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S U M M A RY

Turbulence is implicitly present or explicitly desired in many natural and industrial
processes, such as, flow over solid surfaces, cloud formation, pollination, combustion,
and chemical mixing. Hence, a better understanding of turbulence can aid in fuel sav-
ing by reducing drag in the case of flow over solid surfaces, namely, cars, airplanes,
and ships. Furthermore, cloud formation models for refining weather modeling as
well as the modeling of chemical mixing and combustion can be enhanced. However,
there are different approaches to understand turbulence and in this thesis, turbulence
is studied in terms of coherent structures.

One of the three-dimensional coherent structures description of wall-bounded tur-
bulence is the hairpin packet model, where, the vortices are clustered in a packet. The
existence of such packets has been explained by auto-generation mechanism [Smith
et al., (1991)], where, a parent vortex of a threshold strength generates new off-spring
vortices. However, such threshold strength vortices are rarely observed in actual tur-
bulent flows. Additionally, the clustering of vortices in a packet also depends on the
timescale of the generation of vortices, but no such timescale has been reported in lit-
erature until recently. Furthermore, the identification of the hairpin packets and the
generation of new vortices is still done visually due to the lack of an objective identi-
fication criteria, even though the hairpin packet model is a few decades old. Hence in
this thesis, how such threshold strength vortices come into existence, the timescale of
generation of a vortex, and a proof of concept study to identify vortex packets objec-
tively is examined. Additionally, the contribution of the structures found in hairpin
packets, namely, vortices, shear-layers, or saddle points, on scalar transport is exam-
ined, which could assist in enhancing chemical mixing and combustion.

The creation of threshold strength vortices is explored by examining the interactions
between commonly found weak vortices and checking if they initiate subsequent auto-
generation. Here, the evolution of two weak conditional vortices with different initial
strengths, initial sizes and initial stream-wise spacing between them is studied. The
numerical procedure followed is similar to Zhou et al., (1999). The two vortices are
found to merge to form a single stronger vortex, when the upstream vortex is located
at higher wall-normal location. This strong merged vortex further auto-generated de-
pending on the initial stream-wise separation between vortices. Further investigations
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led to the modification of the auto-generation mechanism, where, the ejection events
rapidly lift-up the head of the parent vortex, leading to the blockage of flow upstream
and the generation of a new vortex upstream by shear-layer roll-up. This modified
auto-generation mechanism differs from the existing one at the later stages of auto-
generation, where the blockage of flow upstream and shear-layer roll-up are consid-
ered instead of vortex dynamics. Additionally, this modified mechanism can explain
the auto-generation in single legged or asymmetric vortices, which is observed in ac-
tual turbulent channel flow at friction Reynolds number Reτ = 180.

The timescale of auto-generation in turbulent channel flow at Reτ = 180 is deter-
mined visually. The timescale is found to be 10− 15 time wall units, which is similar to
experimental results by Jodai and Elsinga, (2016). However, this is an order of magni-
tude smaller than the timescale observed in the idealized auto-generation simulations
(80 − 250 time wall units). As the generation of new vortices is linked to the creation
of ejection events, this timescale could be utilized to actively modify the turbulent flow,
either to enhance turbulence or to reduce drag. However, it should be noted that the
statistical description of the timescale of auto-generation and the number of vortices
generated remains an open issue.

At present, the statistical relevance of hairpin packets and auto-generation is diffi-
cult to establish due to the lack of objective identification methods to identify vortex
packets and auto-generation in actual turbulent flows. Therefore, it becomes important
to know more about a hairpin packet in order develop an objective method. Hence,
a proof of concept study, where, a link between a hairpin packet and a shear-layer
structure [Elsinga and Marusic, (2010)] is explored in actual turbulent channel flow.
It will be shown that the two consecutive co-rotating vortices in a hairpin packet can
be viewed in a different frame of reference (i.e., the principal straining directions) as a
shear-layer structure. Hence, a general shear-layer detection scheme could be utilized
to detect shear-layer structure containing co-rotating vortices. Furthermore, based on
the pattern of the identified co-rotating vortices a hairpin packet could be objectively
identified. Additionally, as the shear-layer structure is observed in all kinds of flows
and considered universal, its instantaneous existence in different flows and the con-
nection to packet of vortices could be explored in future.

In the final part of this thesis, the relevance of general flow structures, namely, the
Burgers’ vortex, the shear-layer structure, and the node-saddle topology, in the dis-
persion of tracer particles is studied. These idealized three-dimensional structures are
considered as they represent typical elliptical and hyperbolic critical points. These crit-
ical points are shown to affect the dispersion in two-dimensional turbulence by Goto
and Vassilicos, (2004) and the present study extends this to three-dimensions. Differ-
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ent dispersion statistics, such as, pair dispersion, material lines, and tetrad dispersion,
are studied and compared to actual isotropic turbulent flow statistics. Also, the snap-
shots of particle distribution at different times is presented to understand the influence
of the different features of these structures on the dispersion statistics. Moreover, the
shear-layer structure is observed to closely resemble the actual turbulent flow statis-
tics qualitatively and quantitatively. The Burgers’ vortex is found to deviate the most,
whereas the node-saddle topology did exhibit some similarities to actual turbulent dis-
persion statistics. However, it deviated in the geometrical features associated with the
material lines and tetrad dispersion.

To conclude, this thesis improved the existing hairpin packet model and modi-
fied the existing auto-generation mechanism. Additionally, it provided some insights
on the timescale of auto-generation, which could be utilized to improve existing ac-
tive flow control and modification techniques. Furthermore, the influence of different
three-dimensional ideal structures on dispersion statistics is also shown.

ix
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S A M E N VAT T I N G

Turbulentie is impliciet aanwezig of expliciet gewenst in veel natuurlijke en industriële
processen, zoals stroming over vaste oppervlakken, de formatie van wolken, bestu-
iving, verbranding en het mengen van chemische stoffen. Bovendien kan een beter
begrip van turbulentie helpen bij het besparen van brandstof door weerstandsvermin-
dering van stroming over vaste oppervlakken, zoals bij auto’s, vliegtuigen en schepen.
Bovendien kunnen wolkvormingsmodellen voor het verfijning van weermodellering,
evenals de modellering van chemische menging en verbranding, worden verbeterd. Er
zijn echter verschillende benaderingen om turbulentie te begrijpen, in dit proefschrift
wordt turbulentie bestudeerd door middel van coherente structuren.

Een omschrijving van driedimensionale coherente structuren van de door een
wand begrensde turbulentie wordt gegeven door het haarspeldpakketmodel, hierin
zijn wervelingen in een pakket gegroepeerd. Het bestaan   van dergelijke pakketten
is uitgelegd door het auto-generatie mechanisme [Smith et al., (1991)], waar een
voldoende sterke bronwerveling nieuwe wervelingen produceert. Echter, dergelijke
sterke wervelingen worden zelden waargenomen in een daadwerkelijke turbulente
stroming. Bovendien hangt de clustering van wervelingen in een pakket ook af van
de tijdschaal van de opwekking van wervelingen, maar tot dusver is een dergelijk ti-
jdschaal niet in de literatuur vermeld. Bovendien wordt de identificatie van de haar-
speldpakketten en de opwekking van nieuwe wervelingen vooralsnog visueel gedaan
vanwege een gebrek aan objectieve identificatiecriteria. Vandaar dat in dit proefschrift
wordt onderzocht hoe wervelingen van een bepaalde drempelwaarde sterkte tot stand
komen, en wat de tijdschaal van de generatie van een werveling is. Ook bevat dit
proefschrift een conceptstudie naar een methode om wervelingpakketten objectief
te kunnen identificeren. Daarnaast wordt de bijdrage van coherente structuren (i.e.,
wervelingen, schuiflagen of zadelpunten) op het scalaire transport onderzocht. Dit zou
kunnen bijdragen tot het verbeteren van verbranding en chemisch mengen.

Het creëren van wervelingen van een bepaalde drempelwaarde sterkte is onderzocht
door de interacties tussen zwakke wervelingen te bestuderen, en te controleren of
deze vervolgens auto-generatie initiëren. Hierbij wordt de evolutie van twee zwakke
conditionele wervelingen met verschillende initiële sterktes, initiële groottes, en ini-
tiële afstand in stromingsrichting tussen deze wervelingen onderzocht. De gebruikte

xi

[ June 9, 2017 at 11:50 – classicthesis version 0.01 ]



numerieke procedure is vergelijkbaar met Zhou et al., (1999). De twee wervelingen
smelten samen om een   enkele sterkere werveling te vormen wanneer de stroomop-
waartse werveling zich op een hogere positie langs de wand bevindt. Deze sterke
samengesmolten werveling wordt verder automatisch gegenereerd afhankelijk van de
initiële stroomsgewijze scheiding tussen wervelingen. Verder onderzoek heeft geleidt
tot een wijziging van het mechanisme voor auto-generatie, waarbij de ejection de
top van de bronwerveling snel van de wand af beweegt. Hierdoor wordt de stro-
ming stroomopwaarts geblokkeerd, en een nieuwe werveling wordt stroomopwaarts
opgewekt door een oprollende schuiflaag. Dit gewijzigde auto-generatiemechanisme
verschilt van het bestaande in de latere stadia van de auto-generatie, waarbij de
blokkering van de stroming stroomopwaarts en het oprollen van de schuiflaag wordt
beschouwd in plaats van de dynamiek van wervelingen. Bovendien kan dit gemodi-
ficeerde mechanisme de auto-generatie in single legged of asymmetrische wervelin-
gen verklaren, welke waargenomen zijn in daadwerkelijke turbulente kanaalstroming
bij een wrijvings Reynolds getal Reτ = 180.

De tijdschaal van auto-generatie in turbulente kanaalstroming bij Reτ = 180 wordt
visueel bepaald. De tijdschaal blijkt 10 tot 15 keer de wandeenheid te zijn, hetgeen
vergelijkbaar is met experimentele resultaten van Jodai and Elsinga, (2016). Echter,
dit is een orde van grootte kleiner dan de tijdschaal waargenomen in de geïdealiseerde
auto-generatie simulaties (80 tot 250 keer de wandeenheid). Aangezien het genereren
van nieuwe wervelingen gekoppeld is aan het creëren van ejection, kan deze tijdschaal
gebruikt worden om de turbulente stroming actief te wijzigen, met als doel om tur-
bulentie te verhogen of om stromingsweerstand te verminderen. Er moet echter op
worden gewezen dat de statistische omschrijving van de tijdschaal van de automatis-
che generatie en het aantal genereerde wervelingen een open probleem blijft.

Op dit moment is de statistische relevantie van haarspeldpakketten en auto-
generatie moeilijk te bepalen. Dit komt door een gebrek aan objectieve identifi-
catiemethoden om wervelingpakketten en auto-generatie in een daadwerkelijke tur-
bulente stroming te identificeren. Daarom is het belangrijk om meer te weten te
komen over een haarspeldpakket om zo een   objectieve methode te ontwikkelen. Van-
daar is een concept studie gedaan, waar een verband tussen een haarspeldpakket en
een schuiflaagstructuur wordt onderzocht in de daadwerkelijke turbulente kanaalstro-
ming [Elsinga and Marusic, (2010)]. Het zal worden aangetoond dat de twee opeenvol-
gende co-roterende wervelingen in een haarspeldpakket in een ander referentiekader
(i.e., de hoofd afschuifrichtingen) kunnen worden beschouwd als een schuiflaagstruc-
tuur. Vandaar kan een algemeen schuiflaagdetectieschema worden gebruikt om schui-
flaagstructuur te detecteren welke co-roterende wervelingen bevat. Voorts kan op ba-

xii
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sis van het patroon van de geïdentificeerde co-roterende wervelingen een haarspeld-
pakket objectief worden geïdentificeerd. Daarnaast, aangezien de schuiflaagstructuur
in allerlei stromingen wordt waargenomen en als universeel wordt beschouwd, kan
het instantane bestaan in verschillende stromingen en de verbinding met werveling-
pakketten verder worden onderzocht.

In het laatste deel van dit proefschrift wordt de relevantie van algemene stro-
mingsstructuren, namelijk de Burgers’ werveling, de schuiflaagstructuur, en de knoop-
zadel topologie in de verspreiding van tracer deeltjes bestudeerd. Deze geidealiseerde
drie-dimensionale structuren worden beschouwd aangezien deze typische elliptische
en hyperbolische kritische punten vertegenwoordigen. Deze kritische punten bein-
vloeden de dispersie in twee-dimensionale turbulentie zoals Goto and Vassilicos,
(2004) laten zien, terwijl de huidige studie dit uitbreidt tot drie dimensies. Verschil-
lende dispersiestatistieken, zoals paardispersie, materiaallijnen en tetrad dispersie,
zijn bestudeerd en vergeleken met de isotrope turbulente stromingsstatistieken. Ook
worden momentopnames van de deeltjesverdeling op verschillende tijdstippen gepre-
senteerd om de invloed van de verschillende kenmerken van deze structuren op de
dispersiestatistieken te begrijpen. Bovendien is waargenomen dat de structuur van de
schuiflaag zowel kwalitatief als kwantitatief erg lijkt op die van de werkelijke turbu-
lente stromingsstatistieken. De Burgers’ werveling blijkt het meest af te wijken, terwijl
de knoop-zadel topologie een aantal overeenkomsten vertoont met de daadwerkelijke
turbulente dispersiestatistieken. Echter, deze wijkt af van de geometrische kenmerken
die verband houden met de materiaallijnen en tetrad dispersie.

Samenvattend, dit proefschrift beschrijft een verbetering van het bestaande haar-
speldpakketmodel en een wijziging van het bestaande auto-generatiemechanisme. Daar-
naast worden een aantal inzichten in de tijdsduur van de automatische generatie gegeven,
welke kan worden gebruikt om bestaande actieve flow control en modificatie tech-
nieken te verbeteren. Bovendien wordt ook de invloed van verschillende driedimen-
sionale ideale structuren op dispersiestatistieken getoond.

xiii
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N O M E N C L AT U R E
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u, v, w Stream-wise, wall-normal and span-wise velocities
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δ′ δ velocity fluctuation
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⟨δ⟩ Mean of a quantity δ
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−⟨u′v′⟩ Reynolds shear stress

uτ Friction velocity

Q2 Second quadrant (u′ < 0, v′ > 0)

Q4 Fourth quadrant (u′ > 0, v′ < 0)
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S Local swirling strength squared
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1
I N T R O D U C T I O N

Turbulence in fluid flows plays an important role in many natural and industrial pro-
cesses. For instance, turbulence is a major contributor to drag in the flow over solid
surfaces, it assists in the transport of pollutants, and it enhances chemical mixing and
combustion. Hence, turbulence modification may help in reducing the drag to create
energy efficient designs or assist in effective pollutant dispersion strategies. However
to modify turbulence, it is necessary to understand the mechanisms behind it in detail.

Many different approaches are used to study and understand turbulence. They in-
clude the description of turbulence using, coherent structures[1, 2], flow topologies[3–
7], and universal features of turbulence, namely, invariants of the velocity gradient
tensor[6] and vorticity strain interactions[8]. In last few decades, due to the improve-
ments in experimental and computational resources and techniques, it has become
easier to study turbulence in three-dimensions. This is an important development as
the full description of turbulence requires time dependent three-dimensional data
because the turbulence is essentially three-dimensional, i.e, it cannot exist in two-
dimensions. In the present thesis, turbulence will be mainly studied in terms of three-
dimensional coherent structures.

The hairpin packet model[1, 9] is one of the descriptions of wall-bounded turbu-
lence based on coherent structures. The structures in this model are considered im-
portant as they are associated with Reynolds shear stress, which is further connected
to the drag. In various drag reduction techniques, the Reynolds shear stress or ejec-
tion events were observed to be suppressed[10–21]. Hence for drag reduction, it is
important to understand the generation of Reynolds shear stress (−⟨u′v′⟩)1 or ejec-
tion events (u′ < 0, v′ > 0). Thus, studying the dynamics of structures in the hairpin
packet model is beneficial as it could open up some new insights to improve drag re-
duction.

1 u′ and v′ refer to perturbation velocities in stream-wise and wall-normal directions, respectively.

1
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2 introduction

The hairpin packetmodelwas proposed by Adrian et al.[1] to describe wall-bounded
turbulence and is illustrated in Figure 1.1. In this model, the vortices, such as hairpins
or cane-shaped vortices, are clustered in a packet in the stream-wise direction (flow di-
rection). The model is based on observations in actual wall-bounded turbulent flows[1,
22, 23]. The vortices in a packet are at an angle γ with respect to the wall and together
they form a low momentum zone[1]. The consecutive vortices in the packet are sep-
arated in the stream-wise direction by 100 − 150 wall units[1, 24]. The packets are
observed to carry a significant amount of Reynolds shear stress, i.e., around 25% by
only occupying 4.5% of the total area[9, 25]. Additionally, the conditional averaged
flow around an ejection event reveals hairpin like vortices[9, 26–29], which further
highlights the connection between Reynolds shear stress and the vortex packets. The
existence of packets has been explained in terms of auto-generation, where a parent
vortex generates new off-spring vortices[28, 30, 31]. The generation of new vortices
is also associated with the generation of new ejection events[28]. Hence, understand-
ing the generation of vortices or ejection events in a packet is important for the drag
reduction problem.

Figure 1.1: Conceptual picture of hairpins/canes organization in wall bounded turbulence
(Taken from Adrian et al.[1])

The auto-generation mechanism has been studied numerically in idealized simula-
tions by Zhou et al.[28], Eitel-Amor et al.[32] and Kim et al.[33], where the evolution
of an initial (or parent) hairpin superimposed onto a laminar background flow was
simulated in time. In these simulations, the initial vortex was extracted from the actual
turbulent flow by conditional averaging the flow around ejection events. Furthermore,
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introduction 3

the turbulent mean profile was used as the laminar background flow. It has been shown
that the auto-generation of new vortices is only possible, if the initial vortex strength
was above a threshold strength[28, 33] (see also Section 2.2). However, there was no
explanation on how these threshold strength vortices could come into existence.

As already mentioned, the ejection events are associated with the generation of vor-
tices in a hairpin packet[1, 9, 28]. The ejection events or the generation of new vortices
are observed to be suppressed in many drag reduction studies. On the other hand, the
generation of new vortices is desired for turbulence generation in the case of flow sepa-
ration delay[34, 35]. Understanding the time required to create ejection events or vor-
tices could assist in improving these active drag reduction and flow control techniques.
However, there are no observations of auto-generation in actual turbulent flows, ex-
cept for a recent experimental study[36]. Moreover, the timescale associated with auto-
generation[9] may be different in actual turbulent flow compared to the idealized sim-
ulations[28, 32, 33]. Hence, the auto-generation and the time scale of the generation
of a vortex in actual turbulent channel flow (TCF) is studied in this thesis.

The hairpin packets and the auto-generation in actual TCF were identified visually
in this thesis as well as in many other studies. This is due to the lack of an objective
identification method. An automated objective method to identify hairpin packets in
turbulence data-sets could assist in studying and answering questions related to the
statistical relevance of hairpin packets and auto-generation. In order to develop such
an objective method, it is necessary to improve and generalize the understanding of
the hairpin packets. This can be done by exploring connections between the hairpin
packets and flow topologies in turbulence. In this thesis, we explore the connection
between a general flow topology, called the shear-layer structure (SLS)[7], and hairpin
packets, which could aid in improving the identification method.

Three-dimensional turbulence consists of many structures, namely, vortices, shear-
layers and low-speed streaks. These structures can influence the transport of tracer
particles in different ways. In two-dimensional turbulence, Goto and Vassilicos[37]
showed that the straining regions or hyperbolic critical points tend to separate par-
ticles, thereby increasing the distance between them. On other hand, particles were
observed to remain together in vortical structures or elliptical critical points. Further,
they utilized this information to predict the temporal evolution of the particle pair dis-
persion statistics, which can be used in dispersion models. However, such a study in
fully three-dimensional turbulence does not exist because of the numerous difficulties.
Hence, dispersion around three-dimensional idealized structures with similar critical
points will be studied in this thesis.
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4 introduction

1.1 objectives

Based on the discussion in previous paragraphs, the objectives of the thesis are to ad-
dress the following questions

1. How do threshold strength vortices come into existence in wall-bounded turbu-
lence?

2. Do we observe auto-generation in actual turbulent channel flow?

3. What is the time scale of auto-generation in actual turbulent channel flow?

4. What is the connection between the shear-layer structure and the hairpin packet?

5. What is the contribution of idealized structures in the turbulent dispersion statis-
tics of tracer particles?

The first question is addressed by numerically exploring the interaction of two weak
non auto-generating vortices in Chapter 2. The procedure followed is similar to that
of Zhou et al.[28]. This chapter was published as ‘Auto-generation in wall turbulence
by the interaction of weak eddies’[38]. In Chapter 3, the hairpin packets and auto-
generation are visually identified in an actual fully developed turbulent channel flow,
where the second and third objectives are discussed. Next, it is known that the shear-
layer structure consists of two co-rotating vortices and similarly, the hairpin packet
also consists of a sequence of co-rotating span-wise vortices. Hence, a link between
these two will be explored in Chapter 4, where the hairpin packets are identified in a
fully developed turbulent channel flow. In Chapter 5, the tracer particles are simulated
around different idealized three-dimensional structures, such as a shear-layer struc-
ture, a node-saddle topology and a Burgers’ vortex. The dispersion statistics, namely
pair dispersion, tetrad dispersion, and material line statistics, will be computed and
compared with actual turbulent flow statistics. All these chapters can be viewed as stan-
dalone chapters as they are either published or papers in preparation. Finally, conclu-
sions are briefly discussed in Chapter 6 along with implications and recommendations
for the future study.
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2
AU T O - G E N E R AT I O N I N WA L L - T U R B U L E N C E

In this chapter, how threshold strength vortices that auto-generate can come into exis-
tence is explored. This is done by studying the interactions between two weak vortices
or a weak vortex with a low-speed streak. Based on the observations, a modified auto-
generation mechanism is proposed. This chapter has been published in Physics of Fluids
with title ‘Auto-generation in wall turbulence by the interaction of weak eddies’[38] and
is presented here with few minor modifications.

2.1 introduction

In most engineering applications, we come across loss of energy/momentum in turbu-
lent flows over solid surfaces, such as flow over a car or over the wings of an aircraft.
It is desired to decrease this loss of energy when creating more efficient designs. Nu-
merous drag reduction techniques studied in the literature[10–21] have shown that
the Reynolds shear stress, ejection events, stream-wise, or span-wise vortices decrease.
Understanding how and why there is a decrease in these quantities could help in im-
proving drag reduction. Hence, it is essential to study the internal structure and de-
tailed dynamics of wall-bounded turbulent flows. Among many different approaches
to investigate and understand the dynamics of turbulence, coherent structures is con-
sidered in this chapter.

One school of thought on the organized coherent structures[2, 9] is the hairpin eddy
model in which the turbulent flow near a wall is populated by arch-type or hairpin-
like vortices[9]. The initial generation of such hairpins in transitional boundary-layer
flows has been studied by Brandt and Lange[39]. In fully developed turbulent flows
the hairpin vortices have been observed to be clustered into so-called hairpin pack-
ets[1, 23, 40], which can be considered as a group of stream-wise aligned hairpin
vortices, around a single low-momentum region. The vortices within these packets

5

[ June 9, 2017 at 11:50 – classicthesis version 0.01 ]



6 auto-generation in wall-turbulence

are separated by 100-150 wall units[1, 24] in the stream-wise direction. Due to their
connection to the low-momentum regions, hairpin packets are associated with turbu-
lent kinetic energy, and as discussed by Adrian[9] and Ganapathisubramani et al.[25],
they carry significant Reynolds shear stress. Moreover, conditional vaveraging around
Reynolds shear stress event reveal hairpin packet kind of topologies[9, 28], which
again suggests hairpin type structures contribute importantly to the Reynolds shear
stress. While other vortical structures may exist near the wall[41, 42], the close as-
sociation of hairpin packets with the Reynolds shear stress makes them particularly
relevant to the turbulent drag problem. It therefore becomes of interest to understand
how packets come into existence.

The auto-generation mechanism[28] or parent-offspring concept[30] provides a
possible explanation for this packet formation. In general, these mechanisms feature
an initial vortex, which produces additional upstream vortices[28, 31]. The detailed
explanation on how a new vortex is generated has been subjected to debate[28, 30,
31, 43–45]. Asai and Nishioka[44] conjectured the creation of new vortices is due to
the inflectional instability of a wall shear layer lifted by the initial hairpin vortex legs.
Their assessment was based on smoke-wire visualization and hot-wire measurements
of boundary layer transition over a flat plate. On the other hand, Bake et al.[45] argued
that vortex interactions are the main reason behind auto-generation rather than the
shear layer after examining periodic Klebanhoff transition on a flat plate experimen-
tally and by a direct numerical simulation. The mechanism based on vortex dynam-
ics was further elucidated by Zhou et al.[28]. They came up with a simple model to
demonstrate the auto-generation by numerical simulations of turbulent channel flow.
Starting from a single, three-dimensional vortex structure they studied its subsequent
development. The initial vortex is the part of a conditional eddy, which, corresponds
to the average velocity field around an ejection (Q2) event (u′ < 0, v′ > 0). The
term ‘eddy’ here refers to the vortex structure along with the velocity field around it.
The subsequent dynamics were explained in terms of the induced motions of the vor-
tex forming a kink in the legs of the initial hairpin, which start to approach each other
causing the associated shear layer to strengthen and roll-up into a span-wise vortex.
The rolled-up span-wise vortex connects to the legs, thereby creating the secondary
vortex.

Zhou et al. also found that the conditional eddy only auto-generates new vortices
upstream when the vortex strength is above a certain threshold value. Kim et al.[33]
further demonstrated the robustness of this auto-generation mechanism by showing
the generation of new vortices even in the presence of added noise, and a turbulent
flow field. They also observed that the added background noise resulted in a reduc-
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Figure 2.1: (a) Normalized joint probability density function ( fu′v′ ) of u′+ and v′+ in the
second quadrant at y+ = 51. The scatter plot in the figure is used to show the extreme low
occurrence events. (b) The contours of probability weighted Reynolds shear stress given by
−u′+v′+ fu′v′ at y+ = 51. Markers , , , and in both figures correspond to relative strength
α = 1, 2, 3, and 4, respectively.

tion of the threshold strength required to trigger auto-generation, though mainly in
the buffer layer. However, the conditional eddy that was introduced into the fully de-
veloped turbulent channel flow and finally resulted in auto-generation had very large
values of velocities (u′, v′) compared to the observed values in actual turbulent flows.
The relative strength α which linearly amplifies the conditional eddy, and thereby the
magnitude of the ejection event on which it is based, was found to be 6 in their case.
The precise definition of α will be discussed in Sec. 2.2. They increased α to get values
of the swirling strength comparable with the actual turbulent flow vortices. However,
our simulations indicate that α = 4 already results in velocity values which are above
the extreme values found in actual turbulent channel flow, as shown in Fig. 2.1. The
probability of occurrence of velocity values at α = 3 is even below 10−6 (see Fig. 2.1).
The velocities corresponding to strength α = 2 occur much less than the occurrence
of velocities corresponding to α = 1. The relative strength values of α = 2, 3 were con-
sidered as the threshold strength for auto-generation in Zhou et al. On the contrary, in
the present study values of α = 1 are considered as it is of interest to consider scenar-
ios involving weaker initial eddies, which are much more frequent in wall-bounded
turbulence.

Therefore, in the first part of this study, how a threshold strength vortex may come
into existence is explored by considering the interaction and possibly the merging of
two weak initial eddy structures. Weak eddy structure means that it is below the thresh-
old strength and does not auto-generate by its own. Adrian et al.[1] suggested that dif-
ferent vortex packets can merge. The merging of entire clusters of vortices was also de-
scribed by Lozano-Durán and Jiménez[2]. Merging of individual vortices was also ob-
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8 auto-generation in wall-turbulence

served in experiments[46]. Adrian et al.[29] showed the growth of span-wise scales by
studying the span-wise merging, growth and the interaction of hairpin vortices. How-
ever, the span-wise merging was reported to result in weaker, not stronger vortices.
Therefore, it cannot be the origin of threshold strength vortices. Parthasarathy[47]
studied multiple vortex interaction; however all the vortices under consideration were
above threshold strength vortices. Based on these observations, the interactions be-
tween two ideal non auto-generating eddies in the stream-wise direction are consid-
ered in this chapter. The eddies are extracted from a fully developed channel flow sim-
ulation similar to that of Zhou et al.[28], which is discussed in detail in sections 2.2.2
and 2.2.3. A variety of scenarios are then created based on different initial strengths,
different initial sizes and different initial stream-wise spacings between the aligned
eddies as shown in Fig. 2.2. The role of these quantities in the auto-generation mech-
anism is studied to understand their influence on the onset of auto-generation.

In the second part of this study, the role of low-speed streaks on the onset of auto-
generation is investigated. Low-speed streaks can affect auto-generation as they are
sandwiched between the legs of the vortex in a conditional eddy[28]. So, when two
eddies are aligned behind each other as shown in Fig. 2.2, their low-speed streaks get
superimposed and thereby strengthen (shown later in Fig. 2.4). In order to understand
the effect of low-speed streaks in auto-generation, a divergence-free low-speed streak
is added to a non auto-generating conditional eddy and is studied for the generation
of new vortices.

In the final part, critical aspects leading to onset of auto-generation are identified
and a modified interpretation of the auto-generation mechanism[28, 44] is also pre-
sented. This interpretation for auto-generation is different from Zhou et al.[28] at later
stages of the development where it views shear layer deformation instead of vortex dy-
namics. Also, in Zhou et al.[28], a symmetric hairpin vortex with two legs was used to
explain the auto-generation mechanism, which is not often found in actual turbulent
flows[42]. Zhou et al.[28] later added that the non-symmetric initial hairpins also auto-
generated hairpin packets. These packets are more complicated, but bear resemblance
with the idealized symmetric case, showing long low-momentum zones and similar
growth angles. Thus, the stages involving the mutual interaction and self-induction
by the two legs, as in the model of Zhou et al.[28], do not seem critically important.
Hence, a stronger emphasis is laid on the role of the interaction of the hairpin with the
background flow field.
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Figure 2.2: Scenarios showing the arrangement of the two eddies in the initial condition. The
left figure shows a top view and the right figure a side view of the channel. ∆x is the stream-
wise distance between the two vortices. In this example, the upstream vortex ‘a’ is of higher
event (ye) location and the downstream vortex ‘b’ is of lower ye location.

2.2 methodology

2.2.1 Numerical Method

The dynamics of the eddies was simulated by Direct Numerical Simulation (DNS) in a
channel flow driven by a constant pressure gradient. The pressure-correction method
was used to solve the Navier-Stokes equations, where, the pressure distribution was
only computed in the velocity corrector step in order to satisfy the constraint of a
divergence free flow field (mass conservation). The explicit third-order Runge-Kutta
scheme was employed for integration in time for advection and diffusion terms. And
for spatial discretization, a pseudo-spectral (FFT-based)[48] method was used for the
stream-wise (x) and span-wise (z) directions and a 6th order compact finite-difference
scheme[49] for the wall-normal direction (y). Periodic boundary conditions were ap-
plied in the horizontal directions and no-slip, no-penetration conditions at the solid
walls. The computational domain was fixed to 4πh × 2h × 4

3 πh in the x, y and z di-
rections with 192× 129× 128 grid points, respectively. The uniform grid spacing was
11.78 and 5.89 wall units in the stream-wise and the span-wise direction respectively.
A non-uniform grid[50] was used in the wall-normal direction, where ∆y+ varied
from 0.75 near the walls to 3.87 in the core of the channel. The superscript + refers
to scaling in viscous wall units. The velocities in the stream-wise, wall-normal and
span-wise directions are given by u, v, w or ui = u1, u2, u3 and the superscript ′

on them represent perturbation velocities relative to the mean flow U(y). The DNS
code is validated by comparing the turbulent statistics at friction Reynolds number
Reτ = 180 to the data provided on website http://turbulence.ices.utexas.edu/[51].
This comparison is presented in appendix A.2. It should be noted that the Reynolds
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10 auto-generation in wall-turbulence

number considered in the present simulations is low. This is because the underlying
mechanisms were shown to be similar and robust at higher Reynolds number by Kim
et al.[33]. Additionally, fewer number grid points at low Reτ gives us an opportunity
to perform large number of simulations in small time and eases the data analysis in
three-dimensions with time.

2.2.2 Conditional eddy

The initial condition at the start of a simulation is the superposition of the turbulent
mean flow U(y) and a perturbation velocity ũ′

i associated with a conditional eddy. The
turbulent mean flow was considered due to the high shear rate near the wall, which
plays a role in the auto-generation[9]. The individual conditional eddy was extracted
from a DNS of fully developed turbulent channel flow at Reτ = 180 by the means of
linear stochastic estimation (LSE) of the flow field associated with an ejection event
(u′ < 0, v′ > 0) identical to Zhou et al.[28]. This initial condition was simulated by
the DNS method introduced in section 2.2.1. The pressure was not required to be ini-
tialized in the DNS, as the initial condition was found to divergence-free flow field. The
LSE approximates[27] the conditionally averaged flow field given by ⟨u′(x)|u′

e(xe)⟩
where u′

e(xe) represents the velocity event vector conditioned at point xe.
This LSE procedure has been extensively discussed in papers by Adrian[26, 27] and

is given by

ũi
′(x) = Linear estimate of ⟨u′(x)|u′

e(xe)⟩

=
3

∑
j=1

Lij(x, ye)u′
j,e i = 1, 2, 3 (2.1)

where Lij are linear estimate coefficients and u′
j,e is the velocity event vector located

at a wall-normal distance ye. The coefficients Lij are computed from unconditional
two-point correlations according to

3

∑
j=1

⟨u′
k(xe)u′

j(xe)⟩Lij = ⟨u′
i(x)u

′
k(xe)⟩, k = 1, 2, 3. i = 1, 2, 3. (2.2)

where ⟨u′
ku′

j⟩ and ⟨u′
iu

′
k⟩ represent the unconditional two-point co-variances between

the velocities at xe, and between the fluctuating velocity field and the velocity at xe

respectively. In equation (2.2), the correlations only depend on ye, y, and the relative
distances ∆x, ∆z with respect to the event as x, z are homogeneous directions in
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the flow. Hereafter the relative distances ∆x and ∆z are simply represented as x and z
respectively unless stated otherwise.

The velocity event vector u′
j,e (see Eq. 2.1) was chosen such that it matched to the

value of the second quadrant (Q2) event (u′ < 0, v′ > 0) which contributes most to
the Reynolds shear stress (−⟨u′v′⟩) at a particular wall-normal location (y+e ). That is,
the values of ue = u′, ve = v′ which maximizes |u′v′| fuv(u′, v′) in the second quad-
rant, where fuv(u′, v′) represents the joint probability density function of occurrence
of u′ and v′. The span-wise component w′

e was zero resulting in symmetric condi-
tional eddy as shown in Fig. 2.3a. The vortex is visualized by iso-surfaces of the square
of local swirling strength[28] given by S = λ2

ci which is used for vortex identification
throughout this chapter. The local swirling strength is defined as the imaginary part of
a complex eigenvalue (λci) of the velocity gradient tensor. If all the eigenvalues are real
then the local swirling strength is zero. The values of the maximum swirling strength
of the eddy conditioned at y+e = 51 was found to be comparable with the reported
values in Zhou et al.

2.2.3 Simulation types

Two of such conditional eddies were added to the turbulent mean flow U(y) to study
their interaction. The initial velocity field at the start of the simulation was given by

ũi(x) = U(y) + αũ′
i(x, y, z; ye1) + βũ′

i(x + ∆x, y, z; ye2) (2.3)

where α and ũ′
i(x, y, z; ye1) are the relative strength and the perturbation velocity of

the first eddy corresponding to the event at ye1, and similarly the relative strength β,
and perturbation velocities ũ′

i(x + ∆x, y, z; ye2) of the second eddy are based on the
event at ye2 with an additional stream-wise shift (∆x) relative to the first eddy. The
stream-wise shift is approximately the distance between the stream-wise locations of
the maximum swirling strength of the eddies at time (t+ = 0). Therefore ∆x will be
referred to as distance between two eddies throughout the chapter. Figure 2.3b shows
an example of an initial condition containing two vortices computed from equation
(2.3). An overview of all the two-eddy cases studied is given in table 2.1. Similar sim-
ulations[47] were performed previously, where the eddies considered were above the
threshold strength and could auto-generate into new vortices individually. The values
of the relative strength α, β listed in table 2.1 correspond to cases where eddies do not
auto-generate individually as it is aimed in the present chapter to study below thresh-
old strength eddies. The stream-wise spacing between the vortices (∆x) was chosen
comparable to the observed spacing of 100-140 wall-units in experiments[1, 24, 46]
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Figure 2.3: Different initial conditions represented by the iso-surface of the square of local
swirling strength S+ = λ+2

ci = 3.86 × 10−4 (approximately 20% of maximum S+). (a)
Single eddy case with event location (y+e = 76) and relative strength of conditional eddy
(α = 1). (b) Two eddy case, upstream vortex with (y+e = 76, α = 1) and downstream vortex
(y+e = 51, α = 1). (c) Low-speed streak superimposed (Eq. (2.4)) on an eddy (y+e = 76, α =

1). It looks very similar to the single-eddy case (y+e = 76, α = 1).

and below to study vortex-vortex interactions. Reference event planes (ye) were con-
sidered in the outer layer and all event locations were between 0.1h to 0.3h in the wall
normal direction. Case I and II simulations in table 2.1 represent a taller upstream
vortex compared to the downstream vortex and vice-versa in case III. In cases I and
III both eddies have the same relative strength whereas the upstream eddy in case II
has a higher relative strength than the downstream eddy.

In the second part of this study, the interaction of a single conditional eddy with
a low-speed streak is examined. To obtain the streak, the stream-wise velocity com-
ponent in a cross-stream plane was extracted from the velocity field of a conditional
eddy ũi (section 2.2.2). The extracted plane is at a stream-wise distance xp relative
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2.2 methodology 13

Table 2.1: Overview of the simulations of the cases with two eddies. ‘NA’ or ‘Not Applicable’
refers to cases where the initial vortices have already merged with each other. Case Ib and Ic,
and case IIa and IIb are together as they have similar merging and auto-generation behavior
for all ∆x+. Auto-generation is decided visually based on whether new vortices are generated
when iso-surfaces at all time steps are drawn at 10% of the square of maximum initial swirling
strength.

Case Strength
(α, β)

Ref Plane
(y+e1, y+e2)

Spacing
∆x+

Merging Auto-
generation

Ia

(1,1)

(76,51)

59 NA Yes

118 Yes Yes

177 Yes Yes

235 Yes No

Ib

Ic

(103, 51)

(103, 76)

59 NA Yes

118 Yes No

177 Yes No

235 Yes No

IIa

IIb
(2,1)

(103, 51)

(103, 76)

59 NA Yes

118 Yes Yes

177 Yes Yes

235 Yes Yes

III (1,1) (76, 103)

59 NA Yes

118 No Yes

177 No No

235 No No

to the event location xe. The streak is created by expanding this cross-stream plane
uniformly in the x-direction. Hence the stream-wise derivative is zero. Furthermore,
because u2 = u3 = 0, the streak is also divergence free and does not contain any
vortex. Mathematically, the initial field containing one eddy and the streak is given by

ũi(x) = U(y) + αũ′
i(x, y, z; ye1) + βũ′(y, z; ye2, xp) (2.4)
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14 auto-generation in wall-turbulence

where ũ′(y, z; ye2, xp) corresponds to the stream-wise velocity at a plane xp extracted
from a conditional eddy conditioned to the event at ye2, and β defines the relative
strength of the streak as it linearly amplifies the velocities.

Table 2.2: Overview of simulations of the cases with a low-speed streak along with a eddy.

Case Eddy Low-speed streak

Event plane
(y+e )

Strength
(α)

Event plane
(y+e )

Strength
(β)

Spacing
(x+p )

IV 76 1 51 1 59

V 76 1 76 1 0.0

An overview of all the vortex-streak simulations is shown in table 2.2. Case IV is
obtained by removal of the second, downstream vortex in the two eddy case Ia with
∆x+ = 59 (see Table 2.1) and replacing it with a low-speed streak. This low-speed
streak was obtained from the original downstream eddy in case Ia (y+e2 = 51). It was
the plane that overlapped with the peak swirling strength of the upstream eddy (i.e.,
x+p = 59). The streak is illustrated in Fig. 2.4. The contours of the low-speed streak for
cases I, IV, and the single eddy cases of y+e = 76 and 51, as well as the plane xp for case
IV are shown in the figure. Case V is created to compare with the single eddy case of
y+e = 76 with α = 2. The low-speed streak was extracted from single eddy y+e = 76
with β = 1 at plane x+p = 0 and overlapped with the conditional eddy corresponding
to the same event location and relative strength (α = 1). The iso-surface of the square
of swirling strength of this initial condition (case V) is shown in Fig. 2.3c. It is very
similar to the single-eddy case of 76 with α = 1 (Fig. 2.3a). However the strength of
the low-speed streak is doubled. The two eddy case Ia with ∆x+ = 59, and the single
eddy case of 76 with α = 2 are the baseline cases, which are used to compare with the
cases IV and V respectively.

2.3 results and discussion

2.3.1 Two-eddy case

The interaction between the two individually non auto-generating eddies was stud-
ied to understand how above threshold strength vortices may come into existence.
This was done by placing two non auto-generating eddies behind each other aligned
in stream-wise direction (see section 2.2.3) and checking for auto-generation. Zhou
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Figure 2.4: Contours of low-speed streaks at u′+ = −1.0. Black and green contours represent
two individual eddies of relative strength α = 1 at y+e = 76 and 51. Two eddy case with eddies
(76, 51) and α = (1, 1) is given by red contour and blue contour corresponds to superposition
of plane x+p of y+e = 51 on eddy y+e = 76 as given in Eq. (2.4).

et al.[28] described auto-generation as the means of generating new hairpin vortices
from a parent hairpin vortex. In the present case, auto-generation is loosely referred
to as the creation of new structures irrespective of whether these structures are hair-
pins or a pair of counter-rotating stream-wise vortices. An overview of the two-eddy
cases studied is given in table 2.1. It is important to emphasize that all eddies shown
in the table do not auto-generate individually, which was confirmed in separate simu-
lations of the single eddies. Moreover, the single-eddy evolution was studied to set up
a baseline for studying the interaction between two eddies. The initial conditional vor-
tex is a pair of lifted, counter-rotating stream-wise vortices (Fig. 2.3a). Zhou et al.[28]
report the following important observations connected with the evolution of a single
eddy, which are confirmed by our simulations. All studied conditional vortices evolve
into a hairpin vortex, which is referred to as the primary hairpin vortex[28]. If it has
sufficient initial strength, i.e., above a threshold strength, then it auto-generates. A
conditional vortex with a higher swirling strength (or higher relative strength α) trav-
els slower than a weaker vortex at the same event location (y+e ). A conditional vortex
based on an event specified at higher event vector location (y+e ) travels faster for the
same swirling strength due to higher mean flow velocity at larger wall normal location
(y+)[28].

Returning to the two eddy cases, Fig. 2.5 shows an example of two vortices merg-
ing to form a single vortex (Fig. 2.5a-2.5b). This merged vortex subsequently auto-
generates new vortices as shown in Fig. 2.5c. As mentioned the two initial eddies do
not auto-generate individually, i.e., they are all below the threshold strength required
for auto-generation. Hence merging of weak vortices seems a viable concept to pro-
duce stronger vortices that do auto-generate. Table 2.1 lists the outcomes of the other
two eddy simulations in terms of whether or not merging and auto-generation are ob-

[ June 9, 2017 at 11:50 – classicthesis version 0.01 ]



16 auto-generation in wall-turbulence

served. Two vortices separated by a stream-wise distance of ∆x+ = 59 were found
to be merged already in the initial field for all the cases shown in table 2.1 and hence
merging is indicated in the table as not applicable (NA). Merging was observed for
the cases I and II where the upstream vortex was at a higher event location compared
to the downstream vortex. When the upstream vortex was at a lower event location
compared to the downstream vortex, like in case III, merging did not occur. In cases I
and II, the upstream vortex moved faster than the downstream vortex due to its higher
location, reducing the distance between them with time and finally resulting in merg-
ing. From the single-eddy case, it was already known that an vortex with higher y+e
travels faster than an vortex with lower y+e , due to increasing mean flow velocity with
y+. After merging the geometric shape of the structure remained broadly similar to a
hairpin vortex. In case III, the downstream vortex travels faster and moves away from
the upstream vortex hence they do not merge.

t+ = 0
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Figure 2.5: Iso-contours of the swirling strength squared S+ = 1.64 × 10−4 (10% of maxi-
mum initial S+) for the two-eddy case Ia with ∆x+ = 118 (side view). In these plots x+ is
indicative of the size of the vortices rather than the distance travelled by them. (a) Two vor-
tices at time t+ = 0. (b) At time t+ = 72, the two initial vortices have merged to create a
single vortex. (c) The merged vortex auto-generates one upstream and one downstream vortex
at t+ = 316.8.
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Figure 2.6: Iso-contours of the swirling strength squared (S+ = 1.64 × 10−4) of the two-
eddy case Ia with ∆x+ = 235. In these plots x+ is indicative of the size of the vortices rather
than the distance travelled by them. (a) Two vortices at time t+ = 0. They merge at time
t+ = 144. (b) At time t+ = 316.8, the merged vortex does not auto-generate.

Auto-generation does not occur in all the simulations with vortex merging as indi-
cated in table 2.1. Figures 2.5 and 2.6 represent examples of an auto-generation and
a non auto-generation case, respectively. In both simulations, the initial eddies were
of unit strength (α = β = 1) with the upstream eddy conditioned on y+e = 76 and
the downstream eddy on y+e = 51 (case Ia, table 2.1). The only difference was in the
stream-wise separation (∆x+). For ∆x+ = 118, the two vortices (Fig. 2.5) merge af-
ter t+ = 72 to form a single vortex. Then at time t+ = 316.8, this merged vortex
generates two new vortices, one upstream and one downstream as shown in Fig. 2.5c.
Merging is also observed for the larger stream-wise separation distance ∆x+ = 235 at
t+ = 144 (Fig. 2.6a). The development of this merged vortex at time t+ = 316.8 can
be seen in Fig. 2.6b. It did not generate any new vortices and slowly dissipated with
time. Similar cases where the auto-generation did not occur for large stream-wise sep-
aration can be found in table 2.1. This is because, as the separation distance increases,
the time till merging increases as well. During this time, the strength of the vortices
decay resulting in weaker vortices at the time of merging, hence a weaker interaction.

These interactions for different stream-wise spacing can also be quantified in terms
of the vortex strength. The strength of the vortex at an instant in time is defined as the
maximum of the swirling strength squared, which is normalized by means of its initial
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Figure 2.7: Influence of stream-wise spacing on temporal evolution of normalized square of
swirling strength : Lines ( ), ( ), ( ) and ( ) indicate stream-wise spacing ∆x+ =

59, 118, 177, and 235, respectively. Lines ( ), ( ) and ( ) represent individual eddies
at event vector location 103, 76, and 51, respectively. Filled square ( ) represents a shift in the
peak location from the leg to the head, whereas black diamonds ( ) represents a shift from
the head to the legs. Black bullets ( ) represents the time when merging is complete, which is
visually decided (e.g., Fig. 2.5b). (a) Case Ia, with single eddies y+e = 76 & 51. (b) Case Ic,
with single eddies y+e = 103 & 76.

value (at t+ = 0). The evolution of the two-eddy cases Ia with different stream-wise
separations are shown in Fig. 2.7a along with the individual eddies at y+e = 76 and
51 of strength α = 1 for comparison. Similarly, Fig. 2.7b represents cases Ic along
with individual eddies at y+e = 103 and 76. In these figures, the square of the initial
maximum swirling strength (S+(0)) in two eddy and single eddy cases were found to
be comparable to within 10% and therefore, it is used for normalization. The resulting
normalized value represents the amplification of vortex strength compared to the ini-
tial state. At first the peak in swirling strength is located in the leg of the vortex then
as the vortices merge and the hairpin shape develops, the peak location shifts to the
hairpin head. This transition is indicated in Fig. 2.7 by the marker ( ). After a while
the swirling strength in the head starts to decrease and the peak in swirling strength
returns to the legs, which is marked by ( ) in Fig. 2.7. The marker ( ) represents the
time when merging is complete, which is visually decided (e.g., Fig. 2.5b).

In Fig. 2.7a, it is observed that the initial growth rate (increase in vortex strength
with respect to time) is much steeper for a stream-wise spacing of ∆x+ = 59 than for
∆x+ = 118. With increased spacing the growth rate decreases and around ∆x+ =

235, it becomes similar to the single eddy cases. The peak amplification, i.e., the value
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of normalized maximum swirling strength squared, follows a similar trend. It reaches
9.33 for ∆x+ = 59 compared to 6.22 for ∆x+ = 118, and it continues to decrease as
the stream-wise spacing is increased. The peak amplification of 9.33 in case Ia is about
six times the value of 1.55 for the single eddy case with y+e = 76. The two vortices thus
temporarily produce a much stronger merged vortex (for ∆x+ ≤ 118), which is above
the threshold strength for auto-generation. Whereas individually, the vortices remain
below the threshold strength and eventually get dissipated[28]. When the stream-wise
distance between the vortices is higher, the time required to merge is longer, and dur-
ing this time the vortices weaken individually. And when these weak vortices merge,
the merged vortex is not strong enough to generate new vortices. Similar observations
can be made in Fig. 2.7b, where again the peak amplification decreases as the stream-
wise spacing is increased.

The peak amplification is also found to increase when the distance between the two
eddies in the wall-normal direction is decreased. The upstream eddy for both cases Ib
and Ic is conditioned at y+e = 103, however the downstream eddy was conditioned
at y+e = 51 for case Ib and y+e = 76 for Ic. The peak amplification in case Ic was
found to be 4.89 (see Fig. 2.7b) compared to 3.14 for case Ib with stream-wise spacing
∆x+ = 59. A similar trend of higher peak amplification was observed in case IIb
compared to IIa, where the downstream eddy in case IIa was conditioned at lower y+

than case IIb.
In cases IIa and IIb (see Table 2.1), where the stream-wise spacing was higher, i.e.,

∆x+ = 235, the merged vortex did auto-generate even though the stream-wise spac-
ing between the two vortices was large for vortex-vortex interaction. This was due to
the higher initial strength of the eddy, though it was still below threshold strength.

From all these observations, it can be inferred that stream-wise merging results in
the creation of a stronger vortex whose subsequent auto-generation may still depend
upon the initial strength of eddies and their stream-wise spacing. The strength of the
initial eddies (α and β) required for auto-generation in the cases I was around unity,
which corresponds to an eddy conditioned on a commonly occurring ejection event.
This is clearly lower than the threshold strength of a single eddy required for auto-
generation[28]. However, auto-generation was also observed in cases where merg-
ing did not occur (see case III, table 2.1). This clearly indicates that vortex merging
is not the only mechanism that can trigger auto-generation. It was also found that
the auto-generation occurred in non-merging cases in the present study when the
stream-wise spacing was lower than 118 wall units. From these observations, it can
be educed that the stream-wise separation (∆x+) between eddies plays a major role
in auto-generation. However, the initial stream-wise separation cannot be identified
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Figure 2.8: Temporal evolution of normalized maximum swirling strength. Lines ( ) and
( ) refer to case IV and its baseline simulation (case I (76,51), ∆x+ = 59). Lines ( ) and
( ) refer to case V and its baseline simulation (single eddy y+e = 76 and α = 2).

as the sole parameter to define the onset of auto-generation, as auto-generation also
depends upon the strength of the eddies in our simulations. The initial strength α was
used as a quantity to define the onset of auto-generation in Zhou et al.[28]. However,
in the present investigation below threshold strength eddies were considered and still
new structures were generated when the stream-wise spacing was sufficiently small.
This may be because when two eddies are placed near to each other their fluctuating
velocity fields get superimposed onto each other and amplified, which is similar to an
increase in threshold strength where the velocity field is linearly amplified. The magni-
tude of the superimposed fluctuating velocity at a given spatial location decreases with
the increase in stream-wise separation between the two eddies (see Fig. 2.4). So, thresh-
old strength and stream-wise spacing (∆x+) are both related to the velocity field. A
quantity defining the velocity field, like ejection events or low-speed streaks, may thus
be used to define the onset of auto-generation.

2.3.2 Role of low-speed streaks

An extracted conditional eddy consists of a vortex on top of a low speed streak. So
when two conditional eddies are superimposed, their low-speed streaks are also su-
perimposed. In order to separate the effect of overlapping low-speed streaks, an ex-
tracted low-speed streak is superimposed under a conditional eddy and simulated to
check for the generation of new vortices. In order to create a low-speed streak, the
vortex was removed from a conditional eddy as described in section 2.2.3. The streak
was then added to a conditional eddy as shown in equation (2.4). An overview of the
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simulations is given in table 2.2. Neither case IV nor Case V revealed any signs of
auto-generation. Figure 2.8 represents the temporal evolution of the normalized max-
imum swirling strength of cases IV and V along with the baseline cases where auto-
generation occurs. It was observed that adding a low-speed streak did not cause an
increase or amplification of the maximum normalized S+ in contrast to the baseline
cases that included a vortical structure in the second eddy. From this, it is inferred that
the overlapping of the low-speed regions (in the two eddy cases) is not the main cause
of the subsequent auto-generation.

From the above, it is inferred that vortex-streak interactions do not explain auto-
generation, hence cannot be used to predict the onset of auto-generation. As the ejec-
tion events are used to extract the conditional eddy, their role in the auto-generation
mechanism is studied in a more detailed way in Subsection 2.3.3.

2.3.3 A modified interpretation of the auto-generation mechanism

The auto-generation mechanism proposed by Zhou et al. is based on vortex dynamics
where self and mutual induction play an important role. In the following, a modified
description of auto-generation especially concerning the onset of the formation of the
secondary hairpin vortex is proposed. I will not only consider vortex induction, but
also put a stronger emphasis on the environment of the primary hairpin. After all, the
initial eddy does not only contain a hairpin vortex but also the imprint of its surround-
ing structures that are statistically important. The modified interpretation of creating
new vortices utilizes the ideas of shear-layer instabilities conjectured by Asai and Nish-
ioka[44]. In the following paragraphs, this will be discussed in detail.

Figure 2.9 illustrates the evolution of the two eddy case Ia with the stream-wise sep-
aration of ∆x+ = 59. The vectors in the plot are scaled to unit length, hence only
indicating the flow direction. This aids in better visualization of the shear layer roll-up.
Figure 2.9a-e were plotted for time t+ = 28.8, 57.6, 86.4, 158.4, and 244.8, respec-
tively.

The initial development can be explained from figure 2.9a. The vortex is contained
within a low speed region, which is clearly larger and taller than the vortex itself[1, 52]
(see Fig. 2.10). This large size region can play a role in the auto-generation mechanism,
and is not explained by induction of a single hairpin. Assuming the initial stages of
development as largely passive, meaning advection of the vortex is by the local velocity,
it is seen from Fig. 2.9a that the wall-normal velocity is large in point ‘A2’, i.e., the
head as compared to point ‘A1’ in the legs. Consequently, the head lifts away from
the wall faster than the legs, which is indeed observed (Fig. 2.9c-e). At the same time,
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Figure 2.9: Auto-generation mechanism : Vector plots of velocity (u′+, v′+) along with non-
dimensionalized pressure fluctuation (p′ = p/ρu2

τ) contours in the symmetry plane, which is
between the two legs of a vortex. All vectors are scaled by unit length, and hence only indicate
the flow direction. Vectors scaled by velocity magnitude are shown in Figure 3.2 for different
auto-generation case. The iso-surfaces in the figures correspond to the 10% of the initial max-
imum swirling strength. This is for the two eddy case (76, 51) at strength α = (1, 1) with
∆x+ = 59. Figures a-e represent the evolution of two eddies and vector plots in time (t+)
28.8, 57.6, 86.4, 158.4, and 244.8 respectively.
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Figure 2.10: The front (a) and top (b) view of the channel showing the low speed streak
(u′+ = −2.0) in black under the iso-contours (grey) of local swirling strength (10% of the
initial maximum). Figures are at time t+ = 28.8 for the two eddy case (76, 51) at strength
α = (1, 1) with ∆x+ = 59.

the stream-wise velocity (U + u′) in ‘A2’ is higher compared to ‘A1’, which means the
legs are stretched (Fig. 2.9b-e). The combination of these two effects is observed in
Fig. 2.9b-e, where the angle of the legs near the head and the shear layer just upstream
of the head grows steeper.

In Fig. 2.9a, a shear layer upstream of the initial hairpin vortex is visible at an an-
gle with respect to the wall[1]. This occurs when the ejected fluid between the legs
meets the incoming (high velocity) flow. After 28.8 wall time units, i.e., at t+ = 57.6
(Fig. 2.9b), as the velocity at the location of the head is higher than the un-lifted part
due to its higher y+, the legs get stretched in the stream-wise direction and amplify
(see Fig. 2.7). At the same time, the head of the vortex moves up in the wall-normal
direction as discussed above and the swirling strength of the head increases. This in-
crease in strength appears to be associated with the hairpin head approaching the shear
layer where the velocity differences across the layer strengthen the roll-up (see Fig. 2.7).
The stronger roll-up increases the vortex induced flow leading to a stronger ejection of
the fluid between the legs near the head and a stronger self-induction[28] which lifts
the head even further from the wall. Furthermore, the angle of the shear layer and the
lifted stream-wise legs become steeper. With time, the hairpin head is lifted above the
initial shear layer and starts to obstruct the incoming high velocity flow. This is indi-
cated by high pressure region upstream of the head in Fig. 2.9c-d. Due to the blockage,
a stagnation point in (u′, v′) is formed within the now heavily distorted shear layer
upstream of the lifted primary hairpin. The stagnation point is associated with a local
pressure peak which deflects incoming flow away from the hairpin head resulting in
a local saddle point topology (labeled ‘A3’ in Fig. 2.9c). Most of the incoming flow is
deflected up and over the primary hairpin head, but some fluid is pushed downward.
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This downward flow interacts with the low speed flow underneath causing a roll-up of
the shear-layer[44], which marks the birth of the secondary hairpin head Fig. 2.9c. The
secondary hairpin head is observed to distort the legs and create a kink in them. The
un-lifted legs just upstream of the primary hairpin head are pushed down as shown in
Fig. 2.9d. This sequence is different from the interpretation given by Zhou et al. where
the kinks in the legs develop before the new hairpin head is created. With time, as the
new roll-up gets stronger, the upstream un-lifted legs of the stream-wise vortex gets
attached to it. This attachment of head to the legs is a viscous process[28].

The stronger ejection with time lifts up the new secondary hairpin similar to the
description of the points ‘A1’ and ‘A2’ in Fig. 2.9a. This causes the stream-wise vortex
to lift up at the point of the new hairpin and the sweep events downstream of the new
head push the stream-wise legs down towards the wall. This leads to the separation of
the new vortex from the original stream-wise vortex (Fig. 2.9e). If the ejection events
in the new leg are stronger then a third vortex is formed in a similar way or else it gets
dissipated with time. A third vortex formation has also been observed between the old
and the new vortex when the ejection in the leg of the old vortex is strong.

From the above observations, the auto-generation is summarized as the rapid lift
up of a hairpin vortex that blocks the incoming flow leading to the roll-up of the shear
layer creating a secondary vortex. The rapid lift up of the initial hairpin is identified
to be a critical element in the onset of auto-generation. In the present simulations,
the rapid lift up is observed in three scenarios: (i) a single beyond threshold strength
vortex, (ii) merging vortices, and (iii) non-merging cases of below threshold strength
vortices. In the first scenario, as the strength of a hairpin vortex is increased, its en-
vironment, i.e., ejection events become stronger. This along with the self-induction
leads to the rapid lift up of the hairpin vortex. In the second scenario (Case I and II),
two weak hairpin vortices merged to form a stronger hairpin. Also the ejection events
at the beginning of the simulation were stronger due to the superposition of two vor-
tices. The creation of a stronger vortex along with the enhanced ejection event leads
to the faster lift up of a merged eddy. In the last scenario of the non-merging case of
week vortices (case III), when the stream-wise spacing between eddies was sufficiently
small, the ejection of fluid by the downstream vortex propelled the upstream vortex
away from the wall. Also, similar to the merging case, the superposition of two eddies
leads to the creation of a stronger ejection event. The combined effect lifts the upstream
vortex away from the wall. So ejection events play a critical role in the rapid lift up of
the vortex, which then interacts with the incoming flow to create a new hairpin.

In this new modified interpretation, two stream-wise vortices are not required to
describe the lift up and further auto-generation, as is the case in Zhou et al. A single
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leg can lift up and block the incoming flow leading to shear layer roll up and creation
of a new vortex (see Fig. 3.2 in Chapter 3). This is one of the advantages of the present
interpretation as it does not rely on the presence of two stream-wise vortex legs which
are not often found in actual turbulent flows[42]. It also further strengthens the exist-
ing hairpin eddy model[1].

2.4 conclusions

In this chapter, it was explored how an above-threshold strength eddy may come into
existence, the role of a low-speed streak in the onset of auto-generation, and also pro-
posed a modified interpretation of the auto-generation mechanism. This was done
by performing a series of direct numerical simulations of turbulent channel flow at
Reτ = 180 with idealized initial conditions. The initial condition was the sum of the
mean velocity profile at Reτ = 180 and the perturbation velocity corresponding to a
conditional eddy extracted by LSE from fully developed turbulent channel flow data
at the same Reynolds number.

The two non auto-generating conditional eddies were aligned behind each other
in the stream-wise direction to study the interactions that lead to auto-generation. It
was found that two vortices merged when an eddy conditioned at higher wall-normal
location was placed upstream of the one conditioned at the lower wall-normal loca-
tion. The vortex with higher wall-normal location moved faster due to higher mean
velocity and merged with the downstream vortex. The maximum normalized square
of swirling strength increased after merging. Hence, merging can lead to the creation
of an above threshold strength vortex. However, all the merging cases did not auto-
generate, only the cases with lower stream-wise separation auto-generated. As the ini-
tial distance between the vortices increased, merging took longer time, during which
the vortices weakened individually, and hence the merged vortex was not strong enough
to create new vortices. However, when the initial strength of the eddies was increased
the merged vortex auto-generated even for larger stream-wise separations. From these
observations, it is inferred that merging can create stronger vortices, but subsequent
auto-generation may still depend upon initial strength or the initial stream-wise sep-
aration.

For small initial stream-wise separations, a few non-merging eddy cases also gen-
erated new structures. Merging was not possible in these cases as the downstream
vortex convected faster than the upstream vortex, as it was conditioned at a higher
wall-normal location compared to upstream vortex. Hence, merging is not the only
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26 auto-generation in wall-turbulence

mechanism to trigger auto-generation. The small stream-wise separation is identified
as a quantity to play a role in the onset of auto-generation.

Zhou et al. used threshold strength in the initial condition to define the onset of
auto-generation in single eddy cases. In the present case, where the two eddies were
below threshold strength, auto-generation was found to depend largely on the stream-
wise separation. The smaller stream-wise separation between eddies emulate increas-
ing threshold strength as velocity fields in both cases got amplified. Hence, the role of
the velocity field and specifically of the low-speed streak was explored for the onset
of auto-generation. When the stream-wise separation was smaller, low-speed streaks
from the two eddies got superimposed and amplified. A separate set of simulations
were performed by adding a divergence-free low-speed streak to a conditional eddy to
understand the influence of vortex-streak interactions on the auto-generation. These
simulations did not result in any auto-generation or amplification of the normalized
maximum swirling strength compared to the base line cases (Fig. 2.8).
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Figure 2.11: Two-dimensional schematic of auto-generation mechanism shown in Fig 2.9.
Vectors indicate (u′, v′), represents the shear-layer and U0 indicates the mean flow. (a)
Initial hairpin with a shear-layer. (b) Head of the hairpin lifts up rapidly blocking the incoming
flow. Formation of a stagnation/saddle point forces fluid to move towards head or towards wall.
(c) Fluid moving towards the wall deforms the shear-layer and initiates the shear-layer roll up.
(d) Continued lift up of the initial hairpin head deforms the shear-layer further. At the same
time, as the new roll-up strengthens, the fluid downstream is pushed down and the Q2 event
upstream of the roll-up is enhanced. (e) The new hairpin vortex detaches form the original
hairpin.
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At the end, a modified interpretation of the auto-generation mechanism based on
the ejection events and its interaction with the surrounding flow is presented. Inspec-
tion of the data suggests that a strong lift-up of the hairpin head by the ejection event
coupled with a stream-wise vortex can lead to auto-generation as shown in Fig. 2.11.
A stream-wise vortex with a small span-wise swirl, i.e., head (Fig. 2.11a), is rapidly
lifted up by the ejection events. Due to lift up of the vortex head, the in-rushing flow is
blocked (Fig. 2.11b). This inrush of flow and the already existing ejection events cause
the shear layer to deform and roll-up in the span-wise direction just upstream of the
vortex (Fig. 2.11c-d). As this span-wise roll-up becomes stronger, it connects to the
leg/legs of the downstream vortex. With time, this becomes a new vortex and gets sep-
arated from the main vortex (Fig. 2.11d-e). If the ejection events are stronger in any
of the two vortices, a third vortex will be formed in a similar way, else the vortices are
dissipated over time. The generation of new vortices was also observed in experiments
by Jodai and Elsinga[36] within a fully turbulent boundary layer in a similar way.

This modified mechanism differs from the existing mechanism by Zhou et al. where
induced vortex motions result in formation of a kink in the legs of the initial vortex
(Fig. 2.11d) before a new hairpin head is created. In other words, kink formation in
Zhou et al. is due to mutual and self induction of stream-wise legs, whereas in the
present mechanism, it is the consequence of the shear layer roll-up and ejection events.
Also, the presence of two stream-wise vortex legs is not necessary to describe the onset
of auto-generation as a single leg can lift up and block the incoming flow leading to
the shear-layer roll up and further generating new vortex.

The implication of the present study is that commonly found weak vortices can also
auto-generate, which further strengthens the existing hairpin eddy model[9].
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3
T I M E S C A L E O F AU T O - G E N E R AT I O N

In the previous chapter, auto-generation was studied by performing idealized simula-
tions in a laminar background flow. Even though the auto-generation mechanism was
proposed to explain the existence of hairpin packets in fully developed turbulent flow, it
has not yet been observed in the direct numerical simulations of actual wall bounded tur-
bulence. In this chapter, auto-generation along with its time scale is studied in turbulent
channel flow.

3.1 introduction

In the present day of depleting energy resources, it is necessary to decrease the energy
loses in flows over solid surfaces, such as fluid transport in pipes or vehicle transport
(e.g., motion of car/aircraft through a fluid). The energy loss is associated with the pres-
sure drag and friction at the wall to which turbulence is a major contributor. Therefore,
turbulence modification could be an effective drag reduction strategy. However, this
modification requires understanding of the dynamics of turbulent flows. Furthermore,
the study of the dynamics of turbulence also aids us in understanding the fundamental
mechanism behind it.

The hairpin packet model[1] is one way to understand the dynamics of wall-bounded
turbulence in terms of coherent structures. In this model, the boundary layer is pop-
ulated by hairpin packets[22, 23] and each packet further consists of hairpin-like or
arch/cane shaped vortices aligned in the stream-wise direction[1, 41]. These different
vortices are considered to be from the same family of vortices[1]. Together, the aligned
vortices enclose a low-momentum zone. Furthermore, these packets contribute sig-
nificantly to the Reynolds shear stress (25%) while only occupying 4.5% of the total
area[25]. The formation of a packet is explained by the auto-generation mechanism[28,

29
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30 time scale of auto-generation

31], where a parent vortex generates a new vortex upstream[28]. This mechanism and
its robustness have been shown in idealized simulations[28, 33, 38], where the evolu-
tion of a vortex superimposed on a mean laminar velocity field was studied. Moreover,
the generation of the new vortical structure is associated with the generation of a new
ejection event (u′ < 0, v′ > 0)1[28, 38], which contributes to the Reynolds shear
stress, hence, friction.

The ejection events are associated with a self-sustaining turbulent cycle and mo-
mentum transfer in wall-bounded flows[9]. Furthermore, these ejection events along
with span-wise vortices are observed to be suppressed in the case of drag reduction[12,
17–20]. Hence, suppressing the hairpin packets could result in drag reduction as the
generation of new vortices with ejection events is hindered. On the other hand, en-
hancing turbulence or packet formation can delay or prevent separation[34, 35]. To
actively modify the generation of vortices and ejection events, it is important to know
the associated time scale, that is, the time scale of the auto-generation cycle.

The time scale of auto-generation in the idealized simulations reported in Zhou et
al.[28] and Goudar et al.[38] varies from 80− 250 time wall units. However, it has been
suggested that the time scale of a new vortex generation depends on the instantaneous
shear stress[9]. Hence in the present chapter, auto-generation in hairpin packets is
studied in actual fully developed turbulent channel flow.

3.2 methodology

In the present study, the hairpin packet and auto-generation were visually detected
from the highly resolved direct numerical simulation (DNS) database of the fully de-
veloped turbulent channel flow at friction Reynolds number Reτ = uτh/ν = 180,
where uτ , h and ν represent the friction velocity, half channel height, and kinematic
viscosity, respectively. The friction velocity uτ is defined as

√
τw/ρ, where, τw and ρ

represent shear-stress at the wall and fluid density, respectively. The flow was driven by
a constant pressure gradient and a pressure correction method was used to solve the
Navier-Stokes equations. In this method, the pressure distribution was only computed
in the corrector step to satisfy mass conservation. A pseudo-spectral method[48] was
used to compute derivatives in stream-wise (x) and span-wise (z) directions, while
a sixth order compact difference scheme[49] was used in the wall-normal direction
(y). The third-order Runge-Kutta scheme was employed for integration in time. Pe-
riodic boundary conditions were enforced in the stream-wise and span-wise direc-

1 u′ and v′ refer to perturbation velocities in stream-wise and wall-normal directions, respectively.
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3.2 methodology 31

tions, and the no-slip and no-penetration boundary conditions were prescribed at the
walls. The number of grid points was 384 × 129 × 192 in a computational domain of
4πh × 2h × 4

3 πh in x, y, and z, respectively. A uniform grid spacing of 5.89 and 3.93
wall units was employed in the x and z directions, respectively, where, a wall unit or
‘+’ unit is a non-dimensionalized scale constructed using uτ and ν. And in the wall-
normal direction, a non-uniform grid[50] was utilized where, ∆y+ varied from 0.75
near the wall to 3.87 wall units in the core of channel. Thirty velocity fields were stored
at intervals of 2.25 time wall units (t+ = tu2

τ/ν). The DNS code utilized here is the
same one as in the previous chapter except that the resolution in periodic directions
is higher. The validation for this higher grid resolution is shown in appendix A.2. The
vortices in this turbulent flow are visualized by the iso-surfaces of the square of the
local swirling strength[28] given by S = λ2

ci. The local swirling strength is defined as
the imaginary part of a complex eigenvalue (λci) of the velocity gradient tensor. If all
the eigenvalues are real, then the local swirling strength is set to zero.
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Figure 3.1: A hairpin packet containing three vortices in fully developed turbulent channel
flow at a certain time t+ = 15.75. Vortices (in gray) represent the iso-surface of the local
swirling strength squared (5% of the maximum). The black iso-surface represents the low-
speed streak at u′+ = −4. ‘E1’ represents the downstream vortex, followed by upstream vor-
tices ‘E2’ and ‘E3’, respectively. The arrow along x-axis in (a) represents the direction of the
mean flow. The bottom wall of the channel is indicated by a wireframe.

3.2.1 Identification of a vortex packet and auto-generation

The hairpin packets were identified visually by inspecting the hairpin packet signatures
in xz plane as described by Adrian et al.[1] and Ringuette et al.[53]. The local swirling
strength was utilized to detect vortices (head of hairpins) in the xz plane. If the vortices
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Figure 3.2: Auto-generation of vortex ‘E3’ in the vortex packet ‘(E1 E2)’. Vector plots
of perturbation velocity (u′+, v′+) along with contours indicating > 5% of the maxi-
mum local swirling strength squared S . Figures a-f represent vector plots at times t+ =

0.0, 2.25, 4.5, 6.75, 9.0, and 11.25, respectively. The gray line in (a) refers to the straight
shear-layer.

were grouped in the stream-wise direction and their distance from the wall increased
in the downstream direction, then, it was identified as a hairpin packet. And one such
packet is shown in figure 3.1.

Next, the auto-generation time scale is computed by tracking the first two upstream
vortices in the packet back in time. The two upstream vortices ‘(E2 E3)’ in Fig. 3.1 are
traced back in time and are shown in Figure 3.2. The velocity vector plots along with
the contours representing > 5% of the maximum swirling strength squared S are
plotted in the figures 3.2a-f. The most upstream vortex in figure 3.2f is ‘E3’ followed
by ‘E2’ in the downstream. The final and initial time of the auto-generation is defined
as follows. When the shear-layer upstream of vortex ‘E2’ (between x+ = 75 − 100)
is straight (see gray line in Fig. 3.2a), then, the time associated with it is defined as
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the start of auto-generation. With time, the shear-layer is observed to deform (see
Fig. 3.2b-d). Here, it should be noted that the local swirling strength has a non-zero
value at the curved shear-layers. Hence, threshold for S is fixed to 5% to eliminate
contours showing curved shear-layers. Additionally, velocity vectors are plotted to ac-
curately identify the time at which the new vortex comes into existence. This is ob-
served in figure 3.2f at time t+ = 11.25, where, the vector plots and swirling strength
show the formation of vortex ‘E3’. The time between the start and the end of the auto-
generation essentially corresponds to the shear-layer roll-up, which is 11.25 time wall
units in the Fig. 3.2.

3.3 results and discussion

The search for packets was not extensive and a total of six packets with auto-generation
were identified in 30 continuous flow fields separated by 2.25 time wall units each.
Here only six packets are shown due to the difficulties associated with identifying
packets and auto-generation. Among the six, only the hairpin packet shown in Fig-
ure 3.1 will be discussed in the present chapter and other four auto-generation cases
are shown in section B.1. Figure 3.1 consists of three vortices at time t+ = 15.75,
where, the downstream vortex ‘E1’ is followed by vortices ‘E2’ and ‘E3’ upstream, re-
spectively and these vortices lie above the low speed zone given by u′+ = −4.02 (see
Fig. 3.1a).

Figure 3.2 and 3.3 shows the generation of a new cane-shaped vortex ‘E3’ in two dif-
ferent planes. The mechanism of the generation of the vortex ‘E3’ is as follows. Initially,
due to the ejection events under the vortex ‘E2’ a shear-layer is formed upstream (see
Fig 3.2a). From figures 3.2b-d, shear-layer blocks the incoming flow from the outer re-
gion leading to its deformation. This along with the existing ejection event upstream
of ‘E2’ leads to the shear-layer roll-up, which develops into the new vortex ‘E3’. This
mechanism is similar to the description of the auto-generation mechanism by Goudar
et al.[38] for both symmetric and asymmetric vortices (see Chapter 2). Hence, this ob-
servation along with experimental observations[36] support the hairpin packet model
proposed by Adrian et al.[1] and the auto-generation model by Zhou et al.[28].

The main objective of this study is to obtain the time associated with auto-generation,
which was determined based on the above mentioned method. The time taken for the
auto-generation shown in the Figure 3.2 was approximately 11.25 time wall units. Ad-
ditionally, the time computed for the other five detected auto-generation cases was

2 The superscript ′ refers to the perturbation velocity.
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Figure 3.3: Top view of a small section of the turbulent channel flow domain showing vortices
by the iso-surface of local swirling strength squared (5% of the maximum). Figures (a)-(f) show
the generation of a new vortex ‘E3’ from the vortex packet ‘(E1 E2)’. The frames represent the
relative times t+ = 4.5, 6.75, 9.0, 11.25, 13.5 and 15.75, respectively.

between 11 − 18 time wall units (see table 3.1). This time scale is about one half of
the 20 − 30 time wall units observed in the experiments of the turbulent boundary
layer flow[36]. Also, it is an order of magnitude lower than the time reported in the
idealized auto-generation simulations[28, 33, 38], which is 80 − 250 time wall units.

Table 3.1: Time taken to generate new vortex for four examples shown in Appendix B.1.

Example 1 Example 2 Example 3 Example 4

Time (t+) 13.5 15.75 18.0 11.25

As mentioned above, the shear-layer roll-up upstream of a vortex in a packet de-
velops into a new vortex. This shear-layer roll-up can be compared with vortex-sheet
roll-up in a Kelvin-Helmholtz (KH) instability. In KH instability, there is velocity dif-
ference ∆U across the vortex-sheet, which is comparable to the velocity jump ∆U+
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Figure 3.4: The 2-d contour plot of swirling strength showing the two vortices E3 and E2
(from left to right) in the hairpin packet shown in Fig. 3.1. The solid white line indicates the
shear-layer.

across the shear-layer. By neglecting viscous and wall effects, time required to auto-
generate a new vortex is compared to the time taken to form a vortex by vortex-sheet
roll-up by Kelvin-Helmholtz instability. The predicted time for the vortex roll-up in
an inviscid flow by Kelvin-Helmholtz instability[54] is given by

T+ ≈ 0.4 × 2λ+/∆U+ (3.1)

where 2λ+/∆U+ refers to shear-layer characteristic time scale[55], λ+ represents
the wavelength or the distance between two adjacent vortices and ∆U+ is the velocity
difference across the sheet. Representative values for λ+ and ∆U+ are determined as
follows.

Figure 3.4 shows the two vortices (E3,E2) in the stream-wise–wall-normal plane
cutting through the center of a low-speed streak. The stream-wise distance between
the vortices (E3,E2) is 75 wall units, which is taken as the wavelength λ+. Typically, the
distance between two vortices in packets is reported to be 100 − 140 wall units[1, 24,
29] which is slightly higher than the present observation. The velocity difference ∆U+

is defined based on stream-wise velocity component on either side of the shear-layer.
As the vortices shown in Fig. 3.4 are above the low-speed streak defined by u′+ =

−4.0, the stream-wise velocity below the shear-layer is fixed to −4.0. Similarly, the
stream-wise velocity above the shear-layer in Fig. 3.4 is found to be 1.5. This results
in the velocity difference ∆U+ ≈ 5.5. With these values, the time (T+) required for
KH vortex roll-up (Eq. 3.1) is 11 time wall units. Furthermore, using the reported
vortex separation of 100 − 140 wall units in the literature, assuming similar velocity
difference (∆U+ = 5.5), the roll-up time is around 14 − 20 time wall units.
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This estimated time scale for the vortex roll-up is close to the time scale of auto-
generation observed in actual turbulent flows, i.e., 10 − 15 time wall units. This sug-
gests that the auto-generation maybe similar to the shear-layer roll-up. Additionally,
this small time scale can explain how quickly a cluster of vortices is formed in a bound-
ary layer, thereby, strengthening the hairpin packet model[1].

Here only six auto-generation events were considered. A full statistical study of the
time scale of auto-generation and the number of vortices generated remains to be done.
Such statistical study would benefit from an automated and more objective detection
of packets and auto-generation, which will be explored further in Chapter 4.

3.4 conclusion

To conclude, six hairpin packets along with auto-generation in a fully developed tur-
bulent channel flow were shown. The time scale for the generation of a new vortex in
a packet was observed to be 10 − 15 time wall units. This time scale was consistent
with the theoretical predictions for a Kelvin-Helmholtz instability, but was an order
of magnitude lower than the existing estimates based on the idealized simulations of
auto-generation. As the new vortex is associated with the growth of an ejection event,
this time scale can be associated with the production of Reynolds shear stress, hence
turbulent drag. Therefore, active flow control strategies aiming at generating turbu-
lence or reducing drag are expected to be effective when forcing at this time scale.
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4
T H E TA L E O F T WO C O - R O TAT I N G VO R T I C E S

The hairpin packets were visually identified in the previous chapter. However, an auto-
mated objective method could help in studying the statistical relevance of hairpin packets
and to examine the time scale of auto-generation statistically. Hence to develop a new
method, at first, a link between the instantaneous flow structures extracted from the vor-
tex packets in turbulent channel flow and the average shear-layer structure is explored.
Further, the dynamics of the extracted instantaneous flow structure is studied. With this
information a newmethod to identify hairpin packets is proposed.This chapter is a proof
of concept study, where, a link between hairpin packets and shear-layer structure is ex-
plored.

4.1 introduction

The structure of turbulence has been studied in many different ways, for instance, in
terms of coherent structures[1, 2], local flow topologies[3–7], the invariants of the
velocity gradient tensor[6], and vorticity strain interactions[8]. With improved exper-
imental and numerical tools and techniques in recent decades, a substantial progress
has been made in different ways of understanding turbulence. However, the descrip-
tion of turbulence still remains incomplete, due to many unanswered questions in
these different ways of understanding turbulence. One approach to solve these ques-
tions could be to link the different ways of studying turbulence, thereby creating a
coherent view of what are the relevant fluid motions in a turbulent flow. For example,
a connection between universal features, namely, vorticity-strain alignment and the
PDF’s of the velocity gradient tensor, and a coherent flow structure was established by
Elsinga and Marusic[7].

Elsinga and Marusic[7] utilized the universal feature of the preferential alignment
of vorticity with the intermediate eigenvector of the strain-rate tensor[8] to extract

37
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Figure 4.1: Average shear-layer structure[7] extracted from a channel flow at friction
Reynolds number Reτ = 180. Figures (a-c) represent velocity vector plots in the cross planes
λ1 = 0, λ2 = 0, and λ3 = 0, respectively.

the associated flow structure, which here is referred as the shear-layer structure (SLS).
The SLS is an average structure extracted from the actual fully developed turbulent
flow, and it is shown in Figure 4.1. This average structure has been observed in all
kinds of flows and even at high Reynolds numbers. Hence, it is regarded as an univer-
sal structure. Additionally, this anisotropic structure depicts k−5/3 energy spectrum
scaling in nearly all directions[56].

The shear-layer structure consists of two co-rotating vortices coincident with a shear-
layer. Similarly, a hairpin packet contains co-rotating heads of hairpin-like, or arch
shaped vortices inside a shear-layer[1, 9, 38] (see Chapter 2 and 3). However, the shear-
layer structure proposed by Elsinga and Marusic[7] is an average structure, while vor-
tex packets in turbulent channel flow are instantaneous in nature. Hence in the first
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part of the study, the instantaneous flow structure will be extracted from a vortex
packet and will be compared to the average SLS. This is done by identifying a vor-
tex packet in a turbulent channel flow and then extracting the flow structure based
on the procedure mentioned in section 4.2.1. Then, the flow structure is compared to
the average SLS to understand if the average SLS is the result of combining different
turbulent structures in an averaging process.

If the instantaneous flow structure extracted from a hairpin (vortex) packet is simi-
lar to the the average SLS, then there is a possibility for vortex (hairpin) packets to exist
in different kinds of flows as the SLS is found in all kinds of flows. This also means that
certain aspects of the hairpin packet model can be generalized further for all flows,
thereby moving towards a more complete description of turbulence. Here it should
be noted that the vortices in the packet are not necessarily hairpin like, they could be
arch-shaped, single legged vortices or worm-like in a general turbulent flow. Hence,
the term ‘hairpin’ is replaced by vortex hereafter and ‘hairpin packet’ or ‘hairpin packet
model’ will be referred as ‘vortex packet’ or ‘vortex packet model’, respectively.

Furthermore, the link between the SLS and the vortex packets can be exploited to
develop more objective and automated method to detect packets. Even though few
methods have been proposed to identify packets[1, 53], but they are not robust and
completely objective due to the uncertainties in setting the threshold to identify low-
speed streaks or vortices. However, this study could offer a new method to identify
packets which further can help in studying their statistical relevance (see Chapter 3).

Finally, this study will be extended to explore the evolution of the instantaneous SLS
in time. This offers an opportunity to study the dynamics of the SLS in a general frame
of reference, which ultimately can be utilized to compare different turbulent flows.
However in the present proof of concept study, the shear-layer dynamics in the vortex
auto-generation is explored, as the shear-layer plays a role in creating new vortices (See
Chapter 2). Additionally, this study in time could help in developing an automated
method to detect auto-generation. Hence, the connection between the evolution of
the SLS and auto-generation in section 4.3.2 is explored. Then, the implication and
future developments of these results will be discussed in section 4.3.3. Followed by
conclusions in section 4.4.

4.2 methodology

The connection between the average SLS and a vortex packet, which is an instanta-
neous flow structure, is explored in the direct numerical simulation (DNS) database
of fully developed turbulent channel flow (TCF) at Reτ = 180. The details of the DNS,
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the TCF database utilized here, the method to visualize vortices, and the symbols used
to refer different quantities are the same as those described in the section 3.2, hence
they will not be repeated here.

From this database, a vortex packet and auto-generation are detected based on the
procedure described in the section 3.2.1. Additionally, the vortex packet and auto-
generation considered in this chapter are same as the one from the previous chapter.
For simplicity, the vortex packet from previous chapter is again shown in figure 4.2. Fi-
nally, the shear-layer structure is extracted and the procedure to extract it is discussed
in the following section.
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Figure 4.2: A vortex packet containing three vortices in fully developed turbulent channel
flow at a relative time t+ = 11.25. This is the same packet as shown in Fig. 3.1. Vortices (in
gray) represent the iso-surface of the 5% of the maximum swirling strength squared. The black
iso-contours in (a) and (c) show 35% of the maximum dissipation (ϵ) and indicate the low-
speed streak at u′+ = −4 in (b). ‘E1’ represents the downstream vortex, followed by upstream
vortices ‘E2’ and ‘E3’, respectively. (a) Top view of the packet. (b) Isometric view of the packet.
Dissipation contour on the cross-stream plane A is projected onto the plane A′. (c) Side view
of the packet.
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4.2.1 Shear-layer structure (SLS) extraction

The instantaneous flow structure will be extracted from a vortex packet observed in
the turbulent channel flow. The method to extract the instantaneous flow structure
is similar to the one mentioned in the papers by Elsinga and Marusic[7] and Wei et
al.[57] apart from a minor modification as explained below. Also, the flow structure
in the present case is an instantaneous one as opposed to an average structure[7, 57].
The procedure will be discussed in detail in the following paragraph.

At first, the two co-rotating vortices in an identified vortex packet were constrained
into a rectangular box (in the xyz coordinate system) as shown in Figure 4.3. Then,
as the origin of the average structure is a node-saddle critical point (see Fig. 4.1), a
similar point is probed between the vortices in the box (Point O). The method to lo-
cate the origin will be discussed in the next paragraph in detail. Then at the origin
(O), the eigenvalues and eigenvectors (λi) of the strain rate tensor sij are computed,
where λ1, λ2, and λ3 indicate the most stretching, the intermediate and the most
compressing directions, respectively. Then, the positive direction of the λ2 and the λ3

directions is defined. The positive direction for λ2 is fixed by aligning it with the vor-
ticity vector[7, 57]. And λ3 is aligned with the positive stream-wise (x) direction of
the flow, which leads to the appearance of the wall of the channel on one particular
side in the extracted SLS. With this, λ1 is computed to complete the right handed coor-
dinate system. The present definition of the positive λ1 and λ3 directions is different
from that of Wei et al., where λ1 was aligned with the positive stream-wise direction
and λ3 was adjusted to maintain a right handed system. Finally, a 3-d uniform rect-
angular grid is created in this new coordinate system (λi) as shown in figure 4.3, and
the flow field is linearly interpolated onto this grid. λi represent coordinates along λi

directions in new coordinate system.
In the average shear-layer structure[56], sheet-like dissipation exists between the

two co-rotating vortices. A similar dissipation pattern is observed between the co-
rotating vortices in the vortex packet shown in Figure 4.2. Additionally, the dissipation
at the origin of the average shear-layer structure is maximal. Along with this, the axis
of the co-rotating vortices is aligned with the λ2 direction at the origin of the SLS[7].
Hence, the maximum dissipation location between two co-rotating vortices in a vor-
tex packet could be utilized as the origin if the λ2 direction is aligned with the axis
of the co-rotating vortices. This alignment is tested statistically. In the vortex packet
model[1], the axes of the heads of the vortices in the packet are aligned with the span-
wise (z) direction. Hence, the associated vorticity is aligned in the span-wise direction.
Consequently for a SLS type structure to exist it is expected λ2 to align also with the
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Figure 4.3: Boxes indicating the flow (xyz) and the shear-layer structure (λi) coordinate sys-
tems. Point ‘O’ indicates the origin of SLS. Here minus indicates the negative direction of the
axis.

span-wise direction in the sheet-like dissipation that exists between two co-rotating
vortices (see Fig. 4.2). Therefore, the alignment of the λ2 direction with the span-wise
direction is examined conditioned on dissipation.

This alignment is investigated by plotting the joint probability density function
(JPDF) between the normalized dissipation and the angle between λ2 and span-wise
direction (z) as shown in Figure 4.4. The JPDF was computed from the points with
dissipation lower than 8⟨ϵ⟩ lying between 10− 90 wall units in the wall-normal direc-
tion. The dissipation (ϵ) was normalized by the mean dissipation (⟨ϵ⟩) in the channel.
Here, 8⟨ϵ⟩ corresponds to 35% of maximum dissipation and was observed to form
sheets in present vortex case (see Fig. 4.2). The points between 10 − 90 wall units
were chosen for JPDF because three-dimensional structures are not observed below
10 wall units and all the considered structures in this chapter are below 90 wall units.
The JPDF in Figures 4.4(a,c) and (b,d) consider data points with positive and negative
span-wise vorticity, respectively. Figures 4.4(a) and (b) illustrate the parts of the JPDFs
for the low dissipation range up to 2⟨ϵ⟩ and Figures 4.4(c) and (d) represent the parts
of the JPDFs for dissipation range between 2⟨ϵ⟩ and 8⟨ϵ⟩. The details on the number
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Figure 4.4: Joint PDF of dissipation and the cosine of the angle between the λ2 direction and
the span-wise direction (z) of the channel flow. The span-wise vorticity is positive in case of
Fig. (a) and (c) and negative in case of Fig. (b) and (d). The points utilized to plot were lying
between 10 − 90 wall units in the wall-normal direction.

of points considered for the JPDF and their contribution to the total dissipation are
shown in table 4.1.

Table 4.1: Details utilized to compute JPDF. 23.3% of the total number of points in the channel
contributing 22.2% to the total dissipation in the channel were used in the JPDF plots. The
utilized points lie between 10 − 90 wall units in the wall-normal direction.

Span-wise
vorticity

Condition % of total
points O(108)

% of total
dissipation

Positive
ϵ < 2⟨ϵ⟩ 8.0 5.1

2⟨ϵ⟩ < ϵ < 8⟨ϵ⟩ 1.9 6.9

Negative
ϵ < 2⟨ϵ⟩ 12.1 6.1

2⟨ϵ⟩ < ϵ < 8⟨ϵ⟩ 1.2 4.1

At the high dissipation, Figure 4.4(c,d), the intermediate eigenvector oriented with
vorticity, i.e, λ2 is strongly aligned in the positive or negative span-wise direction (z)
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depending on the sign of the span-wise vorticity component. When considering the
positive span-wise vorticity (Figure 4.4(c)) the alignment at high dissipation is much
stronger than that of the negative span-wise vorticity (Figure 4.4(d)). Hence in gen-
eral, at the points of high dissipation, λ2 is aligned with the span-wise direction. This
alignment of λ2 together with the observation that the dissipation is high between
the co-rotating vortices in packets is consistent with the average SLS. Therefore, the
origin of the instantaneous shear-layer structure will be identified based on the maxi-
mum dissipation between two co-rotating vortices in a packet. This origin is indicated
in Figure 4.3 as point O.

4.3 results and discussion

At first, the connection between an average shear-layer structure to an instantaneous
flow structure in a fully developed channel flow at Reτ = 180 is explored. This is done
by extracting an instantaneous structure from a vortex packet by the procedure men-
tioned in section 4.2.1. Then, it is compared to an average shear-layer structure and will
be discussed in section 4.3.1. Next, in section 4.3.2, the evolution of the instantaneous
flow structure or the instantaneous SLS in time is examined by applying the structure
extraction procedure to vortex auto-generation. Finally, the implications and possible
future developments based on the observations are discussed in the section 4.3.3.

4.3.1 Instantaneous shear-layer structure

The instantaneous flow structure is extracted from the vortex packet (Figure 4.2) based
on the procedure described in the section 4.2.1. The location of the maximum dissi-
pation in the box constraining two vortices in the packet was identified as the ori-
gin of the flow structure and further the velocity field was extracted. This extracted
instantaneous flow structure is illustrated in Figure 4.5, where Figure 4.5(a-c) and
4.5(d-e) show the streamlines and the velocity vector plots in different planes, namely
λ2 = 0, λ1 = 0, and λ3 = 0, respectively. The dashed black lines are drawn to indi-
cate the origin of the structure (point 0, 0). The colored streamlines from blue to green
to yellow indicate low to high local swirling strength squared.

The vortex in the second quadrant in figure 4.5(a) and 4.5(d) is the vortex ‘E2’ (from
Fig. 4.2) and similarly, vortex ‘E1’ is observed in the fourth quadrant. The streamlines
in figure 4.5(b) show the existence of the two counter-rotating vortices in quadrants 1
and 4. These vortices correspond to the leg of the vortex ‘E1’ and the adjacent stream-
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Figure 4.5: Figures (a-c) and (d-f) represent the extracted instantaneous shear-layer structure
in the planes λ2 = 0, λ1 = 0, and λ3 = 0, respectively at time t+ = 2.25 from the vortex
packet (see Fig. 4.2). Figures (a-c) show the streamlines and line colors from blue to green to
yellow represent increasing local swirling strength squared. Figures (d-f) show the correspond-
ing velocity vector plots and dark contours indicate local swirling strength to indicate the the
vortices.
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wise vortex in the span-wise direction as observed in the figure 4.2. Third vortex is
also observed in figure 4.5(b) in quadrant 3, however in the velocity vector plots (see
Fig. 4.5(d)) it can be noted that the velocity magnitude is too low. Additionally, the
local swirling strength was found to be very low.

The instantaneous shear-layer and the two vortices in the λ2 = 0 plane (figure
4.5(a,d)) are qualitatively similar to the average SLS structure observed in Elsinga and
Marusic[7] and in Fig. 4.1(a). The flow pattern till about 15 wall units from the ori-
gin in all directions in the other two planes (λ1 = 0 and λ3 = 0) is similar to the
average structure. However, it deviates from the average shear-layer structure as the
distance from the origin increases. For instance, the two counter-rotating vortices in
the λ1 plane (Fig. 4.5b) are not observed in the average structure. Also, the instan-
taneous flow pattern does not reveal a 180 degree rotational symmetry in the planes
λ3 = 0 and λ1 = 0 in figures 4.5(b) and (c), respectively, as compared to the average
structure (Fig. 4.1(a) and (c)). This difference is attributed to the averaging procedure
where, only one direction (λ2) is fixed (aligned with vorticity) and other two direc-
tions are chosen arbitrarily. When averaging, these unconstrained directions lead to
the random orientation of the flow field with respect to these directions, resulting in
a symmetric flow field as observed in figure 4.1.

From these observations, it descents that the two co-rotating vortices in vortex packet
could be viewed as an instantaneous shear-layer structure. This is further tested for dif-
ferent pairs of co-rotating vortices in the vortex packet by observing the λ2 = 0 plane
of the extracted shear-layer structure. From this point, instantaneous shear-layer struc-
ture will simply be referred as the shear-layer structure. And the average structure will
continue to be referred to as the average shear-layer structure.

The figures 4.6a and 4.6b illustrate the SLS extracted at time t+ = 11.25 from the
vortex packet between the vortex pairs (E1,E2) and (E2,E3), respectively (see Fig. 4.2).
The black solid slanted line on the right side of the figures indicates the wall of the
channel. This is the consequence of constraining the λ3 direction by aligning it with
stream-wise direction (x), which simplifies the identification of the wall and the cor-
respondence between the vortices of the packet and those in the SLS.

The velocity vector plots indicate two co-rotating vortices coincident with a shear
layer similar to the average structure. However, the location of the vortices is not sym-
metric as observed in the averaged SLS (see Fig. 4.1(a)). Also, the shear-layer is not
perfectly straight as seen in average SLS. This is because the location of the maxi-
mum dissipation shifts with time relative to the two vortices. Additionally, the plane
λ1 = 0 provides some insights about the straining motions in the shear layer. The two
counter-rotating vortices, i.e., the stream-wise leg of vortex ‘E1’ and the one beside it
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Figure 4.6: Vector plot in the plane λ2 = 0 of the extracted shear-layer structure from a
vortex packet. (a) The origin of the shear-layer structure is the maximum dissipation point
between the vortices E2 and E3. The vortices in quadrant 4 and 2 are the vortices E2 and E3,
respectively. (b) The origin of the shear-layer is the maximum dissipation point between E1
and E2. The vortex in quadrant 4 is vortex E1 and and quadrant 2 is vortex E2 in the packet
shown in figure 4.2.

(see Fig. 4.2) are observed in λ1 = 0 plane in 4.5b. These counter-rotating vortices
are responsible for compressive straining motions, which cannot be observed in the
average SLS. The SLS extracted from other two vortex packets produced similar results
(see Appendix B.2). Hence, the SLS does exist instantaneously in a turbulent channel
flow and the two vortices in the λ2 = 0 plane are not just a consequence of averaging.
Additionally, the pair of co-rotating vortices in the vortex packet can be viewed as a
SLS which is extracted based on the universal feature of alignment of the intermediate
eigenvector with vorticity. This links the packet structures to the universal features.

Further, the evolution of the instantaneous SLS in time is studied, which, in the
future could help in understanding shear-layer dynamics and can be utilized to detect
auto-generation in a general frame of reference. This is a proof of concept study, which
is applied to the generation of new vortices in vortex packets[1] and will discussed in
the following section.

4.3.2 Auto-generation and shear-layer structure

The dynamics of a parent vortex generating a new co-rotating vortex in a vortex packet
is examined in the shear-layer structure frame of reference. This is studied by extract-
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Figure 4.7: Time series of auto-generation in the intermediate eigenvector plane λ2 = 0
of the extracted shear-layer structure. Contours indicate the square of the local swirling
strength. Figures (a)-(d) show the generation of vortex ‘E3’ in the second quadrant from
the parent vortex ‘E2’ in the fourth quadrant. The relative times of the plots correspond to
t+ = 0, 4.5, 9.0, and 13.5, respectively. The local swirling contours in circle in (a) at lo-
cation (-50,25) are same as the contours in arc in (b) at (-0,30). This is plotted to avoid the
confusion that the contours in circle in (a) evolve into a vortex in quadrant 2.

ing the SLS from the identified auto-generation case in actual channel turbulent flow
(see Fig. 3.2 and 3.3 in Chapter 3). The SLS was extracted based on the procedure
described in section 4.2.1. However, there is one difference from the procedure in
section 4.3.1. The point of maximum dissipation, i.e., the origin, was located in a
plane instead of a constrained box containing two vortices, because at the start of auto-
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generation there is only one parent vortex. Hence, a suitable cross-stream plane (xy)
cutting through the low speed streak was identified as before, which is shown in figure
4.2(b). Then, the maximum dissipation point in this plane was located upstream of the
parent vortex and was utilized as origin to extract the shear-layer structure. This maxi-
mum dissipation point or the origin upstream of the vortex is detected in time, which
means that the maximum dissipation point is followed in time. Then, the shear-layer
structure was extracted.

Figure 4.7 illustrates the generation of the vortex ‘E3’ in time from a parent vortex
‘E2’ (Figure 3.2), in the SLS frame of reference. The time step between each figure from
Fig. 4.7(a) to Fig. 4.7(d) is 4.5 time wall units.

Contours of local swirling strength in figure 4.7(a) show one vortex ‘E2’, i.e., the
parent vortex, in the fourth quadrant. The shear-layer in the figure is observed to be
approximately straight. With increasing time, the shear-layer in the fourth and the
second quadrant continuously deforms. The shear-layer deformation is observed in
auto-generation simulations[38], which is associated with the inrush of fluid upstream
of the parent vortex (presently ‘E2’). Also, the vortex ‘E2’ grows larger in diameter and
their local swirling strength increases with time as observed in figures. At time t+ = 9,
from vector plots it is seen that a new vortex ‘E3’ comes into existence in the second
quadrant (see Fig. 4.7(c)). And with time, it grows in diameter and its swirling strength
increases as observed in Figure 4.7(d). Hence, this dynamics of generation of a new
vortex can be viewed in the SLS frame of reference as a shear-layer deformation and
roll-up.

4.3.3 Implications and future developments

A trial and error method was used to set the threshold to identify vortices and the low-
speed streaks, which are further utilized to identify the vortex packets. Some adjust-
ments of the thresholds was needed, because if a too low threshold is used to identify
vortices, then many and largely overlapping vortices are spotted. This makes it difficult
to identify individual vortices in 3-d. On the other hand, a higher threshold leads to
fewer vortices, and loss of vortices in the vortex packets. A similar observation could
be made for the low-speed streaks. Also, the uncertainty increases when considering
vortex generation, as the swirling strength of a newly generated vortex is low and an
additional dimension, time, gets added. Hence, it is necessary to determine a different
method to identify the packets and auto-generation, which does not rely on arbitrary
thresholds.
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The present study shows that the two co-rotating vortices in a vortex packet in a
turbulent channel flow are qualitatively similar to the vortices of the average shear-
layer structure. This information could be utilized to identify packets. For instance,
one may consider a group of points, where the intermediate eigenvector, λ2, is aligned
with the span-wise direction. If the identified points are close to each other, then a
point with high dissipation is considered as the origin. At this point, a flow structure
in the strain eigenframe (λ1, λ2, λ3) is extracted. Next, the two co-rotating vortices
can be probed based on vector plots in the λ2 = 0 plane. If the vortices exist and
the flow topology at the origin is a node-saddle point, then a shear-layer structure is
identified. With few of these SLS points in a certain pattern, a vortex packet could be
identified. This eliminates the uncertainty in defining the threshold to locate vortices
or low-speed streaks. Hence, the present work not only links the vortices in the packet
to the shear-layer structure, but it is also a small step in the creation of an objective
and robust algorithm to identify these packets and furthermore, the generation of new
vortices in a packet.

The averaged shear-layer structure has been detected in many different kinds of
turbulent flows[7]. And in this study, the existence of the shear-layer structure in an
instantaneous turbulent channel flow has been shown. Similarly, the existence of shear-
layer structures can be probed in other instantaneous flows based on the procedure
mentioned in this study. And if they are detected in other kinds of flows, then, there
is the possibility of finding vortex packets in isotropic turbulence as the dissipation
is observed to form long and large sheets[58], which is similar to the observations in
channel flow. However, this is a hypothesis, which needs to be tested by detecting a
series of shear-layer structures.

4.4 conclusions

The link between the average shear-layer structure, which may be considered a univer-
sal feature of turbulence, and the instantaneous vortex packets in a turbulent channel
flow at low Reynolds number was shown. First, the vortex packet was identified in
a fully developed turbulent channel flow at Reτ = 180. Then, two co-rotating vor-
tices were constrained in a box and an instantaneous flow structure was extracted in
the strain eigenframe with the location of maximum dissipation as the origin of the
structure.

It was found that the instantaneous flow structure was similar to the average SLS.
Additionally, the instantaneous flow structure or instantaneous SLS was observed in
every pair of consecutive co-rotating vortices in the different vortex packets. Hence,

[ June 9, 2017 at 11:50 – classicthesis version 0.01 ]



4.4 conclusions 51

the two vortices in the λ2 = 0 plane and in the average SLS do exist in an instantaneous
turbulent flow, and they are not just the result of the averaging procedure. Moreover,
a pair of co-rotating vortices in a vortex packet could be viewed in a different frame of
reference as a shear-layer structure.

The generation of a new vortex in a vortex packet also could be viewed in the frame
of reference attached to the shear-layer structure. In the beginning of the generation
of a new vortex, the shear-layer was found to be straight, and with time it is slowly
deformed. At the same time, the swirling strength of the parent vortex increased, and
also it grew in diameter. Simultaneously, a new vortex was generated inside the shear-
layer. Subsequently, the newly generated vortex also grew in diameter and swirling
strength increased in time.

This connection between vortex packets and the shear-layer structure could be uti-
lized to develop an objective method to identify vortex packets in wall-bounded flows.
Also, as the average shear-layer structure is observed in all kinds of flows and is con-
sidered universal, its instantaneous existence in different flows could be explored in
future. This method of detecting structures offers a basis to compare different flows
and possibly generalize results.

To conclude, a pair of co-rotating vortices in a vortex packet at low Reynolds num-
ber in a turbulent channel flow could be viewed in different frame of reference as a
shear-layer structure, which is further related to universal features of turbulence.
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5
T R A C E R PA R T I C L E D I S P E R S I O N A R O U N D E L E M E N TA RY
F L O W PAT T E R N S

The relevance of coherent structures, such as vortices and shear-layers in three dimen-
sional turbulence, was studied in previous chapters. In the present chapter, the influence
of such structures on the dispersion of tracer particles is examined. Three representative
flow structures, namely a shear-layer structure, a node-saddle topology and a Burgers’
vortex, are considered as they correspond to elliptical and hyperbolic critical points. Dif-
ferent tracer dispersion statistics, such as pair dispersion, tetrad dispersion, and material
lines, are explored and compared with the actual turbulent flow.

5.1 introduction

The role of the carrier fluid in the transport of scalar quantities (e.g., particles or chem-
icals) is important in many natural and industrial processes. Generally, turbulence is
implicitly present in the carrier fluid in processes such as cloud formation, pollination,
and pollutant dispersion. In the case of combustion and chemical mixing, induction of
turbulence is desired to enhance the mixing of scalar quantities. So, the understand-
ing of the scalar transport by the turbulent carrier fluid is important. The simplest
quantitative description of the scalar motion is the statistical evolution of the displace-
ment of two marked particles[59–62]. This displacement, expressed in terms of the
mean-square particle separation, indicates the average distance traveled by the parti-
cles around their center of mass after time t. The study of the orientation of material
lines[62–65] helps in understanding the geometry of turbulence, as well as the orienta-
tion of passive scalars. More complicated descriptions are measured by the evolution
of geometrical properties, such as, the shape and the size of the scalar field, which are
characterized by four particle or tetrad dispersion statistics[66–72]. In the available
literature, the Lagrangian particle dispersion is mostly discussed in terms of these par-
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ticle statistics. Little attention is given to understand the underlying turbulent fluid
motions and the relevance of Eulerian flow structures present in turbulence.

Flow structures in three-dimensional turbulent flows are identified and studied as
the result of the advancement in experimental techniques and computational power
in the last few decades. Few examples are the vortex structures[9], a possibly universal
shear-layer structure[7], and the node-saddle topology[5]. These structures provide in-
sights into the local geometrical and topological features of turbulence[5, 7, 9], which
has led to new ideas to model fluctuating velocities in turbulence[9, 73]. Similarly,
studying particle motion around these structures may help in understanding particle
dynamics in turbulence and also in describing the scalar dispersion. This may lead to
model dispersion alongside the turbulence in the structure based models. Addition-
ally, the particle motion also provides an insight into the dynamics behind the particle
separation in a flow. However, in the literature, there are few studies on the particle
dispersion around structures[74].

A two-dimensional turbulence study[37] linked the dynamics of the two particle
statistics to the critical points, which are further associated with flow patterns. The
particle pair separation was described in a step-by-step process around the critical
points. These points were hyperbolic zero-acceleration points, i.e., saddle points, and
elliptical zero acceleration points corresponding to straining strips of zero vorticity
and vortex centers, respectively. The paper[37] showed that the particle pairs stayed
together in the proximity of elliptical points and separated in the vicinity of saddle
points. Furthermore, based on this observation, a model was constructed to predict
the temporal evolution of the pair dispersion statistics. However, this work was done
in two dimensions.

In this chapter, similar studies will be performed in three dimensions around ide-
alized flow structures. The pair and tetrad dispersion, and the orientation of material
lines are studied around different flow patterns containing critical points, such as a
saddle point and an elliptical zero acceleration point. Three flow patterns containing
these critical points were considered, namely a Burgers’ vortex, a shear-layer struc-
ture, and a node-saddle topology. The Burgers’ vortex[75] is often utilized to describe
small scale vortices and intense vorticity structures in turbulent flows[76, 77]. Also,
the center of the Burgers’ vortex is an elliptical point. Secondly, the shear-layer struc-
ture[7] containing a saddle point along with a shear-layer at its center is considered.
This average shear-layer structure has been observed in different turbulent flows[7]. It
is considered as it represents the average velocity field around a point in a turbulent
flow, when the coordinate system is aligned with the principal straining directions.
Finally, the mentioned shear-layer structure is symmetrized, yielding the same strain
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field as the shear-layer, but with a different node-saddle topology. The dispersion statis-
tics are studied around these structures and compared with the actual turbulent flows.
If the statistics are similar, it may suggest that these structures are responsible for the
dispersion of the tracer particles in a turbulent flow.

The description of the different flow structures and the method to generate them
is described in Section 5.2. In Section 5.3, the details of the particle simulation and
the computed dispersion statistics are explained. First, the pair dispersion[59–62, 74,
78–81] is described in terms of the root mean square of relative separation, and the
compensated relative dispersion whose theory is discussed in detail in Section 5.3.1.
In Section 5.3.2, the orientation of material lines is computed based on the velocity
gradient at the critical point. Finally, the tetrad dispersion[68, 72] is characterized by
the evolution of the size and shape of a tetrahedron. The quantification of the shape
and size of the tetrahedrons is explained in Section 5.3.3. The results are presented in
Section 5.4, where the statistics are compared to actual turbulent flows. Furthermore,
the snapshots of the particle distribution at specific times are plotted to illustrate the
dispersion of the particles around the different flow structures. Finally, the conclusions
will be discussed in Section 5.5.

5.2 flow structures

The tracer particle motion is simulated around three different flow structures: a Burg-
ers’ vortex, a shear-layer structure, and a node-saddle topology. The Burgers’ vortex
(BV) is analytically computed from the equations, while the shear-layer structure (SLS)
and the node-saddle topology (NST) are extracted from an isotropic turbulent flow.
The details of generating and extracting these structures are discussed in the follow-
ing paragraphs.

5.2.1 Burgers’ vortex (BV)

The velocity field of a Burgers’ vortex[75], an exact solution of the Navier-Stokes equa-
tion, is given by

uz = αz, ur = −αr
2

, uθ =
Γ

2πr

[
1 − exp

(
−αr2

4ν

)]
(5.1)

where α, Γ, and ν represent the rate of strain, vortex circulation, and viscosity, re-
spectively. uz, ur, and uθ correspond to the velocity components in the axial (z), ra-
dial (r), and azimuthal (θ) directions, respectively. The Reynolds number of the vor-
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Figure 5.1: Burgers’ vortex in a Cartesian coordinate system. Figures (a-c) represent veloc-
ity vector plots in λ1 = 0, λ2 = 0 and λ3 = 0 planes, respectively. All length scales are
normalized by the Kolmogorov length scale (η).

tex based on the circulation is defined as ReΓ = Γ/(2πν) and the radius is given
as rm = 2

√
ν/α. Jimenez and Wray[76] and Silva et al.[77], among others, have

shown that the core of the intense vorticity structures (IVS) in homogeneous isotropic
turbulence and jet flows can be described by the Burgers’ vortex model. The char-
acteristics of the IVS, such as, the mean value of the vortex core radius, the mean
maximum azimuthal velocity, and the Reynolds number based on circulation (ReΓ),
have been reported in Silva et al.[77]. The Burgers’ vortex is described completely by
three parameters. Here, the vortex core radius (rm/η = 4.65), vortex circulation
(Γ/uηη = 415.67), and rate of strain (αη/uη = 0.25) values were computed using
the data presented in Silva et al.[77] for the forced homogeneous isotropic turbulence
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Figure 5.2: Shear-layer structure[7] extracted from the isotropic turbulent flow[82] at Reλ =

433. Figures (a-c) represent velocity vector plots in the cross planes λ1 = 0, λ2 = 0, and
λ3 = 0, respectively. All the length scales are normalized by the Kolmogorov length scale (η).

(HIT) at a Taylor Reynolds number Reλ = 111. The Kolmogorov length (η) and ve-
locity (uη) scales are used for normalization. Figure 5.1 illustrates the Burgers’ vortex
computed from Equation (5.1) using the above mentioned values. All the length and
velocities scales are converted from the cylindrical to a Cartesian coordinate system
(λ1, λ2, λ3) to simplify the comparison between different structures. Here λ2 and λ3

are radial/compressive strain directions and λ1 corresponds to the stretching strain
direction, which coincides with the vortex axis, i.e., the z-axis in Equation (5.1).
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5.2.2 Shear-layer structure (SLS)

The shear-layer structure (SLS) is extracted from a direct numerical simulation (DNS)
of a homogeneous isotropic turbulent flow[82] at a Taylor Reynolds number Reλ =

433 using the averaging procedure described in Elsinga and Marusic[7]. The SLS ap-
peared qualitatively similar in different kinds of turbulent flows, hence, considered
universal[7]. The flow field around the origin of this structure describes the average
flow field around a point in the flow when the observer is aligned with the local direc-
tions of principal strain. A brief explanation of the averaging procedure to extract this
structure is as follows.

First, the strain rate tensor is computed from the velocity gradients (∂ui/∂xj) at
a point xp in turbulent flow database. Then, the eigenvalues and the principal direc-
tions (i.e., eigenvectors) of the strain rate tensor are calculated. The principal directions
e1, e2, and e3 represent the most stretching, the intermediate, and the most compress-
ing straining directions, respectively. A new coordinate system (λi) is formed based
on these principal directions. Furthermore, the positive intermediate straining direc-
tion (e2) is chosen such that its dot product with the vorticity vector is positive. A unit
vector corresponding to e3 is fixed as the third direction (λ3). To complete the right
handed coordinate system, the first direction (λ1) is computed as the cross product
between the second (λ2) and third (λ3) direction. The flow velocities (u) on the new
coordinate system (λ1, λ2, λ3) relative to the point xp are computed by linear interpo-
lation. The components ui represent velocities along the corresponding λi directions.
This 3-d velocity field in the new coordinate system is calculated at different points in
the flow and averaged to obtain the shear-layer structure as illustrated in Figure 5.2.
One of the main features of this structure is a shear layer, which spans from the top
left corner in Figure 5.2b to the bottom right corner.

5.2.3 Node-Saddle topology

The node-saddle topology (NST) is obtained by applying planar symmetry to all ve-
locities (u1, u2, u3) in the previously discussed shear-layer structure. The velocity com-
ponent u1 is made symmetric about the plane λ1 = 0. Similarly, u2 and u3 are made
symmetric about the planes λ2 = 0 and λ3 = 0, respectively. The velocity vector
plot in the different cross planes is shown in Figure 5.3. The difference between the
node-saddle topology and the shear-layer structure can be seen by comparing Figures
5.2 and 5.3. The shear-layer in Figure 5.2b vanishes in Figure 5.3b due to the planar
symmetry, resulting in a pure node-saddle critical point with no vorticity at the origin.
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Figure 5.3: Node-saddle topology obtained by symmetrizing the shear-layer structure pre-
sented in Figure 5.2. Figures (a-c) represent velocity vector plots in the cross planes λ1 = 0,
λ2 = 0, and λ3 = 0 planes, respectively. All the length scales are normalized by the Kol-
mogorov length scale (η).

5.3 particle simulation and statistics

The point particles considered in the pair and tetrad dispersion are passive tracers or
marked fluid parcels. Their motion is simulated according to

dxp(t)
dt

= u(xp(t)), (5.2)

where u(xp) represents the fluid velocity at the instantaneous particle position xp. The
explicit fourth-order Runge-Kutta scheme is employed to integrate the equation in
time. The velocity on the right-hand side is calculated by the tri-linear interpolation
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of the velocity field of the steady flow structure. To study pair dispersion, 5000 particle
pairs are uniformly distributed on a sphere around the origin[83], where, the center of
mass of each pair coincided with the origin of the extracted flow structures as shown
in figure 5.4. The particle distribution is chosen around the origin of structures as
they correspond to critical points mentioned by Goto and Vassilicos[37]. Subsequently,
the particle motion follows from the above equation. Due to the symmetries in the
considered flow structures the center of mass of a particle pair remains at the origin
in all cases and at all times. The initial separation distance between the two particles
of a pair is defined as the diameter of the sphere, i.e., twice the distance between the
particle and the origin, where the center of the mass of the pair is located. Similar to the
pair dispersion, tetrad dispersion is studied by kinematically simulating 4000 regular
tetrahedrons (same edge length) around the origin of the flow structures. The origin of
the structure coincides with the centroid of the tetrahedron. The quantities to describe
the pair and tetrad dispersion are explained in the following Sections 5.3.1 and 5.3.3,
respectively. The details concerning the simulations of material lines and the statistics
of their orientation will be discussed in the Section 5.3.2.

5.3.1 Pair dispersion

The pair dispersion describes the average separation of particles. This is characterized
by the evolution of the mean square of the relative separation (MSRS) between two
particles[59, 60], which is expressed as ⟨|r(t) − r(0)|2⟩, where r(t) represents the
separation vector at time t, r(0) is the initial separation vector, and, ⟨·⟩ and | · | de-
scribe the mean and the Euclidean norm, respectively. The separation vector r(t) is
computed as x1(t)− x2(t), where x1(t) and x2(t) are the positions of the two parti-
cles at time t. In the inertial range of the turbulent flow, Batchelor[60] predicted the
mean square of the relative separation as

⟨|r(t)− r(0)|2⟩ =


11
3

C2(ϵr0)
2/3t2 for t ≪ tB = r2/3

0 ⟨ϵ⟩−1/3

3
2

gϵt3 for tB ≪ t ≪ TL,
(5.3)

where C2 is the Kolmogorov constant in the second-order Eulerian structure function,
ϵ is the average dissipation rate of the flow, r0 is the initial separation between the
particle pair, tB is the Batchelor’s timescale after which dispersion is not influenced
by r0, g is the Richardson’s constant, which is assumed to be a fundamental constant
in turbulence, and TL is the integral time scale of the flow. The first sub-range where
t ≪ tB (see Eq. (5.3)) is referred to as Batchelor’s ballistic regime. In the literature,
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Figure 5.4: Projection of 5000 particles on the λ2 = 0 plane at time t = 0. The particles are
distributed on the surface of a sphere centered at the origin of the shear-layer structure with
initial separation |r0| = η. The projection of particles onto a plane leads to overlapping of
particles to form a circle.

tB is considered as the time where the two particles remain within the same eddy of
size r0. When the particles leave the eddy, i.e, at times t > tB, the particle separation
transitions into Richardson’s t3 scaling (see Eq. (5.3)).

The mean square of the relative separation is computed for different initial separa-
tions in different structures. The compensated relative dispersion results are compared
with the data from actual turbulence[79] in Section 5.4.1. Additionally, the existence
of the Batchelor’s ballistic regime and the Richardson’s t3 scaling is probed.

5.3.2 Material lines

A material line is an infinitesimal line composed of the same fluid particles, when
evolved in time, hence studying their orientation aids in the understanding of tur-
bulence mixing[62]. The evolution of the orientation of the material lines is studied
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similar to Guala et al.[65]. The orientation is examined to understand the differences
between different structures. Furthermore, the results are compared with the actual
turbulent flow. Material lines evolve with time according to[64, 65, 84] :

dli(t)
dt

=
∂ui

∂xj
lj(t), (5.4)

where li represents the infinitesimal material line, ∂ui/∂xj refers to the velocity gradi-
ent tensor computed at the center of li. In the present study, material lines are assumed
to continuously evolve around the origin, as the flow structures are stationary and the
velocity at the origin is zero. This implies that the initially placed infinitesimal line
elements at the origin do not advect, but reorient according to the same stationary
velocity gradient tensor. Hence, the velocity gradient in equation (5.4) is constant in
time and is computed at the origin of each flow structure. The alignment of the mate-
rial lines with the straining directions is given by cos(l, ei) = (l · ei)/(|l||ei|), where
ei represents the eigenvectors of the strain rate tensor at the origin of the structure. A
total of 104 material lines are considered in the present study, and their alignment for
all structures is compared in Section 5.4.3 with the data presented by Guala et al.[65].

5.3.3 Four-particle dispersion

The tetrad dispersion is quantified by the evolution of the size and shape of the particle
cloud, which are based on the separation between the different particles in a tetrahe-
dron. The procedure to characterize the size and shape of the tetrahedron is similar to
Biferale et al.[68]. At first, the coordinates are changed to obtain a new set of separa-
tion vectors[67, 68, 71], which eliminates the statistical dependence on the center of
mass X0, where X0 = (x1 + x2 + x3 + x4)/2. Note that the center of mass X0 coin-
cides with the origin of the structure initially. The three separation vectors are defined
as[67, 68, 71]

X1 = (x2 − x1)/
√

2,

X2 = (2x3 − x2 − x1)/
√

6,

X3 = (3x4 − x3 − x2 − x1)/
√

12. (5.5)

Then, an inertia matrix (I) is computed as I = ρρT where the columns of the matrix
ρ are the separation vectors (X1, X2, X3). Then the shape and size of the tetrahedron is
described by the three eigenvalues (gi) of the inertia matrix, where g1 ≥ g2 ≥ g3. The
size of the tetrahedron is given by the gyration radius R ≡

√
Tr(I) =

√
∑ gi and
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the tetrahedron volume (V) is defined as V = 1
3 det(ρ) = 1

3
√

g1g2g3. And finally,
the shapes are characterized by Si = gi/R2, where Si = 1/3 for i = 1, 2 and 3
for a regular tetrahedron. If all four points are coplanar then S3 = 0 and if collinear
S2 = S3 = 0.

The evolution of the shape and the size of the tetrahedrons around the idealized
structures is computed in terms of the eigenvalues gi and compared to the actual tur-
bulence cases[67, 68] in section 5.4.4.

5.4 results

Dispersion around different generic structures is investigated quantitatively and qual-
itatively to learn how they compare to statistics obtained in the actual turbulent flows.
This is done by kinematically simulating the tracer particles around different struc-
tures, namely the shear-layer structure (SLS), the node-saddle topology (NST), and
the Burgers’ vortex (BV) as explained in Sections 5.2 and 5.3. The number of parti-
cle pairs (5000), material lines (104) and tetrahedrons (4000) investigated are fewer,
but sufficient to obtain converged statistics, compared to the actual turbulent studies,
where, the number is usually above 105. The statistics are considered converged if the
convergence rate is below 10−4. The convergence rate is defined as the change in sta-
tistical value with respect to the increase in the number of particle pairs or material
lines or tetrahedrons. The results are discussed in the following paragraphs.

5.4.1 Pair dispersion

The pair dispersion is quantified in terms of the evolution of the mean square of
the relative separation (MSRS) ⟨|r(t)− r(0)|2⟩. A comparison of the MSRS for the
three different structures and for initial separations r0/η = 1, 4, and 16 is shown
in Figure 5.5. The relative separation and time (t) are normalized by the Kolmogorov
length (η) and timescale (τη), respectively. Qualitatively, similar slopes are observed
for the MSRS for the Burgers’ vortex (BV), the shear-layer structure (SLS) and the
node-saddle topology (NST) for time t/τη < 1 and for all initial separations con-
sidered (see Fig. 5.5). However, quantitatively the relative separation for the Burgers’
vortex is higher compared to the SLS and the NST. For time t/τη > 1, the MSRS
increases smoothly for the SLS and the NST. However, an oscillatory behavior is ob-
served for the Burgers’ vortex before rapidly increasing at later times. This oscillatory
behavior is due to the circular motion of the particles in the BV, which results in the
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Figure 5.5: The compari-
son of the evolution of the
mean square of relative
separation, normalized by
Kolmogorov length (η), for
different structures and for
different initial separations
(r0/η = 1, 4, and 16). Time t
is normalized by Kolmogorov
time scale (τη). The straight
black dotted line corresponds
to the Batchelor’s t2 scaling and
dash-dotted line to Richard-
son’s t3 scaling. Dashed-dotted
lines refer to the Burgers’
vortex (BV), solid lines to the
shear-layer structure (SLS) and
lines with ’+’ marker to the
node-saddle topology (NST).
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particles approaching the initial position after every revolution. With time the oscil-
lation fades, as the particles approach the vortex core and the stretching in the axial
direction starts to dominate the particle separation. It is also noted that the statistics
for the SLS and the NST are found to be approximately similar for all initial separations
till t/τη = 20.

The Batchelor scaling is represented by the t2 curve in Figure 5.5. In the Burgers’
vortex case, the relative separation scales with t2 for time t/τη < 1. For the SLS
and the NST, the t2 scaling is observed till t/τη ≈ 3 − 4 for the initial separations
r0/η = 1 and 4. For r0/η = 16, Batchelor’s regime is observed for a longer time, upto
t/τη ≈ 9 − 10. However, there was no evidence for the Richardson’s regime in the
BV, SLS and NST. From all these observations, it is deduced that Batchelor’s regime,
where particles are influenced by their initial separation, is observed in the all three
flow structures. However, the statistics around the Burgers’ vortex quantitatively and
qualitatively differ from the SLS and the NST after time t/τη = 1.

Furthermore, the dispersion around the shear-layer structure and the node-saddle
topology is compared to actual homogeneous isotropic turbulence at Taylor Reynolds
number Reλ = 650 [79]. The evolution of the compensated relative dispersion (⟨r(t)2 −
r(0)2⟩/ϵt3) with time is shown in Figure 5.6. Here, the dissipation ϵ is taken from the
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Figure 5.6: Comparison of the compensated relative dispersion for the shear-layer structure
(SLS), node-saddle topology (NST) and actual isotropic turbulence (from Sawford et al. [79]).
Results are shown for initial separations distances r0 = 1η, 4η, and 16η.

same database employed to extract structures[82]. The initial separations investigated
are r0/η = 1, 4, and 16.

The compensated relative dispersion (Fig. 5.6) in the actual turbulence case and the
SLS collapse onto each other until the time t/τη = 20 for the initial separation 1η

and till time 10τη for r0/η = 4 and 16. In the case of the node-saddle topology, the
compensated relative dispersion is similar to the actual turbulence case till 4− 5τη for
initial separations r0/η = 1 and 4. For r0/η = 16, the NST shows a similar trend
as the SLS. Also, it can be observed that, qualitatively, the SLS is closer to actual turbu-
lence till t/τη ≈ 20 than the node-saddle topology (NST) for r0/η = 1 and 4. During
the time t/τη ≈ 30 − 100, the compensated relative dispersion for different initial
separations in the actual turbulence case undergoes transition and attains a plateau.
This plateau indicates the Richardson’s regime[79] and the value of the compensated
relative dispersion is equal to the Richardson constant (g ≈ 0.6, see Eq. (5.3))[79].
However, the scaling in the SLS and the NST changes to the diffusive regime, where
the mean-square separation of the particles scales with t. Nevertheless, the qualitative
trend of the transition from t2 to the point where the curves for the initial separations
η and 4η approach each other is similar to actual turbulence, but much shorter. The
transition occurs at t/τη ≈ 3 − 13 in the case of the SLS and the NST compared
to t/τη ≈ 3 − 40 for actual turbulence[79]. This quantitative difference could be
due the absence of additional structures in the SLS and the NST. Batchelor[60] con-
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jectured that the particles enter different structures when the scaling changes from
the Batchelor’s regime to the Richardson’s regime. In the present simulations, as only
single structures are considered, it is, therefore, unlikely to observe the Richardson’s
regime.

From all these observations, it is understood that the shear-layer structure and the
node-saddle topology have quantitatively similar pair dispersion statistics to the actual
turbulent flow up to t/τη ≈ 3 − 10, which corresponds to the Batchelor’s regime.
Additionally, the SLS is observed to follow the actual turbulence more closely than the
NST till t/τη ≈ 20. However, due to the absence of multiple structures, an actual
Richardson’s regime cannot be observed.

5.4.2 Instantaneous distribution of particles

While the relative dispersion of particles by the SLS and the NST is qualitatively similar,
the underlying particle distribution in physical space appears to be different, which is
illustrated in this section. The distribution of particles in time for the initial separation
distance r0/η = 1 is shown for the SLS and the NST in Figures 5.7 and 5.8, respectively.
The three rows of plots in these figures represent the projections on the three Cartesian
planes, namely λ3 = 0, λ2 = 0, and λ1 = 0 from top to bottom. The three columns
from left to right show the time evolution of particles at times t/τη = 4, 10, and 50,
respectively.

The first row in figures 5.7 and 5.8 shows the particle distribution on the plane
spanned by the extensive principal straining directions λ1 and λ2 for the SLS and
the NST, respectively. Initially at t/τη = 0, the particles are distributed on a sphere
leading to the circular distribution in the projections (see Fig. 5.4). With time, the
projected distribution of particles develops an ellipsoidal shape due to the higher rate
of stretching in the λ1 direction compared to the intermediate λ2 direction (t/τη =

4 and 10). Furthermore, the size of the ellipse increases, because the stretching rate in
both directions is positive. At later times, the ellipsoid splits into two (e.g. at t/τη =

50).
The second row in the Figure 5.7 correspond to the particle distribution on the plane

with the most extensive and the compression principal strain rates. The particles get
stretched along the shear layer (see Fig. 5.9 for the associated velocity vectors) with
increasing time. In this projection, the particles are distributed along a line, which is
at an 18 degree angle with respect to the direction of the most stretching principle
strain λ1 at t/τη = 4 (see Fig. 5.7d). At later time t/τη = 50, the projected particle
distribution approaches the 45 degree diagonal (Fig. 5.7f). However for the NST, the
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Figure 5.7: Evolution of 5000 particles in the shear-layer structure with time (columns) pro-
jected on three different planes (rows). Columns from left to right show particle distribution
at times t/τη = 4, 10 and 50. The projections of the 5000 particles overlap, which initially
appear as one ellipsoid.

particles on the same plane are stretched along the λ1 and compressed in the λ3 direc-
tion (Fig. 5.8). This is attributed to the absence of rotation/vorticity in the node-saddle
topology. The NST particle distribution essentially forms a line in the λ1 direction, as
observed in the second row of the Figure 5.8.

The distribution of particles for the SLS and the NST is also different in the (λ1 = 0)
plane, which is observed in the third row of Figures 5.7 and 5.8, respectively. The dif-
ference is again attributed to the presence of rotation in the shear-layer. Due to the
rotation in the SLS, the particles get distributed along the shear-layer, thereby, actu-
ally spreading the particles in the direction of compressive strain (λ3). However, the
absence of rotation in the NST causes the particles to collapse approximately onto a
line along the λ2 axis at time t/τη = 50 (see Fig. 5.8g-i).
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Figure 5.8: Evolution of 5000 particles in the node-saddle topology with time (columns) pro-
jected on three different planes (rows). Columns from left to right show particle distribution
at times t/τη = 4, 10 and 50. The projections of the 5000 particles overlap, which initially
appears as one ellipsoid.

From these observations, it is concluded that the particles in the node-saddle topol-
ogy at t/τη > 10 form a sheet spanning the λ1 and λ2 directions. In contrast, the
particle sheet in the shear-layer structure is at an angle with the λ1 and λ3 directions,
while it is still aligned with the λ2 direction. Hence, the particles are observed to spread
in the direction of the most compressive strain λ3. The pair dispersion statistics i.e.,
the mean square of relative separation, of the NST and the SLS are found to be similar
even though the particles in the node-saddle topology do not move away from the ori-
gin in the compression direction. However, the observed differences in particle sheet
formation are important when considering the orientation of material lines and the
geometry of four particle dispersion as shown below.
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Figure 5.9: (a)-(d) correspond to the distribution of particles in the shear-layer structure pro-
jected on the plane λ2 = 0 at times t/τη = 4, 8, 10, and 25, respectively. The initial separa-
tion is 1η. With time, the particles align themselves along the shear-layer forming a sheet.

5.4.3 Material lines

The probability density function (PDF) of the orientation of the material lines (l) with
respect to the straining directions (ei), as given by cos(l, ei), is computed for differ-
ent structures. Initially, the material lines are randomly oriented, hence, the PDF of
cos(l, ei) is flat for all angles and will not be shown in the figure. With time, the align-
ment of the material lines changes with respect to the straining directions. The align-
ment at time t/τη = 4.0 is shown in Figure 5.10 and will be discussed in the following
paragraphs. The material line alignment will be compared to the particle distributions
(Fig. 5.7 and 5.8) as the distance traveled by particles is small and is still dependent on
the initial conditions.
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Figure 5.10: Probability density function of cos(l, ei) at t/τη = 4.0 for the shear-layer struc-
ture (SLS), the node-saddle topology (NST) and the Burgers’ vortex (BV). The lines ‘s’ and
‘∇u’ represent the alignment computed using the strain-rate tensor and the velocity gradient
tensor in actual turbulence, respectively, which is data from Guala et al.[65]

Figure 5.10a describes the PDF of the alignment of the material lines with the most
stretching direction, i.e., cos(l, e1). The material lines develop a strong preferential
alignment with the most stretching direction for all structures. The alignment is strongest
in the case of the node-saddle topology compared to the shear-layer structure and
is weakest in the case of the Burgers’ vortex. This can also be observed in the par-
ticle distribution plots in Figures 5.7 and 5.8 at t/τη = 4, where, the particles are
strongly aligned in the most stretching direction in the NST (see Fig. 5.8) compared
to the weaker alignment in the SLS (Fig. 5.7). Also, the peak in the PDF occurs at
|cos(l, e1)| = 0.97 for the SLS, which corresponds to a 14 degree angle. Similarly in
the particle distribution plots at the corresponding time instant, the angle between the
particle distribution and the most stretching direction is 18 degrees (Fig. 5.7d). For the
NST, however, the peak is at |cos(l, e1)| = 1, which corresponds to 0 degrees. This is
consistent with the clustering of particles along the λ1 axis for the NST (Fig. 5.8d).
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The PDF of the alignment of the material lines with the intermediate straining di-
rection is shown in Figure 5.10b. The material lines in the shear-layer structure and
the node-saddle topology show a slight tendency for alignment with the intermediate
direction, which has a finite positive strain. This can also be observed in the particle
distribution at t/τη = 4 (Figures 5.7 and 5.8). However, the material line alignment
with e2 in the Burgers’ vortex decreases as e2 corresponds to the compressive strain.

Figure 5.10c shows material line alignment with the compression direction (e3).
For all structures, it can be observed that the material lines tend to align perpendicu-
lar to the compression direction (e3). The material lines in the NST show the strongest
perpendicular alignment with the compression direction compared to the SLS and the
BV. This behavior can also be observed in the λ2 = 0 plane of the particle distribution
plots at time t/τη = 4. In case of the NST, the particles are clustered and stretched
along the λ3 direction, which is perpendicular to the direction of the compressive
strain (see Fig. 5.8d). However in the SLS (see Fig. 5.7d), the projected particles on
λ2 = 0 plane are distributed along a line at an angle of 72 degrees with the com-
pressive strain direction. This is consistent with the PDF of cos(l, e3) where the peak
occurs between 0.1 and 0.2, which corresponds to 84− 78 degrees. Since, this angle is
computed in three dimensional space, it is slightly higher than the angle (72 degrees)
computed based on the 2-d projection of the particles.

The material line alignments reported in actual turbulent flows[65] are also shown
in Fig. 5.10. Guala et al.[65] considered two different velocity gradient tensors, namely
the strain-rate tensor (s) and the velocity gradient tensor (∇u), to compute the evolu-
tion of material lines (see right-hand side of Eq. (5.4)). For the case studied by Guala
et al.[65], s and ∇u evolve in time, whereas for the SLS, the BV and the NST the veloc-
ity gradient is fixed. From Fig. 5.10, it can be observed that the alignments for the SLS
and the NST are comparable to the alignments computed using the ‘∇u’ and the ‘s’ in
actual turbulent flows[65], respectively. The similarity observed between the SLS and
the actual turbulent flow (∇u) could be due to the fact that the SLS represents the aver-
age flow field around a point in a turbulent flow and includes both strain and rotation.
The NST is obtained by symmetrizing the SLS (Section 5.2.3), so it only contains strain
and no rotation. Again due to the symmetrization, the velocity gradient tensor used
to compute alignments in the NST is same as the strain-rate tensor of the SLS. Hence,
this could explain the similarity between the NST and the alignment computed from
the strain-rate tensor (s) in actual turbulent flow (see Fig. 5.10).

From these observations, it is clear that the SLS and the NST show differences in
the alignment of material lines, which is consistent with the particle distributions ob-
served in Section 5.4.2. These differences are explained by the fact that the SLS con-
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tains vorticity, whereas the NST does not. On the other hand, the Burgers’ vortex (BV)
clearly differed from the SLS and the NST cases, because it has rotational symmetry
and two compression directions (e2, e3) leading to the identical alignment of material
lines with e2 and e3. In contrast, the SLS and the NST have two extensive directions e1

and e2. Additionally, the alignments in the SLS and the NST, where the flow field does
not evolve in time, are comparable to the results of Guala et al., which are computed in
a continuously evolving turbulent flow. Therefore, it is concluded that the SLS struc-
ture yields similar material line alignment as the actual turbulent flows, at least up to
t/τη = 4.

5.4.4 Four particle dispersion

The evolution of four particle dispersion is characterized by the shape and size of the
tetrahedrons, which is further quantified in terms of the eigenvalues (gi) of the inertia
matrix (ρ) as discussed in Section 5.3. Figure 5.11 shows the evolution of the eigen-
values ⟨gi⟩ for four cases namely, the Burgers’ vortex (BV), the shear-layer structure
(SLS), the node-saddle topology (NST), and actual isotropic turbulence (Reλ = 280)
from Biferale et al.[68]. The volume (V = 1

3
√

g1g2g3) of the tetrahedrons up to
t = 4τη was found to be constant in the case of the BV, the SLS, and the NST, which
is similar to the results presented in Biferale et al.[68] for actual isotropic turbulence.

The largest eigenvalue, g1, is qualitatively and quantitatively similar till 10τη in all
considered cases (see Fig. 5.11a). However, for g2 and g3 the Burgers’ vortex shows
a different trend compared to the other cases (Figures 5.11b and 5.11c). For the BV,
both eigenvalues, hence the shape parameters S2 and S3 approach zero with time. This
means that the particles of a tetrahedron become collinear, which is due to the com-
pression of the particles in two compressive straining directions (see Section 5.3.3).
For the SLS and the NST, the second eigenvalue g2 increases with time and follows
the actual turbulence curve till t/τη ≈ 4 − 5. At later times, g2 remains similar for
the SLS and the NST, but deviates in terms of its magnitude from the actual turbulence
case[68]. Finally, the value of the third eigenvalue, g3, decreases initially for all cases.
While g3 decreases and tends to go to zero, g1 and g2 are increasing for the SLS, the
NST, and the actual turbulence, which means that the particles of the tetrahedron are
becoming more coplanar. This is observed in Figures 5.7 and 5.8, where particles form
a sheet in the case of the SLS and the NST, respectively. Furthermore, the eigenvalue
g3 for the NST decreases and then slowly tends to zero after time 10τη , which is differ-
ent from the SLS, where g3 decreases and then increases again. The increase in g3 is
qualitatively similar to actual turbulence. The eigenvalue g3 increases in the SLS as the
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Figure 5.11: The comparison of the eigenvalues (gi) of the inertia matrix with time (t/τη)
between the shear-layer structure (SLS), the node-saddle topology (NST), the Burgers’ vortex
(BV) and the data from the actual isotropic turbulence case by Biferale et al.[68] for the tetrahe-
drons of edge length η. Time (t) and eigenvalues are normalized by means of the Kolmogorov
timescale (τη) and length scale (η).

particles sheet deforms leading to the loss of coplanarity. This can also be observed in
the plane λ2 = 0 in Figure 5.9, where the straight particles sheet (t/τη = 4) starts
deforming and develops a slight undulation at time t/τη = 10 and is fully deformed
at t/τη = 25 leading to the loss of coplanarity. The deformation of the sheet is asso-
ciated with the particles moving away from the saddle point at the origin of the SLS
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and approaching the adjacent vortices[7](Fig. 5.9). This causes a change in the par-
ticle velocity in the direction perpendicular to the shear-layer, which causes the loss
in coplanarity. The formation of two sheets (see Fig. 5.7f) may be the reason for the
decrease in eigenvalue g3 after t/τη = 25 − 30 in the SLS. Hence, the shear-layer
structure qualitatively shows a similar trend to that of the actual turbulence case up to
t/τη = 20, whereas the NST and the BV deviate.

5.5 conclusions

In this chapter, the dispersion of tracer particles by idealized flow structures was stud-
ied qualitatively and quantitatively and compared to the actual turbulent flow. The
dispersion was described by the pair and the tetrad dispersion statistics and the evo-
lution of material lines. The flow structures considered were the Burgers’ vortex (BV),
the shear-layer structure (SLS), and the node-saddle topology (NST). All the simula-
tions were kinematic in nature as the flow structures did not evolve in time.

The pair dispersion was quantified in terms of the mean square of relative separa-
tion. The pair dispersion statistics were qualitatively similar in all three structures for
very short time, up to t = 1τη . Moreover, the Batchelor’s regime (t2 scaling), where the
particles are influenced by their initial separation, was observed in all flow structures.
However, the relative separation for the Burgers’ vortex was qualitatively and quantita-
tively different from the shear-layer structure and the node-saddle topology after time
t/τη = 1. In particular, the separation showed an oscillatory behavior for the Burgers’
vortex, which was attributed to the circular motion of the particles, causing the parti-
cles to approach their initial position after every revolution. The compensated relative
dispersion for actual turbulence[79] was compared to the SLS and the NST. The SLS
and the NST exhibited quantitatively similar statistics as actual turbulent flow[79] till
t/τη ≈ 3− 10 depending on the initial separation, which corresponded to the Batch-
elor’s regime. Richardson’s regime was not observed in the statistics of the SLS and
the NST. This could be attributed to the absence of other structures, as opposed to the
actual turbulence cases, which are composed of many flow structures.

The probability density functions of the orientation of material lines with respect to
the principal straining directions was computed for the different structures and com-
pared to actual turbulent flow data[65]. Again, the Burgers’ vortex clearly differed due
to the presence of two compressive straining directions as opposed to two stretching
directions in the case of the SLS and the NST. The SLS and the NST exhibited similar
PDFs as the actual turbulence case[65] at t = 4τη . As the SLS represents the average
flow around a point in the turbulent flow, the alignments in the SLS were found to
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be comparable to the evolution of material lines computed using the velocity gradient
tensor in actual turbulent flows. On the other hand, the velocity gradient utilized to
compute alignments in the NST is the symmetric part of the velocity gradient tensor
used in the SLS. Hence, the velocity gradient tensor in the NST only contains strain
as opposed to strain and rotation in the SLS. This could be the reason for similarity
between the NST and the evolution of material lines computed using the strain-rate
tensor in actual turbulent flows[65]. Additionally, the preferential alignment angles
for the material lines in the SLS were found to be similar to the angles at which the
particles clustered in the particle distribution plots.

Finally, the tetrad dispersion was quantified by the eigenvalues of the inertia tensor
of the tetrahedron, which characterized the evolution of the size and shape of the tetra-
hedron. Their evolution was computed for all structures and compared to the statistics
for actual turbulent flow from Biferale et al.[68]. The largest eigenvalue g1 was similar
in all the three cases. For the Burgers’ vortex the eigenvalues g2 and g3 approached
zero with time, which meant the particles of the tetrahedron became collinear. The in-
termediate eigenvalue g2 in the SLS and the NST was identical to the actual turbulence
case for time 4 − 5τη , after which the eigenvalue deviated quantitatively. Finally, the
third eigenvalue initially decreased for all cases. However, it increased again for the
SLS after time 10τη , which is qualitatively similar to actual turbulence. The initial de-
crease in g3 in the SLS and NST lead to coplanarity as the shape parameter S3 tended
to zero. This was also observed in the particle distribution plots. Then, the increase
in the third eigenvalue in the SLS was attributed to the loss of coplanarity due to the
deformation of particle sheet as observed in the particle distribution plots at the cor-
responding times.

To conclude, the shear-layer structure showed many quantitative (till 2 − 4τη) and
qualitative (till 20τη) similarities when compared to the actual turbulence case (see
Fig. 5.6 and 5.11). The Burgers’ vortex deviated the most, both quantitatively and qual-
itatively. The node-saddle topology did exhibit some similarities to actual turbulent
flow statistics in terms of the particle pair dispersion, but it did not capture a number
of geometrical features associated with the material lines and tetrad dispersion.
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6
C O N C LU S I O N S A N D R E C O M M E N D AT I O N S

In this thesis, turbulence was studied in terms of coherent structures. Among the co-
herent structure descriptions of turbulence, the hairpin packet or vortex packet model
was considered due to its association with Reynolds shear stress, which is further con-
nected to the drag. Few unsolved questions in the vortex packet model and its dynam-
ics were addressed in this study. In this chapter, the main conclusions are briefly sum-
marized as they are described in detail in every chapter. In the following paragraphs
conclusions and future work linked to each chapter will be discussed.

6.1 auto-generation in wall-turbulence

The question of how threshold strength vortices may come into existence, and the
role of low-speed streaks in auto-generation was addressed in Chapter 2 by perform-
ing simulations in an ideal scenario. It was shown that the two non-auto-generating
vortices could merge to create a threshold strength vortex and subsequently gener-
ate a new vortex. Additionally, some non-merging cases were also observed to auto-
generate, when the stream-wise separation between vortices was small (∆x+ < 120
wall units). Thus, the auto-generation from two weak eddies was found to be depen-
dent on the initial stream-wise separation as a small separation emulates the increase
in threshold strength by the superposition of their associated velocity fields. From
these observations, it was concluded that the interaction of weak vortices could lead to
auto-generation either by merging, which leads to the creation of a threshold strength
vortices, or by amplification of the perturbation velocity due to the small initial stream-
wise separation.

Furthermore, the addition of a low-speed streak to a non-auto-generating vortex did
not result in the generation of new vortices. From this and the above observations, the
onset of auto-generation was probed in detail, which resulted in modifying the existing

77
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auto-generation mechanism. The modified mechanism highlighted that the ejection
events and their interaction with surrounding flow is important for auto-generation.
This differed from the work of Zhou et al.[28] where the kink formation in legs of the
hairpin vortex leading to the auto-generation is due to mutual and self induction of
stream-wise legs. Whereas in the modified mechanism presented in this thesis, the
kink formation is the consequence of the shear layer roll-up and ejection events. Also,
this modified mechanism can describe the onset of auto-generation for both, a vortex
with a single stream-wise leg and a vortex with two stream-wise legs unlike previous
descriptions. This strengthens the vortex packet model as single legged vortices are
more widely observed in actual turbulent flows than two legged vortices.

It should be noted that few parts of the study in Chapter 2 are qualitative in nature.
The threshold strength required to generate a new vortex from an extracted parent vor-
tex at different wall-normal heights at low Reynolds numbers has been quantitatively
studied by Zhou et al.[28] and Kim et al.[33]. However, this has not been quantified
extensively at high Reynolds numbers. Additionally, the initial condition containing
two stream-wise legs has not been extracted at high Reynolds numbers. Hence, initial
condition needs to be extracted at high Reynolds numbers, and also a detailed explo-
ration needs to be performed to understand the effect of the wall-normal distance and
Reynolds numbers scaling on auto-generation in ideal simulations. This information
could help in identifying the threshold strength vortices in actual turbulent flows. Sec-
ondly, the modified auto-generation mechanism is described qualitatively, where the
vortex head is rapidly lifted up by the ejection events, which further blocks the incom-
ing flow leading to auto-generation. Hence, a quantitative description of the threshold
value for an ejection event required to lift the vortex head and cause auto-generation
needs to be studied.

The generation of new vortices was studied in transitional boundary layers[39, 45,
85–87]. In these studies, it has been shown that a varicose-like breakdown leads in
the formation of ∧ or horse-shoe structures[39, 86], which are also referred as hairpin
vortices. This varicose-like breakdown is based on Kelvin-Helmholtz instability. Addi-
tionally, similar to the present study on auto-generation, shear-layers were observed
in these studies. Hence, in the future one could explore a possible connection between
the varicose-like breakdown and auto-generation. If such a connection exists, it could
result in integrating different views on boundary layer turbulence, thus improving our
understanding of turbulence.
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6.2 auto-generation in turbulent flow and its timescale

The generation of new vortices from cane-shaped or asymmetric vortices was observed
in actual fully developed turbulent channel flow at friction Reynolds number Reτ =

180 (see Chapter 3). The modified auto-generation mechanism for single legged vor-
tices (asymmetric vortices) was found to be consistent with the observations. Further-
more, the timescale of auto-generation was observed to be 10 − 15 time wall units,
which was similar to experimental results by Jodai and Elsinga[36]. However, this
timescale is an order of magnitude smaller than the idealized simulations. This small
time scale shows how quick the vortices can be generated in a packet. Thus explain-
ing one way how vortices can get clustered in a vortex packet, thereby improving the
existing model. Additionally, this timescale also represents the generation of ejection
events, hence, it could be utilized to modify flow in the case of active drag reduction
or to create turbulence. However, due to the difficulties associated with the objective
and automated identification of auto-generation and vortex packets, the timescale pre-
sented in this study is not a statistical one.

The development of an objective method to detect auto-generation in the future is
important to confirm the timescale of auto-generation. Additionally, a link between
this time scale and the time scale of the generation of ejection events studied by hot-
wire measurements[88–91] needs to be explored. This link could simplify the three-
dimensional study of the timescale of auto-generation to one-dimension.

6.3 shear-layer structure and vortex packet

The average shear-layer structure (SLS), which appears in different turbulent flows as
shown by Elsinga and Marusic[7], was identified in an instantaneous turbulent chan-
nel flow, thereby demonstrating the structure is not the result of averaging. It was also
shown that the two consecutive co-rotating vortices in a vortex packet can be viewed
in a different frame of reference as the shear-layer structure.

One of the main implication of this study is that this could aid in developing an ob-
jective method to identify vortex packets and auto-generation as discussed in Section
4.3.3. Further, this objective method could be utilized to study the statistical relevance
of the vortex packets and auto-generation.

The average SLS has been detected in many different kinds of turbulent flows. So in
the future, the instantaneous existence of SLS can be probed in other flows following
the method described in this thesis. And if it exists in different flows, for example in
isotropic flows, then, there is a possibility of finding vortex packets as the dissipation
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forms long and large sheets[58] similar to the observations of vortex packets in the
channel flow. Additionally, similar study on the temporal evolution of generation of a
vortex could also be performed.

6.4 dispersion around idealized flow patterns

Tracer dispersion was studied around different idealized flow structures, namely, the
Burgers’ vortex, the shear-layer structure, and the node-saddle topology. It was shown
that the shear-layer structure resembled the actual turbulent flows quantitatively for
times 2 − 4τη and qualitatively up to 20τη , respectively. The node-saddle topology
showed few similarities. However, the Burgers’ vortex deviated the most, both quanti-
tatively and qualitatively.

A few studies[92–95] on pollution dispersion in urban environments have shown
that the low-momentum zones in the flow are associated with the removal of pollu-
tants between high-rise buildings and narrow streets. Even though low momentum
zones in actual flows has been studied in two-dimensions[1, 96], however it is diffi-
cult to identify and study them in three-dimensions. These low momentum zones are
shown to be associated with vortex packets[1], where, two successive co-rotating vor-
tices can be viewed as the shear-layer structure. Hence, a low momentum zone could
be modeled as bounded by the shear-layer structure and the dispersion around it can
be studied in an idealized way, which, further could be utilized in modeling urban
environments.

To conclude, some aspects of turbulence were studied at low Reynolds number in terms
of coherent structures and the existing vortex packet model was improved in the fol-
lowing ways. First, the interaction of weak vortices was shown to create a threshold
strength vortex, which further could auto-generate. Second, three-dimensional vor-
tex packets in simulated turbulent flows were observed, thereby strengthening the rel-
evance of the vortex packets to describe actual three-dimensional flows. Third and
final, the time scale of auto-generation in the simulated turbulent flow at Reτ = 180
was found to be short, i.e., 10 − 15 wall time units (ν/u2

τ). Additionally, a vortex
packet was linked to the shear-layer structure, and thereby showing two co-rotating
vortices in a packet can be viewed in different frame of reference as shear-layer struc-
tures. Finally, the tracer particle dispersion statistics around the shear-layer structure
were observed to better resemble actual turbulent flow statistics for short times com-
pared to the statistics for the node-saddle topology and the Burgers’ vortex.
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A P P E N D I X : D I R E C T N U M E R I C A L S I M U L AT I O N

In this appendix, few details on the direct numerical simulation code are given. And
then the turbulent statistics are compared and validated against the data provided on
website http://turbulence.ices.utexas.edu/[51].

a.1 dns code details

The skew-symmetric, non-dimensional Navier-Stokes equations are solved in the code.
The skew-symmetric form is used because it is energy conserving. In the following sub-
sections, time integration scheme is described and the details on spatial-discretization
are given.

a.1.1 Non-dimensionalized Navier Stokes equation

∂ui

∂xi
= 0

∂ui

∂t
+

1
2

(
uj

∂ui

∂xj
+ ui

∂uj

∂xj
+

∂(ujui)

∂xj

)
= −∂pi

∂xi
+

1
Reτ

∂2ui

∂x2
i

where Reτ is given by uτ H/ν. Non-dimensional scales used in above equations are:

• Full channel height (H) for length.

• friction velocity uτ(=
√

τw/ρ) for velocity.

• ρu2
τ for pressure.

• H/uτ for time.
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a.1.2 Time Integration: Runge-Kutta scheme

Few definitions :

C(ui) =
1
2

(
uj

∂ui

∂xj
+ ui

∂uj

∂xj
+

∂(ujui)

∂xj

)
D(ui) =

1
Reτ

∂2ui

∂x2
i

∂pb

∂xi
a constant pressure gradient

n − 1
2

is given by m

n +
1
2

is given by m+1

Runge-Kutta: Step 1

u∗
i = un

i + dt · 32
60

(
−∂pb

∂xi
− ∂pm

∂xi
− C(un

i ) + D(un
i )

)
∂2(δp)

∂x2
i

=
1

dt( 32
60 )

·
∂u∗

i
∂xi

pm∗ = pm + δp

un∗
i = u∗

i − dt · 32
60

· ∂(δp)
∂xi

Runge-Kutta: Step 2

u∗∗
i = un∗

i + dt · 8
60

(
−∂pb

∂xi
− ∂pm∗

∂xi

)
+ dt · 25

60
(−C(un∗

i ) + D(un∗
i ))

− dt · 17
60

(−C(un
i ) + D(un

i ))

∂2(δp)
∂x2

i
=

1
dt( 8

60 )
·

∂u∗∗
i

∂xi

pm∗∗ = pm∗ + δp

un∗∗
i = u∗∗

i − dt · 8
60

· ∂(δp)
∂xi
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Runge-Kutta: Step 3

u∗∗∗
i = un∗∗

i + dt · 20
60

(
−∂pb

∂xi
− ∂pm∗∗

∂xi

)
+ dt · 45

60
(−C(un∗∗

i ) + D(un∗∗
i ))

− dt · 25
60

(−C(un∗
i ) + D(un∗

i ))

∂2(δp)
∂x2

i
=

1
dt( 20

60 )
·

∂u∗∗∗
i

∂xi

pm+1 = pm∗∗ + δp

un+1
i = u∗∗∗

i − dt · 20
60

· ∂(δp)
∂xi

a.1.3 Spatial discretisation

Discrete fast Fourier transforms (FFTW)[48] are used to compute first and second
order derivatives in the periodic directions x, y. In wall normal direction(z), 6th order
compact finite-difference schemes described in Boersma[49, 50] are used. Velocities
u, v and pressure p are located at cell centers. Wall normal velocity (w) is in staggered
configuration and is located at nodes. Momentum equation is calculated at respective
velocity points. Continuity equation or Poisson equation is solved at pressure points.
Time-step is computed from the CFL condition mentioned in Simens et al.[97].

a.2 code validation

Present DNS code was compared and validated against the data provided on website
http://turbulence.ices.utexas.edu/[51]. Details comparing the domain size, grid size,
friction Reynolds number and simulation time is given in table A.1.

In present simulations, ‘Low res’ and ‘High res’ refer to low and high resolution
(number of grids), respectively. Figures A.1 to A.4 show the comparison between the
turbulent statistics. On the top of each plot, the difference (∆) between the data ob-
tained from Lee and Moser[51] and the present simulations is plotted (∆ = (Lee &
Moser)-(Present simulations)). The data of Lee and Moser[51] was linearly interpo-
lated to get data at the grid points of present simulations. From all the figures, it is
observed that the present DNS statistics are in good agreement with the statistics of
Lee and Moser[51]. And the difference plots (above every plot) show no trend, except
sometimes the Lee and Moser[51] statistics are slightly higher than present statistics,
which could be due to higher Reτ . It is observed that ⟨u′+

rms⟩ for Lee & Moser is higher
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Table A.1: Comparison of the simulation parameters in the present DNS and Lee and
Moser[51]. Here Reτ = uτh/ν represents friction Reynolds number based on half channel
height (h). Domain and grid sizes in stream-wise and span-wise directions is given by Lx &
∆x+, and Lz & ∆z+, respectively. ∆y+w and ∆y+c represent grid sizes at wall and channel core,
respectively. Finally, simulation time is given by tuτ/h.

Simulation Reτ Lx/h Lz/h ∆x+ ∆y+w ∆y+c ∆z+ tuτ/h

Lee and Moser 182 8π 3π 4.5 0.074 3.4 3.1 31.9

Present (Low res) 180 4π 4π/3 11.78 0.75 3.87 5.89 60

Present (High res) 180 4π 4π/3 5.89 0.75 3.87 3.93 25
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Figure A.1: Comparison of mean stream-wise velocity (u+) along the channel height. On top,
the ∆⟨u+⟩ represent the difference between the data of Lee & Moser and present simulations.

than the present simulations. This is attributed to the slightly higher Reynolds number
in their case. The differences in the other observed statistics could be due to the algo-
rithms used, the simulation time, the finer resolution, and the large computational
domain size. Additionally, it should be noted that the linear interpolation of Lee and
Moser[51] data also introduces interpolation errors.
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Figure A.2: Comparison of root mean square velocities along the channel height. On top of
each plot (a,b), the ∆⟨u′+

rms⟩ and ∆⟨v′+rms⟩ represent the difference between the data of Lee &
Moser and present simulations.
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Figure A.3: Comparison of root mean square velocity and mean shear stress along the channel
height. On top of each plot (a,b), the ∆⟨w′+

rms⟩ and ∆⟨du/dy⟩ represent the difference between
the data of Lee & Moser and present simulations.
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Figure A.4: Comparison of Reynolds shear stress and total stress along the channel height.
On top of each plot (a,b), the ∆⟨u′+v′+⟩ and ∆ (Tot.) represent the difference between the
data of Lee & Moser and present simulations.
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B
A P P E N D I X : A D D I T I O NA L E X A M P L E S

This chapter provides few additional examples of the generation of new vortices (Chap-
ter 3) and shear-layer structure extracted from vortex packets (Chapter 4). Four ex-
amples of auto-generation are shown in section B.1. And the shear-layer structures
extracted from two different vortex packets are shown in section B.2.

b.1 auto-generation

Among the four examples of auto-generation, three are slightly different from each
other. The differences highlight the difficulties in identifying auto-generation. Each
auto-generation example is illustrated by figures in two different planes, namely, vector
plots of the perturbation velocities (u′+, v′+) in the cross-stream plane (xy) and the
low-speed streak along with iso-surface of swirling strength in xz plane.

Auto-generation examples 1 and 2 were easy to detect, due to the high thresholds
to identify low-speed streaks and vortices. This leads to fewer vortices and smaller
low-speed streaks to track in time in three dimensional channel flow. Whereas, in ex-
amples 3 and 4 the thresholds were low, leading to large low-speed streaks and large
overlapping vortices, which made it difficult to identify auto-generation visually. Ad-
ditionally in example 4, the low-speed streak and the parent vortex are at an angle with
the stream-wise direction. Hence it becomes difficult to identify the start and the end
of auto-generation in xy plane, as the plane needs to be at an angle which requires
interpolation and projection of velocities. This is also the reason the xy plane is not
shown for example 4.

Time taken for the generation of a new vortex in all four examples was shown in
table 3.1. It can be observed that the parent vortex with very low swirling strength
(example 3) took longer to auto-generate, when the low-speed streak and vortex was
aligned in stream-wise direction. When the alignment is at an angle (example 4), the
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auto-generation is observed to be faster. However, not many cases are studied to un-
derstand the mechanism behind it.
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Figure B.1: Auto-generation example 1: Time taken to generate new vortex is 13.5 time wall
units. Figures (a) and (b) represent relative times t+ = 0 and 13.5, respectively. The black iso-
surfaces represent low-speed streak at u′+ = −4 and vortices are shown by gray iso-surfaces,
which, represent 5% of the maximum local swirling strength squared. ‘E1’ and ‘E2’ are parent
vortex and newly generated vortex, respectively. Figure (d)-(f) represent vector plots in xy
plane at z+ = 45 (see Fig a) at relative times t+ = 0, 4.5 , 9.0 and 13.5, respectively. Iso-
contours from black to light gray in these figures show decreasing local swirling strength.

b.2 shear-layer structures and vortex packets

Two examples showing the link between vortex packets and shear-layer structure are
presented here. The procedure to extract shear-layer structure is explained in section
4.2.1 of chapter 4.
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Figure B.2: Auto-generation example 2: Time taken to generate new vortex is 15.75 time wall
units. Figures (a) and (b) represent relative times t+ = 0 and 15.75, respectively. The black iso-
surfaces represent low-speed streak at u′+ = −4 and vortices are shown by gray iso-surfaces,
which, represent 5% of the maximum local swirling strength squared. ‘E1’ and ‘E2’ are parent
vortex and newly generated vortex, respectively. Figure (d)-(f) represent vector plots in xy
plane at z+ = 45 (see Fig a) at relative times t+ = 0, 6.75 , 11.25 and 15.75, respectively.
Iso-contours from black to light gray in these figures show decreasing local swirling strength.
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Figure B.3: Auto-generation example 3: Time taken to generate new vortex is 18.0 time wall
units. Figures (a) and (b) represent relative times t+ = 0 and 18.0, respectively. The black iso-
surfaces represent low-speed streak at u′+ = −2.5 and vortices are shown by gray iso-surfaces,
which, represent 1% of the maximum local swirling strength squared. ‘E1’ and ‘E2’ are parent
vortex and newly generated vortex, respectively. Low-speed streaks are made translucent to
show the stream-wise legs on other side of the streaks. Figure (d)-(f) represent vector plots in
xy plane at z+ = 48 (see Fig a) at relative times t+ = 0, 6.75 , 13.5 and 18.0, respectively.
Iso-contours from black to light gray in these figures show decreasing local swirling strength.
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Figure B.4: Auto-generation example 4: Time taken to generate new vortex is 9.0 time wall
units. Figures (a) and (f) represent relative times t+ = 0, 2.25, 4.5, 6.75, 9.0 and 11.25,
respectively. The black iso-surfaces represent low-speed streak at u′+ = −3.5 and vortices
are shown by gray iso-surfaces, which, represent 2% of the maximum local swirling strength
squared. Low-speed streaks are made translucent to show the stream-wise legs on other side
of the streaks. ‘E1’ and ‘E2’ are parent vortex and newly generated vortex, respectively. Vortex
‘E3’ is at a higher wall normal location and gets connected with ‘E2’ at t+ = 6.75. And a swirl
in the velocity vectors (not shown here) is observed at t+ = 11.25.
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Figure B.5: Example vortex packet 1 : It consists of two vortices ‘E1’ and ‘E2’. The black iso-
surfaces represent low-speed streak at u′+ = −4 and vortices are shown by gray iso-surfaces,
which, represent 5% of the maximum local swirling strength squared in plane xz in Fig (a).
Fig (b) shows the perturbation velocity vectors in xy plane at z+ = 60 (see Fig (a)).
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Figure B.6: Example vortex packet 2 : It consists of four vortices ‘E1’, ‘E2’, ‘E3’ and ‘E4’. The
black iso-surfaces represent low-speed streak at u′+ = −4 and vortices are shown by gray
iso-surfaces, which, represent 5% of the maximum local swirling strength squared in plane xz
in Fig (a). Fig (b) shows the perturbation velocity vectors in xy plane at z+ = 60 (see Fig (a)).
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Figure B.7: Figure (a) and (b-d) show the vector plot in plane λ2 = 0 of the extracted shear-
layer structure from a vortex packet shown in figures B.5 and B.6, respectively. Wall of the
channel can be observed on the top right side of the figure, where the vectors cease to exist.

[ June 9, 2017 at 11:50 – classicthesis version 0.01 ]



[ June 9, 2017 at 11:50 – classicthesis version 0.01 ]



R E F E R E N C E S

[1] R. J. Adrian, C. D. Meinhart, and C. D. Tomkins. “Vortex organization in the
outer region of the turbulent boundary layer.” Journal of Fluid Mechanics 422,
pp. 1–54, 2000.

[2] A. Lozano-Durán and J. Jiménez. “Time-resolved evolution of coherent struc-
tures in turbulent channels: Characterization of eddies and cascades.” Journal
of Fluid Mechanics 759, pp. 432–471, 2014.

[3] B. J. Cantwell. “Organized motion in turbulent flow.” Annual Review of Fluid
Mechanics 13, pp. 457–515, 1981.

[4] A. E. Perry and M. S. Chong. “A description of eddying motions and flow pat-
terns using critical-point concepts.”Annual Review of FluidMechanics 19, pp. 125–
155, 1987.

[5] M. S. Chong, A. E. Perry, and B. J. Cantwell. “A general classification of three-
dimensional flow fields.” Physics of Fluids A: Fluid Dynamics 2, pp. 765–777,
1990.

[6] H. M. Blackburn, N. N. Mansour, and B. J. Cantwell. “Topology of fine-scale
motions in turbulent channel flow.” Journal of Fluid Mechanics 310, pp. 269–
292, 1996.

[7] G. E. Elsinga and I. Marusic. “Universal aspects of small-scale motions in tur-
bulence.” Journal of Fluid Mechanics 662, pp. 514–539, 2010.

[8] W. T. Ashurst, A. R. Kerstein, R. M. Kerr, and C. H. Gibson. “Alignment of
vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbu-
lence.” Physics of Fluids (1958-1988) 30, pp. 2343–2353, 1987.

[9] R. J. Adrian. “Hairpin vortex organization in wall turbulence.” Physics of Fluids
19, p. 041301, 2007.

[10] K.-S. Choi. “Near-wall structure of a turbulent boundary layer with riblets.”
Journal of Fluid Mechanics 208, pp. 417–458, 1989.

[11] D. C. Chu and G. E. Karniadakis. “A direct numerical simulation of laminar
and turbulent flow over riblet-mounted surfaces.” Journal of Fluid Mechanics
250, pp. 1–42, 1993.

97

[ June 9, 2017 at 11:50 – classicthesis version 0.01 ]

http://dx.doi.org/10.1017/s0022112000001580
http://dx.doi.org/10.1017/s0022112000001580
http://dx.doi.org/10.1017/jfm.2014.575
http://dx.doi.org/10.1017/jfm.2014.575
http://dx.doi.org/10.1146/annurev.fl.13.010181.002325
http://dx.doi.org/10.1146/annurev.fl.19.010187.001013
http://dx.doi.org/10.1146/annurev.fl.19.010187.001013
http://dx.doi.org/10.1063/1.857730
http://dx.doi.org/10.1063/1.857730
http://dx.doi.org/10.1017/S0022112096001802
http://dx.doi.org/10.1017/S0022112096001802
http://dx.doi.org/10.1017/s0022112010003381
http://dx.doi.org/10.1017/s0022112010003381
http://dx.doi.org/10.1063/1.866513
http://dx.doi.org/10.1063/1.866513
http://dx.doi.org/10.1063/1.866513
http://dx.doi.org/10.1063/1.2717527
http://dx.doi.org/10.1017/s0022112089002892
http://dx.doi.org/10.1017/s0022112093001363
http://dx.doi.org/10.1017/s0022112093001363


98 References

[12] Y. P. Tang and D. G. Clark. “On near-wall turbulence-generating events in a tur-
bulent boundary layer on a riblet surface.”Applied scientific research 50, pp. 215–
232, 1993.

[13] Y. Suzuki and N. Kasagi. “Turbulent drag reduction mechanism above a riblet
surface.” AIAA Journal 32, pp. 1781–1790, 1994.

[14] Y. Sumitani and N. Kasagi. “Direct numerical simulation of turbulent trans-
port with uniform wall injection and suction.” AIAA journal 33, pp. 1220–1228,
1995.

[15] D. Goldstein, R. Handler, and L. Sirovich. “Direct numerical simulation of tur-
bulent flow over a modeled riblet covered surface.” Journal of Fluid Mechanics
302, pp. 333–376, 1995.

[16] P. K. Ptasinski, B. J. Boersma, F. T. M. Nieuwstadt, M. A. Hulsen, B. H.A.A.V. D.
Brule, and J. C. R. Hunt. “Turbulent channel flow near maximum drag reduc-
tion: simulations, experiments and mechanisms.” Journal of Fluid Mechanics
490, pp. 251–291, 2003.

[17] Y. Dubief, V. E. Terrapon, C. M. White, E. S. G. Shaqfeh, P. Moin, and S. K. Lele.
“New answers on the interaction between polymers and vortices in turbulent
flows.” Flow, Turbulence, and Combustion 74, pp. 311–329, 2005.

[18] S.-J. Lee and Y.-S. Choi. “Decrement of spanwise vortices by a drag-reducing
riblet surface.” Journal of Turbulence 9, N23, 2008.

[19] C. M. White and M. G. Mungal. “Mechanics and prediction of turbulent drag re-
duction with polymer additives.”Annual Review of FluidMechanics 40, pp. 235–
256, 2008.

[20] B. Dean and B. Bhushan. “Shark-skin surfaces for fluid-drag reduction in tur-
bulent flow: a review.” Philosophical Transactions of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences 368, pp. 4775–4806, 2010.

[21] Y. Kametani and K. Fukagata. “Direct numerical simulation of spatially devel-
oping turbulent boundary layer for skin friction drag reduction by wall surface-
heating or cooling.” Journal of Turbulence 13, N34, 2012.

[22] P. Bandyopadhyay. “Large structure with a characteristic upstream interface in
turbulent boundary layers.” Physics of Fluids 23, p. 2326, 1980.

[23] M. R. Head and P. Bandyopadhyay. “New aspects of turbulent boundary-layer
structure.” Journal of Fluid Mechanics 107, pp. 297–338, 1981.

[ June 9, 2017 at 11:50 – classicthesis version 0.01 ]

http://dx.doi.org/10.1007/BF00850558
http://dx.doi.org/10.1007/BF00850558
http://dx.doi.org/10.2514/3.12174
http://dx.doi.org/10.2514/3.12174
http://dx.doi.org/10.2514/3.12363
http://dx.doi.org/10.2514/3.12363
http://dx.doi.org/10.1017/s0022112095004125
http://dx.doi.org/10.1017/s0022112095004125
http://dx.doi.org/10.1017/S0022112003005305
http://dx.doi.org/10.1017/S0022112003005305
http://dx.doi.org/10.1007/s10494-005-9002-6
http://dx.doi.org/10.1007/s10494-005-9002-6
http://dx.doi.org/10.1080/14685240802251517
http://dx.doi.org/10.1080/14685240802251517
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102156
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102156
http://dx.doi.org/10.1098/rsta.2010.0201
http://dx.doi.org/10.1098/rsta.2010.0201
http://dx.doi.org/10.1080/14685248.2012.710750
http://dx.doi.org/10.1080/14685248.2012.710750
http://dx.doi.org/10.1080/14685248.2012.710750
http://dx.doi.org/10.1063/1.862928
http://dx.doi.org/10.1063/1.862928
http://dx.doi.org/10.1017/s0022112081001791
http://dx.doi.org/10.1017/s0022112081001791


References 99

[24] M. S. Acarlar and C. R. Smith. “A study of hairpin vortices in a laminar bound-
ary layer. Part 2. Hairpin vortices generated by fluid injection.” Journal of Fluid
Mechanics 175, pp. 43–83, 1987.

[25] B. Ganapathisubramani, E. K. Longmire, and I. Marusic. “Characteristics of
vortex packets in turbulent boundary layers.” Journal of Fluid Mechanics 478,
pp. 35–46, 2003.

[26] R. J. Adrian. “Stochastic estimation of conditional structure: A review.” Applied
Scientific Research 53, pp. 291–303, 1994.

[27] R. J. Adrian. “Stochastic estimation of the structure of turbulent fields.” In: Eddy
Structure Identification. Ed. by J. P Bonnet, pp. 145–195. CISM International
Centre for Mechanical Sciences. Springer-Verlag, 1996.

[28] J. Zhou, R. J. Adrian, S. Balachandar, and T. M. Kendall. “Mechanisms for gen-
erating coherent packets of hairpin vortices in channel flow.” Journal of Fluid
Mechanics 387, pp. 353–396, 1999.

[29] R. J. Adrian, S. Balachandar, and Z. C. Liu. “Spanwise growth of vortex structure
in wall turbulence.” KSME International Journal 15, pp. 1741–1749, 2001.

[30] C. R. Smith, J. D. A. Walker, A. H. Haidari, and U. Sobrun. “On the dynam-
ics of near-wall turbulence.” Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 336, pp. 131–175, 1991.

[31] A. H. Haidari and C. R. Smith. “The generation and regeneration of single hair-
pin vortices.” Journal of Fluid Mechanics 277, pp. 135–162, 1994.

[32] G. Eitel-Amor, R. Örlü, P. Schlatter, and O. Flores. “Hairpin vortices in turbu-
lent boundary layers.” Physics of Fluids 27, 025108, 2015.

[33] K. Kim, H. J. Sung, and R. J. Adrian. “Effects of background noise on generating
coherent packets of hairpin vortices.” Physics of Fluids 20, p. 105107, 2008.

[34] D. Greenblatt and I. J. Wygnanski. “The control of flow separation by periodic
excitation.” Progress in Aerospace Sciences 36, pp. 487–545, 2000.

[35] M. Sato, T. Nonomura, K. Okada, K. Asada, H. Aono, A. Yakeno, Y. Abe, and K.
Fujii. “Mechanisms for laminar separated-flow control using dielectric-barrier-
discharge plasma actuator at low Reynolds number.”Physics of Fluids 27, p. 117101,
2015.

[36] Y. Jodai and G. E. Elsinga. “Experimental observation of hairpin auto-generation
events in a turbulent boundary layer.” Journal of Fluid Mechanics 795, pp. 611–
633, 2016.

[ June 9, 2017 at 11:50 – classicthesis version 0.01 ]

http://dx.doi.org/10.1017/s0022112087000284
http://dx.doi.org/10.1017/s0022112087000284
http://dx.doi.org/10.1017/s0022112002003270
http://dx.doi.org/10.1017/s0022112002003270
http://dx.doi.org/10.1007/bf00849106
http://dx.doi.org/10.1007/978-3-7091-2676-9_3
http://dx.doi.org/10.1017/s002211209900467x
http://dx.doi.org/10.1017/s002211209900467x
http://dx.doi.org/10.1007/BF03185129
http://dx.doi.org/10.1007/BF03185129
http://dx.doi.org/10.1098/rsta.1991.0070
http://dx.doi.org/10.1098/rsta.1991.0070
http://dx.doi.org/10.1017/s0022112094002715
http://dx.doi.org/10.1017/s0022112094002715
http://dx.doi.org/10.1063/1.4907783
http://dx.doi.org/10.1063/1.4907783
http://dx.doi.org/10.1063/1.3001797
http://dx.doi.org/10.1063/1.3001797
http://dx.doi.org/10.1016/s0376-0421(00)00008-7
http://dx.doi.org/10.1016/s0376-0421(00)00008-7
http://dx.doi.org/10.1063/1.4935357
http://dx.doi.org/10.1063/1.4935357
http://dx.doi.org/10.1017/jfm.2016.153
http://dx.doi.org/10.1017/jfm.2016.153


100 References

[37] S. Goto and J. C. Vassilicos. “Particle pair diffusion and persistent streamline
topology in two-dimensional turbulence.” New Journal of Physics 6, p. 65, 2004.

[38] M. V. Goudar, W.-P. Breugem, and G. E. Elsinga. “Auto-generation in wall tur-
bulence by the interaction of weak eddies.” Physics of Fluids 28, p. 035111, 2016.

[39] L. Brandt and H. C. de Lange. “Streak interactions and breakdown in boundary
layer flows.” Physics of Fluids 20, p. 024107, 2008.

[40] C. R. Smith. “A synthesized model of the near-wall behavior in turbulent bound-
ary layers.” In: Proceedings of the Eighth Symposium on Turbulence. Ed. by G. K.
Patterson and J. L. Zakin, pp. 299–327. Department of Chemical Engineering,
University of Missouri-Rolla, 1984.

[41] S. K. Robinson. “Coherent motions in the turbulent boundary layer.” Annual
Review of Fluid Mechanics 23, pp. 601–639, 1991.

[42] P. Schlatter, Q. Li, R. Örlü, F. Hussain, and D. Henningson. “On the near-wall
vortical structures at moderate Reynolds numbers.” European Journal of Me-
chanics - B/Fluids 48, pp. 75–93, 2014.

[43] B. A. Singer and R. D. Joslin. “Metamorphosis of a hairpin vortex into a young
turbulent spot.” Physics of Fluids 6, pp. 3724–3736, 1994.

[44] M. Asai and M. Nishioka. “Boundary-layer transition triggered by hairpin ed-
dies at subcritical Reynolds numbers.” Journal of Fluid Mechanics 297, pp. 101–
122, 1995.

[45] S. Bake, D. G. W. Meyer, and U. Rist. “Turbulence mechanism in Klebanoff
transition: A quantitative comparison of experiment and direct numerical sim-
ulation.” Journal of Fluid Mechanics 459, pp. 217–243, 2002.

[46] G. E. Elsinga, C. Poelma, A. Schröder, R. Geisler, F. Scarano, and J. Westerweel.
“Tracking of vortices in a turbulent boundary layer.” Journal of Fluid Mechanics
697, pp. 273–295, 2012.

[47] P. K. Parthasarathy. “Dynamics of vortices in numerically simulated turbulent
channel flow.” MA thesis. Arizona State University, 2011.

[48] M. Frigo and S. Johnson. “The design and implementation of FFTW3.” Proceed-
ings of the IEEE 93, pp. 216–231, 2005.

[49] B. J. Boersma. “A 6th order staggered compact finite difference method for the
incompressible Navier-Stokes and scalar transport equations.” Journal of Com-
putational Physics 230, pp. 4940–4954, 2011.

[ June 9, 2017 at 11:50 – classicthesis version 0.01 ]

http://dx.doi.org/10.1088/1367-2630/6/1/065
http://dx.doi.org/10.1088/1367-2630/6/1/065
http://dx.doi.org/10.1063/1.4944048
http://dx.doi.org/10.1063/1.4944048
http://dx.doi.org/10.1063/1.2838594
http://dx.doi.org/10.1063/1.2838594
http://dx.doi.org/10.1146/annurev.fl.23.010191.003125
http://dx.doi.org/10.1016/j.euromechflu.2014.04.011
http://dx.doi.org/10.1016/j.euromechflu.2014.04.011
http://dx.doi.org/10.1063/1.868363
http://dx.doi.org/10.1063/1.868363
http://dx.doi.org/10.1017/s0022112095003028
http://dx.doi.org/10.1017/s0022112095003028
http://dx.doi.org/10.1017/s0022112002007954
http://dx.doi.org/10.1017/s0022112002007954
http://dx.doi.org/10.1017/s0022112002007954
http://dx.doi.org/10.1017/jfm.2012.60
http://dx.doi.org/10.1109/jproc.2004.840301
http://dx.doi.org/10.1016/j.jcp.2011.03.014
http://dx.doi.org/10.1016/j.jcp.2011.03.014


References 101

[50] B. J. Boersma. “A staggered compact finite difference formulation for the com-
pressible Navier-Stokes equations.” Journal of Computational Physics 208, pp. 675–
690, 2005.

[51] M. Lee and R. D. Moser. “Direct numerical simulation of turbulent channel flow
up to Reτ ≈ 5200.” Journal of Fluid Mechanics 774, pp. 395–415, 2015.

[52] G. E. Elsinga, R. J. Adrian, B. W. V. Oudheusden, and F. Scarano. “Three di-
mensional vortex organization in a high-Reynolds-number supersonic turbu-
lent boundary layer.” Journal of Fluid Mechanics 644, pp. 35–60, 2010.

[53] M. J. Ringuette, M. Wu, and M. P. Martín. “Coherent structures in direct nu-
merical simulation of turbulent boundary layers at Mach 3.” Journal of Fluid
Mechanics 594, pp. 59–69, 2008.

[54] L. Rosenhead. “The formation of vortices from a surface of discontinuity.” Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
134, pp. 170–192, 1931.

[55] P. Atsavapranee and M. Gharib. “Structures in stratified plane mixing layers and
the effects of cross-shear.” Journal of Fluid Mechanics 342, pp. 53–86, 1997.

[56] G. E. Elsinga and I. Marusic. “The anisotropic structure of turbulence and its
energy spectrum.” Physics of Fluids 28, p. 011701, 2016.

[57] L. Wei, G. E. Elsinga, G. Brethouwer, P. Schlatter, and A. V. Johansson. “Univer-
sality and scaling phenomenology of small-scale turbulence in wall-bounded
flows.” Physics of Fluids 26, p. 035107, 2014.

[58] T. Ishihara, Y. Kaneda, and J. C. R. Hunt. “Thin shear layers in high Reynolds
number turbulence DNS results.” Flow, Turbulence andCombustion 91, pp. 895–
929, 2013.

[59] L. F. Richardson. “Atmospheric diffusion shown on a distance-neighbour graph.”
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences 110, pp. 709–737, 1926.

[60] G. K. Batchelor. “The application of the similarity theory of turbulence to at-
mospheric diffusion.” Quarterly Journal of the Royal Meteorological Society 76,
pp. 133–146, 1950.

[61] G. K. Batchelor. “Diffusion in a field of homogeneous turbulence.”Mathematical
Proceedings of the Cambridge Philosophical Society 48, pp. 345–362, 1952.

[ June 9, 2017 at 11:50 – classicthesis version 0.01 ]

http://dx.doi.org/10.1016/j.jcp.2005.03.004
http://dx.doi.org/10.1016/j.jcp.2005.03.004
http://dx.doi.org/10.1017/jfm.2015.268
http://dx.doi.org/10.1017/jfm.2015.268
http://dx.doi.org/10.1017/s0022112009992047
http://dx.doi.org/10.1017/s0022112009992047
http://dx.doi.org/10.1017/s0022112009992047
http://dx.doi.org/10.1017/S0022112007009020
http://dx.doi.org/10.1017/S0022112007009020
http://dx.doi.org/10.1098/rspa.1931.0189
http://dx.doi.org/10.1017/s0022112097005399
http://dx.doi.org/10.1017/s0022112097005399
http://dx.doi.org/10.1063/1.4939471
http://dx.doi.org/10.1063/1.4939471
http://dx.doi.org/10.1063/1.4868364
http://dx.doi.org/10.1063/1.4868364
http://dx.doi.org/10.1063/1.4868364
http://dx.doi.org/10.1007/s10494-013-9499-z
http://dx.doi.org/10.1007/s10494-013-9499-z
http://dx.doi.org/10.1098/rspa.1926.0043
http://dx.doi.org/10.1002/qj.49707632804
http://dx.doi.org/10.1002/qj.49707632804
http://dx.doi.org/10.1017/s0305004100027687


102 References

[62] G. K. Batchelor. “The effect of homogeneous turbulence on material lines and
surfaces.” Proceedings of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences 213, pp. 349–366, 1952.

[63] I. T. Drummond and W. Münch. “Turbulent stretching of line and surface ele-
ments.” Journal of Fluid Mechanics 215, pp. 45–59, 1990.

[64] S. S. Girimaji and S. B. Pope. “Material-element deformation in isotropic turbu-
lence.” Journal of Fluid Mechanics 220, pp. 427–458, 1990.

[65] M. Guala, A. Liberzon, B. Lüthi, W. Kinzelbach, and A. Tsinober. “Stretching
and tilting of material lines in turbulence: The effect of strain and vorticity.”
Physical Review E 73, p. 036303, 2006.

[66] B. J. Devenish. “Geometrical properties of turbulent dispersion.” Physical Re-
view Letters 110, p. 064504, 2013.

[67] J. F. Hackl, P. K. Yeung, and B. L. Sawford. “Multi-particle and tetrad statistics
in numerical simulations of turbulent relative dispersion.” Physics of Fluids 23,
p. 065103, 2011.

[68] L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte, and F. Toschi.
“Multiparticle dispersion in fully developed turbulence.” Physics of Fluids 17,
p. 111701, 2005.

[69] H. Xu, A. Pumir, and E. Bodenschatz. “The pirouette effect in turbulent flows.”
Nature Physics 7, pp. 709–712, 2011.

[70] H. Xu, N. T. Ouellette, and E. Bodenschatz. “Evolution of geometric structures
in intense turbulence.” New Journal of Physics 10, p. 013012, 2008.

[71] M. Chertkov, A. Pumir, and B. I. Shraiman. “Lagrangian tetrad dynamics and
the phenomenology of turbulence.” Physics of Fluids 11, pp. 2394–2410, 1999.

[72] A. Pumir, E. Bodenschatz, and H. Xu. “Tetrahedron deformation and align-
ment of perceived vorticity and strain in a turbulent flow.” Physics of Fluids 25,
p. 035101, 2013.

[73] A. E. Perry and I. Marusic. “A wall-wake model for the turbulence structure of
boundary layers. Part 1. Extension of the attached eddy hypothesis.” Journal of
Fluid Mechanics 298, pp. 361–388, 1995.

[74] J. P. Salazar and L. R. Collins. “Two-particle dispersion in isotropic turbulent
flows.” Annual Review of Fluid Mechanics 41, pp. 405–432, 2009.

[ June 9, 2017 at 11:50 – classicthesis version 0.01 ]

http://dx.doi.org/10.1098/rspa.1952.0130
http://dx.doi.org/10.1098/rspa.1952.0130
http://dx.doi.org/10.1017/s0022112090002543
http://dx.doi.org/10.1017/s0022112090002543
http://dx.doi.org/10.1017/s0022112090003330
http://dx.doi.org/10.1017/s0022112090003330
http://dx.doi.org/10.1103/physreve.73.036303
http://dx.doi.org/10.1103/physreve.73.036303
http://dx.doi.org/10.1103/physrevlett.110.064504
http://dx.doi.org/10.1063/1.3586803
http://dx.doi.org/10.1063/1.3586803
http://dx.doi.org/10.1063/1.2130751
http://dx.doi.org/10.1038/nphys2010
http://dx.doi.org/10.1088/1367-2630/10/1/013012
http://dx.doi.org/10.1088/1367-2630/10/1/013012
http://dx.doi.org/10.1063/1.870101
http://dx.doi.org/10.1063/1.870101
http://dx.doi.org/10.1063/1.4795547
http://dx.doi.org/10.1063/1.4795547
http://dx.doi.org/10.1017/s0022112095003351
http://dx.doi.org/10.1017/s0022112095003351
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102224
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102224


References 103

[75] J. M. Burgers. “On the resistance of fluids and vortex motion.” Koninklijke Ned-
erlandse Akademie vanWetenschappen Proceedings Series B Physical Sciences 23,
pp. 774–782, 1921.

[76] J. Jimenez and A. A. Wray. “On the characteristics of vortex filaments in isotropic
turbulence.” Journal of Fluid Mechanics 373, pp. 255–285, 1998.

[77] C. B. da Silva, R. J. N. dos Reis, and J. C. F. Pereira. “The intense vorticity struc-
tures near the turbulent/non-turbulent interface in a jet.” Journal of Fluid Me-
chanics 685, pp. 165–190, 2011.

[78] P. K. Yeung, S. B. Pope, and B. L. Sawford. “Reynolds number dependence of
Lagrangian statistics in large numerical simulations of isotropic turbulence.”
Journal of Turbulence 7, N58, 2006.

[79] B. L. Sawford, P. K. Yeung, and J. F. Hackl. “Reynolds number dependence of rel-
ative dispersion statistics in isotropic turbulence.”Physics of Fluids 20, p. 065111,
2008.

[80] R. Bitane, H. Homann, and J. Bec. “Geometry and violent events in turbulent
pair dispersion.” Journal of Turbulence 14, pp. 23–45, 2013.

[81] R. Bitane, H. Homann, and J. Bec. “Time scales of turbulent relative dispersion.”
Physical Review E 86, p. 045302, 2012.

[82] Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A. Szalay,
and G. Eyink. “A public turbulence database cluster and applications to study
Lagrangian evolution of velocity increments in turbulence.” Journal of Turbu-
lence 9, N31, 2008.

[83] E. B. Saff and A. B. Kuijlaars. “Distributing many points on a sphere.” Themath-
ematical intelligencer 19, pp. 5–11, 1997.

[84] E. Dresselhaus and M. Tabor. “The kinematics of stretching and alignment of
material elements in general flow fields.” Journal of FluidMechanics 236, pp. 415–
444, 1992.

[85] W. Schoppa and F. Hussain. “Coherent structure generation in near-wall turbu-
lence.” Journal of Fluid Mechanics 453, pp. 57–108, 2002.

[86] L. Brandt, P. Schlatter, and D. S. Henningson. “Transition in boundary layers
subject to free-stream turbulence.” Journal of FluidMechanics 517, pp. 167–198,
2004.

[87] P. Schlatter, L. Brandt, H. C. de Lange, and D. S. Henningson. “On streak break-
down in bypass transition.” Physics of Fluids 20, 101505, 2008.

[ June 9, 2017 at 11:50 – classicthesis version 0.01 ]

http://dx.doi.org/10.1017/s0022112098002341
http://dx.doi.org/10.1017/s0022112098002341
http://dx.doi.org/10.1017/jfm.2011.296
http://dx.doi.org/10.1017/jfm.2011.296
http://dx.doi.org/10.1080/14685240600868272
http://dx.doi.org/10.1080/14685240600868272
http://dx.doi.org/10.1063/1.2946442
http://dx.doi.org/10.1063/1.2946442
http://dx.doi.org/10.1080/14685248.2013.766747
http://dx.doi.org/10.1080/14685248.2013.766747
http://dx.doi.org/10.1103/physreve.86.045302
http://dx.doi.org/10.1080/14685240802376389
http://dx.doi.org/10.1080/14685240802376389
http://dx.doi.org/10.1007/BF03024331
http://dx.doi.org/10.1017/s0022112092001460
http://dx.doi.org/10.1017/s0022112092001460
http://dx.doi.org/10.1017/s002211200100667x
http://dx.doi.org/10.1017/s002211200100667x
http://dx.doi.org/10.1017/S0022112004000941
http://dx.doi.org/10.1017/S0022112004000941
http://dx.doi.org/10.1063/1.3005836
http://dx.doi.org/10.1063/1.3005836


104 References

[88] D. G. Bogard and W. G. Tiederman. “Burst detection with single-point velocity
measurements.” Journal of Fluid Mechanics 162, pp. 389–413, 1986.

[89] S. Tardu. “Characteristics of single and clusters of bursting events in the inner
layer.” Experiments in Fluids 20, pp. 112–124.

[90] S. Tardu. “Characteristics of single and multiple bursting events in the inner
layer. Part 2. Level-crossing events.”Experiments in Fluids 33, pp. 640–652, 2002.

[91] M. Metzger, B. McKeon, and E. Arce-Larreta. “Scaling the characteristic time
of the bursting process in the turbulent boundary layer.” Physica D: Nonlinear
Phenomena 239, pp. 1296 –1304, 2010.

[92] T. Michioka, H. Takimoto, and A. Sato. “Large-eddy simulation of pollutant
removal from a three-dimensional street canyon.” Boundary-LayerMeteorology
150, pp. 259–275, 2014.

[93] R. T. Reynolds and I. P. Castro. “Measurements in an urban-type boundary
layer.” Experiments in Fluids 45, pp. 141–156, 2008.

[94] J. Tomas. “Obstacle-resolving large-eddy simulation of dispersion in urban en-
viornments.” PhD thesis. Delft University of Technology, 2016.

[95] H. E. Eisma. “Pollutant dispersion in wall-bounded turbulent flows.” PhD thesis.
Delft University of Technology, 2017.

[96] C. M. de Silva, N. Hutchins, and I. Marusic. “Uniform momentum zones in
turbulent boundary layers.” Journal of Fluid Mechanics 786, pp. 309–331, 2016.

[97] M. P. Simens, J. Jiménez, S. Hoyas, and Y. Mizuno. “A high-resolution code for
turbulent boundary layers.” Journal of Computational Physics 228, pp. 4218 –
4231, 2009. issn: 0021-9991.

[ June 9, 2017 at 11:50 – classicthesis version 0.01 ]

http://dx.doi.org/10.1017/S0022112086002094
http://dx.doi.org/10.1017/S0022112086002094
http://dx.doi.org/10.1007/BF01061589
http://dx.doi.org/10.1007/BF01061589
http://dx.doi.org/10.1007/s00348-002-0482-z
http://dx.doi.org/10.1007/s00348-002-0482-z
http://dx.doi.org/10.1016/j.physd.2009.09.004
http://dx.doi.org/10.1016/j.physd.2009.09.004
http://dx.doi.org/10.1007/s10546-013-9870-6
http://dx.doi.org/10.1007/s10546-013-9870-6
http://dx.doi.org/10.1007/s00348-008-0470-z
http://dx.doi.org/10.1007/s00348-008-0470-z
http://dx.doi.org/10.1017/jfm.2015.672
http://dx.doi.org/10.1017/jfm.2015.672
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2009.02.031
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2009.02.031


One’s life is like a particle in a turbulent flow, where even the smallest
of the changes can have a largest influence and the largest of the

changes can have a smallest influence. What I am today, is the
sum of all those smallest to largest changes over time. And

I thank all those people who have been a part of this.
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P R O P O S I T I O N S

1. For drag reduction, it is important to quantify the influence of flow from the
outer region. (This thesis, Chapters 2,3)

2. The development of better vortex identification techniques helps in improving
the understanding of turbulence. (This thesis)

3. Simultaneous optimization and parallelization of a code leads to recursive de-
bugging and further paralysis.

4. Similar to a particle pair in turbulence, sometimes, faster growth in life pushes
you away from initial relationships. And eventually, lose them.

5. The farther you go from the norms of society, the lesser you are in its eyes.

6. What we see on media is the portrayal of society’s opinion.

7. A strong belief in something makes us find uncertainties in others to justify
ourselves.

8. A thesis needs an unacknowledgement section.

111

[ June 9, 2017 at 11:50 – classicthesis version 0.01 ]



[ June 9, 2017 at 11:50 – classicthesis version 0.01 ]



[ June 9, 2017 at 11:50 – classicthesis version 0.01 ]


	Dedication
	Abstract
	Samenvatting
	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Objectives

	2 Auto-generation in wall-turbulence
	2.1 Introduction
	2.2 Methodology
	2.2.1 Numerical Method
	2.2.2 Conditional eddy
	2.2.3 Simulation types

	2.3 Results and discussion
	2.3.1 Two-eddy case
	2.3.2 Role of low-speed streaks
	2.3.3 A modified auto-generation mechanism

	2.4 Conclusions

	3 Time scale of auto-generation
	3.1 Introduction
	3.2 Methodology
	3.2.1 Identification of a vortex packet and auto-generation

	3.3 Results and discussion
	3.4 Conclusion

	4 The tale of two co-rotating vortices
	4.1 Introduction
	4.2 Methodology
	4.2.1 Shear-layer structure (SLS) extraction

	4.3 Results and discussion
	4.3.1 Instantaneous shear-layer structure
	4.3.2 Auto-generation and shear-layer structure
	4.3.3 Implications and future developments

	4.4 Conclusions

	5 Tracer particle dispersion around elementary flow patterns
	5.1 Introduction
	5.2 Flow structures
	5.2.1 Burgers' vortex (BV)
	5.2.2 Shear-layer structure (SLS)
	5.2.3 Node-Saddle topology

	5.3 Particle simulation and statistics
	5.3.1 Pair dispersion
	5.3.2 Material lines
	5.3.3 Four-particle dispersion

	5.4 Results
	5.4.1 Pair dispersion
	5.4.2 Instantaneous distribution of particles
	5.4.3 Material lines
	5.4.4 Four particle dispersion

	5.5 Conclusions

	6 Conclusions and recommendations
	6.1 Auto-generation in wall-turbulence
	6.2 Auto-generation in turbulent flow and its timescale
	6.3 Shear-layer structure and vortex packet
	6.4 Dispersion around idealized flow patterns

	A Appendix : Direct numerical simulation
	A.1 DNS code details
	A.1.1 Non-dimensionalized Navier Stokes equation
	A.1.2 Time Integration: Runge-Kutta scheme
	A.1.3 Spatial discretisation

	A.2 Code validation

	B Appendix : Additional examples
	B.1 Auto-generation
	B.2 Shear-layer structures and vortex packets

	References
	Acknowledgments
	Curriculum Vitae
	Publications
	Propositions


