or increasedωmf , it is expected that pilot tracking behavior will adapt
towards the single-loop behavior measured for condition C0. Based on the previous roll
tracking measurements taken in the experiment of Chapter 6,the main dependent measures
that will show this adaptation are the pilot control activity (σ2

u), the disturbance open-loop
crossover frequencyωc,d and phase marginϕm,d, the pilot model visual gainKv, and the
visual lead time constantTL.

For a motion filter withKmf = 1 andωmf = 0.5 rad/s (condition C8 of the current
experiment), the experiment of Chapter 6 showed no differences in pilot tracking behavior
compared to the condition with one-to-one roll motion cues.This is consistent with the
previous results of Stapleford et al. [1969], Jex et al. [1978], and Van Gool [1978], which all
indicated no effect of filter break frequency settings up to 0.5 rad/s on pilot tracking behavior
and performance. In addition, as can be verified from Fig. 8.4, this further complies with the
motion fidelity criterion proposed by Schroeder [1999], as condition C8 is clearly within the
high-fidelity region of this criterion. In the experiment ofChapter 6, significant adaptation
of tracking behavior was observed for a reduced filter gain of0.5, that is, condition C4 of the
current experiment, which is also only a medium-fidelity setting according to the criterion
of Schroeder [1999].

Based on these previous findings, it is expected that no significant adaptation to the
applied change in motion filter dynamics is observed for the conditions that remain closest to
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the one-to-one condition and fall well within the high-fidelity region proposed by Schroeder
[1999]. As can be verified from Fig. 8.4, this would at least beexpected for conditions
C2 and C8, while this may also still hold for C1 and C6, which are much closer to the
medium-fidelity boundary. Being the only experimental condition shown in Fig. 8.4 in the
low-fidelity region, the control signal variance and pilot behavioral parameters are expected
to be closest to the single-loop measurements of condition C0 for condition C5. For all
other conditions, significantly reduced pilot gains and increased visual lead time constants
are expected to signal reduced simulator fidelity.

When comparing the different experimental conditions against the criterion boundaries
proposed by Schroeder [1999] (see Fig. 8.4), it can be observed that for the different settings
evaluated in this experiment this motion fidelity criterionpredicts a slightly stronger effect
of increasingωmf than of decreasingKmf . Increasingωmf over the range considered in
this experiment is seen to bring the motion filter settings closer to the low-fidelity region than
is observed over the range of considered filter gains. It should be noted that this somewhat
contradicts the linear prediction equations derived from amodest amount of experimental
measurement data in Chapter 5, Equations (8.5) to (8.15). The predictor in these equations,
KS , reduces more rapidly over the range of considered motion filter gains (KS = 0.5 for
condition C1 withKmf = 0.5 andωmf = 0 rad/s) than over the considered values for the
filter break frequency (KS = 0.71 for condition C9 withKmf = 1 andωmf = 1 rad/s).
Furthermore, Schroeder et al. [2000] report – based on experiments performed by Bray
[1985] and Schroeder [1999] – that the motion filter break frequency typically affects target
tracking, while reductions in motion filter gain are stated to mainly affect tasks in which an
external disturbance is to be regulated. For these reasons,the effects of variations inKmf

andωmf as measured in this experiment, which considers a combined target-following and
disturbance-rejection task, are expected to be about equally large and significant.

8.4 Results

This section presents the results of the experiment that wasperformed in the SRS to evaluate
pilot tracking behavior for the ten different roll motion cueing conditions listed in Table 8.3.
The measurement data are presented as the means over the datacollected for the six par-
ticipants, with error bars indicating the 95% confidence intervals of the means. The data
have been corrected for between-subject variability before calculating the 95% percent con-
fidence intervals. A two-way repeated-measures analysis ofvariance (ANOVA) was used
To evaluate the effects of the tested variation inKmf andωmf on the considered dependent
measures. Note that for this statistical analysis all data except for the single-loop mea-
surements (condition C0, (0,0)) were considered, yieldinga set of nine conditions with a
factorial evaluation of effects of gain and break frequencyvariations. Before analyzing data
with an ANOVA, data were checked for normality using a Kolmogorov-Smirnov test. In
addition, Mauchly’s test of sphericity was performed to check if the assumption of spheric-
ity was met. If for a certain dependent measure the sphericity assumption was not met, the
conservative Greenhouse-Geisser sphericity correction was applied for the interpretation of
the ANOVA results.
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8.4.1 Subjective Motion Fidelity Ratings

Fig. 8.5 shows the subjective motion fidelity ratings collected using the VAS rating scale
for the ten conditions of the experiment. In Fig. 8.5 the black square markers with variance
bars indicate the mean and 95% confidence interval of the collected ratings over all subjects.
The individual subject data for the motion fidelity ratings is also shown in Fig. 8.5, using
gray markers with different symbols for the different participants. As indicated by the titles
in the figure, the data for the different settings forωmf are separated by the vertical black
lines.
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Figure 8.5. Mean measured subjective motion fidelity ratings.

Fig. 8.5 shows that the participants all gave the single-loop condition (0,0) the lowest
motion fidelity ratings. Furthermore, for all three consideredωmf settings the average mo-
tion fidelity ratings are seen to increase with around 10% with increasingKmf (from left
to right). Between the different washout levels the difference in the mean fidelity ratings
is found to only be comparatively minor, where mainly the results for conditions (0.5,0.5)-
(1,0.5) (medium washout) are found to be slightly lower thanthose for the corresponding no
washout conditions. However, as is clear from Fig. 8.5, the spread in the subjective rating
data is significant.

One of the reasons for this large spread in the subjective rating data is that pilots 1 and
5 consistently gave the highest fidelity ratings to the conditions withKmf = 0.5, while,
as was expected, the other pilots rated the conditions with the highest filter gains the best.
As can be verified from the subjective pilot comments collected in Appendix H, pilots 1
and 5 claimed that the motion cues perceivable for conditions whereKmf = 0.75 or 1
were “exaggerated” compared to what they would expect in thereal aircraft. It should be
noted that these rating results obtained for both pilots arenot consistent with the ratings
they provided for the experiment described in Chapter 6.

As expected from the comparatively large spread in the subjective ratings, when con-
sidering the data for all conditions except (0,0) no statistically significant variation due to
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the different values ofKmf andωmf is found. This implies that, even though some effect
of the applied variation in the motion filter gain and break frequency seems to be visible in
Fig. 8.5, no conclusions regarding the level of simulator motion fidelity can be drawn from
this collected subjective rating data.

8.4.2 Tracking Performance and Control Activity

Fig. 8.6 shows the average measured error and control signalvariance for the different
experimental conditions. The presentation in Fig. 8.6 is different from that used for Fig. 8.5
to more clearly indicate the effects of the variation in motion filter gain and break frequency.
The data are plotted as a function ofKmf and the data for the different values ofωmf are
shown with differently colored markers. Black, gray, and white markers correspond to data
for ωmf = 0, 0.5, and1 rad/s, respectively. Table 8.4 lists the corresponding ANOVA
results. Note again that these ANOVA results are based on thenine conditions with roll
motion feedback, that is, those withKmf equal to0.5 or higher.
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Figure 8.6. Mean error and control signal variances.

Table 8.4. Two-way repeated-measures ANOVA results for the tracking error and control signal
variances.

Dependent Factors

measures Kmf ωmf Kmf × ωmf

df F Sig. df F Sig. df F Sig.

σ2
e 2,10 0.41 − 2,10 4.40 ∗∗ 4,20 2.67 −

σ2
u 2,10 10.03 ∗∗ 2,10 1.00 − 4,20 0.37 −

∗∗ = significant (p < 0.05) gg = Greenhouse-Geisser sphericity correction
− = not significant (p ≥ 0.05)
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Fig. 8.6(a) shows that for the no-washout conditions (ωmf = 0 rad/s) the pilots were
able to more accurately perform the tracking task (lowerσ2

e ) with increasingKmf . For
bothKmf = 0.75 and1 the tracking error variance is on average found to be 15% lower
than measured for the single-loop condition C0 (Kmf = 0). ForKmf = 0.5, the decrease
in σ2

e compared to the single-loop measurements is found to be approximately half of the
decrease observed for the highest motion filter gains.

For the conditions with washout, indicated with the gray andwhite filled markers in
Fig. 8.6(a), this decrease inσ2

e with increasingKmf is not visible. Forωmf = 0.5 rad/s
tracking performance is found to be approximately equal formotion filter gains of0.5 and
1, while for ωmf = 1 rad/s tracking performance is seen to degrade forKmf = 1 almost
to the same level as measured for single-loop tracking. Overall, for the highest two motion
filter gain settings tracking performance is found to be consistently worse forωmf = 0.5
and1 rad/s than for the no-washout conditions. This effect ofωmf on σ2

e is found to be
statistically significant, as can be verified from Table 8.4.No overall significant effect of
Kmf on the tracking error variance is observed, which is a resultof the inconsistent effect
of the applied motion filter gain variations over the different settings ofωmf .

For the control signal variance Fig. 8.6(b) shows an almost linear increase inσ2
u with

increasingKmf for ωmf = 0 rad/s. This increase in control signal variance with increasing
motion amplitude is highly consistent with previous experimental results, for instance those
reported in [Zaal et al., 2009b, 2011] and Chapters 4, 5, and 6. This increasedσ2

u indicates
pilots respond with larger control inputs in the presence oflarger amplitude physical motion
stimulation. Fig. 8.6(b) shows that this trend is found to persist for the conditions with roll
washout, even though a slight reduction inσ2

u compared to the no-washout measurements is
observed forωmf = 0.5 and1 rad/s, which is especially visible forKmf = 1. The observed
increase in control activity with increasing motion filter gain is found to be statistically
significant, as can be verified from Table 8.4.

Figures 8.7(a), (c), and (e) depict the disturbance, target, and remnant components of
the total tracking error variance depicted in Fig. 8.6(a). Figures 8.7(b), (d), and (f) show
the same three components of the control signal varianceσ2

u. These different components
have been determined through separation in the frequency domain [Jex et al., 1978]. The
corresponding statistical analysis results are listed in Table 8.5.

Fig. 8.7(a) indicates a clear decrease in the disturbance component ofσ2
e with increasing

Kmf , especially forωmf = 0 andωmf = 0.5 rad/s. Furthermore, a smaller effect ofωmf

on σ2
e,d is also observed, showing higher error variances due to the disturbance signal for

increased filter break frequencies. Again, as also concluded from the total error variance
results presented in Fig. 8.6, this effect ofωmf is especially visible forKmf = 1. The
ANOVA results presented in Table 8.5 indicate that both these effects ofKmf andωmf on
σ2
e,d are statistically significant.

The target error variance component, for which the data are depicted in Fig. 8.7(c), is
found to remain comparatively constant with the applied variation in motion filter settings
at around 0.15 deg2. The data forKmf = 0.75 and1 show slightly elevated values of
σ2
e,t, indicating slightly worse target tracking performance, for the conditions with washout.

However, as can be verified from Table 8.5 this is not a statistically significant effect. The
remnant component data depicted in Fig. 8.7(e) show a variation over the different exper-
imental conditions that matches the trends observed forσ2

e,t, only with higher spread. As
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Figure 8.7. Disturbance, target, and remnant components of the error and control signal vari-
ances.
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Table 8.5. Two-way repeated-measures ANOVA results for tracking error and control signal
variance components.

Dependent Factors

measures Kmf ωmf Kmf × ωmf

df F Sig. df F Sig. df F Sig.

σ2
e,d

2,10 28.43 ∗∗ 2,10 14.78 ∗∗ 4,20 1.49 −

σ2
e,t 2,10 1.95 − 2,10 1.44 − 4,20 1.78 −

σ2
e,n 1.1,5.3gg 3.06 − 2,10 0.01 − 4,20 2.64 −

σ2
u,d

2,10 4.38 ∗∗ 2,10 3.76 − 4,20 2.26 −

σ2
u,t 2,10 4.82 ∗∗ 2,10 1.35 − 4,20 0.67 −

σ2
u,n 2,10 10.80 ∗∗ 2,10 1.02 − 4,20 0.11 −

∗∗ = significant (p < 0.05) gg = Greenhouse-Geisser sphericity correction
− = not significant (p ≥ 0.05)

can be verified from Table 8.5, no significant effects of the variation in motion filter gain
and break frequency were observed forσ2

e,n.
Table 8.5 shows that all three components of the control signal variance are significantly

affected by the tested variation in the motion filter gainKmf . Both the disturbance and
remnant components –σ2

u,d andσ2
u,n, respectively, which are presented in Figures 8.7(b)

and (f) – are seen to show an increasing trend withKmf , as was also observed for the
total control signal variance in Fig. 8.6. Forσ2

u,t the slightly lower values observed for
Kmf = 0.75 compared to the other motion filter gains settings cause the significant effect
listed in Table 8.5. Despite the fact that some effects of theapplied variation in filter break
frequency are observed – for instance, bothσ2

u,d andσ2
u,n are found to be slightly lower for

all values ofKmf than the variance components measured for the no-washout conditions
– no statistically significant effects ofωmf are observed for the control signal variance
component data.

8.4.3 Crossover Frequencies and Phase Margins

Fig. 8.8 shows the average measured crossover frequencies and phase margins of the dis-
turbance and target open-loop dynamics, as given by Equations (8.2) and (8.3). The corre-
sponding ANOVA results forωc,d, ωc,t, ϕm,d, andϕm,t are presented in Table 8.6.

For the conditions without washout (ωmf = 0 rad/s), the disturbance crossover fre-
quency is found to show an almost linear increase with increasing motion filter gainKmf ,
as can be verified from Fig. 8.8(a). Note that this increase inωc,d is considerable, with more
than 1 rad/s separating the disturbance crossover frequencies measured for the no-motion
and one-to-one roll motion conditions. For all settings ofKmf , increasing the filter break
frequency is seen to result in a relative reduction inωc,d. Furthermore, this relative decrease
in crossover frequency with increasingωmf is found to become larger with increasingKmf .
This is especially visible for theωmf = 1 rad/s data, which are found to remain approxi-
mately constant at around 2.1 rad/s for all considered values of the motion filter gain. As
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Figure 8.8. Mean disturbance and target open-loop crossover frequencies and phase margins.

Table 8.6. Two-way repeated-measures ANOVA results for crossover data.

Dependent Factors

measures Kmf ωmf Kmf × ωmf

df F Sig. df F Sig. df F Sig.

ωc,d 2,10 11.47 ∗∗ 1.6,5.39gg 18.09 ∗∗ 4,20 3.56 ∗∗

ωc,t 2,10 15.06 ∗∗ 2,10 4.68 ∗∗ 4,20 1.41 −

ϕm,d 2,10 4.74 ∗∗ 2,10 24.44 ∗∗ 4,20 5.61 ∗∗

ϕm,t 2,10 1.92 − 2,10 39.74 ∗∗ 4,20 0.20 −

∗∗ = significant (p < 0.05) gg = Greenhouse-Geisser sphericity correction
− = not significant (p ≥ 0.05)
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can be verified from Table 8.6, these effects ofKmf andωmf on the measured disturbance
crossover frequencies are all statistically significant. The same holds for the degrading ef-
fect ofKmf on ωc,d with increasing filter break frequency, judging from the statistically
significant effect of the interaction between both motion filter parameters,Kmf × ωmf .

The same variation with both motion filter parameters observed forωc,d is also found for
the corresponding disturbance phase margin, see Fig. 8.8(c). Forωmf = 0 rad/s, a decrease
in ϕm,d of around 10 deg is observed betweenKmf = 0 andKmf = 1. Compared to
the no-washout data, the presence of washout is found to result in an increase inϕm,d. For
Kmf = 0.5 andKmf = 0.75 this increase inϕm,d is found to be approximately equal for
both settings ofωmf , but forKmf = 1 the disturbance phase margin is found to increase
with increasingωmf . On average,ϕm,d for the condition withKmf = 1 andωmf = 1 rad/s
(C9) is found to be even higher than the mean value measured for the single-loop condition
with Kmf = 0. The ANOVA results forϕm,d listed in Table 8.6 show that the effects of
Kmf , ωmf , and their interaction are all statistically significant. Note that the significant
effects of both the motion filter gain and break frequency onωc,d andϕm,d are consistent
with the significant effects of both motion filter parameterson the disturbance tracking error
componentσ2

e,d observed from Fig. 8.7.
Fig. 8.8(b) shows that a slight decrease in the target open-loop crossover frequency is

observed with increasing motion filter gain, a trend that is found to be statistically signif-
icant (see Table 8.6). Furthermore,ωc,t is also found to be significantly affected by the
applied variation in filter break frequency, where mainly for Kmf = 0.5 comparatively
higher target crossover frequencies are found whenωmf > 0 rad/s than for the condition
without washout. Note, however, that compared to the effectof Kmf this effect ofωmf is
comparatively minor.

The measured target open-loop phase margins presented in Fig. 8.8(d) only show a small
(and not statistically significant, see Table 8.6) effect ofKmf , as for all motion filter break
frequency settingsϕm,t is found to be slightly lower forKmf = 1 than for all other fil-
ter gain settings. A highly significant effect of varyingωmf is, however, observed from
Fig. 8.8(d). With increasing motion filter break frequency settings, the target phase margin
is found to consistently decrease compared to the conditions without washout (ωmf = 0
rad/s), independent of the filter gain setting. As can be verified from Table 8.6, this effect
of ωmf onϕm,t is highly statistically significant. Note from comparison with the tracking
error data shown in Fig. 8.7 that the significant effects ofKmf andωmf on the crossover
frequency and phase margin of the target open-loop responsedo not result in a change in
the level of target tracking performance.

8.4.4 Pilot Control Behavior

In this chapter, the multimodal pilot model shown in Fig. 8.2is used to analyze changes
in pilot tracking behavior due to the applied variation in roll motion filter gains and break
frequencies. From this pilot model analysis, two sets of results are presented here. First,
the estimated pilot model parameters are used to explictly show changes in pilot tracking
behavior over the different experimental conditions. Furthermore, the estimated pilot pa-
rameters are used to evaluate and compare the relative contribution of the supplied visual
and physical motion cues for all considered motion filter settings.
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8.4.4.1 Pilot Model Parameter Estimates

Figures 8.9 and 8.10 show the values of all seven model parameters and the pilot visual
lead gainKvTL that were estimated from time-domain measurements of pilottracking be-
havior for all experimental conditions. The correspondingANOVA results are presented in
Table 8.7.

Fig. 8.9(a) and (b) show the increase in pilot visual gain anddecrease in visual lead
time constant with increasing motion filter gain that are consistently reported in a number
of different tracking experiments, see Chapter 5. Furthermore, the presented data show that
increasingωmf attenuates both these effects, as for the conditions withωmf = 0.5 and
1, consistently lower values ofKv and higher values ofTL are measured. Overall, these
results indicate that pilots performed reduced visual leadequalization for conditions with
higher motion filter gains and lower filter break frequencies. Both these observations are
highly consistent with the hypothesis that with decreasingmotion fidelity measured tracking
behavior was expected to increasingly approximate behavior representative for single-loop
tracking (no motion). As can be verified from Table 8.7, the effect ofKmf on both these
parameters is highly significant, while the effect of the motion filter break frequency is only
found to be statistically significant forTL (for Kv the ANOVA indicatesF (2, 10) = 3.10,
p = 0.09).

Fig. 8.9(c) shows the estimated values of the pilot visual lead gainKvTL. Due to the fact
that the high-frequency response ofHpv

(s) is dominated by the lead term, this parameter
indicates the gain of the pilot visual response at frequencies well aboveTL. As can be
verified from Fig. 8.9(c), on average a slight decrease with increasingKmf and increase
with increasingωmf are observed for the visual lead gain. Both these observations suggest
pilots put more weight on their response to visual lead information under conditions of
degraded motion fidelity. The ANOVA results, however, show that both effects are not
found to be statistically significant. The same holds for theidentified values of the pilot
motion gainKm shown in Fig. 8.9(d). These do not show consistent variationover the
different settings of the motion filter gain and break frequency and considerable spread.

As can be verified from the prediction equations for both pilot time delays derived in
Chapter 5 (Equations (8.12) and (8.13)),τv is typically found to increase with increas-
ing motion fidelity, whileτm is found to be relatively independent of variations in motion
fidelity. Fig. 8.9(e) shows that for this experiment the estimated pilot visual delays are
found to increase with increasingKmf , with around 20 ms separating the values ofτv for
Kmf = 0 and1. This effect ofKmf is found to be independent of the applied variation in
ωmf and is, as can be verified from Table 8.7, statistically significant. As can be verified
from Fig. 8.9(e) and Table 8.7, the pilot visual delay is found to be unaffected by the applied
variation inωmf . For τm, Fig. 8.9(f) shows no clear variation withKmf . ForKmf = 0.5
and0.75, the presented data show a slight increase inτm with increasing filter break fre-
quency. Note, however, that this effect is comparatively small, especially with respect to the
spread in the data, and that for the unity-gain filter conditions the opposite trend is observed.
Overall, the pilot motion delay was found to show no statistically significant effect of both
the applied variation inKmf andωmf .

Fig. 8.10 shows the estimated values of the two parameters ofthe neuromuscular actu-
ation modelHnm(s). As can be verified from Table 8.7, also no significant effectsof the
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Table 8.7. Two-way repeated-measures ANOVA results for the estimated multimodal pilot model
parameters.

Dependent Factors

measures Kmf ωmf Kmf × ωmf

df F Sig. df F Sig. df F Sig.

Kv 2,10 10.87 ∗∗ 2,10 3.10 − 4,20 1.25 −

TL 2,10 6.74 ∗∗ 2,10 4.53 ∗∗ 4,20 0.59 −

KvTL 1.0,5.1gg 1.03 − 1.1,5.6gg 1.56 − 4,20 0.10 −

Km 1.1,5.6gg 0.21 − 2,10 0.48 − 4,20 0.50 −

τv 2,10 4.58 ∗∗ 2,10 0.27 − 4,20 0.24 −

τm 1.1,5.4gg 0.96 − 2,10 0.75 − 4,20 0.79 −

ωnm 2,10 3.16 − 1.0,5.2gg 2.45 − 4,20 0.63 −

ζnm 2,10 3.38 − 2,10 2.08 − 4,20 1.12 −

∗∗ = significant (p < 0.05) gg = Greenhouse-Geisser sphericity correction
− = not significant (p ≥ 0.05)
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considered variation in motion filter gain and break frequency are found forωnm andζnm.
Fig. 8.10(a) does show increased values ofωnm for Kmf = 1, which is consistent with the
findings from Chapter 4, where higher neuromuscular actuation natural frequencies were
reported for increased motion amplitudes. As can be verifiedfrom Fig. 8.10(a), here the
increase inωnm is found to be attenuated with increasing filter break frequency (and hence
decreasing roll motion amplitudes). However, this effect of ωmf is not observed for the
other settings ofKmf .

8.4.4.2 Pilot Model Quality of Fit

To assess the quality of the fits of the multimodal pilot modelto the measured data, the
variance accounted for (VAF) was calculated for all pilot model fits with respect to the av-
eraged time-domain measurements of the control signalu, as also done in [Nieuwenhuizen
et al., 2008; Zaal et al., 2009a] and Chapters 2, 4, and 6. The VAF is a measure of how well
the output of a model describes the corresponding measured signal, in this case the pilot
control signalu, in the time domain. Fig. 8.11 shows the average VAF values obtained for
all conditions of the experiment. Table 8.8 presents the corresponding results of a two-way
repeated measures ANOVA performed on the VAF data.

Fig. 8.11 shows that for all experimental conditions the pilot model VAF was found
to be between 70 and 80% on average, a result that is highly consistent with previously
reported results (see, for instance, [Zaal et al., 2009a] and Chapters 4 and 6). Still, as can
be verified from Table 8.8, significant changes in the pilot model VAF are observed over the
different experimental conditions. First, a significant effect ofKmf on the VAF is found,
which results from the lower model VAFs obtained for the highest two motion filter gain
settings. Second, the significant interaction (Kmf × ωmf ) listed in Table 8.8 is explained
by the fact that forKmf = 0.5 the VAF is found to increase with increasingωmf , while for
Kmf = 1 the opposite trend is observed and forKmf = 0.75 no effect of the filter break
frequency is observed. Notwithstanding the statistical significance of both these results, the
differences in pilot model VAF over the different experimental conditions do not suggest a
marked reduction in the quality of fit for any of the experimental conditions.

8.4.4.3 Pilot Model Control Signal Variance Contributions

The estimated values of the pilot model parameters presented in Figures 8.9 and 8.10 are
used in this chapter to explicitly evaluate changes in pilottracking behavior. As not only
the pilot dynamics, but also the supplied visual and motion feedback signals vary over the
different experimental conditions, these pilot model parameters do not directly allow for
quantitative evaluation of the relative contributions of visual and motion information on the
control inputs given by the pilots. For this reason, the obtained pilot model parameters sets
were used together with the corresponding recorded time traces ofes and φ̈s to calculate
the contributions of the pilot model visual and motion channels to the total model output.
These visual and motion contributions are indicated withuv andum in Fig. 8.2. The means
and 95% confidence intervals of the time-domain variances ofthese two signals (σ2

uv
and

σ2
um

, respectively), as well as their fractionσ2
um
/σ2

uv
are presented in Fig. 8.12. The corre-

sponding ANOVA results for these three metrics shown in Fig.8.12 are listed in Table 8.8.
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Figure 8.11. Mean pilot model variance accounted for.

Table 8.8. Two-way repeated-measures ANOVA results for pilot model VAF and control signal
variances.

Dependent Factors

measures Kmf ωmf Kmf × ωmf

df F Sig. df F Sig. df F Sig.

VAF 2,10 5.11 ∗∗ 2,10 0.13 − 4,20 3.04 ∗∗

σ2
ue

2,10 3.00 − 1.1,5.4gg 0.34 − 4,20 0.77 −

σ2
um

1.1,5.4gg 23.01 ∗∗ 2,10 4.52 ∗∗ 4,20 2.76 −

σ2
um

/σ2
ue

2,10 20.54 ∗∗ 2,10 6.03 ∗∗ 4,20 1.70 −

∗∗ = significant (p < 0.05) gg = Greenhouse-Geisser sphericity correction
− = not significant (p ≥ 0.05)
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Figure 8.12. Mean pilot model visual and motion channel control signal variance contributions
and their fraction.
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Fig. 8.12(a) shows that compared to the no-motion condition(Kmf = 0), all experimen-
tal conditions with motion feedback show higher average visual control variance contribu-
tions. This is consistent with the increased control activity and pilot visual gain observed
when motion feedback is available. As can also be verified from Table 8.8,σ2

uv
is not found

to differ significantly over the different roll motion filtersettings.
The motion control variance data shown in Fig. 8.12(b), however, show a clear increas-

ing trend with increasing motion filter gain. Note that this increase in the contribution of
um is not achieved through increased values for the pilot motion gainKm (see Fig. 8.9), but
results from the increased roll motion amplitudes for conditions with higher values ofKmf .
Furthermore, Fig. 8.12(b) also shows that compared to the no-washout conditions (ωmf = 0
rad/s), the conditions with roll washout show reduced values ofσ2

um
. Table 8.8 shows that

both these effects are statistically significant. Due to thefact that the visual control vari-
ance is found to remain approximately constant, the controlvariance fraction data shown
in Fig. 8.12(c) shows the same trend observed forσ2

um
and the same statistically significant

effects ofKmf andωmf . Fig. 8.12(c) thereby indicates that the relative contribution of the
pilot motion responseHpm

(s) decreases both with decreasingKmf and increasingωmf .
Note, however, that the effect of motion filter gain variations is found to be considerably
stronger than that of the different tested values forωmf .

8.4.5 Comparisons with Offline Prediction Data

In Section 8.2.4, two different methods for predicting changes in some of the considered
behavioral metrics were introduced. The first was meant to allow for separating the effects
of variations in washout and pilot dynamics on the resultingopen-loop system crossover
frequencies and phase margins, by assuming no behavioral adaptation compared to one-to-
one motion and assessing changes in open-loop dynamics solely resulting from variations in
Hmf (s). The second allowed for prediction of the different considered behavioral metrics
based on the motion filter gain at 1 rad/s (KS) for each experimental condition. This section
presents the results of both these prediction tools, makinguse of previous measurements
of roll tracking behavior from the experiment described in Chapter 6, and compares their
results with the obtained experimental measurements.

Fig. 8.13 shows this comparison between experimental measurements and prediction
results for the crossover frequencies and phase margins of the disturbance and target loops.
The experimental data is depicted with black square markersand variance bars indicating
the mean and 95% confidence interval of the data. The offline prediction results for the
no-adaptation analysis and the linear predictions defined by Equations (8.5) to (8.8) are
indicated a dashed black line and a solid gray line, respectively. It should be noted that both
predictions were made based on data from the experiment of Chapter 6 for the condition
with one-to-one roll motion cueing (1,0), hence the equal values of both predictions for this
condition.

Fig. 8.13(a) shows that for the disturbance crossover frequencyωc,d, the results of both
offline analyses correspond reasonably well. Both analysespredict a reduction inωc,d with
reducingKmf and a further drop in disturbance crossover frequency with increasing filter
break frequency. As can be observed from Fig. 8.13(a), however, the collected experimental
measurements show a much stronger effect of the variation inKmf for the no-washout
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Figure 8.13. Comparison of measured disturbance and target open-loop crossover frequencies
and phase margins with offline prediction results.
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conditions and a much stronger effect of the applied variation inωmf onωc,d than predicted
by both analyses. The reducing effect ofKmf for the conditions with higher values of
ωmf is also not sufficiently predicted by Eq. (8.5). The observeddifferences between the
experimental measurements and the no-adaptation analysisresults shown in Fig. 8.13(a) do
suggest a change in pilot tracking behavior both due toKmf andωmf .

For the disturbance open-loop phase margin, Fig. 8.13(b) shows nearly perfectly op-
posite predictions from both offline analyses. Assuming no pilot adaptation,ϕm,d would
be expected to show a decreasing trend with both decreasingKmf and increasingωmf .
The linear prediction equation obtained from previous measurements (Eq. (8.7)), however,
shows a more modest increase inϕm,t with degrading simulator motion fidelity. Over-
looking the offset between experimental measurements and prediction results, Fig. 8.13(b)
shows that for the no-washout conditions the linear prediction provided by Eq. (8.7) de-
scribes the trend in the experimental measurements best, asan average increase inϕm,d

of around 10 deg is observed between conditions (1,0) and (0,0). For the conditions with
washout, the effect ofKmf on the disturbance phase margin is, however, found to be bet-
ter captured by the no-adaptation analysis results. These results suggest that the prediction
equation forϕm,d (Eq. (8.7)) should be extended to incorporate a stronger effect ofωmf .

As shown in Fig. 8.13(c), the no-adaptation analysis predicts a marked increase in target
open-loop crossover frequency with decreasingKmf , but no effect ofωmf onωc,t. On the
other hand, no change in target crossover frequency is predicted based on the findings of
Chapter 5. The experimental measurements confirm the invariance withωmf and the effect
of decreasingKmf predicted by the no-adaptation analysis. However, the increase inωc,t is
found to be smaller than would result from only changing the motion filter dynamics, hence
suggesting adaptation of pilot dynamics to changes in the motion filter gain.

For the target open-loop phase margin, the linear prediction equation suggests thatϕm,t

remains constant over the different experimental conditions. If the pilots would not adapt
their control strategy compared to the (1,0) condition, however, Fig. 8.13(d) shows that the
target phase margin would decrease markedly with decreasing Kmf and increasingωmf .
As can be verified from Fig. 8.13(d), no effect of motion filtergain variations is observed
for ϕm,t, as for all settings ofKmf the target phase margin is found to be approximately
equal for all values ofωmf . The experimental measurement data shows thatϕm,t is found
to decrease with increasing filter break frequency, however, which is not consistent with
the invariance withKS suggested by the prediction equation derived forϕm,t in Chapter 5
(Eq. (8.8)).

Fig. 8.14 shows the comparison of the measured data and the prediction results for the
four pilot model parameters for which linear prediction equations were defined in Chapter 5:
the pilot visual gainKv, the visual lead time-constantTL, the pilot visual delayτv, and
the neuromuscular actuation natural frequencyωnm. Note from the dashed black lines
presented in Fig. 8.14 that, by definition, the no-adaptation analysis assumes no change in
pilot model parameters over the different experimental conditions. Comparison of the no-
adaptation analysis data with the current experimental measurements for the (1,0) condition
indicates that the values ofKv andTL are highly consistent with the measurements of the
experiment described in Chapter 6. The pilot visual delay and the neuromuscular actuation
natural frequency are, however, found to be slightly lower and higher, respectively, than the
reference measurements from Chapter 6 on which both predictions are based.
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Figure 8.14. Comparison of the estimates for selected multimodal pilot model parameters with
offline prediction results.
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The linear predictions of the change in the pilot model parameters shown in Fig. 8.14,
as given by Equations (8.9), (8.10), (8.12), and (8.14) are seen to reflect the general trend in
the measured pilot model parameters well. This is especially true for the pilot visual gain
shown in Fig. 8.14(a), for which Eq. (8.9) is seen to provide adecent prediction. Despite
the fact that the magnitude of the predictions forτv andωnm is off due to the difference
in the current experimental measurements compared to thoseof Chapter 6, the predicted
increasing trend with increasingKmf and decreasingωmf is confirmed by the current ex-
perimental measurements. Finally, for the visual lead timeconstant, see Fig. 8.14(b), the
measured data from the current experiment suggests a markedly stronger effect of variations
in bothKmf andωmf on the pilot visual lead time constant than predicted by Eq. (8.10).
For the no-washout conditions, the increase inTL with decreasingKmf is seen to be around
twice as strong as suggested by the linear prediction. Overall, however, the linear predic-
tions based on the value ofKS for each experimental condition are found to provide an
acceptable prediction of the measured changes in pilot tracking behavior.

8.4.6 Comparisons with In-Flight Tracking Measurements

Both for the current experiment and for the roll tracking experiment described in Chap-
ter 6 the strongest effects of the applied variations in rollmotion cueing were found on
the crossover frequency and phase margin of the disturbanceopen-loop transfer function
and, from pilot model analysis, the pilot visual gain and lead time constant. A quantitative
comparison of these observed trends from both experiments,and a comparison with the cor-
responding in-flight tracking measurements taken in the experiment of Chapter 6, are shown
in Fig. 8.15. Figures 8.15(a) and (b) show the difference (“∆”) in Kv (vertical axis) andTL
(horizontal axis) with respect to the collected in-flight measurements for all roll motion fil-
ter conditions evaluated in both experiments. Each white circular marker indicates the mean
difference in the pilot visual gain and lead time constant compared to the in-flight measure-
ments for one evaluated condition, while each ellipse givesan indication of the spread in
the measurements. The horizontal axis of each ellipse indicates the 95% confidence interval
of theTL data, while the vertical axis is defined by the 95% confidence interval of the mea-
suredKv. In the same format, Figures 8.15(c) and (d) visualize the discrepancies inωc,d

andϕm,d with respect to the in-flight measurements from Chapter 6.
Fig. 8.15(a) shows the comparison with the in-flight tracking measurements for the two

pilot visual equalization parameters (Kv andTL) for the four simulator roll motion settings
evaluated in the experiment of Chapter 6. Compared to the in-flight measurements, a re-
duction inKv and an increase inTL are observed for the no-motion condition (0,0), while
for both simulator conditions with unity motion filter gains, (1,0) and (1,0.5), pilot visual
gains and lead time constants were found to be higher and lower than for the in-flight condi-
tion, respectively. Overall, Fig. 8.15(a) shows a trend towards the top left of the figure with
increasing simulator motion fidelity.

As can be verified from Fig. 8.15(b), a highly similar effect of roll motion fidelity on
Kv andTL is observed for the current experiment data. The results forthe conditions for
one-to-one roll motion (1,0) and no-motion (0,0) are found to be highly consistent with
those measured in the experiment of Chapter 6. The data for all conditions with attenuated
roll motion are found to be in between the measurements takenfor these two extremes
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Figure 8.15. Discrepancies with respect to in-flight tracking measurements for all conditions
of the experiment from Chapter 6 and the current experiment for the pilot visual gainKv, the
visual lead time constantTL and the disturbance crossover frequencyωc,d and phase margin
ϕm,d.
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in the evaluated roll motion filter settings. Confirming the dominant effect of the motion
filter gain, Fig. 8.15(b) shows that the combinations ofKv andTL for the roll motion filter
settings with high values ofKmf are typically the closest to the data for the (1,0) condition,
while those collected forKmf = 0.5 are all closest to the single-loop measurements.

Of further note is the difference in measured visual equalization parameters for the high-
fidelity (1,0.5) condition between the data from both experiments. In the experiment of
Chapter 6, pilot tracking behavior for this condition was found to be equivalent to that
measured with one-to-one roll motion. The current experiment data show a much larger
difference in tracking behavior between (1,0) and (1,0.5).Finally, note that due to the
considerable spread in the in-flight visual equalization measurements it is still difficult to
draw conclusions on which roll motion cueing settings yieldtracking behavior that differs
significantly from that measured in real flight. As can be verified from Fig. 8.15(b), the
means for all conditions except (0,0) are within the 95% confidence interval ellipse of the
in-flight data. The values ofKv andTL measured for conditions (1,0.5), (1,1), (0.75,0), and
(0.75,1) are, however, found to be closest to the average of the in-flight measurements.

Figures 8.15(c) and (d) show the same consistency with respect to the in-flight track-
ing measurements for the disturbance open-loop crossover frequency and phase margin as
observed forKv andTL. For both experiments, the data for the no-motion condition(0,0)
is found to be on the lower right, indicating reduced values of ωc,d and increased phase
margins compared to the in-flight measurements. Furthermore, both experiments also show
consistently higher crossover frequencies for one-to-oneroll motion cueing in the simulator
(1,0) and also a consistent increase inϕm,d of around 10 deg. Also the measurements of
ωc,d andϕm,d for all conditions with attenuated roll motion are again found to be between
those for the no-motion and one-to-one motion conditions. As can be verified from Figures
8.15(c) and (d), for both experiments a motion condition where roll motion is slightly at-
tenuated compared to the one-to-one, such as (0.75,0), is found to result in the best match
with the crossover frequencies measured in real flight. Note, however, that in terms of the
disturbance open-loop phase margin the (1,0) condition shows measured values closest to
the values obtained for the in-flight tracking measurements.

8.5 Discussion

This chapter described the results of an experiment that wasperformed to evaluate the ef-
fects of varying roll motion filter gain and break frequency settings on pilot roll tracking
behavior. The objective of this experiment was to identify and quantify the adaptation of pi-
lot tracking behavior, through the fitting of a multimodal pilot model to time traces recorded
during a tracking task, in response to combinations of motion filter gains and break frequen-
cies. For this evaluation, simulator roll motion that ranged from high to low motion fidelity
according to the motion fidelity criteria proposed by Sinacori [1977] and Schroeder [1999]
was considered. The collected behavioral measurements were intended to contribute to the
development of a motion filter parameter tuning strategy that can be applied to optimize
simulator motion fidelity from a behavioral standpoint.

Based on previous experimental results, such as those described in Chapters 5 and 6,
pilot tracking behavior was expected to adapt increasinglymore towards a control strategy
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resembling single-loop (no motion feedback) tracking behavior with decreasing roll motion
fidelity. For the considered roll tracking task, this changein pilot tracking behavior was
expected to be mainly visible in reduced pilot control activity, lower disturbance open-loop
crossover frequencies and increased phase margins, and decreased pilot visual gains and
increased visual lead equalization compared to measurements taken with one-to-one roll
motion. The behavioral measurements collected for the ten different roll motion filter set-
tings considered in this chapter confirm these suspected effects and all the corresponding
metrics were found to show a statistically significant effect of at least one of the varied mo-
tion filter parameters. The apparent consistency in the behavioral metrics that are affected
by washout filter variations, and their relative change due to these changes in motion filter
dynamics, in these different experiments provide some confidence in the development of a
framework for optimizing behavioral simulator motion fidelity.

With respect to the effects of variations in motion filter gain and break frequency on
pilot behavior, Schroeder et al. [2000] have reported that disturbance rejection is most
severely affected by reductions in the gain of the supplied motion cues, while increased
washout mainly affects behavior and performance in target-following tasks. For the com-
bined target-following and disturbance-rejection task considered in this chapter, both the
applied variations in motion filter gain and break frequencyare found to significantly affect
disturbance-rejection performance. Highly significant changes in the tracking errors at the
disturbance forcing function frequencies and the crossover frequency and phase margin of
the disturbance open-loop are observed with both variations in motion filter gain and break
frequency. Furthermore, despite the fact that no effect of the variation in either motion filter
parameter is observed on the tracking errors that are correlated with the target forcing func-
tion signal, pilot control activity at the target forcing function frequencies and the crossover
frequency of the target open-loop response are both found toincrease significantly with in-
creasing motion filter gain. The results of the current experiment therefore suggest that for
control tasks that combine target following and disturbance rejection, such a clear separa-
tion of the effects of gain attenuation and motion washout asproposed by Schroeder et al.
[2000] might not be present.

In the experiment described in Chapter 6, in which pilot tracking behavior was measured
for a limited number of four different roll motion cueing settings, behavioral measurements
indicated equivalent control behavior for the condition with one-to-one simulator roll mo-
tion and when the simulator roll motion was attenuated by a first-order filter with unity gain
and a break frequency of 0.5 rad/s. This finding is consistentwith earlier experiments that
evaluated pilot tracking behavior with varying roll motioncueing settings [Jex et al., 1978;
Van Gool, 1978], which also reported that pilot control behavior and tracking performance
were not significantly affected by the presence of washout filters with break frequencies up
to 0.5 rad/s. The current experiment, in which behavioral measurements during pilot roll
tracking were collected for comparatively large number of different roll motion cueing set-
tings, shows results that are not in agreement with these previous measurements. Even for
comparatively small changes in washout settings, such as between one-to-one motion and a
unity gain filter with a break frequency of 0.5 rad/s, a changein pilot tracking behavior is
observed. Therefore, the current experimental measurements suggest that pilot adaptation
to washout filter dynamics involves the continuous adaptation to even slight variations in
washout dynamics, as opposed to pilot behavior remaining constant over a certain range
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of washout settings, where reducing motion fidelity inducesa more discrete change in be-
havior after a certain threshold is crossed. If this is indeed the case, this would complicate
the formulation of an objective motion fidelity criterion based on measurements of track-
ing behavior such as those presented in this chapter, as thensubjective interpretation is still
required for defining when a behavioral adaptation can be considered significant. Evalu-
ation of an even wider variation in motion filter dynamics, for instance including higher
filter break frequencies than the maximum value of 1 rad/s considered in the current exper-
iment or higher order washout filters, is needed, however, toconfirm the full nature of this
behavioral adaptation process.

Comparison of the current experimental data with the in-flight and simulator measure-
ments of pilot roll tracking behavior from the experiment described in Chapter 6 showed
good correspondence between the results of both experiments. The flight simulator mea-
surements of pilot tracking behavior for conditions without simulator motion (single-loop)
and with one-to-one simulator roll motion were found to be equivalent for both experiments,
with closely matching measured values for the pilot visual gain, visual lead time constant,
and the disturbance open-loop crossover frequency and phase margin. For this reason, com-
parison of the current measurements with the in-flight roll tracking measurements from
Chapter 6 shows the same differences with pilot tracking behavior – that is, slightly higher
pilot visual gains and crossover frequencies – measured with one-to-one roll motion cue-
ing as reported for the comparison made in Chapter 6. Despitethe fact that the differences
between the different evaluated roll motion cueing settings are comparatively small and the
spread in the measurements relatively large, the best agreement with the in-flight tracking
measurements for important behavioral metrics such as the pilot visual gain and lead time
constant is observed for motion filter settings that only slightly attenuate the simulator roll
motion. For the current experimental measurements the adopted pilot visual equalization
dynamics were found to be closest to those measured in real flight for the condition with a
unity-gain roll motion filter with a 0.5 rad/s break frequency.

Finally, for comparison with the collected experimental measurements, this chapter eval-
uated two offline prediction tools. The first, which is based on the offline evaluation of
the direct effect of changes in washout dynamics on the disturbance and target open-loop
dynamics, was found to provide useful for interpreting measured changes in crossover fre-
quencies and phase margins. By separately evaluating the effects of washout filter parameter
variations on these metrics, thereby assuming no change in pilot tracking behavior compared
to a condition with one-to-one motion, the added effect of changes in pilot tracking behav-
ior on these crossover frequencies and phase margins could be properly identified. On the
other hand, the linear prediction equations derived from collected measurements of pilot
tracking behavior for different motion cueing settings in Chapter 5 were found to provide
an acceptable estimate of changes in pilot tracking behavior for the roll motion filter set-
tings evaluated in this chapter. When using measured data forroll tracking with one-to-one
motion feedback from the experiment of Chapter 6 for the prediction, a reasonably good
prediction of pilot behavioral parameters for all other experimental conditions evaluated in
the current experiment was obtained. In some instances, themeasured effects of motion
filter parameter variations were, however, found to be somewhat larger than those predicted
by these equations, most notably for the pilot visual gain and lead time constant. The current
experimental measurements especially suggest a stronger effect of motion filter break fre-
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quency variations on a number of considered dependent measures – such as the disturbance
open-loop crossover frequency, the target open-loop phasemargin, and the pilot visual lead
time constant – than suggested by these linear predictions.

8.6 Conclusions

This chapter described the results of an experiment in whichmultimodal pilot roll tracking
behavior was measured in a moving-base flight simulator for ten different settings of a
first-order roll motion filter. A factorial variation in motion filter gain and break frequency
settings was considered in order to evaluate the individualand combined effects of changes
in these parameters on pilot tracking behavior. In accordance with previous experimental
results, both a decrease in the motion filter gain and an increase in the motion filter break
frequency were found to result in adaptation of pilot tracking behavior compared to behavior
measured with one-to-one roll motion. This behavioral adaptation was mainly apparent
from a reduction in the gain with which pilots responded to visual error information and an
increase in visual lead equalization. For the ten considered roll motion filter settings, pilot
tracking behavior was found to be more strongly affected by the applied variation in motion
filter gains than by the considered range of filter break frequencies. A comparison of the
current simulator measurements with behavioral roll tracking measurements from a recent
in-flight experiment showed that drawing conclusions with respect to behavioral simulator
motion fidelity based on these results is still difficult, especially due to the comparatively
small behavioral variations, the relatively large spread in the data, and the low number of
collected samples. Nonetheless, measured pilot tracking behavior for conditions with only
slightly attenuated roll motion compared to one-to-one, most notably for the condition with
a unity-gain filter and a low filter break frequency of 0.5 rad/s, was found to on average
show the smallest behavioral discrepancies with the in-flight measurements.
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9
Conclusions and

Recommendations

In this final chapter, an overview of all experimental results and the conclusions drawn from
them in the preceding chapters of this thesis is provided. For example, an attempt is made
to draw generalized conclusions with respect to the evaluation of simulator motion fidelity
from a behavioral perspective. Furthermore, the main limitations and challenges of the
cybernetic approach that is adopted in this thesis are highlighted and discussed. Finally,
this chapter will provide some recommendations for further research into human manual
control behavior and simulator motion cueing.
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9.1 Conclusions

Many of the difficulties encountered in the formulation of adequate requirements for sim-
ulator motion cueing have been argued to result from the limited understanding of human
motion perception processes and how human multimodal manual control behavior is af-
fected by variations in the motion cues presented in moving-base flight simulators [Ray,
1996; Wu and Cardullo, 1997; Hosman, 1999]. For this reason,the goal of the research
described in this thesis was to evaluate flight simulator motion fidelity from abehavioral
perspective, by explicitly measuring how skill-based pilot manual control behavior changes
as a result of variations in simulator motion cueing settings and by comparing the observed
behavioral discrepancies to true in-flight measurements ofpilot control behavior.

The novelty of the approach taken in this thesis for evaluating simulator motion fidelity
lies in the adoptedcybernetic approach, in which the contributions of visual and physi-
cal motion information to the control responses of pilots during manual tracking tasks are
measured, separated, andquantified objectivelythrough fitted multimodal pilot models. Fur-
thermore, pilots’ use of physical motion feedback for control tasks performed inreal flight
was measured explicitly, to be used as a baseline for comparison with the control behavior
observed for the same control tasks in a flight simulator environment.

9.1.1 Modeling and Identification of Manual Control Behavio r

The mathematical models of pilot manual control behavior used for quantifying changes
in control behavior are a critical element in the adopted cybernetic approach. The multi-
modal pilot models utilized in this thesis are based on thePrecision Modelproposed by
McRuer et al. [1965] for modeling compensatory tracking behavior with only visual error
feedback. The inclusion of pilots’ responses to physical motion feedback is achieved with
an additional, parallel, pilot motion response model similar to those proposed by Stapleford
et al. [1969], Jex et al. [1981], Hess [1990b], Van der Vaart [1992], and Hosman [1996].
The resulting multimodal pilot model has indeed been found capable of accurately describ-
ing pilot manual control dynamics in a wide variety of tracking tasks with physical motion
feedback in earlier investigations [Jex et al., 1981; Van der Vaart, 1992; Hosman, 1996;
Zaal, 2011]. In this thesis, two additions to these known models of human manual con-
trol behavior, which were found to be required for the behavioral analysis of some of the
considered control tasks, are described.

First, as described inChapter 2, the available models of compensatory tracking be-
havior were found to lack the required freedom to capture thepilot equalization dynamics
adopted during tracking tasks where the controlled elementdynamics were the elevator-
to-pitch dynamics of a Cessna Citation jet aircraft. For modeling the combination of low-
frequency lag and high-frequency lead equalization performed by pilots for such controlled
element dynamics, it was therefore proposed to add an additional lead term to the tradi-
tional compensatory pilot model’s lead-lag equalization characteristic. Pilot models that
included this additional lead term were found to describe measured pilot control dynamics
more accurately in both the time and frequency domains. Furthermore, it was shown that
this additional lead term was essential for the correct interpretation of the effect of physical
motion feedback on pilot manual control behavior. This extension to the available models
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for compensatory tracking behavior has been applied for modeling compensatory tracking
behavior in a number of later experiments, including the pitch tracking experiment described
in Chapter 4 of this thesis and the related experiments described by Zaal [2011].

In addition to this proposed extension to the available models of compensatory pilot
control dynamics,Chapter 3 describes an effort to develop mathematical models of pi-
lot control behavior for control tasks where forcing function signals consisting of multiple
ramp-like changes in target attitude are considered instead of quasi-random multisine sig-
nals. For such ramp-tracking tasks, especially when performed with a pursuit display on
which this ramp signal is displayed explicitly, pilots likely adopt a partly pursuit or even pre-
cognitive control strategy [Wasicko et al., 1966; McRuer etal., 1968; Allen and McRuer,
1979; Hess, 1981]. It is proposed to model the manual controlbehavior adopted during
such ramp-tracking tasks with a traditional model of compensatory tracking behavior, sup-
plemented with an additional linear feedforward operationon the ramp reference signal to
account for the open-loop control inputs and pursuit tracking behavior used for performing
these ramp maneuvers. Using measurements of ramp-trackingbehavior for control tasks
without physical motion feedback, it was found that when theramp signal was sufficiently
strong with respect to the external disturbances that were to be attenuated pilots indeed uti-
lized a control strategy that was no longer purely compensatory. Under such conditions,
the proposed combined compensatory and feedforward pilot model was found to provide a
consistently more accurate fit of the measured control inputs than a purely compensatory
pilot model. The same pilot model extension was therefore also applied for quantifying
pilot control behavior in the roll attitude ramp-tracking tasks with physical motion feedback
in Chapter 7.

9.1.2 Effects of Motion Filter Settings on Tracking Behavior

The main objective of this thesis is to indicate which simulator motion cueing settings yield
the highest level of behavioral simulator motion fidelity, that is, yield the best match of
pilot control dynamics between flight simulator and real flight. An important step towards
this goal is the collection of measurements of pilot tracking behavior under varying motion
cueing settings, as this allows for analyzing the discrepancies that occur in pilot control
behavior due to degraded simulator motion fidelity. In this thesis, a number of experiments
that were performed in the SIMONA Research Simulator (SRS) at Delft University of Tech-
nology are described in which such changes in pilot trackingbehavior due to variations in
the supplied physical simulator motion cues were measured.

Chapter 4 describes an experiment performed in the SRS to evaluate theeffects of vari-
ations in pitch and heave motion cueing on pilot pitch attitude tracking behavior. During
aircraft pitch maneuvering with a conventional fixed-wing aircraft, relatively strong vertical
heave motion cues are typically perceivable at the pilot station in addition to the rotational
pitch motion. To evaluate the effects of both these cues on pilot control behavior, the pres-
ence of these pitch and heave motion cues was varied independently in this experiment.
This experiment focused on the component of the total heave motion that directly results
from the distance between the center of aircraft pitch rotation and the aircraft cockpit and
that is hence directly proportional to the aircraft pitch rotation. For cueing this heave mo-
tion component, a number of different motion cueing conditions were considered, ranging
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from one-to-one presentation, to scaled-down heave motion, and heave motion attenuated
by a third-order high-pass filter. Analysis of pilot manual control behavior using estimated
multimodal pilot model parameters showed that highly similar pilot control dynamics were
adopted in the presence of either simulator pitch or heave motion, if these motion cues were
both presented without attenuation. Furthermore, a strongeffect of variations in simulator
heave motion cueing settings on pilot tracking behavior wasobserved. When the fidelity of
the supplied heave motion cues was reduced, either by decreasing the heave motion cueing
gain or by attenuating the aircraft heave motion with a third-order high-pass washout filter,
pilot tracking behavior was found to clearly show adaptation towards behavior represen-
tative for tracking without physical motion feedback (single-loop tracking), indicative of
reduced usage of the supplied motion feedback.

A number of investigations predating the work described in this thesis have been per-
formed in which the effects of variations in high-pass simulator motion filter settings on
pilot tracking behavior and performance were evaluated explicitly, using behavioral metrics
equivalent to those considered in this thesis.Chapter 5 provided an overview of ten of
these experiments and described an effort to compile the data of these different experiments
in order to identify consistent across-experiment trends.The compiled experimental mea-
surements showed consistently enhanced tracking performance with increasing simulator
motion fidelity. In addition, simulator motion that better approximated the true aircraft mo-
tion was found to result in tracking behavior with higher pilot visual response gains, reduced
visual lead equalization, and increased increased pilot visual response delays. Using the mo-
tion filter gain at 1 rad/s – which is also used as a metric of simulator motion fidelity in the
well-known motion fidelity criteria proposed by Sinacori [1977] and Schroeder [1999] – as
the predictor variable, linear regression models were fit tothe compiled behavioral measure-
ments. From these linear regressions, a set of equations wasdeduced with which changes
in pilot tracking performance and behavior due to the selection of certain high-pass motion
filter setting can be predicted. In Chapter 8 these equationswere used to predict changes in
pilot tracking behavior for the wide range of different rollmotion filter settings considered
in the experiment described there. Despite the fact that theobserved trends in the measure-
ments were found to be slightly stronger than those predicted by the derived equations, a
reasonably adequate prediction of the changes in pilot tracking behavior was still found to
be obtained with these linear prediction equations.

The roll attitude tracking experiments ofChapters 6–8showed relative changes in pilot
control dynamics as a result of the considered variations inroll motion cueing that were
highly consistent with those reported in Chapter 5. These three experiments evaluated pilot
roll tracking behavior for a wide variation in the gain and break frequency settings of a first-
order high-pass roll motion filter. Overall, these three experiments confirmed many of the
behavioral changes due to varying motion cueing settings identified in Chapter 5. Both for
the roll tracking tasks with only multisine forcing functions considered in Chapters 6 and
8 and for the roll ramp-tracking task evaluated in Chapter 7,behavioral analysis with mul-
timodal pilot models showed reduced pilot gains and increased visual lead equalization for
conditions with decreased simulator motion fidelity. In theroll ramp-tracking task of Chap-
ter 7 pilots further showed increased latency in their feedforward response for conditions
where the roll motion was lower fidelity. The experiment described in Chapter 8, which
considered the widest variation in roll motion filter settings, suggested that pilot tracking
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behavior in the considered target-following and disturbance-rejection task is affected more
strongly by the scaling of the supplied roll motion, as controlled by the motion filter gain,
than by increasing roll washout. This is, for instance, consistent with the effects of motion
attenuation on pilot control behavior reported by Schroeder et al. [2000], who state that
variations in motion filter gain most strongly affect pilot control behavior in control tasks
where external disturbances are to be mitigated.

In conclusion, all these different experiments that evaluated the effects of varying sim-
ulator motion filter settings on pilot tracking behavior show a strong consistency in their
results despite considerable differences in important task variables, such as the considered
controlled element dynamics and forcing function settings. Clear differences between track-
ing behavior for tasks without physical motion feedback andtracking behavior for tasks
with one-to-one, or closest to one-to-one, simulator motion are observed in all cases. Fur-
thermore, measured tracking behavior for conditions with attenuated and filtered simulator
motion is typically found to be somewhere in between these two extreme cases. The most
notable behavioral adaptation observed with varying simulator motion fidelity is found to
occur in pilots’ responses to visually presented tracking errors. Reducing the objective level
of simulator motion fidelity is found to yield a decreased gain of pilots’ visual responses. In
addition, a strong increase in the amount of visual lead equalization and a decrease in the
delay of the visual response suggest a control strategy withincreased pilot workload under
conditions with low-fidelity motion cueing.

9.1.3 In-Flight and Simulator Tracking Behavior Comparison s

As the experiments described inChapters 6–8show, the collection of true in-flight refer-
ence measurements of the evaluation of simulator motion fidelity described in this thesis
was largely successful. For both the multisine tracking task described in Chapters 6 and 8
and for the combined multisine and ramp tracking task of Chapter 7, pilot control behavior
closely resembling that observed in the simulator parts of these experiments was observed
for the in-flight measurements collected with the Cessna Citation II laboratory aircraft. Fur-
thermore, important behavioral metrics such as the pilot visual response gain and lead time
constant from the in-flight tracking tasks were found to bestmatch those obtained when
simulator motion cues were presented close to one-to-one. However, some notable behav-
ioral discrepancies between the in-flight and simulator tracking tasks, which were much
larger than thought to be attributable to differences in thesupplied motion feedback, were
still observed. The most notable of these differences in tracking behavior were an increased
visual response delay and slightly decreased pilot visual and motion response gains for the
in-flight tracking tasks compared to the conditions with theobjectively highest level of sim-
ulator motion fidelity.

Due to the known adaptability of pilot tracking behavior to all factors that affect the
control task that is to be performed, extreme care was taken to verify the equivalence of
the experiment setups in the SRS and the laboratory aircraft. As this equivalence was even
explicitly verified with additional reference measurements of pilot tracking behavior, the
observed behavioral discrepancies between these in-flightand simulator tracking tasks are
thought to have resulted from differences inoperator-centered variablessuch as motivation
and stress, which are impossible to fully control in an experimental setting. Rather than
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purely representing a behavioral adaptation to the different motion cues perceived in real
flight compared to those presented in the simulator, the observed behavioral discrepancies
might also be (partially) attributable to a failure to properly isolate the effect of the varia-
tions in the supplied motion feedback. If, as for instance argued by Schroeder and Grant
[2010], pilots do not perform control tasks with the same level of motivation or intensity
in real flight and in a flight simulator, then this may also result in behavioral discrepancies
similar to those observed in the experiments of Chapters 6 and 7. The success of the applica-
tion of the cybernetic approach to the comparison of in-flight and simulator measurements
of pilot tracking behavior – in-flight to simulator comparisons in general – hinges on the
assumption thatonly the task variables that are manipulated in this comparison induce be-
havioral adaptation. The experimental results described in this thesis suggest that this main
assumption may in fact be violated.

9.1.4 The Cybernetic Approach

The cybernetic, model-based approach used in this thesis was found to be provide a valuable
method for measuring, quantifying, and assessing the effects of simulator motion fidelity on
pilot control behavior. The method based on multimodal pilot models allowed for clear
and objective quantification of changes in pilot tracking behavior under varying simulator
motion cueing settings. Furthermore, these observed differences in manual control behavior
indicated stronger and much more consistent effects of varying simulator motion fidelity
than were obtained from subjective motion fidelity ratings.In addition, compared to earlier
comparisons of in-flight and simulator measurements of pilot tracking behavior [Smith,
1966; Newell and Smith, 1969; Mooij, 1973; Van Gool and Mooij, 1976; Steurs et al.,
2004], the use ofmultimodalpilot models was found to allow for superior quantification of
the effects of physical aircraft motion feedback on pilot tracking behavior.

Despite being an elegant and insightful method for evaluating the effects of simulator
motion cueing settings on pilot tracking behavior, the cybernetic approach as adopted in this
thesis is not the most straightforward method to apply. First of all, collecting measurements
of pilot tracking behavior is a time-consuming affair, because of the required amount of task
familiarization and training, the collection of repeated measurements to ensure stationary
behavior, and the considerable number of samples and hence participants required to obtain
meaningful results. Not counting test runs and tracking runs that were not completed, a total
amount of3,516 tracking runs were logged over the different main experiments described in
this thesis. Per participant, this yields an average of113 tracking runs that were performed
for each experiment. In addition to the extensive required data collection, application of
the cybernetic approach is further complicated due to the overdetermined multimodal pilot
models that are required for describing pilots’ cumulativeresponses to visual and physical
motion cues. For this reason, considerable knowledge of mathematical modeling, simula-
tion, and the implementation of optimization techniques, such as the time-domain identi-
fication procedure described by Zaal et al. [2009a], is required for correct and meaningful
implementation of the proposed approach.

The multimodal pilot models considered in this thesis include two independent parallel
model channels that explicitly account for pilots’ responses to visually presented tracking
errors and physical motion feedback, respectively. This thesis shows that such models are
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highly valuable for evaluating and quantifying the extent to which visual and physical mo-
tion stimuli are utilized during skill-based manual control. However, these multimodal pilot
models are still a heavily simplified control-theoretical representation of the complex mo-
tion perception, multisensory integration, and control input generation processes that actu-
ally occur during during manual control in multimodal environments [Zacharias and Young,
1981; Van der Steen, 1998; Bos et al., 2001; Bos and Bles, 2002; Berger, 2006; De Vrijer
et al., 2008; Butler et al., 2010]. For this reason, the increased understanding of these low-
level perceptual processes that can be gained from analysiswith these multimodal pilot
models is still severely limited. This is for instance clearfrom the fact that in the models
of pilot control behavior used in this thesis, the contributions the different modalities that
play a role in physical motion perception – the vestibular, the tactile, the proprioceptive,
and perhaps even the auditory modalities [Gum, 1973; Borah et al., 1988; Zaichik et al.,
1999] – can not be considered separately. As the semicircular canals have been argued to
be dominant motion sensor for perceiving physical angular motion [Young, 1966; Hosman
and Van der Vaart, 1978], the contributions of these different modalities are instead lumped
into a pilot motion response that is modeled to purely resultfrom this dominant vestibular
modality. A similar problem occurs with the separation of the effects of multiple physical
motion stimuli on pilot tracking behavior, such as the correlated pitch and heave motion
cues considered in Chapter 4. One of the main limitations of the cybernetic approach is the
difficulty of distinguishing between such clearly distinctcontributions to physical motion
perception and its effect on manual control behavior. Theoretically, further separation of
these different contributions to the pilot motion responses modeled in this thesis may be
possible by using additional forcing function signals to ensure unique excitation of the dif-
ferent associated modalities. When measuring human manual control behavior, however,
the available room for such manipulation of perceived information through the use of ad-
ditional forcing function signals is limited, as this will affect the adopted control strategy
itself [McRuer and Jex, 1967a; Zaal et al., 2009c]. Furthermore, perturbing the information
perceived through a single modality compared to all others will affect the perceived realism
of the presented stimuli, as these are normally consistent across different modalities in the
real world.

This thesis describes a number of experiments in which measurements of manual track-
ing behavior were collected with active Cessna Citation II pilots as subjects (Chapters 6–8)
and with subjects that were non-pilots or had only limited piloting experience (Chapters 2,
3, and 4). Overall, the experiments that evaluated the effects of physical motion feedback
and of differences in the cueing of this physical motion feedback on the adopted control
strategy show results that are highly consistent over the experiments performed with pilot
and non-pilot subjects. A similar agreement between the results of tracking experiments
performed with pilots and non-pilot subjects has, for instance, previously been reported by
Jex et al. [1981]. The main reason for this equivalence in tracking behavior, and the con-
sistency in the relative effects of experimental manipulation on this tracking behavior, for
pilots and non-pilot subjects is thought to be the nature of the considered tracking tasks
themselves. Compared to more low-bandwidth control tasks,the high-bandwidth tracking
tasks considered in this thesis do not allow for much variability in control behavior without
a severe degradation in task performance and closed-loop stability. Given enough time for
learning, both pilots and non-pilots will therefore end up with highly comparable control
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dynamics for these tasks. The comparatively “universal” adaptation to changes in motion
cueing settings observed in the experiments described in this thesis further suggests that
there is no reason to discount experiments in which the participants were non-pilots on this
basis. This is especially valuable, given the severely limited amount of experimental data
available for evaluating simulator motion fidelity from a behavioral perspective.

9.2 Recommendations

The evaluation of behavioral simulator fidelity performed in this thesis was limited to single-
axis aircraft attitude tracking tasks. Even though such single-axis tracking tasks allow for
studying elementary skill-based manual control behavior,such tasks typically do not ac-
count for much of the complexity of manual control in operational environments. Given the
known adaptability of human manual control behavior, it is therefore difficult to predict to
what extent the conclusions drawn from studying single-axis tracking behavior, as done in
this thesis to evaluate simulator motion cueing fidelity, translate to true operational manual
control tasks. Despite the tremendous complexity and extreme multidimensionality of that
problem, it is strongly recommended that in future researchinto manual control behavior
significant effort is dedicated to bringing our knowledge ofpilot control behavior in true
manual aircraft control tasks up to par with our current knowledge of single-axis tracking
behavior. Some important research questions that need to beaddressed for increasing our
understanding of manual control behavior in real manual flying tasks, and how it relates to
single-axis tracking, are, for instance:

1. In single-axis tracking tasks, pilots have their full attention available for controlling
one degree-of-freedom. In real flight, it is typically not a single degree-of-freedom
that is being controlled, but attention needs to be paid to the full aircraft position and
attitude. Some experiments have suggested that if more thanone degree-of-freedom
is being controlled, pilots adapt their control dynamics and the level of control perfor-
mance may degrade compared to the situation where the different degrees-of-freedom
are controlled individually [Bergeron, 1970; Hess and Siwakosit, 2001]. Dividing at-
tention over multiple degrees-of-freedom may therefore also affect the pilots’ reliance
of physical motion feedback during manual control, which has not yet been studied
extensively.

2. During real flight, pilots typically control and stabilize the aircraft attitude as an inner
loop, where the aircraft position in space is actually beingcontrolled in outer, naviga-
tion, loops [Hosman et al., 2001; Nieuwenhuizen et al., 2009; Zeyada and Hess, 2003;
Mulder et al., 2004]. Even though convincing effects of physical motion feedback on
pure inner-loop control behavior have been reported in numerous studies, the extent
to which these effects persist when an additional outer loopis to be closed by pilots,
and if motion feedback also contributes to outer-loop control itself, is as of yet largely
unknown.

3. In the tracking tasks considered in this thesis, only a part of the multisensory envi-
ronment available during real flight (heads-down display and physical motion) was
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presented to allow for the isolated studying of the effects of physical motion feedback
on manual control behavior. One of the gross simplificationscompared to many real-
world applications is the omission of immersive outside visual and peripheral visual
cues, whose presence have also been shown to have an effect onpilot tracking behav-
ior [Hosman, 1996; Van der Vaart, 1992; Zaal et al., 2006]. Given that the information
on the vehicle motion that is perceivable through physical motion feedback and from
such additional visual cues is largely equivalent, the effects of degraded simulator
motion fidelity on pilot manual control behavior may also be affected by the presence
of these additional visual cues.

The application of a cybernetic model-based approach as utilized in this thesis to such
more complex and realistic manual control tasks requires the current state of behavioral
models and corresponding analysis methods to be extended significantly. In addition to the
challenge of developing mathematical models capable of capturing the simultaneous clo-
sure of multiple loops by the pilot, an additional issue withthe modeling of pilot control
behavior in realistic flying tasks is that the adopted control behavior is most likely no longer
continuous and stationary, as it is forcibly made to be during single-axis compensatory
tracking tasks. This implies that the modeling of manual control behavior for such realistic
flying tasks will require behavioral models withtime-varyingandnonlinearelements. Even
though an extensive body of literature is available on approaches to the modeling and iden-
tification of systems with time-varying and nonlinear dynamics, with respect to studying
human manual control behavior such time-varying modeling and identification techniques
have received only modest attention [Phatak and Bekey, 1969; Boer and Kenyon, 1998;
Thompson et al., 2001; Hess, 2009; Zaal et al., 2011]. An emphasis on the development of
such time-varying analysis methods for application to manual control behavior is therefore
strongly recommended.

With the increasing number of functions performed by automatic control systems, and
their ever increasing reliability, some have argued that the amount of skill-based manual
aircraft control required of pilots might diminish in the future, leaving pilots with the task of
mainly operating at the knowledge-based and rule-based levels in supervising the available
automation. Still, given the perhaps impossible task of preparing automation for the myriad
of system failures and unanticipated events that may occur,which human operators to this
day are better capable of coping with than any available control algorithms or automation, it
is still unlikely that humans will soon be taken out of the control loop entirely [Westbrook,
1959; Young, 1969; Flach, 2011]. As stated by Young in a 1969 paper: “Man’s adaptability
as a controller is frequently cited as the primary reason forincorporating him in complex
vehicle control loops”. For this reason, it is recommended to increase the emphasis on
the explicit studying of the adaptive mechanisms that allowhuman operators to cope with
sudden changes in important task variables during manual control, and the limits of their
performance in doing so.

The experiments described in this thesis considered motioncueing in one or two coupled
degrees-of-freedom, where different motion cueing settings were mostly defined as differ-
ent settings of the gain and break frequency of linear high-pass motion filters. Even though
such high-pass filters are the cornerstone of most motion cueing algorithms [Schmidt and
Conrad, 1970; Reid and Nahon, 1985; Telban et al., 2000] and characterize the main distor-
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tions of simulator motion cues compared to real flight, much more advanced simulator mo-
tion cueing algorithms have been developed and are frequently applied in flight simulation.
An example of such more advanced motion cueing solutions arethe different approaches
that have been proposed to obtain the best possible cueing and coordination of simulator
roll and lateral specific force cues for coordinated lateralaircraft maneuvers [Schmidt and
Conrad, 1970; Jex et al., 1981; Ariel and Sivan, 1984; Chung et al., 1998; Mikula et al.,
1999; Schroeder, 1999; Van Biervliet, 2007]. A significant amount of research has also
been dedicated to the development of nonlinear adaptive motion filter algorithms, in which
the strength of the motion attenuation is updated on-line through an adaptive optimization
scheme [Parrish et al., 1975; Riedel and Hofmann, 1978; Ariel and Sivan, 1984; Nahon
et al., 1992; Naseri and Grant, 2005]. As opposed to non-adaptive algorithms, such adap-
tive motion filters eliminate the requirement of having to tune a motion filter algorithm for
the worst possible case. Thereby such algorithms have the capacity to always ensure high-
fidelity cueing for low-amplitude motion and only attenuating the supplied simulator motion
when it is in fact required. Finally, it has been proposed in anumber of publications to inte-
grate the motion cueing algorithm with the motion base control software, thereby yielding a
closed-loop motion cueing implementation that can explicitly account for the effect of sim-
ulator motion system dynamics on the supplied motion cues [Idan and Nahon, 1999; Grant
et al., 2007; Chang et al., 2009]. Despite the fact that for the experiments described in this
thesis only the effects of linear high-pass washout filter settings on pilot tracking behavior
were quantified using the adopted cybernetic approach, there are no restrictions that would
preclude the application of the same cybernetic approach tothe evaluation, comparison, and
validation of the these more advanced motion cueing implementations. Such comparison
of these different approaches to simulator motion cueing using behavioral measurements is
one of the major items that future research into simulator motion fidelity should focus on.

In this thesis, the proposed method for evaluating flight simulator motion fidelity based
on measured pilot manual control behavior was limited to thecomparison of in-flight mea-
surements of manual control behavior and equivalent measurements collected in a flight
simulator environment under a limited number of different pre-defined simulator motion
cueing settings. If baseline in-flight behavioral measurements are available, the adopted
cybernetic approach, however, also allows for true optimization of simulator motion cueing
and motion filter parameter settings. Such motion cueing optimization can for instance be
performed through an iterative scheme consisting of the following steps:

• collection of behavioral measurements under a number of different motion cueing
conditions,

• evaluation of the resulting behavioral discrepancies withrespect to real flight,

• identification of the motion cueing settings that yield the smallest behavioral discrep-
ancies, and

• formulation of a new set of motion cueing conditions to evaluate.

Note that in this thesis only a single iteration of steps 1-3 was performed, corresponding
to the evaluation of Block3 , the “∆” block, and Block 4 shown in Fig. 1.8, respectively.
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Though not attempted in this thesis, such further iterativeoptimization of simulator motion
cueing strategies and motion filter parameter settings based on the minimization of behav-
ioral discrepancies compared to real flight is considered a valuable approach for improving
flight simulator motion cueing and should be explored in moredepth in future research.

For the experiments described in Chapters 6 and 7, significant discrepancies between
pilot control behavior measured in real flight and in a simulator environment were observed
that were found to not be attributable to differences in factors external to the pilots. With the
adopted cybernetic approach and the setup of these experiments, it is not possible to distin-
guish between changes in pilot control behavior that resultfrom differences in, for instance,
the supplied motion feedback and operator-centered factors such as motivation, stress, or
workload. Schroeder and Grant [2010] also suggest that thismay be a crucial factor in
the type of experiments as described in this thesis, due to the typically adopted assumption
that other than adapting to the applied variation in the taskvariable under consideration,
the pilot is an otherwise constant element in the pilot-vehicle control system. The observed
discrepancies between real-flight pilot control behavior and that measured in a simulator
environment suggests that perhaps pilot control dynamics may in fact also be affected by
such factors internal to the pilots themselves. Though extremely difficult to achieve in a
controlled experiment, given the aims of most in-flight to simulator comparisons of pilot
control behavior it is still strongly recommended to attempt to explicitly characterize and
quantify possible differences in behavior that may result from such pilot-centered factors.

The experiments described in this thesis have shown that fora comparatively wide range
of control tasks pilot manual control behavior is affected by variations in simulator motion
cueing. Despite the fact that the observed changes in manualcontrol behavior were consid-
erable, the collected measurements can not be used to argue that the manual control skills
developed during training with degraded physical motion feedback will degrade transfer to
conditions with true aircraft motion, which may in fact be the question that is of interest
to much of the flight simulator community. The results presented in this thesis do show
that pilots will likely adapt their behavior if transferredto an environment with different
fidelity motion feedback. The extent to which this adaptation is easily, straightforwardly,
and quickly achieved, or requires extensive re-familiarization with the new situation, can,
however, not be deduced from the reported experimental results. A number of researchers
have suggested that this question is best answered by performing transfer-of-training and
quasi-transfer-training studies [Caro, 1973; Bürki-Cohen et al., 1998; Hosman et al., 2001;
Go et al., 2003; Nusseck et al., 2008; Sparko et al., 2010; Koglbauer et al., 2011; De Winter
et al., 2012]. Most of the currently reported transfer-of-training studies only consider met-
rics of task performance for evaluating differences in training. More structural investigation
of the underlying behavioral adaptation asked from pilots when transfered to an environment
where important cues are presented differently, which would provide increased insight into
the perceptual and control behavioral mechanisms that playa role in this adaptation, could
be provided by utilizing a cybernetic approach as adopted inthis thesis.
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A
Pilot Visual Response

Modeling

This Appendix provides some additional motivation for the models used for describing pi-
lots’ responses to visually presented tracking errors as used, for example, in Chapters 5,
6, and 8 of this thesis. The focus lies on indicating why this model structure, which lumps
the contributions of all different delays that may be induced in the pilot’s response into a
single delay parameter, is desirable from a model identification point of view, as opposed to
a more complete and extensive model for pilots’ visual responses.

A.1 Introduction

The approach for evaluating simulator motion fidelity proposed in this thesis is centered
around models of pilot tracking behavior. These models typically consist of separate visual
and motion channels that account for pilots responses to visually presented tracking errors
and information available from physical motion feedback, respectively. For the Cessna
Citation roll dynamics considered as the controlled element in the experiments described in
Chapters 6–8, and for many other controlled elements relevant for aerospace applications,
it is known that pilots perform visual lead equalization to compensate for the controlled
element dynamics over a frequency range where these are approximatelyK/s2 [McRuer
et al., 1965]. Note that if lead equalization is performed, pilots’ responses to visual tracking
errors approximate a derivative-proportional (DI) controller, that is, a controller responding
to both error magnitude (proportional) and error rate (derivative).

In this thesis, the model structure used for modeling the pilot visual response is based
on the Precision Model proposed by McRuer et al. [1965]. Thismodel consists of a gain-
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lead equalization transfer function that accounts for the lead equalization performed of a
certain frequency range, a single pure delay term, and a second-order model for the neu-
romuscular actuation dynamics. Other researchers, such asJex et al. [1978] and Hosman
[1996], have proposed pilot models in which pilots’ responses to the tracking error and the
tracking error rate are separated in parallel model channels. Hosman [1996] further shows
using data from stimulus-response experiments that the delay in perceiving error magnitude
and is different from the delay incurred in the perception oferror rate from a visual display,
where the latter is found to be around 0.1 s higher. Intuitively, such a model that separates
the proportional and derivative contribution to pilot control inputs and accounts for possible
different processing delays incurred in these contributions perhaps seems more appropri-
ate for modeling pilots’ responses to visually presented tracking errors than the minimum
parameter form represented by the Precision Model.

In addition to the appropriateness of the used model, a second aspect that is important
for the research described in this thesis is the accuracy with which the applied pilot models
can be identified from measurements of pilot tracking behavior. This Appendix evaluates the
identifiability of a pilot visual response model as proposedby Hosman [1996] and compares
it to the results obtained with the model based on the Precision Model proposed by McRuer
et al. [1965] as applied in this thesis. Pilot model simulations of the two-channel model
proposed by Hosman with known parameters are used to directly compare the accuracy
with which both models can be fit to the same data.

This Appendix is structured as follows. First, the different models for pilots’ responses
to visually presented tracking errors will be introduced inSection A.2. Then, Section A.3
explains the analysis into the identifiability of both models described in this Appendix. The
results of this analysis will be presented in Section A.4.

A.2 Pilot Model Structures

The models for pilots responses to visually presented tracking errors as applied in this thesis
are typically of the following form, which is based on the Precision Model proposed by
McRuer et al. [1965]:

Hpe
(jω) = Kpv

[1 + TLjω] e
−jωτvHnm(jω) (A.1)

Note that compared to the definition of the Precision Model in[McRuer et al., 1965], the
model given by Eq. (A.1) does not include the very low-frequency lead-lag term proposed
by McRuer et al. for capturing the low-frequency phase droopobserved in their measured
describing functions. The model of Eq. (A.1) consists of a gain-lead equalization term that
models pilot lead equalization for frequencies larger than1/TL rad/s. The delay parameter
τv captures the delay in the pilot’s response and the frequencyresponse functionHnm(jω)
models the combined manipulator and neuromuscular actuation dynamics. In this thesis,
these neuromuscular dynamics are modeled as a second-ordermass-spring-damper system
with two parameters:

Hnm(jω) =
ω2
nm

(jω)2 + 2ζnmωnmjω + ω2
nm

(A.2)
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The model of Eq. (A.1) represents a minimal-parameter form that is capable of capturing
typical pilot visual response dynamics for controlled elements for which lead equalization is
adopted. Alternatives to to this model have also been proposed in literature. One example,
which explicitly separates pilots’ responses to the tracking error and to tracking error rate,
was proposed by Hosman [1996] and is depicted in Fig. A.1.

Hc(jω)
ft u

−

e φ
n

Hpe(jω)

jω

+ +
+

error response

error rate response

Ker e−jωτer

Ke e−jωτe
+

+

Hnm(jω)

Figure A.1. Alternative pilot visual response model as proposed by Hosman [1996].

Fig. A.1 depicts a schematic representation of a pilot engaged in a single-loop (only vi-
sual error information is presented) target-following task. The controlled element dynamics
are depicted with theHc(jω) block, and the model for the pilot visual control dynamics
Hpe

(jω) is enclosed in the dashed rectangular area. Note that the model of Fig. A.1 shows
two parallel channels that capture pilots’ responses to thetracking errore and to the error
rate ė. Hosman [1996] proposed to model both these responses with apure gain and time
delay, as also indicated in Fig. A.1. Note that the information processing delay present in
the definition of Hosman’s model and which affects the outputof both channels is here as-
sumed to be included in bothτe andτer. From Fig. A.1 the following equation forHpe

(jω)
can be derived:

Hpe
(jω) =

[
Kee

−jωτe +Kerjωe
−jωτer

]
Hnm(jω)

(A.3)

= Ke

[

e−jω(τe−τer) +
Ker

Ke
jω

]

e−jωτerHnm(jω)

Note from Eq. (A.3) and Fig. A.1 that this model is largely equivalent to the model
given by Eq. (A.1), except for the additional delay term thatallows for taking into account
a difference in perceptual and processing latency between both response channels. Despite
the fact that explicit separation of pilots’ responses to visually presented tracking errors
and error rate as depicted in Fig. A.1 could be of interest formanual control research, this
model form poses a problem when attempting fit it to typical measurements of pilot tracking
behavior.
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A.3 Analysis Setup

A.3.1 Pilot Model Simulations

To evaluate the accuracy with which the parameters of the twopilot model forms given by
Equations (A.1) and (A.3) can be estimated from measured data, this Appendix describes
the results of an offline analysis performed in Matlab. Pilotmodel simulations of the roll
attitude double integrator control tasks described in [Hosman, 1996], using the target forcing
function signal from that study, a sum of 10 sinusoids. The pilot model parameters for the
simulations were taken from [Hosman, 1996] for the condition of his experiment where only
the central visual (compensatory) display was present (target-following task data) and are
listed in Table A.1.

Table A.1. Pilot model simulation parameters.

ParameterKe Ker τe τer ωnm ζnm Kn Tn
Unit − s s s rad/s − − s

Value 0.31 0.47 0.25 0.35 10.0 0.5 8.0 0.1

To assess identifiability for these pilot model parameters,pilot model simulations were
performed for 100 different realizations of the remnant signal n (see Fig. A.1). Remnant
was modeled as Gaussian noise with zero mean and unity standard deviation, simulated
through the fourth-order low-pass remnant filter given by:

Hn(jω) =
Kn

(1 + Tnjω)4
(A.4)

The form of this remnant model and the value ofTn were derived from data from a later
experiment [Pool et al., 2008a] that replicated the resultsof Hosman [1996]. The remnant
gainKn was set to ensure 10% of the variance in the simulated pilot control signalu could
be attributed to the remnant signaln. The values ofKn andTn are listed in Table A.1.

A.3.2 Data Analysis

Pilot model simulation data was generated using the model proposed by Hosman, with the
additional delay parameter compared to the model given by Eq. (A.1). As will be shown
using this simulation data, the model proposed by Hosman is an overdetermined model for
which it is not possible to estimate both delay terms reliably. This is first evaluated by
assessing the sensitivity of the overall model dynamics to changes in both pilot model delay
parameters. In addition, using the time-domain identification procedure described in Zaal
et al. [2009a] the parameters of the pilot model shown in Fig.A.1 are then estimated from
the simulated data. For reference, also the pilot model as adopted in this thesis (Eq. (A.1))
is fit to the same pilot model simulation data.



Pilot Visual Response Modeling 307

A.4 Results

A.4.1 Delay Sensitivity Analysis

To assess the sensitivity of the model depicted in Fig. A.1 tochanges in the values of both
the delay parametersτe andτer, Fig. A.2 shows the frequency response of this model as cal-
culated from Eq. (A.3). Fig. A.2(a) shows the Bode magnitudeof the model, which clearly
shows the gain-lead dynamics and the high-frequency peak resulting from the neuromuscu-
lar actuation model. The Bode phase response of the model with the true values forτe and
τer is depicted in Figures A.2(b) and (c) with a solid black line.The gray lines in Figures
A.2(b) and (c) depict the phase response for extreme variations in the value ofτe andτer,
respectively. Dashed gray lines indicate the model phase response for the case where the
delay parameter is set to 0, while the solid gray lines correspond to an extremely large 1 s
delay.
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Figure A.2. Pilot model frequency responses for a variation inτe and τer.

Fig. A.2 shows that the total model frequency response is a lot less sensitive to variations
in τe than to changes inτer. This is readily explained as the frequency response of the model
is calculated as the vectorial sum of the frequency responses of the parallel error and error
rate responses. At high frequencies, the error rate response magnitude is much larger than
the error response magnitude, hence the total model output at high frequencies is dominated
by Kerjωe

−jωτer . As the effect of both delay parameters is mainly felt at these higher
frequencies, the model is comparatively insensitive to variations inτe.

This is further evaluated using the pilot model simulation data. For all 100 realizations
of the simulation data, the model variance accounted for (VAF) was calculated forτe andτer
varying from 0 to 1 s. Only one delay parameter was varied and all other model parameters
were fixed at their true values. Fig. A.3 shows the average variation in VAF for varying
values of the error delayτe and the error rate delayτer. Fig. A.3 confirms the observations
made from Fig. A.2, as a clear effect of varyingτer on the model output is observed, while
the effect ofτe is much less pronounced. The model VAF is seen to only change less than
5% when varyingτe between 0 and twice its true value.
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Figure A.3. Average variation in pilot model VAF with the value of the error and error rate
delay parameters.

A.4.2 Delay Identifiability Analysis

The previous section showed that an analysis of the sensitivity of the pilot model to changes
in the value of both delay parameters suggests that the modelis relatively insensitive to
changes in the error delayτe. It is likely that this may lead to problems when attempting
to identify the model from measurements of pilot tracking behavior. Figures A.4 and A.5
show the results of fitting the pilot models given by Equations (A.3) and (A.1) to the pilot
model simulation data. Again, note that in both cases pilot model simulation data generated
with the model of Eq. (A.3) was used.

The rightmost graphs in Figures A.4 and A.5 show the true parameter value used for
the simulation data as a dashed black line. The individual estimates of the parameters for
both models are indicated with gray markers, while the mean and standard deviation are
presented as black markers with variance bars. The two histograms indicate the distributions
of the parameter estimates obtained for both models. Again,dashed black lines indicate the
true value of the parameter, while the solid black line indicates the mean of the distribution.
Note that for the model given by Eq. (A.1) the equivalent value ofKer was calculated by
multiplying the obtained estimates ofKv andTL. In addition, the results of estimatingτv
are presented in the graph forτer. Consequently, no data is presented in Fig. A.4(i) for the
Eq. (A.1) model.

Figures A.4 and A.5 show that parameter estimates for the model of Eq. (A.1) are typi-
cally more consistent than those obtained for the more elaborate model of Eq. (A.3) and are
on average closer to the true simulation parameter setting.This is especially notable for the
error rate gainKer and the neuromuscular damping ratioζnm, as can be verified from Fig-
ures A.4(d) to (f) and A.5(d) to (f). The parameter for which identification results show the
most spread, however, is the error delayτe. The estimated values for this parameter almost
cover the entire range of 0 to 1 s and the average estimated value ofτe is found to be more
than twice as high as the true value used for generating the simulation data. The identifi-
cation results shown in Fig. A.4(h) thereby confirm that the parameterτe is not identifiable
for the selected case, because of its severely limited effect on the pilot model response.
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Figure A.4. Estimated values and their distributions for the parameters of the pilot models of
Equations (A.3) and (A.1) based on 100 pilot model simulation realizations.
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Figure A.5. Estimated values and their distributions for the parameters of the neuromuscular
(NM) system model of Eq. (A.2) based on 100 pilot model simulation realizations.
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Figure A.6. Fitted pilot model variance accounted for for the models of Eq. (A.2) based on 100
pilot model simulation realizations.
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Finally, Fig. A.6 presents the VAF of the achieved pilot model fits corresponding to the
parameter estimates shown in Figures A.4 and A.5. As can be verified from Fig. A.6, the
accuracy with which both models describe the simulated datathat was generated using the
model of Eq. (A.3) is found to be equivalent. On average, the VAF for the fits of the model
of Eq. (A.3) is equal to 91.39%, whereas for the model of Eq. (A.1) an average VAF of
91.37% is obtained.

The results presented in Figures A.4 to A.6 confirm that the error delay parameterτe
only has a negligible contribution to the overall model response and that its omission in the
model of Eq. (A.1) does not lead to an appreciable degradation in the accuracy with which
typical measured pilot error response data can be modeled. Moreover, for estimating the
model parameters from measured data the omission of this extra parameter is even highly
preferable, as the estimates obtained for some of the other model parameters are found to
become more consistent and reliable.

A.5 Conclusions

The application of pilot models for quantifying changes in pilot behavior that result from
variations in simulator motion cueing requires a pilot model structure that can be fitted re-
liably to measurements of pilot tracking behavior. The results presented in this Appendix
show that, in this respect, accounting for different perceptual and processing delays for pi-
lots’ responses to visually presented tracking errors and tracking error rate for controlled
elements for which lead equalization is performed is not feasible. The observable pilot dy-
namics, which are dominated by the response to error rate at higher frequencies, show only
a negligible effect of the error delay, which is therefore typically not identifiable. Having
this non-observable parameter in the model is further seen to yield errors in the estimation
of the remaining model parameters. This is the reason for modeling pilots’ visual responses
using a pilot model based on McRuer et al.’s Precision Model,which only includes a single
lumped delay parameter, for the work described in this thesis.



312 Appendix A



B
Pilot Model Identification

Using Ramp Target Signals

Chapter 3 considered possible changes from purely compensatory control behavior that can
result from the use of deterministic target forcing functions consisting of multiple ramp-like
changes in reference attitude. A second important aspect with respect tothe application
of such alternative forcing function signals is the provided excitation of the pilot-vehicle
system. As detailed in [Zaal et al., 2009a], the typical multimodal pilot models used for
analyzing pilot tracking behavior with physical motion feedback are overdetermined, due
to control-theoretically equivalent terms in the visual and motion channels ofsuch models.
In order to be able to reliably separate pilot visual and motion responses,these alternative
target forcing functions still need to provide sufficient excitation to differentiate the effects
of both pilot operations.
This appendix addresses this problem by using pilot model simulation data,generated us-
ing a pilot model fitted to data from a previous experiment, to evaluate the the excitation
provided by the type of ramp forcing function signals considered in this thesisin Chapters
3 and 7. This is done by evaluating ramp signals with different ramp rates ofchange and
comparing obtained results with those obtained with a quasi-random multisine target signal
as used successfully in many previous investigations.

The contents of this appendix have been published as:

Pool, D. M., Zaal, P. M. T., Van Paassen, M. M., and Mulder, M.,“Identification of Multimodal
Pilot Models Using Ramp Target and Multisine Disturbance Signals”, Journal of Guidance,
Control, and Dynamics, 34(1), pp. 8697, 2011.
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B.1 Introduction

Pilot manual control behavior can be modeled successfully using quasi-linear models that
consist of linear response functions and a remnant signal toaccount for nonlinearities
[McRuer et al., 1965; McRuer and Jex, 1967a; Hosman, 1996; Van der Vaart, 1992; Pool
et al., 2010]. The modeling and identification of pilot dynamics requires measurements that
are typically taken from control tasks in which manual control action is induced using target
and disturbance forcing function signals [McRuer and Jex, 1967a; Stapleford et al., 1969;
Jex et al., 1978]. These target and disturbance signals represent the reference trajectory that
needs to be followed and external disturbances that are to beattenuated, respectively. The
characteristics of these forcing function signals heavilyinfluence the actual control behavior
that is adopted and the quality of pilot model identificationresults. For instance, McRuer
et al. [1965] indicate that random-appearing forcing function signals are required for in-
ducing skill-based manual control. In addition, commonly used multimodal pilot model
identification techniques make use of multiple independentquasi-random multisine forcing
functions to be able to separate the responses to multiple cues [Stapleford et al., 1969].

Quasi-random target and disturbance forcing function signals have frequently been com-
bined in tracking tasks to allow for separate modeling of pilot visual and vestibular re-
sponses [Stapleford et al., 1969; Nieuwenhuizen et al., 2008; Pool et al., 2009a]. Even
though accurate estimates of multimodal pilot model parameters can be obtained with these
identification techniques if multiple quasi-random forcing function signals are applied, this
approach results in control tasks that can be considered as less representative for real-life
piloting tasks. Perturbing the controlled element using a (low-pass) quasi-random distur-
bance signal is not objectionable due to its similarity to turbulence. The following of a
quasi-random multisine target signal, however, is often indicated to be unlike any control
task performed in-flight.

As indicated in [Zaal et al., 2009a], time-domain estimation techniques for identification
of multimodal pilot models put less severe constraints on the design of forcing functions.
Rather than requiring an independent forcing function signal for each model channel as
needed for application of the method described in [Stapleford et al., 1969], data sets used
for time-domain model identification only need to be “persistently exciting” [Ljung, 1999].
This reduced requirement on forcing function design theoretically allows for alternative
types of forcing functions to be used to excite a pilot-vehicle system for multimodal pilot
model identification. For example, an aircraft pitch or rollattitude control task where a
multisine disturbance signal is combined with a target signal consisting of multiple discrete
ramps and steps in target attitude may also yield identifiable measurements of pilot behav-
ior. Such target signals also yield more realistic manual control tasks, similar to in-flight
maneuvers such as a turn entry or altitude change, while flying in turbulence [Zaal et al.,
2008; Pool et al., 2009b].

Two distinct challenges, however, arise when control behavior is analyzed using such
deterministic reference signals. First, the quasi-randomnature of the target signal is lost
and the deterministic nature of multiramp signals may yieldprecognitive (feed-forward) or
pursuit-tracking control behavior [McRuer and Jex, 1967a;Wasicko et al., 1966; Allen and
McRuer, 1979; Hess, 1981, 2006]. As for instance argued in [McRuer and Jex, 1967a] and
[Wasicko et al., 1966], control behavior in a pursuit-tracking situation is found to be a com-
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bination of pursuit (feed-forward) and compensatory (error reducing) control operations.
Therefore, depending on further details of control task design, predictable forcing function
signals could yield a deviation from purely compensatory control, to which the multimodal
pilot models that have been used to analyze control behavior[Zaal et al., 2008; Pool et al.,
2009b; Zaal et al., 2010] need to be adapted.

A second distinct challenge lies in the fact that it is unknown if such alternative forcing
function signals provide enough excitation of the combinedpilot-vehicle system – that is,
yield data sets that are sufficiently informative – to allow for reliable separation of pilots’
visual and vestibular responses [Zaal et al., 2009a]. This appendix investigates this lat-
ter issue by evaluating the accuracy of model identificationresults for control tasks where
a reference signal consisting of multiple ramp-like changes in target attitude is followed.
Unlike the experimental approach to evaluating such alternative forcing functions taken in
[Zaal et al., 2008; Pool et al., 2009b; Zaal et al., 2010], this appendix will make use of pilot
model simulations – based on experimental measurements taken from [Zaal et al., 2008] –
to assess the accuracy and reliability of pilot model identification results. For this analysis
a model of purely compensatory multimodal pilot control is used, yielding a typical multi-
modal pilot model identification problem as for instance also analyzed in [Nieuwenhuizen
et al., 2008] and [Zaal et al., 2009a]. Feed-forward controlstrategies resulting from the use
of deterministic input signals are not considered in the adopted pilot model for two rea-
sons. First, experimental measurements supporting the presence of such control behavior
are sparse and appropriate models for describing this feed-forward have not yet been val-
idated. Moreover, the presence of feed-forward control operations is largely independent
of the problem of separating pilot compensatory visual and vestibular responses as studied
here. As will be shown in this appendix, increased excitation of the pilot-vehicle system is
obtained for increased steepness of the ramps in such alternative forcing function signals.
Therefore, the effects of ramp signal steepness on the multimodal pilot model identification
problem are evaluated by comparing estimation results for signals with different levels of
ramp steepness.

This appendix first gives an overview of the multimodal pilotmodel identification prob-
lem, including a description of the pilot model and identification algorithm used for estimat-
ing the model parameters. Then, Section B.3 provides an analysis of the excitation provided
by signals consisting of a number of ramps using frequency-domain methods. Details of the
pilot model simulations, the different forcing function settings that are evaluated, and the
settings of the identification algorithm are given in Section B.4. Section B.5 presents the
main results of the identification performed on the data fromthe pilot model simulations.
The appendix ends with a discussion and conclusions.

B.2 The Pilot Model Identification Problem

B.2.1 Control Task

During manual control tasks in a multimodal environment, human operators may utilize in-
formation perceived through different perceptual modalities for feedback [Hosman, 1996].
In addition, they may use this information to achieve compensatory control, pursuit control,
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Figure B.1. Schematic representation of a multimodal attitude control task with visual and
vestibular motion feedback.

precognitive control, or any combination of these modes of control operation [McRuer and
Jex, 1967a]. In this appendix, pilot control behavior during compensatory attitude control
(tracking) tasks is investigated, based on the control taskperformed in the experiment de-
scribed in [Zaal et al., 2008]. Fig. B.1 shows a schematic representation of a pilot-vehicle
system where a pilot performs compensatory control. Physical motion feedback, which has
been shown to make a significant contribution to pilot control in multimodal environments
in a number of previous investigations [Meiry, 1967; Shirley and Young, 1968; Stapleford
et al., 1969; Jex et al., 1978], is included as a second feedback channel,Hpm

(s).
Target and disturbance forcing function signals are indicated in Fig. B.1 with the sym-

bols ft andfd, respectively. These signals represent the reference trajectory that is to be
followed and the external disturbances (turbulence) that are to be attenuated by the pilot.
Pilot control action is shown to be the sum of the pilot’s compensatory (visual) and motion
responses,Hpv

(s) andHpm
(s). The inputs to the visual and motion channels of the pilot

model are the tracking errore and the state of the controlled elementx, respectively. An
additional remnant signaln is added to the responses of the linear pilot model channels to
model the nonlinear (uncorrelated) portion of the pilot control signal,u.

In the schematic representation shown in Fig. B.1, the dynamics of the controlled ele-
ment are represented byHc(s). In the experiment of Zaal et al. [2008] acceleration control
was considered. Therefore, the transfer function of the controlled element used in this ap-
pendix is given by:

Hc(s) =
Kc

s2
(B.1)

In Fig. B.1, the symbolKδ,u represents the scaling gain between the pilot control de-
flectionu and the input to the controlled elementδ. The numerical values that were used
for the controlled element gainKc and the control scaling gainKδ,u in the experiment of
Zaal et al. [2008] – which are also applied in the current evaluation – will be specified in
Section B.4.

B.2.2 Pilot Model

Human manual control behavior is inherently time-varying and nonlinear. For carefully
designed control tasks, and specifically for compensatory control tasks as the one studied
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Figure B.2. Quasi-linear multimodal pilot model for compensatory attitude control.

in this appendix, pilot control behavior can be successfully captured using quasi-linear pi-
lot models [McRuer et al., 1965; McRuer and Jex, 1967a]. During compensatory manual
control tasks, pilots are known to adapt their control strategy to the dynamics of the con-
trolled element to achieve approximately single integrator open-loop dynamics over a wide
frequency range around gain crossover [McRuer et al., 1965]. For the double integrator
dynamics defined by Eq. (B.1) this implies that pilots will need to generate lead starting
at frequencies below crossover to compensate for the second-order dynamics ofHc(s). In
addition, the presence of physical motion cues has been shown to affect pilot control be-
havior and task performance in numerous occasions [Meiry, 1967; Stapleford et al., 1969;
Jex et al., 1978; Hosman, 1996; Pool et al., 2010], especially for controlled elements that
require pilots to perform significant lead equalization [Shirley and Young, 1968].

An appropriate quasi-linear multimodal pilot model that captures both compensatory
visual control strategies and the effect of physical motionfeedback on pilot control – as
depicted in Fig. B.1 – is shown in Fig. B.2. Note that the pilotvisual and motion responses
are modeled as separate parallel channels, which have the tracking errore and the system
attitudex as inputs. Furthermore, note that the linear responses of both channels consist of
contributions from the human motion sensory dynamics, pilot equalization dynamics, and
pilot limitations such as perceptual delays and the dynamics of the neuromuscular system.
Similar pilot models have been applied in many earlier studies into human manual control
behavior in vehicle control tasks [Van der Vaart, 1992; Hosman, 1996; Pool et al., 2009a,
2010].

As shown in Fig. B.2, it is assumed that the semicircular canals, which are part of the
human vestibular organ in the inner ear, are the dominant motion sensor for perception of
physical angular motion. The semicircular canals are sensitive to angular accelerations and
their dynamics can be described by [Hosman, 1996]:

Hscc(s) = Kscc
1 + 0.11s

(1 + 5.9s)(1 + 0.005s)
(B.2)

The time constants of the semicircular canal dynamics givenby Eq. (B.2) are assumed
to be constants. The main free parameters of the pilot model shown in Fig. B.2 are the visual
and motion perception gains,Kpv

andKpm
, the corresponding perceptual time delays,τv

andτm, and the visual lead constantTL. The neuromuscular actuation dynamics, depicted
asHnm(s) in Fig. B.2, are modeled as a second-order mass-spring-damper system:
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Hnm(s) =
ω2
nm

s2 + 2ζnmωnms+ ω2
nm

(B.3)

Previous experiments have shown that the characteristic frequencyωnm and damping
factorζnm of the neuromuscular system tend to vary considerably for different control tasks
[Pool et al., 2009a] and motion cueing settings [Pool et al.,2010]. Therefore, both are
also considered as free pilot model parameters, which givesa total of seven pilot model
parameters that are to be estimated when fitting the model of Fig. B.2 to measured data.

B.2.3 Parameter Estimation Procedure

This appendix focuses on the reliability with which the parameters of multimodal pilot
models can be identified. The main problem that is encountered when the parameters of
models like the one depicted in Fig. B.2 are estimated from measurement data is that these
models are overdetermined [Zaal et al., 2009a]. This overdetermined model structure results
from the fact that the semicircular canals are hypothesizedto integrate perceived angular
accelerations in the frequency range of interest to manual control [Hosman, 1996], thereby
yielding an additional source of pilot lead. Previous experiments have shown that pilots
adopt a control strategy in which the available motion cues are used to reduce the amount of
lead that is generated visually, but that pilot visual lead equalization does not fully disappear
[Pool et al., 2009a, 2010]. As pointed out in [Zaal et al., 2009a], this may cause parameter
estimation algorithms to return sets of model parameters that, for instance, attribute all
pilot lead to either the visual or the vestibular pilot modelchannels, sometimes without
significantly degrading the goodness-of-fit. To be able to draw valid conclusions on pilots’
use of physical motion information during manual control, however, it is essential that the
visual and vestibular contributions to the measured pilot control behavior can be separated
reliably.

As described in detail in [Nieuwenhuizen et al., 2008] and [Zaal et al., 2009a], different
identification methods are available for estimating the parameters of multimodal pilot mod-
els from measurement data. Frequency-domain methods, suchas those based on Fourier co-
efficients [Stapleford et al., 1969] and linear time-invariant models [Nieuwenhuizen et al.,
2008], first estimate nonparametric describing functions of the observed pilot control be-
havior. Then, in a second step, the parameters of the pilot model are identified by fitting
the model to this frequency-domain data. Alternatively, time-domain parameter estimation
methods, such as the maximum likelihood estimation (MLE) procedure described in [Zaal
et al., 2009a], estimate pilot model parameters directly from time-domain measurements.

The success of the frequency-domain estimation methods is highly dependent on the
design of the experiment forcing functions [Nieuwenhuizenet al., 2008; Zaal et al., 2009a],
ft andfd in Fig. B.1. In fact, they require independent target and disturbance signals for
successful estimation of the visual and motion describing functions in the first step [Staple-
ford et al., 1969], which is usually achieved by using two multisine forcing function signals
with interleaving frequencies.

For time-domain estimation methods, there is no requirement for independent forcing
functions, but the different inputs to the pilot model (e andx in Fig. B.2) should be “per-
sistently exciting” [Zaal et al., 2009a; Ljung, 1999]. Thisimplies that for control tasks in
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which a disturbance signalfd is to be attenuated, an additional target forcing function is still
needed to provide enough excitation – that is, to induce differences ine andx – to allow for
reliable multimodal pilot model identification. However, unlike for the frequency-domain
estimation methods, the target signal is not required to be an independent multisine signal.
Therefore, multimodal pilot model identification with MLE [Zaal et al., 2009a] theoreti-
cally allows for the use of target forcing function signals consisting of multiple ramp-like
changes in target attitude, instead of a quasi-random target signal [Zaal et al., 2009a, 2008].
It is, however, as of yet unknown if such alternative forcingfunction signals provide enough
excitation of the pilot-vehicle system to allow for reliable estimation for the overdetermined
multimodal pilot model [Zaal et al., 2009a; Pool et al., 2009b], and how ramp signal design
affects the accuracy of model identification results.

B.3 Ramp Forcing Function Characteristics

Ramp- and step-like input signals are successfully appliedfor the identification of unknown
system dynamics in engineering disciplines other than multimodal pilot model identifica-
tion [Takasaki and Fenton, 1977; Hensen et al., 2002; Mulderet al., 2009]. As for instance
pointed out in [Mehra, 1974; Maine and Iliff, 1986; Jategaonkar, 2006], the type of excita-
tion used for gathering the data on which system identification is to be performed signifi-
cantly influences the accuracy and reliability with which model parameters can be estimated.
In many previous investigations into multimodal pilot control behavior, quasi-random target
forcing function signals have been found to yield sufficientexcitation to provide accurate
pilot model identification results [Nieuwenhuizen et al., 2008; Zaal et al., 2008; Pool et al.,
2009a, 2010]. This section uses such a quasi-random multisine target signal taken from
previous research [Zaal et al., 2008] as a baseline for comparing the excitation provided by
signals consisting of ramp or step-like changes in target attitude. In addition, the effects of
one of the design parameters that is thought to affect the excitation provided by such alter-
native forcing functions signals – that is, the steepness ofthe ramps – are evaluated in both
the time and frequency domain.

B.3.1 Fourier Transforms of Ramps and Steps

Fig. B.3 depicts time traces of the basic building blocks of the ramp and step forcing function
signals that are evaluated in this appendix. Fig. B.3 shows signals consisting of a single step
s(t) and of a single rampr(t), which ends at the same final magnitude as the step. Note that
the magnitudes of both the ramp and step are equal toA, and that the ramp takes a timeT
to reach that final value.

Due to the fact that the pilot model defined in Fig. B.2 describes pilot dynamics over
a relatively wide frequency range (0.1-20 rad/s), sufficient excitation over this frequency
range is required for reliable identification of the model. To evaluate the power distributions
(spectra) of the step and ramp signals shown in Fig. B.3, the Fourier transform can be
applied tos(t) andr(t) as is done in Eq. (B.4) and Eq. (B.5), respectively.



320 Appendix B

t, s

s(
t)
/
r
(t
),

-

s(t)

r(t)

0 T

0

A

Figure B.3. Example time traces of single ramp and step signals.

s(t) =

{
0 t < 0
A t ≥ 0

⇐⇒ S(s) =
A

s
(B.4)

r(t) =







0 t < 0
A
T t 0 ≤ t < T
A t ≥ T

⇐⇒ R(s) =
A/T

s2
(1− e−sT ) (B.5)

Eq. (B.4) indicates that the Fourier transform of the step signals(t) is an integrator with
a gain equal toA. Similarly, the Fourier transform of the ramp signalr(t) is approximately
equal to a double integrator with a gain ofA/T . Note that this Fourier analysis ofs(t) and
r(t) already reveals that step signals provide significantly more high-frequency excitation
than ramps signals, whose amplitude distribution decays with frequency at a rate of 40
dB per decade, compared to 20 dB per decade forS(s). Eq. (B.4) and Eq. (B.5) further
show that the power in boths(t) andr(t) increases whenA is increased, that is when the
magnitude of the changes in the commanded signal is larger. In addition, it can be verified
from Eq. (B.5) that the magnitude ofR(s) is inversely proportional toT , which implies
more signal power for steeper ramps.

The Fourier analysis of ramp and step signals presented hereindicates that the amount
of excitation provided by such signals can be manipulated with the parameters that define
the magnitude of ramps or steps, and the steepness of the ramps. In the remainder of this
appendix, the effect of the final parameter, ramp steepness,will be evaluated further. Signals
with step-like changes such ass(t) will be treated as ramp signals with ramps of infinite
steepness.

B.3.2 Comparison with Multisine Signal

This section evaluates how the excitation provided by multiramp signals – that is, the total
amount of power such signals hold and how this power is distributed over the frequency
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content of the signal – compares to that of the quasi-random multisine signals that are often
applied for multimodal pilot model identification. Multisine forcing functions are typically
constructed according to:

fd,t(t) =

Nd,t∑

k=1

Ad,t(k) sin [ωd,t(k)t+ φd,t(k)] (B.6)

The subscriptsd andt in Eq. (B.6) refer to the disturbance and target forcing functions
fd andft, respectively (see Fig. B.1). Eq. (B.6) indicates that these quasi-random multisine
forcing functions are constructed as the sum of a number (Nd,t) of individual sinusoids.
The amplitudes, frequencies and phases of each sinusoid areindicated with the symbols
Ad,t(k), ωd,t(k) andφd,t(k), respectively. The multisine forcing functions that are used in
this appendix are those from a previous experiment [Zaal et al., 2008]. The detailed charac-
teristics of these signals – that is, the amplitude, frequency and phase distributions defined
in Eq. (B.6) – will be defined in Section B.4.2. Here, the time trace and the corresponding
Fourier transform of the multisine target signal from [Zaalet al., 2008] will be used for
comparison with the proposed multiramp signals.

B.3.2.1 Time Domain

Fig. B.4 depicts the multisine target forcing function fromthe experiment described in [Zaal
et al., 2008] in gray. It also shows three examples of the rampforcing functions that are
investigated in this appendix.

t, s

f
t
,d

eg

multisine
ramp, 0.5 deg/s
ramp, 3.0 deg/s
ramp,∞ deg/s

0 10 20 30 40 50 60 70 80

-6

-4

-2

0

2

4

6

Figure B.4. Time traces of multisine and multiramp target forcing function signals.

Note that these ramp signals, all consisting of one positiveand one negative excursion
in commanded target value, are highly similar to those evaluated in previous investigations
[Zaal et al., 2008; Pool et al., 2009b; Zaal et al., 2010]. Furthermore, note that the amplitude
of the excursions (A in Fig. B.3) is chosen to be equal to 5 deg for all ramp signals.Fig. B.4
also shows the effect of ramp signal steepness: here signalswith steepness values of 0.5
deg/s and 3.0 deg/s, in addition to an infinitely steep ramp (step), are depicted.
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B.3.2.2 Frequency Domain

From the comparison of the signal time traces in Fig. B.4 the multisine target signal appears
to provide a distinctly different and significantly more high-frequency excitation than the
ramp signals. This is further evaluated by comparing the frequency content of the forcing
function signals of Fig. B.4 in the frequency domain. Fig. B.5 shows the absolute value of
the Fourier transform of the multisine target signal. For reference, the magnitude distribu-
tion of unity-gain single and double integrators are shown alongside.
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Figure B.5. Absolute value of Fourier transform of the multisine forcing function used by Zaal
et al. [2008].

Note from Fig. B.5 that the multisine target signal only provides excitation at the fre-
quencies of the sinusoids that make up the signal (indicatedwith the circular markers). At all
other frequencies, the multisine signal provides no power.The multisine signal amplitudes
follow a low-pass distribution, as the amplitude of the sinusoid with the lowest frequency
is around 0 dB, where this is reduced to around -40 dB for the highest frequency sinusoid.
Such a distribution of sinusoid amplitudes, with reduced power at higher frequencies, was
proposed by McRuer et al. [1965] to yield signals that were not too difficult to track, but
still allowed for measurement of high-frequency pilot dynamics. Forcing function signals
with the same amplitude distribution as depicted in Fig. B.5have been used successfully in
many later investigations [Pool et al., 2009a, 2010; Zaal etal., 2010].

Fig. B.6 shows the absolute values of the Fourier transformsof the three ramp signals
depicted in Fig. B.4. Note that the single and double integrators shown in Fig. B.5 are also
depicted here, but that unlike Fig. B.5 the vertical axes of these graphs only span [-150,50]
dB.

Comparison of Fig. B.6(a) and (b) with Fig. B.6(c) shows thatthe Fourier transforms of
the signal time traces depicted in Fig. B.3 abide by Eqs. (B.4) and (B.5), respectively. For
both ramp signals the absolute value of the Fourier transform is found to be approximately
proportional to|1/(jω)2|, where increased ramp signal steepness clearly yields increased
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Figure B.6. Comparison of the absolute value of the Fourier transform for three values of ramp
forcing function signal steepness.

signal power as predicted by Eq. (B.5). Fig. B.6(c) shows that for infinitely steep ramps,
the signal amplitudes vary approximately proportional with |1/jω|, yielding comparatively
more high-frequency power than Figures Fig. B.6(a) and (b) show for the ramp signals
with lower steepness. Fig. B.6 thus shows that the steepnessof the ramps in the alternative
forcing function signals evaluated in this appendix affects the (high-frequency) excitation
provided by such signals.

Direct comparison of the excitation provided by multisine an multiramp signals is dif-
ficult. This is due to the fact that the signal power is distributed over a limited number of
discrete frequencies for signals consisting of a number of sinusoids, while for multiramp
signals power is distributed more evenly over all frequencies (compare Figures B.5 and
B.6). To still allow for some comparison, the absolute values of the Fourier transforms of
the different forcing function signals depicted in FiguresB.5 and B.6 have been averaged
over a number of neighboring frequencies around the multisine signal sinusoid frequencies.
As can be observed from Fig. B.7, this yields ten frequency bins (light gray shaded areas)
over which the signal power is averaged. Note that these ten bins together contain all fre-
quencies of the signals’ Fourier transforms up to a frequency of 20 rad/s. For the multisine
signal, the resulting averaged power distribution|F̄ (jω)| (the gray line in Fig. B.7) still
follows the signal’s low-pass characteristic.

The same frequency-domain averaging was also performed on the ramp signal Fourier
transforms depicted in Fig. B.6. Fig. B.8 shows a comparisonof the averaged signal power
|F̄ (jω)| for the different forcing function signals. The average power of the multisine target
forcing function signal is depicted a solid gray line, as also done in Fig. B.7. Note again
from Fig. B.8 that increased ramp signal steepness results in increased signal power over
the full frequency range. In addition, the comparison with|F̄ (jω)| for the multisine signal
shown in Fig. B.8 indicates that the ramp signal with a steepness of 3.0 deg/s already pro-
vides slightly more averaged power. This shows that, depending on the selection of ramp
signal parameters, such ramp signals can provide excitation similar to that achieved with a
multisine signal over the complete frequency range of interest, or even better.
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Figure B.7. An example of the averaged
frequency-domain power calculation, and
definition of the frequency bins, for the mul-
tisine forcing function.

multisine

ramp, 0.5 deg/s

ramp, 3.0 deg/s

ramp,∞ deg/s

ω, rad s−1

|F̄
(j
ω
)|

,d
B

10-1 100 101
-100

-80

-60

-40

-20

0
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B.4 Method

To evaluate the identifiability of multimodal pilot models when using alternative target forc-
ing functions as depicted in Fig. B.3, simulations of multimodal pilot control in a control
task similar to the one described by Zaal et al. [2008] are used. This approach, where the
exact pilot dynamics are known, allows for quantification and comparison of estimation bias
and variance for different forcing function settings and ramp signal steepnesses.

B.4.1 Pilot Model Simulations

To gather the data for testing the accuracy of multimodal pilot model identification results,
simulations of the closed-loop control task depicted in Fig. B.1 were performed. The gain
of the acceleration control dynamics (Eq. (B.1)) was set toKc = 4 and the stick input
gainKδ,u was chosen to be equal to 0.2865. The pilot visual and motion responses were
simulated using the multimodal pilot model depicted in Fig.B.2. Identified values from the
experiment of Zaal et al. [2008] were used for the pilot modelparameters. These parameter
values are listed in the top data row of Table B.1.

Pilot remnantn, which is typically modeled as filtered white noise [Zaal et al., 2009a],
was generated by passing white noise through a fourth-orderlow-pass filter:

Hn(s) =
Kn

(1 + sTn)4
(B.7)

The chosen remnant filter gainKn and lag time constantTn (see Table B.1) were again
based on data from [Zaal et al., 2008]. The remnant gain was chosen to yield a remnant
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Table B.1. Pilot model parameters and identification upper and lowerbounds.

Pilot Model Remnant
Parameter Kpv TL Kpm τv τm ωnm ζnm Kn Tn

Unit − s − s s rad/s − − s

Value 1.2 0.6 4.0 0.25 0.20 11.5 0.3 0.15 0.06
Identification lower bound 0.0 0.0 0.0 0.0 0.0 5.0 0.0− −
Identification upper bound 5.0 10.0 10.0 1.0 1.0 20.0 1.0− −

contribution of 20% to the total pilot control input signal variance, that is,σ2
n/σ

2
u = 0.2

[Zaal et al., 2009a]. By using different white noise sequences, 100 different realizations of
the multimodal control task were simulated.

B.4.2 Forcing Functions

Multisine target and disturbance forcing functions were generated according to Eq. (B.6).
Both ft andfd consisted of 10 sinusoids, whose properties (frequencies,amplitudes and
phases) are listed in Table B.2. Note that these forcing function signals are the same as
those described in [Zaal et al., 2008].

Table B.2. Multisine forcing function properties.

target,ft disturbance,fd
nt ωt At φt nd ωd Ad φd

− rad/s deg rad − rad/s deg rad

6 0.460 1.353 4.437 5 0.383 0.048 -2.088
13 0.997 0.946 2.769 11 0.844 0.175 1.238
27 2.071 0.427 1.809 23 1.764 0.381 -3.895
41 3.145 0.230 3.544 37 2.838 0.502 3.138
53 4.065 0.154 3.687 51 3.912 0.581 -2.807
73 5.599 0.096 3.209 71 5.446 0.684 -1.808

103 7.900 0.061 4.286 101 7.747 0.866 -1.563
139 10.661 0.044 2.992 137 10.508 1.152 -2.953
194 14.880 0.035 5.391 171 13.116 1.496 -2.626
229 17.564 0.032 2.006 226 17.334 2.212 0.864

The disturbance signal was scaled to yield a low-pass disturbance of the controlled el-
ement outputx with a variance of 1.5 deg2. Similarly, the target signal was scaled to have
a variance of 0.375 deg2, that is, a quarter of the power of the disturbance signal. Similar
fractions of target and disturbance signal power have been successfully applied in many
previous experiments [Zaal et al., 2008; Pool et al., 2009a,2010].

Five different ramp target forcing functions like those depicted in Fig. B.3 were defined,
each with a different steepness of the ramps in the signals. The values for the rate of change
of the ramps that were selected were: 0.5, 1.0, 3.0, 10.0 and∞ deg/s. Note that ramps with
1.0 deg/s steepness were considered in [Zaal et al., 2008] and [Zaal et al., 2010] and that
Pool et al. [2009b] evaluated both 1.0 and 3.0 deg/s ramp signals.

The multisine disturbance signal was present during all simulations of the control task
of Fig. B.1 considered here. The target forcing function wasvaried over seven different
conditions: the five different ramp forcing functions, supplemented with a multisine target
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signal condition and a condition with a zero target signal, for reference. The latter two
conditions will be referred to in the following as “MS” and “NO”. Ramp target conditions
are indicated with a capital “R”, followed by the value of theramp rate of change, that is,
“R3.0” indicates the signal with 3 deg/s ramps.

B.4.3 Identification Procedure

For the seven different control task settings described in Section B.4.2, the known parame-
ters of the multimodal pilot model have been estimated from the simulated time traces. The
time-domain maximum likelihood estimation algorithm described in [Zaal et al., 2009a]
was used for the identification. As also described in [Zaal etal., 2009a], an initial estimate
of the model parameters was generated through the use of a genetic algorithm, which op-
timizes the model parameters for 100 iterations. The upper and lower bounds that were
used for each parameter in this step of the estimation algorithm are listed in Table B.1. For
each realization of simulation data, this genetic optimization was performed ten times. The
best parameter estimate, as indicated by the correspondinglowest value of the likelihood
function, was then further refined using an unconstrained Gauss-Newton optimization [Zaal
et al., 2009a]. For each of the target forcing function settings, this gives a total of 100
estimated parameter sets, that is, one corresponding to each remnant realization.

B.4.4 Dependent Measures and Hypotheses

For a well-defined identification problem, repeated maximumlikelihood estimates of model
parameters will have an approximately Gaussian (normal) distribution [Mulder, 1986; Zaal
et al., 2009a], where the mean and standard deviation of the distribution are related to the
bias and variance in the parameter estimates, respectively. Therefore, the first dependent
measure that is considered here is normality of the set of 100parameter estimates obtained
for the 100 different realizations of the simulated multimodal control task. The statistical
Lilliefors test [Lilliefors, 1967] – which compares a measured distribution to a Gaussian
distribution with the same mean and standard deviation – is used to evaluate the normality
of the obtained distributions of parameter estimates. In addition to testing the normality
of the identified sets of parameters, the mean bias and variance of the model parameter
estimates obtained for each of the seven configurations willbe compared.

Due to the increased excitation provided by signals with steeper ramps (see Fig. B.6) it
is expected that pilot model identification results will become more consistent – that is, their
distributions will become more normal – and accurate as rampsignal steepness is increased.
The bias and variance in the parameter estimates are expected to be largest for the condition
without target signal (NO). Based on a comparison of FiguresB.5 and B.6(c), it is expected
that the ramp signals with the highest steepnesses could yield pilot model estimates with bias
and variance that are very similar to that of the estimates for the multisine target condition
(MS).
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B.5 Results

B.5.1 Example Simulation Results

Figures B.9 and B.10 depict example time traces of pilot model simulations for the condition
with a multisine target signal (MS) and the condition with the 1.0 deg/s ramp signal (R1.0),
respectively. For both figures, (a) shows the targetft and the controlled element statex (see
Fig. B.1); (b) and (c) depict the pilot control signalu (and, for reference, the remnant signal
n) and the tracking error signale. Note that the actual simulation time was 90 seconds –
with a measurement time of 81.92 seconds as defined in [Zaal etal., 2008], over which the
model identification was performed – but that only 60 secondsof the simulation data are
depicted here for clarity.
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Figure B.9. Example pilot model simulation
time traces for condition MS.
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Figure B.10. Example pilot model simulation
time traces for condition R1.0.

Figures B.9(a) and B.10(a) show the difference between the target signals used for these
two conditions, and their effect on the controlled element statex. Note that the deviations
of x from the reference trajectory defined byft predominantly result from the perturbations
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introduced by the disturbance signalfd. As can be verified from Figures B.9(b) and (c) and
Figures B.10(b) and (c), the pilot control and tracking error signals (u ande, respectively)
are found to be highly similar for both conditions, which is again due to the same disturbance
signal that is attenuated by the pilot model in both conditions. Only minor differences in
both these signals can be observed due to the different target forcing functions, mainly
during the intervals where the ramp signal is increasing or decreasing.
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Figure B.11. Distribution of estimated values for the pilot visual gainK̂pv compared to its actual
value, Kpv = 1.2. Mean µ and standard deviation σ of each distribution and the Lilliefors
normality test statistic D and correspondingp-value are listed in each graph.
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B.5.2 Pilot Model Estimation Results

Using the time traces ofe, x andu as depicted in Fig. B.9 and B.10, the parameters of the
pilot model were estimated using MLE. This yielded a set of model parameters for each
of the 100 simulations of the control task considered here. The consistency of parameter
estimation results was evaluated by investigating the distribution of the different attained
solutions for the different target forcing function settings. Histograms of the 100 identified
values of the pilot visual gainKpv

, visual lead constantTL, and motion gainKpm
are

depicted in Figures B.11 to B.13, respectively. The normality of the distributions shown
in Figures B.11 to B.13 has been evaluated using the Lilliefors test. The values of the test
statisticD and the correspondingp-values are indicated in each graph. Note that ap-value
less than 0.05 is taken to indicate a significant deviation from normality. These figures also
list the meansµ and sample standard deviationsσ of the presented distributions. The true
values of the corresponding parameters, which were used forthe pilot model simulations
(see Table B.1), are depicted by the solid black lines.

For the evaluation of how the distributions of the estimatedparameters are affected by
the variation in target forcing function signal, the results for the condition with the multi-
sine target signal (MS) as shown in Figures B.11–B.13(a) will be used as the baseline. As
illustrated by these figures, the distribution of the estimated pilot model parameters that re-
sults from the use of a multisine target signal is typically not significantly different from a
Gaussian distribution (p > 0.05), with a mean that is very close to the true parameter value.
Especially forT̂L andK̂pm

, when no additional target signal is used (NO) the estimatedpa-
rameter values show clearly non-Gaussian distributions ofparameters and markedly larger
spread (Figures B.12(b) and B.13(b)). This confirms that some additional target signal is in-
deed needed to ensure both inputs to the multimodal pilot model are “persistently exciting”
[Ljung, 1999] and that the use of two independent multisine target and disturbance forcing
function signals allows for obtaining reliable pilot modelidentification results [Stapleford
et al., 1969; Nieuwenhuizen et al., 2008; Zaal et al., 2009a].

Figures B.11(c) to (g) show the distributions ofK̂pv
for the ramp target signals with in-

creasing ramp steepness. Based on the analysis of ramp signal characteristics in Section B.3,
more consistent estimation results are expected with increasing ramp signals steepness, due
to the increased excitation provided by signals with steeper ramps. As can be verified from
Fig. B.11, the distributions of the estimates of the pilot visual gainKpv

are indeed found to
become narrower (lowerσ), indicative of more consistent estimates, with increasing ramp
forcing function steepness. Compared to the results obtained without an additional forcing
function condition (NO) as shown in Fig. B.11(b), the overall improvement in the estimation
of Kpv

is, however, found to be comparatively modest. In addition,for all target forcing
function settings including the NO target condition, the distributions ofK̂pv

are found to
show no significant deviations from normality (p > 0.05). Fig. B.11 therefore illustrates
that the accuracy with which the pilot visual gain can be estimated from measurement data
is largely independent of the applied target forcing function signal.

The distributions of the estimated values forTL andKpm
depicted in Figures B.12 and

B.13, however, show a significantly more marked effect of thevariation in target forcing
function and ramp signal steepness. This is an expected result, as difficulties with separat-
ing the visual and vestibular contributions (pilot lead) asdefined in the overdetermined pilot
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Figure B.12. Distribution of estimated values for the pilot lead time constant T̂L compared to
its actual value, TL = 0.6 s. Meanµ and standard deviation σ of each distribution and the
Lilliefors normality test statistic D and correspondingp-value are listed in each graph.
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Figure B.13. Distribution of estimated values for the pilot motion gainK̂pm compared to its ac-
tual value,Kpm = 4.0. Meanµ and standard deviationσ of each distribution and the Lilliefors
normality test statistic D and correspondingp-value are listed in each graph.
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model will firstly affect the identified values of these two parameters [Zaal et al., 2009a].
For the low-steepness ramps and especially the R0.5 signal,the estimates of the visual lead
constant and the pilot motion gain are found to be hardly moreconsistent than those found
without an additional target signal (NO). Note the different ranges of the vertical axes in
Figures B.12(b) and B.13(b), and the additional alternativex-axis scaling of the latter. Lil-
liefors test results also indicate that the distributions of T̂L andK̂pm

for these conditions
are non-Gaussian (p ≤ 0.05). As ramp signal steepness is increased, however, the values
of the test statisticD are seen to consistently increase, indicating reducing deviations from
normality, and the distributions of the estimates ofTL andKpm

become increasingly nar-
rower. As can be verified from subfigures (f) and (g) of FiguresB.12 and B.13 by evaluating
the shape of the distributions and the values ofD andσ, parameter estimates are even more
consistent than those found with the multisine target for the two signals with the steepest
ramps, that is, R10.0 and R∞.

The histograms and corresponding statistical analysis depicted in Figures B.11 to B.13
show that the ramp signals proposed in this appendix indeed provide enough power to allow
for reliable estimation of the overdetermined multimodal pilot model’s parameters, as long
as the steepness of the ramps is above a 3.0 deg/s. Fig. B.14 shows the biases1 and standard
deviations (σ in Figures B.11 to B.13) of the estimated parameter distributions as a function
of the type of target signal for all seven pilot model parameters. Note that both the bias
and standard deviation are normalized with respect to the true value of the pilot model
parameter and expressed as a percentage. To allow for comparison with the baseline MS
condition, a gray shaded area marks the bias obtained when using the multisine target signal
(MS). Finally, solid black markers indicate the mean biasesof those conditions for which
the obtained distributions showed no significant deviations from normality, while white
markers are used for those conditions for which the Lilliefors test indicated a deviation
from normality.

The variance bars depicted in Fig. B.14 show that the spread in the estimates in all
pilot model parameters reduces significantly when ramp signal steepness is increased. The
more narrow distributions than found for the MS condition obtained for the steepest ramp
signals, as shown in Figures B.12 and B.13, are confirmed herefor the other pilot model
parameters as well. For most model parameters,σ is found to be clearly lower for the R3.0
to R∞ signals than for MS. Finally, note the typically non-normaldistribution of parameter
estimates and the comparatively large spread in the estimated parameter values obtained for
the NO target condition and the R0.5 ramp signal: for instance for the visual lead constant
TL and the motion delayτm (Fig. B.14(b) and (e), respectively) the variance bars cover a
range of at least±15% of the true parameter value.

In addition to this increase in estimation consistency, thebias in most parameter esti-
mates is also seen to reduce. Note that for the condition without an additional target signal
(NO), the bias in the estimates is typically highest, on average reaching 15-20% for the
visual lead constantTL and the visual delayτv (Figs. B.14(b) and (d), respectively) and
even going up to 60% of the true parameter value for the motiondelayτm (Fig. B.14(e)).
The decrease in bias for increased ramp steepness is perhapsmost clearly visible for the
estimates of both pilot model time delays, as can be verified from Figures B.14(d) and (e),

1Note that bias is defined here as the difference between the mean of the estimated parameter valuesµ and the
true parameter value as both depicted in Figures B.11 to B.13.
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Figure B.14. Mean parameter estimate bias for different target forcing functions.
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respectively. This can be explained by the fact that due to the phase roll-off caused by time
delays, the biggest effect of these parameters is present atthe higher frequencies. The in-
creased high-frequency power in the forcing function signals for steeper ramps allows for
more accurate estimation of these parameters. Note from Fig. B.14(d) and (e) that estimates
for the steepest ramps are at least as accurate as those obtained for the MS condition.

Note that the results described here can provide an explanation for the comparatively
low accuracy of the multimodal pilot model identification results found in some previous
experimental evaluations in which ramp forcing function signals were evaluated [Zaal et al.,
2008; Pool et al., 2009b; Zaal et al., 2010]. In these experiments, ramp forcing function
signals with steepnesses of 1.0 and 3.0 deg/s were used. Figures B.11 to B.14 suggest
that the excitation provided by such signals could be insufficient to guarantee accurate and
reliable pilot model identification results.

B.6 Discussion

The focus of the presented research was not on the effects target forcing function signals
that consist of multiple discrete ramp-like changes in reference value may have on pilot
control behavior. Rather, this appendix investigated whether such signals provide enough
excitation to allow for reliable identification of typical overdetermined multimodal pilot
models. The overdetermined models that are typically used for modeling pilot multimodal
control behavior put requirements on the design of the control task, and especially of the
forcing function signals, to ensure pilot modeling can be applied for analysis of pilot control
behavior. In particular, sufficient high-frequency forcing function power is required for
identification of the high-frequency pilot dynamics that are present in typical multimodal
pilot models.

From an analysis of the proposed ramp forcing function signals in the frequency domain,
using frequency-domain descriptions obtained with the Fourier transform, it was found that
one of the main factors affecting the power these signals hold at higher frequencies is the
steepness of the ramps in the signal. For ramp signals, the signal power is inversely propor-
tional with the square of the frequency, but increases approximately linearly with increased
ramp signal steepness. For infinitely steep ramps, signal power is only inversely propor-
tional to the frequency, yielding even more high-frequencyexcitation. Even though it is
more distributed over all frequencies, on average signals consisting of multiple ramp-like
changes were found to hold an amount of high-frequency powerthat is similar to that con-
tained in multisine target signals that are typically used for multimodal pilot model identifi-
cation.

Simulations of an attitude control task with acceleration control dynamics (double in-
tegrator) based on the results of a previous experiment [Zaal et al., 2008] were used to
evaluate the accuracy of multimodal pilot modeling resultsfor different target forcing func-
tion settings. For the selected control task – defined by the choice of controlled element
dynamics, pilot model parameters and the disturbance signal fd – a clear effect of ramp
signal steepness was found on the accuracy of multimodal pilot model identification results.
For ramps with steepnesses lower than 3.0 deg/s, estimated parameter values were found to
have significantly higher bias and spread than those obtained with a multisine target signal.
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Ramp signals with higher ramp steepnesses were, however, found to yield more reliable
estimates of the multimodal pilot model parameters. This effect was visible in both the bias
and standard deviation of the parameter estimates, but alsoin the distribution of these es-
timates. Using the Lilliefors test, it was shown that for conditions for which less accurate
parameter estimates were obtained, distributions of parameter estimates also showed more
frequent and larger deviations from normality.

The results presented in this appendix indicate that the proposed ramp forcing functions
can allow for reliable pilot model identification for a typical multimodal pilot model iden-
tification problem. However, it can be expected that changesin the control task – that is,
variations in controlled element dynamics, forcing functions, and the adopted pilot control
behavior – will affect the accuracy with which pilot model parameters can be estimated.
This implies that the conclusions drawn here with respect tothe limits of ramp signal steep-
ness that yield accurate estimation results may differ for other control task settings. As
control task and forcing function design are found to affectpilot control behavior in numer-
ous occasions [McRuer et al., 1965; Hosman, 1996], more research is required to investigate
how the results described in this appendix are affected by changes in control task setup. In
addition, whether the proposed ramp forcing function signals indeed provide more realis-
tic control tasks than tracking tasks with two quasi-randomforcing functions also needs to
evaluated in an experimental setting.

In this appendix, the assumption was made that pilot controlbehavior in a combined
disturbance-rejection and ramp target signal following task could still be modeled using
compensatory models of pilot control. As for instance argued in [Wasicko et al., 1966; Allen
and McRuer, 1979; Hess, 1981], predictable forcing function signals may yield pursuit or
precognitive contributions to control behavior during tracking. Especially if the same ramp
signals are tracked a significant number of times, as was donein previous experimental
investigations [Zaal et al., 2008; Pool et al., 2009b; Zaal et al., 2010], it is likely that pilots
will develop a mental model of the control task and the forcing function signal that will
allow for feed-forward control. If ramp signal design is varied, however, for instance by
adopting randomized ramp amplitudes and durations, this would yield similar excitation to
that provided by the signals considered in this appendix, but remove part of the predictability
of the signal. This would then reduce the extent to which feed-forward control is supported.
These effects of using such alternative forcing function signals for modeling pilot control
behavior are planned to be addressed in future experimentalinvestigations.

B.7 Conclusions

Time-domain pilot model identification techniques allow for the use of other forcing func-
tion signals than the quasi-random harmonic signals that are typically used for the identifi-
cation of multimodal pilot control behavior in the frequency domain. This appendix eval-
uated the suitability of signals consisting of multiple ramp-like changes in reference value
for use as the target forcing function during a manual attitude control task. The excitation
and thereby the accuracy of multimodal pilot modeling results provided by such signals
were evaluated using simulations of a typical multimodal pilot model in a control task from
a previous human-in-the-loop experiment. The steepness ofthe ramps in such alternative
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forcing functions was found to heavily affect the bias and variance of the resulting pilot
model parameter estimates. Steeper ramps, which were shownto contain markedly more
high-frequency power, yielded significantly more reliableidentification results. For the sig-
nals with the steepest ramps (> 3 deg/s), estimates for most of the pilot model parameters
were found to be more accurate and consistent than those obtained with a multisine target
signal.



C
In-Flight Experiment Hardware

Verification Tests

Due to the importance of the in-flight measurements of pilot tracking behavior (see Chap-
ters 6 and 7) to the research described in this thesis, a significant amountof care was taken
to ensure that all the hard- and software that was used to perform these experiments was
functioning properly. The details of the experimental setup in the Cessna Citation II labora-
tory aircraft and the role of all hard- and software components are provided in Appendix D.
This Appendix provides further details of the separate offline tests performed to evaluate the
characteristics of three of the hardware components that were crucialto the success of these
in-flight tracking experiments: the visual display used to present the tracking information
to the pilots, the sidestick manipulator used for giving control inputs, and the vertical gyro
used to measure the aircraft attitude to be used for the control tasks.
Note that despite the fact that only roll tracking data is described in this thesis,also behav-
ioral measurements for pitch tracking task were collected in-flight, from which the results
are presented in [Zaal et al., 2011] and [Zaal, 2011]. For this reason, this Appendix also
covers some of the hardware characteristics important for the in-flight pitch tracking tasks.

C.1 Visual Display Delay Measurements

For human-in-the-loop experiments, especially those involving multimodal cueing condi-
tions such as those collected in this thesis, knowledge of the delay with which information
is presented to human operators is crucial for interpretation of the reported experimental
results. Therefore, a custom visual delay measurement system was developed by Stroosma
et al. [2007] for determining the delay of the various visualcueing systems of the simulator
setups available at Delft University of Technology. This visual delay measurement system
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uses a pair of shutter glasses that allows for (subjective) estimation of a time shift between
the time data becomes available in the simulation software and the time it becomes visible
on a visual display.

As described in more detail by Stroosma et al. [2007], this system is based around
software that generates a sinusoidal signal, for which the frequency and the amplitude can
be specified. This sinusoidal signal is used to drive the visual display that is to be tested.
Together with this sinusoidal signal, the software generates a pulsing signal that is used to
time the opening of the shutter glasses at a rate that is synchronous with the sinusoidal signal
presented on the display. By shifting the pulsing signal in time until the shutter glasses open
exactly at the zero-crossings of the sinusoidal signal on the display the delay in the visual
presentation, including delays incurred from graphics calculations and hardware projection,
can be estimated. The software used for this measurement system was implemented in
DUECA (Delft University Environment for Communication andActivation, [Van Paassen
et al., 2000]).

Before the experiments described in this thesis were performed, the delay of the visual
cueing systems of the SIMONA Research Simulator (SRS) were determined using this vi-
sual delay measurement system. For the outside visual system, which was not used for any
of the experiments described in this thesis, the delay was measured to be around 30 ms,
while for the primary and secondary flight displays in the SRSa slightly lower delay of
20-25 ms was measured [Stroosma et al., 2007].

For correspondence of the control behavioral measurementscollected in the Cessna Ci-
tation II laboratory aircraft and those taken in the SRS it was important to ensure the delays
in the visual displays used for both experiments were equal.For determining the visual de-
lay of the hardware used for the in-flight measurements, it was preferably to use exactly the
same soft- and hardware as would be used during the actual experiments, as these all affect
the total visual delay. Due to the fact that a computer with accurate high-frequency timing is
required for driving the shutter glasses, an additional computer, other than the two Toshiba
M700 touchscreen tablet computers of the Citation experiment setup (see Appendix D) was
required, as these tablets lack the required hardware capabilities to perform this task. For
this reason, a separate setup was used for measuring the visual delay, in which the tablet that
performed the display generation during the in-flight experiments (citefis) was connected to
the network of computers available in the Human-Machine Systems Laboratory (HMSLab)
at Delft University of Technology. A schematic representation of the measurement setup is
depicted in Fig. C.1.

As shown in Fig. C.1, the shutter glasses were connected to one of the real-time QNX
machines available in the HMSLab (dutmms4). This computer also ran the DUECA module
that generated the periodic test signals used for the visualdelay test. Input (signal frequency
and amplitude, shutter glasses delay and aperture, etc.) could be given from the experiment
control station of the HMSLab (dutmms1) and through a joystick attached to this computer.
As it would also do during the in-flight experiments, thecitefis tablet only ran thePFD
module, which was adapted slightly to present the signal generated by the visual delay
measurement system.

The visual delay measurement was performed with a number of different frequencies
for the sinusoidal signal (1, 2, 4, and 6 Hz). With all selected visual delay measurement test
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Figure C.1. Test setup used for the visual delay measurements.

frequencies, the visual delay of the setup used for the in-flight experiments was determined
to be around 25 ms.

C.2 Force Stick Measurements

C.2.1 Static Force-Voltage Characteristic Measurements

For the in-flight experiments, a BG Systems JFf force stick was used for giving control in-
puts during the tracking tasks. This side stick was a force stick, meaning the output voltage,
and hence the given control input, was proportional to the force applied to the manipulator.
To evaluate the force-output voltage characteristics of this side stick, static force measure-
ments have been taken at two occasions during the course of this research project. These
measurements were taken by fixing the side stick with its gripaligned horizontally and sus-
pending known weights from the grip to induce a known static force input. The results of
these measurements, which were performed for both the pitchand roll axes of the stick, are
depicted in Fig. C.2. Note that the first set of force-voltagecharacteristic measurements are
indicated with star-shaped markers, while the second set ofmeasurement data is depicted
with open circles. Furthermore, note that the output voltagesux anduy could only attain
values of±2.5V .

Fig. C.2 shows that the force gradient was lower for the stickroll axis than for the pitch
axis. This was by design, as it is more difficult to exert largeforces on a side stick along the
roll axis. Note, however, that the stiffness in pitch was increased after the first test flights
with the system described by Zaal et al. [2010], to ensure that the force that would result in
the stick hitting the mechanical end-stop would result in the maximum (positive or negative)
output voltage. Note from Fig. C.2 that the static force-voltage characteristic measurements
show largely linear force-output gradients of around 14 and23 V/N for the stick roll and
pitch axes, respectively.
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Figure C.2. Static Citation force stick measurements for the roll and pitch axes.

C.2.2 Force Stick Describing Function Measurements

To evaluate the dynamic characteristics of the side stick, measurements were performed on
the Acutronic AC2266L calibration table that is available in the Calibration Laboratory at
Delft University of Technology. For these measurements theside stick was fixed to the
exact center of the rotational platform of the calibration table and rotated with its grip axis
aligned horizontally. For a fixed rotational rate of the calibration table, gravity’s pull would
induce sinusoidal force inputs in the stick pitch and roll channels. The following rotational
velocities were tested: 5, 25, 60, 120, 180, 230, 320, 450, 600, 850, and 1000 deg/s. Note
that these rotational velocities yielded sinusoidal forceinputs in both axes of the side stick
with frequencies ranging from 0.0873 to 17.45 rad/s, that is, approximately the frequency
range over which manual control behavior was measured in thein-flight experiments.

To collect the required measurements of the stick output voltagesux anduy together
with the recorded state of the calibration table, the analogstick voltage outputs were read
into the control cabinet of the calibration table an logged there. After some initial tests, it
was found that the forces on the stick, and hence the measuredoutput voltages remained
very low due to the stick grip’s relatively low weight. Therefore, 1 and 2 kg blocks of steel
were manufactured, which could be mounted on the stick body instead of the stick grip.
Measurements were taken at both these loading conditions for all 11 rotational velocity
settings. From these measurements, the stick dynamics describing functions depicted in
Fig. C.3 were calculated. Circular markers represent the describing function estimates,
which were compiled from the separate rotational velocity measurements. The solid lines
indicate the fits of a pure first-order lag model to these describing functions. The fitted
first-order lag model is given by:

Ĥs(jω) =
Ks

Tsjω + 1
(C.1)
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Figure C.3. Measured Citation force stick describing functions forstick pitch and roll axes
under 1 and 2 kg loading conditions.
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Note from Fig. C.3 that for both loading conditions and for both stick axes, the dynamic
characteristics are found to be approximately those of a pure lag with a break frequency
around 40 rad/s. The difference in amplitude between both loading conditions results from
the different weights mounted on the stick – which is not simply a factor 2, mainly because
of the center of gravity also shifted upwards for the heavierblock, thereby further increasing
stick forces – while the difference in gain between the stickpitch and roll axes results from
the different stiffness of the stick in both axes (see Section C.2.1).

C.2.3 Stick Output Noise and Bias Characteristics

For the force stick used for the collecting the in-flight measurements of pilot tracking be-
havior, the output voltagesux anduy were between±2.5 V. The force measurements, and
hence the resulting stick output voltages, were found to have significant bias and noise on
them. This is illustrated in Fig. C.4, which shows time traces of the roll and pitch axis output
voltages for a recorded measurement run in which no stick inputs were given by the pilot.

u
x

,V

t, s

signal

bias (-0.0858 V)

std (0.0736 V)

(a) Roll

0 10 20 30 40 50 60 70 80
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

u
y

,V

t, s

signal

bias (0.1673 V)

std (0.0411 V)

(b) Pitch

0 10 20 30 40 50 60 70 80
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure C.4. Stick-free (no control) force stick roll and pitch output voltages.

As is clear from Fig. C.4 and the indicated values of the biases and standard deviations
(stds) of the recorded signals, both the bias and the std werenot negligible for both stick
axes. Due to the fact that especially a bias in the stick output signals was not desired during
the in-flight tracking tasks, the stick output biases were monitored during the experiments
and it was made possible to cancel out the biases inux anduy by adding control input offsets
through the Experimental Control Interface (ECI) of the DUECA software (see Appendix
D).
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C.3 Gyro Describing Function Measurements

Perhaps the most important sensor for the pitch and roll attitude control tasks performed
during the in-flight experiments is the vertical gyro (Honeywell VG-14 Three-Axis Refer-
ence SYNchro (Tarsyn)) that is used for measuring the aircraft pitch and roll attitude. As
explained in Appendix D, the attitude measurements of this vertical gyro are collected in
the on-board dSPACE computer of the Cessna Citation II laboratory aircraft, where they
were used for calculating the tracking error that was to be minimized by the pilots during
the tracking tasks. Due to its importance for the in-flight tracking measurements, the dy-
namic characteristics of this vertical gyro (referred to inthe remainder of this section as
“Tarsyn”) were evaluated using the Acutronic AC2266L calibration table in the Calibration
Laboratory at Delft University of Technology. A schematic representation of the setup used
for these tests is depicted in Fig. C.5.

dSPACE

Computer

Tarsyn

Vertical Gyro
Calibration

Table

xdspace xtable xtarsyn

Figure C.5. Schematic representation of the test setup used forthe Tarsyn vertical gyro describ-
ing function measurements.

For the calibration table tests, the Tarsyn gyro was mountedon the rotational platform
of the calibration table. Similar to the setup in the laboratory aircraft, the dSPACE computer
was used to read the gyro measurements. Specifically for these tests, the dSPACE computer
was also used to generate a test signalxdspace, see Fig. C.5. This test signal was then read
into the control cabinet of the calibration table and used asa position reference signal for
the calibration table’s pitch or roll axes. The calibrationtable and the gyro mounted on it
would then move in either pitch or roll along a trajectory defined byxtable. Both the table
attitude and measured Tarsyn attitude (xtarsyn) were fed back into the dSPACE computer,
where all three signals depicted in Fig. C.5 were logged.

The test signalxdspace that was used for these tests was equal to the target forcing func-
tion signal used for our in-flight experiments, scaled-up toyield maximum peak attitudes
of up to 5 deg, and is depicted in Fig. C.6(a). Using this signal for these measurements
allowed for evaluation of the Tarsyn dynamics over exactly the frequency range of interest
to our in-flight experiments. Fig. C.6(b) depicts the spectrum of the test signal (calculated
using 3 periods of the signal shown in Fig. C.6(a)). In addition, it depicts the corresponding
spectrum of the attitude measured by the vertical gyroxtarsyn in black.

Measuring the three attitude signals depicted in Fig. C.5 allows for estimating the dy-
namics of both the calibration table’s response to a position reference signal, and of the
Tarsyn gyro to the table’s response:
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Figure C.6. Time trace of the test signalxdspace used for measuring the Tarsyn describing
functions and a comparison of its spectrum with that of anxtarsyn measurement.

Htable(jω) =
Xtable(jω)

Xdspace(jω)
(C.2)

Htarsyn(jω) =
Xtarsyn(jω)

Xtable(jω)
(C.3)

Fig. C.7 depicts the calibration table and Tarsyn describing function measurements ob-
tained by applying Equations Eq. (C.2) and Eq. (C.3) to the collected measurements for the
gyro pitch and roll axes. Note that the magnitude of bothHtable(jω) andHtarsyn(jω) is
found to be very close to one over the complete range of testedfrequencies. Fig. C.7 further
shows that the response of the calibration table can be approximated as a delay of around
21 ms, while the Tarsyn response in both axes is near-perfectand is approximately equal to
a pure gain with no appreciable phase distortion.
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Figure C.7. Measured describing functions of the Tarsyn verticalgyro dynamics for roll and
pitch attitude measurements.
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D
In-Flight Experiment Software

and Timing

This Appendix gives an overview of the software that was used to perform the in-flight
tracking experiments described in Chapters 6 and 7. The first in-flight experiments for the
research described in these chapters and the thesis by Zaal [2011] that were performed
using this software were conducted in July-August 2009. After these experiments were com-
pleted, a timing error that resulted from the communication between differentportions of
the experiment software was discovered. As this timing error had resultedin significant ex-
tra delay in the control loop pilots closed in the in-flight tracking tasks, this timingproblem
was fixed and new in-flight measurements were taken in October and December 2010. The
results of these second in-flight measurements are described in Zaal [2011] and Chapters
6 and 7. This Appendix provides an overview of the different software modules, and how
they interact with the various hardware components of the experimental setup in the labo-
ratory aircraft. Furthermore, this Appendix will explicitly show the cause and result of the
incurred timing issues, and of some additional offline hardware tests performed to diagnose
this problem.

D.1 July/August 2009 Experiments

D.1.1 Experiment Software Setup

The software used to perform the in-flight pitch and roll tracking tasks described in [Zaal,
2011; Zaal et al., 2011] and Chapters 6-7, respectively, consists of two separate parts, that
run in parallel. First, most of the communication with the various hardware components that
were important for the in-flight experiments was performed by dSPACER© software, imple-
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mented in MatlabR© Simulink R©, that ran on the real-time dSPACE computer that is a part of
the custom Cessna Citation II laboratory aircraft Flight Test Instrumentation System (FTIS),
see Fig. D.1. For more detailed descriptions of the different hardware components used for
the experiments and FTIS, please refer to Chapter 6 and [Zaalet al., 2009d]. In addition to
this dSPACE software, additional experiment software modules were developed in the Delft
University Environment for Communication and Activation (DUECA) [Van Paassen et al.,
2000], implemented in C++, and ran on two experimental computers (Toshiba M700 touch-
screen tablet notebooks, see Fig. D.2). The DUECA portion ofthe experiment software
was used for experiment control and condition selection, for generating the forcing func-
tion signals, for data logging, and for generating the visual displays presented to the pilots.
The dSPACE and DUECA parts of the in-flight experiment software communicated and
exchanged data through User Datagram Protocol (UDP) network communication. Fig. D.3
depicts a schematic representation of the structure of the total experiment software as used
for the first in-flight experiments that were performed in July/August 2009.

Figure D.1. The Flight Test Instrumenta-
tion System (FTIS) mounted in the back of
the Cessna Citation II laboratory aircraft
cabin (dSPACE computer at top right).

Figure D.2. The two Toshiba M700 touch-
screen tablet notebooks in their mounts in
the Cessna Citation II laboratory aircraft
(citefisat left, citecsat right).

D.1.1.1 dSPACE Software

The main functions of the dSPACE part of the experiment software were to communicate
data from DUECA to the experimental fly-by-wire (FBW) controlsystem hardware in the
laboratory aircraft and to collect measurement data from various analog and digital sensors
installed in the aircraft. As can be verified from Fig. D.3, the dSPACE software performed
the following six main activities, of which the details are provided in Table D.1.

As can be noted from Fig. D.3, these different activities within the dSPACE software
were triggered at different frequencies. Some of theAnalog Receiveactivities were per-
formed at 50 Hz, while others ran at 5000 Hz. Note that the activities for sending and
receiving UDP data both ran at 100 Hz, the same rate at which UPD packets were sent from
DUECA (see Section D.1.1.3). The dSPACE software was triggered based on the internal
clock of the dSPACE computer.
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flight experiments.
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Table D.1. dSPACE software activity definition and function.

dSPACE activity Function

AnalogReceive

Receive data from a number of analog sensors (IMU, nose-
boom alpha- and beta-vanes, GPS, vertical gyro, servo actuator
synchro and tacho, etc.) and the customSide Stickinstalled in
the Citation cockpit for the in-flight experiments.

DigitalReceive
Receive data on the current state of the FBW system (channel
selection and activation) from theFBW Interfacemounted in
the Citation cockpit.

ControlCalc

Calculate required control inputs to be sent to the FBW control
system servo actuators based on stick inputs, forcing function
signals from DUECA, and feedback of control system servo
synchro position.

ControlSend
Transmit calculated control inputs to the servo amplifier circuit
boards of the autopilot computer

UDPReceive Receive important data from the DUECA software via UDP

UDPSend Send all important data to the DUECA software via UDP

D.1.1.2 DUECA Software

As can be verified from Fig. D.3, some of the key activities in the experiment software were
performed by a core of software modules implemented in DUECA. The main reason for
this is that this approach allowed for using exactly the samesoftware for, for instance, data
logging and forcing function generation, as used for the corresponding simulator experi-
ments performed in the SIMONA Research Simulator (SRS) (seeChapters 6-7). For the
in-flight experiments, these DUECA software modules ran on two Toshiba M700 touch-
screen notebooks with a Linux operating system. The first, referred to in the remainder of
this appendix ascitefiswas used to generate the visual image of the compensatory or pursuit
displays presented to the pilots during the tracking tasks.The second experiment computer,
referred to ascitecs, ran the rest of the DUECA modules. Table D.2 lists the DUECA soft-
ware modules, as shown in Fig. D.3, and their corresponding functions during the in-flight
experiments.

Communication between the DUECA modules that performed these different func-
tions went through the DUECAchannelsthat are indicated with the diamond-shaped boxes
shown in Fig. D.3. A definition of these different DUECA channels is given in Table D.3.

The two UDP communication links between the DUECA and dSPACEsoftware enti-
ties through theUDPWriter andUDPReadermodules, indicated withUDP1 andUDP2 in
Fig. D.3, will be treated in more detail in Section D.1.1.3. Note that the DUECA software
was triggered on the internal clock of thecitecslaptop and ran at 100 Hz, where the software
triggering chain started with theUDPReadermodule. Furthermore, note from Fig. D.3 that
the DUECA software drove one hardware element, that is, the cockpit display used to dis-
play the control task instruments. This external display was connected to thecitefistablet
through a VGA cable. Finally, the DUECA experiment control interface (ECI) that allowed
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Table D.2. DUECA software module definition and function.

DUECA module Function Ran on

FofuGen
Generate the target and disturbance forcing function sig-
nals used for the tracking tasks.

citecs

ECI
Provide an interface for experiment control and condition
selection.

citecs

DataLogging Log all relevant variables to files. citecs

PFD Generate a visual display image during the tracking tasks. citefis

UDPWriter Send important data to dSPACE software via UDP. citecs

UDPReader Receive important data from dSPACE software via UDP. citecs

Table D.3. DUECA software channel definitions and functions.

DUECA channel Channel type Function

ECIChannel Event
This channel is used to communicate experimental conditions
selected by the experimenter from the experimental control in-
terface to all other DUECA software modules.

FofuChannel Stream

This channel contains the values of the target and disturbance
forcing function signals and the corresponding tracking run
time. Furthermore, it also contains the current value of the
tracking error that is shown on the visual display.

WatchDogChannel Stream

This channel is used to send a watchdog signal to the dSPACE
software to indicate the DUECA software is still running prop-
erly. In addition, this channel is used to send information on
the current state of the DUECA software to dSPACE. This in-
formation is used to verify if the DUECA software is in the
correct state before the FBW system is switched on.

FTISChannel Stream

This channel is used to send all data collected from the ana-
log FTIS sensors and variables calculated from those measure-
ments in dSPACE to DUECA. In the SRS experiments, the data
in this channel was provided by the aircraft and FBW control
system model described in Appendix E.

FBWChannel Stream
This channel is used to communicate the current state of the
experimental FBW system, as selected on theFBW Interface,
from dSPACE to DUECA.
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for selection of experimental conditions and for monitoring of several experiment and air-
craft states during the in-flight tracking runs is shown in Fig. D.4.

Figure D.4. DUECA software experimental control interface (ECI) used for condition selection
and experiment monitoring during the in-flight experiments.

D.1.1.3 UDP Communication

The UDP1 communication link between the DUECA and dSPACE software serves two
main purposes. The first is communicating important data that is generated within the
DUECA software – most notably the target and disturbance forcing function signals and
experiment control variables – to the dSPACE software. A second important function of this
UDP communication link is sending a watchdog signal to the dSPACE software, to indicate
that the DUECA software is running properly. To achieve these two purposes, a DUECA
UDPWriter module is used to send all data in theFofuChanneland theWatchDogChannel
to dSPACE viaUDP1, see Fig. D.3. The DUECAUDPWriter module sent data at a rate of
100 Hz, that is, the rate at which the DUECA simulation was running. As can be verified
from Fig. D.3, the receiving dSPACE activity (UDP Receive) was also triggered at 100 Hz,
and not on the incoming data packets.

The UDP2 communication link was used for sending important data collected by the
dSPACE computer to DUECA. A distinction is made between measurements of various
states of the aircraft and the FBW control system, and currently selected settings of the
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experimental FBW system. These two sets of variables were converted by a DUECAUD-
PReadermodule into two DUECA channels: theFTISChanneland theFBWChannel, re-
spectively. Similarly toUDP1, both the UDP sending and receiving activities were ran at
100 Hz on the respective systems. Note that the DUECAUDPReadermodule was triggered
on the internal DUECA clock, and not on the incoming UDP data packet stream.

D.1.1.4 Tracking Error Calculation

One of the most important functions the combined DUECA and dSPACE software was to
perform was the cueing of physical aircraft motion and visual tracking error information
during the in-flight control tasks. The motion of the aircraft was driven by both a distur-
bance forcing function signal generated in theFofuGenmodule in the DUECA software
(see Fig. D.3) and by control inputs given through the installedSide Stick.

As indicated in Fig. D.3 by the symbole , the tracking error that was presented on
the display was calculated in theFofuGenmodule in DUECA. For this the target forcing
function signal generated in that same module was used, in addition to the measured aircraft
attitude received from dSPACE throughUDP2 and the DUECAFTISChannel. To make
sure that the effects of the target and disturbance forcing function signals would affect the
control tasksynchronously, the calculated tracking error was sent to dSPACE, togetherwith
the target and disturbance forcing function signals. As indicated with the superscript “∗” in
Fig. D.3, these signals were then looped back to DUECA, wheree∗ was then presented on
the cockpit display.

D.1.2 Experiment Software Timing Issues

After performing the first in-flight experiments in July/August 2010, an issue with the ex-
perimental setup, either in the hardware or in the used software, in the laboratory aircraft
was identified. The collected in-flight measurements of pilot tracking performance, control
activity and further control behavioral metrics showed large discrepancies with measure-
ments taken for the same control task in the SRS. After extensive testing of all hard- and
software components of the experiment setup, this issue wasfound to result from the UDP
communication between the DUECA and dSPACE parts of the experiment software (see
Fig. D.3).

D.1.2.1 Software Timing Issues Evaluation

To illustrate the issue with the UDP communication link between the dSPACE and DUECA
parts of the experiment software, Fig. D.5 depicts the number of time steps by which the dis-
turbance forcing function signal was shifted between the variablefd present in the DUECA
FofuChanneland the variablef∗d in the DUECA FTISChannel. The data presented in
Fig. D.5 was calculated from all recorded measurement runs during the four flights per-
formed in July/August 2009. Data from the two different pilots that performed the exper-
iment on each flight are depicted in each graph and are indicated with differently colored
markers.
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Figure D.5. Time shift∆ between disturbance signals inFofuChanneland FTISChannelduring
the July/August 2009 in-flight experiments.
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Note from Fig. D.5 that the time shift betweenfd andf∗d increases with time, with a
constant rate of about10 ticks (equivalent to0.1 s) per hour for all four flights. For some of
the flights, the time shift increased to over55 ticks (0.55 s), and some subjects only started
their part of the experiment when∆ was already larger than0.4 sec. Note that the fact that
the time shifts do not start from0 is a result of the fact that DUECA and dSPACE were
typically already running since the start of the flight and that tracking task measurements
were not started immediately.

D.1.2.2 Timing Issues Evaluation Test Setup

To further evaluate the timing problems encountered duringthe July/August 2009 exper-
iments and to attribute these to either one of the UDP communication links (UDP1 and
UDP2, Fig. D.3), a test setup for diagnosing the timing issue was developed in an iron-bird
setup that included the relevant components of the experimental setup. This setup made
use of DUECA and dSPACE software that were equivalent to thatused for the in-flight ex-
periments. As indicated in Fig. D.6, however, theFofuGenmodule was adapted to send a
test signalfs(t) from DUECA to dSPACE in two independent ways, in order to separate
possible delays incurred in theUDP1 andUDP2 communication links. As can be verified
from Fig. D.6, the test signalfs was:

1. directly fed to theAnalog Receiveactivity of the dSPACE software through one of
the analog inputs normally used for receivingSide Stickinputs.

2. put on theFofuChannelin the variableeFOFU and then sent to the dSPACE software
via UDP1as also done during normal software operation.
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Figure D.6. Test setup used for identifying timing issues.
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The two different instances offs within the dSPACE software, contained in the dSPACE
software variableseFTIS anduFTIS (see Fig. D.6), were then sent back to DUECA via
UDP2, where they ended up as the corresponding variables in theFTISChannel. By eval-
uating the time shift of these two signals coming back from dSPACE with respect to the
test signal as generated in DUECA (eFOFU in Fig. D.6), the following time shifts can be
calculated:

∆1 = ∆(eFTIS , eFOFU ) (D.1)

∆2 = ∆(uFTIS , eFOFU ) (D.2)

Note from Fig. D.6 that∆1 results from bothUDP1 and UDP2 (in addition to lags
induced by dSPACE and DUECA calculations), while∆2 results only fromUDP2, asfs
ends up in dSPACE through the SERIAL link undelayed.

The test signalfs that was used for these ironbird tests is depicted in Fig. D.7(a). The
value of fs changes between+1 and−1 for increasing intervals, ranging from1 to 20
time steps. Such a signal allows for clear and unambiguous determination of time shifts.
Note that Fig. D.7(a) only depicts one period of the signal. For the measurements taken to
evaluate∆1 and∆2, more than20 periods of this signal were used.
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Figure D.7. Test signal used for measurement of software timing and the results of the timing
test.

Fig. D.7(b) depicts the results of these ironbird measurements. The horizontal axis of
this graph shows the time in hours from the starting of the DUECA software and the taking
of the measurement. The data then shows the corresponding time lags∆1 (black) and∆2
(white) expressed in the number of (100 Hz) clock ticks. Fig. D.7(b) clearly shows that∆2,
which is only affected byUDP2, remains constant over the duration of running the software
at around3 ticks. ∆1, however, clearly shows a linear increase with time of around 10
ticks/hour, as also visible in Fig. D.5, and reaches a full second of delay within6 hours
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of running the software. Together with the data from the in-flight experiments depicted in
Fig. D.5 this showed the timing issue resulted from the sending of UDP data from DUECA
to dSPACE (UDP1).

Upon further inspection of theUDP Receiveactivity in the dSPACE software it was
found that rather than returning the latest datagram received at a certain trigger of the
dSPACE software, the datagram at the top of the circular buffer was read and used in the
dSPACE software. With the uncoupled timing of the DUECA and dSPACE parts of the
software, this caused datagrams to accumulate in the bufferover time, yielding the use of
older data in dSPACE software compared to what was generatedin DUECA.

D.2 October/December 2010 Experiments

D.2.1 Experiment Software Setup

To solve the software timing issue described in Section D.1.2, both the DUECA and dSPACE
software were adapted for a second set of in-flight experiments, performed in October and
December 2010. The adapted architecture of this second version of the in-flight experiment
software is depicted in Fig. D.8. The main modifications withrespect to Fig. D.3 are:

1. Adding a message counter to the UDP communication packetsfor communication
monitoring

2. Synchronizing the DUECA clock with incoming UDP data fromdSPACE

3. Modification of theUDP Receiveactivity in dSPACE

4. Moving the calculation of the tracking error from DUECA todSPACE

D.2.1.1 Modifications to dSPACE Software

As can be verified from Fig. D.8, two additional activities were added to the dSPACE soft-
ware compared to the software used for the July/August 2009 experiments (Fig. D.3). The
first was the addition of theMsg Counteractivity, which incremented an integer message
counter variable every100 Hz time step of the dSPACE software. This message counter
was appended to the UDP data packets sent to DUECA (UDP2). The second was the cal-
culation of the tracking error, which was moved to dSPACE from DUECA. More details of
this tracking error calculation can be found in Section D.2.1.4.

The biggest modification to the dSPACE software, however, was made to theUDP Re-
ceiveactivity. To ensure datagrams could no longer accumulate inthe circular buffer of
the dSPACE network communication interface, this activitywas now ran at double the rate
at which UDP data was sent from DUECA, that is, at200 Hz. In addition, the dSPACE
Simulink R© software used for reading data from the circular UDP buffer was modified to
always read from the buffer until there were no more packets in the buffer, and then send
through the latest received set of data. Note that this required storing of the latest received
data in a local variable in the dSPACE software.
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D.2.1.2 Modifications to DUECA Software

Comparing Fig. D.8 with Fig. D.3, an extra channel was added to the DUECA software: the
MsgCountchannel. This channel was used to send the identification number of the latest
data packet received throughUDP2 to theFofuGenmodule. Note that this identification
number is generated in theMsg Counteractivity in the dSPACE software. TheFofuGen
module adds the received counter to theWatchDogChannelthat is sent back to dSPACE,
where it is looped back to DUECA throughUDP2 and is appended to theFTISChannel.
Comparison of the two received message counters (the one that is on theMsgCountchannel
and the counter in theFTISChannel) allows for direct evaluation of the time lags in the
software communication and calculation cycle.

In addition, the settings of the DUECAUDPReadermodule were modified. The func-
tionality built in this module was used to synchronize the internal clock used for triggering
the DUECA software activities with the UDP data coming in from dSPACE. This ensures
more synchronous operation of both parts of the software, leading to a lower probability of
a communication error occurring.

D.2.1.3 Modifications to UDP Communication

Other than the changes to the UDP receiving activities of both DUECA and dSPACE, and
the addition of a number of variables in the UDP packets goingthoughtUDP1 andUPD2,
the UDP communication itself was the same as in the July/August 2009 experiments.

D.2.1.4 Modifications to Tracking Error Calculation

As indicated in Fig. D.8 by the symbole , the calculation of the tracking error was moved
from DUECA to dSPACE in the modified version of the experimentsoftware. The reason
for this is that this omits the extra looping of calculated tracking errors depicted in Fig. D.3.
Fig. D.8 shows that now the target and disturbance forcing functions are sent from DUECA
to dSPACE throughUDP1 and then used for calculating the tracking error and calculating
the FBW control input, respectively, in the dSPACE software. The tracking error is then
calculated using the measurements of aircraft attitude andsent to DUECA throughUDP2.

D.2.2 Experiment Software Timing Verification

Using the two message counters added to the software for the October/December 2010
experiments (see Section D.2.1.2), the timing discrepancies introduced by the communi-
cation between DUECA and dSPACE can be evaluated explicitlyfor each time step. For
all recorded runs of the experiments performed in October/December 2010 (four flights),
Fig. D.9 depicts the maximum discrepancy∆ between the two message counters.

A comparison of the values of∆ shown Fig. D.9 with those depicted in Fig. D.5 shows
that the increasing time shift was adequately taken care of with the measures described in
Section D.2.1. For the large majority of the recorded runs, the maximum time shift was
found to be between2 and4 ticks. Note that a minimum of2 ticks is already expected, con-
sidering the fact that consecutive iterations of both the DUECA and the dSPACE software
are included in the time difference between both counters. The results shown in Fig. D.9
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Figure D.9. Maximum MsgCount∆ for all three flights performed in October 2010 and the one
flight performed in December 2010.
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are summarized in Table D.4, which presents percentages forwhich the different values of
∆ were found to occur. Note that in only3% of the recorded runs, the maximum timing
discrepancy was found to be more than4 ticks, where that percentage was100% during the
July/August experiments (see Fig. D.5).

Table D.4. Distribution of maximum timing discrepancies (335 logged files).

Max. MsgCount∆ Occurrence
100 Hz ticks %

2 22%
3 50%
4 25%
> 4 3%

For the3 of the11 experiment runs that made up the3% for which max.∆ > 4, the
difference between both message counters is plotted against time in Fig. D.10. For each
run, the left graph shows the full time trace of the timing discrepancy∆, while the right
graph shows a detail of the largest peak in the signal. Note that even for these recorded
runs, which represent the worst collected sets of data in terms of timing performance, the
timing discrepancy is around2 for the large majority of the measurement interval. Values
of ∆ > 2 are depicted as white circular markers, while the maximum∆ occurring in each
run is depicted with a black circle.
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Figure D.10. Example timing discrepancies∆ as a function of time for the first three runs for
which max. ∆ > 4 as measured using the October/December 2010 experiment software.



E
Cessna Citation II Fly-By-Wire
and Aircraft Dynamics Model

This Appendix describes the nonlinear simulation model of the combined Cessna Citation
II fly-by-wire control system and aircraft dynamics used for performing the simulator parts
of the experiments described in Chapters 6 and 7. This Appendix only covers the model
developed for the aileron control system and Citation II roll dynamics as used for the roll
tracking experiments described in this thesis. A similar model of the elevatorcontrol system
and Citation II pitch dynamics, developed for the comparison of in-flight and simulator mea-
surements of pilot pitch attitude tracking behavior described by Zaal [2011], is described
there. In addition to a description of the different components of the combined fly-by-wire
control system and aircraft dynamics model, this Appendix also providesa comparison of
simulated model outputs to in-flight measurements of actual aircraft and control system
responses.

E.1 Model Structure and Implementation

Fig. E.1 shows the structure of the developed model of the fly-by-wire (FBW) control sys-
tem and the Cessna Citation II roll dynamics. The gray shadedareas in Fig. E.1 indicate
three different components of the model, from left to right:a nonlinear structural model of
the fly-by-wire control system, a flight dynamics model for evaluating the hinge moments
acting on the left and right ailerons, and a (linear) model ofthe Cessna Citation II aircraft
dynamics in response to an aileron input. The different submodels defined in Fig. E.1, and
the symbols indicating the different forces and displacements by which these submodels are
interrelated, will be defined in the remainder of this Appendix.
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Figure E.1. Combined roll channel fly-by-wire control system andCessna Citation II aircraft
dynamics model structure.

The model shown in Fig. E.1 is based on earlier work into the modeling of the control
system of the Cessna Citation II laboratory aircraft [Gorsira, 1993; Spithost, 1993; Lubbers,
2009; Mulder et al., 2009]. The complete model was developedin MatlabR© and SimulinkR©

and converted to C++ code using Real-Time WorkshopR© for implementation in the DUECA
software (see Appendix D) used for performing the experiments in the SIMONA Research
Simulator and the laboratory aircraft.

E.2 Fly-By-Wire Control System Model

Figure E.2. The Honeywell
SM-200 servo actuator.

As described in more detail in [Zaal et al., 2009d], the FBW
control system implemented in the Cessna Citation II labora-
tory aircraft made use of the installed Honeywell automatic
flight control system architecture. When active, the automatic
flight control system can exert control forces on all control
surfaces through electric Honeywell SM-200 servo actuators
(see Fig. E.2) that are coupled to the cabling of the conven-
tional aircraft controls. A mathematical model of this FBW
control system implementation has been developed based on
earlier models of the automatic flight control system of the
Cessna Citation II laboratory aircraft [Gorsira, 1993; Spithost, 1993]. As can be verified
from Fig. E.1, this model of the FBW control system is relatively detailed and contains
submodels for all the different components of the real-lifesystem.

During the experiments performed with the experimental FBWcontrol system (Chapters
6 and 7), pilot control inputs to the fly-by-wire control system, indicated with the symbol
ux in Fig. E.1, were given using an additional sidestick that was installed in the Citation
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cockpit. Furthermore, an external disturbance signalfd, which was generated on an exper-
imental computer, was also put on the aircraft using the FBW system. To achieve the ap-
propriate FBW control system response to these external input signals, theServo Controller
shown in Fig. E.1 implemented the following proportional control law, which ensured that
the aileron servo drum rotationθda accurately followed the total fly-by-wire control system
inputKsux + fd:

uxap
= Kap [Ksux + fd −Kθdaθda] (E.1)

The Servo Controllerproportional gainKap was set to 100. As can be verified from
Fig. E.1, the resulting autopilot control input signaluxap

formed the input to theServo
Amplifier and Servosystem of the FBW control system. A schematic representation of this
subsystem is depicted in Fig. E.3.

The model of theServo Amplifier and Servosystem shown in Fig. E.3 was developed
by Gorsira [1993] based on physical measurements of the different hardware components
of the automatic flight control system. TheServo Amplifiersare a set of electrical circuits
that check and, if needed, limit the inputs given to the servoactuators. Based on the FBW
control input signaluxap

, theServo Amplifiersgive a voltage inputUa to the armature of
the servo actuator. The full details of the model for theServo Amplifiersare described by
Gorsira [1993].

The model of the servo actuator dynamics as shown in Fig. E.3 includes the effects of
viscous friction forces on the rotation of the servo drum andthe forces put on the servo
actuator by the attached control system cabling (F4). The output of theServo Amplifier
and Servosubsystem model is the servo drum rotationθda, which, as can be verified from
Fig. E.1, drives all components of the conventional aircraft control system. A schematic
representation of these different control system components is shown in Fig. E.4, with the
FBW control system servo shown at the bottom of the figure.

As shown in Fig. E.4, for the aileron control system the servoactuator is connected to
theAileron Sectorwith a cable system here defined asCable 4(see Fig. E.1. A rotation of
the aileron sector induces a rotation of the left and right ailerons through the cable systems
2 and 3. Finally, also the conventional aircraft controls (Wheel) are connected to the aileron
sector throughCable 1. As indicated in Fig. E.4, all four cable subsystems are modeled
as spring-damper systems with stiffness and damping characteristics calculated from the
material properties and lengths of the cables. Equations (E.2) to (E.9) define the model for
the aileron control system depicted in Fig. E.4. The cable forces for theCable 1to Cable
4 systems are given by Equations (E.2) to (E.5), while the corresponding models for the
Wheel, Aileron Sector, andLeft andRight Aileronsystems are given by Equations (E.6) to
(E.9), respectively.
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θda + ka3

θ̇da

)

−RASb

(

ca3
φAS + ka3

φ̇AS

)

(E.5)

φ̈a =
1

Ia
(Fala1

+ (F2 − Fc)la2
) (E.6)

φ̈AS =
1

IAS
(F1RASb

+ F2RASt
− F3RASt

+ F4RASb
− FcRASb

) (E.7)

δ̈al
=

1

Ja

(

Hal
+ lδaF2 − 1.5

RASb

RASt

lδaFc

)

(E.8)

δ̈ar
=

1

Ja

(

Har
+ lδaF3 − 1.5

RASb

RASt

lδaFc

)

(E.9)

The model parameters of the different FBW control system subsystems defined above,
which were used for the simulation model of these full nonlinear control system dynamics,
are listed in Table E.1.

E.3 Aerodynamic Hinge Moment Model

As can be verified from Equations (E.8) and (E.9), the total moment that acts on both
ailerons is the sum of the cable forces (F2 andF3 for the left and right ailerons, respec-
tively), the Coulomb friction forceFc, and the aerodynamic hinge moments that work on
the left and right ailerons,Hal

andHar
, respectively. Due to the strong aerodynamic forces

that act on both ailerons during flight, which results in considerable forces in all compo-
nents of the aileron control system, a sufficiently accuratemodel of the aerodynamic hinge
moment is required to accurately model the fly-by-wire control system dynamics. Using a
typical aircraft flight dynamics model, the hinge moment is calculated from:

Hal
=

1

2
ρV 2c̄aSaChar

(E.10)

Har
=

1

2
ρV 2c̄aSaChal

(E.11)

In Equations (E.10) and (E.11),ρ andV represent the air-density and airspeed, respec-
tively. The aerodynamic chord̄ca and surface areaSa of the aileron, which are both known,
see Table E.1. The hinge moment coefficientsChal

andChar
are used to include the effects

of variations in aircraft state on the aerodynamic hinge moments as given by Equations
(E.10) and (E.11). As described in more detail by Mulder et al. [2009], the following mod-
els for the aileron hinge moment coefficients of both ailerons were assumed:
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Table E.1. Fly-by-wire control system model parameters.

Submodel Parameter Description Value Unit

Servo ControllerKap Servo controller proportional gain 100−

Servo

rd Servo drum radius 0.0252 m
Ra Servo armature resistance 18Ω
Kt Servo torque constant 0.22 (Nm/A)/(Vs/rad)
Jm Total servo inertia 3.066·10−5 kg m2

Fvisc Total servo viscous friction 6.0·10−5 N m s/rad
Ks Servo synchro gain 151.1−
Kga Servo gear ratio 38.9−
Ktacho Servo tacho gain 0.0677 Vs/rad

Cables

ca1
Cable 2 & 3 stiffness 26,833 N/m

ka1
Cable 2 & 3 damping coefficient 26 Ns/m

ca2
Cable 1 stiffness 30,060 N/m

ka2
Cable 1 damping coefficient 17.5 Ns/m

ca3
Cable 4 stiffness 90,180 N/m

ka3
Cable 4 damping coefficient 52.5 Ns/m

Yoke
Ia Yoke inertia 0.03084 Nm/(rad/s2)
la1

Yoke outer arm 0.144 m
la2

Yoke inner arm 0.055 m

Sector
IAS Aileron sector inertia 0.001 Nm/(rad/s2)
RASb

Aileron sector outer arm 0.135 m
RASt

Aileron sector inner arm 0.095 m

Aileron

Ja Aileron inertia 0.03778 Nm/(rad/s2)
lδa Aileron arm 0.079 m
ca Aileron aerodynamic chord 0.45677 m
Sa Aileron surface 1.22 m
ya Aileron lateral offset 5.77 m
b Wing span 15.9 m
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Chal
= Ch0

− Chα
αl + Chδa

δal
+ Ch

δ̇a
δ̇al

+ Chβ
β
b

2V
(E.12)

Char
= Ch0

− Chα
αr + Chδa

δar
+ Ch

δ̇a
δ̇ar

+ Chβ
β
b

2V
(E.13)

Equations (E.12) and (E.13) show that the hinge moment coefficients for the left and
right ailerons are modeled as linear combinations of a baseline coefficient valueCh0

and
contributions that depend on the angle of attack, aileron deflectionδa and deflection ratėδa,
and the angle of sideslipβ. Note that the hinge moment coefficients of the left and right
ailerons depend on their respective angle of attack, aileron deflection, and aileron deflection
rate, indicated with subscriptl andr, respectively. The aileron angles of attackαl andαr

account for differences in local angle of attack at the ailerons due to aircraft roll rates and
are defined as:

αl = α− 2ya
b

pb

2V
(E.14)

αr = α+
2ya
b

pb

2V
(E.15)

In Equations (E.14) and (E.15),p denotes the aircraft roll rate,b is the aircraft wing
span, andya indicates the lateral offset of the ailerons with respect tothe aircraft roll axis in
aircraft body axes. It should be noted that aircraft yaw rates can also affect the local angle
of attack at the ailerons. As explained in more detail in [Mulder et al., 2009], however,
this effect of aircraft yaw motion onαl andαr was found to be comparatively small and is
therefore not taken into account in the hinge moment model.

In the model for the aerodynamic hinge moment, the baseline hinge moment coefficient
Ch0

is used to ensure zeroHa for the trim condition used for the experiments (α0 = 3.56
deg,δa0

= 0 deg,δ̇a0
= 0 deg/s, andβ0 = 0 deg). For the remainder of the hinge moment

coefficients listed in Equations (E.12) and (E.13) linear relations with the local angle of
attack –αl andαr for the left and right ailerons, respectively – were estimated by Mulder
et al. [2009] from measured flight test data. The estimated equations forChα

to Chβ
are

given by:

Chα
= −0.120αl,r + 0.0159 (E.16)

Chδa
= −0.705αl,r + 0.0795 (E.17)

Ch
δ̇a

= −0.121αl,r + 0.0065 (E.18)

Chβ
= −0.0384 (E.19)

E.4 Citation II Aircraft Dynamics Model

As indicated in Fig. E.1, the model of the fly-by-wire controlsystem described in Sec-
tion E.2 is combined with a model of the Cessna Citation II aircraft dynamics. The air-
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craft dynamics model consisted of linear transfer functions that related the required aircraft
model states to the aileron deflectionδa. These transfer functions were determined from
in-flight measurements at the flight condition that was chosen for the in-flight experiments
(h = 17, 000 ft, V = 160 kt). For the roll attitude control tasks described in Chapters
6 and 7 the aircraft state variables that are important for the simulation model are the roll
attitudeφ, the roll ratep, and the sideslip angleβ. The linear transfer function models for
the response of these three aircraft states to an aileron input are given by:

Hφ,δa(s) =
−15.4246(s+ 2.038)

s(s2 + 4.646s+ 7.937)
(E.20)

Hp,δa(s) =
−15.4246(s+ 2.038)

(s2 + 4.646s+ 7.937)
(E.21)

Hβ,δa(s) =
0.02074(s+ 10.4)(s− 10.37)(s+ 0.02001)

s(s+ 0.6348)(s2 + 0.9297s+ 5.462)
(E.22)

E.5 Comparison of Model Responses and In-Flight
Measurements

To illustrate the accuracy of the developed model for the combined FBW control system and
Cessna Citation II aircraft dynamics, Fig. E.5 shows comparisons of model responses with
corresponding in-flight measurements. In Fig. E.5, time traces of the roll attitudeφ, the roll
ratep, the aileron servo drum rotationθda, and the aileron deflectionδa are depicted. For
generating the model responses, the developed FBW control system model was simulated
with the fly-by-wire control inputux and external disturbancefd that were recorded for the
presented in-flight measurements as inputs. As is clear fromthe comparisons presented in
Fig. E.5, the simulated responses of the developed FBW control system and Cessna Citation
II aircraft dynamics model match the in-flight measurementswell.
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Figure E.5. Comparison of combined fly-by-wire control system and Cessna Citation II dynam-
ics model response time traces with in-flight measurements.
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F
Aircraft and Simulator
Single-Loop Tracking

Measurements

Chapter 6 describes a comparison of multimodal pilot roll tracking behavior measured in
real flight and, for varying roll motion cueing settings, in a moving-base flight simulator.
The in-flight portion of this experiment was performed using the Delft University of Tech-
nology Cessna Citation II laboratory aircraft. The simulator measurementswere collected
in the SIMONA Research Simulator (SRS) at Delft University of Technology. As described
in Chapter 6, extreme care was taken to minimize differences in the experiment setups used
for both parts of this combined in-flight and simulator experiment. In Chapter 6 the ob-
served differences in pilot tracking behavior measured in both these experimental setups
are used to draw conclusions on how pilots’ use of physical motion feedback differs for
a given simulator motion cueing setting compared to real flight. This Appendixdescribes
a side-by-side comparison of reference measurements of single-loop(no motion feedback)
pilot tracking behavior collected in both the experimental setups in the laboratory aircraft
and the SRS. These reference single-loop measurements were performed to quantify possible
differences in pilot control behavior resulting from remaining differencesin the experimen-
tal setups used for both parts of the experiment. These observed differences in single-loop
pilot tracking behavior were taken into account in the comparison of in-flight and simulator
behavioral tracking measurements described in Chapter 6.
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F.1 Introduction

This section presents the data from the comparison between single-loop tracking task mea-
surements taken in the SRS and the Cessna Citation cockpit setups (conditions S0 and C0,
respectively, see Table 6.3). The objective of this explicit comparison of control behavior
measured in both experimental setups was to filter out possible differences in tracking be-
havior that resulted from the difference in experimental apparatus, rather than differences in
motion cueing. Measured tracking performance and control activity, crossover frequencies
and phase margins, and estimated behavioral pilot model parameters are compared. For all
dependent measures, a dependent t-test is performed to evaluate statistically significant dif-
ferences between the data from both experimental setups. Itshould be noted that if a sample
for either S0 or C0 was found to be significantly different from a Gaussian distribution, a
Wilcoxon signed-rank test was performed instead of a dependent t-test.

F.2 Tracking Performance and Control Activity

Fig. F.1 shows measured tracking performance and control activity, expressed in the vari-
ances of the tracking error signale and the control signalu, respectively. As was also done
in Fig. 6.24, the contributions of the disturbance and target forcing function signal to these
signal variances were separated from the remnant contribution using a spectral method [Jex
et al., 1978], and are presented separately. The variance bars indicate the 95% confidence
interval of the mean total signal variance. The results of t-tests performed on the total signal
variances, as well as the contributions offd, ft, andn, are listed in Table F.1. Note that as
the data forσ2

e andσ2
e,n were found to show distributions that deviated significantly from

a Gaussian distribution (as tested using a KolmogorovSmirnov test),not-statistics but the
results of a Wilcoxon signed-rank test are listed for these variables.
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Figure F.1. Comparison of mean no-motion performance and control activity for single-loop
SRS and Citation measurements (conditions S0 and C0).
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Table F.1. Dependent t-test results for variance component data (df = 6).

Variable Statistic,t Sig.
σ2
e T = 5a −
σ2
e,fd

-2.28 −

σ2
e,ft

-1.54 −

σ2
e,n T = 7a −

σ2
u -1.09 −
σ2
u,fd

-1.27 −

σ2
u,ft

-1.39 −

σ2
u,n -0.85 −

a = non-normal data, Wilcoxon signed-rank test results
∗∗ = highly-significant (p < 0.05)
− = not significant (p ≥ 0.1)

Fig. F.1 shows slightly higherσ2
e and σ2

u, indicating worse performance and higher
control activity, for the measurements taken in the Cessna Citation setup (C0). The observed
increase in bothσ2

e andσ2
u are not found to result from one of the contributing signals in

particular, as all three contributions to the total signal variance are slightly larger for C0
than for S0. As can be noted from the depicted variance bars, the observed differences are
small compared to the spread in the measurements. As can be verified from Table F.1, the
increase in variance is not found to be statistically significant for bothσ2

e andσ2
u, and the

different contributions to both signal variances.

F.3 Crossover Frequencies and Phase Margins

Fig. F.2 shows the measured single-loop crossover frequencies and phase margins for exper-
imental conditions S0 and C0. In Fig. F.2 the data from the individual subjects is depicted
with gray markers. The average of the data and the corresponding 95% confidence intervals
are depicted with black markers and variance bars. Finally,Fig. F.2(a) and (b) also show
the results of dependent t-tests performed on the measured crossover frequencies and phase
margins, respectively.

The gray data in Fig. F.2 shows that for some subjects slightly lower crossover frequen-
cies and slightly higher phase margins were measured for condition C0 than for S0. As
also found for the tracking performance and control activity data, however, on average the
measured values ofωc andϕm were found to be approximately equal to 1.5 rad/s and 60
deg, respectively, for both single-loop conditions, as is also confirmed by the t-test results
presented in Fig. F.2.

F.4 Pilot Control Behavior

In the same format as Fig. F.2, Fig. F.3 presents the estimated values of the five parameters
of the model for the pilot visual responseHpv

(jω) – Kv, TL, τv, ωnm, andζnm – and
the corresponding pilot model VAF. Note that as the estimates of TL were not normally



376 Appendix F
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Figure F.2. Comparison of mean no-motion crossover frequenciesand phase margins for single-
loop SRS and Citation measurements (S0 and C0).

distributed, a Wilcoxon signed-rank test was performed on this data instead of dependent
t-test.

With the exception of the neuromuscular actuation natural frequencyωnm, only very
small differences between the estimated parameters for conditions C0 and S0 can be ob-
served in Fig. F.3. Only the values ofωnm, which for C0 are on average found to be around
2 rad/s lower, are significantly different for both conditions. This difference in the value of
ωnm suggests a difference in the combined manipulator and humanneuromuscular actua-
tion dynamics between both experimental setups. This difference is believed to result from
the usage of a different sidestick manipulator (see Section6.4.1) and the difference in arm
support and positioning with respect to manipulator supplied for both single-loop measure-
ments. For S0, pilots’ arms were supported by an armrest mounted on the right side of the
right pilot seat in the SRS, while for C0 pilots would simply rest their arms on the cockpit
geometry.

Expect for a difference in neuromuscular actuation dynamics, which is of secondary
importance to our results and can be readily explained by a difference in cockpit geometry,
all considered dependent measures show little differencesfor conditions S0 and C0. This
is believed to give further confidence in the comparison of in-flight and flight simulator
measurements of pilot tracking behavior as performed in this paper.
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Figure F.3. Comparison of mean no-motion pilot modeling results for single-loop SRS and Cita-
tion measurements (conditions S0 and C0).
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G
Simulator Hood Tracking

Measurements

This Appendix summarizes the main results of a set of measurements collected in the SI-
MONA Research Simulator in March-April 2011 to verify the possible effectof the hood that
was worn by our experiment pilots during the collecting of our in-flight measurements on
their adopted control strategy. This Appendix presents measured tracking performance and
control activity, pilot-vehicle system open-loop characteristics, and identified pilot model
parameters for the three pilots for which these reference measurements were taken.

G.1 Introduction

As described by the excellent overview of all variables thataffect a pilot-vehicle system
compiled by McRuer and Jex [1967a], the manual control behavior that is adopted in a
certain control task is a function a large number of factors both external and internal to the
human operator performing the control task. The comparisonof pilot tracking behavior
measured in-flight and in a flight simulator for varying motion cueing settings as attempted
in this thesis therefore is a highly intricate one. As described in [Zaal et al., 2011] and
Chapter 6, where the results of the pitch and roll attitude tracking tasks performed for our
evaluation of flight simulator motion fidelity are presented, a lot of care was taken to match
important experimental variables in both measurement setups, to minimize the variation in
pilot behavior due to all pilot-vehicle system variables except the available motion feedback.
Of course, despite all these efforts we were still left with some unavoidable differences in the
experimental setup, cockpit environment, and experimental procedures during the collection
of behavioral measurements in-flight and those taken in the SIMONA Research Simulator
(SRS).
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One of these results remaining discrepancies results from the fact that to ensure only
pilots’ responses to the central visual cues (presented on the head-down display) and phys-
ical motion cues (presented through the true aircraft motion in the Citation and simulator
motion cueing in the SRS) it was found necessary to constrainpilots’ fields of view to only
the head-down display during the in-flight measurements. The reason for this is that the in-
flight cockpit environment could hypothetically yield the same information useful to some
of the control tasks as provided through physical motion cues from a number of different
sources:

• peripheral visual cues from the out-of-the-window view [Pool et al., 2008a],

• the changing angle of incidence of the sunlight in the aircraft cockpit under variations
in aircraft attitude,

• the observable movement of the control column or control wheel, which were me-
chanically linked to the actuators that provided the Fly-By-Wire (FBW) control in-
puts.

To ensure that only pilots’ responses to physical motion cues were measured it was
therefore decided to have the pilots wear the hood depicted in Fig. G.1 during the in-flight
experiments. This hood was a slightly extended version of the hood that was used in earlier
in-flight experiments [Zaal et al., 2010] and effectively deprived the experiment pilots of all
visual cues except for those presented on the head-down display.

(a) Close-up of the hood.
(b) The hood worn during Citation experi-
ments.

Figure G.1. The field-of-view constraining hood that was used during the in-flight tracking tasks
(a) and one of the pilots performing an in-flight tracking task while wearing the hood (b).

A crucial choice in the design of these experiments was to usethis hood in during the
in-flight control tasks, but to allow pilots to perform the simulator measurements without
wearing the hood. Wearing the hood during the simulator tracking tasks would have been
superfluous, as the three different additional cues that could not be controlled otherwise in
the Citation cockpit were easily omitted in the simulator cockpit environment. Furthermore,
all pilots indicated some level of discomfort after wearingthe hood for extended periods of
time. As the simulator sessions took markedly longer than the collection of the in-flight
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measurements, due to the variation in motion cueing settings that needed to be evaluated in
the flight simulator, and no effect of wearing the hood was expected after some preliminary
tests in the SRS performed in July 2009, it was decided to refrain from the use of the hood
during the simulator tracking tasks.

This Appendix summarizes the results of a set of reference measurements that were
performed in the SRS in April 2011 to validate this choice in the experimental design by
explicitly evaluating the possible effect of the hood on pilot behavior during the pitch and
roll attitude tracking tasks. For both control tasks the motion cueing setting that yielded the
highest pilot head accelerations were selected for these measurements: the unfiltered pitch-
heave only condition for the pitch task and the 1-to-1 roll motion condition for the roll task.
Measurements for both control tasks were collected both with the hood on (HD) and without
(NHD). Three of the same pilots that also performed the otherCitation and SRS control
tasks were asked to perform these reference measurements. Care was taken to balance out
these different conditions over the different participants, yielding the experimental design
listed in Table G.1.

Table G.1. Experiment design.

Hood Test Main Experiment Session Session
Subject # Subject # I II

1 6 Pitch, NHD Pitch, HD Roll, HD Roll, NHD
2 1 Roll, NHD Roll, HD Pitch, HD Pitch, NHD
3 3 Pitch, HD Pitch, NHD Roll, NHD Roll, HD

This Appendix compares measured tracking performance, pilot-vehicle system crossover
parameters, and pilot modeling results for these referencemeasurements with the results
from the main experiments that are described in [Zaal et al.,2011] and Chapter 6. Note
that here only the data collected for the same three pilots isused as the reference, yielding
different mean data than obtained for the full experiment subject pool.

G.2 Tracking Performance and Control Activity

Tracking performance and control activity for tracking with and without hood are compared
by evaluating the time-domain variances of the recorded tracking error and sidestick input
signals, respectively. Furthermore, the relative contributions of the target and disturbance
forcing functions and pilot remnant to these signal variances are computed using the spectral
method proposed by Jex et al. [1978]. Fig. G.2 and G.3 show these variance distributions
for the pitch and roll tracking tasks, respectively. The depicted variance bars depict the 95%
confidence intervals over the data from the three subjects. In addition to the data from the
reference experiment described here (HD and NHD conditions), for comparison also the
results from the main experiment that compared in-flight andflight simulator performance
are depicted for the same subjects. Note that the motion configuration for the HD and NHD
conditions corresponded to the “PH” and “(1,0)” conditionsfor the pitch and roll tracking
tasks, respectively. Finally, Table G.2 shows the corresponding results of a paired T-test
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that was performed to evaluate possible differences between measurements for the HD and
NHD conditions.

Fig. G.2(a) and Fig. G.3(a) show that for both the pitch and roll tracking tasks the at-
tained level of tracking performance was highly similar to that observed from the corre-
sponding previous measurements. When comparing tracking performance for the HD and
NHD conditions, tracking is found to be slightly less accurate with the hood on. The vari-
ance decomposition bars suggest that this decrease in tracking performance results from a
slight decrease in both the target and disturbance signal contributions. Table G.2 shows that
the observed decrease in tracking performance can be shown to be statistically significant
at the 95% level for the pitch tracking task,T (2) = 4.46, p = 0.047. It should be remarked
that a marked decrease in tracking performance when wearingthe hood was only observed
for subject 1. This subject tends to lean forward during tracking to enhance his view of
the head-down display to optimize his performance. When wearing the hood, this was no
longer possible, resulting in a consistent decrease in performance for this subject. For the
other two subjects no consistent decrease in performance was observed for either task.

Fig. G.2(b) and Fig. G.3(b) show that control activity was found to be markedly higher
than observed from the corresponding previous measurements for both the pitch and roll
tracking tasks. A clear explanation for this difference is not available, but it may result
from the different setup of both experiments. However, the simulator conditions during the
previous experiment were performed mixed, which could hypothetically make differences
between conditions less extreme than would be observed if all conditions were evaluated
separately, as was done in this reference experiment. Furthermore, a decrease in control
activity is typically observed with experiment duration due to fatigue effects. Fig. G.2(b)
and Fig. G.3(b) do show almost equal control activity for theHD and NHD conditions,
which is confirmed by the T-test results shown in Table G.2.

G.3 Pilot-Vehicle System Crossover Parameters

G.3.1 Pitch Tracking

Fig. G.4 shows the crossover frequencies and phase margins of both the disturbance and
target open-loop responses [Jex et al., 1978]. Again, the results of the main simulator fidelity
experiment are also depicted for reference. Note that here individual subject results are
presented in gray, while means and 95% confidence intervals over the three participants
are depicted with black square markers and variance bars. Results of T-tests that were
performed to evaluate possible differences in these parameters between condition HD and
NHD are presented in Table G.3.

It is clear from Fig. G.4 that the adopted disturbance-loop crossover frequenciesωc,d

were around 1 rad/s higher than those measured in the earlierexperiment for condition
PH. In addition, the disturbance-loop phase margin is also to be consistently below the
reference data. This suggests the pilots adopted a control strategy that results in a more high-
gain disturbance-rejection loop, which would then be expected to yield better disturbance-
rejection performance. This, however, is not apparent fromFig. G.2. The T-test results
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Figure G.2. Average pitch tracking error and control signal variance decompositions.
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Figure G.3. Average roll tracking error and control signal variance decompositions.

Table G.2. T-test results for tracking performance and controlactivity data.

Measure T p Sig.

Pitch,σ2
e 4.46 0.047 ∗

Pitch,σ2
u 0.12 0.917 −

Roll, σ2
e 1.37 0.304 −

Roll, σ2
u -0.10 0.930 −
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Figure G.4. Pitch tracking crossover data for “hood” experiment.

Table G.3. T-test results for pitch tracking task crossover parameters.

Measure T p Sig.

ωc,d 0.20 0.857 −
ωc,t -2.25 0.153 −
ϕm,d 0.22 0.845 −
ϕm,t 2.84 0.105 −
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presented forωc,d andϕm,d in Table G.3 show no significant differences in these parameters
for condition HD and NHD, as would be expected from Fig. G.4.

For the target-loop much better correspondence of the data for conditions HD and NHD
with those of the previous experiment can be observed from Fig. G.4. However, for the
target-loop data a slight increase inωc,t and a slight decrease inϕm,t can be observed for
tracking without hood compared to condition HD. Though consistent, these differences are
comparatively small – around 0.15 rad/s and 3 deg forωc,t andϕm,t, respectively – and are
not statistically significant as can be verified from Table G.3.

G.3.2 Roll Tracking

Fig. G.5 and Table G.4 show the same results as presented in Fig. G.4 and Table G.3, but
then for the roll tracking task. As can be verified from Fig. G.5, the data collected for
the HD and NHD conditions corresponds very well with the measurements for (1,0) from
the previous experiment, except for consistently slightlyhigher target-loop phase margins
(around 5 deg increase).

As can be verified from Fig. G.5(a) and Table G.4, no difference in disturbance-loop
crossover frequency was observed between conditions HD andNHD. An average3.5 deg
increase inϕm,d, however, was observed for the roll tracking task, which theT-test results
indicate is statistically significantT (2) = −8.97, p = 0.012 due to the marked consistency
over the different subjects. Note that this decrease in disturbance-loop phase margin is much
smaller than the drop inϕm,d observed between conditions (1,0) and CIT.

The target-loop crossover frequencies and phase margins are found to remain approx-
imately constant for conditions HD and NHD, as can be verifiedfrom Fig. G.5 and Ta-
ble G.4.

G.4 Pilot Modeling Results

G.4.1 Pitch Tracking

Fig. G.6 presents the identified multimodal pilot model parameters for the pitch tracking
task for the three subjects that performed the hood reference measurements. Again, the
data from the original experiment is presented alongside the data from the HD and NHD
conditions, for reference. Table G.5 lists the results of a paired T-test performed to check
for possible differences in pilot model parameters betweenconditions HD and NHD.

As can be verified from Fig. G.6, identified pilot model parameters for conditions HD
and NHD show good correspondence to the previous measurements for condition PH. Both
pilot gains (Kv andKm) are found to be slightly higher, and both the identified leadand lag
time constants (TL andTI , respectively) are found to be slightly higher, than those measured
for condition PH. These slight changes are consistent changes in pilot behavior that result
from increased reliance on physical motion information [Pool et al., 2008a, 2010].

Only very small differences can be observed between the identified pilot model parame-
ter estimates for conditions HD and NHD presented in Figs. G.6 and G.7. This is confirmed
by the T-test results listed in Table G.5, which shows no significant difference between the
identified values for both conditions for all pilot model parameters.
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Figure G.5. Roll tracking crossover data for “hood” experiment.

Table G.4. T-test results for roll tracking task crossover parameters.

Measure T p Sig.

ωc,d 0.43 0.711 −
ωc,t 0.10 0.930 −
ϕm,d -8.97 0.012 ∗
ϕm,t 1.07 0.397 −
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Figure G.6. Pitch tracking pilot model parameters.
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Table G.5. T-test results for pitch
tracking task pilot model param-
eters.

Measure T p Sig.

Kv -0.49 0.671 −
TL -0.54 0.642 −
TI -1.56 0.259 −
Km 0.45 0.695 −
τv 0.15 0.894 −
τm 0.51 0.659 −
ωnm -1.22 0.346 −
ζnm -0.10 0.929 −

Table G.6. T-test results for roll
tracking task pilot model param-
eters.

Measure T p Sig.

Kv -0.78 0.517 −
TL 0.44 0.700 −
Km -0.85 0.486 −
τv 0.21 0.852 −
τm -0.26 0.820 −
ωnm -1.37 0.304 −
ζnm -0.24 0.832 −
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G.4.2 Roll Tracking

Fig. G.8 presents the identified multimodal pilot model parameters for the roll tracking task.
Table G.6 lists the corresponding results of a paired T-testperformed to check for possible
differences in pilot model parameters between conditions HD and NHD.

Also for the roll tracking task the correspondence between the pilot model parameters
identified for conditions HD and NHD and the reference measurements for the (1,0) condi-
tion is very good. As opposed to the observations made for thepitch task, here slightly lower
pilot gains (Kv andKm) and slightly higher visual lead time constantsTL are found for HD
and NHD, but especially for the gain parameters the spread over the different subjects is too
large to draw definitive conclusions.

Just as was found for the pitch tracking task, the identified pilot model parameter values
presented in Figs. G.8 and G.9 show almost no differences between conditions HD and
NHD, suggesting only minor effects of wearing the hood during tracking. This is again
confirmed using the T-test results, which for the roll tracking data are presented in Table G.5
and which show no significant difference in the identified values for both conditions for any
of the pilot model parameters.

G.5 Discussion

This Appendix presented the results of a series of referencemeasurements taken in the SRS
for both pitch and roll tracking to evaluate the effect of wearing the field-of-view constrain-
ing hood, which was utilized for the in-flight measurements taken for these tasks, on the
pilot behavior. The reason for performing this experimental verification was to exclude the
possibility that part of the behavioral discrepancy observed between the flight simulator and
in-flight data in [Zaal et al., 2011] and Chapter 6 could be attributed to this hood, rather than
to differences in the supplied physical motion cues.

Using measurements of pilot tracking performance and control activity, pilot-vehicle
system crossover characteristics, and identified multimodal pilot model parameters it was
shown for both tasks that pilot behavior and performance were only marginally affected if
subjects were wearing the hood. Even thought slightly worsetracking performance was ob-
served for both tracking tasks for the HD condition, the underlying differences in crossover
characteristics and pilot model parameters were not found to reveal consistent and signifi-
cant changes of pilot dynamics due to the wearing of the hood.At least, all observed changes
were much smaller than the observed differences with the in-flight (CIT) measurements.

The results from these later simulator measurements, despite being performed by the
same subjects that performed the simulator experiments in July-August 2009, showed some
marked differences with the earlier simulator measurements. These differences may in part
results from the different experimental setup used in both experiments (full randomization
of conditions vs. per-condition evaluation), but they alsoindicate how difficult it is to use
such “snapshots” of pilot behavior for drawing engineeringconclusions, as pilot behavior
is affected by so many variables that can not always be controlled in an experimental envi-
ronment.
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Figure G.8. Roll tracking pilot model parameters.
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H
Motion Fidelity Pilot

Comments

Chapter 8 described an experiment performed in the SIMONA ResearchSimulator in which
pilot roll tracking behavior was measured for ten different roll motion cueing settings. The
six pilots who performed this experiment were asked to give a subjective assessment of
the level of simulator motion fidelity on a visual analogue rating scale (VAS) after each
tracking run. Furthermore, they were encouraged (but not required) to provide comments
on the motion cueing for the condition they had just evaluated. The pilot comments that
were collected for all ten conditions of this experiment are included in this Appendix.
Each table in this Appendix lists the collected pilot comments for one of the conditions
of the experiment described in Chapter 8, both in Dutch – in which nearly allcomments
were originally given – an in English. Furthermore, for each comment the corresponding
information on the pilot, run number, and given fidelity rating also included for reference.
The different experimental conditions are indicated with their identifier from Chapter 8 (C0-
C9) and their motion filter gain and break frequency setting in the format (Kmf , ωmf ). In
a number of comments, the pilots referred to, or made judgments relative to,the motion
conditions they had evaluated before the run they were commenting on. In these instances,
this previously evaluated condition is indicated in the comment between square brackets.
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Table H.1. Motion fidelity pilot comments for condition C0 (0,0).
Comment (DutchEnglish) Subject Rating Run
Categorie computerspelletjes.Computer games category. 4 9.9 36
Nintendo.Nintendo. 4 9.7 78
Dit lijkt wel helemaal geen motion cues, maakt het moeilijk.This feels like no
motion cues at all, makes it difficult.

5 4.3 18

Geen motion cues, ook niet goed.No motion cues, also not good. 5 10.1 26
Geen cues, lastig.No cues, difficult. 5 12.1 35
Geen motion lijkt het, maar je hebt dan in ieder geval geen last van het teveel.No
motion it seems, but then at least you are not bothered by the excess.

5 11.6 51

Lastig zonder motion cues.Difficult without motion cues. 5 14.5 54
Helemaal geen motion, dat is nou ook weer niet goed.No motion at all, that is
also not good.

5 11.8 73
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Table H.2. Motion fidelity pilot comments for condition C1 (0.5,0).
Comment (DutchEnglish) Subject Rating Run
Iets te weinig rol informatie.Slightly too little roll information. 1 52.9 24
Te weinig rol.Too little roll. 1 64.6 37
Lateraal een haartje te sterk.Lateral cues are slightly too strong. 1 63.5 51
Rol een haartje te veel, maar lekker.A little too much roll, but nice. 1 77.0 53
Te zwak, vooral in rol.Too weak, especially in roll. 1 49.2 72
Te weinig rol.Too little roll. 1 45.4 78
Weinig beweging, maar OK.Little motion, but OK. 2 61.4 17
Wel goed.Quite OK. 2 84.9 32
Redelijk weinig, had wel het gevoel dat het redelijk klopte.Rather little motion,
did feel quite accurate though.

2 67.5 51

Een iets minder filter, te weinig beweging.A bit worse, too little motion. 2 40.6 57
Een stuk minder dan de vorige [C3, (1,0)].A lot worse than the previous run [C3,
(1,0)].

2 27.2 80

Ietsje beter, maar niet wat het moet zijn.A bit better, but not what it should be. 4 35.2 23
Weer heel matig.Again very poor. 4 39.8 39
Weinig overeenkomst met de werkelijkheid.Little agreement with reality. 4 35.4 41
Een beetje laag op mijn schaal.A bit low on my scale. 4 29.8 66
Duidelijk onder de Balkenende-norm.Clearly below Balkenende’s norm. 4 35.5 75
Lijkt iets grotere cues dan hiervoor [C7, (0.5,1)], redelijk realistisch.A bit larger
motion cues than the previous one [C7, (0.5,1)], reasonably realistic.

5 52.9 21

Goede cues.Good cues. 5 62.5 22
Realistisch.Realistic. 5 54.7 34
Weinig motion, maar lijkt niet onrealistisch.Little motion, but does not seem
unrealistic.

5 54.2 47

Cues klein maar fijn.Cues small but nice. 5 58.7 60
OK. OK. 5 57.7 71
OK. OK. 5 55.3 75
Een beetje lafjes, voelt allemaal gedempt aan.A bit bland, it all feels muffled. 6 46.9 13
Hier voel je niet zoveel van, alsof het rustiger weer is.Here you do not feel very
much, like the weather calmed down.

6 56.4 30

Stuurt wel OK.Controls quite OK. 6 69.0 39
Het beweegt wel, maar het voegt allemaal zo weinig toe, het is allemaal zo
gedempt.I does move, but it all adds so little, it all feels so muffled.

6 35.7 55
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Table H.3. Motion fidelity pilot comments for condition C2 (0.75,0).
Comment (DutchEnglish) Subject Rating Run
Iets te sterk in de laterale versnellingen.Lateral accelerations are a little bit too
strong.

1 63.4 15

Te veel rol.Too much roll. 1 48.3 31
Lekker.Very good. 1 81.3 35
Te weinig gedempt, beweegt nog door terwijl je verwacht dat hij stopt.Too little
damping, you keep moving while you would expect it to stop.

1 36.2 48

Te weinig rol demping.Too little roll damping. 1 45.2 69
Goede, maar niet zo goed als de vorige [C3, (1,0)].A good one, but not as good
as the last one [C3, (1,0)].

2 32.3 15

Wel een goede, kreeg een beetje gevoel voor de rolhoeken.A pretty good one, I
got a bit of a feel for the roll attitude.

2 89.6 34

Mooi filtertje, geeft ook gevoel voor de rolhoek.A nice little filter, also gives you
some feel for the roll attitude.

2 88.3 47

Een stuk beter, wel goed.A lot better, quite good. 2 77.6 72
Niet al te heftig, volgens mij wel aardig, goed.Not too intense, I think this one is
quite acceptable, good.

2 78.9 76

Redelijke bewegingsrespons, het voelde goed.A reasonable motion response, it
felt good.

4 76.3 24

Weer een hele lage in de respontie.Again very low in terms of response. 4 27.3 47
Een vrij matige respons.A relatively poor response. 4 55.1 57
Een beetje boven modaal.A bit above average. 4 79.9 69
Iets boven modaal.A bit above average. 4 80.7 71
Met cues gaat het beter, lijkt toch iets overdreven.It goes better with cues, does
seem a bit exaggerated.

5 41.9 19

Iets overdreven? Niet helemaal zeker van.A bit exaggerated? I am not really
sure.

5 41.9 28

OK, iets overdreven.OK, a bit exaggerated. 5 53.8 37
Iets te veel motion.A bit too much motion. 5 37.4 46
Voelt wel goed.Feels about right. 5 60.1 67
Realistisch, voelde wel weer goed.Realistic, felt alright again. 6 76.7 18
Stuurde ook wel OK.Also controlled quite OK. 6 71.7 52
Wel OK, maar het kan beter.Quite OK, but could be better. 6 53.9 63
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Table H.4. Motion fidelity pilot comments for condition C3 (1,0).
Comment (DutchEnglish) Subject Rating Run
Niet zo best, lateraal te weinig demping.Not too great, too little lateral damping. 1 45.9 20
Rol OK, lateraal te veel.Roll OK, too much lateral motion. 1 52.6 28
Lateraal te veel.Lateral too much. 1 50.6 46
Te sterk lateraal.Too strong laterally. 1 36.7 54
Te sterk.Too strong. 1 50.3 63
Te veel laterale beweging.Too much lateral motion. 1 50.2 79
Heftig, hoge gain, wel goed de effecten van de disturbance en de target te schei-
den. Intense, high gain, does allow for separating the effects of the disturbance
and the target though.

2 75.5 13

Het nerveuze filter.The nervous filter. 2 37.9 41
Aardig goed, niet het beste dat we gehad hebben.Reasonably good, not the best
we have had.

2 76.8 52

Vooral wat zijdelingse versnellingen, niet zo’n geweldig filter.Mainly lateral
accelerations, not a very good filter.

2 46.5 61

Een wat beter filter.This filter is a bit better. 2 76.2 68
Een redelijk goed filter, ik voelde de rolhoek goed.A reasonably good filter, I
really felt the roll angle.

2 82.8 79

Ook wel een goede.Also quite a good one. 2 80.2 86
Wel lekker.Quite nice. 3 89.0 15
Dat voelde meer als een echt vliegtuig.That felt more like a real aircraft. 4 81.6 27
Voelde goed, een beetje als “thuis”.Felt good, a bit like “home”. 4 81.8 32
Een behoorlijke respons.A reasonable response. 4 83.9 48
Iets boven matig.A little better than poor. 4 78.9 58
Een goede score op mijn schaal.A good score on my scale. 4 88.6 70
Nou, 80 procent op de schaal van Zaal.Well, 80 percent on Zaal’s scale. 4 80.9 76
Wat te uitgesproken cues.The cues are a bit too pronounced. 5 35.3 15
Iets overdreven, lijkt het.A bit exaggerated, it seems. 5 43.4 31
Overdreven.Exaggerated. 5 23.8 33
Motion goed voelbaar, wel te veel.Motion well perceivable, but too much. 5 27.0 49
Te veel.Too much. 5 29.3 61
Goed te vliegen, maar wel te veel motion.Very flyable, but too much motion. 5 15.6 78
Hier voel je vooral de verstoring, waar je bij andere condities vooral de respons
van het vliegtuig op je eigen inputs voelt.Here you mainly feel the disturbance,
where for some of the other conditions you mainly feel the response ofthe aircraft
to your own inputs.

6 71.9 24

Een beetje nerveus, wel prettig.A bit nervous, quite agreeable. 6 96.8 34
Hiermee kon ik prima sturen.This allowed me to control just fine. 6 77.5 48
Het stuurt toch fijner als hij gewoon wiebelt.For the control task it is nicer when
it rocks from side to side.

6 82.6 60
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Table H.5. Motion fidelity pilot comments for condition C4 (0.5,0.5).
Comment (DutchEnglish) Subject Rating Run
Wel OK. Quite OK. 1 78.7 45
Wiebelt iets te veel, rol demping te laag.Rocks and jolts a bit too much, roll
damping too low.

1 50.2 57

Goede motion.Good motion. 1 91.8 70
Goed.Good. 1 79.2 85
Lekker rustig, misschien een beetje te.Nice and calm, perhaps a bit too calm. 2 33.6 21
Alleen wat geschok, had er niet erg veel aan.Only some jolting and bumping, it
did not really help me.

2 22.2 29

Niet erg veel van te merken.Not really noticable. 2 37.3 37
Weinig beweging, had er niet al te veel aan.Not a lot of motion, did not help me
very much.

2 35.3 50

Weinig van te merken.Not very noticable. 2 25.5 53
Relatief weinig beweging.Relatively little motion. 2 26.1 73
Volgens mij gebeurde er niet zo veel.I do not think a lot happened. 2 8.8 89
In het begin dacht ik “dat is echt 20 procent van de beweging”, maar later dacht ik
“hij is toch wel OK”. In the beginning I thought “this really is just 20 percent of
the motion”, but later I thought “this one is quite OK anyway”.

3 59.1 16

Voor de stuurtaak plezierig, maar een beetje gevoelig.Nice for the control task,
but a little sensitive.

4 31.7 16

Weer slechter dan de vorige [C3, (1,0)].Worse than the previous one [C3, (1,0)]. 4 30.2 28
Een lage score wat de bewegingsrespons betreft.A low score for the motion re-
sponse.

4 28.9 33

Een beetje matig in de reactie op de inputs.A bit poor in terms of response to
inputs.

4 33.3 50

Een lage respons.A low response. 4 30.2 55
Vrij laag op de respons-schaal.Relatively low on the response-scale. 4 32.8 62
Ietsje beneden modaal.A bit below average. 4 47.1 80
Kleinere, meer realistische cues, alleen rol.Smaller, more realistic cues, pure roll. 5 59.2 14
Redelijk realistisch.Reasonably realistic. 5 58.8 29
OK. OK. 5 64.9 42
Cues ongeveer goed.Cues about right. 5 72.2 57
OK. OK. 5 63.2 69
Moeilijk te vliegen.Difficult to fly. 5 32.6 86
Beter dan de vorige [C7, (0.5,1)].Better that the previous one [C7, (0.5,1)]. 6 60.2 16
Alsof je op een Tempur matras ligt, zacht, je voelt alleen de grote bewegingen,
niet realistisch.Like you are lying on a Tempur mattress, soft, you only feel the
large motions, not realistic.

6 33.8 31

Hier ben ik niet zo kapot van, alsof je tussen sponzen aan het sturen bent, een
beetje gedempt.I do not really like this one, it feels like your controlling in be-
tween sponges, a bit muffled.

6 39.7 38

Weinig feedback.Little feedback. 6 60.2 44
Te weinig, niet zo prettig.Too little, not very agreeable. 6 33.4 68
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Table H.6. Motion fidelity pilot comments for condition C5 (0.75,0.5).
Comment (DutchEnglish) Subject Rating Run
Goed.Good. 1 78.9 14
Demping te laag.Damping too low. 1 54.3 29
Te weinig demping.Too little damping. 1 54.6 38
Laterale demping iets te laag.Lateral damping a little too low. 1 68.9 52
Laterale demping te laag.Lateral damping too low. 1 37.1 61
Wel redelijk.Decent. 1 65.6 64
Lekkere motion.Nice motion. 1 74.4 76
Ook een goede, duidelijk onderscheid tussen de disturbance en de target, gain
goed, realistisch.Also a good one, clear distinction between the disturbance and
target, gain OK, realistic.

2 82.6 16

Aangenaam filter, niet veel beweging, wel realistisch.A pleasant filter, not a lot
of motion, but it is realistic.

2 71.4 25

Wat minder, wat schokkerig, niet het gevoel dat ik er iets aan had.A bit worse, a
bit jolty, I do not believe it helped me at all.

2 34.4 43

Ik voelde vooral wat zijdelingse versnellingen.I mainly felt some lateral acceler-
ations.

2 34.3 59

Beter.Better. 2 69.1 71
Een beetje een erg snelle respons.The response was a bit too fast. 4 22.4 19
Matig tot redelijk.Poor to reasonable. 4 58.6 34
Matig wat respons betreft.Mediocre in terms of response. 4 46.7 42
Vrij laag in de score.A relatively low rating. 4 43.8 51
Weer redelijk laag op de schaal.Again quite low on the scale. 4 33.0 63
70 procent op de respons schaal.70 percent on te response scale. 4 77.6 79
Iets overdreven motion cues.Slightly exaggerated motion cues. 5 39.0 17
Nog te veel.Still too much. 5 35.9 25
Redelijk, iets te veel?Reasonable, a bit too much? 5 44.6 36
Motion, ongeveer goed.Motion, about right. 5 62.4 52
Lijkt iets te veel en onrealistisch te zijn.Seems to be a bit too much and unrealistic.5 49.8 56
Te veel motion vergeleken met de kist denk ik.Too much motion compared to the
aircraft I believe.

5 26.5 65

Duidelijke motion cues, meer cues dan realistisch?Clear motion cues, more cues
than realistic?

5 25.2 82
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Table H.7. Motion fidelity pilot comments for condition C6 (1,0.5).
Comment (DutchEnglish) Subject Rating Run
Lateraal niet goed gedempt, stuur soms op basis van wat ik voel in plaats van
wat ik zie. Lateral damping is no good, I sometimes control based on what I feel
instead of what I see.

1 28.8 13

Te veel laterale cues.Too much lateral cues. 1 33.6 23
Te veel laterale cues.Too much lateral cues. 1 36.2 32
Rol OK, lateraal te sterk.Roll OK, too strong laterally. 1 48.4 49
Rol goed, lateraal te sterk.Roll good, too strong laterally. 1 49.2 58
Allebei (rol en lateraal) te sterk.Both (roll and lateral) too strong. 1 36.6 67
Lateraal te sterk.Lateral too strong. 1 59.2 83
Lateraal te sterk.Lateral too strong. 1 37.4 86
Veel beweging, niet zo fraai.A lot of motion, not too pretty. 2 15.2 22
Het nerveuze filter.The nervous filter. 2 30.1 28
Redelijk goed, maar wat veel bewegingen.Reasonably correct, but a bit too much
motion.

2 76.4 40

Vrij veel beweging, maar verder wel goed.Quite a lot of motion, however, it still
feels good.

2 78.8 49

Wel aangenaam, wat weinig beweging.Quite pleasant, but rather little motion. 2 79.9 55
Niet echt behulpzaam, ik vond de beweging een beetje tegenvallen.Did not really
help, I found the motion a bit disappointing.

2 38.0 64

Een beter filter.A better filter. 2 69.5 85
Hier kon ik tenminste wat mee.This is at least one I could work with. 3 84.7 22
Lekker wat beweging.A good amount of motion. 3 86.5 26
Komt behoorlijk overeen met de werkelijkheid.Agrees quite well with reality. 4 85.9 20
Aan de gevoelige kant.Relatively sensitive. 4 35.8 21
De score was misschien minder goed, maar ik zat wel in een vliegtuig.The track-
ing score may not have been too good, but I was flying an aircraft.

4 82.2 37

Redelijke respons.Reasonable response. 4 85.9 43
Vloog wel weer als een vliegtuig.This one flew like an aircraft again. 4 83.8 56
Boven gemiddeld.Above average. 4 72.3 64
Gemiddelde respons.Moderate response. 4 51.9 72
Nog steeds wat te veel beweging.Still too much motion. 5 46.4 12
Te veel.Too much. 5 17.6 24
Te veel.Too much. 5 24.0 32
Te veel motion, onrealistisch.Too much motion, unrealistic. 5 25.2 48
Ongeveer OK.About OK. 5 59.9 59
Vliegt goed, maar niet als de echte kist, te overdreven motion.Flies well, but not
like the real aircraft, motion too exaggerated.

5 19.3 85

Wel prettig.Quite agreeable. 6 72.3 29
Er was wel motion, maar het voegde niet zo veel toe.There was motion, but it did
not really add anything.

6 40.0 56

Qua motion kan er wel iets meer in.Could be a bit more in terms of motion. 6 62.8 83
Fijn. Nice. 6 76.3 93
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Table H.8. Motion fidelity pilot comments for condition C7 (0.5,1).
Comment (DutchEnglish) Subject Rating Run
Lekker.Very good. 1 74.0 26
Rol OK, lateraal iets te sterk.Roll OK, lateral a bit too strong. 1 60.9 71
Niet goed.Not good. 1 49.6 80
Weinig beweging, niet zo realistisch.Little motion, not very realistic. 2 28.7 19
Niet onaardig.Not bad. 2 66.7 26
Ik had er niet veel aan.It did not really help me. 2 34.8 33
Weinig motion, niet al te realistisch.Little motion, not very realistic. 2 23.2 45
Motion is niet heel erg duidelijk aanwezig, niet echt een hulp.The motion is not
very clearly perceivable, not a big help.

2 39.9 70

Behoorlijke directe respons.A reasonably direct response. 4 29.2 12
Geringe overeenstemming met de werkelijkheid.Little agreement with reality. 4 27.0 26
Zeer matig.Very poor. 4 36.2 38
Matig wat betreft de reactie op de inputs.Mediocre in terms of response to the
inputs.

4 34.5 44

Beneden matig.Past poor. 4 36.7 59
Weer een matige respons.Again a poor response. 4 34.2 67
Beneden modaal.Below average. 4 33.2 73
Redelijk realistisch.Reasonably realistic. 5 62.0 20
Komt meer in de buurt van de realiteit.This comes closer to reality. 5 57.6 27
Niet te veel, niet te weinig, ongeveer goed.Not too much, not too little, about OK. 5 58.4 44
OK. OK. 5 66.6 68
OK. OK. 5 61.9 83
Niet zo best, het lijkt alsof je de verstoringen niet voelt, alleen wat je zelf stuurt.
Not too good, it seems as if you do not feel the disturbances, only whatyou control
yourself.

6 35.3 15

Dat voelde alweer beter, kostte alweer bijna geen moeite.That felt better again,
almost took no effort at all.

6 74.5 23

Niet eens zo slecht, niet zo duidelijk als je zou willen.Not even that bad, not as
clear as you would like though.

6 68.1 62

Qua motion niet zoveel aan.Not very interesting in terms of motion. 6 33.3 79
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Table H.9. Motion fidelity pilot comments for condition C8 (0.75,1).
Comment (DutchEnglish) Subject Rating Run
Te veel rol.Too much roll. 1 58.7 17
Rol demping te laag, lateraal OK.Roll damping too low, lateral is OK. 1 55.0 50
Goed.Good. 1 81.2 68
Weinig gain, niet zo heftig.Low gain, not very intense. 2 71.0 24
Realistisch filter, geeft gevoel voor de rolhoek.A realistic filter, provides a sensa-
tion of the roll attitude.

2 80.6 39

Niet de beste, ook niet de slechtste.Not the best, but also not the worst. 2 59.1 83
In het begin dacht ik dat het wel OK was, aan het einde niet meer. Wel beter dan
de vorige [C7, (0.5,1)].In the beginning I thought this one was OK, at the end I
thought it was not. Still better than the previous one [C7, (0.5,1)].

4 64.9 13

Matig tot redelijk.Poor to reasonable. 4 66.5 29
Matige bewegingsrespons.A middling motion response. 4 53.3 35
Deze krijgt een hele matige beoordeling.This one receives a very poor rating. 4 25.6 46
Licht matig.A bit poor. 4 36.6 60
Iets onder modaal.A bit below average. 4 71.6 68
Een klein beetje als een vliegtuig.A little bit like an aircraft. 4 75.7 74
Voelt beter, maar nog steeds als te veel beweging.Feels better, but still comes
across as too much motion.

5 50.8 16

Motion cues helpen wel, maar lijken onrealistisch (te groot).The motion cues do
help, but they seem unrealistic (too large).

5 36.7 23

Overdreven.Exaggerated. 5 23.8 43
Motion OK. Motion OK. 5 68.4 64
OK. OK. 5 55.4 77
Niet zoveel feedback in de motion.Not a lot of feedback in the motion. 6 35.0 22
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Table H.10. Motion fidelity pilot comments for condition C9 (1,1).
Comment (DutchEnglish) Subject Rating Run
Te heftig, vooral lateraal.Too severe, especially lateral. 1 24.1 11
Iets te veel rol.A little too much roll. 1 63.4 27
Net iets te veel rol.Just a little too much roll. 1 68.2 36
Te sterke beweging.Motion is too strong. 1 36.3 44
Lateraal te sterk.Lateral motion too strong. 1 45.4 66
Matig, lateraal te sterk.Mediocre, lateral too strong. 1 28.2 81
Te weinig rol.Too little roll. 1 51.5 87
Nerveus filtertje.A nervous filter. 2 25.8 18
Niet slecht, maar wel minder goed dan de vorige [C2, (0.75,0)].Not bad, but still
worse than the previous one [C2, (0.75,0)].

2 70.8 35

Veel beweging, te veel.A lot of motion, too much. 2 71.7 46
De bewegingen waren wat random.The motion was a bit random. 2 24.8 54
Een hoop geschok en gedoe.A lot of jolting, a bit of a hassle. 2 32.8 81
Een goed filter om mee te eindigen.A good filter to end with. 2 84.9 95
Voor de stuurtaak plezierig, maar niet in overeenstemming met de werkelijkheid.
For the control task this one is nice, but it does not feel realistic.

4 75.0 14

Begint weer op een vliegtuig te lijken.This starts to feel like an aircraft again. 4 82.7 30
Matige respons.A poor response. 4 64.9 31
Een vrij goede respons.A reasonably good response. 4 82.7 49
Deze krijgt een redelijke score.This one receives a reasonable rating. 4 78.8 52
Dat begint weer op een vliegtuig te lijken.That starts to feel like an aircraft again. 4 78.9 65
De respons was goed.A good response. 4 82.4 77
Te veel beweging.Too much motion. 5 38.6 11
Motion cues, maar te veel.Motion cues, but too much. 5 18.1 30
Te veel beweging om realistisch te zijn.Too much motion to be realistic. 5 15.1 40
Ongeveer goed.About right. 5 59.9 53
Cues, wel te veel.Cues, too much though. 5 22.7 58
Te veel om realistische motion te zijn.Too much to be realistic motion. 5 13.7 70
Voelde wel weer beter.That felt a bit better. 6 69.4 17
Minder realistisch dan de vorige [C3, (1,0)].Less realistic than the previous one
[C3, (1,0)].

6 67.1 49

De motion voelde wel goed.The motion felt quite good. 6 86.1 88
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I
Roll Tracking Replicated

Condition Comparison

Chapter 6 describes the results of an experiment where pilot roll tracking behavior is mea-
sured in real flight and compared to control behavior measured for four different roll motion
cueing settings in the SIMONA Research Simulator. Six of the seven CessnaCitation pilots
who performed this combined in-flight and simulator experiment also werethe participants
for the experiment described in Chapter 8, in which a nearly identical roll tracking task
was performed for a much larger number of different roll motion cueing settings. In this
Appendix the different roll motion cueing settings are referred to using symbols of the same
form also used in Chapters 6 and 8,(Kmf , ωmf ), which indicate the combination of mo-
tion filter gainKmf and filter break frequencyωmf used for a certain condition. The four
overlapping conditions between both experiments – a no-motion condition (0,0), a one-to-
one roll motion condition (1,0), and two conditions with a first-order roll motion filter, both
with a break frequency of 0.5 rad/s and filter gains of 1 (1,0.5) and 0.5(0.5,0.5) – allow for
direct comparison of the results obtained in both experiments.
This Appendix provides this side-by-side comparison of the subjective motion fidelity ratings
given by the pilots in both experiments, in addition to a comparison of the typicalbehav-
ioral metrics considered in this thesis: tracking performance, control activity, pilot-vehicle
system crossover frequencies and phase margins, and identified pilot model parameters.
Furthermore, two-way repeated measures ANOVAs are performed onthe combined data
from both experiments to identify possible effects of the applied variation in motioncueing
and the different experimental data sets. Note that the numbering of the different pilots for
whom data were collected in both experiments is the same as in Chapter 8.
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I.1 Subjective Evaluations

Fig. I.1 shows the subjective motion fidelity ratings obtained from the experiments described
in Chapters 6 and 8. The mean ratings obtained from both theseexperiments are depicted
with white and black-filled markers, respectively. Note that the mean data for the first
experiment is different from the averages presented in Chapter 6, due to the fact that the
data from one subject is not considered for the comparison made in this Appendix. The
individual subject data from both experiments is presentedin gray in Fig. I.1, for reference.
Finally, Table I.1 presents the results of a two-way repeated measures ANOVA, with the
different experiments and motion cueing settings as factors, that was performed on this
fidelity rating data and on all other dependent measures analyzed in this Appendix.
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Figure I.1. Subjective motion fidelity rating comparison for the data from the experiments
described in Chapters 6 and 8.

Fig. I.1 shows that on average the motion fidelity ratings taken in both experiments
correspond well and show the same trend over the different motion conditions. This is
confirmed by the ANOVA results (see Table I.1), which only indicate a highly significant
effect of the variation in motion cueing on the motion fidelity ratings.

Still, when considering the ratings given by individual subjects (gray data in Fig. I.1)
some differences between the data from both experiments areobserved. For instance, pilot
5 rated the different motion conditions very differently inboth experiments. First, pilot 5
was the only participant to consistently rate the no-motion(0,0) condition at around 60%,
where all other subjects rated below 10%, in the experiment described in Chapter 6. For
the experiment of Chapter 8 he rated the same condition much lower, on average at around
20%, thereby yielding much lower between-subjects variance for the (0,0) condition. Fur-
thermore, both pilots 1 and 5 consistently rated the (1,0) and (1,0.5) condition lower than the
lower-fidelty (0.5,0.5) condition in the experiment of Chapter 8. Note that this contradicts
the results collected in the experiment of Chapter 6, where they both gave the conditions
with unity-gain roll motion the highest fidelity ratings. Ascan be verified from the pilot
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Table I.1. Two-way repeated-measures ANOVA results for all behavioral metrics.

Dependent Factors

measures experiment motion experiment× motion

df F Sig. df F Sig. df F Sig.

Ratings 1,5 0.13 − 1.4,7.2gg 26.82 ∗∗ 1.6,8.0gg 0.26 −

σ2
e (N) n.a.

σ2
e,d

1,5 5.26 − 3,15 30.41 ∗∗ 3,15 2.00 −

σ2
e,t 1,5 3.10 − 3,15 0.41 − 3,15 1.05 −

σ2
e,n (N) n.a.

σ2
u 1,5 3.64 − 1.2,6.2gg 14.30 ∗∗ 3,15 5.06 ∗∗

σ2
u,d

1,5 15.88 ∗∗ 3,15 9.21 ∗∗ 3,15 5.81 ∗∗

σ2
u,t 1,5 0.63 − 1.2,5.8gg 1.37 − 3,15 0.60 −

σ2
u,n 1,5 2.30 − 1.1,5.4gg 12.31 ∗∗ 1.1,5.6gg 4.14 −

ωc,d 1,5 0.55 − 3,15 29.56 ∗∗ 3,15 1.14 −

ωc,t 1,5 3.01 − 3,15 2.78 − 3,15 0.20 −

ϕm,d 1,5 0.09 − 3,15 8.67 ∗∗ 3,15 1.06 −

ϕm,t 1,5 0.85 − 3,15 6.81 ∗∗ 3,15 0.11 −

Kv 1,5 0.16 − 3,15 20.99 ∗∗ 3,15 2.86 −

TL 1,5 4.55 − 3,15 14.85 ∗∗ 3,15 0.69 −

KvTL 1,5 1.17 − 3,15 0.21 − 3,15 0.67 −

Km 1,5 0.88 − 2,10 0.50 − 2,10 0.92 −

τv 1,5 0.37 − 3,15 2.06 − 3,15 1.36 −

τm 1,5 5.14 − 3,15 0.03 − 3,15 1.32 −

ωnm 1,5 0.34 − 3,15 3.13 − 1.2,6.1gg 0.34 −

ζnm 1,5 3.25 − 3,15 3.81 ∗∗ 3,15 2.05 −

∗∗ = significant (p < 0.05) gg = Greenhouse-Geisser sphericity correction
− = not significant (p ≥ 0.05) (N) = Issues with data normality
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comments in Appendix H, both pilots insisted during the experiment of Chapter 8 that both
the roll and lateral motion cues supplied in the (1,0) and (1,0.5) conditions were exaggerated
and larger in magnitude than they would expect in the aircraft.

I.2 Tracking Performance and Control Activity

Fig. I.2 shows a comparison of the total tracking error and control signal variances mea-
sured in both experiments. Fig. I.2(a) indicates all pilotsachieved lower tracking errors in
the experiment of Chapter 8, yielding a marked difference inthe average tracking perfor-
mance measured for both experiments. The decrease inσ2

e is especially notable for pilot
2, who compared to the other pilots recorded relatively hightracking error variances in the
experiment described in Chapter 6. Due to the data from pilot2, the distribution of the
tracking error variance data differs significantly from a normal distribution for all compared
conditions. For this reason, no two-way repeated-measuresANOVA could be performed to
analyze theσ2

e results. Due to the fact that no nonparametric tests for two-way repeated-
measures analyses are available, no statistical analysis results for the comparison of the total
tracking error variance measured in both experiments are therefore listed in Table I.1.
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Figure I.2. Total tracking performance and control activity comparison for the data from the
experiments described in Chapters 6 and 8.

The control signal variance data shown in Fig. I.2(b) shows the same increasing trend
with increasing motion fidelity for both experiments. This effect of the variation in motion
cueing settings is found to be highly significant, as can be judged from Table I.1. Fig. I.2(b)
further shows control activity was higher for the experiment of Chapter 6, especially for the
conditions with high roll motion gains, (1,0.5) and (1,0). The increase in control activity was
found to be comparatively less for the experiment of Chapter8 than for the measurements
from the experiment described in Chapter 6. This is also reflected in the ANOVA results,
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Figure I.3. Comparison of the different components of the tracking error and control signal
variances measured in the experiments described in Chapters 6 and8.
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which show a significant interaction between the effect of motion cueing variations and the
different experiment data sets.

Fig. I.3 shows the same comparison for the three different components (disturbance,
target, and remnant) that together yield the total error andcontrol signal variances shown
in Fig. I.2. This variance component data shows largely the same trends also observed in
Fig. I.2. Tracking errors resulting from all three components are found to be lower for
the experiment of Chapter 8, where the marked improvement intracking performance for
pilot 2 is visible in all components. Note that due to the datafrom pilot 2 also theσ2

e,n

data from the experiment of Chapter 6 was found to not be normally distributed. Hence,
no statistical analysis results for this remnant componentof the tracking error variance are
listed in Table I.1.

Equivalent to the observation made for the total control signal variance from Fig. I.2(b),
the different components of the control signal variance arealso found to be lower for the data
from experiment of Chapter 8, especiallyσ2

u,d andσ2
u,n. The difference in the disturbance

component ofσ2
u between both experiments is even found to be statistically significant

(see Table I.1), as is the difference in the increase over thedifferent motion conditions
(interaction in Table I.1).

I.3 Crossover Frequencies and Phase margins

Fig. I.4 shows the measured crossover frequencies and phasemargins of the disturbance and
target open-loop responses for both experiments. As can be verified from Fig. I.4(a) and (c),
the observed increase inωc,d and decrease inϕm,d with increasing roll motion fidelity are
both consistent over the data from the two experiments and are both found to be statistically
significant (see Table I.1), as also concluded in Chapter 6 based on data from the same four
experimental conditions. Furthermore, the increase in target open-loop phase marginϕm,t

observed for the (1,0.5) and (1,0) conditions in both experiments, which was not found to
be significant for only the data from Chapter 6, is found to be statistically significant when
the data from both experiments are combined.

The only consistent difference observed between the data from both experiments is that
the target-loop crossover frequencyωc,t is found to be around 0.2 rad/s higher for all con-
ditions in the experiment of Chapter 8, as can be verified fromFig. I.4(b). The ANOVA
results of Table I.1, however, show that this difference inωc,t is not statistically significant.

I.4 Pilot Control Behavior

Fig. I.5 shows the identified parameter values for the pilot visual gainKv, visual lead time
constantTL, visual lead gainKvTL, pilot motion gainKm and the pilot visual and motion
delays (τv andτm) from both experiments. Fig. I.6 shows the two remaining parameters
of the fitted pilot model (see Section 6.2.2): the neuromuscular actuation model natural
frequencyωnm and damping ratioζnm.
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Figure I.4. Comparison of the disturbance and target open-loop crossover frequencies and phase
margins measured in the experiments described in Chapters 6 and 8.
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Figure I.5. Comparison of the identified multimodal pilot model parameters for the experiments
described in Chapters 6 and 8.
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Figure I.6. Comparison of the identified neuromuscular actuation model parameters for the
experiments described in Chapters 6 and 8.

Overall, the data from both experiments show the same trendsover the different roll
motion settings. As also concluded from Chapter 6, the most pronounced effects on pilot
tracking behavior are found to be the increase inKv and decrease inTL with increasing
motion fidelity. As can be verified from Table I.1, both these effects are found to be highly
significant. Also for the neuromuscular damping ratioζnm, for which slightly increased
values are observed for the (1,0) condition and especially (1,0.5) in both experiments, a
significant effect of the variation in motion cueing is present.

Figures I.5 and I.6 show only a number of small differences inidentified pilot model
parameters for the compared experiments. For the experiment described in Chapter 8, visual
lead time constants are found to be consistently lower for all conditions except (1,0). In
addition, pilot motion gains and time delays are also found to be slightly lower than found
for the experiment of Chapter 6 for all experimental conditions. However, as can be verified
from Table I.1, none of these differences can be concluded tobe statistically significant for
the small data set available for this comparison.

I.5 Conclusions

The comparison of the roll tracking data collected for the four overlapping conditions of the
experiments described in Chapters 6 and 8 performed in this Appendix shows trends in the
considered dependent measures that are highly consistent over the data from both experi-
ments. This is especially true for the measured crossover frequencies and phase margins and
the identified pilot model parameters. Still, some between-experiment variation is clearly
visible from the comparison made in this Appendix, most notably for the subjective fidelity
ratings and measured tracking performance and control activity. Especially for the tracking
error and control signal variances, which are both consistently found to be lower for the
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experiment of Chapter 8, differences between the data from both experiments are observed.
Despite the fact that these observed differences are only found to be statistically signifi-
cant for the disturbance control variance component, the results presented in this Appendix
do suggest that the typical subjective and objective metrics considered for evaluating flight
simulator motion fidelity in this thesis are still affected,to a certain extent, by day-to-day
variability.



Nomenclature

Latin Symbols

Ad disturbance forcing function sinusoid amplitude deg or V
At target forcing function sinusoid amplitude deg
az heave acceleration m/s2

azcg c.g. heave acceleration m/s2

azθ pitch heave acceleration m/s2

D normality test statistic -
e tracking error signal deg
F ANOVA test statistic -
fd disturbance forcing function deg or V
ft target forcing function deg
fx, fy, fz longitudinal, lateral, and vertical specific forces m/s2

H(s) transfer function
H(jω) frequency response function
Hc controlled element dynamics
He,fd closed-loop disturbance-to-error dynamics
He,ft closed-loop target-to-error dynamics
Heq pilot equalization dynamics
Heqt pilot feedforward equalization dynamics
Hmf motion filter dynamics
Hnm neuromuscular actuation dynamics
Hol open-loop dynamics
Hol,d disturbance open-loop dynamics
Hol,t target open-loop dynamics
Hp pilot response dynamics
Hpaz

pilot heave motion response
Hpe pilot error response
Hpv pilot visual response
Hpm pilot motion response
Hpt pilot feedforward target response
Hpθ pilot pitch response
Hpp pre-position filter dynamics
Hsc,Hscc semicircular canal dynamics
Hsm simulator motion cueing system dynamics
Hsv simulator visual cueing system dynamics
Hÿ,x controlled element motion dynamics
Hθ,δe elevator-to-pitch dynamics
h altitude ft
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j imaginary unit
K gain -
Kc controlled element gain -
Kap autopilot input gain -
Km pilot motion response gain deg/ips or V/IPUT
Kmf motion filter gain -
Kp pilot gain -
Kpe pilot error response gain -
Kpt pilot feedforward response gain -
KS motion filter gain at 1 rad/s deg
Ks stick input scaling gain -
Kt pilot feedforward response gain -
Kv pilot visual response gain - or V/deg
Kδe,u control input to elevator scaling gain -
Kθ,δe elevator-to-pitch dynamics gain -
Kφ aircraft roll dynamics gain -
L likelihood function -
l distance between aircraft c.g. and pilot station m
N number of data points -
Nd number of disturbance forcing function sinusoids -
Nt number of target forcing function sinusoids -
nd disturbance forcing function frequency integer factor -
nt target forcing function frequency integer factor -
n pilot remnant signal deg or V
p roll rate deg/s
p statisticalp-value -
q pitch rate deg/s
R Pearson’s correlation coefficient -
r yaw rate deg/s
Sxx Spectrum ofx
s Laplace variable
T time constant s
TK , T ′

K low-frequency lag-lead time constants s
TL visual lead time constant s
Tm measurement interval s
TN neuromuscular lag time constant s
Tr roll subsidence mode time constant s
TI visual lag time constant s
TIt pilot feedforward lag time constant s
Tsc1, Tsc2, Tsc3 semicircular canal time constants s
Tθ2 short-period mode lead time constant s
Tφ aircraft roll dynamics lead time constant s
t time s
u pilot control signal deg or V
uap autopilot input signal V
V airspeed kt
X generic dependent measure
Xs, Ys, Zs simulator body axes
x controlled element output deg or m
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Y generic predictor variable
y controlled element motion output deg/s2 or m/s2

Z generic dependent measure
z vertical position (heave) m

Greek Symbols

α linear regression coefficient -
α statistical significance level -
β linear regression constant -
∆ discrepancy operator
δa aileron deflection deg
δc controlled element input deg
δe elevator deflection deg
ζd dutch roll mode damping ratio -
ζn motion filter damping ratio -
ζnm neuromuscular damping ratio -
ζsp short-period mode damping ratio -
ζφ aircraft roll dynamics damping ratio -
θ pitch attitude deg
µ mean
σ standard deviation
σ2 variance
ϕm phase margin deg
ϕm,d disturbance phase margin deg
ϕm,t target phase margin deg
φ roll attitude deg
φd disturbance forcing function sinusoid phase shift rad
φS motion filter phase shift at 1 rad/s deg
φt target forcing function sinusoid phase shift rad
τ time delay s
τe effective time delay s
τe pilot error response delay s
τm pilot motion response delay s
τt pilot feedforward response delay s
τv pilot visual response delay s
τφ aircraft roll dynamics delay s
χ2 χ2 test statistic -
ψ yaw attitude deg
ω frequency rad/s
ωb additional motion filter break frequency rad/s
ωc crossover frequency rad/s
ωc,d disturbance crossover frequency rad/s
ωc,t target crossover frequency rad/s
ωd disturbance forcing function sinusoid frequency rad/s
ωd dutch roll mode natural frequency rad/s
ωmf motion filter break frequency rad/s
ωm measurement interval base frequency rad/s
ωn motion filter break frequency rad/s
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ωnm neuromuscular frequency rad/s
ωsp short-period mode natural frequency rad/s
ωt target forcing function sinusoid frequency rad/s
ωφ aircraft roll dynamics natural frequency rad/s

Subscripts

0 trim
d disturbance
m motion
mf motion filter
n remnant
nm neuromuscular
ol open loop
p pilot
ref reference
t target
s simulator
v visual

Acronyms

ANOVA analysis of variance
ARX auto-regressive models with an exogeneous input
DUECA Delft University Environment for Communication and Activation
FBW fly-by-wire
FC Fourier coefficients
FTIS flight test instrumentation system
LCD liquid crystal display
MLE maximum likelihood estimation
MSE mean square error
RMS root mean square
SCC semicircular canals
SOP Successive Organization of Perception
SRS SIMONA Research Simulator
VAF variance accounted for
VAS visual analogue scale



Samenvatting

Objectieve Bepaling van de Waarheidsgetrouwheid
van de Beweging van Vluchtsimulatoren met een

Cybernetische Aanpak

Daan M. Pool

Het gebruik van vluchtsimulatoren is wijdverbreid in de luchtvaart, waar zij onder an-
dere worden toegepast voor het trainen van piloten en bij aande luchtvaart gerelateerd
onderzoek. Het feit dat vluchtsimulatoren een flexibel, veilig, efficiënt en relatief goedkoop
alternatief bieden voor het uitvoeren van deze activiteiten in een echt vliegtuig is de be-
langrijkste reden voor hun brede toepassing. Doordat de beweging van een echt vliegtuig
resulteert in duidelijk voelbare krachten op de lichamen van piloten wordt het nabootsen van
dit soortbewegingsstimulial sinds de ontwikkeling van de allereerste simulatoren alseen
belangrijk onderdeel van vluchtsimulatie gezien. Door technische, praktische en financiële
beperkingen is het echter niet haalbaar om de beweging van een vliegtuig volledig na te
bootsen in een vluchtsimulator.

De mate waarin een vluchtsimulator er in slaagt om de vliegervaring zoals die tijdens een
echte vlucht wordt beleefd na te bootsen wordt meestal dewaarheidsgetrouwheidvan die
simulator genoemd. Naast de dynamische capaciteiten van het bewegingssysteem van een
vluchtsimulator wordt de waarheidsgetrouwheid van de in een simulator te voelen beweging
het sterkst bëınvloed door het toegepastebewegingsalgoritme. Zulke bewegingsalgoritmen
worden in het aandrijven van de bewegingssystemen van vluchtsimulatoren gebruikt om de
echte vliegtuigbewegingen te transformeren naar een gereduceerde vorm van die bewegin-
gen diewel kan worden nagebootst met het bewegingssysteem van de simulator. Zo wordt
de echte vliegtuigbeweging vaak ingeperkt door vermenigvuldiging met eenverkleinings-
factor. Daarnaast worden vaak ookhoogdoorlaatfilterstoegepast om de simulatorbewe-
gingen verder te beperken. De mate waarin bewegingsalgoritmen zorgen voor verschillen
tussen de echte vliegtuigbewegingen en de beweging die voelbaar is in een vluchtsimulator
wordt bepaald door de waarden van deparametersvan zulke algoritmen, zoals de toegepaste
verkleiningsfactorenen kantelfrequentiesvan de hoogdoorlaatfilters. Het verlagen van de
verkleiningsfactoren en het verhogen van de kantelfrequenties zorgt voor grotere verschillen
tussen de echte vliegbewegingen en de aangeboden bewegingsinformatie in een simulator.
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Het is bekend dat een hoge waarheidsgetrouwheid van de gepresenteerde bewegings-
stimuli niet nodig is voor alle toepassingen van vluchtsimulatoren. Voor het ontwikkelen
van elementaire handmatige vliegvaardighedenen vaardigheidsgebaseerd stuurgedragbij
piloten wordt echter aangenomen dat een dergelijke hoge waarheidsgetrouwheid van de si-
mulatorbewegingenwelcruciaal is. De huidig beschikbare richtlijnen met betrekking tot het
behalen van een afdoende waarheidsgetrouwe simulatorbewegingen zijn echter puur geba-
seerd op de eigenschappen van de hard- en software waarmee deze bewegingsstimuli wor-
den gegenereerd. Geen van deze richtlijnen neemt op adequate wijze de eigenschappen van
demenselijke bewegingsperceptiein acht, ook al dragen die in belangrijke mate bij aan de
werkelijke waarheidsgetrouwheid. De belangrijkste redenhiervoor is de nog altijd gebrek-
kige kennis van het bewegingsperceptieproces en de manier waarop piloten de informatie
uit alle beschikbare stimuli benutten tijdens het handmatig besturen van een vliegtuig.

In dit proefschrift wordt daarom de waarheidsgetrouwheid van de in vluchtsimulatoren
aangeboden bewegingsinformatie beoordeeld volgens de definitie vangedragswaarheids-
getrouwheid. Dat wil zeggen dat de waarheidsgetrouwheid wordt afgelezen aan de capaci-
teit van simulatoren omhandmatig stuurgedragzoals dat tijdens het besturen van een echt
vliegtuig toegepast wordt te ondersteunen en te induceren.Dit doel wordt bereikt door het
systematisch analyseren van de veranderingen die optredenin het stuurgedrag van piloten
als gevolg van beperkingen in de in vluchtsimulatoren aangeboden bewegingsinformatie.
Voor deze bepaling van de gedragswaarheidsgetrouwheid wordt in dit proefschrift gebruik
gemaakt van een zogehetencybernetische aanpak. Hierbij worden veranderingen in het
stuurgedrag van piloten expliciet gekwantificeerd door middel vanmultimodale pilootmo-
dellendie de reacties van piloten op informatie die is waargenomenvia devisueleenvesti-
bulaire modaliteitenkunnen beschrijven. Door met daarvoor geschikteschattingstechnieken
de parameters van dit soort multimodale pilootmodellen te schatten op basis van verzamelde
metingen van handmatig stuurgedrag wordt een methode verkregen waarmee veranderingen
in het multimodale stuurgedrag van pilotenobjectiefkunnen worden bepaald. In dit proef-
schrift wordt deze cybernetische aanpak gebruikt om vaardigheidsgebaseerd gedrag dat is
gemeten in eenecht vliegtuigdirect te vergelijken met het stuurgedrag van piloten geme-
ten in eenvluchtsimulatorvoor varïerende instellingen van de bewegingsalgoritmen. Van
de simulatorinstellingen waarbij de kleinste verschillenin stuurgedrag worden gemeten ten
opzichte van het stuurgedrag in een echt vliegtuig kan dan worden gezegd dat ze resulteren
in de hoogste gedragswaardheidsgetrouwheid.

De effecten van verminderde waarheidsgetrouwheid van de bewegingsinformatie in
vluchtsimulatoren op het handmatige stuurgedrag van piloten worden in dit proefschrift
bepaald voor vaardigheidsgebaseerdetracking-taken. De reden voor deze keuze is dat is
aangetoond dat het stuurgedrag van piloten voor dit specifiek soort stuurtaken voldoende
linear en stationair is om het modeleren ervan metquasi-lineaire regeltheoretische model-
len toe te staan. Bij de tracking-taken in dit proefschrift wordt het stuurgedrag van piloten
gëınduceerd met tweestoorsignalen, die als een doelsignaal dat gevolgd dient te worden
en een externe verstoring op het bestuurde vliegtuig wordengëımplementeerd. Er wordt
in dit proefschrift een onderscheid gemaakt tussen twee soorten tracking-taken. De eerste
zijn tracking taken met twee onafhankelijkequasi-willekeurige multisinus stoorsignalen,
waarvoor bekend is dat ze het scheiden van de reacties van piloten op waargenomen visuele
en bewegingsstimuli mogelijk maken. In het tweede onderzochte type tracking-taak wordt
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een quasi-willekeurig multisinus verstoringssignaal gecombineerd met eendeterministisch
volgsignaal dat bestaat uit meerdere hellingsvormige veranderingen in de doelstandhoek.
Dit levert een stuurtaak op die meer overeenkomt met echte handmatige vliegtaken dan de
onderzochte tracking-taken met twee multisinus stoorsignalen. In een dergelijkehellings-
volgtaakgebruiken piloten wel een andere stuurstrategie dan tijdens tracking-taken met
quasi-willekeurige stoorsignalen. Een uitbreiding van debeschikbare multimodale piloot-
modellen met een voorwaartskoppeling die wordt aangedreven door het deterministische
volgsignaal wordt daarom in dit proefschrift voorgesteld en toegepast voor het beschrijven
van menselijk stuurgedrag in hellingsvolgtaken.

Dit proefschrift beschrijft een aantal experimenten, allen uitgevoerd in de SIMONA
onderzoekssimulator van de Technische Universiteit Delft, waarbij het vaardigheidsgedre-
ven stuurgedrag van piloten is gemeten voor een aantal verschillende instellingen van de
aangeboden simulatorbeweging. De grootste en meest consistente veranderingen in het
stuurgedrag van piloten door toenemende inperking van de simulatorbewegingen door be-
wegingsalgoritmen zijn zichtbaar in de stuurdynamica waarmee piloten reageren op visuele
feedback. Een gezamenlijke analyse van de metingen uit een aantal simulatorexperimenten
die beschreven zijn in dit proefschrift en in eerdere publicaties van andere onderzoekers
laat zien dat piloten gemiddeld 20% minder sterk reageren opvisuele stimuli wanneer er
geen bewegingsinformatie beschikbaar is in vergelijking met het geval waar de volledige
vliegtuigbeweging voelbaar is. Daarnaast neemt met afnemende bewegingswaarheidsge-
trouwheid de hoeveelheid visuele lead equalisatie door piloten gemiddeld toe met ongeveer
30% en neemt de tijdsvertraging in de reactie op visuele informatie enigszins af. De stuur-
dynamica van piloten waarmee ze reageren op bewegingsstimuli zijn in vergelijking veel
minder gevoelig voor variërende simulatorbewegingsinstellingen.

De belangrijkste mijlpaal voor het onderzoek dat wordt beschreven in dit proefschrift is
de directe vergelijking van het multimodale stuurgedrag van piloten tussen stuurtaken die
zijn uitgevoerd in eenecht vliegtuigen in eenvluchtsimulator. Metingen aan het stuurgedrag
van piloten in een echt vliegtuig zijn voor twee verschillende rolhoek tracking-taken,́eén
met twee multisinus stoorsignalen enéén hellingsvolgtaak, verzameld met behulp van het
Cessna Citation II laboratoriumvliegtuig van de Technische Universiteit Delft. Om te voor-
komen dat verschillen in belanghebbende aspecten van de opstellingen waarin het stuurge-
drag van piloten gemeten is, zoals de karakteristieken van de gebruikte visuele displays,
sidesticks en de bestuurde vliegtuig- en besturingssysteemdynamica, de geı̈soleerde verge-
lijking van het effect van variërende bewegingsinformatie op het stuurgedrag van pilotenin
de weg zou staan is al het mogelijke gedaan om de meetopstellingen in het laboratorium-
vliegtuig en de SIMONA simulator zo goed mogelijk overeen telaten komen.

Uit de analyse van het stuurgedrag van piloten tijdens de stuurtaken die zijn uitgevoerd
in een echt vliegtuig was duidelijk dat gebruik werd gemaaktvan de beschikbare bewe-
gingsinformatie. Gemeten pilootdynamica verschilden overduidelijk van het stuurgedrag
dat is gemeten voor dezelfde stuurtaken in de SIMONA simulator wanneer daar geen bewe-
gingsstimuli beschikbaar waren. In vergelijking met metingen voor bewegingsinstellingen
die resulteerden in simulatorbewegingen die de echte vliegtuigbewegingen zeer goed be-
naderden werden de stuurtaken in het vliegtuig echter minder precies uitgevoerd en met
flink lagere stuuractiviteit. Geschatte pilootmodelparameters lieten zien dat alle piloten in
het vliegtuig minder sterk reageerden op zowel visuele als bewegingsinformatie, gemiddeld
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gezien een grotere tijdsvertraging in hun respons op visuele informatie hadden en een la-
gere natuurlijke frequentie van hun neuromusculaire dynamica aannamen. Het verschil in
de neuromusculaire dynamica kon met extra stuurgedragmetingen worden terugherleid naar
de verschillen in de sidestick en de stoel waarin de piloten zaten in beide opstellingen. De
rest van de geobserveerde afwijkingen in stuurgedrag kon echter niet worden verklaard door
overblijvende verschillen tussen de experimentele omgeving in vliegtuig en simulator. Het
feit dat de beschikbare bewegingsinformatie voor deze metingen zeer nauw overeen kwam
suggereert dat de geobserveerde gedragsverschillen het resultaat zijn van factoren die intern
aan de piloot zijn, zoals bijvoorbeeld motivatie en stress,die deze vergelijking van men-
selijk stuurgedrag beı̈nvloed hebben. Deze experimentele resultaten benadrukken daardoor
nogmaals de complexiteit van dit soort vergelijkingen tussen vlucht en vluchtsimulator.

De cybernetische aanpak voor het beoordelen van de waarheidsgetrouwheid van de be-
wegingsinformatie die wordt aangeboden in vluchtsimulatoren, zoals gebruikt in dit proef-
schrift, heeft laten zien waardevol inzicht te geven in de manier waarop het stuurgedrag van
piloten zich aanpast aan veranderingen in de aangeboden bewegingsinformatie. Met deze
aanpak is onweerlegbaar aangetoond dat het vaardigheidsgebaseerde stuurgedrag van pilo-
ten verandert als gevolg van de gekozen instellingen van bewegingsalgoritmen. Ondanks
de verschillen tussen beide rolhoek stuurtaken waarvoor het stuurgedrag tussen vlucht en
vluchtsimulator expliciet is vergeleken, leidt de analysevan dat stuurgedrag voor beide ta-
ken tot dezelfde conclusies wat betreft de gedragswaarheidsgetrouwheid. Voor beide taken
kwam het multimodale stuurgedrag van piloten het best overeen met dat gemeten in een
echt vliegtuig voor die experimentele condities waar de minste verschillen in de bewegings-
informatie ten opzichte van de echte vlucht optraden. Deze overeenkomst was met name
duidelijk te zien in die parameters die de veranderingen in het stuurgedrag van piloten als
gevolg van veranderingen in de aangeboden bewegingsinformatie het best karakteriseren,
zoals de versterkingsfactor en lead tijdsconstante van de visuele responsdynamica. Alle
experimentele resultaten beschreven in dit proefschrift suggereren daarom dat het hoogste
niveau van gedragswaarheidsgetrouwheid bereikt wordt alsde bewegingsstimuli die piloten
gebruiken voor het uitvoeren van vaardigheidsgebaseerde stuurtaken metzo min mogelijk
inperkingen door hoogdoorlaatfiltersin vluchtsimulatoren worden aangeboden.

Het is belangrijk dat in verder onderzoek aandacht wordt geschonken aan het uitbreiden
van de methoden die gebruikt zijn in dit proefschrift voor toepassing op echte handmatige
vliegtuigstuurtaken. Hiervoor zal een aanmerkelijke uitbreiding van de huidige kennis op
het gebied van het modelleren van menselijk stuurgedrag nodig zijn, en ook van de metho-
den en de schattingsalgorithmen die gebruikt kunnen wordenvoor het bestuderen van dit
gedrag. Verder wordt het ten zeerste aanbevolen om de gevolgen van de door beperkin-
gen in de aangeboden simulatorbewegingen geı̈nduceerde gedragsveranderingen voor het
trainen van piloten in vluchtsimulatoren expliciet te analyseren. Dit kan gedaan worden
door de hier gebruikte cybernetische aanpak toe te passen opde analyse van hetontwikke-
len van vaardigheidsgebaseerd stuurgedrag in simulatoren en hoe dataangeleerdegedrag
overdraagtnaar echte vliegtuigbesturing.
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