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Abstract

This paper is concerned with the problem of regularization by noise of systems of
reaction—diffusion equations with mass control. It is known that strong solutions to
such systems of PDEs may blow-up in finite time. Moreover, for many systems of
practical interest, establishing whether the blow-up occurs or not is an open question.
Here we prove that a suitable multiplicative noise of transport type has a regularizing
effect. More precisely, for both a sufficiently noise intensity and a high spectrum, the
blow-up of strong solutions is delayed up to an arbitrary large time. Global existence
is shown for the case of exponentially decreasing mass. The proofs combine and
extend recent developments in regularization by noise and in the L (L)-approach to
stochastic PDEs, highlighting new connections between the two areas.
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1 Introduction

Reaction—diffusion equations arise in many branches of applied science such as biol-
ogy and chemistry (see e.g. [64, 68] and the references therein). A major challenge
in the study of such equations is the presence of commonly superlinear source terms.
Even in presence of dissipation of mass, which is sufficient to show global existence
in the ODE case, blow-up in finite time of strong solutions may occur, see [65] or [64,
Theorems 4.1 and 4.2]. In addition, for many problems of practical interests, such as
reversible chemical reactions (see Sect 1.2 below), existence of global unique strong
solutions is still an open problem. However, this is only a first example, see also [64,
Sect. 7, Problem 1] for further comments.

In this paper we show that suitable stochastic perturbations of reaction—diffusion
equations improve this situation considerably. More precisely, we show delayed blow-
up phenomena for reaction—diffusion equations with transport noise and periodic
boundary condition:

dv; —viAv; dt = fi(-, v)dt + Jcqv Z Z Ok (Ok.o - V)i odwf’a, on ’JI‘d,

kEZg I<a<d-—-1

v; (0) = v; 0, onT?,
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where i € {l,..., ¢} for some integer { > 1. Here we denote by v = (v,~)f:1 :
[0, 00) x Q2 x T¢ — R’ the unknown process, d > 2 the dimension, ¢; = ddTl’
7& = 74\ {0} and v; the diffusivity of v;. Finally, (wh %) o is a sequence of complex
Brownian motions on a filtered probability space and

def j
(Ck.a - VIV = Z ak,aajv,-.
l<j=d

The vector fields oy o are smooth, divergence free and 6 = (Gr)k € 2. A precise
description of the noise will be given in Sect. 3.1. The nonlinearities f; depend on
v = (vi)f: | and are assumed to be of polynomial growth and with mass control. A
prototype example is given by (1.7) which appears in the study of reversible chemical
reactions, see Sect. 1.2. The term v; Av; df in (1.1) can be replaced by a general second
order operator. For exposition convenience, we do not pursue this here and we only
provide some comments in Remark 3.9.

In this work we prove that for all T € (0, 00), there exists a choice of (6, v) such
that the strong solutions to (1.1) does not blow up before time 7" with high probability.
Under additional assumptions we are also able to handle the case T = oo. Since
blow-up in finite time occurs for specific instances of (1.1) with & = 0, the presence
of the noise is essential.

Transport noise is often used to study the evolution of passive scalars in turbulent
flows, see e.g. [28, 58]. Such noise is often referred as Kraichnan model due to his
pioneering works [48, 49]. Roughly speaking, transport noise can be thought of as an
idealization of the effect of “small scale” of an underlying turbulent fluid advecting
the reaction. Heuristically, one can assume that the same type of contribution is also
present in reaction—diffusion type systems reacting in a turbulent flow, see Sect. 2.1.
In this scenario, as experiments with chemical reactions suggest (see e.g. [39, 47, 55,
59, 71, 74]), turbulent flows “effectively” increase the diffusivity of reactants. This
eventually leads to an increased efficiency of the corresponding chemical reaction. In
practice, the chemical reaction occurs as if the reactants have an increased diffusion
compared to the one measured in standard conditions. This phenomenon is usually
called enhanced diffusion. One of the aim of this paper is to provide a (possible)
mathematical description of this fact by showing that, in “relatively weak” norms, the
solution to (1.1) is close to the solution of the corresponding deterministic problem
with increased diffusivity (see Theorem 1.1 below). This fact can be thought of as a
“weak” enhanced diffusion result.

1.1 Delayed blow-up and enhanced diffusion: simplified version

To give a flavor of the results in the paper, here we state a simplified version of Theorem
3.5. To apply it, one fixes three parameters: 7' € (0, co) the time horizon where one
wants the solution to exist, ¢ € (0, 1) the size of the event where the blow-up may
occur and r € (1, 0o) the time integrability for the norm in which we measure the
weak enhanced diffusion.
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Theorem 1.1 (Simplified version of Theorem 3.5) Let @ V2 < g < oo Fix
T € (0,00), € € (0,1) and r € (1,00). Assume that f is of polynomial growth
with exponent h > 1 and with mass control (see Assumption 3.1(2)—(3) below). Let
vo € L1(T?: RY) be such that vy > 0 (component-wise). Then there exist v > 0 and
0 € €2 such that #{k : 6 # 0} < oo for which the unique strong solution v to (1.1)
exists up to time T with high probability:

P(t = T) > 1 — & where tis the blow-up time of v.

Moreover
P(z > T, v —vdetll r 0.7 ora.pty S €) > 1 —¢ (1.2)

where Vet = (vdet,i)le is the unique strong solution to the deterministic reaction—
diffusion equation with increased diffusion on [0, T']:

dvdeti — (Vi + V) Averi = fi (5 vaer) on T, vger,i(0) = vo; on T4, (1.3)

In the above result one can even choose (6, v) uniformly with respect to vy such
that ||vg||Ls < N, where N > 1is fixed. In such case (6, v) does not depend on v, but
only on N. Actually, one can always enlarge v still keeping Theorem 1.1 true. Theorem
1.1 shows that the solution to (1.1) is close to the solution of a deterministic reaction—
diffusion equations with increased diffusivity. The existence of a unique strong solution
vget to (1.3) on [0, T']is also part of the proofs. The complete result is given in Theorem
3.5. In Theorem 3.6 we also allow T = oo, in the case of exponentially decreasing
mass.

Theorems 1.1 and 3.5 essentially follow from the scaling limit argument of Theorem
6.1. Following the heuristic derivation of Sect. 2.1, where we introduce the transport
noise in (1.1) as a model for small scales of the driven turbulent dynamic, one may
think of Theorem 6.1 as an “homogenization” result for the SPDE (1.1) where the
role of the scale parameter is played by the ratio [|0]¢</||0],2 (cf. also Sect. 2.2).
Looking at Theorem 6.1 in this perspective, Theorem 1.1 (and the main results of the
paper) can be seen as a “large scale regularity” result (in the homogenization sense,
see e.g. [8, 40, 70]) for the SPDEs (1.1). Moreover, the “homogenized” system (1.3)
can be thought of as the “effective problem” for (1.1) where the additional diffusive
contribution v A in (1.3) takes into account the effect of the underlying turbulent flow.
The homogenization view-point is also interesting for mathematical reasons. Indeed,
asitis standard in homogenization theory, even in presence of smooth diffusive matrix,
one cannot prove estimates uniformly in the scale parameter. In practice, one cannot
use further information on the diffusivity matrix besides ellipticity and boundedness.
Therefore one is forced to use tools from PDEs with (rough) L°-coefficients, such
as Moser iterations and DeGiorgi—Nash—Moser estimates. A similar situation appears
here, where, to run the scaling limit argument of Theorem 6.1, one need an estimate
coming from a Moser type iteration, see Theorem 4.1(2).
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In light of the results in [7] (recalled here in Theorem 3.3), the solution v of Theorem
1.1 is not only strong, but it is also positive and instantaneously gains regularity:

v > 0 (component-wise) ae.on[0,7) x Q x Td, (1.4)

ve CIL((0,7) x T RY)  as.forally; € (0, 1) and y, € (0, 1).  (L.5)

The positivity of solutions to (1.1) is very important from an application point of
view, as v; typically models concentrations. Let us stress that an additive noise would
destroy the positivity of the initial data. Thus, in the context of reaction—diffusion
equations, additive noise seems not appropriate to work with. Another interesting
feature of transport noise is that it does not alter mass conservations, energy balance
and, more generally, L?-estimates. Here we mean that, when computing ||v; ||‘£,,, one
obtains an equality in which the noise does not contribute. Moreover, such equality is
the one obtained in absence of noise, see Sect. 2.2. This shows in particular that the
stochastic perturbation does not help in proving L?-bounds. The diffusive behavior
of the noise can only be seen in norms which are “below” the L9-energy level (e.g.
L7 (0, T; L1) with r < o0), cf. (1.2) in Theorem 1.1.

Compared to standard deterministic theory of reaction—diffusion equations (e.g.
[64]), the strength of the results of Theorem 1.1 is that the presence of noise allows us to
obtain strong unique solutions to (1.1) with arbitrary large life (at expense of enforcing
the noise). Under some additional assumptions (e.g. entropy-dissipation relation), in
the deterministic setting, existence of global weak solutions to (1.1) is shown in [25,
27, 54]. Determining whether or not such solutions are unique and/or smooth is an
open problem [25, Sect. 4]. For the weaker notion of weak-strong uniqueness see [26].

Theorem 1.1 is a regularization by noise result since solutions to the determin-
istic version of (1.1) blow-up in finite time for appropriate choices of f; satisfying
Assumption 3.1(2)—(3) ([65] or [64, Theorems 4.1 and 4.2]). Regularization by noise
started with the seminal work of Veretennikov [73], where he proved that noise restores
existence and uniqueness in ODEs. This basic result has been later extended in many
directions and in particular to PDE:s. It is not possible to provide a complete overview
on such results and we content ourself to the case of regularization by transport noise.
In such area, a first breakthrough result has been established by Flandoli, Gubinelli
and Priola [31] where they proved that transport noise improves the well-posedness
theory for the transport equation (see also [37] for scalar conservation laws). A second
breakthrough has been recently obtained by Flandoli and Luo in [33] where they prove
that a sufficiently intense noise prevents the blow-up of the Navier—Stokes equations
in three dimensions and in vorticity formulation. Related results can be found in [29,
30, 32, 35, 36, 53, 57] and in the references therein.

The results of this paper fall into this last line of research, providing new results and
highlighting new points of view on the works [29, 33]. One of the main contribution
of the current paper is the connection with the theory of critical spaces for SPDEs
developed in [5, 6] which relies on the L? (L?)-theory for SPDEs, pioneered by Krylov
[50, 51] and later by Van Neerven, Veraar and Weis [61, 62]. We will see that the
assumptiong > @ in Theorem 1.1 is related to the criticality of the space L5h=D
for the SPDEs (1.1), see Sect. 2.3 for more details. To the best of our knowledge, the
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current paper is the first regularization by noise result exploiting L? (L?)-estimates.
Let us stress that the L? (L7)-setting is necessary for proving the results of the current
paper in order to match the underlined homogenization argument (see the text below
Theorem 1.1) and the polynomial growth of f.

The use of the L?(L%)-theory for SPDEs requires an important re-elaboration
of the works [29, 33]. Indeed, on the one hand the L”(L?)-setting requires some
smoothness of the coefficients (see e.g. [3]) and on the other hand the scaling limit
results as in [29, 33] and Theorem 6.1 prohibit the use of such smoothness. Hence, one
of the main difficulties faced up with in this work is the match of the two techniques
which will be accomplished via a careful analysis of the nonlinearities. Besides this
fundamental obstruction, several new analytical difficulties arise, for instance related
to the regularity of weak solutions provided by the scaling limit argument behind the
proof of Theorem 1.1, see Sect. 5.2.

1.2 Reversible chemical reactions

In this subsection we apply Theorem 1.1 to a model for reversible chemical reactions.
For an integer £ > 1 and two collections of nonnegative integers (g; )le , (pi )le (note
that either g; = 0 or p; = 0 for some i is allowed), consider the chemical reaction:

aVi+-+qVe=piVi+-+ peVe (1.6)

where (Vi)f: | are the reactants. Let v; be the concentration of the reactant V; with
diffusivity v; > 0. Finally let R+ > 0 be the reaction rates. The law of mass action
postulates that the concentration v; satisfies the deterministic version of (1.1) with

fitv=i—a) [ R T] o) —=rR- ] v/ ], (1.7)
l<j=t l<j=<t
where i € {1,...,¢} and v = (v,-)le. The conservation of the reactants mass is

equivalent to ask for a collection of (strictly) positive constants (ai)le such that
D 1<i<1 @i(gi — pi) = 0 (below referred as mass conservation condition). The fol-
lowing result is a special case of Theorem 1.1.

Theorem 1.2 FixT € (0,00), ¢ € (0, 1) andr € (1, o). Let f; be as in (1.7). Assume
that the mass conservation condition holds. Let h € (1, 00) be such that

d
h > Zqi \Y Zpi and fix q>§(h—1)\/2.
1<i<t I<i<¢

Let vg € L9(T; RY) be such that vo > 0 ( component-wise). Then there exist v > 0
and 0 € €2 such that #{k : 0y # 0} < 0o for which the unique strong solution v to
(1.1) satisfies

@ Springer



Stochastics and Partial Differential Equations: Analysis and Computations

P(t > T) > 1 — & where T is the blow-up time of v.

Moreover the following hold:

(1) (Weak enhanced diffusion) (1.2) holds with f; as in (1.7) and r as above.
(2) (Positivity) v > 0 component-wise a.e. on [0, T) X Q X T4,
(3) (Instantaneous regularization) v € Cl);’coo((O, 7) x T4 RY) a.s. forally € [0, %).

Item (2) follows from (1.4). Item (3) is stronger than (1.5) and still follows from
the result of [7] where one also uses the fact that f; are smooth (see Remark 3.4(a)).
Interestingly, item (3) shows that v is not only a strong solution to (1.1) but it is also
classical in space.

As before, we remark that the transport noise does not interact with the mass, energy
and L9-balances. For instance, under the mass conservation condition, by integrating
(1.1) with (1.7), one can show the pathwise conservation of mass:

> ai/ vi(t, x)dx = Y a,-/ vo.i(x)dx as.forallz € [0,7). (1.8)
¢ T

1<i<¢ 1<i<t

In absence of noise, existence for large times 7' >> 1 of unique strong solutions to (1.1)
with (1.7) is generally not known even for the (apparently) simple situation of (1.6)
with £ = 2 (cf. [64, Remark 3.2]). Let us mention that already the case g1 = py = 1
and g» = p1 = 2 appears problematic. Indeed, in the deterministic setting, existence of
global unique smooth solutions is only knownincase (3~ ;- )V (O i<y Pi) < 2.
The reader is referred to [23] for the general situation, and to [14] for the four species
case,i.e. Vi+Vy = V3+ V4. Existence of global unique smooth solutions for reversible

chemical-reactions (1.6) in case (3 _;_;., i) V (Q_1<j<¢ Pi) = 3 is still open. In
particular, if (3", _; -, qi) vV (3., ;¢ Pi) > 3, then Theorem 1.2 has no deterministic
counterpart. Finally, let us note that, if » > 3 and d > 2, then ¢ > @ > 2. In
particular, L9-theory with ¢ > 2 is necessary to apply Theorem 1.2 in the relevant
situations in which (3,2, 9i) vV QO  <; <0 Pi) = 3.

It seems that the case 7 = oo of Theorem 1.2 does not hold in general and one
needs additional assumption on the reaction (1.6). This fact goes beyond the scope of
the current paper.

1.3 Further comments on the literature

We collect here further references to the related literature. To the best of our knowl-
edge, in the deterministic case, the investigation of the effect of a velocity field on
the dynamics of passive scalars was first studied by Constantin, Kiselev, Ryzhik and
Zlatos [15]. For some results in a nonlinear deterministic Lz—setting see [44, 46]. One
interesting feature of the stochastic setting is that, in contrast to deterministic results,
(stochastic) delayed blow-up type results are always accompanied with a homogeniza-
tion one which describes the “effective” contribution of the driven turbulent dynamics
on the system and this effective representation is consistent with physical experiments
[39,47,55,59,71,74].
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The case of a linear dynamic in a turbulent fluid, modeled by a transport noise,
was also studied by Gess and Yaroslavtsev in [38]. There the authors proved stabi-
lization and enhanced dissipation by noise for passive scalars, and they also provide a
detailed overview of previous results. A related interesting situation has been studied
by Bedrossian, Blumenthal and Punshon—Smith in [10-12], where they investigate
the dynamics of deterministic passive scalars driven by a flow solving a stochastic
Navier—Stokes type system with additive noise.

1.4 Notation

Here we collect the notation which will be used throughout the paper. We write
A Sp,....py B (tesp. A 2p,....py B) whenever there exists a positive constant C
depending only on the parameters Pi, ..., Py such that A < CB (resp. A > CB).
Furthermore we write A < Bif A < B and A 2 B. Similarly, we write Cp, . py Or
C(Py, ..., Py) if the constant C depends only on Py, ..., Py. Moreover, R is the set
of real numbers, Ry = (0, 00), Z is the set of integers, Zg =74 \ {0}. We also employ
the notation a vV b = max{a, b} and a Ab = min{a, b}. In the following, for an integer
€> 1,5 € Randg € (1, 00), wedenote by H*4(T*; R"), BS (T; R") the set of R’-
valued maps in the Bessel potential and in the Besov classes, respectively (see e.g. [42,
69, 72]). Often, below we write L9, H*9 etc. instead of L9 (T¢; RY), H*4(T%; R%)
etc., if no confusion seems likely. For p € (1, 00), we denote by (-, -)g,» and [-, -]g the
real and the complex interpolation functor, respectively. The reader is referred to [13,
43, 72] for definitions and basic properties. Below we collect some further notation
which may be non standard. In the following X is a Banach space, p € (1, 0co) and
I = (a,b) € Ris an open interval.

e w,(t) = |t|“ fort € R} and k¥ € R (power weight).
o LP(a, b, wy; X) is the set of all strongly measurable maps f : I — X satisfying

b 1/p
I fllLrab.wex) = (/ Il f (O we () df) .

If « = 0, then we write L? (a, b; X) instead of L?(a, b, wq; X).

o WhP(a, b, we; X)or WhP(I, we; X) denotes the space ofall f € L?(a, b, we; X)
such that f" € L?(a, b, w,; X) endowed with the natural norm.

o HP(a,b, we; X) = [LP(a, b, we; X), WhP(a, b, we; X))y for 9 € (0, 1).

e For y1, v, > 0, C"""2((a, b) x T?) denotes the set of all bounded maps u such
that

lu(t, x) —u(s, y)| < |t —s|" + |x — y|”? foralls,t € (a,b), x,y e T

e Forafunction space A, we sometimes write A(/, wy; X) instead of A(a, b, wy; X).
Moreover, we write f € Ajc(O, w,; X) provided f € A(O', w,; X) for all
compact set O’ C O.

Finally we collect the probabilistic notation. Further notation will be fixed in Sect.
3.1. Throughout the paper, (2, A, (%;):>0, P) denotes a filtered probability space. A
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measurable map 7 : Q — [0, o] is a stopping time if {t < t} € .%, forall r > 0.
For a stopping time t, .%; denotes the o -algebra of the 7-past, i.e. A € .%; provided
AN{t <t} e F forallt > 0 (see e.g. [45]). For a Banach space X, a stochastic
process ¢ : [0,00) x € — X is said to be progressive measurable if ¢|[p ;1xq 1S
strongly Z([0, t]) x #;-measurable for all # > 0.

Finally, we write ) ; , instead of ), ezd > 1<w<d—1- if no confusion seems likely.

2 Derivation, enhanced diffusion and criticality

In this section we illustrate some basic ideas leading to the proof of our main results.
However, before going into the mathematical details, we first provide an heuristic
derivation of (1.1).

2.1 Heuristic derivation

Inspired by [33, Sect. 1.2], we motivate transport noise by the idea of separating large
and small scales and to model the small scale by noise. This corresponds to some
intuition of turbulence. With this in mind, we formally derive (1.1) by considering its
deterministic version in which v; is transported by a velocity field u of a fluid in which
v; lies:

v + (u-Vyv; = viAv; + fi(-,v), on T, 2.1)

Following [33], we decompose u as u; + ug, where u; and ug denote the large
and the small scale part, respectively. Roughly speaking, in a turbulent regime, the
ug varies very rapidly in time compared to u . In this case, one may replace ug by
an approximation of white noise, i.e. — Zk’a Ok Ok, - VIV; © u')f’“, and therefore
(2.1) coincide (1.1) with an additional deterministic transport noise. The deterministic
transport term (u7 - V)v; does not play any role in the analysis, and therefore we
drop it from the results below (see Remark 3.9 for some comments). For various fluid
dynamics models, the approximation of small scales by a transport term can be made
rigorous, see [19, 34]. Let us also remark that the noise (1.1) is in the Stratonovich
formulation, which, from a modeling point of view, seems the correct one due to
its connections with Wong—Zakai type results. Moreover, as we will see in Sect. 2.2
below, the Stratonovich noise does not alter the mass and energy balances. This is
consistent with the intuition of the stochastic perturbation in (1.1) as a transport term.

2.2 Enhanced diffusion and the homogenization view-point

The issue of global well-posedness of parabolic PDE:s is usually addressed by showing
energy estimates. In practice, one derives uniform in time bounds on suitable L?-norms
of the solutions to the corresponding PDEs. Blow-up criteria for SPDEs (c.f. Theorem
3.3(3)) shows that a pathwise L?O(Lz)-estimate with g > @ Vv 2 is sufficient to
prove global existence for system of reaction diffusion equations like (1.1). Thus, one
is tempted to apply the Itd6 formula to compute ||v; ||‘£q and to derive such bounds.

@ Springer



Stochastics and Partial Differential Equations: Analysis and Computations

However, due to the divergence free of oy o, one has
fd i1 2 [(0k.0 - VIvi]vjdx =0 forall g € [2, 00).
T

In particular, the martingale part in the Itd formula vanishes and one obtains, a.s. for
allt € [0, 7),

t
Ol +viata =1 [ [ it vulards
0JT (2.2)

t
= ||U()’i||‘£q +q/0 /Td |vi|q_2fi(" v)v; dx ds.

The above equality coincides with the L4-balance in absence of stochastic perturbation
in (1.1). Therefore it is clear that the noise cannot help to improve such estimates. To
capture the weak enhanced diffusion induced by the transport noise one has to look
at weaker norms compared to the one appearing in the energy-type balance (2.2), e.g.
L"(0,T, L?) withr € (1, 00).

From a mathematical perspective, the key step to understand the weak enhanced
diffusive effect of the noise is the scaling limit result of Theorem 6.1. In that result, we
consider a sequence of (0 (”))nz 1 and the sequence of corresponding solutions (v(”)) n>1
to (1.1) and we show convergence (in “relatively weak norms”) of the solutions to a
deterministic system of reaction—diffusion equations with increased diffusivity pro-
vided lim,,— o0 107 || g /110 2 = 0. Here we exploit the fact that the vector fields
ok, are objects with high oscillations and in the limit as n — oo they average. The
limiting contribution of the noise is the diffusive term vAwv; in (1.3). Now Theorem
1.1 follows by choosing n so large that the solution to (1.1) is not far from (1.3). Since
the transport noise in (1.1) models small scale effects, the above argument shares the
same philosophy of large scale regularity theory in the theory of homogenization,
see e.g. [8, 40, 70]. As commented in the Susbection 1.1, this interpretation naturally
brings us to the use of tools from the theory of PDEs with L*°-coefficients, such as
Moser iterations.

In a way, this view-point allows us to give an heuristic motivation for the failure
of the scaling limit argument in [33] for the full advective noise (see [33, Appendix
2]). Recall that the vorticity formulation in [33] is obtained by applying V x to the
Navier—Stokes equations with transport noise. Due to Leibniz rule, this creates a (lower
order) term which cannot be controlled via the L°°-norm of the coefficients itself and
therefore the scaling argument is doomed to fail.

2.3 The role of criticality

Several choices of the spaces done in this paper are motivated by the (local) invariance
of the SPDEs (1.1) under parabolic scaling. Recall that f is of polynomial growth
with exponent 27 > 1 (see Assumption 3.1(2)). As discussed in [7, Sect. 1.4], the

Lebesgue space L54=D is critical for (1.1). Here we do not discuss the case of
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critical Besov spaces, as the Lebesgue ones are the natural to deal with when working
with L*-coefficients. With an eye towards the main scaling argument of Theorem 6.1,
where one needs to use compactness, we work within the subcritical regime L9 with
q > @. Indeed, within this range, one lose regularity to obtain compactness, still
being in a spaces where (1.1) is well-posed. The subcriticality also plays an important
role in the main estimates. Indeed, a fairly straightforward consequence of it is the
existence of € > 0 such that (cf. Lemma 4.3)

1fi Gl g1 S T+ ol Fellvll - (2.3)

The criticality of the LY is equivalent to ask for which ¢ the inequality (2.3) holds
with & = 0. The sub-criticality gives us the play parameter ¢ > 0 which can be used to
show L° (LY)-estimates via a simple buckling argument. Indeed, the Young inequality
shows that, for all p € (2, 00),

h—1 1-
||ﬁ($ v)”LP(O,T;H*I-‘I) S_; 1 + ”v”Lr(O_,FIé:;L‘I)”v”LpfO,T;H]JI) (2 4)
h—1+ ’
S 1+ Gl g oey + 810l Lo, 1)

wherer(h, ¢, q) € (1, oo)islarge. Choosing§ > 0 small enough, one can use maximal
LP-regularity estimates to close a bound for |[v||; » 0,7 H9) in terms of |[v|l .7 (0,7;L9)-
However, there is no general way estimate the latter term. Following [29, 33], we
introduce a cut-off in the equation (1.1). We design the cut-off ¢ , (-, v) in a way that
lor,r (. vIVIILr0,7:L9) Sk 1, see (4.2) below. Thus, for the cut-off version of (1.1),
the inequality (2.4) readily proves an estimate, cf. Theorem 4.1(1). The cut-off can
later be removed by using the (weak) enhanced diffusive effect of the noise.

The same sort of argument also enters in the Moser type iteration used in Theorem
4.1(2). More precisely, looking at the L?-balance of (2.2), the condition g > @
yields the existence of 8 € (0, 1) such that the RHS(2.2) can be estimated as (cf.
Lemma 4.5)

T
(f / |v|q_2f,-(-,v)v,-dxds‘
0o J1¢

T B
q+h—1 -2 2
,S||v||L,(0’T;Lq)+||v||i,(0’T;Lq)(maxfo de|vi|q V| dxds) .

1<i<¢

Again, by balancing the contribution of ||v||zr(0,7;19) With the cut-off ¢ ,, one sees

that the energy term maxj<;<¢ fOT de |v,~|‘7_2|Vv,~|2dx ds can be absorbed on the
LHS(2.2) with the same buckling argument via Young inequality.
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3 Statement of the main results

In this section we state our main result concerning reaction diffusion equations (1.1).
Here we actually consider the following generalization of (1.1) where we also include
a conservative term:

dv; — viAv; di = [div(Fi(-, ) + fiC-, v)] dr
+ J/cqv Z Z Ok (Ok,o - V)Vj © dwf’“, on Td,

ker)l I<a<d-1

v; (0) = v; 0, on T<.

3.1
As above, i € {1, ..., ¢} for some integer £ > 1. As before ¢4 def % and v, v; > 0.
The unexplained parameters appearing in the stochastic perturbation of (3.1) will be
described in Sect. 3.1. The nonlinearities ( f, F)) will be assumed to be of polynomial
growth, see Assumption 3.1 for the precise conditions. This section is organized as
follows. In Sect. 3.1 we describe the noise and its basic properties, in Sect. 3.2 we
collect the main assumptions, definition and a local existence result taken from [7].

Finally in Sect. 3.3 we state our main results whose proofs will be commented in Sect.
3.4.

3.1 Description of the noise

Here we specify the quantities (6%, oy« w*®) appearing in the stochastic perturbation
in (3.1). Here we follow [29, 33]. Recall that Z¢ = 74 \ {0}. Throughout this paper
we consider 6 = (6), ezd € 62(25). Moreover, we assume that 6 is normalized and
it is radially symmetric, i.e.

”9”22(23) =1 and 0; =6 forallj, ke Z‘é such that | j| = |k]. (3.2)

Finally, we assume that #{k : 6; # 0} < oo. However this can be weakened, see
Remark 3.8.

Next we define the family of vector fields (o o)k« Let Zi and Z<¢ be a partition
of Zg such that —Zf{_ = 74 . For any k € Z%, select an complete orthonormal basis
{ak,o}aeqt,...,a—1) of the hyperplane kt = {x e R : k-x = 0}, and set a4 def a_f,a
fork € 74 Then, let

def ik
Ok = arqe”™** forall x €T keZd acfl,...,d—1).
By construction we have that oy ,, are smooth and divergence free vector fields.
Finally, (wf’“ : t > 0)k.o denotes a family of complex Brownian motions on a

filtered probability space (€2, A, (%):>0, P) such that (below - denotes the complex
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conjugate)

wh® = w5 forall +>0, keZd ae{l,....d—1}. (3.3)

Moreover w®® and w/-# are independent whenever either k # —j or a # . The

above conditions can be summarized as:
[wh, wiP), =218 ;84 p forallt >0,k, jeZl, anda, B €{l,...,d — 1},

where [, -], denotes the covariation. As in [33, Sect. 2.3] or [29, Remark 1.1], by (3.2)
and the definition of the vector fields oy o, at least formally, one has

Jcav Zek(ak,a -V)v; o dwi"“ = vAv; + Jcgv Z Ok (0.0 - V)V; dwf’a
k,o k,o

3.4)
To prove (3.4), one uses that div oy = 0 and the elementary identity (cf. [33, eq.
(2.3)] or [29, eq. (3.2)])

1
> koo, = Zekakaaka = —dun o T foralll <n,m <d. (3.5)

Let us remark that the stochastic integration on the RHS(3.4) is understood in the It5-
sense. In the paper we will always understood the Stratonovich noise on the LHS(3.4)
as the RHS(3.4), namely an It6 noise plus a diffusion term. However, note that the
diffusion term vAv; does not provide any additional diffusion, as in the usual energy
estimates, it is balanced by the It6 correction coming from the Itd-noise. In particular
(3.4) is consistent with Sect. 2.2.

3.2 Main assumptions, definitions and local existence

In this subsection we collect our main definitions and assumptions. The following will
be in force throughout this paper.

Assumption 3.1 Suppose that d > 2 and minj<j<,v; > 0. Let the following be
satisfied:

(1) (Smoothness and integrability exponents) § € [1,2), g, p € (2,00) and k €
[0, 2 —1).
(2) (Polynomial growth) For alli € {1,..., ¢}, the following mappings are Borel
measurable:
fit Ry x T xR >R and Fi = (F )9, : Ry x T x R® > R%.

Moreover, there exists 7 > 1 such that, a.e. on R x T and foralli € {1,..., ¢},
y,y € Rt

h+1
it x, WIS T+ IyI", |Fitt,x, DI S1+1y 2,
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|fi(t, x, ) — it x, ) S A+ Iy 1y 1Dy =y,
h—1 h—1
|Fi(t,x,y) — Fi(t,x, Y)I S A+ 1yl = + 1Y)y =y

(3) (Positivity) Foralli € {1, ..., ¢}, there exist a measurable function¢; : Ry — R4
such that, a.e. on R} x T and for all i € {1,...,¢},y = (yi)f:l e [0, oo)e,

ﬁ(" Vs Yi—1, 0’ Yi+1,-~,ye) 2 Oa
Fi('v Yis-ees YVi—1, Oa )’i+1,-~-syll) :Ci(').

(4) (Mass control) There exist (ozi)f:1 C (0, 00) and (a 1)3:1 € R such that, a.s. for
allt e Ry, x e R? and y = (y)!_, € [0, 00)",

D aifilt.x,y) <ag+ar Y iy

l<i<t I<i<t

As we will see in Definition 3.2 and Theorem 3.3 below, the parameter § in (1) rule
the Sobolev smoothness of v with integrability ¢, while p its time integrability with
weight x. Conditions (2)—(4) in Assumption 3.1 are typically employed in the study
of reaction—diffusion equations, see e.g. [64] and the references therein. The growth
of the nonlinearities (F, f) in (2) is chosen so that the mapping v — f(-, v) and
v — div(F (-, v)) has the same (local) scaling (see [7, Sect. 1.4]). As shown in [7],
the above conditions ensure the existence of solution to (3.1), with certain properties,
under mildly regularity assumption on vg. For the reader’s convenience, we summarize
the one needed in this paper in Theorem 3.3 below.

To introduce the definition of solutions we use the interpretation (3.4) of the
Stratonovich noise. Recall that the family (wk*"‘)k,a induces an Ez-cylindrical Brow-
nian motion W2 given by

def
Wi (g) =) fR gra ) dwf® for g = (gradka € L2(Ry; €3,
k.o +

where k € Zg and o € {1,...,d — 1}. Note that W is real valued due to (3.3) in
case gk.o = Zk.—a-

Definition 3.2 Assume that Assumption 3.1 holds for some & > 1. Suppose that 0
satisfies (3.2). Let t be a stopping time with values in [0, oc]. Finally, let

v = (vi)f:l :[0,7) x Q — Hz_‘s’q(’]I‘d; RY) be a stochastic process.

e We say that (v, t) is a local (p, k, 8, q)-solution to (3.1) if there exists a sequence
of stopping times (7;) j>1 for which the following hold for alli € {1, ..., £}.
-1 <rtas.forall j > landlim; , 7; =T as.
— forall j > 1, the process 1jo,7;1x Vi is progressively measurable.

@ Springer



Stochastics and Partial Differential Equations: Analysis and Computations

— as.forall j > 1, we have v; € LP(0, T, wy; Hz"s*q(’]I‘d)) and
div(Fi (-, v)) + fi (-, v) € LP(0, T}, wye; H29(T9)). (3.6)

— a.s. forall j > 1 the following holds for all 7 € [0, ;]:

t
vi(t) —vo,; = / [(vi + v)Av; +div(F; (-, v)) + fi(, v)] ds
0 (3.7)

t
+/O 1[0,r,-]([9k(0k,a : v)”i])](’adWZZ(S).

A sequence of stopping times (7;) ;> satisfying the above is called a localizing
sequence.

e (v, 7)is a unique (p, k, 8, g)-solution to (3.1) if for any other local (p, «, 8, q)-
solution (v/, t’) to (3.1) we have v = v’ a.e. on [0, T A T/) X Q.

e (v,7)isa(p,k,3d,q)-solution to (3.1) if for any other local (p, «, 8, g)-solution
W', t")to(3.1) wehave T’ < tas.andv =" a.e.on [0, /) x Q.

Note that (p, k, 8, g)-solutions are unique in the class of local (p, «, 8, g)-solutions
and are real valued due to (3.2)—(3.3). As discussed below [7, Definition 2.3], if (v, T) is
alocal (p, k, 8, ¢)-solution, then the deterministic and stochastic integrals in (3.7) are
well-defined. Indeed, the deterministic integral is defined as an H ~%-valued Bochner
integral due to (3.6) and v; € LP(0, 7, wy; H?*%ay c L2(0, Tj; H?*%4) as. (the
inclusion follows from the Holder inequality and x < g —1). Similarly, the stochastic
one is defined as an H'~%9-valued Itd’s integral by [63, Theorem 4.7], the previous
mentioned regularity of v;, the smoothness of oy o and #{k : 6; # 0} < oo.

Next we recall the following result from [7] which will be needed below.

Theorem 3.3 (Local well-posedness and regularity) Let Assumption 3.1 be satisfied.
Assume that § € (1, 2),

dh—1) d 2 def S
q > > vd—S’ pzqu and K:Kp,(s:p(l—z)—l. 3.8)

Then for all vg € L4 (']I‘d; Rz) such that vop > 0 (component-wise), there exists a
(unique) (p, kp s, 8, q)-solution to (3.1) such that for all y € [0, %)

v >0 (component-wise) a.e. on [0, T) X Q2 x Td, (3.9)

ve HPP(0, 1), we, ;s H 2 7274(T RY) N C([0, 7); By (T RY) as.
(3.10)

Moreover, the following assertions hold.
(1) (Mass control) a.s. for all t € [0, 1),

eMt — 1
/ [(t, x)|dx < Cpa,..ap (e‘“’/ [vo(x)| dx + ag > .
T¢ T ai
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(2) (Instantaneous regularization) For all y; € (0, %) and y> € (0, 1)

v e C((0, 1) x T RY as.

loc

(3) (Blow-up criterion) For all go > %2 v 2 and 0 <5 < T < oo,

tels,t)

]P’(s <t <T, sup [v(®)|Lew < oo) =0.

To check the condition g > ddTa in (3.8) it is enough to choose § close to 1. Hence
the first in (3.8) is essentially equivalent to ¢ > @. By [7, Proposition 3.5], if the
above result is applicable for two sets of exponents (p, §, g), then the corresponding
solutions coincide.

Equation (3.9) is of particular interest in applications as v; typically models a
concentration. In (1), («;, a;) are as in Assumption 3.1(4). Due to (3), T is called

explosion or blow-up time of v.

Proof of Theorem 3.3 The local existence part of Theorem 3.3 and items (2) and (3)
follow from [7, Proposition 3.1 and Corollary 2.11(1)] using that L9 — Bg’ p as
p > q (cf. [7, Remark 2.8(c)]). Note that the condition p > % is needed to ensure
Kps = 0.

The positivity of v, i.e. (3.9) follows from [7, Theorem 2.13 and Proposition 3.5]
(see also [52, Sect. 4] for the linear case). It remains to prove (1). Integrating (3.1)
over T¢ and using that Jpa Ok - V)vi dx = 0 as div oy o = 0, we have

t
/ v,(t,x)dx:/ v,-,o(x)dx+/ / fi(s,v)dxds as.forallz € [0, 7).
T ¢ 0 J1?

(3.11)
Recall that (v, ) is a (p, kp s, 8, g)-solution and therefore (3.6) holds. The latter
and (3.11) show that the mapping ¢ de v; (¢, x)dx is a.s. locally absolutely

continuous on [0, 7). Let (c;,a;) be as in Assumption 3.1(4) and set M(z) &ef

lei <0 de v; (¢, x) dx. Hence, differentiating, multiplying by «; (3.11), and then
summing over i € {1, ..., £}, we obtain

LIM@) <ag+aM(t) as.foraa. te€(0,1).

The Grownall lemma, min;<;<¢ «; > 0 and (3.9) readily yields (1).

Before going further let us discuss the role of § in Theorem 3.3 (in practice, one
chooses § close to 1). Note that the case § = 1 is not included in the result as it
would lead to a weight Wi, 5 ¢ Appaskps = kp1 = % — 1 (here A, denotes
the r-th Muckenhoupt class, see e.g. [41]). Recall that the A, />-setting are the nat-
ural one for SPDEs, see e.g. [2, Sect. 7] or [56]. Finally, we note that the choice of
the value « s is optimal. Indeed the (space-time) Sobolev index of the path space
H”PO,T, W, 55 H2=8-2r.9) is equal to the one of the space of initial data LY.
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For later use we collect some further observations in the following

Remark 3.4 (Further regularity results)

(a) Theorem 3.3(2) can be improved under additional smoothness assumptions on
(f, F),see[7, Theorem 4.2]. For instance, if (f, F) are x-independent and smooth
in v, then

ve (0, 1) x T RY) as.forall y € [0, %).

(b) The regularity near t = 0 in (3.10) can be improved under additional assumptions
_pldk

on vg. In particular, by [7, Proposition 3.1 and 3.5], if vo € By, P~ for some
k € [0, % — 1), then the (p, k) s, 8, g)-solution (v, T) of Theorem 3.3 is also a
(p, k, 1, g)-solution and it satisfies

1—2 Lt
ve Hypl (10, ), we; H' 2P (TGR)NCA0, 7); By " (T4 RY)

loc

a.s. for all y € [0, %).

121
Since ¥ < g — 1 implies B, , * (T RY) < L4(T?: RY), we also have v €

C([0, 7); L1(T; RY).

In an attempt to make this work as independent as possible from [7], we use Theorem
3.3(1)—(3) only to prove Theorem 3.6, while Theorem 3.5 only uses the local well-
posedness of (3.1). A careful inspection of the proof of Theorem 3.5 shows that (3.9)
is not used (however, it will be needed for solutions of its deterministic version, see
Proposition 5.1). Finally, Remark 3.4(a) (resp. (b)) is used in Theorem 1.2 (resp.
Proposition 4.2 below).

3.3 Main results

In this subsection we state the main results of this paper. To this end, let us introduce
the following deterministic version of (3.1) with increased diffusion:
O vdei = (V+ 1) Avgeri + [div(F; (, vaer)) + fi( vaen)],  on T,

d
Vdet,i (0) = vo,;, on T¢,

(3.12)

where v > 0 is as in (3.1). The notion of (p, k, §, g)-solution to (3.12) is as in
Definition 3.2. Compared to Definition 3.2, for (3.12), we can use the full positive
Ap-range k € [0, p — 1) as the problem (3.12) is deterministic. To economize the
notation we say that v is a (p, g)-solution to (3.12) in case is a (p, «, §, g)-solution to
such problem withd =l and k = kp s = Kp 1.

To apply the next result one needs to fix five parameters (N, T, €, v, ). Roughly
speaking, N bounds the size of the initial data vy, T is the time horizon where our
solutions lives, ¢ bounds the size of the event where the solution v might explode, vy is
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the lower bound for the increased diffusion and r is the time integrability exponent in
which we measure the convergence of (3.1) to the deterministic problem (3.12) with
increased diffusion.

Theorem 3.5 (Delayed blow-up and weak enhanced diffusion) Ler Assumption 3.1
be satisfied. Let (q, p, kp,s) be as in (3.8) for some § € (1,2). Fix N > 1, ¢ € (0, 1),
T,vy € (0,00) andr € (1, 00). Then there exist

v>vy and 6 € *(Z8) with #{6 # 0} < oo
such that, for all
vg € LY (Td; RY) satisfying vo > 0 on T and ”U()”Lq(-—ﬂ-d;R() <N, (3.13)

the unique (p, kp 5, 8, q)-solution (v, t) to (3.1) provided by Theorem 3.3 satisfies the
following.

(1) (Delayed blow-up) The solution v exists up to time T with high probability:
Pt>T)>1—c¢.

(2) (Weak enhanced diffusion) There exists a (unique) (p, q)-solution vget to (3.12)
on [0, T, and the solutions v and v4e: are close in the following sense:

]P’(r >T, |lv— Udet”Lr(O’T;Lq(Td;R()) < 8) >1—c.

It is interesting to note that the parameters (v, 6) are independent of vg satisfying
(3.13) (however, they may depend on V). The choice of (v, 0) is not unique. Indeed, as
the proof of Theorem 3.5 shows, one can always enlarge v still keeping the assertions
(1)—(2) true. The same is also valid for Theorem 3.6 below. Other possible choices of
6 will be given in Remark 3.8 below. Finally, let us remark that vge; in Theorem 3.5(2)
is actually a (p, g)-solution to (3.12) given by Proposition 5.1 below. In particular
Vaet € L®(0, T; L1(T%; RY)) forall T < oo.

In case of exponentially decreasing mass we can allow T = oo in Theorem 3.5. By
Theorem 3.3(1), exponentially decreasing mass happens if Assumption 3.1(4) holds
with ap = 0 and a; < 0. To apply the following result one fixes five parameters
(N, &, vg, 1, qo). Compared to Theorem 3.5, the time horizon is T = oo and we have
an additional parameter gy < ¢ for the space integrability in the weak enhanced
diffusion assertion.

Theorem 3.6 (Global existence and weak enhanced diffusion) Let Assumption 3.1 be
satisfied. Suppose that Assumption 3.1(4) withag = 0 and ay < 0. Let (q, p, kp,s) be
as in (3.8) for some § € (1,2). Fix N > 1, ¢ € (0, 1), vy € (0,00), r € (1,00) and
qo € (1, q). Then there exist

v>vy and 6 € *(Z8) with #{6 # 0} < oo
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such that, for all
vo € L9(T*; R) satisfying vo = 00nT¢ and |voll q(pa.pey <N, (3.14)

the unique (p, ks, 8, q)-solution (v, t) to (3.1) provided by Theorem 3.3 satisfies the
following.

(1) (Global existence) The solution v is global in time with high-probability:
Plt=00)>1—¢.

(2) (Weak enhanced diffusion) There exists a (unique) (p, q)-solution vget to (3.12)
on [0, 00) and

P(t = o0, v — vdetll pr @, L90 (T4 RE) < g)>1—c¢.

The parameters (v, #) in Theorem 3.6 are independent of vy satisfying (3.14).
Moreover, we remark that vger in item (2) is as in Lemma 5.2 and therefore vger €
LRy ; L9 (T?; RY)) for all ¢ < o0. Let us conclude this subsection with several
remarks.

Remark 3.7 (Refined weak enhanced diffusion) As the proof of Theorem 3.5 (resp.
Theorem 3.6) shows that the norm L" (0, T; L?) (resp. LY(Ry; L)) in Theo-
rem 3.5(2) (resp. 3.6(2)) can be replaced by C([0, T]; H~Y) N L*(0, T; H'=7) N
L"(0,T; L?) (resp. C([0,00); HV) N L"(Ry; L9)) where y > 0. In such a case
the parameters (0, v) also depend on y > 0.

Remark 3.8 (On the choice of #) The proof of Theorems 3.5 and 3.6 also reveals other
possible choices of 6. Indeed, for each sequence (0 ("))nzl C Zz(Zg) satisfying (3.2)
foralln > 1 and
; (n) _
nli)néo 19 ”/ZOC(Zg) =0, (3.15)

there exists n, > 0 sufficiently large such that the assertions of Theorems 3.5-3.6
hold for all & = 0" with n > n, (cf. Proposition 6.1 below). As in [33], an example
is given by

)
w__ 9"
10|,

where  ©™ (k) def 1{n§|k|§2n}ﬁ fory >0andk € Zg.

(3.16)
The above example also satisfies #{k : 9,5”) # 0} < oo for all n. Interestingly, the
sequence (3.16) satisfies supp 8" C {n < k < 2n} and therefore it only acts on high
Fourier modes. Moreover, as we may enlarge n, such frequencies can be chosen as
large as needed. We will employ such sequence later on, but of course other choices
are possible, see e.g. [33, Remark 5.7] and [30, Remark 1.8] for Kraichnan’s type
noise.
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Remark 3.9 (Inhomogeneous diffusion/deterministic transport) The operator v; Av in
(3.1) can be replaced by a general second order operator div(a; - Vv;) + (b; - V)v; +
div(B;v;) + c¢;v; where the (deterministic) coefficients (a;, b;, B;, ¢;) are a-Holder
continuous with @ > 0 and q; is a bounded elliptic matrix with ellipticity constant
v; > 0. In such a case, the results of Theorems 3.5-3.6 still hold if § < 1 + « (this
restriction comes from the application of [3] in Theorem 4.1 below).

Remark 3.10 (The case of constant mass) The assumptions ¢p = 0 and a; < O in
Theorem 3.6 cannot be removed in general. However, in case of constant mass (i.e.
ap = a; = 01in Assumption 3.1(4)), we expect that Theorem 3.6 still holds. Indeed, it
is often true that solutions to the deterministic version of (3.1) converges exponentially
to a steady state v, see e.g. [9, 17, 20-22, 24] for some examples. In this scenario,
Theorem 3.6 concerns the case vo, = 0. However, compared to the references before,
here we do not assume any global existence a—priori and in particular any assumption
on /. It would be interesting to see if entropy methods, as used in the above references,
can allow us to extend Theorem 3.6 in case ag = a; = 0.

Remark 3.11 (Navier—Stokes equations) It is natural to ask for similar results for
Navier—Stokes equations perturbed by transport noise. Note that the equations consid-
ered in [33] are not equivalent to those (see [33, Sect. 1.2 and Appendix 2]). Although
the LP(L%)-setting for the Navier—Stokes equations with transport noise has been
developed in [4], at the moment an extension of Theorems 3.5-3.6 to such problem
seems out of reach. Among others, one of the main issue seems the extension of
Theorem 4.1(2) below. To prove the latter we exploit the fact that the nonlinearities
(f(,v),div(F (-, v))) and the transport noise are local in v. The latter fact is not true
for the Navier—Stokes equations due to the Helmholtz projection.

3.4 Strategy of the proofs

In this subsection we summarize the strategy in the proof of our main results. It consists
of three main steps:

(1) Global existence and 6-uniform L?O(Lz)-estimates for (3.1) with cut-off.
(2) Global existence for the deterministic version of (3.1) for high diffusivity.
(3) Scaling limit for (3.1) with cut-off.

Roughly, the strategy follows the one of [29, 33]. However, as commented in Sect.
2.3, to handle the arbitrary large growth of the nonlinearities in (3.1), in (1)—(2) we
exploit the full strength of maximal L? (L%)-techniques.

(1): In Sect. 4, we consider (1.1) with cut-off on T¢:

dv; — vi Av; dt = g, (. 0)[diV(F () + fi v)] dr (3.17)
+ Jcqv Z@k(ak,a -V o dwf’a.
k,a

Here, for R > 1 and suitable parameters g, r € (1, 00), ¢r , is a cut-off given by

R (t, V) def ¢ (Rl Lr0,1:4)), where ¢ is a bump function satisfying ¢|jo,1] = 1.
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As we have seen in Sect. 2.3 the choice of the cut-off is related to the subcriticality
of LY with g > w. In Theorem 4.1 we prove global existence of unique strong
solutions to (3.17) and L?"(Lﬁ)—estimates with constants independent of 6 (recall
that we are assuming ||0|,2 = 1). The latter estimates are obtained by mimicking a
Moser-type iteration. Recall that, as commented in Sect. 2.2, we cannot use the spatial
smoothness of the noise to obtain estimates with constants independent of 6. In the
proof of Theorem 4.1 the subcriticality of L? plays a key role.
(2): In Sect. 5 we show that the deterministic reaction—diffusion equations

OrVaet,i — i Avderi = div(F; (-, vaer)) + fi (-, vaer)  on T, (3.18)

has aunique strong solutions on [0, T'], forany given T < oo, provided ; (T') > 0; see
Proposition 5.1. Moreover, we investigate certain weak—strong uniqueness result for
a class of weak solutions appearing in the scaling limit argument of (3), see Corollary
5.5.

(3): For all n > 1, consider the solution v to (3.17) with § = 6™ where 6™
is as in (3.16). Then, using the #-independence of the L;’O(LZ)-estimates in (1) and a
compactness argument, up to a subsequence, we have that v — vge, in probability in
L7 (0, T; L1) where vget solves (3.18) with u; = v + v;. Here v is as in the stochastic
perturbation of (3.17). Theorems 3.5-3.6 now follow by choosing v very large so
that (2) applies with [|vge|l70,7;24) < R — 1 and choose n, large enough so that
||v(”) — Vgetllr0,7;19) < 1 for all n > n, with high probability. Thus, for all n > n,,
we have ¢g (-, v®™) = 1 and v solves (3.1) on [0, T'] with high-probability for
6 =00,

Due to technical problems related to anisotropic spaces (cf. the discussion below
Theorem 3.3), the above argument works only if v has positive smoothness in a Besov
scale, see Proposition 6.5. To show Theorem 3.5 we need an approximation argument
which requires to study (3.1) with a stronger cut-off compared to the one used in
Sect.4, see Lemma 6.6. Finally, to prove Theorem 3.6, we exploit that the mass is
exponentially decreasing due to Theorem 3.3(1) with a9 = 0 and a; < 0. See [29,
Theorem 1.5] and [33, Theorem 1.6] for similar situations.

4 Stochastic reaction-diffusion equations with cut-off

In this section we consider the following version of (1.1) with cut-off:

dvi — viAvi dt = g, (-, v)[diV(F(-, )+ fi(-, v)] dr

+ Jcqv ZQk(Uk,a -V)v; o dwf’a, onT?, 4.1)
k,a

v; (0) = v; 0, onT?.
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As before i € {1,..., ¢} for some integer £ > 1. Moreover ¢g (-, v) stands for
the cut-off

def , (1
drr(t,v) S ¢(E||v||L,(0,,;Lq(Td;Rz))) where R >0, re(l,00),  (4.2)

and ¢ € C(R) satisfies ¢|jp,1] = 1 and ¢|[2,00) = 0. The notion of (p, «, 8, q)-
solutions to (4.1) can be given as in Definition 3.2. The aim of this section is to prove
the following result.

Theorem 4.1 (Global existence and uniform estimates for (4.1)) Let Assumption 3.1 be
14k

1-2
satisfied. Assume that q > @ andvg € By, * (T?; RY). Suppose that 6 = (6;)x
satisfies (3.2) and #{k : 6 # 0} < oo. Then there exists ro € (1, 00) for which the
following hold for all r € [rgy, 00).

(1) There exists a (unique) global (p, k, 1, gq)-solution v to (4.1) such that a.s.

14k

v e HIP([0, 00), we; H'™24(T9; RY)) N C ([0, 00); By, ,,2 7 (T RY)
forally €0, E)'

(2) Forall T € (0, 00) there exists Ct > 0 independent of (0, vo) such that a.s.

sup |lv@)||? + max/ / 1+ |9~ 2)|Vv| dx ds
1€[0.T] L9(T*;R) l

< Cr(1+ Jlvollf )-

L1 (T4;RY)
The proof of Theorem 4.1 shows that ry € (1, 0o0) depends only on (p, q, k, h, d).

Recall that .

12l ji

By, " B, &L 4.3)

where (i) follows from 2% < 1 and (ii) from elementary embeddings (see e.g. [69,

Proposition 2.1]). Hence vg € L? and the RHS in the estimate of (2) is finite. The
crucial point in Theorem 4.1(2) is the independence of C7 on 6. Note that

2
/Td|v,-|q_2|Vv,~|2dxz/Td‘V[|v,~|q/2]‘ dx. (4.4)

Thus Theorem 4.1(2) and Sobolev embeddings yield, for all 7 € (0, 00),

€ (2,00) ifd =2,
||U||Lq(o,T;Ls(']rd;RZ)) Srl+ ||U0||Lq(Td;R@) where & = qd

a4 ifd >3,
d—2 nd=

4.5)

and the implicit constant is independent of (6, vp).
The proof of Theorem 4.1 is spread over this section. More precisely, the proof
of Theorem 4.1(1) and (2) are given in Sects. 4.2 and 4.3, respectively. In Sect. 4.1
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we investigate local existence for (4.1) which is an important preparatory step for the
proof of Theorem 4.1(1).

4.1 Local existence for reaction-diffusion equations with cut-off

In this subsection we begin our analysis of the problem (4.1) with cut-off. Here we
prove the existence of local unique solutions to (4.1). Moreover, we provide a general
blow-up criterion for the local solution to (4.1) which will be used in Sect. 4.2 to prove
that such solutions are actually global.

Proposition 4.2 (Local existence and blow-up criterion with cut-off) Let the assump-
tions of Theorem 4.1 be satisfied. Then there exists ro(p, q,k,h,d) € (1, 00) for
which the following hold for all r € [rg, 00).

(1) (Local existence and regularity) There exists a (unique) (p, k, 1, g)-solution (v, T)
to (4.1) such that a.s. T > 0 and

_nltxk

1 1Tk
ve HUP(0,7), we; H724(TYRY) N C([0,1); By, 7 (T9 RY)
forall y €10, %).

(2) (Blow-up criterion) For all T € (0, 00),

IP’(I <T. max Hqu,,(-, [div(F; ¢, v)+fi v)]‘ < oo>=o.

LP(0,7,we; H=19)

Proposition 4.2 does not follow directly from the results of [5, 6] as the setting used
there does not allow for the non-local (in time) operator v — ¢g (-, v). However, the
methods of [5, 6] are still applicable with minor modifications. Below we give some
indications how to extend the proofs of [5, 6] to the present situation.

Proof of Proposition 4.2—Sketch We split the proof into three steps.

Step 1: (1) holds. Consider the system of SPDEs (3.1) without cut-off. By Theorem
3.3 and Remark 3.4(b), there exists a (p, «, 1, g)-solution (v, T) to (3.1) (here we use
“to distinguish from solutions to (4.1) considered in this section). Note that, by (4.3),

) 14k

TeC(0,7); By, ") CC(0,7); LY) as.

Thus, the following is a stopping time

def . ~ . f
T, = inf{r € [0,7) : |Vllzr©0,r;4) = R} where inf& L2

Note that ¢ (-, V) = 1l a.e.on [0, 1) x . Therefore (V][0 z,)x . T«) is a local unique
(p, Kk, 1, g)-solution to (4.1). The existence of a local unique (p, «, 1, g)-solution
which is maximal in the class of local unique (p, k, 1, g)-solution now follows as in
Step 5b of [5, Theorem 4.5]. Here (v, T) is maximal in the following sense: for any
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other local unique (p, k, 1, g)-solution (v/, t’), one has v/ < 7 a.s. and v/ = v a.e.
on [0, ') x Q. Note that, at this point, we do not know if (v, ) construct above is
actually a (p, k, 1, g)-solution. However, this will be a consequence of the blow-up
criterion of Step 2 below (see [6, Remark 5.6] for a similar situation).

To establish the blow-up criterion of (2) we follow the arguments in [6, Sect. 5.2]
which was devoted to the proof of [6, Theorem 4.10(2)] that is closely related to (2).
The result of Step 2 should be compared with [6, Lemma 5.4].

Step 2: (Intermediate blow-up criterion). Let (v, T) be the unique local (p, k, 1, q)-
solution to (4.1) provided in (1) (cf. Step 1). Then

2

1-2
IP’(r < T, limv exists in B, ,”, Nie(t.v) < oo) —0 forall T € (0,00), (4.6)

thr

Ntz 0) & max [gr, ¢ 0)[divF o) + fi 0]

LP(0,7,we; H-1a)

In particular, (v, t) is a (p, k, 1, g)-solution to (4.1).

The last claim follows as in [6, Remark 5.6] once (4.6) is proven. To prove (4.6),
we argue by contradiction with the maximality of (v, 7) (see the text at the end of Step
1). Hence, by contradiction, assume that

1-2
IP’(I < T, limv existsin By ,”, Ni(7,v) < oo) > 0.

Mt

Thus there exist M, n > 0 and a set V € .%; such that P(}) > 0, and a.s. on V, one
has t > n and

2

1—
lim v exists in By ", sup Jlv@®ll ;-2
Mt t€l0,7) Bg.p

<M, Ne(T,v) <oc0. (4.7

Let ¢ be as below (4.2). Forall u € L"(t, T; L) we set

def _
Gvrrr(tu) = #(R N0 + Lo, rullr©,1;09)) onV,

and ¢y ¢ g (¢, 1) &ef 0on Q\ V. Consider the following version of (4.1) with modified
cut-off:

dui = vi it dt = . (0 [ AV, 0) + i) | dr

+eav Y 00k - VIuj o dw®, onT!,  (4s3)
k,a
ui(t vn) =1yv(r), onT?.

Note that 1yv(t) € Lg (2; B;;,z/p) by (4.7). One can check that the proof of [6,
Proposition 5.1] extends to the present setting (more precisely, the estimates below [6,
(5.9)] also hold). Thus, reasoning as in [6, Proposition 5.1], one sees that there exists
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a(p, 0,38, g)-solution (u, A) to (4.8) such that A > 7 V 7 a.s. (note that we use the
trivial weight at time A > 7). We remark that the stochastic maximal L?-regularity
estimates used in [6] holds by [3, Theorem 1.2] and [6, Proposition 3.12]. Set

def def
Ty = yd + 1\t and Vg = 1j0,0)xQV + [z 3)xvu.

One can check that (vy, 74) is a unique local (p, , 1, g)-solution which extends (v, 7)
since P(t, > t) > 0. This contradicts the maximality of (v, t). Hence the claim of
Step 2 follows.

Step 3: (2) holds. The claim of this step follows verbatim from the proof of Theorem
4.10(1) in [6, Sect. 5.2] (here we are using that the SPDEs (4.1) are semilinear).

4.2 Proof of Theorem 4.1(1)

We begin with the following interpolation inequalities involving the nonlinearities in
(3.1). Here the subcritical nature of the spaces considered comes into play.

Lemma 4.3 Let Assumption 3.1(2) be satisfied. Assume that @ V2 <gqg < oo
Then there exist ¢ € (0, %) and ¥ € (0, h%—l) such that, for all u € H',

1—p)h h
1fCo e S 1+ Tully @ ul ), 4.9)
. (171&)@ ww
Idiv(F )l gra S T+ el 2 Nl - (4.10)

The key point is that the RHS(4.9)—(4.10) grows sub-linearly in |ju|| g1.4-

Proof of Lemma 4.3 We split the proof into two steps.
Step 1: (4.9) holds. Recall that ¢ > 2 and d > 2 by assumption. By Sobolev
embeddings,

def _dgq

LS < H 19  where
¢ q+d

€ (1, 00).

Therefore, using Assumption 3.1(2), we have

LF Gl g-ta SUFC e SNA+ul) e ST+ full?,.

Without loss of generality we assume that 2{ > g, otherwise the previous inequality
already gives (4.9). If h¢ > ¢, then by Sobolev embeddings we have H#4 < L"¢
for some ¢ > 0 such that

e IR N
2

Higs We have

. 1—

Since [|ullpea < Null o llul
(1=p)h @h

IfCowllg-ra ST+ llullpy ™ lullly -
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To conclude Step 1, it remains to note that the condition ph < 1 follows from ¢ >
d

Sh—1).

2

Step 2: (4.10) holds. Reasoning as in Step 1, and noticing that HY-4 < L5 for

v — ;1‘_’ = —% we have, forallu € H4,

htl
2

Idiv(F ()l g-1a SINFCwllze S 1+ IIMII

2

+1 h+1
(1=y) v

S LA lullg lleell 1 -

Since ¢ = d(h+1) the condition wh“ < 1 follows from g > %(h —1).
We are ready to prove Theorem 4.1(1):

Proof (Proof of Theorem 4.1(1)) Let (¢, ¥) be as in Lemma 4.3. Assume that

1 —@)h 1 - h+1
ro > max ( ¢) p’ ( Wh)_ﬁ + }V2
(I=¢h) (1 —-y*=) 2
and recall that r € [rg, 00). By Proposition 4.2, it is enough to show v = oo a.s. To
prove the latter we employ the blow-up criterion of Proposition 4.2(2).

Step 1: Foralli € {1,...,¢},t € [0,T]and u € L"(0,t; L9) N LP(0, t; H9),

< 1
L2O.tw H-Lay ~OT +“u”L”(0tw sHL)

1//h-%—l
SR Tr 1+ ”u”LP(Ol‘ W H]q)’

[or.rCow fiow

[ r.Cwdiv i )

LP(0,t,w,; H=1.4)

where the implicit constants are independent of (t, u). Below we only prove the first
estimate as the second one follows similarly. Fix i € {1,...,¢}, ¢t € [0,T] and
ue L™(0,1; L9) N LP(O,t, we; HY9). Let e, be the following (deterministic) exit
time:

ew Linf(s € [0, 1] ¢ lullLr©.5:00) > 2R} where inf o & 7. A.11)
Since @|2,00y = 0, we have ¢ , (s, u) = O forall s > ¢,. Setry def ((lli‘p(p)gf < rg and

note that

[ fic.w|

= o, Cowficw|]

@ h h
N 1+/ IIM(S)II SO | (s) | PP 5€ ds
0

LP(0,t,we; H™19) LP(0,e,,we; H1:4)

Hl4

(i)
(1=@)hp @hp
5 1 + ”u”Lrl (Oveuswf(;Lq)||u||LP(0,Ezqu§H1’q)

@11
=<

— h
L @Rl 750 ey
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where ¢(T', r,r9) > 0 and in (i) we used (4.9) and 0 < ¢g (-, u) < 1, in (ii) the
Holder inequality with exponent ((plh, ﬁ) and r > rg > rq. Note that (ii) is valid
since ph < 1 by Lemma 4.3.

Step 2: (Intermediate estimate). For all T € (0, 00), there exists co(T) > 0 such

that, for all vy € By, 777,

EIVIF p 0 eng e ity < €O+ ||vo||g;;)2<lm/p). (4.12)

Let (7,)n>1 be a localizing sequence for (v, t), cf. Definition 3.2. For all n > 1, let

def . . def
Vn = inf{r € [0, 7)) : Wl pr(0,rw,:m19) =1} AT where inf & =1, AT.

Since (7,)n>1 is a localizing sequence and v € L{;C([O, 7), we; HY9) as. by Propo-
sition 4.2(1), we have lim,,_, » ¥ = T A T a.s. The stochastic maximal L?-regularity
estimates of [3, Theorem 2.1] and Step 1 yield, for some Co(R) > 0 independent of

(vo, n)

p
EILr 0.y mc10)

h+1
p peh Py
= Co <1 ol -as0s FENVN Lo 0, 10) F E”””Lv(o,yn,wk;mﬂ))

@) 1
p p
S Cl(l + ||v0||B¢},;2(l+K)/p) + E]E”v”LP(O,)/n,lUK;Hl’q)’

where C1(Cy, ¢, ¥, h) > 0 and in (i) we used that max{ph, w’%l} < 1 and the
Young inequality. Note that [[v{l1» .y, w,: 514y = 7 a.s. by the definition of ;. Thus,
the above inequality yields

p p
B0,y sty = 2010+ B0l sy

Since C is independent of (vg, n) and lim,_, o, ¥, = T A T a.s., the claim of Step 2
with cgp = 2C follows by letting n — o0 in the above estimate.

Step 3: Conclusion. By Step 2 we know that v € LP(0, 7 A T, wy; Hl*q) a.s. for
all T < oo. From Step 1 we deduce that, for all T < oo,

max
I<i<t

< o0 a.s. (4.13)

(1.0 C. 0 [AVEC o) + £ 0|

LP(0,tAT ,we; H-1:9)
Therefore, by Proposition 4.2(2),
P(r <T)

Cp(r <7, max [ [dvEEC ) + fiC )]
= 0.

<)
LP(0,7,we; H14)
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Hence t > T a.s. forall T < oo and therefore T = o0 a.s.

Remark 4.4 (On the use of blow-up criteria) In the works [29, 33] the analogue of
Theorem 4.1 is proven by showing global existence and pathwise uniqueness which,
in combination with a Yamada—Watanabe type argument, yields existence of global
unique solutions. Our approach is different and it based on the construction of maximal
solutions and blow-up criteria, following the scheme of [5, 6]. This strategy has two
basic advantages. Firstly, the role of the sub-criticality is clear from the estimates of
Lemma 4.3 which in combination of a (relatively) soft argument gives global existence
for (4.1). Secondly, in an L”(LY)-setting, pathwise uniqueness is more difficult to
achieve as it often difficult to estimate differences like f (-, vy — fG, v@). Indeed,
such estimate seems possible only if one enforces the cut-off, cf. Lemma 6.6 below.

4.3 Proof of Theorem 4.1(2)

Here we prove Theorem 4.1(2) by applying the Itd formula to the functionals v =
(v,-)f:1 — |lv; ||‘iq, fori € {1, ..., ¢}, mimicking a Moser iteration (see e.g. [16]). To
handle the nonlinear terms in (4.1) we need the following interpolation inequality.

Lemma 4.5 (Interpolation inequality) Assume thatd > 2 and T € (0, 00). Leth > 1
and @ V2 < g < 0o. Then there exist ry € (1,00), o € (1,00) and B € (0, 1)
such that, such that forallt € [0, T]andu € L*°(0, t; L4 (']I‘d))ﬂLz(O, t; Wl’q(']I‘d)),

q+h—1
La+h=1((0,r)x T4

q+h—1
Lr*(0,4;L9(T%))

t B
o q—2 2
R (/0 de |72 Vul dxds) :

where the implicit constant is independent of u and t € (0, T'].

[[uell ) S llull

(4.14)

The RHS(4.14) is finite due to the regularity assumptions on u. Indeed, g > 2 and
Holder inequality with exponents (%, quz) ensure

13
_ -2
/0 /Td 72| Vu|> dx ds < ||u||LDC(OJ;L,,)||Vu||%2(0’t;Lq) < oo. (4.15)

Asin Lemma 4.3, the crucial point of Lemma 4.5 is that 8 < 1. This is of course due to
the subcriticality of LY with ¢ > %(h — 1), see Sect. 2.3. For exposition convenience
we postpone the proof of Lemma 4.5 at the end of this subsection.

Proof (Proof of Theorem 4.1(2)) Fix T € (0, o). Without loss of generality we may
assume that ro > r, where r, is as in Lemma 4.5. To prove the claim of Step 1, we
compute de |v;i |9 dx and we estimate the nonlinearities by employing Lemma 4.5. As
in [16, Lemma 2], we need an approximation argument. For N > 1, set

Iyl if [y| =N,
def
YN =3 q(g—1)

5 n 2 (|yl = N> +gN? — Lyl = N)+ N7 if [y| > N.
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One can check that there exists ¢ > 1 independent of N > 1 and y € R such that

v <clyld, Wy <clylf™' [l < eyl (4.16)
Moreover, for all y € R, as N — oo we have

UNG) = 19, UNO) = gylf Ty, YN () = qlg — DIylTTA (4.17)

The generalized It6 formula (see e.g. [52, Sect. 3] or [18, Proposition A.1]) yields, for
alli e {l,..., £}, N>1,t €[0,T]and a.s.,

t
/ ‘”N@i“))dx—/ ¢N<vo,f)dx=—<v+w)// YR )|V dx ds
Td Td 0 ’]I‘d
t
+/0 /W ¢R,r(.,v)[1/f1’v(v,-)ﬁ(.,u)—wg,(vi)pi(.,v).vvi]dxds

1
+cdv2/ f 02 Y ()| (Ok o - V)i | dx ds (4.18)
o V0 T
where we used that the martingale part cancels since

/ Vi 0[Ok - VIvildx 2 / Ok - V[Un )] dx 20 as.
T T

Here (i) follows from the chain rule and (ii) from integrating by parts as well as
divor = 0.

For the reader’s convenience, we split the remaining proof into several steps.

Step 1: Foralli € {1,...,£} we have, a.s. forall t € [0, T],

t
lvi ()N + (g — l)Vi/ / vil? 72|V |* dx ds
0 J1?
t
= |lvo.ill%, +f1/0 Ad DR (VI fi ¢ vV — (g — DF;(,v) - Vo] dx ds.

Fixi € {1,...,£}. By taking N — oo in (4.18) and using (4.16) we have, a.s. for
allt € [0, T],

t
Oy + =00+ [ [ 1t 2vu P asds @.19)
t
=0ty +a [ [ dre Gt fi vn = (g = DEC) - Tudrds

t
+q(q — 1)6‘de/ /;rd sz |Ui|q_2|(0k,a . V)v,-|2 dx ds.
0
k,o
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It remains to discuss the legitimacy of using the Lebesgue domination theorem to take
N — o0 in (4.18). Firstly, recall that, by Theorem 4.1(1), k < % — 1 and (4.3),

ve L*0,T; Whd)y N L>®(0, T; LY) a.s. (4.20)

Hence (4.15) shows |v;|972|Vv; |2 € L' ((0, T) x T%) a.s. Moreover, by Assumption
3.1(2),

Wil 2 PR (V)| fi o) | S o472+ o) S 1+ et
Combining the above with (4.20), (4.15) and Lemma 4.5 we get
i1 2R, (-, v) i ¢, v)v; € L' (0, T) x T9) as.

For the F-term we argue similarly. By Assumption 3.1(2) and the Cauchy-Schwartz
inequality,

|oR G 0V l2F; (- v) - Vi | ST G o) Pui 972 + Jui 1972 Vg |2
<1+ I 197 V2 € LY, T) x TY) as.

Thus (4.19) is proved. To conclude the proof of Step 1, it is enough to note that
t 3.5) t
ay [ [t Vulards [ [ v e,
o 20 JT¢ 0 J1?

Step 2: Let vy def minj<;<¢ v;. Then there exists K > 0, independent of (6, vo),
such that, foralli € {1, ..., ¢},

T
)/ / |Ui|q72¢R,r(',U)f[(~,U)U,'dde’
0o Jr¢
T
+)/ / il 2pr. (-, V)F; (-, v) - Vv, dx ds
0o Jr¢

31)0 T
E: 19—2 12
<K + 1 /0 /11‘"|Ul| [Vv;|“dxds.

1<i<¢t

Fixi € {1, ..., £}. In this step we use that ry > r, where r, is as in Lemma 4.5.
We first estimate the f-term. Let e, be the first exit time of ¢ + ||v||1r(0,s;19) from
the interval [0, 2R], i.e.

e, Cinf {1 € [0, T1: [vllirosr0) > 2R} where info < T.
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By (4.2) and Assumption 3.1(2) we have

T
‘/0 /]I‘d |vi|q_2¢R,r(',U)fi('aU)vi dxds‘
= ‘/ U/ |vi|q72¢R,r("v)fi(',U)U,' dxds‘
0 T4

ey €y
<1 g+h—1 < q+h—1
< +/0 /Td|U| drds ST+ ) \ Td|vl| dx ds

1<i<¢t

where the implicit constants depend only on (gq, &, £, || f (-, 0) | LOO(T(;;R@)).
By Lemma 4.5, for some 8 € (0, 1),

€y
f/|vi|q+h_ldxds
o Jr¢

ey B
+h—1 _
Sl ey + 1018 s (/0 /T i |72V 2 d ds)
B

(i) ey N )
Sq,h,R 1+ (/0 /Ird [vi 1977 V| dxds)

T
V,
SC(R,q,h,vo)-I-ZO/ / lvi|972|Vv;|? dx ds
0o JT¢

4.21)

where in (i) we used [[v| 17 (0,e,;27) < 2R by definition of e,. Hence we proved that

T
‘/ / DR, V|92 fi (¢, v)v; dx ds
0o Jr¢

T
Vo _
§K+Z § /0 /Td|u,»|q 2|Vv;|* dx ds.

I<i<t

Similarly we estimate the F-term. By Cauchy-Schwartz inequality and Assumption
3.1(2),

T
‘/ / ¢R,r("v)|vi|q_2Fi(-,v)-Vvi dxds‘
o Jr¢
\Y v €y
< —0/ f |vi|‘1‘2|wi|2dxds+0(vo)/ / 011972 5 (- )| dx ds
4 0 Td 0 "[[‘d

ey €y
< ?[G fw|u,-|‘1*2|vUi|2dxds+C(v0, T) <1+/0 /;levlﬁhldxds).
(4.22)

Since [v| < >, <i<¢ lvil, the lastintegral can be estimated as in (4.21). Putting together
the above estimates, one obtains the claim of Step 2.
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Step 3: Conclusion. Summing over i € {1, ..., £} the estimate of Step 1 and using
the estimate of Step 2, one gets

sup ||v(t)||L,,qL max/ / v [972|Vv;|?dx ds < Cr (1 + [lvoll? La) as.

1[0, 7]
(4.23)
where C7 is independent of (8, vg). We remark that fOT Jpa 101972 V]2 dx ds < oo

a.s. due to (4.15). Therefore the term g (¢ — )22 3", _; _, fOT Jpa [0i1972|V ;| ? dx ds
obtained by summing the estimate of Step 1 can be absorbed on the LHS of the
corresponding estimate.

To conclude the proof of Theorem 4.1(2), it remains to show

T
max / /d |Vui > dxds < Cr(1+ [woll?,) as. (4.24)
T

1<i<t Jo

where Cr is independent of (6, vp). By Step 1 with ¢ = 2, it remains to show that

gffe‘f / DR GO fiC vV — Fi(-v) - Vu; dde‘ <t 14 ol
(4.25)

To this end, recall that ¢ > 2 and 0 < ¢ (-, v) < 1. Thus, by Assumption 3.1(2),
foralli € {1,...,¢},

13
(/f Dk () i v dr ds
0 'ﬂ"d

t
< 1+/ /d¢R,r(-,v)|vi|q+h_ldxds <7 1+ Juoll?y
0 JT

where the last inequality follows from (4.21) and (4.23). With a similar argument one
can show maxi<i<¢ [y fa $r.rC, ) Fi(-, v)|[Voi|dxds Sr 1+ [lugll%,. Thus we
have proved (4.25).

Proof of Lemma 4.5 As above, we break the proof into steps Below we set 1/ 0«
Step 1: Forall 1 < ¢ < %, there exist 0 € (0 ), r1 € (2,00), ¢ € (1, 2)

and & € (2, dz—flz) such that

’ d+2

0
”M] ||L1//((() t))(']I‘d) ~ ||M1 ”Lrl (0,t; L%l ) ||M1 ||L2(O,I;LE|) (426)

where the implicit constant is independent of uy € C([0, T] x Td) andr € (0, T].
By standard interpolation arguments, one sees that (4.26) holds provided

1 1-6 0 1
-, 4+ — < —. 4.27
4 & &7 Y (*:27)
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Since ¥ < % by assumption, the conditions in (4.27) hold with the strict
inequalities in case (rq, {1, &1, 0) are replaced by the corresponding extreme val-
ues (00, 2, d 5 d+2) By continuity, there exist r; < oo, ¢1 € (1,2), 0 < d‘lﬁ
and & < diZ such that the conditions in (4.27) hold with the strict inequality. This
concludes the proof of Step 1.

Step 2: Conclusion. By a standard approximation it is suffices to consider u €

C'([0, T] x T¢). We begin by noticing that

v 2 2(d +2
|91 = [|u|q/2] and ¢y _( +h-1) < ( ; )_ (4.28)

Here the last inequality follows from the assumption ¢ > %(h — 1). Applying Step 1
tou; = |u|‘1/2 e C'([0, T x "]I‘d) and v as above, we have

. Y(1-0)
/ /d " dx ds < H|u|‘1/2‘“(0 Lét) |q/2‘L2(O L
r t; L
A | (4.29)
(z<) 4y (1-0) q/2 Ve
N ||M||Lr*(0,t;Lq) Jul? L2(0,1;LE1)

where (i) we set 7y def 4L € (2,00) and used that {14 < ¢. Since & < dszZ’ the
Sobolev embedding H L1y — L5 (T9) yields

i+

<
L2(0,:L51) ™~

+ |t

L2(0,1;L2)

! 1/2
2 _
= Wl 0y + ( f/ i1Vl dx ds)
0 J1¢

Since ry > ¢, the previous yields

L2(0,¢;12)
(4.30)

t 12
a/2 ( 9=2)vy2 dx d ) . @431
|ul L2000 L61) Srollu ”L’*(Ot L) + /(; /Td |u] [Vu|”dx ds ( )

Inserting (4.31) in (4.29), one sees that the estimate (4.14) follows with « &y 7Y (1-0)

and g & def 1/,9
Vo < 2. To see the latter, recall that 0 < ﬁ and observe that

. To conclude the proof of Lemma 4.5, it remains to show 8 < 1, i.e.

d 2 d
Vg = [q(q—1+h)]d—2<2 — q>—(h—l)

which holds by assumption. This completes the proof of Lemma 4.5.

From the proof of Lemma 4.5 we can extract the following result which will be
used later on.
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Remark 4.6 (Interpolation inequality II) Assume 4 > 1 and @ V2 <g < oo
Then there exist o, 8 > 0,7 € (2,00) and € € [q, dquz) such that, for all r € (0, T']
andu € L7(0,¢; L) N L0, t; LF),

a B
||u||Lq+h—1((0,,)><Td) St ”u”L’(O,t;L‘I)”u”Lq(o,,;Ls)'

The above inequality readily follows from Step 1 of Lemma 4.5 and (4.28), cf. (4.29).

5 Deterministic reaction-diffusion equations with high diffusivity

In this section we investigate deterministic reaction—diffusion equations:

dvi = i Avi + [div(F; (-, v) + fi( )], on T, )
v; (0) = v 4, on T, '
wherei € {1, ..., £} for some integer £ > 1, u; > Oand (F, f) are as in Assumption

3.1. The results of this section will be used in combination with Theorem 6.1 below
to prove the results stated in Sect. 3.3. This section is organized as follows. In Sect.
5.1 we show the existence global unique solutions to (5.1) provided the diffusivities
w; are sufficiently large. Finally, in Sect. 5.2 we prove an uniqueness result for a
class of weak solutions to (5.1) which naturally appears when dealing with certain
compactness arguments, see the proof of Theorem 6.1.

5.1 Reaction-diffusion equations with high diffusivity

Here we show the existence on large time intervals of solutions to (5.1) with u; > 0.
Recall that (p, ¢g)-solutions to (5.1) have been defined below (3.12) and that (p, g)-
solutions are unique by definition.

Proposition 5.1 Suppose that (F, f) satisfy Assumption 3.1(2)—(4). Fix N > 1 and

T € (0, 00). Let@v2 < g <ooand p € [q,0). Set k), déf%—l.Suppose

that
vo € LI(T%; RY) satisfies vy > 0onT¢ and |vollze < N. (5.2)

Then there exists puo(N, q, p,d, T, h, a;) > O for which the following assertions hold
provided

min u; > uo.
1<i<t

(1) There exists a (p, q)-solution v to (5.1) on [0, T] satisfying

ve WhPO, T, we,; W (TS RY) NLPO, T, we,; WH(TY RY).
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(2) The solution mapping vy — v is continuous from L (T%; R%) into
WP, T, we,; WH(T RY)) N LPO, T, wy,: WH (T RY).

(3) For some Co(T, N, q, p,d, h) > 0, the (p, q)-solution v of (1) satisfies

sup Jlo@)l?, + max/ / lvi[972|Vv; > dx ds < Cp.
r€(0,T)

Note that (g, Co) are independent of vg satisfying the conditions in (5.2). Before
going into the proof of the above result, we collect some observations. To apply

(r=9)
LP(L7)-techniques, it is convenient to use that vy € Bg » since L9 < BO .

Moreover, (1) and the trace embedding of anisotropic maps yield (see e.g. [66, Theorem
3.4.8] or [1, Theorem 1.2])

ve C(0,T1: BY ) N C((O0, T1: By 7). (5.3)

The previous and p > 2 imply that v(¢) € B,;;,N Prc L forallt > 0 (cf. (4.3)
for the inclusion). In particular, the term sup, ¢, 7; ||v(t)||‘£q in (3) is well-defined.
However, since Bg’ p 7> L9, itis a part of the proof of Proposition 5.1 to show its
finiteness for ¢ small. A similar remark holds for the second term estimated in (3)
since the argument in (4.15) holds only on the interval [s, 7] with s > 0. Finally, as
in (4.4)—(4.5), Proposition 5.1(3) and Sobolev embeddings yield

€(2,00) ifd=2,

. < T,N,q,p,d,h h = 5.4
vl za(o,7;08) = col q,p ) where £ dqd2 itd > 3. 5.4

In the following we need another interpolation inequality. For all # € R4 and u €
L>®(0, t; L2(T)) N L2(0, t; H'(T)) such that frs udx = 0 a.e. on [0, 7],

d
|Iu||L2/y((0 t)XTd) ~ ||u||L°°(Ol Lz(Td))” u||L2(Ol LZ(T“’)) where Yy = m
(5.5)
and the implicit constant is independent of (¢, u). The estimate (5.5) follows from the

Poincaré inequality, interpolation and the Sobolev embedding HY (T?) < L2/7 (T%).

Proof of Proposition 5.1 Through the proof, we fix T € (0, co) and vy € L¢ C BY 7.0
To economize the notation, here we denote by cr a constant which may change from
line to line and depends only on (N, ¢q, p,d, T, h, a;), where (h, a;) is as in Assump-
tion 3.1. Next we collect some useful facts. By [67, Theorem 1.2], there exists a
(p, g)-solution (v, ) to (5.1) such that

v e Wl (10, 7)., we,; W4T RY) N LY (10, 1), we, s WH(T9 RY). (5.6)
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Moreover, [67] also shows the existence of positive constants (7y(vg), €o(vo)) for
which the following holds: For all ug € L7 such that ||[vg — ug|| < &g there exists a
(p, g)-solution (u, A) to (5.1) with initial data u satisfying A > Ty and

lv — u”WLP((),TO,pr;W—lvq)mLp(o,TO,pr;wlvq) 5 lvo — uollra (5.7)

where the implicit constant is independent of u( (but depends on vg).

Combining a linearization argument and the maximum principle for the heat equa-
tion, one can check that Assumption 3.1(3) and vp > 0 a.e. on ¢ yield (see e.g. [64]
and [7, Theorem 2.13] for the conservative term div(F (-, v)))

v(t,x) >0 ae.on[0,7) X T, (5.8)

Arguing as for Theorem 3.3(1), by Assumption 3.1(4) and (5.8), we have, for all
r €0, 7),

apt __ e“" _
/ [v(t, x)|dx S [e“”/ [vo(x)| dx + ag ] < e N +ap
™ g ai
5.9
Below, w.l.o.g., we assume that u; > 1 forall i € {1, ..., £}. Finally, we set

Now we break the proof into several steps. In Steps 1-3 we prove the estimate in
Proposition 5.1(3) with T replaced by t A T. In Step 4 we prove that T > T and
therefore Proposition 5.1(1) and (3) follows from Steps 1-4. Finally, in Step 5 we
Proposition 5.1(2). This will complete the proof of Proposition 5.1.

Step 1: There exists cr > 0, independent of (v, vo, i), such that, for all 0 <t <
TAT,

t
sup [|v()7, + p max, /0 /T il Ve P dx dr

re(0,] (5.10)

+h—1
< er(1+ ool + 01T )

Finally, ct can be chosen independently of T if Assumption 3.1(4) holds with ag = 0
and a; < 0.

As we remarked below the statement of Proposition 5.1, the case s = 0 of (5.10) is
notimmediate as sup¢ o lv(s) ||iq and fot de [v;1972|Vv;|? dx ds might not be finite
for small ¢ if v is as in (5.6). To overcome this difficulty, we use an approximation
argument. To this end, we first prove (5.10) on an interval separated from ¢t = O.
Namely, forall0 < s <t < 7 AT, we claim that
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t
sup ||v(r)||‘zq + u lrgafef /Td Ivil"_2|Vvi|2 dx dr
==t Js

re(s,t]

(5.11)

q q+h—1
< (T 0@, + I pn)-

Here it is important that ¢y on the RHS(5.11) does not depend on s but only on
(N,q, p,d, T, h).
To see (5.11), we can argue as follows. Firstly, as the weight w,. acts only at# = 0,
we have
ve WhP(ls, ©); W) N L (Is, ©); W) forall s > 0. (5.12)

loc

In particular, the terms on the LHS are finite, cf. (4.15). Similarly, one can also show
that RHS(4.15) is finite (see (5.14) below for the more involved weighted case). Now,
since g > 2, the proof of (5.10) for s > 0 follows as in the proof of Theorem 4.1(2) in
Sect. 4.3 by computing 9 ||v; (t) ||‘£q forafixedi € {1, ..., £} and them summing up
over i. Compared to Sect. 4.3, the term f(; de 01972 fi (-, v)v; dx can be estimated
as

! @)
[ [ i acomar] £ [ tas
0 JT¢ T¢

(U))
q+h—1
5 ”U”LI(O,I;LI) + ”U||Lq+h—l(0,t;Lq+h—l)

where in (i) we used Assumption 3.1(2) and in (ii) ¢ > 2. The F-term can be estimate
similarly also using the Cauchy-Schwartz inequality, cf. (4.22) for a similar situation.
Now we would like to take the limit as s | 0in (5.11). To this end, let us first prove

that
ve LIN0, 7y, LathY, (5.13)

loc

In particular, the last term on RHS(5.11) is finite also if s = 0. To prove (5.13), due
to (5.6), it suffices to show that, for all r € (0, 00),

WhPO, 15 we,: W) N LP(O0, 15 we, s WHY) e LIT10, 15 L9710 (5.14)
By mixed-derivative embeddings (see e.g. [5, Proposition 2.8]), we have that the space
on LHS(5.14) embeds into H?-?(0, T, Wy, H'72%:9) forall® € (0, 1). Thus, to prove
(5.14), it is suffices to show the existence of 6 € (0, 1) such that

H?P(0, T, wy,; H'72) — L9Ph=1, 7; 9T, (5.15)

By Sobolev embeddings with power weights (see e.g. [5, Proposition 2.7] or [60,
Corollary 1.4]), the above holds provided we find 6 € (0, 1) such that

1 1 1 d d
0 — +K”=0——>——, and 1-20—-—-—>——7-——.
p 2 q+h—1 q q+h—1
(5.16)
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Incase p > g + h — 1, then in the first condition in (5.16) the equality is not allowed
and in that case one also needs to use [6, Proposition 2.1(3)] in combination with the
above mentioned Sobolev embeddings with power weights. To check (5.16), we can

argue as follows. The second condition in (5.16) is satisfied with 6 = % [1 — %].

Note that 6 € (0,1) sinceh > 1,¢ > 2 and g > @ > % by assumption.
With the above choice of 8, one can check that also the first condition in (5.16) is
satisfied since g > %(h — 1). Therefore (5.14) holds.

It remains to show (5.10). Due to (5.11), to prove (5.10) it suffices to show (5.10) for
t € (0, To] where Tp > 0 is as before (5.7) and c7 independent of Tj. The advantage
is that, for ¢t € (0, Tp], we can use the continuous dependence on the initial data (5.7)
and prove the claimed estimate by approximation.

Let (e, Tp) be as before (5.7). Take a sequence (v(()"))nzl C C® such that v(()”) —
vo in L7 and v — vg|lze < o for all n > 1. Fix r € (g, 00). As in (5.7), there
exists a (r, r)-solution (v, T™) to (5.1) with data v(()”) satisfying inf,>1 T > T,
and

_2
o™ € WL ([0, 7™): Wy A L (10, 7)) W) <> €([0, 7™); B, 7)

loc
foralln > 1.
Since v™ is sufficiently smooth and B,],;z/r — L9 for r > ¢, (5.10) with (v, 7)
replaced by (v, () can be proven by letting s | 0 in (5.11). Moreover, by (5.7),

v™ — v in WP (0, Ty: Wi, s W_l’q) N LP(0, Ty; W, ; wha).

In particular, there exists a (not relabeled) subsequence such that ™, vy —
(v, Vv) a.e. on [0, Tp] x T and, by (5.14) and [1, Theorem 1.2],

v™ = v in LIN0, To; L9 0 C((0, Tol; LY).

Thus, by Fatou’s lemma and the above considerations, (5.10) with ¢ € (0, Tp] and c7
independent of T} follows by letting n — oo in the corresponding estimate for v
using also that inf,> ™ > T,.

To prove the last assertion in Step 1, note that, if a9 = 0 and a; < 0, then (5.9)
yields [[vill 10,721 < |lvoll.1 and therefore all the constants in the starting estimate
(5.11) can be chosen independently of 7.

Step 2: Recall that y = diﬁ, cf. (5.5). Then, forall0 <t <t AT,

_ +h—1
11 gon1 0.ps i SCT(l + llvollfy + n V||v||21,+h,.(0’,;w.4)), (5.17)

Finally, ct can be chosen independently of T if Assumption 3.1(4) holds with ag = 0
and a; < 0.

In this step we use the interpolation inequality (5.5) in a similar way as we did in
the proof of Lemma 4.5 with (4.26). However, here we need an explicit dependence
on the diffusivity p and therefore we use the homogeneous estimate (5.5). Let us fix
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. . d(h—1)
iefl,... €. Sinceq > =5

forall0 <t <t AT,

,wehaveg+h—1 < %. By interpolation, we have,

q q q
”vi ”Lquh’l(O,t;Lquh’l) S ”vi ”LI(O,Z;LI) + ”U,‘ ”L‘I/V (O,I;Lq/y)

2, + i 14 (5.18)
= ¢r illpary 0, L9/7)" :

Next we estimate the second term on the RHS(5.18). Note that, forall0 <t <t AT,

2
V00 ey = | 10177 (5.19)

2 2
< [t = [ i as
Td

L2/v(0,t;L2/7)

2 2 2
| [ e ax|
L2/7(0,t;L2/v) T

L2/7(0,t)

def def
L= L=

Next we estimate /; ; and /5 ;, separately. We begin with /1 ;. By (5.5) withu = |v; |‘7/2,

2(1-y) 2y

L>°(0,t;12%)

-y q =y ' q-2 2 14
=K (”vi”Loo(O,t;Lq)) (,LL 0 Td |vi| |VU[| dx dS)

6o . oot
Sron (1 + llvoll;q + ”v”LdJrh*l(O,t;Lq*h*l))

LS Hlvi|‘1/2H

V{117

L2(0,t;L2)

i)
q - q+h—1
5 1 + “v()”Ll[ + W y”v”Ld+h—l(0’t;Lq+h—l)

where in (i) we used that £ > 1. Next we look at I» ;. Recall that ¢ > 2 and let
¢(q,h,d) € (0,1)besuch that 1 — ¢ + gﬁq—y = % Again, by interpolation,

= v |19 (=) 9%
11,2 - ”vl ”Lq/y(o!t;Lq/Z) S ”vl ”Lq/y(o,t;Ll)”vl ”L‘I/V(O,[;L‘I/y)

(5.9) _
< er@+ ol D" il 5, 0 4oy

1
E CT(I + ||U0||[[I‘f1) + EHUi ”(zq/V(O,t;L‘i/V)‘
Using the estimates for /; 1 and /; 2 in (5.19), we have, forall0 <t <t A T,

_ +h—1
”vi”(sz/V(O,t;LfI/V) <cr(l+lvollzy) +erp y”v”iﬁh—‘(o,z;m%—‘) (5.20)
where we have absorbed the term 27! v; ”Zq 1y (©.1:Lal7) appearing in the estimate of
1; » in the LHS of (5.20). This is possible since ||v; || za/y 0 s;pa/r) < 00 forall0 <7 <
AT, asitfollows fromthe estimates of 11 ;, the factthat I, ; <r SUpP,.c(0.1) ||v(r)||‘£q <
ooforO0 <t <tAT,(510)and (5.14).
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By using (5.20) in (5.18), we obtain

q q — qg+h—1
10319, eh gy < (1 Dol + 7 OIS s )

The claimed estimate (5.17) follows by taking the sum overi € {1, ..., ¢}.

The last assertion in Step 2 follows by using that c7 in (5.10) can be chosen to be
independent of 7" and, in the estimate of I» ;, that v; € L4 /70, t; L") by (5.9) with
ap=0anda; <O.

Step 3: Fix N > 1 and let vy be as in (5.2). Then there exist 1o, Ko > 0 depending
onlyon (N, q, p,d, T, h, a;) such that the (p, q)-solution (v, T) to (5.1) satisfies

vl a+h-10, raT;La+h-1y < Ko provided p > pio. (5.21)

The proof requires some preparation. Recall that |vgllz¢ < N and v € Lﬁ;hil

([0, 7); L9Th=Ty by (5.2) and (5.14) respectively. Thus the estimate of Step 2 implies:
Vi RN goics g s paenr) < 1+ N forallz € [0, AT), (5.22)

where ¥, r(x) = Rx — w x11 with x € [0, o) and 6 o % >0,R &f C}l are

independent of (¢, vo, ). It is routine to check that v, g has a unique maximum on
[0, c0) and

m difar max Y —(RMV )1/9
wR = g]R+ w,R = 1+0
def RO/ RuY \1/6
d M, % =_( ) . 523
and - Myr = maxvur = 775\ 15 (5:23)

The idea is to choose o (R, 6, d) large enough so that M, g > 1+ N9, cf. Fig. 1.
This eventually leads to a contradiction with (5.22). To this end, let us begin by noticing
that [0, 00) > u > M|, g is increasing. Thus there exists uo(N, g, p,d,T,h) > 0
such that

> o = M, r>2+ N9, (5.24)

Now suppose that u > 1. Assume by contradiction that

sup ”U”Lq-ﬁ—h—](()’t;[‘q-%—h—l) = OQ. (525)
tel0,TAT)

Next, note that the mapping

def
X:[0,t AT) — [0,00) definedas t+> X(t) = ”v”‘[I‘quh—l(O!t;Lquh—l)

is continuous, non-decreasing and satisfies X(0) = 0. Thus (5.25) implies the existence
of 79 > 0 such that X(t9) = m, g < oo. Note that (5.24) imply ¥, r(X(79)) =
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Fig. 1 Intuitive picture of the
argument in Step 3 of
Proposition 5.1

2+ N1
M, .

MO’R 77777777 O\ 1 74: Nq
I
I

! [ R
o Yo,

|

M, g > 14 N?. This leads to a contradiction with (5.22). The same argument also
yields
X(@)<mypg forall0<t<7tAT,

where m, g is as in (5.23). Combining the above with (5.22), we get, forall 0 <t <
Tt AT,
RX(?)

(5.23)
RX(@) = 14 N7+ n77 XO)X@) "= 1+ N+ 7=

Therefore X(1) < L2 (1 4+ N9) forall 0 < t < T A T. Whence the estimate (5.21)

with K def %(1 + N7) follows from the definition of X(¢) and the Fatou lemma.

Step 4: Let |uo be as in Step 3 and assume that u > (o. Then T > T. Combining
the estimates of Steps 1 and 3 we have

AT
sup v ()1l +/O /T juil? =2V 2 dx ds < Co(T, N.q. p. d. h).

1e(0,TAT)
(5.26)
To conclude the proof it remains to show that T > T'. To this end, we apply the blow-up
criterion of [67, Corollary 2.3(ii)], which ensures that

t<T == sup ||lv(®)|lgo = oo. (5.27)
te(0,TAT) aor

0 _ -1, 1, = L2 _
Here we also used that B, , = (W™, W q)lflJer,p and k, = 5 — 1. Let us

note that even if [67] deals with bilinear nonlinearitié)s, the blow-up criterion of [67,
Corollary 2.3(i7)] still holds. Indeed, one can reproduce the argument in the proof of
[6, Theorem 4.10(3)] where we recall that the weight k = 5= 1 is allowed in case of
deterministic equations.

We prove T > T by contradiction. Assume that t < 7. Then (5.26) and the
embedding LY —> Bg’p yield sup;¢po 1) ||v(t)||32.p < oo which contradicts (5.27).
Hencet >T.
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Step 5: (2) holds. Recall that T > T by Step 4. Let
7, & sup {t €[0,7]: lim f[v—ullmg, @0 = 0}, (5.28)
uwo— o

where the limit is taken in the L9-norm, u is the solution of (5.1) with initial data
o € LY and MR, ,(1) € WP, 1, we,; W19) N LP(0, 1, w,,; W'4) for all
t € Ry. Note that T, > 0 by (5.7).

To prove (2) it is enough to show that 7 = T, and that the supremum in (5.28) is
reached. To this end, one can argue by contradiction, we leave the details to the reader.
In the argument it is convenient to use that v([s, T']) C B;;,z/ P is compact for all
s > 0 by (5.3) and the local continuous dependence of solutions to (5.1) on the initial

data taken from the compact set v([7Tp, T]) < B;;,z/ P (see e.g. [67, Theorem 1.2]).

In the proof of Theorem 3.6 we need uniform estimates on the half-line (0, co).
In case of exponentially decreasing mass, we obtain them by slightly modifying the
proof of Proposition 5.1.

Lemma 5.2 Suppose that (F, f) satisfy Assumption 3.1(2)—(4). Assume that Assump-
tion 3.1(4) holds with ag = 0 and a; < 0. Fix N > 1. Let @ V2<q<ooand
p € [q, 00). Then there exists (o > 0 such that if

min [u; > po,
1<i<¢t
then the following assertion holds:
For each vy € L1(T%: R") such that vo > 0 a.e. on T¢ and ||vollrs < N, there
exists a (unique) (p, q)-solution v to (5.1) on [0, 00) such that, for all qy € [1, q),

v g < C(N,q, p,d,h,a;,aj)e " forallt >0, (5.29)

where co > 0 depends only on (a;, qo, q).

Proof Since Assumption 3.1(4) holds with ag = 0 and a; < 0, by (5.9) we have
/1 loldx < el jyg)| 1 < el N, (5.30)
’]I‘(

As in the proof of Proposition 5.1 the existence of a (p, g)-solution (v, 7) to (5.1)
follows from [67, Theorem 1.2]. It remains to prove T = 0o. Arguing as in the Step 4
of Proposition 5.1, it is enough to show that, for some wo(N, g, p,d, h,a;,a;) > 0,
one has

sup v, < C(N.q, p.d.h,aia)). (5.31)
1€[0,7)
Indeed, if (5.31) holds, then (5.29) follows by interpolating (5.30) and (5.31).

To prove (5.31), one can repeat the arguments in Step 3 of Proposition 5.1. Indeed,
due to Step 2 of the same proof, the constant c7 in (5.17) can be made independent of
T since we are assuming ag = 0 and a; < 0.
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5.2 Uniqueness for weak solutions to reaction—-diffusion equations

In this subsection we prove uniqueness results for weak solutions to deterministic
reaction—diffusion equations. Such results will be needed in the proof of Theorem 3.5.
In particular, the class of maps considered in the following result is the one used in
Lemma 6.2 below. We begin by proving the following uniqueness result for (5.1).

Proposition 5.3 Let Assumption 3.1(2)—(4) be satisfied. Let d(hT_l) V2 <q <ooand

vo € LY(R?:; RY). Let either & = dqu2 and d > 3 or & € [&y, 00) for some sufficiently
large &0(q, h,d) € (g, 00) andd = 2. Fory € (0, 1), set

X 20,7 H=)nCqo, T1; H) N L=, T: L) N LY, T: LE). (5.32)

Let vV, v® € X be weak solutions 1o (5.1) in the following sense:
Forall j € {1,2}, n € C®(T¢;RY and t € [0, T},

W), n) =/ vo - dx
Td

' . , .
+ ) f / (Mi v Ani + fiGoo Dy = B o) - Vm) dx ds.
- 0 d
1<i<¢t
(5.33)
Then v) = v@,

In (5.33), (-, -) denotes the pairing in the duality H~" x HY. Step 1 in the proof
below shows that f(-, v), F(-,v) e L1(0, T; L") for j € {1,2}. Thus all the
terms on the RHS(5.33) are well-defined. In the case d = 2, the proof below provides
a description of &y. More precisely, &y = &, V &, where &, and &, are as in Step 1 in
the proof below and (5.47), respectively.

The result of Proposition 5.3 is not really surprising since X € L*(0, T; LY) N
L9(0, T; L¥) and therefore the class of solutions considered there are somehow close
to the strong ones.

It will prove convenient later to see that (p, g)—solutions of Proposition 5.1 belongs
to X. In particular, they are in the class of weak solutions considered in Proposition
5.3.

Remark 5.4 Here we prove that the (p, g)-solutions to (5.1) provided by Proposition
5.1 satisfies v € X where X' is as in (5.32). Fix T € (0,00), ¢, p € (2,00) and let
Kp = % — 1. By Proposition 5.1(3) and (5.4), it suffices to show that

MR, ,(T) € WP, T, we,; W) N LP(O, T, wy,; W)
< L>0,T; H'™")nC(0,T]; H) forall y € (0, 1). (5.34)
By mixed-derivative embeddings (see e.g. [5, Proposition 2.8]), for all & € (0, 1),

MR, ,(T) < H*P(0, T, w,,: H'72%9). (5.35)
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then the RHS(5.35) commdes with H o 20, T; we,s HV) —

Letting 6 = Ty,
v-4). While, letting 6 = % in the RHS(5.35) we have, for some po €

C(0,T]; H-
(p, 00),

HY/%P(0, T, wy,; H'” M) LPO(O T, we,; H'” V‘f) L2(0 T: H'77)

where in (i) we used Sobolev embeddings [5, Proposition 2.7] and in (ii) follows
from the Holder inequality and +K” < H% = % (see e.g. [6, Proposition 2.1(3)]).
Thus (5.34) follows by collecting the previous embeddings as well as by H*9 — H?*

since g > 2.

Proof of Proposition 5.3 In the following proof, for j € {1,2}, v'/) denotes a map
from X (see (5.32)) and solves (5.33) for all n € COO(?I‘d; RY). We break the proof
into several steps.

Step 1: Let either & = dquz and d > 3 or § € [&,, 00) for some sufficiently large
£:(q, h,d) € (q,00) and d = 2 (see the comments at the end of sub-steps 2a and 2b).
Then

FC o) el?0,7; H™Y  and  F(-,v¥) e L*0, T; L?), (5.36)

for all i € {1,...,¢}. In particular v e L2, T: HH n HY O, T;: HY) C
C([0, T1; L?). The last claim of Step 1 follows from (5.36) and the uniqueness of
the heat equation in the L?-setting.

Sub-step la: f(-,v) € L%0,T; H™") for all v € X. Here we mainly consider

d > 3. We provide some comments at the end of this sub-step for the case d = 2

Recallthat L¢ — H~!where¢ = dz—fz (notethat > 1sinced > 3).Sethg o l—l—

and note that g = %(ho — 1D aswellashg > h Vv (1 + g). By Assumption 3.1(2),

1 Gl my S TG OI2ems ST+ 1005, o ey 537
It remains to check that
0o Aq_ 2h hot
L>®0,T; LYNLY0, T; Lda-2) < L~"0(0, T; L"), (5.38)

Without loss of generality we assume g < 2h¢, otherwise if ¢ > 2h, then the above

d.
embedding follows from L9(0, T; L#2) <> L2M0(0,T; LM% as 44 > 2hy >
% = ¢hg. Thus, assuming that ¢ < 2h¢, by standard interpolation theory, (5.38)

holds provided, for some ¢ € (0, 1),

1 1-— d—2 1
< — and +(p( ) —

5.39
2hg q qd h ot ( )

RS
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The first inequality in (5.39) is verified for ¢ = ZZ—O € (0, 1). With the latter choice,

2dhg
a+4-

The latter condition holds with the strict inequality as g = ‘z—l(ho —Dandhg > 1+ 3.

If d = 2, then the above argument works similarly. However, we have to choose
¢ € (1,2) for the embedding L¢ < H~!in (5.37) as the sharp case ¢ = 1 is not true
in general. Indeed if ¢ > 2k, then one can choose &, > 2h(. While, if ¢ < 2h, then
one can choose &, € (1, 0co) large and ¢ € (1, co) small such that

one can readily check that the second inequality in (5.39) is equivalent to g >

R +§£ < —— where ¢ = i (5.40)

To see that such a choice is possible, one can argue as follows. By a continuity argu-
ment, it is enough to check (5.40) with (&, ¢) replaced by its (oo, 1). The first in
(5.40) is equivalent to g > % which is satisfied sinced =2, g = hg— 1 and hg > 3
by construction.

Substep 1b: F(-,v) € L*(0,T;L?) for all v € X. As in Substep la, we set
ho=1+ %‘1. By Assumption 3.1(2),

(ho+1)/2
IE G20,y S 1+ M0N0 -

As above, we first consider the case d > 3. Thus, it remains to check that
00 ) - ho+1 . 7 hotl
L>®0,T; LY NLY0, T; La-2) < L"07TY0, T; L"0™"). 5.41)

Without loss of generality, we assume that ¢ < hg + 1. Indeed, if ¢ > ho + 1,

d.
then the above embedding follows from L9(0, T'; Li7) < Lhotl(Q, T Lhotly g5

dquZ > q > ho+ 1. Next we consider ¢ < hg+ 1. In this case, by interpolation, (5.41)

follows provided

1 1— d—2 1
and <p+<p( )5 '
ho + 1 q qd ho +1

¢ (5.42)
q

The first inequality in (5.42) is verified for ¢ = hho € (0, 1). With the latter choice,
one can readily check that the second inequality in (5.42) is equivalent to g > %.
As above, the latter condition is satisfied with the strict inequality since g = ‘Z—I(ho -1
and hg > 1 + g. The case d = 2 works in the same way as in Substep la. We omit
the details.

Before going into the next step we collect some facts. Step 1 shows that v/) solves
(5.48) in its differential form where the equality is understood in H~!. For exposition
convenience, in Step 2 we prove the claim of Proposition 5.3 assuming that (in case
d = 2 we choose & large enough)

X< LY(0,T) x T RY forsome ¥ > (h — 1)(1 n g) (5.43)
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where i depends only on (4, d, g). Step 3 is devoted to the proof of (5.43).
Step 2: vV = v By a standard iteration argument, to prove the claim of Step 2
it suffices to show the existence of 8, > O such that, for all s € [0, T],

VW) =vP)ae.onT! = vV =vPae onls,s+8]xT. (544)

Note that the evaluation at s in first condition of (5.44) is well defined since v/) e
C([0, T]; L?) by Step 1. The remaining part of this step is devoted to the proof of
(5.44). Let ¢ > 0 be fixed later. The embedding (5.43) and the Holder inequality show
the existence of §(¢) > 0, independent of s € [0, T'], such that

s+4 . d
f /d |o|B=DU+2) gy ds < e. (5.45)
K T

Up to replace § by § A e, we can assume that §(¢) < e. Next we prove the existence
of e, > 0 such that (5.44) holds for §, = §(e).

Fix; € [0, T and assume that v (s) = v@® (s). Let v def minj<;<¢ v;. Recall
that v/) solves (5.48) in H~! on [s, T, and that the claim of Step 1 holds. Computing
%Hv(l) — 1)(2)||i2 one obtains, for all ¢t € [s, T,

1 2
o (1) — v(z)(t)Hiz + 2vo/ /d ‘V[U(l) - v(z)]‘ dx ds
s JT

t
< 2/ /d(f(-,v(l)) — fC D)) - P — @) dxds
s JT

NG

13
+2 ) (Fi(, v D) = Fi(, 0@ - Vo — 0P ] dxds .
s J1

1<i<t

Ir (%

Next we estimate the terms Iy and I separately. We begin by considering 1. Let
y = ddﬁ. By Assumption 3.1(2) we have, for all t € [s, s + 5],

t
11y (@) 5/ /d (14 Ot @1 [p® — @ 4y ds
s JT

0 1 1 2)h=1 D@2
=[r=s @0l @i Je® @,

L7 (s,t;LT-7) LT=7 (s,t;LT-7) LY (517
(ii)
< [e+2e" I ® =@y,

LY (s,t;L7)

2 elv® @2 50 =) 2
= Ce L®(s,;L%) Ty L2(s,t;L%)
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ﬁ, %) and in (ii) we
used (5.45), ﬁ =1+ % and § < ¢ by construction. In (iii) we used (5.5), ¢, depend
only on (|| f(-, 0) ||z, vo) and satisfies lim, o ¢, = 0.

We estimate I in a similar way. To begin, note that for all 7 € [s, s + 4],

where in (i) we used the Holder inequality with exponents (

t
F ()] < V—ZO/ /d |Viv™® — v<2)]|2dxds
s JT

t
+Co0) Y. | [FCo®) = B @) dxds.

1<i<¢?s

Again, by Assumption 3.1(2),

13
// |Fi(, v D) = Fi(-, o) dxds
s JT¢
t
5// 1+ O 4 @1 o — @ dx ds
s d

Vo 2
<l —v@ e e + 5 VO - 0@

L2(s,t;L2)

where the last inequality follows by noticing that the the second line in the above
estimate coincides with the LHS in the first line in the estimate of /.
Using the above estimates, we get

! 2
”v(l) — U(Z)”ioo(s +:12) + 21)0/ fd ‘V[v(l) — U(z)]‘ dxds
Y s JT

2

3
< el — @2 + v HV[v“) - v(z)]‘ o)

L>®(s,t;L2)

By choosing &, > 0 so that ¢, < %, the above yields (5.44) with §, = &(&y), as
desired.

Step 3: (5.43) holds. As above we let y = ddﬂ. Here we use again an interpolation
argument. Note that, by (5.32),

X< L0, T; LYY N LI, T; L) 4 LY (0, T; L"), (5.46)

where 7 is uniquely determine by the relation I_Ty + % = % Note that % > (h —
(1 + %) is equivalent to ¢ > %(h — 1) which holds by assumption. It remains to
prove n > (h — 1)(1 + %). Since & = dquz in case d > 3, the previous follows again

from g > %(h — 1). Finally we consider the case d = 2. In the latter situation y = %

and arguing as in (5.46), by interpolation, we have to choose &, € (1, 0o) such that

1 1 1

24 % 20— 4D
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To see that (5.47) is solvable, it is enough to let £, — oo and note that it reduces to
2 - %, ie.g>h—1= %(h — 1). In particular, there exists &, (q, h) € (1, 00)
for which (5.47) holds.

As a by product of Proposition 5.3 we can establish a “weak-strong” uniqueness
result for deterministic reaction—diffusion with cut-off:

(5.48)

Ovi = i Avi + . V[AVF () + £ v)],  on T,
v; (0) = vo,;, onT?,

where i € {1, ..., ¢}. As before, here ¢r (-, v) are as in (4.2) with R, r € (1, 00).
The following result will play a role in the scaling limit result of Theorem 6.1.

Corollary 5.5 (Weak—strong uniqueness for (5.33)) Let Assumption 3.1(2)—(4) be sat-
isfied. Let @ V2<qg<oo FixR,r € (1,00) and vy € L4(TY; RY). Let & and

X be as in Proposition 5.3. Assume that there exists a solution vV € X of (5.1) in the
weak formulation of (5.33) satisfying

w0700 < R — 1. (5.49)

Let v® € X be a weak solution to (5.48) in the following sense:
Foralln € C®(T?; R and t € [0, T,

w0, n) =/ vo - dx
'H‘d

t
+ Z ‘/(; /]I‘d (Mi U,'(2)A7]i + or,r(, v(z))[fi(-, v(z))m — F(, v(z)) . Vm]) dx ds.

1<i<t

Then vV = v,

Due to (5.49), vV is also a weak solution to the problem (5.48) with cut-off. In
the proof of Proposition 6.5, we check (5.49) by taking the (strong) (p, g)-solution to
(5.1). Hence, to some extend, Corollary 5.5 shows that weak solutions coincide with
strong ones to (5.48) (if there are any) and that (5.49) is a regularity assumption. This
explains the name of Corollary 5.5.

Proof The idea is to reduce to the case analyzed in Proposition 5.3 by mimicking a
stopping time argument. To this end, let us set

e < inf {tel0,71: WPlLr©pLe) = R},  where  inf @ =

It remains to prove that ¢ = T'. Indeed, if the latter holds, then ¢g (-, v(2)) =1
and therefore v@ is also a weak solution to (5.1) (i.e. it satisfies (5.33) for all n €
C>°(T?; RY)). Hence, applying Proposition 5.3, we eventually have v = v,

We prove e = T by contradiction. Assume that ¢ < 7. Then

1Pl ©ersy =R = ¢rr(s,v?) =1 foralls €0, e]. (5.50)
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Therefore v?® |[0,e] 1S @ weak solution to (5.1) in the sense of (5.33). Hence, by Propo-
sition 5.3,
v =v@ ae on [0, e] x T (5.51)

Combining (5.51) and (5.49), one has || v®@ lr©0,e;09y < R — 1. This fact contradicts
(5.50) and therefore e = T, as desired.

6 Proofs of Theorems 3.5 and 3.6

In this section we prove Theorems 3.5 and 3.6. To prove both results we can now
argue as in [29, 33]. In particular, as a central step we prove a scaling limit result for
stochastic reaction—diffusion equations with cut-off (4.1), see Sect. 6.1. Theorems 3.5
and 3.6 will be proved in Sects. 6.2 and 6.3, respectively.

6.1 The scaling limit for reaction-diffusion equations with cut-off

In this subsection we continue our investigation of reaction—diffusions with cut-off
initiated in Sect. 4. Recall that the cut-off equation reads as follows:

dvi — v Avi df = g, (-, v)[div(F(', )+ fi( v)] dr

+ /cav Z@k(ak,a -V)v; o dwf’“, on T¢, 6.1)
k,a
v; (0) = v; 0, on ’]I‘d,

where ¢r , is as in (4.2) for R > 0, r € [rp, 00) and r¢ is as in Theorem 4.1. The
aim of this subsection is to prove the following scaling limit result. It can be seen
as a version of [33, Theorem 1.4] or [29, Proposition 3.7] in our setting and it is of
independent interest.

Recall that weak solutions to (6.1) are understood as in Corollary 5.5.

Theorem 6.1 (Scaling limit) Let Assumption 3.1 be satisfied. Fix T € (0, 00) and
vo € LI(T4; RY). Assume that q > @ Let & € [&y, 00) and r € [rg, 00) where
& and ry are as in Proposition 5.3 and Theorem 4.1, respectively. Suppose that the
following hold.

(1) Let (v(()"))”zl be a sequence such that

1—2 13«
v(()n) €By, " (T RY foralln > 1, and v(()")—\vo in L9(T¢; RY).

(2) Let (9(”)),121 c Zz(Zg) be a sequence such that #{k : 9;") # 0} < ocoand (3.2)
with @ = 0™ hold for all n > 1, and

lim [0 || = 0.
n—oo
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(3) For some y € (0, 1), there exists a unique weak solution
v=(v)_; € L*0,T; H")NnC([0,T]; HY)NL>®(, T; LY) N L0, T; L¥)
to the following deterministic system of reaction—diffusion equation with cut-off:

dvi = (v + VAV + ¢r ¢, V)[dIVIFC, 0) + fi(,v)]  on T,
v;(0) = v on T¢.

Denote by v™ the (p, k, 1, q)-strong solution to (6.1) with data v(()n) (see Theorem

4.1) and let v be as in (3). Then
nl;ngo ]P’(||v(”) =Vl o.7: L0 (9 REY) > s) =0 forall ¢ > 0. (6.2)

Equation (6.2) shows the (weak) enhanced diffusive effect of the transport noise in
(6.1). Note that the increased diffusivity depends on the strength of the noise through
the parameter v. The proof of Theorem 6.1 actually gives a stronger result. More
precisely, we show that (6.2) also holds in case the L" (0, T'; L4)-norm is replaced by
L%, T; H=Y)N C([0,T]; HY) N L"(0, T; L) where y > 0 is arbitrary (this is
needed to obtain the assertions of Remark 3.7).

The proof of Theorem 6.1 requires some preparation and it will be given at the end
of this subsection. We begin with a compactness result.

Lemma 6.2 Fix T € (0, 00). Let yp, y1, ¥ € (0,00), g,r € (1,00) and & € (g, 00).
Set

YE 120, T: HY N L2, T: L) N C™ 0, T; H") N LI, T; L¥),

X 120, T H=")nCq0, T H)N L (0, T; L9).
Then Y — X compactly. Moreover, for any K € (0, 00), the set

[u € X: sup lulze + lull ooy < K} is closed in X,
te[0,T]

Proof The proofis similar to the one of [29, Lemma 3.3]. For the reader’s convenience,
we include some details. Below (yp, y1, v, r, &) are as in the statement of Lemma
6.2. Firstly we show the compactness of the embedding J — X. Let (u,),>1 be a
sequence in Y such that ||u, ||y < 1.It remains to show that there exists a subsequence
(not relabeled for simplicity) such that ¥, — u in X. To begin, note that, by Ascoli-
Arzela theorem, there exists a (not relabeled) subsequence such that u, — u in
C([0, T]; H "7¢%) for all ¢ > 0. Next we show that u,, — u in X. Combining the
uniform bound of (u,),>1 in L>(0, T'; L?) C L%(0, T; L?), one has

u, — uin C([0,T]; H=®) forall ¢ € (0,1). (6.3)
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1/(1+ 1+
Note that gl 2soreo,r;22) S 1817 7o) 181750 g1, or all & € (0, 1) by
interpolation. Whence, choosing ¢ > 0 small, the above and the uniform bound in

L%(0, T; H') yield
up — uin L0, T; L?) forall ro € (1, 00).
Similarly, interpolating the above with the uniform bound in L*°(0, T'; LY), we get
u, — uin L0, T; L9°) forall rg € (1, 00) and go € (1, q). (6.4)
We claim that there exist rg € (1, 00), qo € (1, ¢) and 6y € (0, 1) such that
gl S llglp gl (6.5)
ElLr©.7:09) S N8l pro0,7;090) 18 a0, 7. 18)" .

To see the above one can argue as follows. Fix 6y € (0, 1) such that Z—" < % Note that

l_q;o" + 95—0 < % since £ > ¢g. Hence there exist g € (2, 00) and gg € (1, ¢g) such that

1 — 6 O
0+_0
ro q

1—90+9()

and —
q0 §

=

=

N | =

1
.
In particular, (6.5) follows with the above choice of (¢, go, fp) and standard inter-
polation theory. Thus, (6.4) and the uniform bound in L4(0, T; L%), we obtain
u, — uin L"(0, T; L?). Combining this with (6.3) for some ¢ € (0, y], to con-
clude the proof it remains to note that u,, — u in L2(0, T; H'~7) due to (6.3) and the
uniform bound in L2(0, T: Hl).
The last claim follows from the Fatou lemma.

To apply Lemma 6.2 we have to investigate further regularity estimate of solutions to
reaction—diffusion equations with cut-off (6.1). The following complements Theorem
4.1(2).

Lemma 6.3 (Time-regularity estimates) Let Assumption 3.1 be satisfied. Fix T €
(0,00), R > 1 and a € (1,00). Assume that vo € L7 and q > %(h —1). Let

r € [rg, 00) where rq is as in Theorem 4.1. Suppose that 0 € 02 satisfies (3.2). Let
v = (vi)f:1 be (p, k, 1, q)-solution to (6.1) provided by Theorem 4.1 and set

t
def
M) = a/_chE ek/ (Ok. - V)v; dwk?,
0
k,a

Then there exist vy, Y1, Co > 0 independent of (vo, 0) such that for alli € {1, ..., ¢}

E[IMillE0 o.7:1-my] < Collo 7% (1 + Twollzh), (6.6)
2
E10illgho 0.7:11-1y) < Co(l + Iwoll 4. 6.7)
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The key point is that on the RHS(6.6) we have the £>°-norm of 6.

Proof For notational convenience, we fix i € {1,..., ¢} and we drop it from the
notation if no confusion seems likely. The proof of (6.6) follows almost the one of
[29], see p. 1779. Since the argument exploits several basic properties of the noise, we
include some details.

Sete;(x) = ™ for j € Z4 and x € T9. Let y; € (0, 00) be decided later. The
1t6 isomorphism yields, forany 0 <s <t < T,

! a
E[IM@) = MO ] ~a B[ 367 / |@ka - V0113, dr]
ko s
0? t , qa
:E[ZZW/ |<ejs(gk,a'v)vi>| dr]
k,a jEZd s
t
= ”9”%01[4:[2 D A+1AH™ / l(ej, (ke - V)Ui>’2dr]a
k,a jEZd s

where (f, g) = de f - gdx. Since div oy o = 0, we have
(ej, Ok, - VIV;) = /d ej div(og,qv;) dx = —2mij - /d ejvioy,q dx.
T T

Recall that (o o )k.« 1S an (incomplete) orthonormal basis of L2(T?; R?). Therefore,
forall j € 7% and a.e. on [0, T] x €2, the Parseval identity yields

2 . . .
> e Orw - VIvd)|” < 1iPlejvill7a S LilPllvillza S 1P+ llvollf,)
k,a

where in the last inequality we used Theorem 4.1(2). Therefore

2
E[IM©) = M©)I%-,] S 1013 1+ o951 =51 Y ﬁ

jezd

]“. (6.8)

Note that the sum on the RHS(6.8) is finite provided y; > (d + 2)/2. Combining

(6.8) and the Kolmogorov continuity modification theorem, one gets (6.6) for all
a—1

70 € (0, 5).
Next we prove (6.7). Recall that v = (v,-)f:1 isa(p, k, 1, g)-solution to (6.1). Thus

v=uv9+ D)+ M(t) ae.on[0,T]x L,

where D Dy + D + Dy and for t € [0, T]

i=

! ¢
DA(t)=/0 (i +v)aw) ds,
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4 14
D = [ (orrC0fiC0)_ b5,
t 14
Dr(0) = [ (on,C00d(FC ) ds.
0 i=l1

Since (6.6) has been already proved and [|0]|¢ < ||€]|,2 = 1 by assumption, to prove
(6.7) it is sufficient to estimate D.
By Theorem 4.1(2) and ¢ > 2, we have a.s.

2 2 q
”IDA”HI(O’T;H—I) ST ”vi”LZ(O,T;H‘) S 1 + ”vO”Ll]‘

Recall that r € [r(g, 00) where rq is as in Theorem 4.1. Next fix hy € [h, 00) such
that 1 4 % <hy <1+ %‘1. Note that g > %(ho — 1) > 2 by construction. Finally, set
def q+h0 1

¢ =

. One can check that ¢ € (1, 0o) since ¢ > 2 by assumption. Hence, a.s.,

T
”Df ”Wl £(0,T;LE) ~ llilfl}[/ /’;Fd(qu,r('a U))ﬂfi('a v)|§ dxds
T
Srrl +/ /d(dne,r(-, V)¢ (1 + [v]"0%) dx ds
0 T
T
=1+ [ / (PR, (-, ) ]9~ dx ds
0o Jrd

@ T 2o 2 fap p
<g 1+ max (/ /T‘f [v;i |97V dxds> < 1+ lwolife
0

1<i<¢

where in (i) we used Lemma 4.5 and that ¢g (¢, v) = O for all # € [0, T'] such that
lvll L7 0,r;24) = R (cf. Step 2 in the proof of Theorem 4.1(2) for similar compuations).
Inspecting the proof of Lemma 4.5, we also have f = 97‘” where 6 < ddﬁ and

Y= %(q—i—ho— 1). Since hy > 1+§andq > %(h()— 1), we have B < ¢ and
therefore

IDflwie o6 S 1+ lvollg, as.

Using the above argument, the fact that g + ho — 1 > ho + 1 and Assumption 3.1(2),
we have

|(h0+1)/2

||DF||H1((),T;H DI S lgr.Cov)|v ||L2(0 T;L?) S+ ||U0||Lq a.s.

To conclude, note that, by Sobolev embeddings, H'(0, T; H™') — C?(0, T; H™!)
and

Whe, T; L) — ¢ D%, T: LY — cE D/, T: H)

where k > 1 is large. Thus the conclusion follows (6.7) by collecting the previous
estimates.
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We are ready to prove Theorem 6.1. Here we follow [29, Proposition 3.7].

Proof of Theorem 6.1 By (1), we have sup,, -, ||v3") lLs < oo.Let N > 1 be an integer
such that N > sup,_; [v§"llz¢. Fix y € (0, 1). For n > 1, let v be the global

(p, k, 1, g)-solution to (6.1) provided by Theorem 4.1. Let 11 be the law of v™ :
Q — X where

X120, T; H' V)N (0, T, H )N L' (0, T; LY).

By Theorem 4.1(2) and (4.5), there exists a constant K (N) € (0, 0o), independent of
n > 1, such that v® € Xk a.s. forall n > 1 where

def

XS {uex: sup Nuloo + lulloorie) < K -

tel0,T]

Recall that &£ = % if d > 3 and & > &y where & is sufficiently large otherwise (cf.
Proposition 5.3). By Theorem 4.1(2) and Lemma 6.3, there exists yp, y1 > 0 such that

2 2 2 2
Sull)E[ s[gpﬂ I Ol + ”U(n)“LZ(O,T;H‘) + ”U(n)”CVO(O,T;H’Vl) + ””(n)”Lq(o.T;Lf)] =
n> tel0,

By Prokhorov’s theorem and Lemma 6.2, there exists a probability measure © on X’
such that 1 — 1 (up to take a non-relabeled subsequence). Note that supp 1 C Xk
as supp ™ C X forall n > 1. We now divide the proof into two steps.

Step 1: Consider the truncated reaction—diffusion with cut-off as in (3):

dvi = () + V)AY + dro (L V[V 0) + fi¢ )], on T ©9)
v; (0) = vo,i, on T, '
wherei € {1,...,¢}. Then
p(u = (ui)f_, € Xk : u is a weak solution to 6.9)) = 1. (6.10)

Recall that weak solution to (6.9) in the class Xk are defined in Corollary 5.5.
Fix 7 € C®(T%; RY). Let J5 : Xx — C([0, T]) be given by

1) o) = [ - was
t
- Z // ((V+Vi)MiA7Ti+¢R,r(-,-)[fi(',u)m—Fi(',u)'VﬂiDdxds,
0 Jr¢

1<i<t

where u € Xk, t € [0, T] and (-, -) denotes the pairing in the duality (HY, H~7). In
the following we prove the continuity of the map Jy, s : Xx — C([0, T']) defined as

t
[T s 1) & 3 /0 _/Td‘pR*’("u)ﬁ("u)deds'

1<i<¢t
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The remaining terms in [J, can be treated analogously using also that Xx C
L2(0, T; Hl”’). By Lebesgue domination theorem, we have, for all uD @ ¢ Xk,

1T, D) = T p @)l o.11)

T
Sn /0 /:er [f(, 1,4(1))||¢R’r(.7 u(l)) — dr.r (-, u(2))| dx ds
T
o Jrd

T
S sup 1ot = e, ) [ [ rca®)jaxas
0 T

tel0,T]
r 1 2
+/ / LfCuDy = £, u®)dxds
o J1¢
Sr Y = u@ o700 (14 11 g 1)
1 —1
+ (1 Oy + @) M® = @0 7oz,

Lh(0,T;L") Lh(0,T;L")

where we used Assumption 3.1(2) and that ¢ is bounded and Lipschitz continuous.
By Remark 4.6 and ¢ > 2 we have, for some o, 8 > Oand all u € &,

a B
||”||L’1(0,T;L") Sq,h [lze | ’(0»T§L‘1)”u”Lq(O,T;LE)'

Thus the continuity of J y on Xk follows from by combining the above estimates
and using that [l D lzao.7:L5)> @ lLao.7:15) < K a.s. Since J is continuous, we
may define the pushforward measures of 1 and u under the map J5, respectively:

def _ def _
pd S uI) and s = w7,

Observe that /LI(T"L—\/L,,,# as ™ —p and that uf;’)# is the law with 7, v®. Moreover

T v satisfies
Tuv® = (7, v = vo) + (1, M™) (6.11)

where
1
MEn)(t) def Jeqv 29"/ Ok - V)vl.(") dwf’“.
k,a 0
By (6.6) in Lemma 6.3 and ||| ;~ — 0 (see assumption (2)) we have, for all
a e (1,00),

E sup [(m, MP @) <1024 — 0 asn — oo.
tel0,T]
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Using the above and assumption (1) in (6.11), one can check that supp p; # = {0}. The
conclusion follows from the separability of H~" and the density of the embedding
C® < H7Y (cf. the last part of the proof of [29, Proposition 3.7]).
Step 2: Let v be as in (3). Then v — v in probability in X. In particular (6.2)
holds. It suffices to show that
w =23y, (6.12)

where §, is the Dirac measure at v € X. To see this recall that v is independent of
w € 2. Hence,

lim sup P(Jv™ — v|lx > &) = lim sup ]P’(v(”) € CBs(v))

n—o00 n—o0

= lim sup ™ (CB (v)) < 8s(CB:(v)) =0

n—oo

where CB, (v) & {u € X : ||v — ullx > &) and (i) we used u —8, due to (6.12).
It remains to prove (6.12). By (3), v is the unique weak solution in X C Xk to the
reaction—diffusion equation with cut-off (6.9) and therefore

{u = (u,~)f:1 € Xk : uis a weak solution to (6.9)} = {v}. (6.13)

Hence (6.12) follows by combining the above with (6.10).

The arguments of Theorem 6.1 also yield a suitable continuity of weak solutions
for system of deterministic reaction—diffusion equations with cut-off:
: 0vi = pidvi + ¢r ( V[AVF G ) + fiGv)], on T 614

v; (0) = vo i, onT?.

As it will be needed in the proof of Theorem 3.5, we formulate it in the next result.
Recall that weak solutions to (6.14) in X are defined in Corollary 5.5.

Proposition 6.4 Let Assumption 3.1(2)—(4) be satisfied. Fix T € (0, 00) and R > 1.
Assume that u; > 0 foralli € {1,...,£}. Let d(hz—_l) V2 <q <o Fixvy € LY. Let
& and X be as in Proposition 5.3.

(1) Let (v(()n))nzl C LY be a sequence such that v(()")—\vo in L4,
(2) Suppose that there exists a unique weak solution v € X to (6.14) such that, for
some yp, y1 > 0,

ve Y 120, 7: HY)YNL®0,T: L) N C"0, T: H")N L0, T: L%).

Moreover, for alln > 1, there exists a weak solution v((jzz e X'to (6.14) with initial

data v(()”) such that sup,,- | ||vé';t)||y < 00.

Then vé’;t) —> Vdet in X.
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In applications (2) will be checked using Proposition 5.1 and Corollary 5.5.

Proof 1t is enough to show that for each subsequence of (vé’ég)nzl, we may find a
subsequence such that vé’éz — vget in X. As above, to economize the notation, we do
not relabel subsequences.

By Lemma 6.2 and the bound in (2), there exists in u € X such that vézt) — u in
X. By (1) and arguing as in the Step 1 of Theorem 6.1 we may pass to the limit in
the weak formulation of (6.14) (cf. Corollary 5.5). Hence u € X'is a weak solution to

(6.14). The uniqueness of vge; (see assumption (2)) forces u = vges-

6.2 Proof of Theorem 3.5

As a preparatory step for Theorem 3.5, we prove the following version of it with
sufficiently smooth initial data vg where (6, v) depend only the L?-norm of vy. Once
this is proved, Theorem 3.5 follows from such result and a standard density argument.
Recall that the existence and uniqueness for (3.1) is ensured by Theorem 3.3.

Proposition 6.5 (Delayed blow-up and weak enhanced diffusion—Smooth data) Let
Assumption 3.1 be satisfied. Fix N > 1, ¢ € (0,1), T,vg € (0,00) and r € (1, c0).
Then there exist

v>v, R>0, 0el>(Z8) with #{k : 6 #0} < o0 (6.15)

1-21%x
such that, for all initial data vo € By , © (T?: RY satisfying vo > 0 (component-
wise) on T¢ and ||U0”Lq(Td;R/z) < N, the unique (p, k, 1, q)-solution (v, 7) to (3.1)
with (v, 0) as above satisfies the assertions (1)—(2) of Theorem 3.5 and

P('L’ >T, |vllero,r,L9) < R) >1—c¢. (6.16)

Finally, there exists Ko > 0, independent of vy (but depending on N > 1), such that

def
]P)(T > T, ”v”LP(O,T,w,(p.S;HZ’&q) < K()) > 1—2¢ where Kp,s ; p(l — %) — 1.
(6.17)

Recall that (p, ¢, «) in the above result are fixed in Assumption 3.1(1). In particular
k €10, % — 1) and therefore the initial data vy considered Proposition 6.5 has positive
smoothness. As explained below the statement of Theorem 3.5 the presence of § > 1
in (6.17) is necessary to obtain K independent of vy (indeed, the Sobolev index of
LP(,T, Wi, 55 H2—5,q) is equal to the one of L?).

The above result can be proven following the proof of [29, Theorem 1.4]. As our
setting (slightly) differs from the one of [29], we include some details.

Proof of Proposition 6.5 Throughout this proof we let (N, ¢, T, vy, r) be as in the state-
ment of Proposition 6.5. Without loss of generality we assume r > ro where ry is as

@ Springer



Stochastics and Partial Differential Equations: Analysis and Computations

in Theorem 4.1. Moreover, to make the argument below more transparent, we dis-
play the dependence on the initial data for the equation considered. For instance, the
(p, k, 1, g)-solution to (3.1) with data vy will be denoted by (v(vg), T(vo)).

We begin by collecting some useful facts. Set

_nltx

1-2-=K
By & {vo € By, " (THRY : vp = 0on T and voll Ly e e, < N}, (6.18)

Ly € {vo € LYT%RY : vy > 0on T and 1voll g pa.gey < NY. (6.19)

Note that By € L. Proposition 5.1 ensures the existence of positive constants v > vy
and R > 1, both independent of vy € Ly, for which the deterministic reaction—
diffusion equations (5.1) with u; = v; + v have a (p, g)-solution vge(vg) on [0, T']
for all initial data vy € Ly and

lvget (W) llLr0,7:09) < R — 1. (6.20)

Due to (6.20) and (4.2), vget(vo) is a (p, g)-solution on [0, T'] to the deterministic
problem with cut-off (6.14) where u; = v; + v, R as above and initial data vy € Ly.

Finally, Let (0(”)),12 1 be the sequence defined in (3.16). For any n > 1, Theorem
4.1 provides a unique strong solution véﬁ? (vo) to the reaction—diffusion equations with
cut-off (4.1) for all initial data vy € By, R is as in (6.20) and 6 = 6.

The key idea now is to prove that, for all ¢ € (0, 1),

lim sup P([[0% (v0) — vaer (Vo) I L0, 7:29) = &) = O. (6.21)

n—oo voeBy
We break the proof of (6.21) in several steps. The proof of (6.21) is postponed to
Step 4. In Step 1 we prove that (6.21) implies the assertions (1)—(2) of Theorem 3.5
and (6.21). In Steps 2 we prove additional interpolation estimates, which complements
the one in Lemma 4.3, and leads to the proof of (6.17) given in Step 3.
Step 1: If (6.21) holds, then there exist (v, 6, R) independent of vo € By for which

the assertions (1)—(2) of Theorem 3.5 and (6.16) hold.
By (6.21), we can choose n, > 1, independent of vy € By, such that

P([lvse’ (v0) — vaet W)l 0.7:L9) < €) > 1 — . (6.22)
Combining (6.20), (6.22) and ¢ < 1, for all vy € By,
]P)(”Uéﬁf)(UO)”Lr(O,T;Lq) < R) >1—e. (6.23)

Next fix vg € By. Let 7, be the stopping time given by

. Cinf {1 € [0, 7] : 0% @)L ©.1:00) > R}, where info < T
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Note that, due to (6.23) and the definition of 7., we have

Pr,=T)>1—¢, and ¢r, (,v")=10n[0, 7] x Q. (6.24)

cut
By using the second condition in (6.24), one can readily check that (véﬁﬁ) [[0,7.1x 2> T)
is alocal (p, k, 1, g)-solution to the original problem (3.1) in the sense of Definition
3.2. By maximality of (v, 7) (see the last item of Definition 3.2), we have

. <7 as, and v |0rixe =v ae. on[0, 1) x Q. (6.25)

Thus the assertions (1)—(2) of Theorem 3.5 follows by combining (6.22) and (6.24)—
(6.25). Finally, (6.16) follows from (6.23)—(6.25).

Step 2: There exist a1,y > 0, B1 € (0, h) and B> € (0, %), depending only on
(h,q,8,d), such that, for all u € H>=%4,

h
Lo lgsa S 1+ TullSy lulBa s, (6.26)
: 5
i (F 1) s < 1+ Nl el 5, (6.27)

The proof follows as the one of Lemma 4.3. However, for the reader’s convenience, we
include a proof of (6.26). Recall thatg > @ \Y ﬁ by assumption. By Assumption
3.1(2),

@)
1 Gl g S IFC e S T4 Nl

dq

where in (i) we used the Sobolev embedding Lé — H =549 and . = Sa+d

> 1 (as
9> 7%5).

Now, if h{ < g, then (6.26) follows with ¢y = & and B; = 0. Next, it remains
to discuss the case h¢ > g. In the latter case, we employ Sobolev embeddings once
more. Note that

Thus ¢ = —% + g(l - %). Note that ¢ > 0 since h¢ > g. Moreover ¢ < 2 — §. To

see the latter, note that it is equivalent to & + g < % and it is satisfied since § < 2
and g > @. Since [L4, HZ*M]w = H?%1 for | = % € (0, 1), collecting the

previous observations we have

1-81)h h
L Collg-sa S 1+ Tull s P2 a2,

Hence (6.26) follows from the above as 814 < 1 is equivalent g > @
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Step 3: Proof of (6.17). The claim of this step follows the arguments used in Step
2 of Theorem 4.1(1). Recall that (6.16) was proven in Step 2. Fix vy € By and set

y L inf{t € [0, 7(00) : lv(0)lr@.iz0) = RYAT and info € ¢ AT,

where (v(vg), T(vo)) is the (p, «, 1, g)-solution to (3.1). Note that y is a stopping time
due to Remark 3.4(b), and P(y = T) > 1 — ¢ by (6.16). In virtue of Step 2, up to
enlarge ry if needed, one can repeat the arguments in Step 2 of Theorem 4.1(1) with
the spaces (H 19 H':9) and the stochastic interval [0, T A T) x  are replaced by
(H=%4, H>=%4) and [0, y) x , respectively. In particular, by using the stochastic
maximal L?-regularity estimates (see e.g. [3, Theorem 1.2]), one obtains the analogue
of the estimate (4.12) in the current situation:

@) (i)
p p P
E“v”LP(O,%prYa;HZ*‘SY‘I) SO,V,R 1 + “UOHB((])J) f, 0,v,R,p.q 1 + ”U()”Lq . (628)

Here in (i) we used that H% =1- % and that the space for the initial data is

(H—MHZ—M)%J, = BY , and in (ii) that LY < BY ~as p > g. The implicit
constants in (6.28) depends on (6, v) which has been fixed so that (6.16) holds. In
particular they are independent of vy € By. Hence, the estimate (6.17) follows from
(6.28), the Chebyshev inequality and the fact that P(y =T) > 1 — e,

Step 4: Proof of (6.21). Fix ¢ € (0, 1). By contradiction, assume that (6.21) does
not hold, i.e.

limsup sup P(Jlve) (v0) — vaet W)l 27 0.7:29) = €) > 0.
n—00 ygeBy

Thus there exists a (not-relabeled) subsequence of data (v(()"))nzl C By such that

@ ") = vaee I L 0.7:00) = €) > 0. (6.29)

lim P(|lv
n— 00 (” cut

Moreover, up to extract a further subsequence, we can assume that, as n — 00,

v(()n)Avo in LY, forsome vy e L9 suchthat |vgllze < N. (6.30)

Note that vy € Ly as By 3 v§” > 0onT? foralln > 1,see (6.18)~(6.19). The choice
of v and the comments below (6.20) show that there exists a (p, g)-solution vézz (vo)
to (6.14) on [0, T such that sup,,-. | ||vdet(v(()”))||y < oo where Y is as in Proposition

6.4. Recall that, due to (6.20), vdet(v(()”)) are actually (p, g)-solutions to (5.1) with
wi = v; + v provided by Proposition 5.1 and therefore in the class considered in
Proposition 6.4. By Corollary 5.5 and (6.20), we also have that vge((vg) € X is also
unique in the class of weak solutions, where X is as in Proposition 6.4. Hence, the
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latter result ensures that
vdet(v(()")) — vget(vg) In L"(0,T; LY) as n — oo.

The above and (6.29) yield

. (), () €
lim sup P( [|vey (Vg ) — vdet(vo) -0, 7;29) > 5 > 0. (6.31)

n—oo

Next we derive a contradiction with Theorem 6. 1. To this end we first check its assump-
tions (1)—(3) of Theorem 6.1. Note that (1) follows from (6.30) and v(()") € By for
all n > 1. (2) follows from the above choice of 8 as in (3.16). Finally, (3) follows
from vgp € Lx and the comments below (6.20). Let us stress that the uniqueness part
of the assumption (3) in Theorem 6.1 follows from Corollary 5.5 and (6.20). Hence
Theorem 6.1 is applicable and it yields (6.2) with v = véﬁg (v(()n)) and v = vger (Vo).
The latter gives a contradiction with (6.31) and completes Step 4.

To prove Theorem 3.5 we use a density argument and the fact that the conditions in
Proposition 6.5 are uniformly w.r.t. || vg || L« . To set up a convenient density argument we
need an additional estimate for stochastic reaction diffusion equations with a modified
cut-off. The choice of the cut-off is now inspired by the estimates (6.16)—(6.17).

Fix K > 0,6 € (1,2)and n > 0. AsinProposition 6.5, we set ks = p(1— %) —1.
Let ¢ € C*(R) be such that ¢|jo,17 = 1 and ¢|[2,00) = 0. Finally, set

def - —
Ok ron(t0) S (K I ©iz0) O (KT VI Lr 01,y 2-5-0))- (6.32)

Consider the following stochastic reaction equations with (a modified) cut-oft:

dv; — v Avi df = B g (- v)[div(F(~, ) + i, v)] dr

+/eav Y Ok (Oka - V)V; 0 duwy onT!, (633
k,a

v;(0) = v; o, on T¢,

The notion of (p, k, §, g)-solutions to (6.33) can be given as in Definition 3.2.

The main difference of (6.33) compared to (4.1) analyzed in Sect. 4 is that the action
of the cut-off ®g , 5, (-, v) is stronger than the one used in (4.1), i.e. (4.2). Let us note
that the truncation chosen in (6.33) is too strong to run the arguments of Sect.4. On
the other hand, the one in (4.2) seems not enough to obtain the stability estimate of
Lemma 6.7 below (cf. Remark 4.4). Such estimate is the last ingredient in the proof
of Theorem 3.5. To this end, we need the following estimates.

Lemma 6.6 Let Assumption 3.1(1)~(2) be satisfied. Assume that ¢ > <UD v -4
for some § € (1,2). There there exist r1 € (1,00) and n1 > 0, depending only on

(h,d, q, 8), such that the following estimate holds for allr € [ry, c0) andn € (0, n1]:

”f('a I,t(l)) - f('9 M(z))”Lp(O,T’pr6’H78'q)
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+|div(F (-, u(l))) —div(F (-, ”(2)))||LP((),T,w,(p.3»H75"’)
S A+ D1+ 1@ Dl —u @

r.an?

def

forallu u® € Z, ,'= L"(0,T; L) N LP(0, T, wy, ;; H*79),

Proof The proof follows the argument in Step 2 of Proposition 6.5. We content ourself
to prove the estimate for f (-, uMy— £(-, u®) as the other one is similar. To economize
the notation, in the proof below, we write « instead of k, 5 = p(1 — %) — 1 if no
confusion seems likely.

By [7, Lemma 3.2], there exists 8 € (1 — 1%, 1—- %1%) such that

IFCu™)y = FCuP) s

S A+ 1O+ 11 D = u P 1280

Letusrecallthat § < 1— L] I+ jg equivalent to the subcriticality of the (p, «, §, q)-

setting. Since | [g1/"~"|g2| ||Lp(O rowey = 18115t 0 7y 182100 0.7, BY HOlder
inequality, it remains to show the existence of some r € (1, co) and n > 0 such that

L™(0,T: LYY N LPO, T, we; H> 5719y s LPMNO, T, w,; HT?P4).  (6.34)
To prove (6.34) one can argue as follows. By interpolation, for all y € (0, 1),
L0, T: LY NLP0, T, we; H* 2719y < L (0, T, w,,; H'@°71)  (6.35)

where

Without loss of generality we may assume 28 — 8 <2 — & —n as B < 1. Hence, we

can choose y = &ef 22’35 ‘Sn € (0, 1) in the above. Note that HY2=0-m-¢ = g—3+2h.4
By (6.35) and [6, Proposition 2.1(3)], (6.34) follows provided

I +xy, 1+«
—_— < —.
Ty p

ry > ph and (6.36)

By continuity, (6.36) holds provided it holds for = 0 and » = oo. In the latter case

Ky = K, T, = 5 and y = % < 1. Thus, in that case, the second in (6.36) is

automatically satisfied. It remains to check that r, > ph. Since k = p(1 — %) -1
14k

ﬂ_
we have y = — "~ and therefore
J2

I+«
h = —_—_—_— e — < —
v = b ry p 1+« <ph
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The latter condition holds as it is equivalent to § < 1 — h}’jlﬂ which holds by

. P
construction.
The next result is the last ingredient we need to prove Theorem 3.5.

Lemma 6.7 (Stability estimate for (6.33)) Fix T € (0, 00). Suppose that Assumption
3.1. Let K > Q0 and § € (1, 2) (where h is as in Assumption 3.1) and assume that

dh—1) d 2
> \YJ and p>——Vgq.
2 d—3§ 2—36

Let (r1,n1) be as in Lemma 6.6 and fix r € [r1,00), n € (0, n1). Then for each
vo € LY, there exists a (unique) global (p, k5, 8, q)-solution vk , s,y (Vo) to (6.33)
on [0, T].

Moreover, there exists a constant Co(p,q, K,r,8,0,n, T) > 0 such that, for all

o0 e 14,

1) 2), P (1) @), pr
E”U( - U( ”LP(O,T,U)KPSQHZ_B’q)mL'(O,T;Lq) = COHU() - U() ”qu (637)

where v} o v(K‘r,(;,n)(v(()j)) is the solution to (6.33) with data v(()j).

Proof The existence of a (unique) global (p, kp s, 8, g)-solution to (6.33) follows as
in the proof of Theorem 4.1 with minor modifications. To avoid repetitions, we only
give the proof of (6.37). To economize the notation, in this proof, we write ® (¢, v)
instead of ®g ; 5 ,(¢, v) and we let

Zon @) € LPO, 1, w,, s HO7) N L7015 L) fort >0, (6.38)

NG v) E @, o) [divFC ) + i 0)] forv € Z,,(T). (6.39)

Step 1: There exists C(h,d, q, 8, p) > 0 such that, for all uD y@ ¢ Zy,(T),
ING, D)y — N, M(Z))||LP(O,T,pr.5§H73'q) < qu® — 4@ 1z,.,T)-

The proof of Step 1 follows as the one for Step 2 in Theorem 4.1(1). For the reader’s
convenience we give a sketch. For j € {1, 2}, fix ul) e Zy (T) and set

e Linf{r €0, T1: D)z, 0= K} where info % 7.

Without loss of generality we assume that ey < e;. Note that

N D) = N, u®) = (96, uD) = @ u®))[div(F e, u®) + it u)]

f
n%
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+ o, u<2>)<div(F(-, UM 4+ £ uV) — div(F(, u®)) — fi(, u@))).

f
lzdé

Note that ® (s, u(l)) — D(s, u(2)) = O for all s > e; since e < ej. The definition of
e1 and Lemma 6.6 yield

1= (sup @G, u) = C ) [div(FCu) 4 fiCu D gy o)
1€[0,T] L€, Wy

1 2
Sk Ml —u® Nz, ).

Similarly, by Lemma 6.6 we have

1 2 1 2
B S FCu®) = FCu®) g ey iyami-say T 1 uD) = i) Lo ey s
Skl —u@liz, o).

The claim of Step 1 follows by collecting the estimates for /1 and I5.
Step 2: There exists N(p,q, K,r,8,n,0,T) > 0 such that

B0 = 0P 0 7, oareesgy T EINC aD) = NC u®)

LPO.T w5 H=54)
1 2
< Nlv§” = o112, + NEJp®D — @7

LP(O0.T wg, i H0)"

(6.40)

The point in (6.40) is that we are able to bound the maximal regularity

L? (w,(pya; H?>7%4)-norm of the difference vV — v® in term of the weaker
LP(wy, s H—%4)-one.

~ ~ (M _y@y P i def (D _ @
First we estimate E||v v ||Lp(0’Twap’5;H2,5‘q).To thisend, setV = v v,
Note that, fori € {1, ..., £}, Visa (p, ks, 8, g)-solution to

dV; = v + WAV dr = [N o) = N0 @) e
6.41
+VCav Y 0n(0ke - V)Vidw®  on T ©41)
k,a=1
The above problem is complemented with the initial condition

V(0) =V, where Vo % o{l — . (6.42)

The stochastic maximal L”-regularity estimate of [3, Theorem 1.2] yields, for all
y €10, 1),
E|VIY

14 (1) )\ P
HV"’(O,T;U)KPYS;H27‘3727<’/) 5 ”V()”L!] +E||N(, u ) _N(, u )”Lp(O,T;prva;Hf‘s‘q)

(6.43)
S Vollfy +EIVIG, )
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where in the last inequality we apply Step 1. Recall that Z, , is as in (6.38).

Now the idea is to prove that Z, ,(T) is lower order compared to the maximal
regularity norms. More precisely we prove the existence of y € (0, %) such that, for
eache € (0, 1),

||“||Zm7(T) =< 8”“”HV-I’(O,T;w,(p‘B;H2*5*2V~q)ﬂLP(0,T;w,(pvs;HZ*M) + CE””||L1”(0,T;w,(p_3:,H”3~q)'

(6.44)
If on the LHS(6.44) we replace Z, ;) (T) by LP(0, T, wy, 5 H?7%=1:4) then the above
fact is clear from standard interpolation inequalities and the fact that n > 0. By (6.38)
it remains to prove the estimate (6.44) with Z, ,,(T) replaced by L" (0, T'; L?). To

thisend, fix { € r Vp Vv 2278,00) and set y def 1 - % — % e (0, %). Note that
- H% =—land2-5-— 2y = % Sobolev embeddings with power weights
show (see e.g. [5, Proposition 2.7])

HYP(0, T, we, s H 0724 = H"P(0, T, wy, ;3 HY*) < LE(0, T3 H*/%9).

(6.45)
By standard interpolation inequality, one has, for all ¢ € (0, 1)
”u”Lp‘ﬂ(OTw,( HA‘/’[I) ~ ”u”LI’(OTw TH— (Sq)”u”L{(OTHZ/{q)
1 _l-¢ 1 — U-p)k = —5(1 — 2_<P 0.4
where = b + {, pq) and sy (1 — ¢) + ==. Note that H*»9 «—

L7 for all ¢ € [55=, 1). By continuity, one sees that there exists ¢o(¢, &k, p) €

2+5;’
(zi%g“’ 1) such that . K“"’ < ;. Indeed, by letting ¢ 4 1 the previous condition is

equivalent to f < ; Wthh holds since { > r. Hence, the Holder inequality yields
LP#«(0, T, Wiy ' L9) — L"(0,T; LY), cf. [6, Proposition 2.1(3)]. Collecting the
previous observations, one sees that (6.44) with Z, , (T') replaced by L"(0, T; L9)
follows by ¢p < 1, Young inequality and (6.45).

By (6.43)—(6.44) with ¢ > 0 small enough, one gets, fory =1 —

§_ 1
27 ¢

M _ @
Eljv HHVI’(O T we, 5t H23=20O)NLP (0. ,wye, 53 H272)

1
= N[ivg” = v 17, +E||v<1>—v<2>||m0m e

for some N(p,q,K,r,8,n,0,T) > 0. The estimate for the second term on the
LHS(6.40) follows by combining Step 1, (6.44) and the previous estimate. This con-
cludes the proof of (6.40).

Step 3: Conclusion. Let (V, Vp) be as in Step 2, see (6.41)—(6.42). By (6.41), the
Burkholder-Davis-Gundy inequality yields, for some constantco(p, ¢, K, r, 8,60, n) >
0 and for all ¢ € [0, T'] (see [6, Theorem 4.15] for similar computations)

E” V”C([O 1 H- -8, \q)

< co| IVolf, +EIVIL +EINCu®) = NC,u®))

LP(0.twe, 5 51 H204) LP0,T wy, s:H™ M)]
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< coN[IVollEa + BNV 00, i)
where in the last estimate we used Step 2.

Setting X, = IE||V||C([0 H-a) the above inequality yields X; < Xo + fot X ds
for all t € [0, T'] (recall that k, s > 0). Thus the Grownall inequality shows that
X1 <r Xo, ie.

BVl o.rym-say S 1Voll7a-

The estimate (6.37) follows from the above inequality, (6.40) and V = v — @,

Proof of Theorem 3.5 Fix (N, T, e, vg,r).Let (p, k5,8, q) and (r1, 1) be asin (3.8)
and Lemma 6.7, respectively. Without loss of generality we assume that r € [ry, 00).
Finally, fix n € (0, n1].

Since ||vg|lze < N, for each y € (0, 1) there exists v(y) such that

v ec®  and  Jlug— vl <. (6.46)

In particular [[v||Le < N + 1. Forall y € (0, 1), let @, t®)) be the (p, 0, 1, )-
solution to (3.1) provided by Theorem 3.3 and Remark 3.4(b).

Let (8, v, R, Ko) be as in Proposition 6.5 with « = 0 and (7', vo, r, p, q) as above
and (N, ¢) replaced by (N + 1, %). Note that (v, 6) are independent of vy satisfying

(3.13). Since v(()y) is smooth, Proposition 6.5 applies with the above choice of (v, 8, R)
and it ensures that

& &
]P)(T(V) > T’ ”U(V) — Ude)”L' 0,T; L‘l) 8) >1— g, (647)

e
]P’(T(y) >T, ||U(V)||Lr(0 TiLOOLP (0.7 w53 HZ00) = Ko + R) <I- 5 (6.48)

where v 1s the (p, g¢)-solution to (5.1) on [0, T] with w; = v + v; and initial data

(y) Note that the existence of v(y) is also part of the result of Proposition 6.5.
Step 1: Theorem 3.5(1) holds and there exists yo € (0, 1) such that

]P(‘L’ AT > T, o — v o110y < g) - 1- g forall y € (0, yp). (6.49)

Consider the truncated problem (6.33) with K o Ko+ R+ 1 and (r,n) as

the beginning of the current proof. Let us denote by vk , s, and vf,’? r8.m) the
)

(p, kp.5, 8, g)-solution (6.33) with initial data vp and v"’, respectively. By Lemma
6.7 and Chebyshev’s inequality, we can find yp(N, ¢, T vo, 7, p,q) € (0,1) such
that, for all y € (0, yp),

& def e
PYV) > 1-— 3 where V= {Ilv(K,r,s,n) - Uélyg),r’,;,n)”L’(O,T;L’I)ﬂLl’(O,T,pr,a;HZ—‘W) = 5}-
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)

Since K > Ky + R, the uniqueness of V(K ro6.m) yields
- ¥ W %)
tAT>T on)y and VK rs =V ae.on [0, TV AT] x Vy,

def
Vo = {f(y) > T, vl ro,7:00) + ||v(y)||Lp(o,r,pr5;H2—é.q) < Ko+ R}-
(6.50)
To see (6.50) one can argue as Step 1 of Proposition 6.5. Indeed, let

def .
w=inf{r € 10.0) 0P sy + 10 Lo, o250 = Ko+ RYAT,

where inf@ € ) A T. Note that w = ™ AT = T on V. Then
Dk r5,n(C, v((ly()’r’a’n)) = 1 ae. on [0, ) x €, see (6.32). Therefore (v, ) is a

(p, Kp,s. 8, g)-solution to (6.33) with data v(()”). Combining the uniqueness of vk 5.

and the fact that {x = t) A T} D V), one obtains (6.50).
Next, note that, by (6.48) and (6.50), we have P(Vy) > 1 — 6~ '¢. Therefore

PO) > 1 — g where O % vy, 6.51)

Recall that K = Ko 4+ R + 1. The triangular inequality, (6.50) and the definitions of
Vo yield

o rs.mliLro.r:LonLr©.7.w,, 250y < K a.s.on 0.
Arguing as below (6.50), the above and a stopping time argument readily yields
t>T as.onO and v, sy =v aeon[0,TAT)xO. (6.52)
The first in (6.52) and (6.51) prove assertion (1) of Theorem 3.5.

Finally, to prove (6.49), note that, the definition of ¥V 2 O, the fact that W >T
on V), (6.50) and (6.52) imply

&
At =T o = v lroran = 5} 20.

Thus (6.49) follows from (6.51).
Step 2: Theorem 3.5(2) holds. Let vget be as described below (6.48). By Proposition
5.1(2) there exists y1(vo, T, €, g, p) € (0, 1) such that, for all y € (0, y1),

(6.53)

W] ™

lvdet — Uézt)”Lr(O,T;L‘i) <
Next fix y € (0, yp A y1). The triangular inequality shows that
e
{t>T, |lv—vdetllLro,7;L9) < €} 2 [T AT > T v = 0P| 7.0y < 5}
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& &
N {f(y) > T, v — vl o.7:00) < 5} N {llvézt) — Vdetllzr0,7;09) = 3}

Therefore Theorem 3.5(2) follows by combining the latter inclusions and (6.47),
(6.49), (6.53).

6.3 Proof of Theorem 3.6

Following the arguments of [29, 33] we deduce Theorem 3.6 from Theorem 3.5 and
Lemma 5.2. Asin [33] we need that the stochastic problem (3.1) is globally well-posed
for small initial data, see assumption b) in [29, Theorem 1.5]. This will be the content
of the following result.

Proposition 6.8 (Global existence with small initial data) Let Assumption 3.1 be
satisfied. Let N > 1 and let vg € L9 (Td; Rz) be such that ||vgllLe < N and vy > 0on
T¢ (component-wise). Suppose that Assumption 3.1(4) holds with ag = 0 and a; < 0.
Assume that

dh—1) d 2
and p>——Vq.

5e(l.2). v
€2, g>— d—35 23

Let (v, T) be the (p,Kps,q,8)-solution to (3.1) provided by Theorem 3.3 (recall
kps=p(— %) — 1). Then for each

dh—1
eec(0,1), re(200) and (T)vzgqoqh <q
there exist S, > 0, depending only on (aj,a;,r,qo,q1,7,q, p,d,h, N,¢), such
that for all stopping time y € [S, 00) a.s.

P(t >y, vl <n)=1—& = P(t =00, [Vll1r(y.00:00) <€) =1 —e.

Proposition 6.8 ensures the absence blow-up with high probability provided
lv(y)|lza1 is small with high probability as well. The smallness of the norm || v(y)|| 140
is not surprising as the mass is exponentially decreasing by Theorem 3.3(1) withag = 0
and a; < 0.

Next we prove Proposition 6.8 and afterwards Theorem 3.6.

Proof of Proposition 6.8 The proof follows as the one of Lemma 5.2 (see also Proposi-
tion 5.1). Here we use the smallness of 7 instead of the one of = !. Let (r, qo, g1, €)
be as in the statement of Proposition 6.8. For 1, S > 0 and a stopping time
y Q2 — [, 00), set

def
Vo S (T >y, @)l < n) € F. (6.54)
Below we also write V instead of V), ; if no confusion seems likely. Below we

assume that
PYV) > 1—e. (6.55)
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As in Lemma 5.2, below, we frequently use that the exponential decay of the mass:
fd lvldx <y e " as. forallz € [0, 7). (6.56)
T

The above follows from Theorem 3.3(1), agp = 0, a; < 0 and ||vg|lrs < N.
Step 1: Let (S,n) be positive constants. There exist a constant co(a;, a;, qo,
q1,7,q, p,d, h) > 1,independent of (S, n), such that a.s. onV and forall t € [y, )

t
sup [lv]lY, <co<n‘“+e—"“'5+/f |v|q1+”—1dxds), 6.57)
tely.t) y J1d

t
”v||zlql+h*1(y’[;L‘11+h*1) S Co(nql + 67|GI|S +/ /Td |U|q1+h71 dx ds) (658)
Y

Here we follow the proof of Steps 1-2 in Proposition 5.1. Recall that v is regular on
(0, 7) x 2 by Theorem 3.3(2). Thus, the It6 formula yields, a.s. for all ¢ € [y, 7) and
iefl,.... 4},

t
O +viaq =1 [ [ o 29 ars
y J1¢
t
= [li()IT% +f1/ /]I‘d i [ i CLov)vi = (g = DF; (-, ) - V| dx ds.
y

As in the proof of Theorem 4.1(2) the martingale part in the previous identity vanishes
since div oy o = 0. Next we estimate the RHS of the previous inequality. Thus

t
\// i 1172 £ (-, v)v,dxds\<// vi| + o] dx ds
/[ “lailt il gy ds < emlalS 4 /f lo; |9h =1 dx ds,

where we used (6.56) and y € [§, 00) a.s. In the above the implicit constants depends
only on (a;, @}, qo, 41,9, p,d, h, N). Reasoning as in Step 1 (resp. 2) of Proposition
5.1, one can check that (6.57) (resp. (6.58)) holds. To avoid repetitions we omit the
details.

Step 2: There exists Mo(a;, j, qo0,q1,49, p,d,h) > 0 for which the following
assertion holds. Suppose that S > So and n > no satisfy

it ellSo < . (6.59)
Then there exists K (a;, o, qo, 91,4, p,d, h) > 0 such that

sup |[[v@®)]lgar < K as.on ). (6.60)
1€[S,7)
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To prove (6.60) we argue as in Step 3 of Proposition 5.1. Let ¢ & hq;ll > 1 and
Ve R(X) © Ry —x* forx € [0, o0) where R = c&l. Here cg is as in Step 1. Then
(6.58) is equivalent to

—lailS

w;—’R(”U||Zlql+h_l(0,[;qu+h—l)) <n? +e forall0 <t < rand a.s. onV.

Note that v/, g has unique maximum on [0, 00). Set My (co, &) def maxg, ¥ g and

mo(co, ¢) &ef arg maxp V¢ r. Nextwe choose (So, o) asin (6.59) with M as above.
Then, if S > Sp and n < no, then the above inequality readily yields (cf. Fig. 1 for a
similar situation)

q1
”v”qu*’H(0,;;Lq1+h*1) <mgp forall0 <t <.

The estimate (6.60) follows by combining the previous inequality and (6.57).
Step 3: Let (S, no) be as in Step 2. If S > So and n < no, then T = 00 a.s. on V.
By Theorem 3.3(3) and the fact that ¢ > @ v2wehave, forall0 <s < T < oo,

(6.60)
P{s <t <T}NV) =< P(s <t <T, sup [v@)llpe < oo) —0.
tels,7)

By letting s | O and T 1 oo, we have P({t < oo} N}) = 0. Hence t = oo a.s. on V.

Step 4: Let ¢ > 0 and assume that (6.55) holds. Let (So, no, K) be as in Step 2.
Then there exists Sy > 0 depending only on (a;, oj, 1, q0,q1,9, p,d, h, N, &) such
that, if S > 81V So and n < ng, then we have

P(z = oo, [[vllzr(y,r;90) <€) > 1 —e.
To prove the claim, by Step 3 and the fact that P())) > 1 — ¢, it is enough to show that
||v||Lr(),’oo;qu) <e as.on). (6.61)

Recall that y € [S,00) a.s. By interpolating (6.56) and (6.60), for some
ao(a;, qo, q1) > 0, we obtain |[v(t)| g0 < e~lal a5 on Vfor all 1 > S. Where
the implicit constants depends only on (a;, «}, g0, q1, g, p.d, h, N, ). Hence (6.61)
follows by choosing S; large enough.

The proof of Theorem 3.6 follows by combining the Theorem 3.5, Proposition 6.8
and the exponential decay of solution to (5.1) shown in Lemma 5.2.

For the reader’s convenience, before going into the proof, we summarize the main
argument. By Theorem 3.5 and Lemma 5.2, we know that v(y) — vge((y) and vget(v)
are small provided y > § is big enough (here v and vge is the solution to (3.1) and
(5.1), respectively). Thus v(y) is small as well. Hence Theorem 3.6 follows from the
previous observation and Proposition 6.8.
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Proof of Theorem 3.6 Let (N, ¢, v, r, go) be as in the statement of Theorem 3.6. Recall
that go < ¢ and without loss of generality we may assume that gg > d(hz_ Dy ddTS‘
Finally fix 1 € (g0, q)-

Next we collect some further parameters which are independent of vy satisfying
(3.14). Let ;o > 0 be as in Lemma 5.2 and let (S, 1) be as in Proposition 6.8 with ¢
replaced by 5. Lemma 5.2 ensures the existence of 7 > 0, independent of vy satisfying
(3.14), for which the following assertion is satisfied provided v > pg: For all vy as
in (3.14), there exists a (p, g)-solution vge; on [0, 00) to the deterministic problem
(3.12) satisfying

EAT
lvdetll 27 (T,00;291) + SUP [Vdet () [l L1 < 7 (6.62)

t>T

Without loss of generality we may assume S < 7 and vy < po.
Let (v, 8) be such that Theorem 3.5 holds with

A
(N, T,e, vo,r) replaced by (N, T +1, % 1o, r).
Note that (v, 0) is independent of vy satisfying (3.14) due to the independence of (v, 0)
on the initial data in Theorem 3.5 and the choice of (S, 1, ©o). With the above choice
of the parameters we can now complete the proof of Theorem 3.6. Indeed, Theorem
3.5(2) ensures that

gAY

EAN
P(v =T+ 1 o= vaallro.rsian < =) > 1 - (6.63)

where vget 18 (p, g)-solution to (3.12) as described before (6.62).
Note that (6.63) together with (6.62) show

€ def ENT

(V) > 1 -5 where V, & {r > T+ 1, ol arania < T} (6.64)
Recall that, by Theorem 3.3(2), the paths [s, 7) > t — |[v(¢)]| a1 are a.s. continuous
for all s > 0. By (6.64), for each @ € ), there exists t € (T, T + 1) such that
lv(t, w)|lLe1 < n. Hence the stopping time

y €1 inf{t € [T, 7): [[v@® |z <M} AT +1) on {Jo(T)|ra > 7},
(=7 1 on {[[v(T)llLan <n},

where inf & def T, satisfies
€
P>y VT, vy VDo =) =zPOVe) > 1— 7
The previous and Proposition 6.8 yield

& &
B(r = o0, Iollrvronsm < 5) = 1 -5 (6.65)
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The above already proves Theorem 3.6(1). While (2) follows by combining (6.62),
(6.63), (6.65) and the factthat y VT € [T, T + 1] ass.
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